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Abstract

PIC4SeR is the Interdepartmental center of PoliTO for service robotics. For its re-
search it emerged the need to investigate indoor localization algorithms, in particular
the visual-inertial type. This work aims to study different types of algorithms to assess
which one is the best choice for indoor localization with the already available COTS
hardware.
Although the end application is meant to be UAV, a Jackal UGV is used instead, be-
cause it was the vehicle available and it lowered the risks of damages during the testing
phase. A MYNTYEYE S stereo camera, with included IMU and IR projector, was
available and mounted on the UGV.
Three algorithms are considered: a light-weight filter-based VIO framework, ROVIO,
and two optimization-based VIO frameworks, VINS-Fusion and OKVIS, that should
better accommodate data asynchrony.
The algorithms are tested in two different environments making the robot follow two
paths multiple times: a linear path in a corridor and a pseudo-rectangular one in a
room.
The algorithms performance is evaluated by two parameters: the relative error on the
total traveled distance and the difference between initial and final position of the UGV.
The tests underlined no best algorithm, but a dependence on the environment.
As future work, it would be interesting to test a camera using a tight hardware-
synchronization with an IMU, since, according to the literature, should be a big source
of error.
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Chapter 1

Introduction

PIC4Ser is the PoliTO Interdepartmental Centre for Service Robotics. Its objective it
to connect and coordinate the activity of researchers with different engineering back-
ground, in order to develop new technologies in the complex service robotic field. The
research covers different areas and one consists in the development of technologies and
programs for indoor localization of UAV and UGV. For this task it is necessary to have
a robust and accurate indoor localization and this is where this thesis project came
to be. In fact this works aims to study different types of visual inertial algorithms to
assess which one is the best choice for indoor localization with the already available
Commercial Off-the-Shelf (COTS) hardware. Despite the fact that the end application
is intended for aerial vehicles, a Jackal Unmanned Ground Vehicle (UGV) was used
for the tests, since it was the vehicle available and it lowered the risks of damages
during the maneuvers. The sensor used was a MYNTYEYE S stereo camera, that
comes already built with a inertial measurement unit inside and two infrared lights to
project a pattern of points for each monocular camera. One of the stereo visual inertial
framework considered is ROVIO, a light-weight filter-based program designed UAV ap-
plications, that can work even in rough scenarios, like in almost no light conditions and
in very low textured environments. An optimization-based framework, VINS-Fusion,
was also considered for its good results in VIO-SLAM mode and its VIO-only module
was tested. The last framework considered was OKVIS, also optimization-based, but
older then VINS. Its main quality is the use of BRISK to extract robust features and
improve the localization accuracy.

1.1 Objectives
The main objectives consist in:

• Analyze the camera factory calibration and re-calibrate it if needed,

• Define a test methodology and a metrics to compare the algorithms,

• Determine the best camera settings and parameters settings for each framework,
and confront their accuracy in an indoor environment.

1



Chapter 2

Stereo camera

A stereo camera is a combination of two cameras placed at known distance, with
a separate image sensor for each lens. They are used because of the possibility to
reconstruct a 3D scene via stereo triangulation.

2.1 MYNTEYE S1030-IR-120/Mono

The MYNTEYE S1030-IR-120/Mono is a monochromatic visible and infrared (IR)
stereo camera, with an integrated 6-axis Inertial Measurement Unit (IMU) and a high
visual angle [1]. It has a global shutter and the cameras are hardware synchronized.
The manufacturer does not specify if the cameras measurements are synchronized with
the IMU measurement with and hardware trigger, so test were performed. The produce
provides a software development kit (SDK) that was used on Ubuntu 16.04 operative
system to interface with the camera and record data using the given ROS packages. The
Robot Operating System (ROS) is "an open-source, meta-operating system" for robots.
It provides the services that an operative system usually does and a set of tools to run
code in multiple machines [2]. To test the camera-IMU synchronization it was used
both a program present in the camera software development kit (SDK) and a self-made
script to analyze data recorded with ROS. The results show no hardware triggering
there is instead a big fluctuation in the closest time difference between camera e IMU
measurements. The oscillation is centered in zero and with an amplitude (2 times
the maximum time difference) that depends on the IMU frequency settings, while its
frequency depends on the camera fps settings, being about half of it. The behavior is
shown in table 2.1

2.2 Camera calibration
Geometric camera calibration is a composition of the camera modeling, that deals with
a mathematical approximation of the optical physics using a set of parameters, and
the calibration, that deals with the use of direct or iterative methods to estimate the
values of these parameters [3].

2



Chapter 2. Stereo camera

IMU frequency [Hz] Maximum time difference [ms]
100 ± 5.0
200 ± 2.5
250 ± 2.0
333 ± 1.5
500 ± 1.0

Table 2.1: MYNTEYE S camera-IMU asynchrony.

Model S1030-IR-120/Mono
Size PCB dimension 149mm × 24 mm

total dimension 165×31.5×29.6 mm
Frame Rate 10/15/20/25/30/35/40/45/50/55/60 FPS

Resolving Power 752x480
Depth Resolving Power Base on CPU/GPU Up to 752×480@60FPS
IR detectable range Up to 3m

Visual Angle D:140°H:120°V:75°
Color Pattern Monochrome
Pixel Size 6.0 × 6.0 µm

Shutter Speed 17 milliseconds
Baseline 120.0 mm

Camera Lens M6 Camera Attachment
Focal Length 2.1mm

Motion Perception 6 Axis IMU
Control Function Exposure/Shutter/Brightness/IR
IMU Frequency 100/200/250/333/500 Hz

Cameras Synchronization Precision <1ms (up to 0.05ms)
Working Distance 0.8-5m+
Scanning Mode Global shutter

Power 3.5W @ 5V DC from USB
Output data format Raw data

Data transfer Interface USB 3.0
Weight 196g

UVC MODE YES

Table 2.2: MYNTEYE S1030-IR datasheet [1].
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Chapter 2. Stereo camera

Figure 2.1: MYNTEYE S camera [1].

Figure 2.2: Camera projection model .Image adapeted from [3].

2.2.1 Extrinsic and intrinsic camera model
The extrinsic camera model provides a transformation of the camera position and orien-
tation with respect to a world coordinate system. This is performed by a homogeneous
transformation matrix that represents a roto-translation ([4], [5]):


X

Y

Z

1


cam

=
[

Rc
w tcw

0 0 0 1

] 
X

Y

Z

1


world

, (2.1)

where tcw is a vector that represents the origin of the world reference frame with respect
to the camera reference frame, and Rc

w is a rotation matrix that represents the axes of
the world reference frame in the camera one.
The intrinsic camera model describes the transformation from a 3D point in the camera
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Chapter 2. Stereo camera

frame to a 2D point in the image frame and therefore models the internal geometry and
optical characteristics of the image sensor [3]. It is usually composed by a projection
model and a lens distortion model.

2.2.2 Pinhole projection model
As noted in [5] and [6], the pinhole model assumes that all the light rays pass through
a single point, the optical center or camera center, and that there is a linear correlation
between the image point position and the ray direction. This transforms a 3D point in
the camera frame in a 2D point in the image frame, using prospective projection. The
intersection between the camera optical axis and the image plane is called principal
point. In the model, the image plane is moved in front of the principal plane or lens
plane, to avoid the image inversion (and becomes a virtual image plane), as seen in
fig.2.3. The geometric mapping from 3D to 2D can be expressed, using homogeneous

Figure 2.3: Pinhole projection model [6].

coordinates, as

λ


u

v

1

 =


f 0 0 0
0 f 0 0
0 0 1 0



Xcam

Ycam
Zcam

1

 , (2.2)

where λ is the homogeneous scaling factor, f is the focal length (in pixels) and the
3 × 4 matrix is called the projection matrix (P). Most of the current cameras define
the pixel coordinate system origin at the top left corner of the image. Therefore the
coordinates of the principal point are [u0 v0]T . This changes the prospective projection
equation as

λ


u

v

1

 =


f 0 u0 0
0 f v0 0
0 0 1 0



Xcam

Ycam
Zcam

1

 (2.3)
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The real sensors have more imperfections that must be taken in account. In fact, the
pixels might not be squared, leading to two different focal lengths in each direction,
and can potentially be skewed, leading to a skew factor s. The pixel can appear skewed
in case that the image is acquired by a frame grabber, due to an inaccurate synchro-
nization of the pixel-sampling process. The more general definition of the projection
mapping is then:

λ


u

v

1

 =

 K | 0



Xcam

Ycam
Zcam

1

 (2.4)

The matrix K is called intrinsic camera matrix and

K =


fx s u0

0 fy v0

0 0 1

 (2.5)

In practice, using recent digital camera, we can assume that fx = fy and s = 0.

2.2.3 Lens distortion models
In real cameras there is a non-linear distortion produced by the lenses, that we have
to take in account [7]. Consider the pinhole projection at unitary focus x = Xcam

Zcam
,

y = Ycam
Zcam

and r =
√
x2 + y2 Of course then, considering the distorted pixel coordinates,

[xdist, ydist]T 
u

v

1

 =

 K



xdist
ydist

1

 (2.6)

Radial-tangential distortion model

For the cameras with low field of view, a good model is the one considered in OpenCV,
[8], the radial-tangential distortion model. OpenCV is a open-source vision library
wildly used for real time image processing. The aforementioned model needs 5 param-
eters, (k1, k2, p1, p2, k3). As stated in [10], "radial distortion is mostly cause by a flawed
radial curvature curve of the lens elements". It depends on the radial distance from
the principal point of the image plane, so it is most noticeable at the image periphery.
A barrel distortion consists in a negative radial displacement of the image points, and
it causes outer points to get increasingly closer to each other and the scale to decrease
(fig .2.4). A pincushion distortion is instead a positive radial displacement that causes
outer points to spread and the scale to increase.
The function used to model this OpenCV is

xdist(x) = x(1 + k1r
2 + k2r

4 + k3r
6)

ydist(y) = y(1 + k1r
2 + k2r

4 + k3r
6)

(2.7)
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(a) Barrel distortion (b) Pincushion distortion (c) Tangential distortion

Figure 2.4: Radial-tangential distortions [9].

The tangential distortion depends mostly on the non-parallelism between the image
plane and the lens plane. It is an asymmetrical effect and is much smaller compared
with radial distortions for modern cameras.

xdist(x, y) = x+ 2p1xy + p2(r2 + 2x2)
ydist(x, y) = y + p1(r2 + yx2) + 2p2xy

(2.8)

Of course the total distortion is the sum of the two.

Kannala-Bradt distortion model

Both OpenCV, Matlab and Kalibr have the same camera model, called fisheye in the
first two and equidistant in the third. This is a combination of a pinhole camera model
with a Kannala-Bradt distortion model. Even if this is not one of the full camera
models for fisheye lenses as in [11], it is a good enough simplification. The equidistant
name, comes from the equidistant camera model it is based of. The equidistant camera
model has a projection model parameterized as r = fθ, where θ is the angle between
the principal axis and the incoming ray, r is the distance between the image point
and the principal point and f is the focal length (fig. 2.5) [11]. Most of the fisheye
lenses are made to follow this projection model, this is way it is the most used in
calibration toolboxes. Using the projection model as a distortion model, we consider
the distortion given by a sphere projecting on a plane. Considering θ = arctan(r/Zcam),
the Kannala-Bradt distortion model is defined as [12]:

θdist = θ + k1θ
3 + k2θ

5 + k3θ
7 + k4θ

9, (2.9)

and the distortion pixel coordinate become

xdist(x, y, Zcam) = θdist
x

r

ydist(x, y, Zcam) = θdist
y

r
.

(2.10)
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Figure 2.5: Fisheye camera model. The image of the point P is p,
whereas it would be p′ using a pinhole camera model [11].

2.2.4 Best camera calibration practices
As suggested in [13] and [14] the best calibration practices are the following.

1. Camera focus: set the camera focus to manual and at the working distance of
the final application, at which also the calibration is going to be performed,

2. Vibrations and blur: mechanically lock the camera to keep the vibrations as
low as possible. This reduces the blur, making the feature detection easy and
accurate. In case of large targets, consider mounting them vertically or laying
flat on a rigid support and move the camera instead,

3. Pattern:

• Pattern size: it should preferably cover half of the total field of view when
seen parallel to the camera sensor,

• Pattern borders: leave a white margin as big as the distance between two
inner corners, to allow the feature detection algorithm to work well and
faster.

• Pattern feature density: it should have high feature count, but at some
point, the detection robustness suffers. The recommendation from [13] is
to use fine pattern counts for cameras above 3MPx and if the lighting is
controlled and good,

• Pattern manufacturing quality: the calibration is only accurate as the cali-
bration target used, so use laser printed patterns only to validate and test.
Print it on a white opaque, planar and rigid material, making sure it is as

8
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flat as possible. Check the laser printed ones for scaling during the printing
process,

• Pattern type: targets with unique coding as CharuCo boards or Aprigrids
(fig 2.6a) are very good because they allow to record valid data even at edge
of the camera field of view and with partial views. Moreover, their rotation
is detectable.
Circular patterns can be potentially more accurate than checkerboards, but
only if there is a proper sub-pixel determination of the center of the circles.
This is sensitive to a proper choice of circle sizes and the math regarding
corrections is more complex [15],

4. Lightning: diffuse lightning is better, preferably a controlled photographic one.
Strong point sources create uneven illumination that can result in detection fail,

5. Image collection: the target should be moved to cover all the camera field of
view with and even distribution. It is also important to tilt the target in both
horizontal and vertical direction up to ± 45 degrees, because the lens distortion
can be recovered just with images parallel to the view, but the focal length
estimation needs different depths. Usually 10 observations should be a good
number,

6. Post-processing: carefully inspect reprojection errors, both per-view and per-
feature. If any of these appear as outliers, exclude them and re-calibrate,

7. Result analysis: the calibration algorithm tries to minimize the reprojection error.
A good value is less than 0.5 pixel. However, a low mean squared value only means
that the algorithm was able to minimize the object function on average. A good
approach is to manually measure, for every inner feature, the reprojection error
and plot the results in a histogram, that should be centered at zero.

2.3 Camera calibration with Kalibr
Kalibr is a open-source toolbox that performs multiple camera extrinsic and intrinsic
calibration, and camera-IMU spatial and temporal calibration [16]. Its used was pro-
posed in the MYNTEYE SDK guide [17] and it was chosen due to several features [16],
[18]:

• ROS integration: it uses ROS bag files as input data and it has tools that work
only in this environment,

• Automatic: it does not require user intervention during the procedure,

• Flexibility: supports 4 camera projection models, 4 distortion models and 3 cal-
ibration targets,

• Robust feature extraction and optimization algorithms,
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Chapter 2. Stereo camera

(a) 6x6 Aprilgrid (b) 7x6 Checkerboard

Figure 2.6: Calibration target. [19]

• Performs camera-IMU calibration (which most calibration toolboxes do not),

• Provides error metrics and respective data visualization,

2.3.1 Camera calibration procedure used
Since a pattern half of the camera field of view would have been huge and there are
not many indications about its dimensions in the literature, the first try was with an
A4 sheet. It was printed on it a scaled 6x6 Aprilgrid of 0.5x0.5 m on an A0 (fig. 2.6a).
The use of this target lead to unacceptable reprojection errors. Therefore, the second
try was with one of the standard calibration targets found on the Kalibr wiki [19],
composed by a 6x6 Aprilgrid and a 7x6 Checkerboard both 0.5x0.5 m big, on an A0
sheet (fig. 2.6). The sheet was cut in half, each target was taped on one side of a
wooden board, by making sure they were as flat as possible. The tape was used, since
it was less of a permanent solution the glue, thus allowing to easily change the target
type in the future.
From many trials it was discovered that the checkerboard gives lower reprojection
errors, so it was used for the stereo camera calibration. On the contrary, the Aprilgrid
gives higher identification rates with fast moving camera, so it was used for the camera-
IMU calibration. In order to limit strong point source illumination, it was used a
combination of natural and artificial lightning, and the target was oriented correctly
with respect to the light sources .

• Camera calibration: the camera was fixed on a tripod and the pattern was kept
further then the guidelines, as it covered 1/8th of the field of view. The target
was moved in a manner that displayed always about the same dimension in the
undistorted image (i.e. in a arc at about 1.5 m from the camera). The pattern
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Chapter 2. Stereo camera

was tilted following the guidelines, but sopping at a lower angle of about 30
degrees, since Kalibr could not detect any corners for higher inclinations. The
camera field of view was covered evenly moving the target slowly (on average it
took about 1 minute and 45 second).

• Camera-imu calibration: the calibration target was fixed laying it against the
wall and, staying closer than the previous case, the camera was moved as shown
in the video on the Kabir Wiki [19] (translation and rotation along each axis
separately, followed by a random movement). In this phase Kalibr can provide
an online estimation of the camera-IMU measurement delay. This function was
turn of because it gave wrong estimations, (e.g 0.0067 while it should be closer
to 0 s 2.1).

2.3.2 Kalibr setting and result analysis
Since the camera came pre-calibrated with a pinhole projection model and a radial-
tangential distortion model, the first calibration trials were preformed using the same
models. It was not possible to get reprojection errors lower than 0.5 pixels (fig. 2.7a),
and after checking with the factory calibration, it was discovered that it had the same
issue. The camera field of view (tab. 2.2) leads the image to be too distorted for the
radial-tangential model. It was therefore tried the Kannala-Bradt distortion model,
that lead to far lower reprojection errors, as shown in fig. 2.7b. The best calibration
results were chosen looking at the field of view coverage, at the reprojection error and
the accuracy of the estimation of the known parameters (the camera baseline). For
the camera-imu calibration, since there are not known parameters currently declared
by the manufacturer, it was used the data taken from a old version of the SDK guide
(more then one year old) found at [52] and checked if the results were similar.

2.4 Stereo triangulation
A stereo camera it is used because, as for human’s eyes, once a point position is know
in two views, it is possible to reconstruct its 3D coordinates. This operation is called
triangulation and in ordered to easily find the pair of 2D points describing a 3D point,
it is important to have a calibrated stereo camera and transform the images. This
requires applications of epipolar geometry.

2.4.1 Epipolar geometry
As noted in [20], epipolar geometry relates a 3D point and the corresponding observa-
tions in a stereo camera setting. Consider a pair of cameras with camera centers are Ol

and Or. The line between them is called baseline (usually the norm of the baseline is
referred at with the same name) and the plane defined by the camera centers and the
point P is called epipolar plane. The points at which the baseline intersect the camera
planes are called epipols and the line defined by the intersection of the epipolar plane
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(a) Radial-tangential distortion model (b) Kannala-Bradt distortion model

Figure 2.7: Confront between reprojection errors. The results come
from the same dataset and the errors are in pixels. The different colors

indicate different images.

and the two image planes are known as the epipolar lines. The epipolar lines intersect
the baseline at the respective epipoles in the image plane. If the projection of the point
P on the right image plane is known, since the epipolar plane is defined, the projection
of the same point on the left image plane must lie on the analogous epipolar line. This
property, called epipolar constraint, for a calibrated camera is written as pTl Epr = 0,
where p are 2D homogeneous vectors and E = t×R, with t = tClCr the translation vector
between left and right camera frame and R = RClCr the analogous rotation matrix (fig
.2.8).
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Figure 2.8: Epipolar geometry model in which are shown the camera
centers O, the epipoles e, the point P projections on the image frames

and the epoipolar lines l[20].

2.4.2 Stereo triangulation
As suggested in [21], using a calibrated camera it is possible to rectify the image pair,
making the epipolar lines horizontal and the corresponding image ones in both images
collinear. This requires undistorting the images and using the essential matrix to make
the image plane complanar. This limits the search of a point correspondence, known
the position on the other camera image plane, from 2D to 1D, only concerning the
line with v = vp. Different algorithms can be used to find the match, but one it is
found the point disparity can be computed d = ur − ul. From the disparity the point
depth can be found. In fact, considering the triangles similarity, it is easy to prove
that b

Zp
= (b+ ur)− ul

Zp − fx
→ Zp = fxb

d
(fig . 2.9).

Figure 2.9: Stereo triangulation [21].
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2.4.3 Disparity space
As explained in [22], the disparity space is used to express stereo-triangulated points
using their u, v coordinates on the image plane and disparity d. Considering a pair of
matching points [ur vr]T , [ul vl]T , the transformation to the disparity space is defined
as:

y =


u

v

d

 =


1 0 0 0
0 1

2 0 1
2

1 0 −1 0



ul
vl
ur
vr

 . (2.11)

Considering a calibrated stereo camera, the following map from the homogeneous co-
ordinate space to the disparity space is defined:

y = g(p)→


u

v

d

 = 1
Zp


fx 0 u0 0
0 fy v0 0
0 0 0 bfx



Xp

Yp
Zp
1

 (2.12)

where b is the baseline norm and g(·) is called the stereo projection model.
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Chapter 3

Elements of visual odometry

As shown in greater details in [23] and [24], visual odometry (VO) is defined as the set
of algorithms that provide and incremental online estimation of an agent’s (e.g. vehi-
cle, robot) position by analyzing the image sequences captured by a camera. The idea
of estimating a vehicle’s pose from visual input alone starts in 1960’s, where Stanford
University built a lunar rover controlled from the Earth. This design was further inves-
tigated by Moravec to demonstrate correspondence based stereo navigation in 1980s.
NASA monopolized VO research From 1980 to 2000, when the technologies for the 2004
Mars Mission were being developed. The term “visual odometry” was invented because
of the similarities between vision-based localization and wheel odometry. In fact, as
the latter integrates incrementally the number of a vehicle wheels turns over time to
estimate its movement, VO integrates pixel displacements between image frames over
time.

3.1 VO approaches
The use of vision-based odometry to estimate the position of a mobile robot can be
categorized in many different ways as detailed in [23] and [24]. Focusing on the model
used to compute the movement, it can be divided in geometric approaches, that apply
concepts from projective geometry , and non-geometric approaches that use learning
algorithms for the estimation. The geometric approaches can be subdivided considering
the type of exploited visual information in: feature based, appearance based and hybrid
approaches.

3.1.1 Feature based approach
This strategy involves the extraction of features (usually corners, sometimes lines) in
a sequence of images, and matching or tracking a subset of them in all the images, to
estimate the camera motion. Traditional edge and corner feature detectors, as Moravec
and Harris corner detectors, provide a really fast image correspondence, but suffer
of low robustness. Nowadays, scale and transformation invariant feature extraction
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algorithms as SIFT, SURF, ORB, BRISK are widely used. They work by assigning to
each extracted corner a descriptor, that increases the matching speed and robustness.
The selection of a good subset of features is really important since it can lower the
computational burden and increase the estimation accuracy. One simple method is to
use a bucketing technique to evenly distribute features in the image. More complex
ones involve the recognition and use only of static features (e.g the features belonging
to a door frame). It is also paramount to implement some outlier removal technique
as RANSAC or based on a model of the motion. If stereo VO is implemented, the
extracted features from the first frame are matched with the corresponding points in
the second frame, thus providing the 3D position of the points in space.

3.1.2 Appearance based approach
The image information is used directly, by the optimization of the photometric error for
motion estimation. This error takes in account the change in appearance of acquired
images and the intensity of pixel information. The feature-based techniques are usually
noisy and the features can not be extracted in smoothly varying landscapes (e.g foggy
environment). They also suffer from association mismatch with similar looking places.
Using whole images reduces these issues, but makes the system less robust to noise.
This techniques can be divided in: region-based matching and optical flow based.

• Region-based matching: The region-based matching either can be achieved through
correlation (template matching) or with the use of global appearance based de-
scriptors and image alignment approaches. They relay on the definition of a
specific area of interest and require a minimization of an objective function with
an optimization method. A incorrect choice of this function can lead to local
minima a divergence issues. In more details the techniques consist in:

– Template matching: is the most commonly used method and consist in se-
lecting a patch or a template from the current image frame and attempting
to match this patch in the next frame. In this approach the template is
shifted around a new acquired image frame and a similarity degree is com-
puted by different measures. The area where this value is higher is most
likely the new position of the template. Two similarity scores are most
commonly used: sum of squared differences (SSD) and normalized cross
correlation (NCC). NCC is more accurate, but also slower in execution.

– Global appearance descriptors: Fourier-Mellin transformations, Fourier im-
age signatures (zero phase representation included) and image histograms
are the most used. Each on has its pros and cons, and overall the choice
depends on the environment in which the images are taken and the com-
putational power of the system. It is very important to optimized their
parameters because the computation burden can become unbearable very
easily.
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• Optical flow matching: it does not depend on a definition of a objective function
and can better tolerate moving objects, then the region based techniques. Its
genesis comes from the observation of the insects’ biology. The algorithm assumes
that the pixels intensity only shifts in a limited time frame without changing
value. If all image pixels are used to estimate the optical flow the algorithms are
called dense optical flow estimators. When only a selected number of pixels are
used the technique is named sparse optical flow.

• Hybrid of feature and appearance based approaches: feature-based approach better
preforms in textured environments, while appearance-based approach is more
robust in low-textured scenarios. The combination of the two is the best solution
in some scenarios.

3.1.3 Image pyramids
As noted in [25] and [26], it is a data structure formed by a set of images at multiples
scales. Its use in computer vision is motivated mainly by the reduction of computation
cost given by their used in feature detection algorithms. Their use also extends to
image enhancement and analysis algorithms.
The pyramid zero level consists of the original image. Then, each new layer is obtained
iteratively from the previous one, applying a smoothing filter and reducing the image
size by a downsampling. A scale factor is imposed which regulates the filter intensity
and the scale factor.
Different kernels (e.g. Gaussian, Laplacian) can be convoluted with the image based
on the intended application. A visual representation of this data structure is depicted
in figure 3.1.
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Figure 3.1: Representation of an image pyramid with 5 levels and 2
scale [27].

3.2 FAST: Features from Accelerated Segment Test

As explained in [28], the FAST detector returns an high number of corner features in a
short time. It works considering a circle of sixteen pixels around the corner candidate
p with pixel intensity Ip (fig. 3.2). The point p is classified as corner if one of this
conditions is respected:

• There exists a set of n contiguous pixels S in the circle which, ∀x ∈ S, the
intensity of x, Ix > Ip + t,

• There exists a set of n contiguous pixels S in the circle which, ∀x ∈ S, Ix < Ip+ t

where t is a threshold, usually set at 12, since it admits a high-speed test which can be
used to exclude a very large number of non-corners. This consists in examining only
the pixels at the four cardinal directions (1, 5, 9 and 13). If p is a corner, then at least
three of these pixels must be brighter than Ip+ t or darker than Ip+ t. If p does not
belong to any of these occurrences, it cannot be a corner. With this method the full
test is applied only on the corner candidates, examining all pixels in the circle. This
detector exhibits high performance, but there are several weaknesses:

• The high-speed test does not generalize well for n < 12,

• The choice of 4 pixels in a specific order represent an assumption about the
appearance of a feature,
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• The information about relative pixel brightness from the first 4 tests is not used
in the full test ,

• Features are not well spaced in the image frame.

To address the first three problems it is used machine learning, while for the last it is
applied non-maximal suppression.

Figure 3.2: FAST algorithm implementation. The pixel p is the center
of a candidate corner. The arc is indicated by the dashed line and passes
through 12 contiguous pixels which are brighter than p by more than
the threshold. The highlighted squares are the pixels used in the corner

detection [28].

3.3 Harris corner detector

As argued in [29] and [30], it is a standard technique to locate interest points on a
image. The method is based on illumination changes therefore it is applied on grayscale
images. The basic idea is to detect points based on the intensity variation in a local
neighborhood of a feature. So, the pixel intensity should vary more in a small region
around the feature than in any windows shifted in any direction. The image is defined
as a function I : Ω ∈ R2 → R and h is a small increment from any point belonging
to the following domain: x = [x y]T ∈ Ω. Corners are defined as the points x that
maximize the following functional:

E(h) =
∑

x
w(x)(I(x + h)− I(x))2, (3.1)

so, that give the maximum intensity variation in any direction. The function w(x)
defines a support region to minimize the aliasing effects. It is usually a rectangular or
Gaussian function. In order to speed up the computation a Taylor expansion is used:
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I(x + h) ≈ I(x) +∇I(x)Th resulting in:

E(h) ≈
∑

x
w(x)(∇I(x)Th)2 =

∑
x
w(x)(hT∇I(x)∇I(x)Th) = hTMh. (3.2)

M is the autocorreletion matrix, defined as:

M =
[ ∑

x w(x)I2
x

∑
x w(x)IxIy∑

x w(x)IxIy
∑

x w(x)I2
y

]
, (3.3)

with I∗ = ∂I(x)
∂∗

. The maxima of E(h) are found analyzing matrix M. Its largest
eigenvalue correspond to the direction of largest intensity variation, while the second
one corresponds to the intensity variation in its orthogonal direction. Three cases may
present:

• Both eigenvalues are small, λ1 ≈ λ2 ≈ 0, the area is most likely to lack of features,

• One of the eigenvalues is much larger than the other one, λ1 � λ2 ≈ 0, then the
region is likely to belong to an edge,

• Both eigenvalues are large, λ1 > λ2 � 0, so the area contains variations in both
orthogonal direction, characterizing a corner.

In the actual implementation, autocorrelation matrix is symmetric and positive semi-
definite, so it can be defined a corner response function that is invariant to in-plane
rotations.

3.3.1 Harris measure
The measure proposed by Harris and Stephens is:

RH = λ1λ2 − k(λ1 + λ2)2 = det(M)− k trace(M)2, (3.4)

where usually k = 0.04 : 0.06. This function allows to detect corners and edges. As
shown in the figure 3.3a, when R is negative, one of the eigenvalues is much larger
than the other, thus the pixel is likely to belong to an edge. When R is positive and
large, both eigenvalues are large, then it is likely to be a corner. If both eigenvalues
are small, R is small and it is part of a flat region.

3.3.2 Shi-Tomasi measure
The corner response function is

RST =

λmin if λmin > τ

0 otherwise
, (3.5)
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(a) Harris measure [29] (b) Shi-Tomasi measure. Image adapted from
[31]

Figure 3.3: Harris and Shi-Tomasi measures. In the figures are de-
picted areas with different values of the corner response function R

where λmin = min(λ1, λ2). In this case if the minimum eigenvalue it is greater than
the threshold, the point is considered a corner (fig. 3.3b).

3.4 KLT feature tracker

As explicate in [32], it consists in a sparse optical flow based visual odometry technique.
Defined I(x, y) as the intensity function of a image frame and J(x, y) of another image
frame (as in 3.3). If u = [ux uy]T the point to be tracked on the first image, the goal
is to find v on J where I(u) and J(v) are similar. v is defined as v = u + d where d
is the image velocity at u, also called optical flow. This is equivalent to minimize the
residual function ε(d), defined as:

ε(d) =
ux+ωx∑

x=ux−ωx

uy+ωy∑
y=uy−ωy

(I(x, y)− J(x+ dx, y + dy))2 , (3.6)

where it is considered a rectangular window of size (2ωx + 1) × (2ωy + 1). Since the
standard implementation of the KLT algorithm can only deal with small pixel dis-
placement, it is usually realized with a pyramidal representation (sec. 3.1.3). Starting
from the layer 0 each layer is downscaled by a factor 2. So if u := u0, uL = u

2L . The
algorithm works computing dL at the L pyramid level, that is scaled and used as first
guess to the lower layer until the layer 0 is reached. This is done by minimizing the
error function εL defined as:

εL(dL) =
uLx+ωx∑

x=uLx−ωx

uLy+ωy∑
y=uLy−ωy

(
IL(x, y)− JL(x+ gLx + dLx , y + gLy + dLy )

)2
, (3.7)
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in which the second image is pre-translated by gL = 2(gL+1 + dL+1) that is the lower
level optical flow. Of course gLm = [0 0]T . This implementation keeps dL small and
easy to compute. The final optical flow is:

d =
Lm∑
L=0

2LdL. (3.8)

3.4.1 Standard implementation
The goal is to find dL that minimizes the function εL, for all levels. To generalize
the notation the point vector is p = uL, the displacement vector is ν̂ = dL and
A(x, y) := IL(x, y) and B := IL(x + gLx , y + gLy ). This transforms the goal in finding
the ν̂ that minimizes:

ε(ν̂) =
px+ωx∑

x=px−ωx

py+ωy∑
y=py−ωy

(A(x, y)−B(x+ νx, y + νy))2 , (3.9)

In order to find the optimum ∂ε(ν̂)
∂ν̂

∣∣∣∣∣
ν̂=ν̂opt

= [0 0]. And

∂ε(ν̂)
∂ν̂

= −2
px+ωx∑

x=px−ωx

py+ωy∑
y=py−ωy

(
(A(x, y)−B(x+ νx, y + νy))

[
∂B

∂x

∂B

∂y

])
. (3.10)

Substituting B(x + νx, y + νy) with its 1st order Taylor expansion about the point
ν̂ = [0 0]T ,

∂ε(ν̂)
∂ν̂

≈ −2
px+ωx∑

x=px−ωx

py+ωy∑
y=py−ωy

((
δI −∇JT ν̂

)
∇JT

)
. (3.11)

where the frame difference is δI := A − B and the second image gradient is ∇J =[
Jx
Jy

]
:=
[
∂B

∂x

∂B

∂y

]T
. This means that

1
2

[
∂ε(ν̂)
∂ν̂

]T
≈

px+ωx∑
x=px−ωx

py+ωy∑
y=py−ωy

([
J2
x JxJy

JxJy J2
y

]
ν̂ −

[
δIJx
δIJy

])
. (3.12)

Once computed the matrix

G :=
px+ωx∑

x=px−ωx

py+ωy∑
y=py−ωy

[
J2
x JxJy

JxJy J2
y

]
(3.13)

and the vector

b :=
px+ωx∑

x=px−ωx

py+ωy∑
y=py−ωy

[
δIJx
δIJy

]
(3.14)
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the problem becomes
1
2

[
∂ε(ν̂)
∂ν̂

]T
≈ Gν̂ − b (3.15)

that has solution: ν̂opt = G−1b This implementation is valid only for small pixel
displacement, because of the 1st order Taylor approximation. In general a iterative
version is needed.

3.4.2 Iterative implementation
The algorithm pseudo-code is taken integrally from [32] and reported below.

Goal: Let u be a point on image I. Find its corresponding location v on image J .
Build pyramid representation of I and J : {IL}L=0,...,Lm and {JL}L=0,...,Lm

Initialization of pyramid guess: gLm = [gLmx gLmy ]T = [0 0]T

for L=Lm down to 0 with step of -1
Location of point u on image IL: uL = [px py]T = u

2L

Derivative of JL with respect to x: Jx(x, y) = JL(x+ 1, y)− JL(x− 1, y)
2

Derivative of JL with respect to y: Jy(x, y) = JL(x, y + 1)− JL(x, y − 1)
2

Spatial gradient matrix: G = ∑px+ωx
x=px−ωx

∑py+ωy
y=py−ωy

[
J2
x JxJy

JxJy J2
y

]
Initialization of iterative LKT ν̂0 = [0 0]T

for k=1 to K with step of 1 (or until ‖η̂k‖ < accuracy threshold)
Image difference: δIk(x, y) = IL(x, y)− JL(x+ gLx + ν̂k−1

x , y + gLy + ν̂k−1
y )

Image mismatch vector: bk = ∑px+ωx
x=px−ωx

∑py+ωy
y=py−ωy

[
δIJx
δIJy

]
Optical flow: η̂k = G−1bk
Guess for next iteration: ν̂k = ν̂k−1 + η̂k

end of for-loop on k
Final optical flow at level L: dL = ν̂K

Guess for next level L− 1: gL−1 = [gL−1
x gL−1

y ]T = 2(gL + dL)
end of for-loop on L
Final optical flow vector: d = g0 + d0

Location of point on J: v = u + d
Solution: The corresponding point is at location v on image J .

23



Chapter 3. Elements of visual odometry

3.5 BRISK

As explained in [33], the Binary Invariant Scalable Keypoints framework is used fo a
high-quality, fast keypoint detection, description and matching. Its modularity allow
to use the BRISK detector in combination with any other keypoint descriptor and vice
versa. Only the only keypoint descriptor and matching part is described, since it is the
part used in the OKVIS framework (4.4).

3.5.1 Keypoint descriptor
The BRISK descriptor is a binary string, composed of the results of brightness com-
parison tests concatenated together. The feature consist of sub-pixel refined image
locations and associated floating-point scale values. The characteristic direction of
each feature is identified to achieve rotation invariance. The brightness comparisons
are selected with the focus on maximizing the image description.

Sampling pattern and rotation estimation

The BRISK descriptor uses a pattern for sampling the neighborhood of a keypoint.
The patter, shown in figure 3.4, defines N points equally spaced on circles concentric
with the keypoint. When sampling the intensity of a image point pi, to avoid aliasing
effects, a Gaussian window is applied. The smoothing has a standard deviation σi,
proportional to the distance between the points on the respective circle. Considering
one of the N(N − 1)/2 sampling-point pairs, (pi,pj) and the respective smoothed
intensity values, I(pi, σi) and I(pj, σj), the local gradient is:

g(pi,pj) = (pj − pi)
I(pj, σj)− I(pi, σi)
‖pj − pi‖2 . (3.16)

Considering the set A of all sampling-point pairs:

A = {(pi,pj) ∈ R2 × R2 | i < N ∧ j < i ∧ i, j ∈ N}, (3.17)

a subset of short-distance pairings S and another subset of long-distance pairings L
are defined:

S = {(pi,pj) ∈ A | ‖pj − pi‖ < δmax} ⊆ A,
L = {(pi,pj) ∈ A | ‖pj − pi‖ > δmin} ⊆ A.

(3.18)

The threshold distances are set to δmax = 9.75t and δmin = 13.67t with t the scale of
the keypoint k, since the algorithm can work on pyramidal patches. The long-distance
pairs are used to estimate the overall characteristic pattern direction of the keypoint:

g =
[
gx
gy

]
= 1
L

∑
(pi,pj)∈L

g(pi,pj). (3.19)

This is based on the assumption that local gradients cancel out each other.
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Figure 3.4: BRISK sampling pattern with N = 60. The mall blue
circles denote the sampling locations and the bigger red dashed circles
are drawn at a radius σ, corresponding to the standard deviation of the
Gaussian kernel used to smooth the intensity values at the sampling

points. The scale t os set to 1 [33].

Descriptor building

To create a rotation and scale invariant descriptor, BRISK applies the sampling pattern
rotated by α = arctan2(gy, gx) around the feature. The descriptor dk is generate by
performing the short distance intensity comparisons of all point pairs in the rotated
pattern (pαi ,pαj ) ∈ S, such that each bit b corresponds to:

1 if I(pαj , σj) > I(pαi , σi)
0 otherwise

∀(pi,pj) ∈ S. (3.20)

3.5.2 Descriptor matching
It is done by computing the descriptors Hamming distance: the number of bits different
in the two descriptors is a measure of their dissimilarity. This reduces to a XOR
operation followed by a bit count, which can both be computed very efficiently on
today’s architectures.
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Chapter 4

Stereo visual inertial odometry algo-
rithms

VIO algorithms combine visual odometry information coming from a stereo sensor with
high frequency inertial data, to improve the estimation, especially making the system
robust to fast motions.

4.1 Notation
Since this chapter presents a lot of mathematics, it is important to clarify the notation
once and for all. All vectors are considered to be column vectors and written as
boldface lowercase letters and the matrices are written as boldface uppercase letters. I
is the identity matrix, with dimensions in agreement with the equation it is in. Three
different coordinate frames are used in this exposition: the inertial world coordinate
frame, W , the IMU fixed coordinate frame, B, as well as the camera fixed coordinate
frame, C. The origin associated with a coordinate frame is referred as by the same
symbol. For example WrBC identifies the coordinates of a vector from the origin of B to
the origin of C, expressed in the coordinate frame W . To simplify the notation, it is
used this equivalence BrBC := rBC For the rotations, uBW represents the rotation between
a frameW and B and it is defined as a mapping uBW : R3 → R3. The vector uBW defines
the change to a rotated reference frame, such that BrBC = uBW(WrBC ). In the following
part it is going to be used also another mapping C(u) : SO(3) → R3×3, where SO(3)
is the 3D rotation group and which is defined such that u(r) , C(u)r and essentially
returns the rotation matrix. Moreover, vB represents the absolute velocity of B, and
ωBW for the vector describing the relative rotational velocity of the coordinate frame B
with respect to the coordinate frame W . The superscript × is used to denote the skew
symmetric matrix v× ∈ R3×3 of a vector v ∈ R3. Defining v = [vx vy vz]T , the skew
symmetric matrix becomes:
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v× =


0 −vz vy
vz 0 −vx
−vy vx 0

 (4.1)

Moreover a quaternion is defined as q = [qw qx qy qz]T with real part qw ∈ R and
imaginary part qv = [qx qy qz]T ∈ R3. [q]xyz, extracts the vector part of a quaternion
q . (̂·) identifies the estimated value and (̃·) the measurement.

4.2 ROVIO
All the material that is not explicitly referenced in this section 4.1 about ROVIO comes
from [34] and [35].
Robust Visual Inertial Odometry is a visual-inertial odometry framework with the
following main characteristics:

• It is used an iterative extended Kalman filter that inherently performs per-
landmark tracking and online camera-IMU extrinsics calibration,

• It is used a robocentric formulation of the full state and manifold encapsulation
for rotations and feature bearing vectors,

• It is applied a FAST corner detector and at each feature it are associated multi-
level patches, which intensity error is used in the innovation step,

• QR decomposition is used to obtain a 2D innovation term for every observed
landmark, keeping the update computation tractable.

4.2.1 Representation of 3D rotations
The set of 3D rotations, defined as the special orthogonal group SO(3) with group
operation ⊗, is not a vector space and to use optimization methods some adjustments
are needed. The common solutions consist in [36] :

• Using a minimal dimension parametrization of 3 parameters as the Euler angles
and operate on them as in the Euclidean space. The main drawback is the
presence of singularities that consist in situation in which very large changes in
the parameters are needed to represent small variations in the state space,

• Adopting a non-minimal representation as rotation matrices (R3×3) and unit
quaternions (R4). A re-normalization is needed to avoid degenerate parameter.
This solution is not optimal from a memory efficiency point of view, since it
introduces redundant values.

A more general solution is proposed in [35] follows. The region around a selected
linearization point is mapped to a proper vector space and a local parametrization is
used. SO(3) is a Lie group and has a logarithmic and an exponential map which map to
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and from a corresponding Lie algebra R3. The map is selected such that θBW coincides
with the passive rotation vector of the rotation uBW .

log : SO(3)→ R3

uBW 7→ log(uBW) = θBW
(4.2)

exp : R3 → SO(3)
θBW 7→ exp(θBW) = uBW

(4.3)

The following identities are verified by these maps:

exp(−θ) = exp(−θ)−1 (4.4)

exp(u(θ)) = u⊗ exp(θ)⊗ u−1 (4.5)

C(θ) = I− sin(‖θ‖)θ×

‖θ‖
+ 1− cos(‖θ‖)θ×2

‖θ‖2 (4.6)

The maps can be used to introduce a boxplus (�) and a boxminus (�) operator, which
adopt the role of addition and subtraction operators for rotations. They are defined
as:

� : SO(3)× R3 → R3

u,θ 7→ exp(θ)⊗ u
(4.7)

� : SO(3)× SO(3)→ R3

u, s 7→ log(u⊗ s−1)
(4.8)

Both operators fulfill the following axioms, similar to regular addition and subtraction:

u� 0 = u (4.9)

(u� θ)� u = θ (4.10)

u� (s� u) = s (4.11)

Using this approach there is a distinction between actual rotation, which are on the
Lie group SO(3) and difference of rotation, which belong to the Lie algebra R3. Using
the boxplus and boxminus instead of the regular operators allows to define differen-
tials involving rotation. In this way can be obtained derivatives that do not depend
on a specific parametrization (e.g. quaternions or rotation matrices), but only if the
parametrization is lossless and the associated operations follow certain rules. For in-
stance, the differential of a mapping u(x) : R→ SO(3) is defined as:

∂

∂x
u(x) := lim

ε→0

u(x+ ε)� t(x)
ε

. (4.12)
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The same can be done for the other way round, with a mapping x(u) : SO(3)→ R:

∂

∂u
x(u) := lim

ε→0


x(u�(εe1))−x(u)

ε
x(u�(εe2))−x(u)

ε
x(u�(εe3))−x(u)

ε

 , (4.13)

where e1/2/3 are orthonormal basis vectors. This results in the following derivatives:

∂

∂t
uBW(t) = ωBW(t),

∂

∂u
u(r) = u(r)×,

∂

∂u
u−1 = −C(u)T ,

∂

∂u
(u⊗ s) = I,

∂

∂u
(s⊗ u) = C(s),

∂

∂θ
(exp(θ)) = Γ(θ),

∂

∂u
(log(u)) = Γ−1(log(u)).

(4.14)

The exponential map derivative is given by the Jacobian Γ ∈ R3×3 obtained from:

Γ(θ) = I− (1− cos(‖θ‖))θ×

‖θ‖2 + (‖θ‖ − sin(‖θ‖))θ×2

‖θ‖3 (4.15)

The parametrization chosen is based on unit quaternions using Hemilton convention.
Considering a unit quaternion q, with real part qw and imaginary part qv, the following
maps are employed:

exp(θ) = [qw,qv] =
[
cos

(
‖θ‖

2

)
, sin

(
‖θ‖

2

)
θ

‖θ‖

]
(4.16)

log(q) = 2arctan2 (‖qv‖, qw) qw
‖qv‖

(4.17)

Both maps and the quaternion multiplication, are the only mathematical operations
required that are bound to the parametrization.

4.2.2 Representation of 3D unit vectors
The authors of [35] extend the use of local mapping also to 3D unit vectors on the
2-sphere S2 (a sphere in the Euclidean 3D space). It is employed a parametrization
that leads to simple analytical derivatives and guarantees second order differentiability.
There are two problems:
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• There is no continuous way to assign orthonormal vectors to every point of a
2-sphere

• Orthonormal vectors have to be selected, to span the tangent space such that a
suitable difference operator can be defined

In over to overcome these issues, it is defined a rotation, µ ∈ SO(3) and the following
quantities:

n(µ) := µ(ez) ∈ S2 ⊂ R3,

N(µ) := [µ(ex),µ(ey)] ∈ S2 ⊂ R3×2,
(4.18)

where ex/y/z ∈ R3 are the basis vectors of a orthonormal coordinate system. n(µ) is
the actual unit vector resulting when ez is rotated by µ. The matrixN(µ) is composed
of the rotated ex and ey and covers the tangent space. The tangent space can be used
to define the following boxplus and boxminus operators:

� : SO(3)× R2 → SO(3),
µ,u 7→ exp(N(µ)u)⊗ µ,

(4.19)

� : SO(3)× SO(3)→ R2,

ν,µ 7→ N(µ)Tθ(µ,ν),
(4.20)

where θ maps two unit vectors to the minimal rotation vector between them:

θ(n(µ),n(ν)) = arccos(n(ν)Tn(µ)
‖n(ν)× n(µ)‖ n(ν)× n(µ). (4.21)

To better understand what has been presented, a visualization of the 2-sphere and
the tangent space for a specific µ is given in fig. 4.1. To overcome the fact that the
tangent space is not deterministic, it is defined a notion of equivalence as that two unit
vector parametrizations µ and ν are equivalent (µ ∼ ν) iff n(µ) = n(ν). Using this
definition, the following axioms are valid:

µ� 0 = µ,

(µ� u)� µ = u,
µ� (ν � µ) ∼ ν.

(4.22)

It is important to point out that whenever representing a difference, u ∈ R2, the
corresponding tangent space is important. In fact, considering two rotations µ and ν
with µ ∼ ν, it does not result that (µ � u) ∼ (ν � u). From this parametrization it
is straightforward to obtain the derivatives needed when computing Jacobians. The
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most commonly used ones are:

∂

∂t
µ(t) = −N(µ(t))Tn(µ(t))× ∂

∂t
n(µ(t)),

∂

∂µ
n(µ) = n(µ)×N(µ),

∂

∂µ
(N(µ)T r) = −N(µ)T r×N(µ).

(4.23)

This parametrization has multiple advantages:

• It is singualrity-free and with relatively simple differentials

• The � operation always gives the minimum rotation, since the tangent space
has an orthogonal particularization and the boxminus operation has a direction
which spans the shortest path between two unit vectors.

Figure 4.1: Representation of 3D unit vectors. The 3D unit vector
n(µ) is considered the result of a rotation µ applied to the z axis of
a reference frame. The other axes define a orthonormal plane to the

vector. [35]

4.2.3 Robocentric state representation
As stated in [37], it refers to the practice of representing the geometric state variables in
a reference frame rigid with the camera. This results in a low uncertainty in the vicinity
of the sensor during the entirety of the run, thus in reduction of the linearization errors
associated with the measurement model. For example, considering an VO framework
based on an Extended Kalman Filter (EKF), as shown in fig. 4.2a, as the camera moves
further from the world reference frame, non revisiting the known places k, both the
camera uncertainty and features uncertainty grow. Whereas, using a camera-centered
EKF estimation (fig. 4.2b), the camera location uncertainty is near zero, since the
reference frame is attached to it.
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(a) World centered state representation

(b) Camera centered state representation

Figure 4.2: World centered vs camera centered state representation.
z∗ are the features in the camera proximity and the red areas show the

position uncertainty [37].

4.2.4 Projection model and linear warping
Landmarks are modeled as fixed locations in the world with a multilevel patch (sec.
3.1.3) associated to each one of them. The image levels have a scale factor of 2. The
knowledge of the intrinsic camera model can be leveraged to project features from an
image to another one. This is important because, when the camera moves also the
feature do, changing the bearing. Assuming a known intrinsic camera model πc and
given the bearing vector n(µ) of a landmark, the pixel coordinates p can be expressed as
p = πc(n(µ)). The camera movement is described by a warping matrix for each feature
and it is mathematically defined by a concatenation of Jacobians. For instance, if it
is detected a feature in some frame at pixel p1, with the correspondent bearing vector
n(µ1) = πc

−1(p1). The latter is transformed by process model n(µ2) = f(n(µ1)) and
then re-projected in the following frame p2 = πc(n(µ2)). This consists in the warping
matrix:

D = ∂πc(n(µ2))
∂n(µ2)

∂f(n(µ1))
∂n(µ1)

∂π−1
c (p1)
∂p1

∈ R2×2 (4.24)

This map is used to warp patches in new frames. It is just an approximation since only
the local distortion is considered, ignoring larger scale information as the patch shape.
To avoid highly distorted patches, they are re-extracted regularly and the warping
matrix is reset to identity.

4.2.5 Photometric error and patch alignment
ROVIO implies a patch alignment algorithm similar to the KLT feature tracker (3.4).
Similarly to that method, the photometric error is defined between the intensity dif-
ference of pixels intensity between two images, but in this case is the warped patch
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is considered. Moreover, in this case the error is defined as a stack or errors for each
image level. Considering a multilevel patch feature with coordinates p and multilevel
patch P = (P0, ..., PL). The photometric error of a patch pixel i at level l is written as:

el,i(p, P, I,D) = Pl(pi)− aIl(psl + Dpi)− b (4.25)

where Il is the image at the pyramid level l and sl = 0.5l is the scaling factor between
levels. D is the linear warping matrix. The parameters a and b are part of an affine
intensity model (an affine model is based on an affine function, that is the composition
of a linear function with a translation parameter, e.g. f(x) = ax + b [38]) to account
for illumination changes between frames.
The patch alignment is preformed minimizing the squared error terms. One way to solve
the minimization is with a Gauss-Newton method that applies a local approximation
of the problem, linearizing around an estimated patch location p:

b(p + δp, P, I,D) = A(p, I,D)δp + b(p, P, I,D) (4.26)

where b(p, P, I,D) represents the error terms from eq. 4.25 summed over the patch
pixels and stacked together, while A(p, I,D) is the corresponding Jacobian. Applying
the first order Taylor expansion the problem becomes:

A(p, I,D)TA(p, I,D)δp = −A(p, I,D)Tb(p, P, I,D) (4.27)

which can be solved for, δp. This is analogous to one iteration step of the KLT feature
tracker. The scaling factor sl in eq. 4.25 causes the error terms for higher image levels
to have a minimum influence in the patch alignment, which is consistent with the fact
that they carry less information. However the multiple levels are important to increase
the method robustness in case of image blur and bad initial alignment.
The photometric error inherently relies on past information in the shape of a patch from
a previous image and this causes cross-correlations between the error and the states.
This arises when the information from parts of a patch has influenced the past filter
states. This patch has then a pixel intensity error correlated with the current state.
This is not modeled to avoid an excessive increase of the computation requirements.

4.2.6 Detection and scoring
The FAST detector (3.2) is used to produce a large number of possible feature candi-
dates. First the feature candidates are spaced by enforcing a minimum distance from
the ones that are already tracked, then an adaptation of the Shi-Tomasi score (3.3.2)
is applied to find the new features to track. The score applied considers the Hessian
matrix of multiple image levels, instead of only a single level. The combined Hessian
can be found from the eq. 4.27:

H = A(p, I,D)TA(p, I,D)δp (4.28)
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where the minimal eigenvalue of H is just the Shi-Tomasi score (sec. 3.3.2) modified
for the multiple levels.
In environments with limited corner features other scores based ot the Hessian eigen-
values are enforced, increasing the feature count with edge features. Another bucketing
technique (that consists in dividing the image space in parts and tracking only a number
of features for each part) is applied, to have a good coverage of the image.

4.2.7 Iterated extended Kalman filtering
The extended Kalman filter is widely used in data fusion frameworks. It represents an
adaptation of the Kalman filter for the non-linear case, using a first order Taylor series
to linear the model with Jacobian matrices that need to be recomputed each iteration
[39]. This does not lead to the optimal solution for a non-linear system, but in many
cases it keeps it close to the optimum and maintains the problem computationally
tractable.
One way to improve the filter accuracy is to make use of an iterative form to refine the
a-posteriori estimate. A discrete time non-linear system can be formalized as:

xk = f(xk−1,nk−1),
yk = h(xk,nk),

(4.29)

where x is the state, y the innovation term, w ∼ N (0,W) is the process noise and
n ∼ N (0,R) the update noise.
The IEKF prediction step is defined as:

x−k = f(x+
k−1,0),

P−k = Fk−1P+
k−1FTk−1 + Gk−1Wk−1GT

k−1,
(4.30)

where x+
k−1 is the a-posteriori estimate from the previous iteration, with covariance

P+
k−1 and x−k is the new a-priori estimate.

The Jacobians are:
Fk−1 = ∂f

∂xk−1
(x+

k−1,0),

Gk−1 = ∂f
∂wk−1

(x+
k−1,0).

(4.31)

The IEKF update step, as the EKF one, can be expressed as an optimization problem:

min
x+
k

‖x+
k � x−k ‖P−

k

−1 + ‖h(x+
k ,0)‖(JkRkJTk )−1 (4.32)

where it is reported the deviation from x−k and the innovation term h(x+
k ,0).

However, in the Iterated Extended Kalman Filter (IEKF), is involved an iteration start-
ing with x+

k,0 = x−k in which the linearization around continuously refined linearization
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points x+
k,j . Therefore, the IEKF update step is better formalized as:

min
∆x+

k,j

‖x+
k,j � x−k + L−1

k,j∆xk,j‖P−
k

−1 + ‖h(x+
k ,0) + Hk,j∆xk,j‖(JkRkJTk )−1 (4.33)

where the Jacobians are updated every iteration step:

Hk,j = ∂h
∂xk

(x+
k,j,0),

Jk,j = ∂h
∂nk

(x+
k,j,0),

Lk,j = ∂(x−k �∆x)
∂∆x

(x+
k,j � x−k ).

(4.34)

The iterative representation of the optimization problem is obtained by setting the
derivative of the cost function 4.33 with respect to the incremental update ∆xk,j to
zero and applying some matrix calculus. it results in the following:

Sk,j = Hk,jLTk,jP−k Lk,jHT
k,j + Jk,jRkJTk,j,

Kk,j = LTk,jP−k Lk,jHT
k,jS−1

k,j,

∆xk,j = Kk,j

(
Hk,jLk,j(x+

k,j � x−k )− h(x+
k,j,0)

)
− Lk,j(x+

k,j � x−k ),

x+
k,j+1 = x+

k,j �∆xk,j,

(4.35)

where the stopping criteria is ∆xk,j < T , with T a threshold. Once the process has
converged the estimate covariance matrix is updated:

P+
k = (I−Kk,nHk,n)LTk,nP−k Lk,n (4.36)

with n the number of iterations. In situations with large initial uncertainties, as a land-
mark initialization, the IEKF can lead to an important improvement in convergence
and accuracy. A termination criteria proportional to the performed correction can be
used to limit the computation time. The filter performs really close to a regular EKF,
when the state has converged to a mostly stable value, since only a minimum number
of iteration is needed.

4.2.8 Filter setup and state definition
The filter framework (fig. 4.3), uses a robocentric state formulation to decouple the
observable and unobservable states (position and yaw). This decreases the noise in the
relevant states, improving their consistency, but also subjects them to the gyroscope
noise due to the rotation in the robocentric frame. In the end is worth it, since only few
states are unobservable and the gyroscope noise is usually small. The state is defined
as:

x := [r v q bf bg c z n(µ0) ... n(µN) ρ0 ... ρN ] (4.37)

with:
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• r := rBW : robocentric position of IMU

• v := BvB: robocentric velocity of IMU

• q := qBW : attitude of IMU

• bf : additive bias on accelerometer (expressed in B)

• bg: additive bias on gyroscope (expressed in B)

• c := rBC : linear part of IMU-camera extrinsics

• z := qBC : rotational part of IMU-camera extrinsics

• n(µi): bearing vector to landmark i (expressed in C)

• ρi: distance parameter of landmark i

The distance di of a landmark i can be parameterized by different mappings d(ρi) with
derivative d′(ρi). In the last implementation of Rovio the possible mappings are:

• Regular: d(ρi) = ρi,

• Inverse: d(ρi) = 1
ρi
,

• Logarithmic: d(ρi) = eρi ,

• Hyperbolic: d(ρi) = sinh(ρi).

Rotations (q, z) and bearing vectors n(µi) are expressed with a minimal and singularity-
free parametrization, as shown in section 4.2.1 and section 4.2.2. This allows for the
landmarks to be immediately initialized when detected and to minimze the computa-
tion and memory burden of the filter.

4.2.9 State propagation
For state propagation a IMU and camera movement model are used. The IMU model
takes in account a random walk bias and a Gaussian additive noise:

a = ã− ba − na,
ω = ω̃ − bg − nω,

(4.38)

where ã = BãB is the acceleration measurement and ω̃ = Bω̃B is the rotational rate
measurement. The camera model uses a constant velocity and consists in:

vC = z(v + ω×c),
ωC = z(ω).

(4.39)
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Figure 4.3: ROVIO framework diagram [35].

Moreover, the bearing vector and distance parameter act on a 3D point landmark
following this equation:

rWF = rWC + qCW
−1(n(µ) d(ρ)) (4.40)

in which is taken in account a landmark with a reference frame F attached to it, so
with position rWF , bearing vector n(µ) and distance parameter ρ. This landmark is
assumed to be static with respect to the world reference frame.
The time differentiation of these models leads to the following system of continuous
differential equations (the full derivation is reported in the original paper):

ṙ = −ω×r + v + nr, (4.41)

v̇ = −ω×v + a + q−1(g), (4.42)

q̇ = −q(ω), (4.43)

ḃa = nba , (4.44)

ḃg = nbg , (4.45)

ċ = nc, (4.46)

ż = nz, (4.47)

˙n(µi) = N(µi)T
(
ωC + n(µi)×

vC
d(ρi)

)
+ nµ,i, (4.48)

ρ̇i = n(µi)T
vC

d′(ρi)
+ nρ,i, (4.49)
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whereN(µi)T is used to project a 3D vector onto the tangent space of the vector n(µi).
The gravity vector g has to be rotated, since it is expressed in the world frame. All the
terms with symbol n∗ are white Gaussian noises, vectorial and scalar, with different
dimensions.
Analyzing the dimensions of the derivative vector of bearing vector and rotation it can
be seen that a consistent minimal representation of the state is accomplished. In fact
they respectively belong to a 2D and 3D vector space.
The continuous time equation can be discretized by a forward Euler method, consider-
ing the use of the boxplus operator when needed. The resulting discrete equation can
then be used in the filter framework for the prediction step. The non trivial results are
reported next:

qk+1 = qk � (−∆t qk(ωk)) = exp((−∆t qk(ωk)))⊗ qk
= qk ⊗ exp((−∆t ωk))⊗ q−1

k ⊗ qk
= qk ⊗ exp(∆t (bg,k + nω,k − ω̃k)),

(4.50)

zk+1 = zk �∆t nz,k = exp(∆t nz,k)⊗ zk, (4.51)

µi,k+1 = exp

(
∆t

(
(I− n(µi,k)n(µi,k)T )ωC + n(µi,k)×

vC
d(ρi,k)

+ N(µi,k)nµ,i
))
⊗ µi,k.

(4.52)
Usually in system with both camera and IMU, the latter sends measurement at a much
higher rate, and this would lead to recompute the propagation step frequently. The
resulting computational load can be unbearable, especially for embedded systems. To
circumvent the issue it is applied a IMU pre-integration technique, that consist in using
an averaged value of the measurements correct just with a linearly varying bias (sec.
4.3.2). In ROVIO it is implemented a simpler solution where the Jacobian (4.31) is
evaluated using the averaged IMU values every camera measurement only.

4.2.10 Direct innovation term and update
Inspecting eq. 4.26 it is clear that the photomeric error, for a given image I and patch Pi
depends exclusively on the estimation of the feature pixel coordinates pi = πc(n(µi)).
This means that the multilevel error, composed 72 terms, is only a function of the 2
dimensional bearing vector. It is therefore applied a QR decomposition to reduce the
error to a more computationally manageable 2 dimensions. The QR decomposition
or factorization technique transforms a square matrix in a equivalent product of a or-
thogonal and upper triangular matrix: A = QR. Different numerical implementations
exist with a trade-off between numerical stability and execution time [40]. When it is
applied to the gradient matrix it results in:

A(pi, I,Di) = Q(pi, I,Di)R(pi, IDi)

=
[
Q1(pi, I,Di) Q2(pi, I,Di)

] [ R1(pi, I,Di)
0

]
,

(4.53)
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where the matrix R1(pi, I,Di) is upper triangular matrix with full rank 2 in case of
corner features, rank 1 for line features and rank close to 0 for uniform patches. From
the factorization it is derived the innovation term for a patch i and at the iteration
step j:

yi,j = Q1(πc(n(µ+
i,j)), I,Di)Tb(πc(n(µ+

i,j)), I,Di). (4.54)

Its dimensions are related to the rank of the above triangular matrix. This design of
the innovation term implicitly assumes the same noise for all the photomertic error
terms. To generalize the formulation it could be used a weighting matrix. The reduced
innovation Jacobian is:

Hi,j = R1(πc(n(µ+
i,j)), I,Di)

dπc
dn(µ)(n(µ+

i,j)) (4.55)

4.2.11 Landmark tracking
The landmark tracking process is already included in the filter, by its iterative design.
In fact, the update iterations at the same time align the patches with the new image
frame and distribute the information in the states.
When a landmark has large associated uncertainty, a set of multiple pixel location
hypothesis is created, all inside the uncertainty boundaries. Then it is performed an
update iteration step to integrate the data from IMU and process model with the
photometric error. Outlier rejection techniques are finally applied to select the best
landmark to track.
This implementation has also the advantage of properly tracking line features (the
innovation only affects the direction perpendicular to the line) and smooth patches
(the state vector does not change and the iterations stop). A visual representation is
reported in figure 4.4.

Figure 4.4: ROVIO landmark tracking. The landmark from the pre-
vious iteration (blue square) is used to estimate the new position in the
image frame, with a corresponding covariance (yellow ellipse). Multi-
ple candidates of the new landmark location are created (yellow dots in
3) and from a iteration step and outlier rejection the best candidate is

extracted (green square). [35].

39



Chapter 4. Stereo visual inertial odometry algorithms

4.2.12 Landmark management
The filter implementation limits the number of landmarks that can be tracked simul-
taneously, putting a lot of importance on their quality. In addition to the scoring
explained in section 4.2.6 used to choose the feature, an the outlier rejection is applied.
It consists of multiple techniques:

• Mahalanobis distance on the innovation residual: it is used to remove moving ob-
jects and image disturbances, by computing the Mahalanobis distance of between
the innovation residual, rk = Hk,nLk,n(x+

k,n�x−k )−h(x+
k,n,0) ( 4.35), and the pre-

dicted innovation covariance, P+
k (4.36), that is written as: ‖rk‖2

P+
k

= rTkP+
k
−1rk.

When the result is bigger then a threshold, the measure is excluded. Using this
method the image gradient is intrinsically accounted for, causing the faster re-
jection of smooth image patches.
The Mahalanobis distance is a generalization of the Euclidean distance in case
of normal distributed variables. It allows to find the distance between a multi-
variate random variable and a multivariate normal distribution, by weighting the
distance from the distribution mean by its covariance [41],

• Threshold on the total photometric error: when the error exceeds a set value, the
patch is considered to not be matched correctly with the image subsection and
therefore excluded,

• Feature quality check: it is implemented by assessing the innovation residual of
4 close locations. If at least two of this points have a fairly larger residual then
the feature, the tracking is good.

To take in account the landmark proprieties in time, a quality score is maintained.
This is based on the combination of three scores:

• Global quality: expresses the time span in which the landmark has been tracked
from its initialization,

• Local quality: outlines how frequently the landmark has been tracked in the field
of view of recent frames, when it was expected to be there,

• Local visibility: shows the amount of time the landmark was visible in recent
frames.

The score is used with an adaptive thresholding to guide the landmarks removal and
control their numbers.

4.2.13 Stereo camera setup
The framework implementation with a stereo camera has little differences compared to
what explained so far. ROVIO still expresses the landmarks in a single camera frame,
the detection frame. If multiple measurements of the same landmark come at the same
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time from different point of view, stereo triangulation is applied, to find the initial
distance. Once the initialization is over, the landmark is projected in both camera
frames at every time step. If landmark is observed in different camera frame from
the one in which it is parameterized, its bearing vector has to be transform before
computing the iterative innovation. The transformation is:

n(µm, i) = zm(cd + z−1
d (n(µd, i) d(ρi))− cm) (4.56)

where z∗ and c∗ represent the rotational and linear camera-IMU extrinsics. While
m stands for the measurement camera frame and d for the detection camera frame.
Moreover, the Jacobian in eq. 4.55 must be right-multiplied by the Jacobian of the
transformation.

4.3 VINS-Fusion
The material that is not explicitly referenced in this section 4.2 about VINS-Fusion
comes from [42], [43], [44] and from direct analysis of the source code, due to the
lack of in-depth explanation of the VIO-only operation. Visual INertial System -
Fusion is a general non-linear optimization based framework that can fuse together local
estimations (VIO) and global sensor measurements (e.g GPS). Optimization-based
methods can maintain a lot of measurements and optimize multiple variables at once,
also known as Bundle Adjustment (BA). They have advantage in time synchronization,
compared with filter-based methods. The big bundle they use serves as a nature
buffer, therefore they can easily handle the case when measurements from multiple
sensors come in disorder. Optimization-based algorithms also outperform the filter-
based algorithms in term of accuracy, but at the cost of computational complexity.
The VIO at the base of this system is an evolution of VINS-Mono, for more general
cases:

• Monocular camera and IMU

• Stereo camera and IMU

• Stereo camera only

The system is composed by three main modules:

• VO-VIO module: it consists in a sliding window and tightly-coupled VIO, used to
obtain higly accurate and robust state estimation. It performs online estimation
of the IMU bias and it can also refine the camera-IMU extrinsics and estimate
the camera-IMU timing difference. The world frame is set in the first IMU
measurement.

• Local pose estimation: using only local sensors (sec. 4.3.1) and the pose estimate
coming from the first module, it creates a pose graph with keyframes. BRIEF
descriptors extracted in these keyframes are used, in conjunction with DBoW2
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state-of-the-art bag-of-word place recognition approach, to find a loop closure.
Once the loop is detected, the entire pose graph is optimized, resulting in a
drift-free pose estimation.

• Global pose estimation: is the same procedure of the local pose estimation, but
with local and global sensors (sec 4.3.1). The world frame is the same fixed frame
used by global sensors.

Since the interesting case for this thesis is the use of stereo VIO, only this one is
explained in detail.

4.3.1 Local and global sensors
The sensors can be categorized accordingly to the measurement reference frame:

• Local sensors: Camera, LiDAR, IMU, etc. These sensors don’t have a global ref-
erence, thus usually the first pose of the robot is set as the origin. The estimation
of the robot’s pose evolves incrementally from there, accumulating drift that will
grow increasing the traveled distance.

• Global sensors: GPS, magnetometer, barometer, etc. These sensors work in a
fixed global reference frame (e.g. the earth frame). The origin of this frame is
known in advance and fixed in time. The measurement error is independent on
the traveled distance.

4.3.2 Stereo VIO module
It is implemented by a sliding window and tightly-coupled VIO as shown in figure 4.5.

Figure 4.5: VINS-Fusion framework visual representation. Image
adapted from [43].

Vision pre-processing

Existing 2D features are tracked in every new image coming from the left camera, using
a KLT sparse optical flow algorithm (sec. 3.4). In the meantime, new corner features
are detected on the same image, using Shi-Tomasi Corner Detector (sec. 3.3.2) and a
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correspondent ones are found on the right image, applying again the KLT algorithm.
To select only the more robust pairs, the KLT optical flow is applied to the right camera
features, to get the correspondent left ones, and the features too far from the originals
are discarded. This results in pairs of features that can be used to find their depth by
triangulation. The corner detector assures a uniform feature distribution by adopting
a minimum pixel distance between two neighboring features. The features are first
undistorted and then projected on the image plane. This is achieved using the chosen
camera model πc with offline calibrate parameters.

IMU pre-integration

In optimized-based algorithms, every time the poses are adjusted, it is required to re-
propagate IMU measurements between them. This is quite demanding of computing
power, so to avoid that it is used a pre-integration algorithm. The raw gyroscope and
accelerometer measurements at a time t are modeled as:

ãt = at + bat + RBtWg + na
ω̃t = ωt + bgt + nω

(4.57)

The IMU measurement, which are expressed in the body frame, are a combination of:

• Platform dynamics

• Acceleration bias ba and gyroscope bias bg

• Gravity acceleration, which is expressed in the world reference frame

• Additive noise, which is assumed to be Gaussian: na ∼ N (0,σ2
a) and nω ∼

N (0,σ2
ω)

Acceleration bias and gyroscope bias are modeled as random walk, that has Gaussian
derivatives, nba ∼ N (0,σ2

ba), nbg ∼ N (0,σ2
bg):

ḃat = nba
ḃgt = nbg

(4.58)

Considering two time instants, corresponding to image frames bk and bk+1 position,
velocity, and orientation states, in the world frame, can be propagated by inertial
measurements during the time interval [tk, tk+1]:

pWBk+1
= pWBk + vWBk∆tk +

∫∫
t∈[tk, tk+1]

(RWBt(ãt − bat − na)− Wg)dt2

vWBk+1
= vWBk +

∫
t∈[tk, tk+1]

(RWBt(ãt − bat − na)− Wg)dt

qWBk+1
= qWBk ⊗

∫
t∈[tk, tk+1]

1
2Ω(ω̃t − bgt − nω)qBkBt dt

(4.59)
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and, considering the vectors as column vectors, with

Ω(ω) =
[
−ω× ω

−ωT 0

]
(4.60)

As demonstrated by the equations, the IMU state propagation requires rotation, posi-
tion and velocity of frame bk. Therefore every time this states change, IMU measure-
ments re-propagation is required. To avoid it, the pre-integration algorithm is applied.
It consists in pre-integrating the parts which are related to linear acceleration ã and
angular velocity ω̃, after having transformed the reference frame from the world to the
local body frame Bk. This leads to:

RBkWpWBk+1
= RBkW (pWBk + pWBk∆tk −

1
2Wg∆t2k) +αBkBk+1

RBkW vWBk+1
= RBkW (vWBk + Wg∆tk) + βBkBk+1

qBkW ⊗ qBk+1
W = γBkBk+1

(4.61)

where,

αBkBk+1
=
∫∫

t∈[tk, tk+1]
RBkBt (ãt − bat − na)dt2

βBkBk+1
=
∫
t∈[tk, tk+1]

RBkBt (ãt − bat − na)dt

γBkBk+1
=
∫
t∈[tk, tk+1]

1
2Ω(ω̃t − bωt − ng)γBkBt dt

(4.62)

As shown, the pre-integration terms can be obtained exclusively using IMU measure-
ments, considering Bk as reference frame, so they have nothing to do with the absolute
position in the world reference frame. These terms are only related to IMU biases and
not others states at time k and k + 1. If the estimation of bias changes by a small
amount, the coefficients αBkBk+1

,βBkBk+1
,γBkBk+1

are adjusted by their first-order approxi-
mation with respect to the bias, while otherwise it is performed the re-propagation.
To implement this in discrete time, different numerical integration methods can be
used. In the code implementation it is applied the mid-point integration, but to show
the procedure is chosen the Euler method. At the beginning, αBkBk = βBkBk = 0 and γBkBk
is the identity quaternion. The additive noise terms na and ng is unknown and treated
as zero. The mean of the pre-integration terms, in eq. 4.62, is propagated as follows:

α̂BkBi+1
= α̂BkBi + β̂BkBi ∆t+ 1

2R(γ̂BkBi )(ãi − bai)∆t2

β̂
Bk
Bi+1

= β̂
Bk
Bi + R(γ̂BkBi )(ãi − bai)∆t

γ̂BkBi+1
= γ̂BkBi ⊗

[
1

1
2(ω̃i − bgi)

] (4.63)
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the values marked by a hat are the estimated ones and i is a discrete instant corre-
sponding to a IMU measurement with i ∈ [tk, tk+1]. ∆t is the time interval between
two IMU measurements i and i+ 1.
Considering t ∈ [k, k + 1], the four-dimensional rotation quaternion γBkBk+1

is over-
parameterized, thus its error term is defined as a variation around its mean:

γBkBt ≈ γ̂
Bk
Bt ⊗

[
1

1
2∆θBkBt

]
(4.64)

where δθBkBt is a three-dimensional small perturbation. The continuous-time linearized
dynamics of error terms of eq.4.63 is:

δα̇BkBt
δβ̇
Bk
Bt

δθ̇
Bk
Bt

δḃat
δḃgt


=



0 I 0 0 0
0 0 −RBkBt (ãt − bat)× −RBkBt 0
0 0 −(ω̃t − bgt)× 0 −I
0 0 0 0 0
0 0 0 0 0





δαBkBt
δβBkBt
δθBkBt
δbat
δbgt



+



0 0 0 0
−RBkBt 0 0 0
0 −I 0 0
0 0 I 0
0 0 0 I




na
ng
nba
nbg

 = FBtδz
Bk
Bt + GBtnBt

(4.65)

The covariance matrix PBkBk+1
can be recursively computed using the first-order discrete-

time covariance update with initial value PBkBk = 0:

PBkBt+∆t
= (I + FBt∆t)PBkBt (I + FBt∆t)T + (GBt∆t)Q(GBt∆t)T (4.66)

where Q is the noise covariance matrix:

Q =


σ2
a 0 0 0
0 σ2

ω 0 0
0 0 σ2

ba 0
0 0 0 σ2

bg

 , (4.67)

where σ2
∗ is the diagonal matrix with squared entries

[
σ2
∗,x σ

2
∗,y σ

2
∗,z

]
on the diagonal.

The first-order Jacobian matrix JBk+1 of δzBkBk+1
with respect to δzBkBk is also computed

recursively using the initial value JBk = I:

JBt+δt = (I + FBtδt)JBt (4.68)
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The first order approximation of αBkBk+1
, βBkBk+1

, γBkBk+1
with respect to biases can be

written as:
αBkBk+1

≈ α̂BkBk+1
+ Jαbaδbak + Jαbgδbgk

βBkBk+1
≈ β̂

Bk
Bk+1

+ Jβbaδbak + Jβbgδbgk

γBkBt ≈ γ̂
Bk
Bt ⊗

[
1

1
2J

γ
bg
δbgk

] (4.69)

where Jαba is the Jαba matrix a sub-block corresponding to the element
δαBkBk+1

δbak
. The

definition is analogous for Jαbg , J
β
ba
, Jβbg , J

γ
bg
. When the estimation of bias varies a bit,

eq.4.69 is used to correct pre-integration results instead of re-propagation. It is now
possible to express the IMU measurement model with corresponding covariance matrix
PBkBk+1

: 

α̂BkBt
β̂
Bk
Bt

θ̂
Bk
Bt
0
0


=



RBkW (pWBk+1
− pWBk + 1

2Wg∆t2k − vWBk∆tk)
RBkW (vWBk+1

− vWBk) + Wg∆tk
qWBk

−1 ⊗ qWBk+1

bak+1 − bak
bgk+1 − bgk

 (4.70)

Visual inertial estimator initialization

A bundle of images is maintained, with a sliding window, to limit the computation com-
plexity. If enough features (4 in the latest implementation) are tracked in the current
frame, they are used to initialize the camera pose by a triangulation and perspective-
n-point (PnP) method. This method search a correspondence between a set of 2D
points in the image frame and a set of 3D points in the world, using the camera cal-
ibration parameters to reconstruct its pose [45]. Once the camera pose is initialized,
all the poses for the other frames in the windows are estimated. The gyroscope bias
calibration is then performed. In the end, a global full bundle adjustments is applied
to minimize the total reprojection error of all feature observations.

Gyroscope bias calibration

From the visual structure from motion, considering two consecutive frames bk and bk+1,
the correspondent rotations qC0Bk and qC0Bk+1

are known. From the IMU pre-integration,
the relative constraint γ̂BkBk+1

is also known. The IMU pre-integration term is linearized
with respect to the gyroscope bias, using the bias Jacobian obtained in section 4.68:

γBkBk+1
≈ γ̂BkBk+1

⊗
[

1
1
2J

γ
bgδbg

]
(4.71)

Then it is found the minimum of this cost function:

min
δbg

∑
k∈F
‖qC0Bk+1

−1 ⊗ qC0Bk ⊗ γ
Bk
Bk+1
‖

2
(4.72)
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where F is the set of indexes of frames in the window. This minimization results
in the initial calibration of the gyroscope bias bg. All IMU pre-integration terms
α̂BkBk+1

, β̂
Bk
Bk+1

, γ̂BkBk+1
are then re-propagated, using the new gyroscope bias.

States

The full state vector in the sliding window is defined as:

X :=
[
pWB0 , R

W
B0 p

W
B1 R

W
B1 ... p

W
Bn R

W
Bn xcamximu

]
xcam := [λ0 λ1 ... λl]
ximu :=

[
vWB0 , ba0 bg0 vWB1 ba1 bg1 ... vWBn ban bgn

] (4.73)

where p and R are the position and orientation of the body in the world frame. xcam
is a variable related to the camera and composed of the features in the sliding window,
observed in the first frame. ximu is a IMU-related state, that includes of velocity, ac-
celerometer bias and gyroscope bias. The transformation between camera frame and
body frame is supposed to be calibrated offline.

Cost function

As explained in [46], the state estimation consist in a Maximum Likelihood Estimation
(MLE) problem. It consists in finding the maximum of a likelihood function defined
as the joint probability distribution of robot poses over a period of time. Considering
the assumption of independent measurements, the problem is written as:

X̂ = arg max
X

n∏
t=0

∏
k∈S

p(zkt |X ) (4.74)

where z are the measurements, X the states and S is a set of measurements which can
come from any sensor. In practice the log-likelihood function is used. So, assuming
a Gaussian distributed measurements uncertainty p(zkt ,X ) ∼ N (z̄kt ,Pk

t ), the equation
becomes:

X̂ = arg max
X

n∏
t=0

∏
k∈S

exp
(
−1

2‖z
k
t − hkt (X )‖2

Pkt

)
= arg min

X

n∑
t=0

∑
k∈S
‖ekt ‖

2
Pkt

(4.75)

where h(·) is the sensor model and ekt = zkt − hkt (X ) is the sensor error or sensor factor
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Camera factor

The camera factor is a reprojection process: a feature is reprojected from the first
observation camera frame to the subsequent ones. It is defined as the residual:

elt = zlt − hlt(pWBi ,R
W
Bi ,p

W
Bt ,p

W
Bt , λt) =

[
ult
vlt

]
− πc(TBC

−1TWBt
−1TWBiT

B
Cπc

−1(λl,
[
uli
vli

]
))

(4.76)
where

[
uli v

i
i

]T
is the first observation of the feature l, on the image plane of the image

i.
[
ult v

l
t

]T
is the observation of the same feature l, on the image plane of the image t.

πc is the projection function, and πc−1 is the back-projection one. T is a homogeneous
transformation matrix as defined in section 2.2.1. TBC is the extrinsic transformation
from camera frame to body frame, which is calibrated offline.
This residual, also called reprojection error, has a covariance matrix Pl

t, which is a
constant value in pixel coordinate, depending on the camera’s intrinsic calibration.
The camera factor is defined both for left and right camera.

IMU factor

Considering the IMU measurements between two sequential images at time k and k+1,
from eq. 4.70 the residual for pre-integrated IMU measurement is defined as:

eIMU
k+1 =



δαBkBk+1

δβBkBk+1

δθBkBk+1

δba
δbg

 =



αBkBk+1
−RBkW (pWBk+1

− pWBk + 1
2Wg∆t2k − vWBk∆tk)

βBkBk+1
−RBkW (vWBk+1

− vWBk) + Wg∆tk
2
[
qWBk

−1 ⊗ qWBk+1
⊗ (γBkBk+1

)−1
]
xyz

bak+1 − bak
bgk+1 − bgk


(4.77)

where [q]xyz, extracts the quaternion q vector part, since it is used a three dimensional
error state representation of the quaternion γBkBk+1

(eq. 4.62). The other therms have
the same meaning as in eq.4.70. The residuals includes accelerometer and gyroscope
bias for online correction.

Other factors

The system is build to accept any other sensors, as long as the measurements are
modeled as general residual factors and these factors are added into the cost function.

Optimization

Usually Gauss-Newton or Levenberg-Marquardt approaches are used to solve the non-
linear least square problem presented in . This means that the cost function is linearized
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with respect to an initial guess X̂ and becomes:

arg min
δX

n∑
t=0

∑
k∈Ŝ

‖ekt + Jkt δX‖
2
Pkt

(4.78)

where e is a sensor factor and J is its Jacobian matrix. It is used Ŝ instead of S
to highlight the possibility to expand the cost function with two factors, not strictly
related to sensors. In fact, VINS-Fusion can perform online refinement of the body-
camera extrinsics and camera-IMU online temporal calibration. Using the linearization
approximation, this cost function has closed-form solution of δX . For example, using
Gauss-Newton algorithm, the solution is found as:

∑∑
Jkt

TPk
t

−1Jkt︸ ︷︷ ︸
H

δX = −
∑∑

Jkt
TPk

t

−1ekt︸ ︷︷ ︸
b

(4.79)

Then, the current state X̂ is updated with X̂ ⊕δX , with ⊕ defined as the plus operation
on manifold for rotation. The procedure is iterated multiple times, until it converges.
The actual implementation utilizes Ceres solver, to get stable and optimal results
efficiently.

Marginalization

The computational complexity increases quadratically with the number of states, which
grows in time. Marginalization is carried out to bound the computational complexity.
The procedure converts previous measurements into a prior term, which retains past
information. The set of states to be marginalized out is denoted as Xm, and the set of
remaining states is denoted as Xr. Computing the sum of marginalized factors (eq.4.79)
results in H and b. Rearranging the states order leads to the following equation:[

Hmm Hmr

Hrm Hrr

] [
δXm
δXr

]
=
[
bm
br

]
(4.80)

The Schur complement is used to perform the marginalization:

(Hrr −HrmHmm
−1Hmr)︸ ︷︷ ︸

Hp

δXr = br −HrmHmm
−1bm︸ ︷︷ ︸

bp

(4.81)

This results in a new prior Hp, bp for the remaining states. The information about
marginalized states is converted into prior term without any loss. The sliding window
amounts at 10 key-frames. When a new camera frame comes, if it is a key-frame (there
are enough feature tracked from the last key-frame and their parallax is big enough)
it will stay in the window and the oldest frame is marginalized out. Otherwise only
the visual measurements are marginalized and the pre-integrated IMU measurements
are kept. This data is used in the pre-integration process for the newest frame. This
is shown in figure 4.6. The marginalization is performed to maintain sparsity of the
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system. Once the prior information is computed, the posterior can be found applying
Bayes’ rule:

p(X|z) ∝ p(z|X )p(X ) (4.82)

This makes the state estimation a maximum a-posteriori problem that is written as:

X̂m:n = arg max
Xm:n

n∏
t=0

∏
k∈S

p(zkt |Xm:n)p(Xm:n)

= arg min
X

n∑
t=0

∑
k∈S
‖zkt − hkt (Xm:n)‖2

Pkt
+ (HpδXm:n − bp)

(4.83)

where Xm:n are the states in the sliding window (from time m to n). The previous
equation (eq.4.83), only adds a prior term to the eq.4.75 and it is solved in the same
way.

Failure detection module

This VIO system is robust to multiple challenging motions and environments, but
failure is still unavoidable. Drastic illumination changes and aggressive motions can
make the estimator fail, therefore a failure detection and recovery strategy is employed,
based on these criteria:

• The estimated accelerometer bias norm is larger then 2.5 m/s2

• The estimated gyroscope bias norm is larger then 1.0 rad/s

When a failure is detected, the system tries to initialize itself again, and once it is
successful, run again from there.

Figure 4.6: VINS-Fusion marginalization strategy. If the new camera
frame is a keyframe it is kept in the window and the latest keyframe
is marginalized out. Otherwise it is marginalized. The marginaliza-
tion concerns only the cameras measurements, the pre-integrated iner-

tial measurements are kept.[44].

50



Chapter 4. Stereo visual inertial odometry algorithms

4.4 OKVIS
The material that is not explicitly referenced in this section 4.3 about OKVIS comes
from [47], and [48]. Open Keyframe-based Visual-Inertial SLAM is a thightly-coupled
nonlinear and window-based optimization framework. The SLAM in the name does
not stand for the classical sense of simultaneous localization and mapping in which a
map is constructed and then optimized when the agent re-visits known places. In this
case it describes the sliding window technique implemented by the filter, in which a
limited number of key-points is maintained, so just a local map that keeps changing.

4.4.1 States
The state variables consist of the robot states at image times k, xkR, and the landmarks
at times k, xkL. The first set of estimated variables is composed by the robot position in
the inertial frame, pWB , the body orientation quaternion qWB , the velocity in the world
frame, vWB and biases of the accelerometer ba and of the gyroscope bg. The robot
states at time k can therefore be written as:

xkR :=
[
pWBk

T qWBk
T vWBk

T bak
T bgk

T
]T
∈ R3 × S(3)× R9. (4.84)

Two partition of the robot states are also used:

• the pose states, xp :=
[
pWB

T qWB
T
]T

• the speed/bias states states, xsb :=
[
vWB

T baT bgT
]T

Using Euclidean coordinates when estimating a distant point with a Gauss-Newton
estimator, will usually lead to the point being pushed towards infinity . Therefore, to
allow a seamless integration of very close and very far landmarks, they are expressed
in homogeneous coordinates with respect to the world frame: xL := W l := [lx ly lz 1] ∈
R4. Since in general the states reside in a manifold, it is used a perturbation in the
tangent space g of this manifold and employ the group operator � and the exponential
and logarithmic map. The perturbation is defined as: δx := x � x̂−1 around the
estimate x̂. A minimal coordinate representation is used, δX ∈ Rdimg and a bijective
mapping Φ : Rdimg → g that transforms from minimal coordinates to the tangent space.
Thus, the transformations from and to minimal coordinates are:

δx = exp(Φ(δX ))
δX = Φ−1(log(δx))

(4.85)

In practice, it is used the minimal 3D axis-angle perturbation of orientation δα ∈ R3,
which can be converter in the equivalent quaternion δq using the exponential map:

δq := exp

([
0

1
2δα

])
=
 cos

(
‖ δα2 ‖

)
sinc

(
‖ δα2 ‖

)
δα
2

 , (4.86)
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where sinc is the cardinal sine function, defined as

sinc(x) =


sin(x)
x

if x 6= 0

1 if x = 0
. (4.87)

Using the group operator ⊗, qWB = δq⊗ q̂WB . The minimal robot error state vector is
obtained as

δXR =
[
δpT δαT δvT δbaT δbgT

]T
∈ R15, (4.88)

and from it are analogously defined δXp and δXsb. The homogeneous landmarks are
considered as non-unit quaternions, with the minimal perturbation δβ, meaning that
δXL := δβ.

4.4.2 Non-linear optimization
The problem formulation is the same as section 4.3.2, consisting in the minimization
of a cost function (sections 4.3.2 and 4.3.2) containing visual and inertial error terms
in the present window.

4.4.3 Reprojection error
A standard formulation of the reprojection error is used:

ei,j,kl = zi,j,k − g(TCWW lj) (4.89)

where (·)i,j,k is a vector expressed in the disparity space and g(·) is the stereo projection
model (sec 2.4.3)

4.4.4 IMU kinematics
Assuming the effect from Earth’ rotation small compared to the gyroscope accuracy,
the IMU model is defined similarly to section 4.3.2, as:

ṗWB = vWB ,

q̇WB = 1
2Ω

(
Bω̃
W
B − nω − bg

)
qWB ,

v̇WB = RWB
(
BãWB − na − ba

)
+ Wg,

ḃg = nbg ,

ḃa = −1
τ
ba + nba ,

(4.90)

where n∗ ∼ N (0,σ2
b∗) and the other terms have a similar meaning to the aforemen-

tioned section. The main difference is in defining the gyroscope bias as a bounded
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random walk with a time constant τ > 0. The matrix Ω comes from the estimated
angular velocity ωWB as shown in eq. 4.60. The linearized error dynamics consists in:

δẊR = Fc(XR)δXR + G(xR)n, (4.91)

where G is straightforward to derive and :

Fc =



0 0 I 0 0
0 0 I 0 0
0 [RWB (BãWB − ba)]× 0 0 −RWB
0 0 I 0 0
0 0 I 0 − 1

τ
I

 (4.92)

To limit the computational complexity a simple Euler-Forward method is used for
integration, resulting in the covariance propagation equation

Pp+1
R = (I + Fc(x̂pR)∆t)Pp

R(I + Fc(x̂pR)∆t)T + (G(x̂pR)∆t)Q(G(x̂pR)∆t)T (4.93)

where Q is the diagonal matrix containing all the noise covariances.

4.4.5 IMU measurement error term
Between two camera measurements, at time k and k + 1, there are many IMU mea-
surements that are in general not synchronized. Thus,the IMU error term must be a
function of robot states at time k and k+1 and all the IMU measurements in between,
so ekIMU(xkR,xk+1

R , zk+1
IMU). It is assumed an approximate normal conditional probability

density f for given robot states:

f(ekIMU |xkR,xk+1
R ) ≈ N (0,Pk

s). (4.94)

Considering the state prediction x̂k+1
R (xkR, zkIMU) with covariance P

(
δx̂k+1

R |xkR, zkIMU

)
,

the IMU prediction error is:

ekIMU(xkR,xk+1
R , zk+1

IMU) =


p̂WBk+1

− pWBk+1

2
[
q̂WBk+1

⊗ qWBk+1

−1]
x,y,z

x̂k+1
sb − xk+1

sb

 , (4.95)

simply the difference between the prediction based on the previous state and the actual
state, apart for the orientation, that uses a multiplicative minimal error. Using the
propagation law, the error covariance is:

Pk
IMU = ∂ekIMU

∂δX̂ k+1
R

P
(
δx̂k+1

R |xkR, zkIMU

) ∂ekIMU

∂δX̂ k+1
R

(4.96)
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4.4.6 Keypoint matching and keyframe selection
The image processing consists in a customized multiscale SSE-optimized Harris corner
detector (sec. 3.3) combined with BRISK descriptor extraction (sec. 3.5). The detector
enforces uniform keypoint distribution in the image by gradually suppressing corners
with weaker score, as they are detected at a small distance from a stronger corner.
The descriptors are oriented during the extraction, in the gravity direction projected
on the image. At first, keypoints are stereo-triangulated and inserted into a local
map. When enough past frames, with included set of keypoints, are present, 3D-2D
matching is preformed. From the current pose prediction obtained by IMU integration,
all landmarks that should be visible are considered for brute-force descriptor matching.
An outlier rejection is performed applying chi-square test in image coordinates using
the pose prediction. In this way the application of a costly RANSAC is avoided. A
bounded set of camera frames is maintained, consisting of poses with associated images
taken at that time instant, and the landmarks visible in these images are kept in the
local map. Two type of frame sets are considered:

• A collection of the most recent S frames in the temporal window,

• A set of N keyframes spanning to the first moment

The keyframe selection is enforced by a simple heuristic: the frame is labeled as
keyframe if the ratio between the image area spanned by matched points versus the
area spanned by all detected points falls below 50-60%.

Partial marginalization

At the beginning the marginalized error term is determined using the first N+1 frames,
x1,...,N+1
T with corresponding speed and bias states x1,...,N+1

sb as shown in figure . The N
first frames are interpreted as keyframes and the corresponding speed and bias states
are marginalized out. This is shown in figure 4.7.
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Figure 4.7: OKVIS: marginalization of the first frames. Speed and
bias states outside the window are marginalized [48].

When a new frame xcT (c stands for current) is inserted in the optimization window,
the marginalization operation is triggered. If the oldest frame in the temporal window,
xc−ST , is not a keyframe, its landmark measurements are erased and its speed and bias
states are marginalized out. Eliminating landmarks is not the optimal solution but it
keeps the problem sparse for a fast computation. This is shown in figure 4.8.

Figure 4.8: OKVIS: a regular frame is marginalized out [48].

If, instead, the oldest frame is a keyframe, it would be too significant to drop the
landmarks, since all the relative pose information between the oldest two keyframes
encoded in the common landmark observations would be lost. To avoid that all land-
marks visible in the oldest keyframe but not in the most recent are marginalized out,
as represented in figure 4.9. The mathematical formulation is the same as in section
4.3.2
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Figure 4.9: OKVIS: the oldest keyframe is marginalized out [48].
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Chapter 5

Tests and results analysis

5.1 Tests
Jackal is a small all-terrain and weatherproof UGV. It features a IMU and a GPS,
a top speed of 2 m/s and it lasts 4 hrs with basic usage. It has a powerful onboard
computer and it comes fully equipped with ROS [49]. The one used also mounts a 2D
LiDAR.

The camera was mounted on the Jackal using a custom 3D printed support as show
in figure 5.1. The camera was tilted upwards by 25 degrees, since it seemed the best
angle to get a good view of the environment. The camera software was run onboard the
Jackal and the UGV was moved with a controller. The data was recorded in ROS bag
format and then the VIO algorithms were run offline on a laptop. The data recorded
was from the MYNTEYE camera and from the Jackal, consisting in the robot odometry
resulted from a EKF fusing the robot wheel odometry and IMU measurements.
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Figure 5.1: Jackal UGV with MYNTEYE camera.

In order to find the best setting of the algorithms parameters a few runs were recorded
and the results were shown during the algorithms execution using RViz. RViz s a 3D
visualizer for displaying data and state information form ROS. In this phase the Jackal
odometry data was used as ground truth.
The camera fps were set to 20, because it seemed a good balance between information
bandwidth and real-time operability.
Two cases were tested in two different indoor environments:

• Straight path in a corridor: the robot went straight ahead for about 15 meters,
then rotated by 180 degrees and came back to the starting point, without rotating
again,

• Pseudo-rectangular path in a room: the robot followed a path of about 16 meters,
composed of straight movements and 90 degrees turns, to come back to the initial
pose.

To make the experiment somewhat repeatable, the path was marked on the ground by
tape and the UGV was guided with a gamepad to follow it. It was not easy to follow
it along all the length by at a millimetric accuracy, but it was at least checked that
the wheels passed on some control points with a lateral displacement of less then half
of the wheel thickness (2.5 cm), otherwise the recording was discarded. The tests were
repeated with two IMU frequency settings of 200 Hz and 500 Hz, and with the IR point
projection turned on or off. Two run were preformed for each case, resulting in a total
of 16 files.
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The algorithms were set to not perform the online camera-IMU online time delay
estimation, when available, because it was tested that it converged to an incorrect value
and it made the localization worst. The online extrinsic camera-IMU estimation was
disabled for the same reason. From multiple tests it was discovered for the logarithmic
parametrization of the distance parameter in ROVIO (sec. 4.2.8) to be the best for in
the chosen scenario, with the hyperbolic one closely in second place. The other methods
lead to a considerable overestimation of the traveled distance. It was therefore used a
logarithmic mapping. All algorithms initialize the world reference frame in the same
manner: aligning z axis with the gravity vector, x axis opposite to the camera heading
and y axis to complete the right-handed coordinate system.

5.2 Results analysis
The algorithms were run and the data saved in a ROS bag file, using modified roslaunch
files and a bash script. First the ROS bag files were converted in text files for a faster
loading, using an adaptation of the "bag to pose" script from the "rpg trajectory eval-
uation" repository [50]. Then, the files were then loaded in trajectory objects from the
"trajectory toolkit" repository [51] and then modified with a custom python script. At
the beginning the idea was to use the Jackal odometry as ground truth to evaluate
the algorithms performance. It was difficult to start each trial from the exact same
pose and the orientation misalignment is especially important, because impacts on the
estimated position increasingly with the traveled distance. To account for it, the Jackal
odometry trajectory were aligned with each other (in the same enviroment), consid-
ering the linear regression of the points in the first 20 cm of traveled distance. This
realignment angle was also applied to the other odometries of the correspondent cases.
Analyzing OKVIS and ROVIO trajectories it was found a common rotation about the
vertical axis in all cases, possibly coming from a small tilt angle between the camera
and Jackal reference frame. To account for it, all the VIO trajectories were rotated by
2 degrees counter-clockwise. VINS-Fusion instead shows a bigger common rotation an-
gle of about 5 degrees, but clearly not resulting from physical rotation, instead maybe
caused by an incorrect world frame initialization.
Once the data were plotted for each case, with also the ideal trajectory coming from
measurements, it was evident that the Jackal odometry accuracy was in many cases
comparable with the VIO ones, thus it was not possible to use it as ground truth.
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Figure 5.2: Trajectory comparison 200 Hz - IR off, first trial. The
locations in which the UGV was following the ideal path at best are

highlighted

It was chosen then to use what was certainly known, as a metrics:

• The relative error on the traveled length: δd = | dm − dV IO|
dm

,

• The difference between initial and final position: ∆p =
√

(xf − xi)2 + (yf − yi)2,

where dm is the traveled distance measured from the ideal path, dV IO is the estimated
traveled distance, [xi yi]T and [xf yf ]T are the initial and final 2D position. The results
in the room case are shown in tab. 5.1, whereas the ones for the corridor case as
reported in tab. 5.2.
In order to find the best camera settings for each algorithm and the best algorithm
in each environment a score was defined. First it was computed the average of the

Jackal ROVIO VINS-Fusion OKVIS
δd [%] ∆p [m] δd [%] ∆p [m] δd [%] ∆p [m] δd [%] ∆p [m]

200 Hz - IR on 1.885 0.041 7.604 0.205 6.926 0.226 1.120 0.217
0.190 0.099 4.315 0.252 2.512 0.217 0.389 0.044

200 Hz - IR off 0.839 0.061 3.040 0.255 1.131 0.207 0.440 0.052
0.305 0.073 3.586 0.232 0.425 0.267 1.091 0.121

500 Hz - IR on 1.572 0.075 6.623 0.023 4.033 0.226 1.287 0.049
0.746 0.191 3.238 0.448 4.759 0.255 0.936 0.116

500 Hz - IR off 0.974 0.076 5.052 0.203 0.369 0.149 0.815 0.069
1.400 0.064 4.275 0.361 0.368 0.260 2.157 0.047

Table 5.1: Room results.
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Jackal ROVIO VINS-Fusion OKVIS
δd [%] ∆p [m] δd [%] ∆p [m] δd [%] ∆p [m] δd [%] ∆p [m]

200 Hz - IR on 0.321 0.400 0.025 0.274 4.653 0.561 5.476 0.267
0.092 0.482 8.260 0.377 2.171 0.636 5.174 0.411

200 Hz - IR off 0.365 0.411 6.928 0.950 6.638 0.375 5.665 0.216
0.302 0.033 7.721 0.564 5.996 0.832 5.666 0.303

500 Hz - IR on 0.225 0.506 8.754 0.696 1.129 0.792 4.459 0.315
0.665 0.712 15.330 0.825 1.137 0.578 4.794 0.265

500 Hz - IR off 0.040 0.607 19.135 0.698 5.944 0.306 5.726 0.233
0.028 0.462 3.671 1.577 6.498 0.474 5.348 0.223

Table 5.2: Corridor results.

ROVIO VINS-Fusion OKVIS
200 Hz - IR on 63.0 81.0 74.0
200 Hz - IR off 127.4 105.5 69.9
500 Hz - IR on 166.9 69.6 63.9
500 Hz - IR off 194.7 85.9 66.0

Table 5.3: Corridor VIO comparison. Lower is better. The lowest
scores for each algorithm are highlighted.

results between the pair of trials for each camera setting (see tab. 5.5 and tab. 5.6 ),
then it was defined a score relative to the worst (highest) value for each metric in one
environment:

sri =
(
| δrd,i − δrd,max|

δrd,max
+
| ∆r

p,i −∆r
p,max|

∆r
p,max

)
· 100,

sci =
(
| δcd,i − δcd,max|

δcd,max
+
| ∆c

p,i −∆c
p,max|

∆c
p,max

)
· 100,

(5.1)

where sri is the score for case i (camera settings and algorithm) in the averaged results
of room environment, δrd,max is the maximum value of δrd in the averaged results of the
room environment and the rest is self explanatory.
The result of the procedure (tab. 5.4 and tab. 5.3) shows that there is no algorithm
which performs better in both environments (even if OKVIS is pretty close) and that

ROVIO VINS-Fusion OKVIS
200 Hz - IR on 181.2 157.8 58.9
200 Hz - IR off 142.1 97.1 43.6
500 Hz - IR on 166.1 159.0 47.9
500 Hz - IR off 178.3 78.7 45.5

Table 5.4: Room VIO comparison. Lower is better. The lowest scores
for each algorithm are highlighted.

61



Chapter 5. Tests and results analysis

ROVIO VINS-Fusion OKVIS
δd [%] ∆p [m] δd [%] ∆p [m] δd [%] ∆p [m]

200 Hz - IR on 5.959 0.229 4.719 0.222 0.755 0.130
200 Hz - IR off 3.313 0.244 0.778 0.237 0.766 0.087
500 Hz - IR on 4.930 0.235 4.396 0.240 1.111 0.083
500 Hz - IR off 4.664 0.282 0.368 0.204 1.486 0.058

Table 5.5: Room average results. The highest values for each metric
are highlighted

ROVIO VINS-Fusion OKVIS
δd [%] ∆p [m] δd [%] ∆p [m] δd [%] ∆p [m]

200 Hz - IR on 4.142 0.326 3.412 0.598 5.325 0.339
200 Hz - IR off 7.325 0.757 6.317 0.604 5.665 0.260
500 Hz - IR on 12.042 0.761 1.133 0.685 4.627 0.290
500 Hz - IR off 11.403 1.137 6.221 0.390 5.537 0.228

Table 5.6: Corridor average results. The highest values for each metric
are highlighted.

the VIO frameworks perform better with the IR projector off the room case and on in
the corridor case. This could be caused by lack of textures in the corridor, compared
with the room, and the increased number of possible corners increments the estimation
accuracy. Instead, in an higher textured environment this is disadvantageous most
likely because the higher number of features that can be tracked just for a short time
add noise to the estimation.

In conclusion, the camera was calibrated with good results. It was not defined the
most accurate VIO framework for indoor environments in the three considered. In fact
using the score proposed, in the room environment OKVIS performs better, followed
by VINS-Fusion and ROVIO. The results different in the corridor, where ROVIO is
better, followed by OKVIS and VINS-Fusion.
More tests are definitely needed, possibly considering a longer path spanning both envi-
ronments. It would also be interesting to generate and ideal trajectory by interpolating
the points between measured positions of the path, using mean velocities. Different
parts of the path can be recognized by the linear and angular velocities, since mostly the
movements were divided in straight forward or only rotation (aside for small angular
correction during the run). This would bound the position drift, the more movement
operation changes there are, so it would be better if applied to the corridor path. On
the hardware side it would be interesting to see how much is the accuracy boost given
by a hardware triggered camera-IMU system (expected from the literature).
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Figure 5.3: Trajectory comparison of the best settings for each algo-
rithm in the corridor environment.

Figure 5.4: Trajectory comparison of the best settings for each algo-
rithm in the room environment.
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