Politecnico di Torino

Corso di Laurea Magistrale in ingegneria Meccanica

Tesi di laurea magistrale

Analisi stazionaria e dinamica di uno pneumatico automobilistico

Relatori: Enrico Galvagno Elvio Bonisoli Candidato: Yoezmi Alejandro Ramos Oscategui

Si ringraza il Fraunhofer Institute (ITWM) per aver messo a disposizone il software CDTire.

Abstract

Lo scopo della tesi è di studiare l'influenza dei parametri che caratterizzano lo pneumatico mediante l'utilizzo del software CDTire per Simulink.

Nella prima parte vengono mostrati i metodi e modelli finora utlizzati per la caratterizzazione dello pnumatico.

Nella seconda parte l'introduzione degli strumenti messi a diposizone per l'analisi. Nella terza i vengono illustrati i risultati ottenuti per le caratterizzazioni statiche, transitorie e dinamiche.

In fine vegono riassunti e analizzati gli effetti dei parametri considerati sui fenomeni fisici studiati.

Sommario

Abstract	. 2
Introduzione	. 5
1 Stato dell'arte	. 5
1.1 Modelli per l'analisi NVH	. 5
1.1.1 Modello ad anello flessibile	. 5
1.1.2 Modello shell con polinomi di Bezier	. 6
1.1.3 CDTire NVH	. 7
1.2 Modelli empirici	. 8
1.2.1 La "Formula Magica" di Pacejka	. 8
1.2.2 Modello Magic Formula migliorato con variazioni di pressione	. 8
1.3 Modelli fisici	. 9
1.3.1 CDTire	. 9
1.3.2 FTire	11
1.3.3 Swift Tire	13
2 Software utilizzati nelle prove	15
2.1 CDTire NVH	15
22 CDTire per Matlab/Simulink	17
3. Caso di studio - analisi dello pneumatico 205/55 R 16	26
3.1. Caratteristiche dello pneumatico 205/55 R 16	26
3.2 Prova statica	27
3.2.1 Rigidezza verticale dello spneumatico	29
3.3. Prove stazionarie	31
3.3.1 Determinazione della resistenza a rotolamento	33
3.3.1.1 Influenza della pressione di gonfiaggio	34
3.3.1.2 Influenza del carico Fz	38
3.3.1.3 Influenza della velocità	42
3.3.2 Effetto centrifugo	49
3.3.3 Raggio di rotolamento effettivo	52
3.3.3.1 Influenza della pressione di gonfiaggio	53
3.3.3.2 Influenza del carico	56
3.3.3.3 Influenza della velocità	60
3.3.4 Fx – scorrimento	67
3.3.4.1 Effetto della pressione	68
3.3.4.2 Effetto del carico	71
3.3.4.3 Rigidezza a scorrimento	73

3.3.5 Fy - angolo di deriva	77
3.3.5.1 Effetto della pressione	78
3.3.5.2 Effetto del carico	81
3.3.5.3 Rigidezza di deriva	84
3.3.6 Momento di auto-allineamento	88
3.3.6.1 Effetto della pressione	88
3.3.6.2 Effetto del carico	90
3.4 Prove dinamiche	93
3.4.1 Trasmissibilità delle vibrazioni in direzione verticale al variare della pressione	93
3.4.2 Lunghezza di rilassamento	96
3.4.3 Analisi della risposta in frequenza di secondo ordine	105
3.4.3.1 Risposta in frequenza di secondo ordine in funzione di pressione e carico	105
3.4.3.2 Risposta in frequenza di secondo ordine in funzione della velocità	115
3.4.4 CDT/NVH sensitività alle condizioni operative	118
3.4.4.1 Modo verticale	119
3.4.4.1.1 Modo verticale in funzione della pressione	120
3.4.4.1.2 Modo verticale in funzione in funzione della velocità	131
3.4.4.1.3 Modo verticale in funzione del carico	141
3.4.4.2 Modo torsionale	152
3.4.4.2.1 Modo torsionale in funzione della pressione	153
3.4.4.2.1 Modo torsionale in funzione della velocità	164
3.4.4.2.3 Modo torsionale in funzione del carico	174
4. Conclusioni	188
Bibliografia	190

Introduzione

Lo scopo della tesi è quello di analizzare l'influenza dei parametri fisici che caratterizzano lo pneumatico sulle performace in diverse condizioni di prova.

Lo strumento utilizzato per effetturare tale analisi è il software CDTire sviluppato presso il Fraunhofer Institute. Le prove svolte hanno portato ad ottenere la caratterizzazione statica, transitoria e dinamica dello pneumatico in analisi.

1 Stato dell'arte

In questa prima sezione verranno esposti modelli associati ai diversi metodi di studi siano essi fisici o empirici. Tali modelli sono stati suddivisi come:

- Modelli per l'analisi NVH
- Modelli empirici
- Modelli fisici

1.1 Modelli per l'analisi NVH

Nel tempo sono stati sviluppati diversi metodi per comprendere il comportamento dinamico di uno pneumatico, di seguito vengono esposti alcuni modelli sviluppati per determinare i modi di vibrare degli pneumatici.

1.1.1 Modello ad anello flessibile

Il modello calcola le frequenze naturali di uno pneumatico in funzione dei parametri fisici del pneumatico. Tale modello è costituito da un anello cilindrico flessibile che rappresenta il battistrada e una molla che rappresenta la rigidezza del fianco dello pneumatico. Tramite il modello si possono ottenere modi radiali, circonferenziali e laterali . L'equazione del moto e la frequenza naturale sono calcolate usando il metodo lagrangiano e viene eseguita un'analisi modale sperimentale di uno pneumatico non rotante per validare il modello [1]. La figura rappresenta i parametri grafici dello pneumatico

Figura 1 - Modello ad anello flessibile

Dove:

- R è il raggio dell'anello del battistrada;
- b lo spessore;
- 2l la larghezza;
- ρ la densità di massa;
- Ω la velocità angolare;

- S₀ e S_{rot} sono la tensione iniziale dovuta alla pressione interna e alla rotazione;
- n = 1, 2 e 3 corrispondono ai modi;
- Kr, Kθ e Ky sono rispettivamente la rigidezza radiale, circonferenziale e laterale;

$$\omega_{b,n} = \frac{\frac{1}{3}l^2\Omega n}{\left(\frac{R^2}{n^2} + \frac{l^2}{3} + \frac{l^2}{3}n^2\right)} \pm \sqrt{\frac{\frac{1}{9}l^4\Omega^2 n^2}{\left(\frac{R^2}{n^2} + \frac{l^2}{3} + \frac{l^2}{3}n^2\right)}} + \frac{\frac{-\frac{1}{3}l^2\Omega^2 n^2 + \frac{S_{rot}n^2(n^2-1)}{\rho b} l^2}{\left(\frac{R^2}{n^2} + \frac{l^2}{3} + \frac{l^2}{3}n^2\right)} + \omega_{b,statica}^2 \quad (eq 1.1)$$

La pulsazione naturale statica flessionale che rappresenta la condizione non rotolante:

$$\omega_{b,statica} = \pm \sqrt{\frac{\frac{S_0}{3R^2}n^2(n^2 - 1)l^2 + \frac{R^2}{n^2}\frac{1}{l}K_y + lK_\vartheta + n^2lK_r}{\rho b\left(\frac{R^2}{n^2} + \frac{l^2}{3} + \frac{l^2}{3}n^2\right)}} \quad (eq. 1.2)$$

Figura 2 - Modo flessionale

La pulsazione naturale radiale viene calcolata con le seguenti relazioni

$$\omega_{r,n}^{2} = \frac{n\Omega}{(n^{2}-1)} \pm \sqrt{\frac{n^{2}\Omega^{2}}{(n^{2}+1)^{2}} + \frac{n^{2}\Omega^{2} + \frac{S_{rot}}{\rho b} \frac{n^{2}(n^{2}-1)}{R^{2}}}{(n^{2}+1)} + \omega_{r,static}^{2}} \quad (eq. 1.3)$$

$$\omega_{r,static}^{2} = \pm \sqrt{\frac{\frac{S_{0}}{\rho b} \frac{n^{2}(n^{2}-1)}{R^{2}} + \frac{K_{\theta}}{\rho b} \frac{1}{l} + n^{2} \frac{K_{r}}{\rho b} \frac{1}{l}}{n^{2}+1}} \quad (eq. 1.4)$$

1.1.2 Modello shell con polinomi di Bezier

Il modello si basa sulla teoria shell di tipo Reddy. La geometria dello pneumantico e gli spostamenti sono rappresentati da polinomi di Bezier secondo coordinate curvilinee, per calcolare le frequenze naturali e le forme modali viene usato il metodo Rayleigh–Ritz [2].

Figura 3 - Modello discretizzato

1.1.3 CDTire NVH

Come nel modello precedente si tratta di un modello basato su elementi shell, le caratteristiche del modello verranno descritte nella sezione 1.3.1. Si tratta di un modello strutturale adeguato al calcolo dei modi dello pneumatio. Il modello è stato validato mettendo a confronto le funzioni di risposta in frequenza del modello non lineare usato per l'handling e il modello linearizzato usato per il calcolo di modi [3].

Figura 4 - Trasferimento dell'eccitazione verticale globale a 2,5 bar con precarico 4 kN

1.2 Modelli empirici

Un modello empirico-matematico è finalizzato a una riproduzione degli andamenti caratteristici sperimentali attraverso formule matematiche indipendenti dalla realtà fisica che determina il comportamento acquisito sperimentalmente. Il modello empirico più importante, forse il più diffuso in ambito veicolistico, è noto come Formula di Pacejka.

1.2.1 La "Formula Magica" di Pacejka

La "Formula magica di Pacejka" è un modello empirico-matematico che cerca di riassumere le prestazioni sperimentali del pneumatico attraverso formule matematiche. Esse hanno una precisa struttura in cui compaiono coefficienti i cui valori sono definiti da specifici test sperimentali. Tali coefficienti, ricavati per uno specifico pneumatico, inseriti nella formula permettono di ottenere, con una buona approssimazione in varie condizioni operative e in modo meno felicemente accurato in altre, le curve che caratterizzano il pneumatico. Queste curve, in generale, riguardano l'andamento della forza longitudinale Fx, della forza laterale Fy e del momento di autoallineamento Mz in funzione del carico Fz, dello scorrimento longitudinale λ , dell'angolo di deriva α e dell' angolo di campanatura γ [6].

La formulazione per Fx viene di seguito riportata

$$F_{x} = Dsin\{Carctan[B\lambda - E(B\lambda - arctan(B\lambda))]\}$$
 (eq 1.5)

Figura 5 - Rappresentazione della formula

I parametri A, B, C e D sono parametri d'interpolazione ottenuti dai dati sperimentali.

1.2.2 Modello Magic Formula migliorato con variazioni di pressione

Il modello rapprensenta un miglioramento della magic formula originale capace di considerare l'effetto della pressione di gonfiaggio [4]. Viene considerata la variazione del diametro inziale dello penumatico per effetto centrifugo

$$R_{\Omega} = R_0 \left(q_{re0} + q_{v1} \left(\frac{\Omega R_0}{V_0} \right)^2 \right) \ (eq. 1.6)$$

 R_0 raggio dello pneumatico non rontante indeformato, VO velocità, Ω velocità angolare, qre0 e qvi sono dei parametri del modello

La deflessione p dello pneumatico viene calcolata come (R1 raggio dello penumatico carico)

$$\rho = R_{\Omega} - R_1 \quad (eq \ 1.7)$$

Il carico Fz viene calcolato come:

$$F_{Z} = \left(1 + q_{\nu 2} \frac{R_{0}}{V_{0}} |\Omega| - \left(\frac{q_{Fcx} F_{x}}{F_{z0}}\right)^{2} - \left(\frac{q_{Fcy} F_{y}}{F_{z0}}\right)^{2}\right) \cdot \left(q_{Fz1} \frac{\rho}{R_{0}} + q_{Fz2} \left(\frac{\rho}{R_{0}}\right)^{2}\right) \cdot (1 + p_{Fz1} dp_{i}) F_{z0} \quad (eq \ 1.8)$$

In questa formulazione sono inclusi diversi effetti, come la variazione della rigidezza con la velocità qv2, dpi è la variazione di pressione.

I carichi ed i momenti Fx, Fy, Mz, My, Mz sono funzione dell'andamento di Fz

1.3 Modelli fisici

Di seguito vengono illustrati alcuni modelli fisici per l'analisi del comportamento dello pneumatico

1.3.1 CDTire

Il *Comfort and Durability Tire* è una famiglia di modelli di pneumatico utilizzati nei software per sistemi MBS (multi-body simulation). Si concentra sulle applicazioni comfort e durata ma permette anche di analizzare l'handling [7].

Background del modello di pneumatico

CDTire è un modello di pneumatico per autovetture e autocarri leggeri che consente agli ingegneri di fare l'analisi completa del comfort e durata di veicoli rispettivo a software MBS, tenendo conto la dinamica del battistrada e l'interazione con le superfici stradali in 3D.

Durante la simulazione multi-body CDTire calcola le forze e i momenti che agiscono su ogni ruota del modello e le forze sul fondo stradale 3D. CDTire per comfort e durata considera accuratamente vibrazioni fino a 150 Hz.

Modelli CDTire

CDTire offre tre modelli di pneumatico:

- CDTire/3D
- CDTire/Real-time

CDTire/3D

Figura 6 - Struttura modello CDTire 3D

Il modello si basa su una formulazione alle differenze finite spaziali (FD) dello pneumatico modellato tramite elementi shell. Ad ogni elemento che compone la complessa struttura dello pneumatico viene attribuita una caratteristica fisica capace di modellarne il comportamento. La determinazione di queste caratteristiche avviene tramite misurazioni reali e virtuali, che hanno lo scopo di ridurre al minimo le differenze tra queste prove.. La figura 1 illustra i principali componenti funzionali strutturali MBD accanto all'immagine del modello sottoposto ad un prova di tipo cleat. Struttura del modello di pneumatico:

- La cinghia è un elemento shell (guscio) flessibile (di default: 6x3x50 gradi di libertà)
- I due fianchi sono shell flessibili (di default: 8x3x50 gradi di libertà)
- Formulazione del contatto sul battistrada:
 - Contatto a spazzola
 - Capacità di stick-slip locale

Gli strati funzionali dello pneumatico (come il telo di protezione, le tele della cintura e le tele della carcassa) hanno proprietà parametriche lineari attribuite al guscio che le appresenta. Elementi rinforzarti da corde hanno una caratterizzazine non lineare, che considera un diverso comportamento tra compressione e trazione

Le parti dissipative della descrizione del materiale combinano un comportamento viscoso-elastico e di attrito interno

Caratteristiche dei disturbi:

- o Sforzi considerevoli
- \circ La lunghezza d'onda della strada λ_{ROAD} può essere arbitraria
- o Ostacolo avvolgente

CDTire/Realtime

Figura 7 - Struttura modello CDTire RT

Struttura del modello di pneumatico:

- La cinghia è un anello flessibile (di default: 3x50 gradi di libertà)
- I due fianchi hanno una consistenza viscoelastica locale
- Formulazione del contatto:
 - Contatto a spazzola
 - Capacità di stick-slip locale
- Caratteristiche dei disturbi:
 - o Sforzi considerevoli
 - \circ ~ La lunghezza d'onda della strada λ_{ROAD} può essere arbitraria
 - Restrizione: ostacolo avvolgente solo nel piano, l'estensione laterale della ruota piana viene considerata costante per ogni pneumatico.

1.3.2 FTire

FTire si basa su un approccio di modellazione dello pneumatico basato sulla dinamica strutturale. La cintura dello pneumatico è descritta come un anello estensibile e flessibile, accoppiata elasticamente con il cerchio cerchio mediante rigidezze parzialmente dinamiche distribuite in direzione radiale, tangenziale e laterale. I gradi di libertà dell'anello sono tali che sono possibili movimenti nel piano e fuori dal piano. L'anello è approssimato numericamente da un numero finito di "elementi di cintura". Questi elementi di cintura sono accoppiati con i loro vicini da molle rigide. Tutte le rigidezze, e i fattori di smorzamento vengono calcolati durante la fase di pre-test, adattando le proprietà modali e statiche dello pneumatico reale [8].

Figura 8 - Tralazione lungo x- y - z / rotazione longitudinale / flessione varie funzioni di forma

La rigidezza e le forze interne della cinghia sono influenzate dalla pressione di gonfiaggio effettiva.

Figura 9 - Effetto della pressione di gonfiaggio

Un secondo componente fondamentale del modello è la descrizione del battistrada, composta da un numero variabile (tipicamente tra 3.000 e 10.000) di "elementi di contatto" senza massa (Fig. 3). Questi sensori di contatto, con estensioni nell'ordine del millimetro, sono collegati agli elementi strutturali e possono entrare in contatto con la strada. Le rilevazioni di deflessione radiale, velocità di scorrimento locale, temperatura ed i piani tangenti locali di contatto sono usati per calcolare le forze normali e di attrito del sensore. Queste forze costituiscono il carico esterno distribuito del modello strutturale.

Figura 10 - Battistrada di FTire

Impostando le lunghezze dei sensori di contatto in modo appropriato, è possibile tenere conto di scanalature, sporgenze e altri disegni del battistrada.

Al modello base si possono aggiungere delle estensioni capaci di aggiungere delle modifiche alla parametrizzazione iniziale, un modello termico del battistrada, un modello di usura, considerare un cerchio flessbile e una dinamica vibrazionale fluidodinamica.

1.3.3 Swift Tire

Figura 11 – Schema Swift Tire

MF-Swift è un modello di pneumatico onnicomprensivo per l'uso nelle simulazioni di dinamica del veicolo (handling, superfici stradali complesse, effetti delle vibrazioni sulla trasmissione, analisi di sitemi di controllo come ABS e ESC), il modello usato per descrivere le caratteristiche dello pneumatico è ad anello rigido con inviluppo degli ostacoli tridimensionali.

I metodi di calcolo dei carichi Fx, Fy, Fz sono stati illustrati nella sezione 1.2.1 e 1.2.2 dove troviamo relazioni empiriche di Pacejka e quelle piu recenti che considerano le varizoni di pressione, tali risposte sono integrate nel modello.

Il modello di contatto per il transitorio utilizza le equazioni differenziali del modello a spazzola, mentre per le caratteristiche slittamento non lineare viene usata la magic formula

La dinamica della cinghia viene considerata determinando i modi fino a 100 Hz come mostrato nella figura sottostante

Figura 12 - Modi considerati per il modello Swift TIre

La definizione del modello della strada considera le seguenti ipotesi:

- La dinamica della deformazione della zona di contatto sia la stessa di quella quasi statica;
- Gli effetti dinamici locali possono essere trascurati;
- Il modello ad anello rigido comprende gli effetti dinamici dello pneumatico;

Invece che la forma effettiva della strada il modello considera una forma filtrata per effetto dell'inviluppo chiamata superficie stradale effettiva. La posizione effettiva dell'asse dello pneumatico viene definito da tale superficie.

Figura 13 - Superficie stradale filtrata per effetto dell'inviluppo

Nel caso di uno ostacolo 3D, il profilo tridimensionale effettivo della strada è sostituito da un insieme di quattro ingressi: l'altezza effettiva, le effettive pendenze longitudinali β y e laterali β x del piano stradale e la curvatura longitudinale $\frac{d\beta_y}{dx}$.

Figura 14 - Ingressi ostacolo avvolgente

La figura sottostante mostra come tramite questi parametri sia possbile ottenere la posizione effettiva dell'asse re per un ostacolo avvolgente

Figura 15 - Posizione effettiva asse pneumatico re

2 Software utilizzati nelle prove

Nelle varie prove sono stati utilizzati, due versione software che utliazzano il modello CDTire 3D:

- CDTire NVH
- CDTire 3D per simulink

2.1 CDTire NVH

Figure 1 Interfaccia CDTire NVH

Il modello strutturale MDB descritto precendentemente viene utlizzato per effetturare simulazioni in base alla frequenza, usate per simulazioni NVH visto il basso costo computazionale. L'interfaccia di CDTire NVH consiste in due parti principali:

- 1. La linerizzazione:
 - a. Si seleziona il parameter file dello pneumatico;
 - b. Si selezionano i parametri intorno ai quali effettuare la linearizzazione (precarico, pressione, velocità, coppia, angolo di deriva, angolo di camber);
 - c. Si seleziona la risoluzione della zona di contatto;
 - d. Si effettua la linearizzazione

Il processo di linearizzazione esegue la simulazione in 2 fasi: nella prima fase (pre fase), lo pneumatico viene caricato fino a raggiungere il precarico desiderato. Durante questa fase, tutte le altre condizioni operative oltre alla deflessione (come la pressione, la velocità, l'angolo di deriva) sono già applicate. La durata della pre fase viene selezionata come parametro <Pre Time>. Dopo la pre fase, la deflessione verticale è fissa, indipendentemente dal fatto che il precarico sia stato raggiunto o meno. Quindi è responsabilità dell'utente assicurarsi che il precarico desiderato sia stato raggiunto. Nella seconda fase (fase stazionaria), tutti i parametri operativi rimangono fissi e lo pneumatico gira liberamente per eliminare qualsiasi disturbo introdotto nella fase iniziale. La durata della fase stazionaria viene selezionata come <End Time>. Il tempo di simulazione è <Pre Time> + <End Time>. La simulazione viene avviata premendo il pulsante <Linearize>.

2. Analisi modale dello pneumatico

Dopo aver eseguito la linearizzazione, è possibile eseguire l'analisi modale dello pneumatico linearizzato. Questa fase è composta da:

a. Calcolo di modi

Il calcolo dei modi viene eseguito premendo il pulsante "Calculate Modes" sul pannello principale di CDTire NVH. Se non è stata eseguita la linearizzazione, questo pulsante è inattivo. Ci sono diverse opzioni disponibili:

- "sym": simmetrizza le matrici;
- "# Modes": indica il numero di modi che si desira calcolare;
- "x", "y", "z", "Rx", "Ry", "Rz": vincoli di traslazione e rotazione applicabili

b. Rappresentazione dei modi

Vengono rapprensentati i modi calcolati nelle fasi precendenti.

2..2 CDTire per Matlab/Simulink

Di seguto si descrive il funzionamento di CDTire, tramite la descrizione degli ingressi e le uscite a disposizione, i modelli a disposizone per le simulazioni sono:

- Ruota condotta;
- Ruota motrice;

Sistemi di riferimento

Figura 16 - Sistemi di riferimento CDTire

I principali sistemi di riferimento di CDTire sono:

- W sistema World: sistema di riferimento esterno allo pneumatico, lo si può identificare come il sistema di riferimento dell'osservatore esterno al livello del suolo;
- WC sistema Wheel Centre: l'origine del sistema è collocata nel centro geometrico della ruota, è il punto sul quale vengono applicate le forze \vec{F}_{WC} e le coppie \vec{T}_{WC} , il sistema WC è solidale nella rotazione con ruota
- S sistema spindle wheel: sistema dei riferimento posizionato nel centro geometrico dello pneumatico indeformato;
- **R sistema rim:** il punto R corrisponde al centro di massa del cerchione ed l'orgine del sistema R, il sistema Rim ruota solidale al cerchio;
- Road : sistema di riferimento posizionato nella zona di contatto dello pneumatico con il terreno

Per semplificare vengono adottate le seguenti ipotesi:

- 1. Si assume che i punti S, R e WC siano coincidenti;
- 2. Non ci sia moto relativo tra R e WC, anche l'orientazione resta la stessa;
- 3. L'unico moto ammesso tra i sistemi R e S, è la rotazione intorno ad Y;

CDTire ruota condotta

Figura 17 – Ingressi ruota condotta

Ingressi ruota condotta

Gli ingressi a disposizione in CDTire sono:

- Angoli di orientazione Tait Bryan α_{WS} , β_{WS} , γ_{WS} [rad]: angoli di orientazione Tait-Bryan (3-1-2) del sistema di riferimento Spindle rispetto al sistema di riferimento World
- Vettore posizione ${}^{W}\vec{p}_{WS}$ [m]: vettore che definisce le coordinate x, y z del sistema spindle rispetto al sistema di riferimento W. Il vettore è espresso nel sistema di riferimento W;

$${}^{W}\vec{p}_{WS} = [x \ y \ z] \ (eq \ 2.1)$$

- **Vettore velocità** ${}^{W}\vec{v}_{WS}$ [m/s]: vettore che definisce la velocità del sistema spindle rispetto al sistema di riferimento W lungo le direzioni x, y z. Il vettore è espresso nel sistema di riferimento W; ${}^{W}\vec{v}_{WS} = \begin{bmatrix} {}^{W}v_{WS(X)} & {}^{W}v_{WS(Y)} & {}^{W}v_{WS(Z)} \end{bmatrix}$ (eq 2.2)
- Pressione di gonfiaggio [kPa]: Valore della pressione di gonfiaggio dello pneumatico;
- Vettore velocità angolare dello spindle ${}^{W}\vec{\omega}_{WS}$ [rad/s]: vettore velocità angolare del sistema di riferimento spindle rispetto al sistema di riferimento World. Il vettore è espresso nel sistema di riferimento W;

$${}^{W}\vec{\omega}_{WS} = \begin{bmatrix} {}^{W}\omega_{WS(X)} & {}^{W}\omega_{WS(Y)} & {}^{W}\omega_{WS(Z)} \end{bmatrix} (eq \ 2.3)$$

- Velocità angolare del cerchone ${}^{S}\omega_{SR(Y)}$ [rad/s]: velocità angolare del sistema di riferimento Rim rispetto al sistema di riferimento Spindle. La rotazione avviene intorno all'asse y del sistema di riferimento Spindle;

- **Posizione angolare del cerchione** ${}^{S}\gamma_{SR(Y)}$ **[rad]:** angolo di rotazione del sistema di riferimento Rim rispetto al sistema di riferimento Spindle. La rotazione avviene intorno all'asse y del sistema di riferimento Spindle;

Uscite ruota condotta

Figura 18 - Uscite ruota condotta

Le uscite a disposizone di CDTire sono:

- Vettore forza ${}^{W}\vec{F}_{Tire(WC)}[N]$: vettore forza che agisce sullo pneumatico nel punto WC. Il vettore è espresso nel sistema di riferimento W;

$${}^{W}\vec{F}_{Tire\ (WC)} = \left[{}^{W}F_{Tire\ (WC)(X)} {}^{W}F_{Tire\ (WC)(Y)} {}^{W}F_{Tire\ (WC)(Z)}\right]\ (eq\ 2.4)$$

- Vettore forza ${}^{W}\vec{F}_{Road}$ [N]: vettore forza che agisce sullo pneumatico nell'origine del sistema road. Il vettore è espresso nel sistema di riferimento W;

$${}^{W}\vec{F}_{Road} = \left[{}^{W}F_{Road(X)} {}^{W}F_{Road(Y)} {}^{W}F_{Road(Z)}\right] (eq 2.5)$$

- Vettore coppia ${}^{W}\vec{T}_{Tire(WC)}$ [Nm]: vettore coppia che agisce sullo pneumatico nel punto S. Il vettore è espresso nel sistema di riferimento <W>;

$${}^{W}\vec{T}_{Tire\ (WC)} = \begin{bmatrix} {}^{W}T_{Tire\ (WC)(X)} {}^{W}T_{Tire\ (WC)(Y)} {}^{W}T_{Tire\ (WC)(Z)} \end{bmatrix} (eq\ 2.6)$$

- Vettore coppia ${}^{W}\vec{F}_{Road}$ [Nm]:]: vettore coppia che agisce sullo pneumatico nell'origine del sistema road. Il vettore è espresso nel sistema di riferimento W;

 ${}^{W}\vec{T}_{Road} = \begin{bmatrix} {}^{W}T_{Road(X)} {}^{W}T_{Road(Y)} {}^{W}T_{Road(Z)} \end{bmatrix} (eq \ 2.7)$

Calcoli nel modello CDTire ruota condotta

Il processo di clacolo si può diveidere in due parti:

- Prima parte, converte gli input forniti dall'untente negli input necessari per richiamare la libreria di CDTire;
- Seconda parte, richiama la libreria di CDTire;

Figura 19 - Prima parte schema di calcolo

Gli input sono una parte di quelli specificati precedetemente:

- Angoli Tait Bryan
- $W \overrightarrow{\omega}_{WS}$
- $S \omega_{SR(Y)}$
- ${}^{S}\gamma_{SR(Y)}$

Angoli Tait-Bryan (3-1-2)

Angoli usati nell'ambito della robotica, nel caso in esame la convenzione scelta considera una successione di rotazioni intorno ad una terna di assi fissi. I numeri 3-1-2 (Z-X-Y) indicano l'ordine delle rotazioni del sistema mobile rispetto al sistema fisso.

Pre-moltiplicazione: la rotazione intorno agli assi fissi comporta una premoltiplicazione delle matrici di rotazione nell'ordine indicato.

Figura 20 Rotazioni intorno agli assi fissi

Definendo le matrici di rotazione intorno agli assi X, Y e Z come:

$$RX(\beta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(-\beta) & -\sin(-\beta) \\ 0 & \sin(-\beta) & \cos(-\beta) \end{bmatrix} (eq \ 2.8)$$
$$RY(\gamma) = \begin{bmatrix} \cos(-\gamma) & 0 & \sin(-\gamma) \\ 0 & 1 & 0 \\ -\sin(-\gamma) & 0 & \cos(-\gamma) \end{bmatrix} (eq \ 2.9)$$
$$RZ(\alpha) = \begin{bmatrix} \cos(-\alpha) & -\sin(-\alpha) & 0 \\ \sin(-\alpha) & \cos(-\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix} (eq \ 2.10)$$

Applicando la premoltiplicazione delle tre matrici si ottiene la generica matrice di rotazione R

 $R = RY \cdot RX \cdot RZ$

$${}^{S}T_{W} = R(\alpha, \beta, \gamma) = \begin{bmatrix} \cos(-\gamma) & 0 & \sin(-\gamma) \\ 0 & 1 & 0 \\ -\sin(-\gamma) & 0 & \cos(-\gamma) \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(-\beta) & -\sin(-\beta) \\ 0 & \sin(-\beta) & \cos(-\beta) \end{bmatrix} \begin{bmatrix} \cos(-\alpha) & -\sin(-\alpha) & 0 \\ \sin(-\alpha) & \cos(-\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix} (eq \ 2.11)$$

Partendo dal valore di questi angoli forniti dall'utente, si determina la matrice di trasformazione tra il sistema spindle e quello world ${}^{S}T_{W}$

$${}^{S}T_{W}(\alpha,\beta,\gamma) = \begin{bmatrix} \cos(\gamma)\cos(\alpha) - \sin(\gamma)\sin(\beta)\sin(\alpha) & \cos(\gamma)\sin(\alpha) + \sin(\gamma)\sin(\beta)\cos(\alpha) & -\sin(\gamma)\cos(\beta) \\ -\cos(\beta)\sin(\alpha) & \cos(\beta)\cos(\alpha) & \sin(\beta) \\ \sin(\gamma)\cos(\alpha) + \cos(\gamma)\sin(\beta)\sin(\alpha) & \sin(\gamma)\sin(\alpha) - \cos(\gamma)\sin(\beta)\cos(\alpha) & \cos(\gamma)\cos(\beta) \end{bmatrix}$$
(eq 2.12)
$${}^{W}T_{S} = \left({}^{S}T_{W} \right)^{T}$$
(eq 2)

Si calcola la matrice di trasformazione ${}^{R}T_{S}$ e l'inversa ${}^{S}T_{R}$ noto l'angolo di rotazione relativa tra spindle e rim ${}^{S}\gamma_{SR}$. L'asse di riferimento tra il sistema R (cerchio) e quello S (asse) è l'asse Y, la matrice di trasformazione tra questi due sistemi è la matrice di rotazione intorno a tale asse.

$${}^{R}T_{S} = \begin{bmatrix} \cos(\gamma_{SR}) & 0 & \sin(\gamma_{SR}) \\ 0 & 1 & 0 \\ \sin(\gamma_{SR}) & 0 & \cos(\gamma_{SR}) \end{bmatrix}$$
(eq. 2.13)
$${}^{S}T_{R} = \left({}^{R}T_{S}\right)^{T}$$
(eq. 2.14)

Con questi due elementi è possibile determinare uno degli output della I prima parte di calcolo, ovvero la matrice ${}^{W}T_{WC}$ di trasformazione tra il sistema WC (Wheel Centre) e il sistema (World)

$${}^{W}T_{WC} = {}^{W}T_{R} = {}^{W}T_{S} \cdot {}^{S}T_{R}$$
 (eq. 2.15)
 ${}^{WC}T_{W} = \left({}^{W}T_{WC}\right)^{T}$ (eq. 2.16)

Il secondo output ${}^{W}\vec{\omega}_{WR}$ la velocità angolare del sistema rim rispetto al sistema world, espresso nel sistema world, si dertermina come

$${}^{W}\vec{\omega}_{WR} = {}^{W}\vec{\omega}_{WS} + {}^{W}\vec{\omega}_{SR} = {}^{W}\vec{\omega}_{WS} + {}^{W}T_{S} \cdot {}^{S}\vec{\omega}_{SR}$$
 (eq. 2.17)

Assumendo le semplificazioni per cui:

- l'origine del sistema Spindle, Rim e Wheel Centre siano coincidenti;
- l'orientazione dei ristemi Rim e Wheel Centre sia la stessa
- viene concesso un unico grado di libertà di rotazione lungo l'asse y, tra Rim e quello Spindle

Si ottiene che

 ${}^{W}\vec{p}_{WWC} = {}^{W}\vec{p}_{WS}$ (eq. 2.18) ${}^{W}\vec{v}_{WWC} = {}^{W}\vec{v}_{WS}$ (eq. 2.19)

Seconda parte del processo di calcolo

Figura 21 - Seconda parte schema di calcolo

La seconda parte di calcolo viene effettuta direttamente da CDTire, ricevento gli input nel sistema di riferimento world, gli output forze e coppie sono anche essi espressi nel sistema world

Lo schema complessivo è il seguente

Figura 22 - Schema di calcolo complessivo

CDTire ruota motrice

Ingressi CDTire ruota motrice

Gli ingressi a disposizione in CDTire ruota motrice sono:

- Angoli di orientazione Tait Bryan α_{WS} , β_{WS} , γ_{WS} [rad]: angoli di orientazione Tait-Bryan (3-1-2) del sistema di riferimento Spindle rispetto al sistema di riferimento World
- Vettore posizione ${}^{W}\vec{p}_{WS}$ [m]: vettore che definisce le coordinate x, y z del sistema spindle rispetto al sistema di riferimento W. Il vettore è espresso nel sistema di riferimento W;

$${}^{W}\vec{p}_{WS} = [x \ y \ z]$$
 (eq. 2.20)

- Vettore velocità ${}^{W}\vec{v}_{WS}$ [m/s]: vettore che definisce la velocità del sistema spindle rispetto al sistema di riferimento W lungo le direzioni x, y z. Il vettore è espresso nel sistema di riferimento W; ${}^{W}\vec{v}_{WS} = [{}^{W}v_{WS(X)} {}^{W}v_{WS(Y)} {}^{W}v_{WS(Z)}]$ (eq. 2.21)
- Pressione di gonfiaggio [kPa]: Valore della pressione di gonfiaggio dello pneumatico;
- Vettore velocità angolare dello spindle ${}^{W}\vec{\omega}_{WS}$ [rad/s]: vettore velocità angolare del sistema di riferimento spindle rispetto al sistema di riferimento World. Il vettore è espresso nel sistema di riferimento W;

$${}^{W}\vec{\omega}_{WS} = [{}^{W}\omega_{WS(X)} {}^{W}\omega_{WS(Y)} {}^{W}\omega_{WS(Z)}]$$
 (eq. 2.22)

Coppia ^{*R*}**T**_{*EXT* (*Y*)} **[Nm]:** coppia esterna applicata lungo l'asse y;

Uscite di CDTire ruota motrice

Sono le stesse viste per la ruota condotta, il vettore coppia ${}^{W}\vec{T}_{Tire (WC)}$ e il vettore forza ${}^{W}\vec{F}_{Tire (WC)}$ applicati al centro ruota WC, espressi nel sistema world.

Processo di calcolo per CDTire ruota motrice

La rotazione del cerchio non è nota priori, sono necessari ulteriori calcoli per poterla determinare, gli input per necessari sono:

- Angoli di orientazione Tait Bryan;
- ${}^{W}\vec{\omega}_{WS}$ vettore velocità angolare dello spindle;
- ^RT_{EXT (Y)}coppia esterna epplicata lungo l'asse y;

Gli output sono:

- ${}^{S}\omega_{SR(Y)}$ velocità angolare relativa tra il sistema rim e il sistema spindle;
- ${}^{S}\gamma_{SR(Y)}$ angolo di rotazione tra il sistema rim e il sistema spindle;

Dalla eq. 1 è nota la matrice di trasformazione ${}^{S}T_{W}$ dalla eq. 2 la matrice di trasformazione inversa ${}^{W}T_{S}$ tra i sistemi spindle e world. Dalla eq 3 è nota la matrice di trasformazione ${}^{R}T_{S}$ dalla eq. 4 la matrice di trasformazione inversa ${}^{S}T_{R}$ tra i sistemi rim e spindle.

Le matrici ${}^{R}T_{S} e {}^{S}T_{R}$ sono funzione delle angolo di rotazione ${}^{S}\gamma_{SR(Y)}$, che è uno degli output, questo viene ricavato dalla catena di calcolo che verrà mostrata piu avanti.

Di seguito vengono calcolati gli elementi che compongono la catena di calcolo:

Si calcola la matrice di trasformazione tra il sistema world e il sistema rim

$${}^{R}T_{W} = {}^{R}T_{S} \cdot {}^{S}T_{W} \quad (eq \ 2.23)$$

Con questa matrice si riporta la velocità angolare ${}^W\!\vec{\omega}_{WS}$ sul sistema rim

$$^{R}\vec{\omega}_{WS} = ^{R}T_{W} \cdot ^{W}\vec{\omega}_{WS}$$
 (eq. 2.24)

Tra il sistema rim e il sistema spindle l'unico grado di libertà è la rotazione intorno ad all'asse y, ne risulta che la velocità angolare lungo l'asse x e l'asse z è la stessa

$${}^{R}\omega_{WR(X)} = {}^{R}\omega_{WS(X)} (eq. 2.25)$$
$${}^{R}\omega_{WR(Z)} = {}^{R}\omega_{WS(Z)} (eq. 2.26)$$

Con questi elementi e riportando gli input sul sistema rim si calcola l'accelerazione angolare lungo l'asse y del sistema rim, che è uno degli elementi ricercati

$${}^{R}\dot{\omega}_{WR(Y)} = \frac{1}{{}^{R}J_{R(Y)}} \cdot \left[{}^{R}T_{EXT(Y)} + {}^{R}T_{Tire(WC)(Y)} + ({}^{R}J_{R(Z)} - {}^{R}J_{R(X)}) \cdot {}^{R}\omega_{WR(Z)} \cdot {}^{R}\omega_{WR(X)} \right] (eq. 2.27)$$

Dove:

- ${}^{R}T_{EXT (Y)}$ è la coppia esterna definita dall'utente;
- RT_{Tire (WC) (Y)} è la coppia determinata da CDTire lungo l'asse y, espressa nel sistema rim;
- $({}^{R}J_{R(Z)} {}^{R}J_{R(X)}) \cdot {}^{R}\omega_{WR(Z)} \cdot {}^{R}\omega_{WR(X)}$ la coppia giroscopica;

La coppia ${}^{R}T_{Tire (WC) (Y)}$ viene espressa da CDTire nel sistema world, attraverso la matrice ${}^{R}T_{W}$ la si riporta sul sistema rim

$${}^{R}\vec{T}_{Tire(WC)} = {}^{R}T_{W} \cdot {}^{W}\vec{T}_{Tire(WC)}$$
 (eq. 2.28)

Si integra ${}^{\rm R}\dot{\omega}_{
m WR(Y)}$ per determinare ${}^{\rm R}\omega_{
m WR(Y)}$, e si definisce il vettore

$${}^{R}\vec{\omega}_{WR} = \begin{bmatrix} {}^{R}\omega_{WR(X)} \\ {}^{R}\omega_{WR(Y)} \\ {}^{R}\omega_{WR(Z)} \end{bmatrix} = {}^{R}\vec{\omega}_{WS} + {}^{R}\vec{\omega}_{SR} \qquad (eq. 2.29)$$

In fine si calcola il vettore ${}^{R}\vec{\omega}_{SR}$ come

$${}^{R}\overrightarrow{\omega}_{SR} = {}^{R}\overrightarrow{\omega}_{WR} - {}^{R}\overrightarrow{\omega}_{WS} = \begin{bmatrix} {}^{R}\omega_{SR(X)} \\ {}^{R}\omega_{SR(Y)} \\ {}^{R}\omega_{SR(Z)} \end{bmatrix}$$
 (eq 2.30)

Il componente lungo y, ${}^{R}\omega_{SR(Y)}$ è l'output desiderato, per integrazione si determina ${}^{R}\gamma_{SR(Y)}$

Nello schema seguente viene illustrato il ciclo di calcolo, in giallo vengo evidenziati gli input definiti dall'utene, in rosso gli output e in verde l'input definito da CDTire.

Figura 23 Schema di calcolo del modello con il grado di libertà del cerchio

3. Caso di studio - analisi dello pneumatico 205/55 R 16

Per la caratterizzazione dello pneumatico messo a disposizione sono state effettuate prove di tipo:

- Statico
- Transitorio
- Dinamico

Di seguito verranno mostrate le modalità di utilizzo di CDTire, per arrivare a tali risultati

3.1. Caratteristiche dello pneumatico 205/55 R 16

Di seguito vengono riportate le caratteristiche tecniche dello penumatico utliazzato per la caratterizzazione, il Bridgestone Turanza 205/55 R 16 96V

Figura 24 - Misure pneumatico

Misure

- larghezza della sezione : 205 mm
- altezza della sezione : 113 mm
- diametro del cerchio : 16 "

Prestazioni

- velocità massima consentita con il prodotto : 240 km/h
- massimo carico sostenibile sulla gomma : 710 kg

3.2 Prova statica

Figura 25 - Ruota caricata

Nella prima prova effettuata, CDTire è stato usato per determinare la risposta dello pneumatico ad una sollecitazione di compressione, le condizioni iniziali per questa prova sono le seguenti:

$V_{Spindle} = [0 \ 0 \ 0]$	(eq 3.1)
$\omega_{Spindle} = [0 \ 0 \ 0]$	(eq 3.2)
$\omega_{Rim} = 0$	(eq 3.3)

Lo pneumatico viene fissato in modo che le coordinate x e y, rispettivamente la traslazione longitudinale e laterale, restino pari a zero per l'intera durata della prova. Mentre a variare sarà la componente verticale z del vettore posizione. Il vettore posizione del centro ruota è:

$$p_{Spindle} = [0 \ 0 \ R_{sc}] \quad (eq \ 3.4)$$

I seguenti grafici mostrano come la forza Fz cambi al variare del raggio sotto carico R_{sc}, per differenti pressioni di gonfiaggio, il raggio dello pneumatico indeformato varia con la pressione di gonfiaggio. Tali valori vengono raccolti nella tabella 1.

Figura 26- Variazione del carico Fz in funzione del raggio sotto carico Rsc per diversi valori di pressione di gonfiaggio

Pressione di gonfiaggio [kPa]	100	150	200	250	300
Raggio indeformato R ₀ [mm]	324	325	326	327	327

Tabella 1 - Valori di raggio indeformato, per la corrispodente presione

Per riportare le curve dallo stesso punto iniziale, queste vengono rappresentate considerando lo spostamento prodotto dal carico, vale a dire la deflessione δ calcolata come:

$$\delta = R_0 - R_{SC} \quad (eq \ 3.5)$$

Figura 27 - Variazione del carico Fz in funzione del raggio della deflessione δ per diverse pressioni di gonfiaggio

3.2.1 Rigidezza verticale dello pneumatico

Si può evidenziare che in un intervallo di pratico utilizzo (Fz tra 2000 e 6000 N), l'andamento della caratteristica carico – deflessione può essere approssimata con una funzione di primo grado

Figura 28 - Approssimazione con un polinomio di primo grado del digramma Fz – δ in un intervallo di pratico utilizzo

Pressione di gonfiaggio [kPa]	a ₁ [N/m]	a ₀ [N]
100	-130927	41958
150	-169601	54563
200	-207766	67014
250	-238276	77136
300	-265161	86136

Tabella 2 - Coefficienti del polinomio di approssimazione

$$F_z = a_1 R_{SC} + a_0$$
 (eq 3.6)

La prima colonna rappresenta la rigidezza verticale statica. Considerando corretta l'ipotesi del comportamento lineare nell'intervallo di pratico utilizzo secondo [5] si può assumere che la rigidezza verticale in questo intervallo sia indipendente dal carico.

Il grafico sottostante rappresenta l'andamento della rigidezza verticale in funzione della pressione di gonfiaggio dello pneumatico. Nello stesso grafico sono rappresentate le curve di interpolazione di primo, secondo e terzo grado. Per la valutazione dell'interpolazione è stata calcolata la norma dell'errore per le tre curve.

Figura 29 - Variazione della rigidezza verticale dello pneumatico al variare della pressione di gonfiaggio

Pressione di gonfiaggio [kPa]	Rigidezza [kN/m]	I grado	II grado	III grado	Errore I grado	Errore II grado	Errore III grado
100	130,93	134,92	130,46	130,77	3,05%	0,36%	0,12%
150	169,60	168,63	170,86	170,24	0,57%	0,74%	0,38%
200	207,77	202,35	206,81	206,81	2,61%	0,46%	0,46%
250	238,28	236,06	238,29	238,91	0,93%	0,01%	0,27%
300	265,16	269,77	265,31	265,00	1,74%	0,06%	0,06%
				Errore percentuale medio	1,78%	0,33%	0,26%

Tabella 3 – errore percentuale di approssimazione

Dai valori degli errori percentiali riportati in tabella, risulta che la curva di secondo grado rappresenta un buon compromesso per l'aprossimazione della curva rigidezza – pressione.

3.3. Prove stazionarie

Di seguto vengono esposti i risultati ottenuti per le prove stazionarie effettuate per testare le seguenti caratteristiche dello pneumatico:

- Resistenza a rotolamento;
- Effetto centrifugo;
- Raggio di rotolamento effettivo;
- Fx Scorrimento;
- Fy angolo di deriva;
- Momento di auto-allineamento;

Controllore di forza

Fz non fa parte degli ingressi a disposizione, diventa necessario utilizzare un controllore per garantire il mantenimento del carico che si desidera applicare.

Nelle prove statiche si usa una funzione di interpolazione ottenuta dai dati della prova statica iniziale, ad ogni valore di Fz corrisponde un valore di Rsc (coordinata z del centro ruota), come mostrato nei seguenti grafici

Figura 30 Interpolazione diagrammi di carico

I polinomi di interpolazione, sono quinto grado:

$$R_{sc}(F_z) = a_5 \cdot F_z^5 + a_4 \cdot F_z^4 + a_3 \cdot F_z^3 + a_2 \cdot F_z^2 + a_1 \cdot F_z + a_0 \quad (eq \ 3.6)$$

Per ogni pressione si ricava la corrispondente funzione di interpolazione, nella seguente tabella vengono indicati i valori dei coefficienti

p [kPa]	a5	a4	a3	a2	a1	a0
100	-9,73E-23	4,47E-18	-6,60E-14	5,94E-10	-1,01E-05	3,24E-01
150	-2,56E-22	8,92E-18	-1,15E-13	7,57E-10	-8,36E-06	3,25E-01
200	-1,83E-22	6,92E-18	-9,80E-14	6,93E-10	-7,21E-06	3,26E-01
250	-1,05E-22	4,55E-18	-7,36E-14	5,84E-10	-6,33E-06	3,26E-01
300	4,12E-23	-3,43E-19	-1,64E-14	3,07E-10	-5,34E-06	3,27E-01

Tabella 4 - Coeffcienti diagrammi di interpolazione

Nelle prove stazionarie, per raggiungere l'equilibrio, è necessario esaurire un transitorio, per farlo occorre considerare la dimanica verticale dello pneumatico, tramite la funzione di trasferimento che lega il valore F_{z0} cercato con la velocità V_z. Non viene ricavata direttamente la coordinata z, perché anche la velocità è uno degli ingressi di CDTire

$$F_{z} - F_{z0} = C\dot{z} + M\ddot{z} = \dot{z}(Ms + C) \quad (eq \ 3.7)$$
$$\dot{z} = \frac{F_{z} - F_{z0}}{Ms + C} \quad (eq \ 3.8)$$

inserendo la funzione di trasferimento \dot{z} nel ciclo iterativo mostrato in basso, è possibile raggiungere l'equilibrio di F_z ricercato

Tabella 5 - Ciclo di calcolo del carico Fz

La posizione z del centro ruota viene determinata secondo il seguente schema dove:

- F_{z0}: carico che si vuole applicare sulla ruota, che deve essere mantenuto costante, valore di set del sistema;
- F_z: carico in uscita da CDTire, è il feedback del sistema di controllo;
- p : pressione di gonfiaggio dello pneumatico;
- z(F_{z0}) : funzione di approssimazione di 5° grado della curva di deformazione statica, per una certa pressione;
- z₀: è il valore di primo tentativo per ottenere il carico richiesto sulla ruota;
- z : posizione effettiva del centro ruota per un determinato valore di pressione e velocità;

 $z \neq z_0$ per l'effetto centrifugo che tende a sollevare la ruota, tale aspetto verrà evidenziato nelle prossime prove.

3.3.1 Determinazione della resistenza al rotolamento

Il contributo alla resistenza al rotolamento è rappresentato da tre importanti fenomeni. Sono la deformazione dello pneumatico nella zona di contatto, la resistenza aerodinamica rotazionale della ruota e lo slittamento tra pneumatico e strada o cerchione.

Il coefficiente di resistenza al rotolamento (CRR) può essere definito in molti modi. È comune nell'industria automobilistica definire la resistenza al rotolamento come il rapporto tra la forza di resistenza al rotolamento e la forza normale.

$$CRR = \frac{F_x}{F_z} \qquad (eq \ 3.9)$$

Un'altra definizione si basa sull'offset "e" della normale distribuzione di pressione lungo la lunghezza del zona di contatto. Dove il coefficiente di resistenza al rotolamento è il rapporto tra la lunghezza di offset del raggio deformato del pneumatico

$$CRR = \frac{e}{R}$$
 (eq 3.10)

I principali parametri dei parametri dei pneumatici che influenzano la resistenza al rotolamento sono:

- Raggio pneumatico;
- Larghezza del pneumatico;
- Pressione di gonfiaggio;
- Carico normale;
- Velocità.

Nel secondo test sono state impostate diverse velocità di traslazione, una gamma di pressioni di gonfiaggio e carichi normali.

Pressione di gonfiaggio

La pressione di gonfiaggio influisce sulla rigidezza come visto precedentemente. Il vettore della pressiona di gonfiaggio utilizzato per questo test è:

Velocità

Il vettore di velocità traslazionale scelta ha un intervallo di valori compreso tra 10 e 300 km/h.

Carico normale Fz

In CDTire è stato aggiunto un controllore che adatta il raggio sotto carico R_{sc} per mantenere costante il carico Fz. Il vettore di carico normale è

$$F_z = [2 \ 3 \ 4 \ 5 \ 6](kN)$$
 (eq 3.12)

Per calcolare il coefficiente di resistenza al rotolamento CRR, con CDTire viene eseguito un test per trovare la forza di resistenza al rotolamento lungo la direzione x, per raggiungere questo obiettivo la ruota è stata fatta traslare ad una certa velocità, quando il transitorio è concluso, viene registrato il valore di Fx. Il modello utilizzato include il grado di libertà del cerchio. Una coppia nulla viene applicata al fuso della ruota. Questo test è stato ripetuto per diversi valori di carico e pressione.

Figura 31 - Ruota che trasla con una certa Vx trascinta da Fx sottoposta ad un certo carico Fz

3.3.1.1 Influenza della pressione di gonfiaggio

Nelle figure seguenti viene mostrata l'influenza della pressione di gonfiaggio sulla forza di resistenza al rotolamento e sul coefficiente di resistenza al rotolamento per diversi valori di pressione mantenendo costante il carico verticale Fz

L'aumento della pressione di gonfiaggio dello pneumatico aumenta la rigidezza (figura 5), quindi la deformazione radiale diminuisce. La tendenza per velocità fino a 100 km / h è lineare nel frattempo per velocità superiori a 200 km / h con un pneumatico sgonfio l'incremento di resistenza a rotolamento diventa significativo.

Figura 32 - Variazione del coefficiente di resistenza al rotolamento con la pressione (Fz = 2 kN)

Figura 33 - Variazione del coefficiente di resistenza al rotolamento con la pressione (Fz = 3 kN)

Figura 34 - Variazione del coefficiente di resistenza al rotolamento con la pressione (Fz = 4 kN)

Figura 35 - Variazione del coefficiente di resistenza al rotolamento con la pressione (Fz = 5 kN)

Figura 36 - Variazione del coefficiente di resistenza al rotolamento con la pressione (Fz = 6 kN)

Figura 37 - Variazione del coefficiente di resistenza al rotolamento con la pressione complessivo (Tutti i carichi in esame)

Dai grafici risulta evidente che il coefficiente di resistenza al rotalamento, quindi la forza Fx necessaria a far traslare a velocità costante la ruota, diminuisce all'aumentare della pressione di gonfiaggio in tutti i casi analizzati. Si può dedurre che tale forza resistente aumenti con una magggiore deformazione dello pneumatico.

3.3.1.2 Influenza del carico Fz

Nelle figure seguenti viene mostrata l'influenza del carico normale sulla forza di resistenza al rotolamento e sul coefficiente di resistenza al rotolamento, per diversi valori di pressione mantenendo costante la pressione di gonfiaggio.

Figura 38 - Variazione del coefficiente di resistenza al rotolamento al variare del carico (p = 100 kPa)

Figura 39 - Variazione del coefficiente di resistenza al rotolamento al variare del carico (p = 150 kPa)

Figura 40 - Variazione del coefficiente di resistenza al rotolamento al variare del carico (p = 200 kPa)

Figura 41 - Variazione del coefficiente di resistenza al rotolamento al variare del carico (p = 250 kPa)

Figura 42 - Variazione del coefficiente di resistenza al rotolamento al variare del carico (p = 300 kPa)

Figura 43 - Variazione del coefficiente di resistenza al rotolamento al variare del carico complessiva (Tutti le pressioni in esame)

L'andamento del coeffiente di resistenza al rotolamento in tutti i casi in analisi tende a mantenersi costante al varivare della carico Fz per velocità inferiori a 150 km/h, superato tale valore si evidenziana un andamento crescente con il carico.

3.3.1.3 Influenza della velocità

Nelle figure seguenti viene mostrata l'influenza della velocità di traslazione sulla forza di resistenza al rotolamento e sul coefficiente di resistenza al rotolamento per diversi valori di velocità, sia con pressione che carico costante.

Figura 44 - Variazione del coefficiente di resistenza al rotolamento al variare della velocità (Fz = 2 kN)

Figura 45 - Variazione del coefficiente di resistenza al rotolamento al variare della velocità (Fz = 3 kN)

Figura 46 - Variazione del coefficiente di resistenza al rotolamento al variare della velocità (Fz = 4 kN)

Figura 47 - Variazione del coefficiente di resistenza al rotolamento al variare della velocità (Fz = 5 kN)

Figura 48 - Variazione del coefficiente di resistenza al rotolamento al variare della velocità (Fz = 6 kN)

Figura 49 - Variazione del coefficiente di resistenza al rotolamento al variare del carico (p = 100 kPa)

Figura 50 - Variazione del coefficiente di resistenza al rotolamento al variare del carico (p = 150 kPa)

Figura 51 - Variazione del coefficiente di resistenza al rotolamento al variare del carico (p = 200 kPa)

Figura 52 - Variazione del coefficiente di resistenza al rotolamento al variare del carico (p = 250 kPa)

Figura 53 - - Variazione del coefficiente di resistenza al rotolamento al variare del carico (p = 300 kPa)

Figura 54 - Grafico complessivo della variazione del coefficiente di resistenza al rotolamento al variare della velocità (evidenziando la variazione di pressione di gonfiaggio)

Figura 55 - Grafico complessivo della variazione del coefficiente di resistenza al rotolamento al variare della velocità (evidenziando la variazione del carico)

L'effetto velocità è incorporato in tutti i grafici mostrati, probabilmente causa perdite di attrito che portano a valori di coefficienti di resistenza più elevati. La tendenza determinata dalla velocità può essere divisa in due parti per tutti i casi osservati. La prima parte, riferita a basse velocità, produce una relazione quasi proporzionale tra velocità e resistenza. La seconda parte può essere modellata come tendenza parabolica a parte pressioni molto basse e alta velocità in cui i risultati della simulazione risultano singolari. Dagli ultimi due grafici si può evidenziare il diverso effetto della pressione e del carico, nel caso della pressione, si ottengono grafici suddivisi per salti di pressione, si ottiene una sovrapposione maggiore solo per valori di pressione piu alti come 300 e 250 kPa. Nel caso del digramma 30 dove viene evidenziata la parità di forza si ottengono digrammi sovrapposti, questo per ribadire il maggiore effetto sulla variazione del coefficiente di resistenza al rotolamento della pressione rispetto alla variazione di carico, dove a tratti è risultata invariante.

3.3.2 Effetto centrifugo

Durante le prove sul coefficiente di resistenza al rotolamento si è notato che la ruota tende a sollevarsi se la velocità aumenta. Questo effetto è presumibilmente dovuto alle forze centrifughe che agiscono sul pneumatico, che aumentano quadraticamente con la velocità. Ciò è evidenziato dai dati raccolti e rappresentati di seguito.

Figura 56 - Variazione della posizione z del centro ruota con diversi carichi (p = 100 kPa)

Figura 57 - Variazione della posizione z del centro ruota con diversi carichi (p = 150 kPa)

Figura 58 - Variazione della posizione z del centro ruota con diversi carichi (p = 200 kPa)

Figura 59 - Variazione della posizione z del centro ruota con diversi carichi (p = 250 k)

Figura 60 - Variazione della posizione z del centro ruota con diversi carichi (p = 300 kPa)

Figura 61 - Grafico complessivo della variazione della posizione z del centro ruota al variare della velocità (evidenziando la variazione di pressione)

È stato dimostrato che la posizione verticale del centro ruota aumenta quadraticamente con la velocità per tutte le pressioni di gonfiaggio costanti considerate. La figura 36 mostra l'effetto complessivo della pressione e dei carichi, in cui le curve sono parzialmente sovrapposte. L'aumento di pressione riduce la variazione del raggio sottocarico statico per effetti centrifughi.

3.3.3 Raggio di rotolamento effettivo

Secondo [6] per uno pneumatico che ruota liberamente a velocità costante su una superficie stradale orizzontale uniforme, la forza di trazione richiesta è dovuta alla sola resistenza al rotolamento. In queste condizioni, il raggio di rotolamento effettivo è definito per correlare la velocità di rotazione Ω con la velocità di avanzamento V_x:

$$V_x = r_e \Omega$$
 (eq 3.13) $r_e = \frac{V_x}{\Omega}$ (eq 3.14)

Il centro di rotazione istantaneo del corpo ruota S si trova a una distanza inferiore all'asse di rotazione della ruota. Questo punto che può essere immaginato attaccato al cerchione.

$$r_{sl} < r_e < r_0$$

Dove:

- r_e: raggio di effettivo rotalamento
- r₀: raggio nominale dello pneumatico indeformato
- r_{sc}: raggio sotto carico
- ρ: deflessione

Figura 62 - Ruota soggetta a scorrimento longitudinale

Secondo [6], oltre alla coppia di resistenza al rotolamento, si verifica una perdita di energia extra quando si sviluppa una forza longitudinale

$$M_{y,add} = (r_e - r_{sc})F_x$$
 (eq 3.15)

La perdita di energia deriva dalla differenza tra il raggio di effettivo rotolamento e il raggio sotto carico del pneumatico che funziona come una leva per la coppia sul cerchio alla forza dello pneumatico trasmesso al suolo.

Generalmente, si presume che il raggio di rotolamento effettivo sia circa il 97% - il 98% del raggio nominale dello pneumatico. Oltre al fattore di resistenza al rotolamento anche il raggio di rotolamento effettivo è correlato alla perdita di energia, utilizzando CDTire è stato possibile indagare come variabili come pressione, velocità e carico normale possono influenzarlo. Le condizioni di prova sono le stesse viste nel capitolo 3.3.1

3.3.3.1 Influenza della pressione di gonfiaggio

Nelle figure seguenti viene mostrata l'influenza della pressione di gonfiaggio sul raggio di rotolamento effettivo per valori di pressione diversi mantenendo costante il carico verticale Fz, i casi mostrati comprendono lo stesso fenomeno per diversi valori di velocità.

Figura 63 - Variazione del raggio di rotolamento effettivo al variare della pressione (Fz = 2 kN)

Figura 64 - Variazione del raggio di rotolamento effettivo al variare della pressione (Fz = 3 kN)

Figura 65 - Variazione del raggio di rotolamento effettivo al variare della pressione (Fz = 4 kN)

Figura 66 - Variazione del raggio di rotolamento effettivo al variare della pressione (Fz = 5 kN)

Figura 67 - Variazione del raggio di rotolamento effettivo al variare della pressione (Fz = 6 kN)

Figura 68 - Variazione complessiva del raggio di rotolamento effettivo al variare della pressione

La variazione di pressione determina un aumento tendenzialemente lineare del raggio di rotalamento effettivo, questo aumento deve considerare che il raggio di iniziale R0 non è lo stesso per le diverse pressioni.

3.3.3.2 Influenza del carico

Nelle figure seguenti viene mostrata l'influenza del carico sul raggio di rotolamento effettivo per valori di carico diversi mantenendo costante la pressione di gonfiaggio p, i casi mostrati comprendono lo stesso fenomeno per diversi valori di velocità. In tutti i grafici viene mostrato il limite di pratico utilizzo del 97% e 98% di R₀, che sono numericamente diversi tra le diverse pressioni, visto che R₀ è dipendente dalla pressione.

Figura 69 - Variazione del raggio di rotolamento effettivo al variare del carico (p = 100 kPa)

Figura 70 - Variazione del raggio di rotolamento effettivo al variare del carico (p = 150 kPa)

Figura 71 - Variazione del raggio di rotolamento effettivo al variare del carico (p = 200 kPa)

Figura 72 - Variazione del raggio di rotolamento effettivo al variare del carico (p = 250 kPa)

Figura 73 - Variazione del raggio di rotolamento effettivo al variare del carico (p = 300 kPa)

Figura 74 – Variazione complessiva del raggio di rotolamento effettivo al variare del carico

L'effetto del carico è quello di diminuire il raggio di rotolamento effettivo all'aumentare del carico, quasi tutti casi. Si può affermare dai risultati ottenuti che il range del 97% - 98% di R₀ sia da considerare conservativo, visto che nella maggior parte dei casi si può osservare come il valore del raggio di rotolamento effettivo sia superiore al 98% di R₀.

3.3.3.3 Influenza della velocità

Nelle figure seguenti viene mostrata l'influenza della velocità sul raggio di rotolamento effettivo per valori di carico diversi mantenendo costante la pressione di gonfiaggio p, i casi mostrati comprendono lo stesso fenomeno per diversi valori di carico e successivamente per diversi valori di pressione. Nei grafici dove viene mantenuta costante la pressione, viene mostrato il limite di pratico utilizzo del 97% e 98% di R₀, che è è tra le diverse pressioni, visto che R₀ è dipendente dalla pressione.

Figura 75 - Variazione del raggio di rotolamento effettivo al variare della velocità per diversi valori di carico (p = 100 kPa)

Figura 76 - Variazione del raggio di rotolamento effettivo al variare della velocità per diversi valori di carico (p = 150 kPa)

Figura 77 - Variazione del raggio di rotolamento effettivo al variare della velocità per diversi valori di carico (p = 200 kPa)

Figura 78 - Variazione del raggio di rotolamento effettivo al variare della velocità per diversi valori di carico (p = 250 kPa)

Figura 79 - Variazione del raggio di rotolamento effettivo al variare della velocità per diversi valori di carico (p = 300 kPa)

Figura 80 - Variazione del raggio di rotolamento effettivo al variare della velocità per diversi valori di pressione (Fz = 2 kN)

Figura 81 - Variazione del raggio di rotolamento effettivo al variare della velocità per diversi valori di pressione (Fz = 3 kN)

Figura 82 - Variazione del raggio di rotolamento effettivo al variare della velocità per diversi valori di pressione (Fz = 4 kN)

Figura 83 - Variazione del raggio di rotolamento effettivo al variare della velocità per diversi valori di pressione (Fz = 5 kN)

Figura 84 - Variazione del raggio di rotolamento effettivo al variare della velocità per diversi valori di pressione (Fz = 6 kN)

Figura 85 - Variazione del raggio di rotolamento effettivo al variare della velocità per diversi valori di carico

Figura 86 - - Variazione del raggio di rotolamento effettivo al variare della velocità per diversi valori di pressione

Nei primi grafici a pressione constante, vengono indicati i limiti 97% - 98 % di R₀, si conferma il fatto che il raggio di effettivo rotalamento superi tali limiti in tutti casi analizzati. Negli ultimi due grafici complessivi si può notare un andamento parabolico del raggio di efffettivo rotolamento rispetto alla velocità in tutti i casi analizzatti, si ottengono andamenti anomali per le basse velocità dagli stessi grafici, si può evidenziare inoltre il diverso effetto della pressione e del carico, nel primo caso abbiamo curve meno sovrapposte, questo rimarca l'effetto del diverso valore di R₀ a pressioni diverse.

3.3.4 Fx – scorrimento

Di seguito viene descritta la prova per determinare i diagrammi $F_x - \lambda$ con CD Tire:

Viene impostato un vettore velocità di traslazione del centro ruota:

 $V_{Spindle} = [V_x V_y V_z] = [50 \ 0 \ 0] \text{ km/h}$ (eq 3.16)

La velocità di traslazione lungo l'asse x viene impostata a 50 km/h, lungo i restanti assi viene mantenuta nulla.

Il vettore vettore posizione è:

$$[x y z] = [x(t) 0 z(Fz)] m$$
 (eq 3.17)

La posizione del centro ruota lungo la direzione x è funzione del tempo secondo la relazione

$$x(t) = V_x \cdot t \qquad (eq \ 3.18)$$

- La posizione z del centro ruota viene determinata dal controllore di forza Fz
- Viene definita la velocità angolare ω_{Rim} [rad/s]
- Vettore scorrimento λ:

$$\lambda = [-1, ..., 1]$$
 (eq 3.19)

Re raggio di effettivo rotolamento è stato determinato nelle prove precedenti, con gli elementi elencati viene ricavata la velocità angolare necessaria ad avere il valore di scorriento desiderato

$$\omega = \frac{V_x(1+\lambda)}{R_e} \quad (eq \ 3.20)$$

Le prove sono state eseguite in modo da analizzare l'effetto che hanno il carico sulla ruota e la pressione.

3.3.4.1 Effetto della pressione

Di seguito vengono riportati i diagrammi che evideziano l'effetto della pressione sui diagrammi Fx - λ

Figura 87 - Fx al variare dello scorrimento (Fz = 2 kN , Vx=50 km/h)

Figura 88 - Fx al variare dello scorrimento (Fz = 3 kN, Vx=50 km/h)

Figura 89 - Fx al variare dello scorrimento (Fz = 4 kN, Vx=50 km/h)

Figura 90 - Fx al variare dello scorrimento (Fz = 5 kN, Vx= 50 km/h)

Figura 91 - Fx al variare dello scorrimento (Fz = 6 kN , Vx= 50 km/h)

L'effetto evidenziato si può analizzare nell'intorno dell'origine ma tale aspetto verrà ulteriormente analizzato con la rigidezza a scorriemento, mentre il valore di Fx a saturazione tende a raggiungere gli stessi valori, per pressioni di verse.

3.3.4.2 Effetto del carico

Figura 92 - Fx al variare dello scorrimento(p = 150 kPa , Vx= 50 km/h)

Figura 93 - Fx al variare dello scorrimento(p = 200 kPa , Vx= 50 km/h)

Figura 94- Fx al variare dello scorrimento(p = 250 kPa , Vx= 50 km/h)

Figura 95 - Fx al variare dello scorrimento(p = 300 kPa , Vx= 50 km/h)

Il carico a differenza della pressione ha una influenza molto marcata sul valore di Fx a saturazione. Il comportamento intorno all'orgine verrà analizzato nella rigidiezza a scorriemento.

3.3.4.3 Rigidezza a scorrimento

Dall'analisi dei diagrammi precendenti si può ottenere l'andamento della rigidezza a scorriemtno al variare del carico e della pressione, diagrammi seguenti mostrano l'interpolazione delle curve $F_x - \lambda$ nella zona centrale con andamento lineare.

Figura 96 - Interpolazione dei diagrammi Fx – λ a parità di carico Fz = 2 kN

Figura 97 - Interpolazione dei diagrammi Fx – λ a parità di carico Fz = 3 kN

Figura 98 - Interpolazione dei diagrammi Fx – λ a parità di carico Fz = 4 kN

Figura 99- Interpolazione dei diagrammi $Fx - \lambda$ a parità di carico Fz = 5 kN

Figura 100 - Interpolazione dei diagrammi Fx – λ a parità di carico Fz = 6 kN

Figura 101 - Variazione della rigidezza a scorrimento in funzione della pressione

Figura 102 - Variazione della rigidezza a scorrimento in funzione del carico

Dagli ultimi due diagrammi di sintesi, è possible interpretare il comportamento dello pneumatico sottoposto ad un certo livello carico e pressione. Nel caso dell'andamento in funzione della pressione l'adamento risulta non lineare decresente, comportamento intuitivamente dovuto alla minor superfice di contatto sul terreno prodotta dall'aumento della pressione, nel caso del comportamento in funzione del carico l'andamento risulta non lineare crescente, anche si può ritenere che tale comportamento sia causato dalla varizione della superficie di contatto provocata dall'aumento del carico.

3.3.5 Fy - angolo di deriva

La seguente sezione illustra il metodo utilizzato per determinare le curve che collegano l'angolo di slittamento con la forza laterale Fy.

Le condizioni iniziali per questo test sono:

- F_{z0}: il carico viene imposto determinando la posizione z del mandrino tramite il controllore di forza verticale.
- V_x: velocità di traslazione lungo x, è mantenuto costante per tutto il test
- V_y: velocità di traslazione lungo y, calcolato come

$$V_y = V_x \cdot tan\alpha$$
 (eq 3.21)

ωRIM: velocità angolare del cerchio

$$\omega_{RIM} = rac{V_x}{R_{eff}}$$
 (eq 3.22)

dove R_{EFF} è il raggio di effettivo rotolamento determinato a 3.3.3 . Questo raggio consente di ottenere una traslazione della ruota con una forza Fx prossima allo zero.

Alfa: vettore dell'angolo di slittamento, assume valori tra 0° e 35° ad intervalli di 1

$$\alpha = [0^{\circ}, \dots, 35^{\circ}]$$
 (eq 3.23)

I test sono stati effettuati per diversi valori di carico e pressione. Nei seguenti grafici sono rappresentati i risultati.

3.3.5.1 Effetto della pressione

Figura 103 - Fy al variare di α (Fz = 2 kN , Vx=50 km/h)

Figura 104 - Fy al variare di α (Fz = 3 kN , Vx=50 km/h)

Figura 105 - Fy al variare di α (Fz = 4 kN, Vx=50 km/h)

Figura 106 - Fy al variare di α (Fz = 5 kN , Vx=50 km/h)

Figura 107 - Fy al variare di α (Fz = 5 kN , Vx=50 km/h)

La variazione della pressione incide maggiormente per carichi verticali elevati. Basse pressioni e carichi elevati riducono la capacità di sviluppare forze laterali elevate, negli altri casi viene raggiunto lo stesso valore di saturazione. Il comportamento intorno all'orgine per le piccole varizoni dell'angolo di deriva verrà approfondito nell'analisi della rigidezza a deriva.

3.3.5.2 Effetto del carico

Figura 108 - Fy al variare di α (p = 100 kPa , Vx= 50 km/h)

Figura 109 - Fy al variare di α (p = 150 kPa , Vx= 50 km/h)

Figura 110 - Fy al variare di α (p = 200 kPa , Vx= 50 km/h)

Figura 111 - Fy al variare di α (p =250 kPa , Vx= 50 km/h)

Figura 112 - Fy al variare di α (p =300 kPa , Vx= 50 km/h)

Il carico determina varizioni marcate del valore di Fy a saturazione.

3.3.5.3 Rigidezza di deriva

Nei seguenti diagrammi viene mostrata l'interpolazione del tratto lineare dei diagrammi Fy – α , al variare la pressione e del carico

Figura 113 – Interpolazione dei diagrammi Fy – α a parità di carico Fz = 2 kN

Figura 114 – Interpolazione dei diagrammi Fy – α a parità di carico Fz = 3 kN

Figura 115 – Interpolazione dei diagrammi Fy – α a parità di carico Fz = 4 kN

Figura 116 – Interpolazione dei diagrammi Fy – α a parità di carico Fz = 5 kN

Figura 117 – Interpolazione dei diagrammi Fy – α a parità di carico Fz = 6 kN

Figura 118 – Variazione della rigidezza di deriva in funzione del pressione

Figura 119 – Variazione della rigidezza di deriva in funzione del carico

Sia la pressione che il carico determinano un andamento della rigidezza in deriva di tipo parabolico, in alcuni casi viene evidenziato il picco in altri, si ha solo la parte crescente della parabola. Maggiore è il valore della pressione, e maggiore è il valore del picco, si evidenzia lo stesso effetto anche per il carico.

3.3.6 Momento di auto-allineamento

Con la stessa modalità di prova per i diagrammi Fy – α , viene ricavata la coppia lungo l'asse verticale z, registrando i valori Tz in uscita da CDTire. Di seguito vengono rappresentati diagrammi al varicare del carico e della pressione.

3.3.6.1 Effetto della pressione

Nei seguenti diagrammi viene evidenziato l'effetto della pressione di gonfiaggio dello pneumatico sull'andamento del momento di autoallineamento.

Figura 120 – Mz al variare di α (Fz = 2 kN , Vx=50 km/h)

Figura 121 – Mz al variare di α (Fz = 3 kN , Vx=50 km/h)

Figura 122 – Mz al variare di α (Fz = 4 kN , Vx=50 km/h)

Figura 123 – Mz al variare di α (Fz = 5 kN , Vx=50 km/h)

Per carichi verticali minori di 3 kN la pressione non infulisce su Mz a saturazione , tale fenomeno è attribuibile all'incremento dell'orma di contatto con l'aumento del carico. Per piccole varizioni dell'angolo di deriva, Mz presenta un andamento crescente fino arrivare ad un picco, per poi decrescere fino a raggiugnere la saturazione, il valore raggiunto dal picco cresce al diminuire della pressione.

3.3.6.2 Effetto del carico

Nei seguenti diagrammi viene evidenziato l'effetto del carico applicato sullo pneumatico sull'andamento del momento di autoallineamento.

Figura 124 - Mz al variare di α (p = 100 kPa , Vx= 50 km/h)

Figura 125 - Mz al variare di α (p = 150 kPa , Vx= 50 km/h)

Figura 126 - Mz al variare di α (p = 200 kPa , Vx= 50 km/h)

Figura 127 - Mz al variare di α (p = 250 kPa , Vx= 50 km/h)

Figura 128 - Mz al variare di α (p = 300 kPa , Vx= 50 km/h)

L'andamento del momento di autoallineamento a saturazione, viene influenzato in maniera marcata dalle varizoni di carico. L'andamento per bassi valori di angolo di deriva è analogo a quello descritto precedentemente, in questo caso il valore del picco cresce all'aumentare del carico.

3.4 Prove dinamiche

Nelle seguenti prove, viene analizzato l'utilizzo di CDTire per la verifica di alcune carattertische dinamiche:

- La trasmissibilità delle vibrazioni in direzione verticale, tramite un modello a quarto di veicolo
- L'analisi della lunghezza di rilassamento;
- Analisi della risposta in frequenza di secondo ordine;

3.4.1 Trasmissibilità delle vibrazioni in direzione verticale al variare della pressione

In questa prova è stato usato CDTire per determinare il comportamento di un quarto di veicolo, dal punto di vista del confort e la tenuta di strada, per fare questo, sono stati deteminati i diagrammi di risposta in frequenza al variare della pressione per:

- Il rapporto tra l'accelerazione verticale e h (ampiezza oscillazione del profilo stradale)
- Il rapporto tra il carico verticale Fz e h

Per farlo è stato utilizzato il modello di quarto di veicolo messo a disposizone da CDTire dove è sono stati definiti:

Figura 129 Modello quarto di veicolo

- Velocità di traslazione lungo l'asse x pari a 50 km/h;
- La massa della massa sospesa ms pari a 500 kg;
- Rigidezza della sospensione k pari a 50 kN/m;
- Rigidezza dello pnuematico kp paria 250 kN/m
- Smorzamento della sospensione pari a $\frac{c_{opt}}{2}$, dove c_{opt} viene calcolato come:

$$c_{opt} = \sqrt{\frac{m_s k}{2} \cdot \frac{k_p + 2k}{k_p}} \qquad (eq \ 3.24)$$

Il segnale attribuito al profilo stradale è un segnale di tipo chirp con le seguenti caratteristiche:

- Frequenza varibile tra 0,1 e 70 Hz;
- Ampiezza di oscillazione pari a 10 mm;

Figura 130 Chirp profilo stradale

I segnali in uscita da CDTire sono:

- Le accelerazioni lungo z della massa sospesa (AccZs) e della massa non sospesa (AccZus)

Figura 131 - Accelerazione della massa sospesa

Da cui si ricavano i diagrammi di risposta in frequenza in funzione della pressione, dove si puo notare che dal punto di vista del confort, che la variazine di pressione determina una attenuazione della trasmissbilità delle vibrazioni sulla massa non sospesa, al diminuire della pressione

Figura 132 Accelerazione massa sospesa / profilo stradale

- Il secondo segnale di uscita è dato dall'andamento nel tempo del carico Fz

Da cui si ricavano i diagrammi di risposta in frequenza in funzione della pressione, dove si puo notare che una diminuizione della pressione determina una migliore tenuta di strada, dato che la forza verticale risente meno le oscillazioni indotte dal profilo stradale

Figura 134 Forza verticale / profilo stradale

3.4.2 Lunghezza di rilassamento

Il modello di pneumatico in transitorio basato sulla lunghezza di rilassamento prevede che la funzione di trasferimento tra la forza stazionaria e quella transitoria sviluppata dallo pneumatico sia una funzione del primo ordine la cui costante di tempo è inversamente proporzionale alla velocità di avanzamento della ruota. Questo comportamento dinamico è associato alla cedevolezza torsionale-radiale della carcassa dello pneumatico che deve deformarsi per poter trasmettere completamente la forza stazionaria. Nella seguente prova viene determinata la lunghezza di rilassamento dello pneumatico, e i conseguneti andamenti al variare del carico, pressione e velocità

$$L = V_x \cdot \tau_{-3dB}$$
 (eq 3.25)

Per poter calcolare tale valore, è necessario determinare la frequenza di taglio di primo ordine della pnumatico alla variazione di carico longitudinale F_x, per farlo viene determinata la risposta in frequenza dello pneumatico.

Per la determinazione della risposta in frequenza sono stati seguiti i seguenti passi:

- Viene fissato un valore di scorriento massimo prossimo all'origine, e un valore di scorrimento minimo pari a zero;

Figura 135 - Intorno di variazione dello scorrimento

 Si calcola la velocità angolare che corrisponde ai suddetti valori di scorrimento, dalle prove precendenti è noto il valore del raggio di rotalamento effettivo Rer;

$$\omega_{MAX} = \frac{V_x \cdot (1+\lambda)}{R_{re}} \text{ (eq 3.26)} \qquad \omega_{MIN} = \frac{V_x}{R_{re}} \qquad \text{(eq 3.27)}$$

- Noti i valori di valori di ω_{MAX} , ω_{MIN} e l'intervallo di frequenze in cui si in tende studiare il fenomeno, si determina un segnale chirp varibile tra 0,1 Hz e 200 Hz, che sarà uno degli ingressi di CDTire

- Su CDTire viene impostata una prova con i seguenti ingressi:
 - Pressione di gonfiaggio dello penumatico, che assumerà valori pari a 100 kPa, 200 kPa e 300 kPa;
 - Carico Fz sullo pneumatico, determinato tramite il controllore del carico verticale visto precedentemente, tale carico assume valori paria 2kN, 4kN e 6 kN;
 - Velocità di traslazione Vx lungo l'asse x, tale velocità assume valori pari a 10 km/h, 50 km/h e 100 km/h;
 - \circ Velocità angolare $\omega(t)$ variabile nel tempo, tale da dare un segnale di tipo chirp variabile tra 0,1 Hz e 200 Hz;

Figura 137 Entrate e uscite di CDTire per la prova per determianre la lunghezza di rilassamento

- Si considerano le seguenti uscite di CDTire:
 - Forza Fx scambiata sulla strada;
 - Forza Fx scambiata sul centro ruota;
 - Forza Fz registrata da CDTire;

Figura 138 - Risposte in funzione del tempo

Quelle sopra indicata è una generica risposta in funzione del tempo, le risposte Fx corrispondono ai valori privati del valore medio, per questo oscillano intorno all'origine, si può notare la differenza tra la Fx nella zona di contatto e quella sul centro ruota, tale differenza verrà approfondita successiamente.

- Con i dati ottenuti è stato possibile ricavare una stima delle risposte in frequenza

Figura 139 | Fx / wrim | (Forza sulla strada p = 100 kPa, Fz 2 kN, Vx = 50 km/h)

Figura 140 | Fx / ωrim | (Forza sulla strada p = 100 kPa, Fz 4 kN, Vx = 50 km/h)

Figura 141 | Fx / ωrim | (Forza sulla strada p = 100 kPa, Fz 6 kN, Vx = 50 km/h)

Figura 143 | Fx / ωrim | (Forza sulla strada p = 200 kPa, Fz 4 kN, Vx = 50 km/h)

Figura 144 | Fx / ωrim | (Forza sulla strada p = 200 kPa, Fz 6 kN, Vx = 50 km/h)

Figura 145 | Fx / ω rim | (Forza sulla strada p = 300 kPa, Fz 2 kN, Vx = 50 km/h)

Per le diverse condizioni operative la seguente tabella riassume le frequenze che corrispondono ad una caduta di -3dB

p [kPa]	2 kN	4 kN	6 kN
100	6,35	3,05	2,44
200	15,56	5,15	2,93
300	21,00	9,40	5,37
300	21,00	9,40	5,37

Tabella 6 Frequenza a -3dB [Hz]

Considerando che la velocità di traslazione imposta è pari a 50 km/h è stata allora ricavata la lunghezza di rilassamento dello pneumico.

p [kPa]	2 kN	4 kN	6 kN	
100	0,35	0,72	0,91	
200	0,14	0,43	0,75	
300	0,11	0,24	0,41	
Tabella 7 Junahazza di rilassamento [m]				

Tabella 7 - Lunghezza di rilassamento [m]

I seguenti grafici rappresentano l'andamento della lunghezza di rilassamento in funzione del carico applicato sullo pneumatico e della pressione di gonfiaggio.

Figura 148 - Lunghezza di rilassamento in funzione della pressione per diversi valori di carico

Figura 149 - Lunghezza di rilassamento in funzione del carico per diversi valori di pressione

Si evidenzia che la pressione di gonfiaggio dello pneumatico determina un aumento della lunghezza di rilassamento, contrario è l'effetto del carico che produce

Di seguito vengono mostrati i diagrammi al variare della velocità (10 km/h , 50 km/h e 100 km/h)

Figura 151 | Fx / ωrim | (Forza sulla strada p = 200 kPa, Fz 4 kN, Vx = 50 km/h)

Figura 152 | Fx / ωrim | (Forza sulla strada p = 200 kPa, Fz 4 kN, Vx = 100 km/h)

Per evidenziare l'effetto della velocità sulla lunghezza di rilassamento, sono state effettuate delle prove a velocità diverse, per valori di carico e pressione intermedi, prossimi a quelli nominali pari 2 bar per la pressione di gonfiaggio e di 4 kN per il carico sullo pneumatico. Seguono la tabella e il grafico che riassumono i risultati.

V [km/h]	f -3dB [Hz]	τ [s]	Lril [m]	
10	1,00	0,16	0,44	
50	5,15	0,03	0,43	
100	11,41	0,01	0,39	

Figura 153 - f-3dB, τ, Lril (Fz=4kN p=200kPa)

Figura 154 - Lunghezza di rilassamento in funzione della velocità (Fz = 4kN p = 200kPa)

L'aumento della velocità lungo l'asse x determina una riduzione della lunghezza di rilassamento.

3.4.3 Analisi della risposta in frequenza di secondo ordine

In questa sezione verranno analizzati i risultati per le risposte del secondo oridine evidenziate dai diagrammi in funzione del tempo visti precendentemente. In particolare tramite l'aprossimazione di queste funzioni, sono stati idenitificati parametri quali:

- Frequenza di picco
- Fattore di smorzamento

3.4.3.1 Risposta in frequenza di secondo ordine in funzione di pressione e carico

Figura 155 - | Fx / slip | (Forza sullo spindle) al variare della pressione (Fz = 2 kN, Vx = 50 km/h)

Figura 156 - | Fx / slip | (Forza sullo spindle) al variare della pressione (Fz = 4 kN, Vx = 50 km/h)

Figura 157 - | Fx / slip | (Forza sullo spindle) al variare della pressione (Fz = 6 kN, Vx = 50 km/h)

Seguono le risposte in frequenza a parità di pressione, al variare del carico

Figura 158 - | Fx / slip | (Forza sullo spindle) al variare della carico (p = 100 kPa, Vx = 50 km/h)

Figura 159 - | Fx / slip | (Forza sullo spindle) al variare della carico (p = 200 kPa, Vx = 50 km/h)

Figura 160 - | Fx / slip | (Forza sullo spindle) al variare della carico (p = 300 kPa, Vx = 50 km/h)

Da questi digrammi vengono ricavati i diagrammi di aprossimazione di secondo ordine e primo ordine necessari a ricavare i parametri ricercati

Vengono ricavati dalle funzioni di trasfermento precedenti:

- ω_{-3dB}: pulsazione corrispondente ad una caduta di 3dB
- ω_{picco} : pulsazione del picco di risonanza
- A: l'ampiezza del picco di risonanza

Per i piccoli spostamenti è possibile calcolare il fattore di smorzamentocome $\zeta = \frac{1}{2A}$ da cui si ricava la pulsazione naturale ω_n e la pulsazione smorzata ω_d

$$\omega_n = rac{\omega_{
m picco}}{\sqrt{1-2\zeta^2}}$$
 (eq 3.28)
 $\omega_d = \omega_n \sqrt{1-\zeta^2}$ (eq 3.29)

Noti questi valori si definiscono i poli complessi coniugati

$$p_{1} = -\zeta \cdot \omega_{n} + j\omega_{d} \quad (eq \ 3.30)$$
$$p_{2} = -\zeta \cdot \omega_{n} - j\omega_{d} \quad (eq \ 3.31)$$

La funzione di trasfermento è il prodotto della funzione del primo ordine associata alla lunghezza di rilassamento per una funzione del secondo ordine, che è la dinamica longitudinale del mozzo ruota (sistema massa-molla-smorzatore). K_s è il guadagno statico della funzione di trasferimento

$$G(s) = \frac{K_s}{\tau s + 1} \cdot \frac{1}{\left(1 - \frac{s}{p_1}\right)\left(1 - \frac{s}{p_2}\right)} = \frac{K_s}{(\tau s + 1)\left(1 - \frac{s}{p_1}\right)\left(1 - \frac{s}{p_2}\right)}$$
 (eq 3.32)

Figura 161 |Fx / slip| (Forza sullo spindle p = 100 kPa, Fz 2 kN, Vx = 50 km/h)

Figura 162 |Fx / slip| (Forza sullo spindle p = 200 kPa, Fz 2 kN, Vx = 50 km/h)

Figura 163 |Fx / slip| (Forza sullo spindle p = 300 kPa, Fz 2 kN, Vx = 50 km/h)

Figura 164 |Fx / slip| (Forza sullo spindle p = 100 kPa, Fz 4 kN, Vx = 50 km/h)

Figura 165 |Fx / slip| (Forza sullo spindle p = 200 kPa, Fz 4 kN, Vx = 50 km/h)

Figura 166 |Fx / slip| (Forza sullo spindle p = 300 kPa, Fz 4 kN, Vx = 50 km/h)

Figura 167 |Fx / slip| (Forza sullo spindle p = 100 kPa, Fz 6 kN, Vx = 50 km/h)

Figura 168 |Fx / slip| (Forza sullo spindle p = 200 kPa, Fz 6 kN, Vx = 50 km/h)

Figura 169 |Fx / slip| (Forza sullo spindle p = 300 kPa, Fz 6 kN, Vx = 50 km/h)

Per la funzione di secondo ordine, dalle FRF sono state rilavate le frequenze che corrispondono al picco di risonanza. La seguente tabella riporta i valori di tali frequenze al variare delle condizioni operative:

p [kPa]	2 kN	4 kN	6 kN
100	59,94	60,30	60,36
200	66,04	66,04	66,47
300	71,04	71,04	71,04

Tabella 8 - frequenze di picco [Hz]

I grafici che seguono rappresentano gli andamenti in funzione della pressione e del carico:

Figura 170 - Frequenza del picco di risonanza al variare della pressione

La variazione di pressione determina una variazione significativa di rigidezza radiale dello pneumatico (figura 19), tale variazione di rigidezza ha un effetto evidente sulla variazione di frequenza propria associata al picco di risonanza.

Figura 171 - Frequenza del picco di risonanza al variare del carico

La frequenza del picco di risonanza della funzione del secondo ordine assume un andamento lineare crescente, all'aumentare della pressione. Risulta invarinate con il carico verticale.

Per calcolare il fattore di smorzamento è stata determinata prima, l'ampiezza del picco di risonanza A, dalla differenza tra il guadagno di risonanza e il guadagno della funzione di primo ordine, in corrispondenza della frequenza di risonanza. La seguente tabella indica i valori del fattore di smorzamento ζ calcolati come:

Figura 172 Ampiezza del guadagno di secondo ordine

$$\zeta = \frac{1}{2A}$$

p [kPa]	2 kN	4 kN	6 kN					
100	6,63%	6,94%	6,97%					
200	6,90%	6,37%	6,34%					
300	5,37%	5,96%	5,96%					
Tabe	Tabella 9 Fattore di smorzamento ζ							

I grafici che seguono rappresentano gli andamenti in funzione della pressione e del carico:

Figura 173 - Fattore di smorzamento ζ al variare della pressione

Figura 174 - Fattore di smorzamento ζ al variare della pressione per diversi carichi

Il fattore di smorzamento di secondo ordine decresce con all'aumentare del carico Fz, mentre invece tende a restare costante al variare della pressione.

3.4.3.2 Risposta in frequenza di secondo ordine in funzione della velocità

Di seguito si riportano le riposte in frequenza per valori di pressione di gonfiaggio pari a 200 kPa e un carico Fz applicato di 4 kN, al variare della velocità

Figura 175 |Fx/ scorrimento | (Fx sullo spindle al variare della velocità Fz = 4 kN p = 200 kPa)

Questi andamenti sono stati approssimanti con delle funzioni del secondo ordine

Figura 176 |Fx / slip| (Forza sullo spindle p = 200 kPa, Fz 4 kN, Vx = 10 km/h)

Figura 177 |Fx / slip| (Forza sullo spindle p = 200 kPa, Fz 4 kN, Vx = 50 km/h)

Figura 178 |Fx / slip| (Forza sullo spindle p = 200 kPa, Fz 4 kN, Vx = 100 km/h)

Per diversi valori di velocità con una pressione paria 2 bar e un carico di 4 kN si ottengono i seguenti risultati:

V [km/h]	ζf. smorz	f [Hz]
10	6,39%	66
50	6,37%	66
100	6,85%	66,6

Tabella 10 Fattore di smorzamento ζ al variare della velocità

Tabella 11 - Fattore di smorzamento ζ al variare della velocità

Sia la frequenza di picco che il fattore di smorzamento, tendono a restare costanti per bassi valori di velocità, superata una certa soglia assumono un andamento crescente.

3.4.4 CDT/NVH sensitività alle condizioni operative

In questa prova tramite l'uso di CDTire NVH viene verificata la sensitivià dei modi verticali e torsionali

Figura 180 - Interfaccia CDTIre NVH che rappresenta il modo torsionale e verticale

Dall'interfaccia di CDTire NVH sono state ottenute:

- Frequenze proprie
- Fattori di smorzamento

al variare di :

- Pressione ;
- Carico;
- Velocità;

3.4.4.1 Modo verticale

Figura 181 - Modo verticale per una pressione di gonfiaggio di 230kPa , velocità di traslazione di 50 km/h e un carico di 4 kN

Le prove per deteminare la sensitività al modo verticale sono state effettutate liberando il grando di libertà lungo l'asse z e la rotazione Ry.

- Modes	# Modes	100	×	🖂 Rx			Draw Mode
ayını	(low mag.)		🗆 у	🗸 Ry	NR1: 17.5387 Hz, 0.48963 %	1	(
	Calculate Modes		✓ z	Rz			AVI Mode AVI GUI

Figura 182 - Gradi di libertà dello pneumatico

Variando:

- Il carico Fz = [2 3 4 5 6] kN;
- La pressione di gonfiaggio p = [50 100 230 300] kPa;
- La velocità V = [0 50 100 150 250] km/h;

 Operating Conditions 	
PreTime [s]	.2
End Time [s]	.3
Pressure (bar)	2.3
Gravity	
Preload [N]	2000
Velocity [m/s]	13.88889
Slip Angle [deg]	0
Inclination [deg]	0
Drive Torque (Nm)	0

Figura 183 - Condizioni iniziali di linearizzazione

3.4.4.1.1 Modo verticale in funzione della pressione

Nelle seguenti tabelle e grafici viene mostrato l'andamento dei valori delle frequenze e dei fattori di smorzamento del modo verticale in funzione della pressione, nei primi grafici per un certo valore di carico, nella secodonda parte a parità di velocità.

Pressione [kPa]	v = 0 km/h	v = 50 km/h	v = 100 km/h	v = 150 km/h	v = 200 km/h	v = 250 km/h
50	10,62	11,29	12,80	15,57	17,99	17,91
100	13,96	14,33	15,16	17,16	18,02	20,31
230	17,60	17,54	18,19	19,27	19,85	21,82
300	19,34	19,01	19,53	20,05	20,99	22,52
400	21,32	21,22	21,67	21,92	22,69	23,72

Tabella 12 - Frequenze naturali del modo verticale in funzione delle pressione (Fz = 2 kN)

→ v = 0 km/h → v = 50 km/h → v = 100 km/h → v = 150 km/h → v = 200 km/h → v = 250 km/h

r_{1}	Figura 184 –	Frequenze	naturali del	modo	verticale in	funzione	delle	pressione	(Fz =	= 2 kN
---------	--------------	-----------	--------------	------	--------------	----------	-------	-----------	-------	--------

Pressione [kPa]	v = 0 km/h	v = 50 km/h	v = 100 km/h	v = 150 km/h	v = 200 km/h	v = 250 km/h
50	0,93%	0,88%	0,77%	0,97%	0,97%	0,92%
100	0,75%	0,77%	0,70%	0,79%	0,74%	0,84%
230	0,52%	0,49%	0,51%	0,55%	0,52%	0,58%
300	0,48%	0,44%	0,47%	0,46%	0,50%	0,54%
400	0,43%	0,43%	0,45%	0,42%	0,45%	0,49%

Tabella 13 – Fattori di smorzamento del modo verticale in funzione delle pressione (Fz = 2 kN)

Figura 185 – Fattori di smorzamento del modo verticale in funzione delle pressione (Fz = 2 kN)

Pressione [kPa]	v = 0 km/h	v = 50 km/h	v = 100 km/h	v = 150 km/h	v = 200 km/h	v = 250 km/h
50	11,44	12,21	15,44	16,90	18,63	19,21
100	13,80	14,26	15,49	16,59	18,91	20,37
230	17,63	18,22	18,89	20,50	21,82	23,28
300	19,47	19,68	20,02	21,09	22,25	23,90
400	21,88	21,94	22,10	22,64	23,54	23,81

Tabella 14 - Frequenze naturali del modo verticale in funzione delle pressione (Fz = 3 kN)

Figura 186 - Frequenze naturali del modo verticale in funzione delle pressione (Fz = 3 kN)

Pressione [kPa]	v = 0 km/h	v = 50 km/h	v = 100 km/h	v = 150 km/h	v = 200 km/h	v = 250 km/h
50	1,11%	1,04%	1,14%	0,86%	1,00%	0,89%
100	0,79%	0,75%	0,76%	0,70%	0,84%	0,83%
230	0,52%	0,55%	0,54%	0,58%	0,67%	0,65%
300	0,48%	0,49%	0,48%	0,54%	0,57%	0,58%
400	0,45%	0,46%	0,44%	0,48%	0,50%	0,47%

Tabella 15 - Fattori di smorzamento del modo verticale in funzione delle pressione (Fz = 3 kN)

Figura 187 - Fattori di smorzamento del modo verticale in funzione delle pressione (Fz = 3 kN)

Pressione [kPa]	v = 0 km/h	v = 50 km/h	v = 100 km/h	v = 150 km/h	v = 200 km/h	v = 250 km/h
50	13,18	13,95	15,24	19,10	20,91	24,09
100	13,65	14,45	16,05	18,16	19,91	21,71
230	18,97	19,31	19,78	21,09	22,01	23,11
300	19,86	20,89	21,09	21,95	23,26	24,86
400	21,98	22,21	22,45	23,35	24,22	25,47

Tabella 16 - Frequenze naturali del modo verticale in funzione delle pressione (Fz = 4 kN)

Figura 188 - Frequenze naturali del modo verticale in funzione delle pressione (Fz = 4 kN)

Pressione [kPa]	v = 0 km/h	v = 50 km/h	v = 100 km/h	v = 150 km/h	v = 200 km/h	v = 250 km/h
50	1,44%	1,49%	1,20%	1,35%	1,36%	1,41%
100	0,79%	0,79%	0,84%	0,89%	0,88%	0,89%
230	0,61%	0,64%	0,59%	0,67%	0,62%	0,65%
300	0,50%	0,57%	0,53%	0,55%	0,59%	0,64%
400	0,45%	0,45%	0,45%	0,50%	0,48%	0,57%

Tabella 17 - Fattori di smorzamento del modo verticale in funzione delle pressione (Fz = 4 kN)

Figura 189 - Fattori di smorzamento del modo verticale in funzione delle pressione (Fz = 4 kN)

Pressione [kPa]	v = 0 km/h	v = 50 km/h	v = 100 km/h	v = 150 km/h	v = 200 km/h	v = 250 km/h
50	13,22	14,28	16,12	20,01	21,20	24,69
100	15,14	15,91	17,87	19,66	22,04	24,62
230	19,45	19,21	20,14	21,02	22,54	23,83
300	20,85	21,26	21,76	22,89	23,75	25,49
400	22,34	23,13	23,59	24,35	25,18	26,88

Tabella 18 - Frequenze naturali del modo verticale in funzione delle pressione (Fz = 5 kN)

● v = 0 km/h ● v = 50 km/h ● v = 100 km/h ● v = 150 km/h ● v = 200 km/h ● v = 250 km/h

Figura 190 - Frequenze naturali del modo verticale in funzione delle pressione (Fz = 5 kN)

Pressione [kPa]	v = 0 km/h	v = 50 km/h	v = 100 km/h	v = 150 km/h	v = 200 km/h	v = 250 km/h
50	1,71%	1,68%	1,49%	1,58%	1,41%	1,66%
100	1,02%	1,01%	1,03%	1,10%	1,07%	1,07%
230	0,65%	0,62%	0,66%	0,59%	0,66%	0,66%
300	0,56%	0,57%	0,56%	0,59%	0,60%	0,65%
400	0,47%	0,51%	0,53%	0,57%	0,54%	0,60%

Tabella 19 - Fattori di smorzamento del modo verticale in funzione delle pressione (Fz = 5 kN)

→ v = 0 km/h → v = 50 km/h → v = 100 km/h → v = 150 km/h → v = 200 km/h → v = 250 km/h

Figura 191 - Fattori di smorzamento del modo verticale in funzione delle pressione (Fz = 5 kN)

Pressione [kPa]	v = 0 km/h	v = 50 km/h	v = 100 km/h	v = 150 km/h	v = 200 km/h	v = 250 km/h
50	13,86	15,16	17,49	18,05	23,34	23,01
100	14,75	16,23	18,09	20,81	23,40	24,79
230	19,25	19,22	19,87	20,90	23,24	24,18
300	21,54	21,38	22,20	23,04	24,32	25,61
400	23,22	23,59	24,06	25,10	25,87	26,88

Tabella 20 - Frequenze naturali del modo verticale in funzione della della pressione (Fz = 6 kN)

Figura 192 - Frequenze naturali del modo verticale in funzione della della pressione (Fz = 6 kN)

Pressione [kPa]	v = 0 km/h	v = 50 km/h	v = 100 km/h	v = 150 km/h	v = 200 km/h	v = 250 km/h
50	1,70%	1,56%	1,66%	1,20%	1,54%	1,85%
100	1,10%	1,10%	1,14%	1,05%	1,24%	1,35%
230	0,64%	0,63%	0,61%	0,62%	0,73%	0,71%
300	0,60%	0,57%	0,63%	0,65%	0,66%	0,70%
400	0,51%	0,51%	0,55%	0,59%	0,56%	0,60%

Tabella 21 - Fattore di smorzamento del modo verticale in funzione della della pressione (Fz = 6 kN)

Figura 193 - Fattore di smorzamento del modo verticale in funzione della della pressione (Fz = 6 kN)

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	10,62	11,44	13,18	13,22	13,86
100	13,96	13,80	13,65	15,14	14,75
230	17,60	17,63	18,97	19,45	19,25
300	19,34	19,47	19,86	20,85	21,54
400	21,32	21,88	21,98	22,34	23,22

Tabella 22 - Frequenze naturali del modo verticale in funzione della della pressione (v = 0 km/h)

Figura 194 - Frequenze naturali del modo verticale in funzione della della pressione (v = 0 km/h)

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	0,93%	1,11%	1,44%	1,71%	1,70%
100	0,75%	0,79%	0,79%	1,02%	1,10%
230	0,52%	0,52%	0,61%	0,65%	0,64%
300	0,48%	0,48%	0,50%	0,56%	0,60%
400	0,43%	0,45%	0,45%	0,47%	0,51%

Tabella 23 - Fattore di smorzamento del modo verticale in funzione della della pressione (v = 0 km/h)

Figura 195 - Fattore di smorzamento del modo verticale in funzione della della pressione (v = 0 km/h)

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	11,29	12,21	13,95	14,28	15,16
100	14,33	14,26	14,45	15,91	16,23
230	17,54	18,22	19,31	19,21	19,22
300	19,01	19,68	20,89	21,26	21,38
400	21,22	21,94	22,21	23,13	23,59

Tabella 24 - Frequenze naturali del modo verticale in funzione della della pressione (v = 50 km/h)

Figura 196 - Frequenze naturali del modo verticale in funzione della della pressione (v = 50 km/h)

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	0,88%	1,04%	1,49%	1,68%	1,56%
100	0,77%	0,75%	0,79%	1,01%	1,10%
230	0,49%	0,55%	0,64%	0,62%	0,63%
300	0,44%	0,49%	0,57%	0,57%	0,57%
400	0,43%	0,46%	0,45%	0,51%	0,51%

Tabella 25 - Fattore di smorzamento del modo verticale in funzione della della pressione (v = 50 km/h)

Figura 197 - Fattore di smorzamento del modo verticale in funzione della della pressione (v = 50 km/h)

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	12,80	15,44	15,24	16,12	17,49
100	15,16	15,49	16,05	17,87	18,09
230	18,19	18,89	19,78	20,14	19,87
300	19,53	20,02	21,09	21,76	22,20
400	21,67	22,10	22,45	23,59	24,06

Tabella 26 - Frequenze naturali del modo verticale in funzione della della pressione (v = 100 km/h)

Figura 198 - Frequenze naturali del modo verticale in funzione della pressione (v = 100 km/h)

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	0,77%	1,14%	1,20%	1,49%	1,66%
100	0,70%	0,76%	0,84%	1,03%	1,14%
230	0,51%	0,54%	0,59%	0,66%	0,61%
300	0,47%	0,48%	0,53%	0,56%	0,63%
400	0,45%	0,44%	0,45%	0,53%	0,55%

Tabella 27 - Fattore di smorzamento del modo verticale in funzione della della pressione (v = 100 km/h)

Figura 199 - Fattore di smorzamento del modo verticale in funzione della pressione (v = 100 km/h)

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	15,57	16,90	19,10	20,01	18,05
100	17,16	16,59	18,16	19,66	20,81
230	19,27	20,50	21,09	21,02	20,90
300	20,05	21,09	21,95	22,89	23,04
400	21,92	22,64	23,35	24,35	25,10

Tabella 28 - Frequenze naturali del modo verticale in funzione della della pressione (v = 150 km/h)

Figura 200 - Frequenze naturali del modo verticale in funzione della pressione (v = 150 km/h)

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	0,97%	0,86%	1,35%	1,58%	1,20%
100	0,79%	0,70%	0,89%	1,10%	1,05%
230	0,55%	0,58%	0,67%	0,59%	0,62%
300	0,46%	0,54%	0,55%	0,59%	0,65%
400	0,42%	0,48%	0,50%	0,57%	0,59%

Tabella 29 - Fattore di smorzamento del modo verticale in funzione della della pressione (v = 150 km/h)

Figura 201 - Fattore di smorzamento del modo verticale in funzione della pressione (v = 150 km/h)

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	17,99	18,63	20,91	21,20	23,34
100	18,02	18,91	19,91	22,04	23,40
230	19,85	21,82	22,01	22,54	23,24
300	20,99	22,25	23,26	23,75	24,32
400	22,69	23,54	24,22	25,18	25,87

Tabella 30 - Frequenze naturali del modo verticale in funzione della della pressione (v = 200 km/h)

----- Fz = 2 kN ----- Fz = 3 kN ----- Fz = 4 kN ----- Fz = 5 kN ------ Fz = 6 kN

Figura 202 - Frequenze naturali del modo verticale in funzione della pressione (v = 200 km/h)

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	0,97%	1,00%	1,36%	1,41%	1,54%
100	0,74%	0,84%	0,88%	1,07%	1,24%
230	0,52%	0,67%	0,62%	0,66%	0,73%
300	0,50%	0,57%	0,59%	0,60%	0,66%
400	0,45%	0,50%	0,48%	0,54%	0,56%

Tabella 31 - Fattore di smorzamento del modo verticale in funzione della della pressione (v = 200 km/h)

Figura 203 - Fattore di smorzamento del modo verticale in funzione della pressione (v = 200 km/h)

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	17,91	19,21	24,09	24,69	23,01
100	20,31	20,37	21,71	24,62	24,79
230	21,82	23,28	23,11	23,83	24,18
300	22,52	23,90	24,86	25,49	25,61
400	23,72	23,81	25,47	26,88	26,88

Tabella 32 - Frequenze naturali del modo verticale in funzione della della pressione (v = 250 km/h)

Figura 204 - Frequenze naturali del modo verticale in funzione della pressione (v = 250 km/h)

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	0,92%	0,89%	1,41%	1,66%	1,85%
100	0,84%	0,83%	0,89%	1,07%	1,35%
230	0,58%	0,65%	0,65%	0,66%	0,71%
300	0,54%	0,58%	0,64%	0,65%	0,70%
400	0,49%	0,47%	0,57%	0,60%	0,60%

Tabella 33 - Fattore di smorzamento del modo verticale in funzione della della pressione (v = 250 km/h)

Figura 205 - Fattore di smorzamento del modo verticale in funzione della pressione (v = 250 km/h)

Il modo verticale, in tutti i casi analizzati cresce all'aumentare delle pressione, al contrario il fattore di smorzamento descresce.

3.4.4.1.2 Modo verticale in funzione in funzione della velocità

Nelle seguenti tabelle e grafici viene mostrato l'andamento dei valori delle frequenze e dei fattori di smorzamento del modo verticale in funzione della velocità, nei primi grafici a parità di pressione, nella seconda parte a parità di carico.

Velocità [km/h]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
0	10,62	11,44	13,18	13,22	13,86
50	11,29	12,21	13,95	14,28	15,16
100	12,80	15,44	15,24	16,12	17,49
150	15,57	16,90	19,10	20,01	18,05
200	17,99	18,63	20,91	21,20	23,34
250	17,91	19,21	26,01	24,69	22,90

Tabella 34 - Frequenze naturali del modo verticale al variare della della velocità (p = 50 kPa)

Figura 206 - Frequenze naturali del modo verticale in funzione della velocità (p = 50 kPa)

Velocità [km/h]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
0	0,93%	1,11%	1,44%	1,71%	1,70%
50	0,88%	1,04%	1,49%	1,68%	1,56%
100	0,77%	1,14%	1,20%	1,49%	1,66%
150	0,97%	0,86%	1,35%	1,58%	1,20%
200	0,97%	1,00%	1,36%	1,41%	1,54%
250	0,92%	0,89%	1,30%	1,66%	1,91%

Tabella 35 - Fattore di smorzamento del modo verticale al variare della della velocità (p = 50 kPa)

Figura 207 - Fattore di smorzamento del modo verticale in funzione della velocità (p = 50 kPa)

Velocità [km/h]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
0	13,96	13,80	13,65	15,14	14,75
50	14,33	14,26	14,45	15,91	16,23
100	15,16	15,49	16,05	17,87	18,09
150	17,16	16,59	18,16	19,66	20,81
200	18,02	18,91	19,91	22,04	23,40
250	20,31	20,37	21,71	24,62	24,79

Tabella 36 - Frequenze naturali del modo verticale al variare della della velocità (p = 100 kPa)

Figura 208 - Frequenze naturali del modo verticale in funzione della velocità (p = 100 kPa)

Velocità [km/h]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
0	0,75%	0,79%	0,79%	1,02%	1,10%
50	0,77%	0,75%	0,79%	1,01%	1,10%
100	0,70%	0,76%	0,84%	1,03%	1,14%
150	0,79%	0,70%	0,89%	1,10%	1,05%
200	0,74%	0,84%	0,88%	1,07%	1,24%
250	0,84%	0,83%	0,89%	1,07%	1,35%

Tabella 37 - Fattore di smorzamento del modo verticale al variare della della velocità (p = 100 kPa)

Figura 209 - Fattore di smorzamento del modo verticale in funzione della velocità (p = 100 kPa)

Velocità [km/h]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
0	17,60	17,63	18,97	19,45	19,25
50	17,54	18,22	19,31	19,21	19,22
100	18,19	18,89	19,78	20,14	19,87
150	19,27	20,50	21,09	21,02	20,90
200	19,85	21,82	22,01	22,54	23,24
250	21,82	23,28	23,11	23,83	24,18

Tabella 38 - Frequenze naturali del modo verticale al variare della della velocità (p = 230 kPa)

Figura 210 - Frequenze naturali del modo verticale in funzione della velocità (p = 230 kPa)

Velocità [km/h]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
0	0,52%	0,52%	0,61%	0,65%	0,64%
50	0,49%	0,55%	0,64%	0,62%	0,63%
100	0,51%	0,54%	0,59%	0,66%	0,61%
150	0,55%	0,58%	0,67%	0,59%	0,62%
200	0,52%	0,67%	0,62%	0,66%	0,73%
250	0,58%	0,65%	0,65%	0,66%	0,71%

Tabella 39 - Fattore di smorzamento del modo verticale al variare della della velocità (p = 230 kPa)

Figura 211 - Fattore di smorzamento del modo verticale in funzione della velocità (p = 230 kPa)

Velocità [km/h]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
0	19,34	19,47	19,86	20,85	21,54
50	19,01	19,68	20,89	21,26	21,38
100	19,53	20,02	21,09	21,76	22,20
150	20,05	21,09	21,95	22,89	23,04
200	20,99	22,25	23,26	23,75	24,32
250	22,52	23,90	24,86	25,49	25,61

Tabella 40 - Frequenze naturali del modo verticale al variare della della velocità (p = 300 kPa)

→ Fz = 2 kN → Fz = 3 kN → Fz = 4 kN → Fz = 5 kN → Fz = 6 kN

Figura 212 - Erequenze	naturali del m	nodo verticale in	funzione della	velocità (n = 300 kPa)
riguiu 212 - riequenze	nuturun der m		junzione dend	velocita (p - 500 kPa)

Velocità [km/h]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
0	0,48%	0,48%	0,50%	0,56%	0,60%
50	0,44%	0,49%	0,57%	0,57%	0,57%
100	0,47%	0,48%	0,53%	0,56%	0,63%
150	0,46%	0,54%	0,55%	0,59%	0,65%
200	0,50%	0,57%	0,59%	0,60%	0,66%
250	0,54%	0,58%	0,64%	0,65%	0,70%

Tabella 41 - Fattore di smorzamento del modo verticale al variare della della velocità (p = 300 kPa)

Figura 213 - Fattore di smorzamento del modo verticale in funzione della velocità (p = 300 kPa)

Velocità [km/h]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
0	21,32	21,88	21,98	22,34	23,22
50	21,22	21,94	22,21	23,13	23,59
100	21,67	22,10	22,45	23,59	24,06
150	21,92	22,64	23,35	24,35	25,10
200	22,69	23,54	24,22	25,18	25,87
250	23,72	23,81	25,47	26,88	26,88

Tabella 42 - Fattore di smorzamento del modo verticale al variare della della velocità (p = 400 kPa)

Figura 214 - Frequenze n	aturali del modo	o verticale in	funzione della	velocità (p =	: 400 kPa)

Velocità [km/h]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
0	0,43%	0,45%	0,45%	0,47%	0,51%
50	0,43%	0,46%	0,45%	0,51%	0,51%
100	0,45%	0,44%	0,45%	0,53%	0,55%
150	0,42%	0,48%	0,50%	0,57%	0,59%
200	0,45%	0,50%	0,48%	0,54%	0,56%
250	0,49%	0,47%	0,57%	0,60%	0,60%

Tabella 43 - Fattore di smorzamento del modo verticale al variare della della velocità (p = 400 kPa)

Figura 215 - Fattore di smorzamento del modo verticale in funzione della velocità (p = 400 kPa)

Velocità [km/h]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
0	10,62	13,96	17,60	19,34	21,32
50	11,29	14,33	17,54	19,01	21,22
100	12,80	15,16	18,19	19,53	21,67
150	15,57	17,16	19,27	20,05	21,92
200	17,99	18,02	19,85	20,99	22,69
250	17,91	20,31	21,82	22,52	23,72

Tabella 44 - Frequenze naturali del modo verticale al variare della della velocità (Fz = 2 kN)

Figura 216 - Frequenze naturali del modo verticale in funzione della velocità (Fz = 2 kN)

Velocità [km/h]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
0	0,93%	0,75%	0,61%	0,50%	0,45%
50	0,88%	0,77%	0,64%	0,57%	0,45%
100	0,77%	0,70%	0,59%	0,53%	0,45%
150	0,97%	0,79%	0,67%	0,55%	0,50%
200	0,97%	0,74%	0,62%	0,59%	0,48%
250	0,92%	0,84%	0,65%	0,64%	0,57%

Tabella 45 - Fattore di smorzamento del modo verticale al variare della della velocità (Fz = 2 kN)

Figura 217 - Fattore di smorzamento del modo verticale in funzione della velocità (Fz = 2 kN)

Velocità [km/h]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
0	11,44	13,80	17,63	19,47	21,88
50	12,21	14,26	18,22	19,68	21,94
100	15,44	15,49	18,89	20,02	22,10
150	16,90	16,59	20,50	21,09	22,64
200	18,63	18,91	21,82	22,25	23,54
250	19,21	20,37	23,28	23,90	23,81

Tabella 46 - Frequenze naturali del modo verticale al variare della della velocità (Fz = 3 kN)

Figura 218 - Frequenze naturali del modo verticale in funzione della velocità (Fz = 3 kN)

Velocità [km/h]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
0	1,11%	0,79%	0,52%	0,48%	0,45%
50	1,04%	0,75%	0,55%	0,49%	0,46%
100	1,14%	0,76%	0,54%	0,48%	0,44%
150	0,86%	0,70%	0,58%	0,54%	0,48%
200	1,00%	0,84%	0,67%	0,57%	0,50%
250	0,89%	0,83%	0,65%	0,58%	0,47%

Tabella 47 - Fattore di smorzamento del modo verticale al variare della della velocità (Fz = 3 kN)

Figura 219 - Fattore di smorzamento del modo verticale in funzione della velocità (Fz = 3 kN)

Velocità [km/h]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
0	13,18	13,65	18,97	19,86	21,98
50	13,95	14,45	19,31	20,89	22,21
100	15,24	16,05	19,78	21,09	22,45
150	19,10	18,16	21,09	21,95	23,35
200	20,91	19,91	22,01	23,26	24,22
250	24,09	21,71	23,11	24,86	25,47

Tabella 48 - Frequenze naturali del modo verticale al variare della della velocità (Fz = 4 kN)

Figura 220 - Frequenze naturali del modo verticale in funzione della velocità (Fz = 4 kN)

Velocità [km/h]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
0	1,44%	0,79%	0,61%	0,50%	0,45%
50	1,49%	0,79%	0,64%	0,57%	0,45%
100	1,20%	0,84%	0,59%	0,53%	0,45%
150	1,35%	0,89%	0,67%	0,55%	0,50%
200	1,36%	0,88%	0,62%	0,59%	0,48%
250	1,14%	0,89%	0,65%	0,64%	0,57%

Tabella 49 - Fattore di smorzamento del modo verticale al variare della della velocità (Fz = 4 kN)

Figura 221 - Fattore di smorzamento del modo verticale in funzione della velocità (Fz = 4 kN)

Velocità [km/h]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
0	13,22	15,14	19,45	20,85	22,34
50	14,28	15,91	19,21	21,26	23,13
100	16,12	17,87	20,14	21,76	23,59
150	20,01	19,66	21,02	22,89	24,35
200	21,20	22,04	22,54	23,75	25,18
250	24,69	24,62	23,83	25,49	26,88

Tabella 50 - Frequenze naturali del modo verticale al variare della della velocità (Fz = 5 kN)

[→] p = 0,5 bar → p = 1 bar → p = 2,3 bar → p = 3 bar → p = 4 bar

Figura 222 - Frequenze naturali del modo verticale in funzione della velocità (Fz = 5 kN)

Velocità [km/h]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
0	1,71%	1,02%	0,65%	0,56%	0,47%
50	1,68%	1,01%	0,62%	0,57%	0,51%
100	1,49%	1,03%	0,66%	0,56%	0,53%
150	1,58%	1,10%	0,59%	0,59%	0,57%
200	1,41%	1,07%	0,66%	0,60%	0,54%
250	1,66%	1,07%	0,66%	0,65%	0,60%

Tabella 51 - Fattore di smorzamento del modo verticale al variare della della velocità (Fz = 5 kN)

Figura 223 - Fattore di smorzamento del modo verticale in funzione della velocità (Fz = 5 kN)

Velocità [km/h]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
0	13,86	14,75	19,25	21,54	23,22
50	15,16	16,23	19,22	21,38	23,59
100	17,49	18,09	19,87	22,20	24,06
150	18,05	20,81	20,90	23,04	25,10
200	23,54	23,40	23,24	24,32	25,87
250	22,90	24,79	24,18	25,61	26,88

Tabella 52 - Frequenze naturali del modo verticale al variare della della velocità (Fz = 6 kN)

Figura 224 - Frequenze naturali del modo verticale in funzione della velocità (Fz = 6 kN)

Velocità [km/h]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
0	1,70%	1,10%	0,64%	0,60%	0,51%
50	1,56%	1,10%	0,63%	0,57%	0,51%
100	1,66%	1,14%	0,61%	0,63%	0,55%
150	1,20%	1,05%	0,62%	0,65%	0,59%
200	1,57%	1,24%	0,73%	0,66%	0,56%
250	1,91%	1,35%	0,71%	0,70%	0,60%

Tabella 53 - Fattore di smorzamento del modo verticale al variare della della velocità (Fz = 6 kN)

Figura 225 - Fattore di smorzamento del modo verticale in funzione della velocità (Fz = 6 kN)

La varizone di velocità aumenta di frequenza verticale, mettendo a parogone l'effetto visto precendentemente con la pressione, l'influenza della velocità risulta meno marcata. Il fattore di smorzamento tende a restare costante.

3.4.4.1.3 Modo verticale in funzione del carico

Nelle seguenti tabelle e grafici viene mostrato l'andamento dei valori delle frequenze e dei fattori di smorzamento del modo verticale in funzione del carico, nei primi grafici a parità di pressione, nella seconda parte a parità di velocità.

Fz [kN]	v = 0 kmh	v = 50 kmh	v = 100 kmh	v = 150 kmh	v = 200 kmh	v = 250 kmh
2	10,62	11,29	12,80	15,57	17,99	17,91
3	11,44	12,21	15,44	16,90	18,63	19,21
4	13,18	13,95	15,24	19,10	20,91	24,09
5	13,22	14,28	16,12	20,01	21,20	24,69
6	13,86	15,16	17,49	18,05	23,34	23,01

Tabella 54 - Frequenze naturali del modo verticale in funzione del carico (p = 50 kPa)

Figura 226 - Frequenze naturali del modo verticale in funzione del carico (p = 50 kPa)

Fz [kN]	v = 0 kmh	v = 50 kmh	v = 100 kmh	v = 150 kmh	v = 200 kmh	v = 250 kmh
2	0,93%	0,88%	0,77%	0,97%	0,97%	0,92%
3	1,11%	1,04%	1,14%	0,86%	1,00%	0,89%
4	1,44%	1,49%	1,20%	1,35%	1,36%	1,30%
5	1,71%	1,68%	1,49%	1,58%	1,41%	1,66%
6	1,70%	1,56%	1,66%	1,20%	1,54%	1,85%

Tabella 55 - Fattore di smorzamento del modo verticale in funzione del carico (p = 50 kPa)

Figura 227 - Fattore di smorzamento del modo verticale in funzione del carico (p = 50 kPa)

Fz [kN]	v = 0 kmh	v = 50 kmh	v = 100 kmh	v = 150 kmh	v = 200 kmh	v = 250 kmh
2	13,96	14,33	15,16	17,16	18,02	20,31
3	13,80	14,26	15,49	16,59	18,91	20,37
4	13,65	14,45	16,05	18,16	19,91	21,71
5	15,14	15,91	17,87	19,66	22,04	24,62
6	14,75	16,23	18,09	20,81	23,40	24,79

Tabella 56 - Frequenze naturali del modo verticale in funzione del carico (p = 100 kPa)

→→ v = 0 kmh →→ v = 50 kmh →→ v = 100 kmh → v = 150 kmh →→ v = 200 kmh →→ v = 250 kmh

Fz [kN]	v = 0 kmh	v = 50 kmh	v = 100 kmh	v = 150 kmh	v = 200 kmh	v = 250 kmh
2	0,75%	0,77%	0,70%	0,79%	0,74%	0,84%
3	0,79%	0,75%	0,76%	0,70%	0,84%	0,83%
4	0,79%	0,79%	0,84%	0,89%	0,88%	0,89%
5	1,02%	1,01%	1,03%	1,10%	1,07%	1,07%
6	1,10%	1,10%	1,14%	1,05%	1,24%	1,35%

Figura 228 - Frequenze naturali del modo verticale in funzione del carico (p = 100 kPa)

Tabella 57 - Fattore di smorzamento del modo verticale in funzione del carico (p = 100 kPa)

Figura 229 - Fattore di smorzamento del modo verticale in funzione del carico (p = 100 kPa)

Fz [kN]	v = 0 kmh	v = 50 kmh	v = 100 kmh	v = 150 kmh	v = 200 kmh	v = 250 kmh
2	17,60	17,54	18,19	19,27	19,85	21,82
3	17,63	18,22	18,89	20,50	21,82	23,28
4	18,97	19,31	19,78	21,09	22,01	23,11
5	19,45	19,21	20,14	21,02	22,54	23,83
6	19,25	19,22	19,87	20,90	23,24	24,18

Tabella 58 - Frequenze naturali del modo verticale in funzione del carico (p = 230 kPa)

● v = 0 kmh ● v = 50 kmh ● v = 100 kmh ● v = 150 kmh ● v = 200 kmh ● v = 250 kmh

Fz [kN]	v = 0 kmh	v = 50 kmh	v = 100 kmh	v = 150 kmh	v = 200 kmh	v = 250 kmh
2	0,52%	0,49%	0,51%	0,55%	0,52%	0,58%
3	0,52%	0,55%	0,54%	0,58%	0,67%	0,65%
4	0,61%	0,64%	0,59%	0,67%	0,62%	0,65%
5	0,65%	0,62%	0,66%	0,59%	0,66%	0,66%
6	0,64%	0,63%	0,61%	0,62%	0,73%	0,71%

Figura 230 - Frequenze naturali del modo verticale in funzione del carico (p = 230 kPa)

Tabella 59 - Fattore di smorzamento del modo verticale in funzione del carico (p = 230 kPa)

Figura 231 - Fattore di smorzamento del modo verticale in funzione del carico (p = 230 kPa)
Fz [kN]	v = 0 kmh	v = 50 kmh	v = 100 kmh	v = 150 kmh	v = 200 kmh	v = 250 kmh
2	19,34	19,01	19,53	20,05	20,99	22,52
3	19,47	19,68	20,02	21,09	22,25	23,90
4	19,86	20,89	21,09	21,95	23,26	24,86
5	20,85	21,26	21,76	22,89	23,75	25,49
6	21,54	21,38	22,20	23,04	24,32	25,61

Tabella 60 - Frequenze naturali del modo verticale in funzione del carico (p = 300 kPa)

Figura 232 - Frequenze naturali del modo verticale in funzione del carico (p = 300 kPa)

Fz [kN]	v = 0 kmh	v = 50 kmh	v = 100 kmh	v = 150 kmh	v = 200 kmh	v = 250 kmh
2	0,48%	0,44%	0,47%	0,46%	0,50%	0,54%
3	0,48%	0,49%	0,48%	0,54%	0,57%	0,58%
4	0,50%	0,57%	0,53%	0,55%	0,59%	0,64%
5	0,56%	0,57%	0,56%	0,59%	0,60%	0,65%
6	0,60%	0,57%	0,63%	0,65%	0,66%	0,70%

Tabella 61 - Fattore di smorzamento del modo verticale in funzione del carico (p = 300 kPa)

Figura 233 - Fattore di smorzamento del modo verticale in funzione del carico (p = 300 kPa)

Fz [kN]	v = 0 kmh	v = 50 kmh	v = 100 kmh	v = 150 kmh	v = 200 kmh	v = 250 kmh
2	21,32	21,22	21,67	21,92	22,69	23,72
3	21,88	21,94	22,10	22,64	23,54	23,81
4	21,98	22,21	22,45	23,35	24,22	25,47
5	22,34	23,13	23,59	24,35	25,18	26,88
6	23,22	23,59	24,06	25,10	25,87	26,88

Tabella 62 - Frequenze naturali del modo verticale in funzione del carico (p = 400 kPa)

Figura 234 - Frequenze naturali del modo verticale in funzione del carico (p = 400 kPa)

Fz [kN]	v = 0 kmh	v = 50 kmh	v = 100 kmh	v = 150 kmh	v = 200 kmh	v = 250 kmh
2	0,43%	0,43%	0,45%	0,42%	0,45%	0,49%
3	0,45%	0,46%	0,44%	0,48%	0,50%	0,47%
4	0,45%	0,45%	0,45%	0,50%	0,48%	0,57%
5	0,47%	0,51%	0,53%	0,57%	0,54%	0,60%
6	0,51%	0,51%	0,55%	0,59%	0,56%	0,60%

Tabella 63 - Fattore di smorzamento del modo verticale in funzione del carico (p = 400 kPa)

Figura 235 - Fattore di smorzamento del modo verticale in funzione del carico (p = 400 kPa)

Fz [kN]	p = 50 kPa	p = 100 kPa	p = 230 kPa	p = 300 kPa	p = 400 kPa
2	10,62	13,96	17,60	19,34	21,32
3	11,44	13,80	17,63	19,47	21,88
4	13,18	13,65	18,97	19,86	21,98
5	13,22	15,14	19,45	20,85	22,34
6	13,86	14,75	19,25	21,54	23,22

Tabella 64 - Frequenze naturali del modo verticale in funzione del carico (v = 0 km/h)

Fz [kN]	p = 50 kPa	p = 100 kPa	p = 230 kPa	p = 300 kPa	p = 400 kPa
2	0,93%	0,75%	0,52%	0,48%	0,43%
3	1,11%	0,79%	0,52%	0,48%	0,45%
4	1,44%	0,79%	0,61%	0,50%	0,45%
5	1,71%	1,02%	0,65%	0,56%	0,47%
6	1,70%	1,10%	0,64%	0,60%	0,51%

Figura 236 - Frequenze naturali del modo verticale in funzione del carico (v = 0 km/h)

Tabella 65 - Fattore di smorzamento del modo verticale in funzione del carico (v = 0 km/h)

Figura 237 - Frequenze naturali del modo verticale in funzione del carico (v = 0 km/h)

Fz [kN]	p = 50 kPa	p = 100 kPa	p = 230 kPa	p = 300 kPa	p = 400 kPa
2	11,29	14,33	17,54	19,01	21,22
3	12,21	14,26	18,22	19,68	21,94
4	13,95	14,45	19,31	20,89	22,21
5	14,28	15,91	19,21	21,26	23,13
6	15,16	16,23	19,22	21,38	23,59

Tabella 66 - Frequenze naturali del modo verticale in funzione del carico (v = 50 km/h)

Figura 238 - Frequenze naturali del modo verticale in funzione del carico (v = 50 km/h)

Fz [kN]	p = 50 kPa	p = 100 kPa	p = 230 kPa	p = 300 kPa	p = 400 kPa
2	0,88%	0,77%	0,49%	0,44%	0,43%
3	1,04%	0,75%	0,55%	0,49%	0,46%
4	1,49%	0,79%	0,64%	0,57%	0,45%
5	1,68%	1,01%	0,62%	0,57%	0,51%
6	1,56%	1,10%	0,63%	0,57%	0,51%

Tabella 67 - Fattore di smorzamento del modo verticale in funzione del carico (v = 50 km/h)

Figura 239 - Fattore di smorzamento del modo verticale in funzione del carico (v = 50 km/h)

Fz [kN]	p = 50 kPa	p = 100 kPa	p = 230 kPa	p = 300 kPa	p = 400 kPa
2	12,80	15,16	18,19	19,53	21,67
3	15,44	15,49	18,89	20,02	22,10
4	15,24	16,05	19,78	21,09	22,45
5	16,12	17,87	20,14	21,76	23,59
6	17,49	18,09	19,87	22,20	24,06

Tabella 68 - Frequenze naturali del modo verticale in funzione del carico (v = 100 km/h)

Figura 240 - Frequenze naturali del modo verticale in funzione del carico (v = 100 km/h)

Fz [kN]	p = 50 kPa	p = 100 kPa	p = 230 kPa	p = 300 kPa	p = 400 kPa
2	0,77%	0,70%	0,51%	0,47%	0,45%
3	1,14%	0,76%	0,54%	0,48%	0,44%
4	1,20%	0,84%	0,59%	0,53%	0,45%
5	1,49%	1,03%	0,66%	0,56%	0,53%
6	1,66%	1,14%	0,61%	0,63%	0,55%

Tabella 69 - Fattore di smorzamento del modo verticale in funzione del carico (v = 100 km/h)

Figura 241 - Fattore di smorzamento del modo verticale in funzione del carico (v = 100 km/h)

Fz [kN]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
2	15,57	17,16	19,27	20,05	21,92
3	16,90	16,59	20,50	21,09	22,64
4	19,10	18,16	21,09	21,95	23,35
5	20,01	19,66	21,02	22,89	24,35
6	18,05	20,81	20,90	23,04	25,10

Tabella 70 - Frequenze naturali del modo verticale in funzione del carico (v = 150 km/h)

Figura 242 - Frequenze naturali del modo verticale in funzione del carico (v = 150 km/h)

Fz [kN]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
2	0,97%	0,79%	0,55%	0,46%	0,42%
3	0,86%	0,70%	0,58%	0,54%	0,48%
4	1,35%	0,89%	0,67%	0,55%	0,50%
5	1,58%	1,10%	0,59%	0,59%	0,57%
6	1,20%	1,05%	0,62%	0,65%	0,59%

Tabella 71 - Fattore di smorzamento del modo verticale in funzione del carico (v = 150 km/h)

Figura 243 - Fattore di smorzamento del modo verticale in funzione del carico (v = 150 km/h)

Fz [kN]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
2	17,99	18,02	19,85	20,99	22,69
3	18,63	18,91	21,82	22,25	23,54
4	20,91	19,91	22,01	23,26	24,22
5	21,20	22,04	22,54	23,75	25,18
6	23,34	23,40	23,24	24,32	25,87

Tabella 72 - Frequenze naturali del modo verticale in funzione del carico (v = 200 km/h)

Fiaura	244 - Frequenze	naturali del	modo verticale	in funzion	e del carico	(v = 200 km/h)
riguru	ZTT IICYUCIIZC	nuturun utr	mouo verticuie	in junzion		(v - 200 Kinjinj

Fz [kN]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
2	2,51%	2,21%	1,58%	1,34%	1,15%
3	2,58%	2,39%	1,90%	1,66%	1,38%
4	2,66%	2,64%	2,07%	1,79%	1,55%
5	2,82%	2,57%	2,17%	1,94%	1,64%
6	3,11%	2,67%	2,32%	2,04%	1,75%

Tabella 73 - Fattore di smorzamento del modo verticale in funzione del carico (v = 200 km/h)

Figura 245 - Frequenze naturali del modo verticale in funzione del carico (v = 200 km/h)

Fz [kN]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
2	17,91	20,31	21,82	22,52	23,72
3	19,21	20,37	23,28	23,90	23,81
4	24,09	21,71	23,11	24,86	25,47
5	24,69	24,62	23,83	25,49	26,88
6	23,01	24,79	24,18	25,61	26,88

Tabella 74 - Frequenze naturali del modo verticale in funzione del carico (v = 250 km/h)

Figura 246 - Frequenze naturali del modo verticale in funzione del carico (v = 250 km/h)

Fz [kN]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
2	0,92%	0,84%	0,58%	0,54%	0,49%
3	0,89%	0,83%	0,65%	0,58%	0,47%
4	1,41%	0,89%	0,65%	0,64%	0,57%
5	1,66%	1,07%	0,66%	0,65%	0,60%
6	1,85%	1,35%	0,71%	0,70%	0,60%

Tabella 75 - Fattore di smorzamento del modo verticale in funzione del carico (v = 250 km/h)

Figura 247 - Fattore di smorzamento del modo verticale in funzione del carico (v = 250 km/h)

L'aumento del carico fa aumentare di poco i valori di frequenza del modo verticale, al contrario risulta molto più marcato l'andamento crescente del fattore di smorzamento.

3.4.4.2 Modo torsionale

Figura 248 - Modo torsionale per una pressione di gonfiaggio di 230kPa , velocità di traslazione di 50 km/h e un carico di 4 kN

Le prove per deteminare la sensitività al modo verticale sono state effettutate liberando il grando di libertà lungo l'asse z e la rotazione Ry.

I sym	# Modes	100	×	🕅 Rx		Draw Mode
	(low mag.)		🖂 у	V Ry	NR1: 17.5387 Hz, 0.48963 %	
с	alculate Modes		V z	🖂 Rz		AVI Mode AVI GUI

Figura 249 - Gradi di libertà dello pneumatico

Variando:

- Il carico Fz = [2 3 4 5 6] kN;
- La pressione di gonfiaggio p = [50 100 230 300] kPa;
- La velocità V = [0 50 100 150 250] km/h;

Operating Conditions						
PreTime [s]	.2					
End Time [s]	.3					
Pressure (bar)	2.3					
Gravity						
Preload [N]	2000					
Velocity [m/s]	13.88889					
Slip Angle [deg]	0					
Inclination [deg]	0					
Drive Torque [Nm]	0					

Figura 250 - Condizioni iniziali di linearizzazione

3.4.4.2.1 Modo torsionale in funzione della pressione

Nelle seguenti tabelle e grafici viene mostrato l'andamento dei valori delle frequenze e dei fattori di smorzamento del modo torsionale in funzione della pressione, nei primi grafici a parità di pressione, nella seconda parte a parità di velocità.

Pressione [kPa]	v = 0 km/h	v = 50 km/h	v = 100 km/h	v = 150 km/h	v = 200 km/h	v = 250 km/h
50	24,96	26,33	29,15	33,07	36,68	37,46
100	28,31	28,08	30,63	34,07	36,80	40,16
230	31,29	31,47	33,10	35,52	37,22	40,89
300	31,94	31,45	32,88	34,65	37,53	41,85
400	32,77	32,41	33,87	35,53	38,20	41,86

Tabella 76 - Frequenze naturali del modo torsionale al variare della della pressione (Fz = 2 kN)

● v = 0 km/h ● v = 50 km/h ● v = 100 km/h ● v = 150 km/h ● v = 200 km/h ● v = 250 km/h

Pressione [kPa]	v = 0 km/h	v = 50 km/h	v = 100 km/h	v = 150 km/h	v = 200 km/h	v = 250 km/h
50	3,57%	3,42%	3,06%	2,77%	2,51%	1,63%
100	2,95%	2,88%	2,64%	2,58%	2,21%	1,95%
230	2,07%	1,98%	1,93%	1,87%	1,58%	1,53%
300	1,72%	1,54%	1,50%	1,38%	1,34%	1,44%
400	1,39%	1,27%	1,25%	1,17%	1,15%	1,18%

Figura 251 - Frequenze naturali del modo torsionale al variare della della pressione (Fz = 2 kN)

Tabella 77 - Fattore di smorzamento del modo torsionale al variare della della pressione (Fz = 2 kN)

Figura 252 - Fattore di smorzamento del modo torsionale al variare della della pressione (Fz = 2 kN)

Pressione [kPa]	v = 0 km/h	v = 50 km/h	v = 100 km/h	v = 150 km/h	v = 200 km/h	v = 250 km/h
50	25,95	27,10	31,38	33,73	37,40	39,62
100	28,46	29,37	31,68	33,92	37,90	41,18
230	31,76	32,59	33,90	36,39	39,42	42,55
300	33,01	33,55	34,58	37,14	39,78	43,11
400	34,39	34,65	35,61	37,71	40,29	42,07

Tabella 78 - Frequenze naturali del modo torsionale al variare della della pressione (Fz = 3 kN)

Figura 253 - Frequenze naturali del modo torsionale al variare della della pressione (Fz = 3 kN)

Pressione [kPa]	v = 0 km/h	v = 50 km/h	v = 100 km/h	v = 150 km/h	v = 200 km/h	v = 250 km/h
50	3,81%	3,58%	3,31%	3,07%	2,58%	2,20%
100	3,25%	3,01%	2,83%	2,62%	2,39%	2,14%
230	2,19%	2,20%	2,11%	2,06%	1,90%	1,81%
300	1,92%	1,91%	1,79%	1,75%	1,66%	1,64%
400	1,62%	1,57%	1,49%	1,42%	1,38%	1,22%

Tabella 79 - Fattore di smorzamento del modo torsionale al variare della della pressione (Fz = 3 kN)

Figura 254 - Fattore di smorzamento del modo torsionale al variare della della pressione (Fz = 3 kN)

Pressione [kPa]	v = 0 km/h	v = 50 km/h	v = 100 km/h	v = 150 km/h	v = 200 km/h	v = 250 km/h
50	27,23	28,31	31,12	35,74	38,43	41,01
100	28,26	29,71	32,67	35,55	38,91	42,11
230	33,04	33,78	34,98	37,60	39,95	42,96
300	33,57	35,01	35,83	37,72	40,41	43,80
400	34,97	35,64	36,71	38,87	41,27	44,37

Tabella 80 - Frequenze naturali del modo torsionale al variare della della pressione (Fz = 4 kN)

Figura 255 - *Frequenze* naturali del modo torsionale al variare della della pressione (Fz = 4 kN)

Pressione [kPa]	v = 0 km/h	v = 50 km/h	v = 100 km/h	v = 150 km/h	v = 200 km/h	v = 250 km/h
50	4,00%	3,87%	3,34%	3,08%	2,66%	2,14%
100	3,30%	3,25%	2,98%	2,83%	2,64%	2,36%
230	2,45%	2,43%	2,32%	2,21%	2,07%	1,86%
300	2,04%	2,15%	2,01%	1,88%	1,79%	1,70%
400	1,72%	1,74%	1,66%	1,59%	1,55%	1,45%

Tabella 81 - Fattore di smorzamento del modo torsionale al variare della della pressione (Fz = 4 kN)

Figura 256 - Fattore di smorzamento del modo torsionale al variare della della pressione (Fz = 4 kN)

Pressione [kPa]	v = 0 km/h	v = 50 km/h	v = 100 km/h	v = 150 km/h	v = 200 km/h	v = 250 km/h
50	27,83	28,96	31,79	36,92	39,10	42,13
100	29,30	30,55	33,98	36,38	39,86	43,09
230	34,02	33,94	35,73	37,79	40,62	43,95
300	34,59	35,49	36,74	38,99	41,21	44,89
400	35,57	36,91	38,07	39,89	42,04	45,60

Tabella 82 - Frequenze naturali del modo torsionale al variare della della pressione (Fz = 5 kN)

Figura 257 - Frequenze naturali del modo torsionale al variare della della pressione (Fz = 5 kN)

Pressione [kPa]	v = 0 km/h	v = 50 km/h	v = 100 km/h	v = 150 km/h	v = 200 km/h	v = 250 km/h
50	4,22%	4,04%	3,53%	3,15%	2,82%	2,38%
100	3,51%	3,44%	3,17%	2,79%	2,57%	2,35%
230	2,61%	2,49%	2,41%	2,34%	2,17%	2,07%
300	2,22%	2,26%	2,18%	2,10%	1,94%	1,89%
400	1,82%	1,92%	1,83%	1,73%	1,64%	1,66%

Tabella 83 - Fattore di smorzamento del modo torsionale al variare della della pressione (Fz = 5 kN)

Figura 258 - Fattore di smorzamento del modo torsionale al variare della della pressione (Fz = 5 kN)

Pressione [kPa]	v = 0 km/h	v = 50 km/h	v = 100 km/h	v = 150 km/h	v = 200 km/h	v = 250 km/h
50	27,50	28,97	32,90	36,01	40,18	42,35
100	29,00	30,74	34,10	37,28	40,91	43,86
230	34,12	34,27	35,70	37,96	41,58	44,26
300	35,72	35,80	37,47	39,43	41,99	45,28
400	36,52	37,27	38,48	40,91	42,85	45,75

Tabella 84 - Frequenze naturali del modo torsionale al variare della della pressione (Fz = 6 kN)

Figura 259 - Frequenze naturali del modo torsionale al variare della della pressione (Fz = 6 kN)

Pressione [kPa]	v = 0 km/h	v = 50 km/h	v = 100 km/h	v = 150 km/h	v = 200 km/h	v = 250 km/h
50	4,30%	4,03%	3,70%	3,27%	3,11%	2,44%
100	3,58%	3,52%	3,13%	3,18%	2,67%	2,43%
230	2,64%	2,54%	2,44%	2,32%	2,32%	2,09%
300	2,40%	2,33%	2,24%	2,10%	2,04%	1,87%
400	1,98%	2,00%	1,91%	1,89%	1,75%	1,66%

Tabella 85 - Fattore di smorzamento del modo torsionale al variare della della pressione (Fz = 6 kN)

Figura 260 - Fattore di smorzamento del modo torsionale al variare della della pressione (Fz = 6 kN)

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	24,96	25,95	27,23	27,83	27,50
100	28,31	28,46	28,26	29,30	29,00
230	31,29	31,76	33,04	34,02	34,12
300	31,94	33,01	33,57	34,59	35,72
400	32,77	34,39	34,97	35,57	36,52

Tabella 86 - Frequenze naturali del modo torsionale in funzione della pressione (v = 0 km/h)

Figura 261 - Frequenze naturali del modo torsionale in f	funzione della pressione (v = 0 km/h)
--	----------------------------	-------------

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	3,57%	3,81%	4,00%	4,22%	4,30%
100	2,95%	3,25%	3,30%	3,51%	3,58%
230	2,07%	2,19%	2,45%	2,61%	2,64%
300	1,72%	1,92%	2,04%	2,22%	2,40%
400	1,39%	1,62%	1,72%	1,82%	1,98%

Tabella 87 - Fattore di smorzamento del modo torsionale in funzione della pressione (v = 0 km/h)

Figura 262 - Fattore di smorzamento del modo torsionale in funzione della pressione (v = 0 km/h)

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	26,33	27,10	28,31	28,96	28,97
100	28,08	29,37	29,71	30,55	30,74
230	31,47	32,59	33,78	33,94	34,27
300	31,45	33,55	35,01	35,49	35,80
400	32,41	34,65	35,64	36,91	37,27

Tabella 88 - Frequenze naturali del modo torsionale in funzione della pressione (v = 50 km/h)

Figura 263 - Frequenze natur	ali del modo torsionale in f	funzione della pressione ('v = 50 km/h)
------------------------------	------------------------------	----------------------------	---------------

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	3,42%	3,58%	3,87%	4,04%	4,03%
100	2,88%	3,01%	3,25%	3,44%	3,52%
230	1,98%	2,20%	2,43%	2,49%	2,54%
300	1,54%	1,91%	2,15%	2,26%	2,33%
400	1,27%	1,57%	1,74%	1,92%	2,00%

Tabella 89 - Fattore di smorzamento del modo torsionale in funzione della pressione (v = 50 km/h)

Figura 264 - Fattore di smorzamento del modo torsionale in funzione della pressione (v = 50 km/h)

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	29,15	31,38	31,12	31,79	32,90
100	30,63	31,68	32,67	33,98	34,10
230	33,10	33,90	34,98	35,73	35,70
300	32,88	34,58	35,83	36,74	37,47
400	33,87	35,61	36,71	38,07	38,48

Tabella 90 - Frequenze naturali del modo torsionale in funzione della pressione (v = 100 km/h)

Figura 265 - Frequenze naturali del modo torsionale in funzione della pressione (v = 100 km/h)

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	3,06%	3,31%	3,34%	3,53%	3,70%
100	2,64%	2,83%	2,98%	3,17%	3,13%
230	1,93%	2,11%	2,32%	2,41%	2,44%
300	1,50%	1,79%	2,01%	2,18%	2,24%
400	1,25%	1,49%	1,66%	1,83%	1,91%

Tabella 91 - Fattore di smorzamento del modo torsionale in funzione della pressione (v = 100 km/h)

Figura 266 - Fattore di smorzamento del modo torsionale in funzione della pressione (v = 100 km/h)

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	33,07	33,73	35,74	36,92	36,01
100	34,07	33,92	35,55	36,38	37,28
230	35,52	36,39	37,60	37,79	37,96
300	34,65	37,14	37,72	38,99	39,43
400	35,53	37,71	38,87	39,89	40,91

Tabella 92 - Frequenze naturali del modo torsionale in funzione della pressione (v = 150 km/h)

Fiaura 267 -	Frequenze	naturali del	modo	torsionale	in	funzione	della	pressione	(v =	- 150	km/h)
						,	0.00	p. 000.00	1.			/

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	2,77%	3,07%	3,08%	3,15%	3,27%
100	2,58%	2,62%	2,83%	2,79%	3,18%
230	1,87%	2,06%	2,21%	2,34%	2,32%
300	1,38%	1,75%	1,88%	2,10%	2,10%
400	1,17%	1,42%	1,59%	1,73%	1,89%

Tabella 93 - Fattore di smorzamento del modo torsionale in funzione della pressione (v = 150 km/h)

Figura 268 - Fattore di smorzamento del modo torsionale in funzione della pressione (v = 150 km/h)

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	36,68	37,40	38,43	39,10	40,18
100	36,80	37,90	38,91	39,86	40,91
230	37,22	39,42	39,95	40,62	41,58
300	37,53	39,78	40,41	41,21	41,99
400	38,20	40,29	41,27	42,04	42,85

Tabella 94 - Frequenze naturali del modo torsionale in funzione della pressione (v = 200 km/h)

Figura 269 - Frequenze naturali del modo torsionale in funzione della pressione (v = 200 km/h)

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	2,51%	2,58%	2,66%	2,82%	3,11%
100	2,21%	2,39%	2,64%	2,57%	2,67%
230	1,58%	1,90%	2,07%	2,17%	2,32%
300	1,34%	1,66%	1,79%	1,94%	2,04%
400	1,15%	1,38%	1,55%	1,64%	1,75%

Tabella 95 - Fattore di smorzamento del modo torsionale in funzione della pressione (v = 200 km/h)

Figura 270 - Fattore di smorzamento del modo torsionale in funzione della pressione (v = 200 km/h)

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	37,46	39,62	41,01	42,13	42,35
100	40,16	41,18	42,11	43,09	43,86
230	40,89	42,55	42,96	43,95	44,26
300	41,85	43,11	43,80	44,89	45,28
400	41,86	42,07	44,37	45,60	45,75

Tabella 96 - Frequenze naturali del modo torsionale in funzione della pressione (v = 250 km/h)

← Fz = 2 kN ← Fz = 3 kN ← Fz = 4 kN ← Fz = 5 kN ← Fz = 6 kN

Figura 271 - Frequenze	naturali del modo	torsionale in funzi	ione della pressione (v = 250 km/ł	'n,
------------------------	-------------------	---------------------	------------------------	--------------	-----

Pressione [kPa]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
50	1,63%	2,20%	2,14%	2,38%	2,44%
100	1,95%	2,14%	2,36%	2,35%	2,43%
230	1,53%	1,81%	1,86%	2,07%	2,09%
300	1,44%	1,64%	1,70%	1,89%	1,87%
400	1,18%	1,22%	1,45%	1,66%	1,66%

Tabella 97 - Fattore di smorzamento del modo torsionale in funzione della pressione (v = 250 km/h)

Figura 272 - Fattore di smorzamento del modo torsionale in funzione della pressione (v = 250 km/h)

La frequenza del modo torsionale, tendono ad assumere un andamento costante al variare della pressione. Il fattore di morzamento tende a decrescere.

3.4.4.2.1 Modo torsionale in funzione della velocità

Nelle seguenti tabelle e grafici viene mostrato l'andamento dei valori delle frequenze e dei fattori di smorzamento del modo torsionale in funzione della velocità, nei primi grafici a parità di pressione, nella seconda parte a parità di carico.

Velocità [km/h]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
0	24,96	25,95	27,23	27,83	27,50
50	26,33	27,10	28,31	28,96	28,97
100	29,15	31,38	31,12	31,79	32,90
150	33,07	33,73	35,74	36,92	36,01
200	36,68	37,40	38,43	39,10	40,18
250	37,46	39,62	41,35	42,13	42,35

Tabella 98 - Frequenze naturali del modo torsionale in funzione della velocità (p = 50 kPa)

Figura 273 - Frequenze naturali del modo torsionale in funzione della velocità (p = 50 kPa)

Velocità [km/h]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
0	3,57%	3,81%	4,00%	4,22%	4,30%
50	3,42%	3,58%	3,87%	4,04%	4,03%
100	3,06%	3,31%	3,34%	3,53%	3,70%
150	2,77%	3,07%	3,08%	3,15%	3,27%
200	2,51%	2,58%	2,66%	2,82%	3,11%
250	1,63%	2,20%	2,18%	2,38%	2,44%

Tabella 99 - Fattore di smorzamento del modo torsionale in funzione della velocità (p = 50 kPa)

Figura 274 - Fattore di smorzamento del modo torsionale in funzione della velocità (p = 50 kPa)

Velocità [km/h]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
0	28,31	28,46	28,26	29,30	29,00
50	28,08	29,37	29,71	30,55	30,74
100	30,63	31,68	32,67	33,98	34,10
150	34,07	33,92	35,55	36,38	37,28
200	36,80	37,90	38,91	39,86	40,91
250	40,16	41,18	42,11	43,09	43,86

Tabella 100 - Frequenze naturali del modo torsionale in funzione della velocità (p = 100 kPa)

Figura 275 - Frequenze naturali del modo torsionale in funzione della velocità (p = 100 kPa)

Velocità [km/h]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
0	2,95%	3,25%	3,30%	3,51%	3,58%
50	2,88%	3,01%	3,25%	3,44%	3,52%
100	2,64%	2,83%	2,98%	3,17%	3,13%
150	2,58%	2,62%	2,83%	2,79%	3,18%
200	2,21%	2,39%	2,64%	2,57%	2,67%
250	1,95%	2,14%	2,36%	2,35%	2,43%

Tabella 101 - Fattore di smorzamento del modo torsionale in funzione della velocità (p = 100 kPa)

Figura 276 - Fattore di smorzamento del modo torsionale in funzione della velocità (p = 100 kPa)

Velocità [km/h]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
0	31,29	31,76	33,04	34,02	34,12
50	31,47	32,59	33,78	33,94	34,27
100	33,10	33,90	34,98	35,73	35,70
150	35,52	36,39	37,60	37,79	37,96
200	37,22	39,42	39,95	40,62	41,58
250	40,89	42,55	42,96	43,95	44,26

Tabella 102 - Frequenze naturali del modo torsionale in funzione della velocità (p = 230 kPa)

Figura 277 - Frequenze naturali del modo torsionale in funzione della velocità (p = 230 kPa)

Velocità [km/h]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
0	2,07%	2,19%	2,45%	2,61%	2,64%
50	1,98%	2,20%	2,43%	2,49%	2,54%
100	1,93%	2,11%	2,32%	2,41%	2,44%
150	1,87%	2,06%	2,21%	2,34%	2,32%
200	1,58%	1,90%	2,07%	2,17%	2,32%
250	1,53%	1,81%	1,86%	2,07%	2,09%

Tabella 103 - Fattore di smorzamento del modo torsionale in funzione della velocità (p = 230 kPa)

Figura 278 - Fattore di smorzamento del modo torsionale in funzione della velocità (p = 230 kPa)

Velocità [km/h]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
0	31,94	33,01	33,57	34,59	35,72
50	31,45	33,55	35,01	35,49	35,80
100	32,88	34,58	35,83	36,74	37,47
150	34,65	37,14	37,72	38,99	39,43
200	37,53	39,78	40,41	41,21	41,99
250	41,85	43,11	43,80	44,89	45,28

Tabella 104 - Frequenze naturali del modo torsionale in funzione della velocità (p = 300 kPa)

Figura 279 - Frequenze naturali del modo torsionale in funzione della velocità (p = 300 kPa)

Velocità [km/h]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
0	1,72%	1,92%	2,04%	2,22%	2,40%
50	1,54%	1,91%	2,15%	2,26%	2,33%
100	1,50%	1,79%	2,01%	2,18%	2,24%
150	1,38%	1,75%	1,88%	2,10%	2,10%
200	1,34%	1,66%	1,79%	1,94%	2,04%
250	1,44%	1,64%	1,70%	1,89%	1,87%

Tabella 105 - Fattore di smorzamento del modo torsionale in funzione della velocità (p = 300 kPa)

Figura 280 - Fattore di smorzamento del modo torsionale in funzione della velocità (p = 300 kPa)

Velocità [km/h]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
0	32,77	34,39	34,97	35,57	36,52
50	32,41	34,65	35,64	36,91	37,27
100	33,87	35,61	36,71	38,07	38,48
150	35,53	37,71	38,87	39,89	40,91
200	38,20	40,29	41,27	42,04	42,85
250	41,86	42,07	44,37	45,60	45,75

Tabella 106 - Frequenze naturali del modo torsionale in funzione della velocità (p = 400 kPa)

Figura 281 - Frequenze naturali del modo torsionale in funzione della velocità (p = 400 kPa)

Velocità [km/h]	Fz = 2 kN	Fz = 3 kN	Fz = 4 kN	Fz = 5 kN	Fz = 6 kN
0	1,39%	1,62%	1,72%	1,82%	1,98%
50	1,27%	1,57%	1,74%	1,92%	2,00%
100	1,25%	1,49%	1,66%	1,83%	1,91%
150	1,17%	1,42%	1,59%	1,73%	1,89%
200	1,15%	1,38%	1,55%	1,64%	1,75%
250	1,18%	1,22%	1,45%	1,66%	1,66%

Tabella 107 - Fattore di smorzamento del modo torsionale in funzione della velocità (p = 400 kPa)

Figura 282 - Fattore di smorzamento del modo torsionale in funzione della velocità (p = 400 kPa)

Velocità [km/h]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
0	24,96	28,31	31,29	31,94	32,77
50	26,33	28,08	31,47	31,45	32,41
100	29,15	30,63	33,10	32,88	33,87
150	33,07	34,07	35,52	34,65	35,53
200	36,68	36,80	37,22	37,53	38,20
250	37,46	40,16	40,89	41,85	41,86

Tabella 108 - Frequenze naturali del modo torsionale in funzione della velocità (Fz = 2 kN)

Figura 283 - Frequenze naturali del modo torsionale in funzione della velocità (Fz = 2 kN)

Velocità [km/h]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
0	3,57%	2,95%	2,07%	1,72%	1,39%
50	3,42%	2,88%	1,98%	1,54%	1,27%
100	3,06%	2,64%	1,93%	1,50%	1,25%
150	2,77%	2,58%	1,87%	1,38%	1,17%
200	2,51%	2,21%	1,58%	1,34%	1,15%
250	1,63%	1,95%	1,53%	1,44%	1,18%

Tabella 109 - Fattore di smorzamento del modo torsionale in funzione della velocità (Fz = 2 kN)

Figura 284 - Fattore di smorzamento del modo torsionale in funzione della velocità (Fz = 2 kN)

Velocità [km/h]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
0	25,95	28,46	31,76	33,01	34,39
50	27,10	29,37	32,59	33 <i>,</i> 55	34,65
100	31,38	31,68	33,90	34,58	35,61
150	33,73	33,92	36,39	37,14	37,71
200	37,40	37,90	39,42	39,78	40,29
250	39,62	41,18	42,55	43,11	42,07

Tabella 110 - Frequenze naturali del modo torsionale in funzione della velocità (Fz = 3 kN)

Figura 285 - Frequenze naturali del modo torsionale in funzione della velocità (Fz = 3 kN)

Velocità [km/h]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
0	3,81%	3,25%	2,19%	1,92%	1,62%
50	3,58%	3,01%	2,20%	1,91%	1,57%
100	3,31%	2,83%	2,11%	1,79%	1,49%
150	3,07%	2,62%	2,06%	1,75%	1,42%
200	2,58%	2,39%	1,90%	1,66%	1,38%
250	2,20%	2,14%	1,81%	1,64%	1,22%

Tabella 111 - Fattore di smorzamento del modo torsionale in funzione della velocità (Fz = 3 kN)

Figura 286 - Fattore di smorzamento del modo torsionale in funzione della velocità (Fz = 3 kN)

Velocità [km/h]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
0	27,23	28,26	33,04	33,57	34,97
50	28,31	29,71	33,78	35,01	35,64
100	31,12	32,67	34,98	35,83	36,71
150	35,74	35,55	37,60	37,72	38,87
200	38,43	38,91	39,95	40,41	41,27
250	41,00	42,11	42,96	43,80	44,37

Tabella 112 - Frequenze naturali del modo torsionale in funzione della velocità (Fz = 4 kN)

Figura 287 - Frequenze naturali del modo torsionale in funzione della velocità (Fz = 4 kN)

Velocità [km/h]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
0	4,00%	3,30%	2,45%	2,04%	1,72%
50	3,87%	3,25%	2,43%	2,15%	1,74%
100	3,34%	2,98%	2,32%	2,01%	1,66%
150	3,08%	2,83%	2,21%	1,88%	1,59%
200	2,66%	2,64%	2,07%	1,79%	1,55%
250	2,14%	2,36%	1,86%	1,70%	1,45%

Tabella 113 - Fattore di smorzamento del modo torsionale in funzione della velocità (Fz = 4 kN)

Figura 288 - Fattore di smorzamento del modo torsionale in funzione della velocità (Fz = 4 kN)

Velocità [km/h]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
0	27,83	29,30	34,02	34,59	35,57
50	28,96	30,55	33,94	35,49	36,91
100	31,79	33,98	35,73	36,74	38,07
150	36,92	36,38	37,79	38,99	39,89
200	39,10	39 <i>,</i> 86	40,62	41,21	42,04
250	42,13	43,09	43,95	44,89	45,60

Tabella 114 - Frequenze naturali del modo torsionale in funzione della velocità (Fz = 5 kN)

Figura 289 - Frequenze naturali del modo torsionale in funzione della velocità (Fz = 5 kN)

Velocità [km/h]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
0	4,22%	3,51%	2,61%	2,22%	1,82%
50	50 4,04%		2,49%	2,26%	1,92%
100	3,53%	3,17%	2,41%	2,18%	1,83%
150	3,15%	2,79%	2,34%	2,10%	1,73%
200	2,82%	2,57%	2,17%	1,94%	1,64%
250	2,38%	2,35%	2,07%	1,89%	1,66%

Tabella 115 - Fattore di smorzamento del modo torsionale in funzione della velocità (Fz = 5 kN)

Figura 290 - Fattore di smorzamento del modo torsionale in funzione della velocità (Fz = 5 kN)

Velocità [km/h]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
0	27,50	29,00	34,12	35,72	36,52
50	28,97	30,74	34,27	35,80	37,27
100	32,90	34,10	35,70	37,47	38,48
150	36,01	37,28	37,96	39,43	40,91
200	40,18	40,91	41,58	41,99	42,85
250	42,44	43,86	44,26	45,28	45,75

Tabella 116 - Frequenze naturali del modo torsionale in funzione della velocità (Fz = 6 kN)

● p = 0,5 bar ● p = 1 bar ● p = 2,3 bar ● p = 3 bar ● p = 4 bar

Figura 291 - Frequenze naturali del modo torsionale in funzione della velocità (Fz = 6 kN)

Velocità [km/h]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
0	4,30%	3,58%	2,64%	2,40%	1,98%
50	4,03%	3,52%	2,54%	2,33%	2,00%
100	3,70%	3,13%	2,44%	2,24%	1,91%
150	3,27%	3,18%	2,32%	2,10%	1,89%
200	3,11%	2,67%	2,32%	2,04%	1,75%
250	2,39%	2,43%	2,09%	1,87%	1,66%

Tabella 117 - Fattore di smorzamento del modo torsionale in funzione della velocità (Fz = 6 kN)

Figura 292 - Fattore di smorzamento del modo torsionale in funzione della velocità (Fz = 6 kN)

La velocità dermina un andamento crescente con l'aumentare della velocità, il fattore di smorzamento assume una lieve decrescita.

3.4.4.2.3 Modo torsionale in funzione del carico

Nelle seguenti tabelle e grafici viene mostrato l'andamento dei valori delle frequenze e dei fattori di smorzamento del modo torsionale in funzione del carico, nei primi grafici a parità di pressione, nella seconda parte a parità di velocità.

Fz [kN]	v = 0 kmh	v = 50 kmh	v = 100 kmh	v = 150 kmh	v = 200 kmh	v = 250 kmh
2	24,96	26,33	29,15	33,07	36,68	37,46
3	25,95	27,10	31,38	33,73	37,40	39,62
4	27,23	28,31	31,12	35,74	38,43	41,35
5	27,83	28,96	31,79	36,92	39,10	42,13
6	27,50	28,97	32,90	36,01	40,18	42,35

Tabella 118 - Frequenze naturali del modo torsionale in funzione del carico (p = 50 kPa)

● v = 0 kmh ● v = 50 kmh ● v = 100 kmh ● v = 150 kmh ● v = 200 kmh ● v = 250 kmh

Fiaura	293 -	Frequenze	naturali del	modo	torsionale i	n fi	unzione	del	carico	(n =	: 50	kPa
iguiu	255	ricquenze	natur an acr	mouo	torsionale i	יניי	unzione	ucr	curreo	IP -	50	NI UJ

Fz [kN]	v = 0 kmh	v = 50 kmh	v = 100 kmh	v = 150 kmh	v = 200 kmh	v = 250 kmh
2	3,57%	3,42%	3,06%	2,77%	2,51%	1,63%
3	3,81%	3,58%	3,31%	3,07%	2,58%	2,20%
4	4,00%	3,87%	3,34%	3,08%	2,66%	2,18%
5	4,22%	4,04%	3,53%	3,15%	2,82%	2,38%
6	4,30%	4,03%	3,70%	3,27%	3,11%	2,44%

Tabella 119 - Fattore di smorzamento del modo torsionale in funzione del carico (p = 50 kPa)

Figura 294 - Fattore di smorzamento del modo torsionale in funzione del carico (p = 50 kPa)

Fz [kN]	v = 0 kmh	v = 50 kmh	v = 100 kmh	v = 150 kmh	v = 200 kmh	v = 250 kmh
2	28,31	28,08	30,63	34,07	36,80	40,16
3	28,46	29,37	31,68	33,92	37,90	41,18
4	28,26	29,71	32,67	35,55	38,91	42,11
5	29,30	30,55	33,98	36,38	39,86	43,09
6	29,00	30,74	34,10	37,28	40,91	43,86

Tabella 120 - Frequenze naturali del modo torsionale in funzione del carico (p = 100 kPa)

← v = 0 kmh ← v = 50 kmh ← v = 100 kmh ← v = 150 kmh ← v = 200 kmh ← v = 250 kmh

Figura 295 - Frequenze naturali del modo torsionale in funzione del carico (p = 100 kPa)

Fz [kN]	v = 0 kmh	v = 50 kmh	v = 100 kmh	v = 150 kmh	v = 200 kmh	v = 250 kmh
2	2,95%	2,88%	2,64%	2,58%	2,21%	1,95%
3	3,25%	3,01%	2,83%	2,62%	2,39%	2,14%
4	3,30%	3,25%	2,98%	2,83%	2,64%	2,36%
5	3,51%	3,44%	3,17%	2,79%	2,57%	2,35%
6	3,58%	3,52%	3,13%	3,18%	2,67%	2,43%

Tabella 121 - Fattore di smorzamento del modo torsionale in funzione del carico (p = 100 kPa)

Figura 296 - Fattore di smorzamento del modo torsionale in funzione del carico (p = 100 kPa)

Fz [kN]	v = 0 kmh	v = 50 kmh	v = 100 kmh	v = 150 kmh	v = 200 kmh	v = 250 kmh
2	31,29	31,47	33,10	35,52	37,22	40,89
3	31,76	32,59	33,90	36,39	39,42	42,55
4	33,04	33,78	34,98	37,60	39,95	42,96
5	34,02	33,94	35,73	37,79	40,62	43,95
6	34,12	34,27	35,70	37,96	41,58	44,26

Tabella 122 - Frequenze naturali del modo torsionale in funzione del carico (p = 230 kPa)

▶ v = 0 kmh → v = 50 kmh → v = 100 kmh → v = 150 kmh → v = 200 kmh → v = 250 kmh

Figura 207 - Frequenze	naturali del modo	torsionale in	funzione del	carico (n - 220 k Da)
rigulu 237 - riequelize	nuturun uer mouo	LOI SIONAIE IN	junzione uer	curred (p - 250 Kr u)

Fz [kN]	v = 0 kmh	v = 50 kmh	v = 100 kmh	v = 150 kmh	v = 200 kmh	v = 250 kmh
2	2,07%	1,98%	1,93%	1,87%	1,58%	1,53%
3	2,19%	2,20%	2,11%	2,06%	1,90%	1,81%
4	2,45%	2,43%	2,32%	2,21%	2,07%	1,86%
5	2,61%	2,49%	2,41%	2,34%	2,17%	2,07%
6	2,64%	2,54%	2,44%	2,32%	2,32%	2,09%

Tabella 123 - Fattore di smorzamento del modo torsionale in funzione del carico (p = 230 kPa)

Figura 298 - Fattore di smorzamento del modo torsionale in funzione del carico (p = 230 kPa)

Fz [kN]	v = 0 kmh	v = 50 kmh	v = 100 kmh	v = 150 kmh	v = 200 kmh	v = 250 kmh
2	31,94	31,45	32,88	34,65	37,53	41,85
3	33,01	33,55	34,58	37,14	39,78	43,11
4	33,57	35,01	35,83	37,72	40,41	43,80
5	34,59	35,49	36,74	38,99	41,21	44,89
6	35,72	35,80	37,47	39,43	41,99	45,28

Tabella 124 - Frequenze naturali del modo torsionale in funzione del carico (p = 300 kPa)

◆ v = 0 kmh → v = 50 kmh → v = 100 kmh → v = 150 kmh → v = 200 kmh → v = 250 kmh

Figura 299 - Frequenze naturali del modo torsionale in funzione del carico (p = 300 kPa)

Fz [kN]	v = 0 kmh	v = 50 kmh	v = 100 kmh	v = 150 kmh	v = 200 kmh	v = 250 kmh
2	1,72%	1,54%	1,50%	1,38%	1,34%	1,44%
3	1,92%	1,91%	1,79%	1,75%	1,66%	1,64%
4	2,04%	2,15%	2,01%	1,88%	1,79%	1,70%
5	2,22%	2,26%	2,18%	2,10%	1,94%	1,89%
6	2,40%	2,33%	2,24%	2,10%	2,04%	1,87%

Tabella 125 - Fattore di smorzamento del modo torsionale in funzione del carico (p = 300 kPa)

Figura 300 - Fattore di smorzamento del modo torsionale in funzione del carico (p = 300 kPa)

Fz [kN]	v = 0 kmh	v = 50 kmh	v = 100 kmh	v = 150 kmh	v = 200 kmh	v = 250 kmh
2	32,77	32,41	33,87	35,53	38,20	41,86
3	34,39	34,65	35,61	37,71	40,29	42,07
4	34,97	35,64	36,71	38,87	41,27	44,37
5	35,57	36,91	38,07	39,89	42,04	45,60
6	36,52	37,27	38,48	40,91	42,85	45,75

Tabella 126 - Frequenze naturali del modo torsionale in funzione del carico (p = 400 kPa)

Figura 301 - Frequenze naturali del modo torsionale in funzione del carico (p = 400 kPa)

Fz [kN]	v = 0 kmh	v = 50 kmh	v = 100 kmh	v = 150 kmh	v = 200 kmh	v = 250 kmh
2	1,39%	1,27%	1,25%	1,17%	1,15%	1,18%
3	1,62%	1,57%	1,49%	1,42%	1,38%	1,22%
4	1,72%	1,74%	1,66%	1,59%	1,55%	1,45%
5	1,82%	1,92%	1,83%	1,73%	1,64%	1,66%
6	1,98%	2,00%	1,91%	1,89%	1,75%	1,66%

Tabella 127 - Fattore di smorzamento del modo torsionale in funzione del carico (p = 400 kPa)

Figura 302 - Fattore di smorzamento del modo torsionale in funzione del carico (p = 400 kPa)

Fz [kN]	p = 50 kPa	p = 100 kPa	p = 230 kPa	p = 300 kPa	p = 400 kPa
2	24,96	28,31	31,29	31,94	32,77
3	25,95	28,46	31,76	33,01	34,39
4	27,23	28,26	33,04	33,57	34,97
5	27,83	29,30	34,02	34,59	35,57
6	27,50	29,00	34,12	35,72	36,52

Tabella 128 - Frequenze naturali del modo torsionale in funzione del carico (v = 0 km/h)

Figura 303 - Frequenze naturali del modo torsionale in funzione del carico (v = 0 km/h)

Fz [kN]	p = 50 kPa	p = 100 kPa	p = 230 kPa	p = 300 kPa	p = 400 kPa
2	3,57%	2,95%	2,07%	1,72%	1,39%
3	3,81%	3,25%	2,19%	1,92%	1,62%
4	4,00%	3,30%	2,45%	2,04%	1,72%
5	4,22%	3,51%	2,61%	2,22%	1,82%
6	4,30%	3,58%	2,64%	2,40%	1,98%

Tabella 129 - Fattore di smorzamento del modo torsionale in funzione del carico (v = 0 km/h)

Figura 304 - Fattore di smorzamento del modo torsionale in funzione del carico (v = 0 km/h)
Fz [kN]	p = 50 kPa	p = 100 kPa	p = 230 kPa	p = 300 kPa	p = 400 kPa
2	26,33	28,08	31,47	31,45	32,41
3	27,10	29,37	32,59	33,55	34,65
4	28,31	29,71	33,78	35,01	35,64
5	28,96	30,55	33,94	35,49	36,91
6	28,97	30,74	34,27	35,80	37,27

Tabella 130 - Frequenze naturali del modo torsionale in funzione del carico (v = 50 km/h)

Figura 305 - Frequenze naturali del modo torsionale in funzione del carico (v = 50 km/h)

Fz [kN]	p = 50 kPa	p = 100 kPa	p = 230 kPa	p = 300 kPa	p = 400 kPa
2	3,42%	2,88%	1,98%	1,54%	1,27%
3	3,58%	3,01%	2,20%	1,91%	1,57%
4	3,87%	3,25%	2,43%	2,15%	1,74%
5	4,04%	3,44%	2,49%	2,26%	1,92%
6	4,03%	3,52%	2,54%	2,33%	2,00%

Tabella 131 - Fattore di smorzamento del modo torsionale in funzione del carico (v = 50 km/h)

Figura 306 - Fattore di smorzamento del modo torsionale in funzione del carico (v = 50 km/h)

Fz [kN]	p = 50 kPa	p = 100 kPa	p = 230 kPa	p = 300 kPa	p = 400 kPa
2	29,15	30,63	33,10	32,88	33,87
3	31,38	31,68	33,90	34,58	35,61
4	31,12	32,67	34,98	35,83	36,71
5	31,79	33,98	35,73	36,74	38,07
6	32,90	34,10	35,70	37,47	38,48

Tabella 132 - Frequenze naturali del modo torsionale in funzione del carico (v = 100 km/h)

Figura 307 - Frequenze naturali del modo torsionale in funzione del carico (v = 100 km/h)

Fz [kN]	p = 50 kPa	p = 100 kPa	p = 230 kPa	p = 300 kPa	p = 400 kPa
2	3,06%	2,64%	1,93%	1,50%	1,25%
3	3,31%	2,83%	2,11%	1,79%	1,49%
4	3,34%	2,98%	2,32%	2,01%	1,66%
5	3,53%	3,17%	2,41%	2,18%	1,83%
6	3,70%	3,13%	2,44%	2,24%	1,91%

Tabella 133 - Fattore di smorzamento del modo torsionale in funzione del carico (v = 100 km/h)

Figura 308 - Fattore di smorzamento del modo torsionale in funzione del carico (v = 100 km/h)

Fz [kN]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
2	33,07	34,07	35,52	34,65	35,53
3	33,73	33,92	36,39	37,14	37,71
4	35,74	35,55	37,60	37,72	38,87
5	36,92	36,38	37,79	38,99	39,89
6	36,01	37,28	37,96	39,43	40,91

Tabella 134 - Frequenze naturali del modo torsionale in funzione del carico (v = 150 km/h)

Figura 309 - Frequenze naturali del modo torsionale in funzione del carico (v = 150 km/h)

Fz [kN]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
2	2,77%	2,58%	1,87%	1,38%	1,17%
3	3,07%	2,62%	2,06%	1,75%	1,42%
4	3,08%	2,83%	2,21%	1,88%	1,59%
5	3,15%	2,79%	2,34%	2,10%	1,73%
6	3,27%	3,18%	2,32%	2,10%	1,89%

Tabella 135 - Fattore di smorzamento del modo torsionale in funzione del carico (v = 150 km/h)

Figura 310 - Fattore di smorzamento del modo torsionale in funzione del carico (v = 150 km/h)

Fz [kN]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
2	36,68	36,80	37,22	37,53	38,20
3	37,40	37,90	39,42	39,78	40,29
4	38,43	38,91	39,95	40,41	41,27
5	39,10	39,86	40,62	41,21	42,04
6	40,18	40,91	41,58	41,99	42,85

Tabella 136 - Frequenze naturali del modo torsionale in funzione del carico (v = 200 km/h)

^{━━━} p = 0,5 bar ━━ p = 1 bar ━━ p = 2,3 bar ━━ p = 3 bar ━━ p = 4 bar

Fz [kN]	p = 0.5 bar	p = 1 bar	p = 2.3 bar	p = 3 bar	p = 4 bar
2	2,51%	2,21%	1,58%	1,34%	1,15%
3	2,58%	2,39%	1,90%	1,66%	1,38%
4	2,66%	2,64%	2,07%	1,79%	1,55%
5	2,82%	2,57%	2,17%	1,94%	1,64%
6	3.11%	2,67%	2,32%	2.04%	1.75%

Figura 311- Frequenze naturali del modo torsionale in funzione del carico (v = 200 km/h)

Tabella 137 - Fattore di smorzamento del modo torsionale in funzione del carico (v = 200 km/h)

Figura 312 - Fattore di smorzamento del modo torsionale in funzione del carico (v = 200 km/h)

Fz [kN]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
2	37,46	40,16	40,89	41,85	41,86
3	39,62	41,18	42,55	43,11	42,07
4	41,01	42,11	42,96	43,80	44,37
5	42,13	43,09	43,95	44,89	45,60
6	42,35	43,86	44,26	45,28	45,75

Tabella 138 - Frequenze naturali del modo torsionale in funzione del carico (v = 250 km/h)

Figura 313 - Frequenze naturali del modo torsionale in funzione del carico (v = 250 km/h)

Fz [kN]	p = 0,5 bar	p = 1 bar	p = 2,3 bar	p = 3 bar	p = 4 bar
2	1,63%	1,95%	1,53%	1,44%	1,18%
3	2,20%	2,14%	1,81%	1,64%	1,22%
4	2,14%	2,36%	1,86%	1,70%	1,45%
5	2,38%	2,35%	2,07%	1,89%	1,66%
6	2,44%	2,43%	2,09%	1,87%	1,66%

Tabella 139 - Fattore di smorzamento del modo torsionale in funzione del carico (v = 250 km/h)

Figura 314 - Fattore di smorzamento del modo torsionale in funzione del carico (v = 250 km/h)

La frequenza e il fattore di smorzamento per il modo torsionale, tendono a restare costanti al al vairare del carico.

3.4.5 Calcolo delle frequenze proprie flessionali e radiali in funzione della velocità secondo il modello ad anello flessibile

In questa prova sono state applicate le relazioni della sezione 1.1.1 che mettono in relazione le frequenze proprie flessionali e le frequenze radiali, con la velocità angolare della ruota. Di seguito vengono riportati gl andamenti delle frequenze proprie positive e negative per il modo flessionale n = 2

Velocità di traslazione [km/h]	Frequenze proprie flessionali positive [Hz]	Frequenze proprie flessionali negative [Hz]
0	76,45	-76,45
50	76,97	-75,87
100	77,44	-75,23
150	77,85	-74,55
200	78,21	-73,80

Tabella 140 - Frequenze proprie flessionali

Figura 315- Frequenze proprie flessionali positive

Figura 316 - Frequenze proprie flessionali negative

Se lo pneumatico è in rotazione ci sono due frequenze proprie una positiva ed una negativa che denotano la presenta di due "onde viaggianti" (travelling wave) con direzione opposta (una in avanti l'altra indietro) e frequenze angolari ω 1 postiva e ω 2 negativa.

Se Ω =0 le due onde hanno la stessa frequenza angolare (una positiva l'altra negativa) che combinandosi determinano un'onda stazionaria in cui i nodi e gli antinodi delle forme modali sono fissi.

Nei seguenti grafici viene messa in evidenza la variazone delle frequenze proprie flessionali e radiali per i modi n = 1, 2 e 3

	Freq proprie flessionali					
Velocità di traslazione [km/h]	n = 1	n = 2	n = 3			
0	39,90	76,45	127,58			
50	39,98	76,97	128,67			
100	40,04	77,44	129,78			
150	40,09	77,85	130,90			
200	40,13	78,21	132,04			

Tabella 141 - Frequenze proprie flessionali

- n = 1 - n = 2 - n = 3

Figura 317 - Frequenze proprie flessionali

	Freq proprie radiali			
Velocità di traslazione [km/h]	n = 1	n = 2	n = 3	
0	77,34	96,50	117,36	
50	80,91	99,48	119,73	
100	84,91	103,04	122,84	
150	89,32	107,17	126,65	
200	94,15	111,84	131,14	

Tabella 142 - Frequenze proprie radiali

Figura 318 - Frequenze proprie radiali

4. Conclusioni

Aumento	PRESSIONE	CARICO	VELOCITÀ
Resistenza al rotolamento	₽		
Effetto centrifugo	NA	NA	
Raggio di rotolamento effettivo		➡	
Fx - λ (100%)			ND
Rigidezza a scorrimento	Ļ		ND
Fy - α (20°)			ND
Rigidezza di deriva	Parabolico	Parabolico	ND
Momento di Autoallinemento			ND
Trasmissibilità delle vibrazioni		NA	NA
Lunghezza di rilassamento	↓		Ļ
Frequenza di secondo ordine			
Fattore di smorzamento funzione di secondo ordine	₽		
Frequenza modo verticale			
Fatore di smozamento modo verticale	Ļ		
Frequenza modo torsionale			
Fattore di smozamento modo torsionale	₽		₽

Tabella 143 - Tabella riassuntiva dei risultati

Legenda:

- NA (non applicabile): prove dove non risulta appliabile la variazione del parametro per lo studio del fenomeno;
- ND (non disponibile): le prove in cui non è stato studiato l'effetto del parametro sul fenomeno;
- Freccia verde: indica un incremento del fenomeno;
- Freccia rossa: indica un decremento del fenomeno;
- Rettangolo giallo: indica che il fenomeno non è sensibilmente influenzato dalla variazione del parametro

La tabella sovrastante riassume tutti risultati ottenuti con le varie prove effettuate, da essa è possibile definire quali in quali fenomeni e in che modo intervengono i singoli parametri studiati.

L'aumento della pressione dello pneumatico, determina una riduzione della resistenza a rotolamento, il che si riflette sul consumo energetico dello pneumatico. Possiamo inoltre affermare che non esiste un diametro dello pneumatico indeformato univoco, dal momento che tale dimensione viene influenzata dalla pressione di gonfiaggio, cosi come sul raggio di rotalomento effettivo, all'aumentare della pressione aumenta il diametro dello pneumatico indeformato e il raggio di rotolamento effettivo. La rigidezza a scorrimento, un parametro che indica la pendenza del diagramma Fx – scorriemento, viene influenzata dalla variazione di pressione, otteniamo che lo pneumatico è capace di dare in maniera più rapida forza longitudinale al diminuire della pressione di gonfiaggio.La rigidezza di deriva presenta un andamento parabolico. Dal punto di vista del confort sul veicolo, possiamo affermare che aumentando la pressione di gonfiaggio aumenta la rigidezza, che determina una maggiore trasmissione delle asperità provenienti dalla strada, viceversa diminuendo la pressione si ottiene una attenuazione di questo effetto. L'andamento della lunghezza di rilassamento conferma l'influenza della pressione sulla capacità di trasmissione della forza longitudinale vista con la rigidezza a scorriemento. Le frequenze del modo verticale aumentano con l'aumentano con l'aumentano con si ha una partilare influenza ma si evidenzia una riduzione del fattore di smorzamento.

Il carico dalle prove effettuate non risulta un fattore che determina un effetto sulla resistenza al rotolamento, come può essere prevedibile aspettarsi con l'aumentare del carico diminuisce il raggio di rotolamento effettivo. Il carico ha una forte influenza sul valore di saturazione sia per la prova Fx – scorrimento che Fy – angolo di deriva. Con un carico più elevato si ottiene una risposta piu lenta della forza Fx come confermato sia dalla rigidezza a scorrimento che dalla lunghezza di rilassamento. La frequenza e il fattore di smorzamento del modo verticale aumentano all'aumentare del carico. Il carico risulta ininflunte sulla frequenza longitudinale del secondo ordine, la frequenza del modo torsionale e il fattore di smoramento del modo torsionale.

L'aumento di velocità produce un aumento della resistenza a rotalmento, tale fenomeno è attribubile ad aumento dei fenomeni di attrito. La velocità genera un sollevamento dello pneumatico per effetto centrifugo, tale sollevamento aumenta il raggio di rotalamento effettivo. Dalla prova sulla lunghezza di rilassamento si evidenzia che all'aumentare della velocità diminuisce la lunghezza di rilassamento. Si ottengono valori piu alti per le frequenze di longitudinali di secondo ordine, le frequenze del modo vercicale e quello torsionale. Il fattore di smorzamento del modo verticale non ne viene influenzato, mentre il fattore di smorzamento del modo tosionale diminuisce.

Bibliografia

[1] Matsubara, M., Tsujiuchi, N., Ise, T., and Kawamura, S., "Vibration Analysis of Rotating Tires Focused on Effect of Rotation Using a Three - Dimensional Flexible Ring Model", SAE Technical Paper 2017-01-1903, 2017, doi:10.4271/2017-01-1903.

[2] L. Jia , Y. Xu, J. Zhang, "Free vibration analysis of radial pneumatic tires using Bezier functions", Journal of Sound and Vibration 285 (2005) 887–903.

[3] Manfred Bäcker, Axel Gallrein & Michael Roller (2016) "Noise, vibration, harshness model of a rotating tyre", Vehicle System Dynamics

[4] I. J.M. Besselink, A. J.C. Schmeitz & H. B. Pacejka (2010): "An improved Magic Formula/Swift tyre model that can handle inflation pressure changes", Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 48:S1, 337-352

[5] J. Y. Wong, Ph.D., D.Sc., F.I.Mech.E., F.A.S.M.E., "Theory of Ground Vehicles"

[6] Hans Pacejka, "Tire and Vehicle Dynamics", Third Edition

[7] Manfred Bäcker, Axel Gallrein, "CDTire User Manual Version 4.2", Fraunhofer ITWM

[8] Michael Gipser, Gerald Hofmann, "FTire - Flexible Structure Tire Model", , cosin scientific software

[9] Antoine Schmeitz, "MF-Tyre/MF-Swift", TNO