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Abstract

During the last decades the size of finite element models, used in industrial and
research applications, is constantly growing. The increased of computational power
and the accuracy of FEM software are leading an interest in nonlinear behaviour
of the structures. However, the solution of large set of nonlinear equations is still
computationally expensive. The idea of any Model Order Reduction (MOR) is to
reduce the number of degrees of freedom of a given structure, so that it is possible
to drastically decrease the number of unknowns of the full model into a subset of
equations faster to solve. The aim of this work is to formulate a reduced order basis
(ROB) without computing the solution of full model. In this way, all the equations
will be projected on ROB able to capture the nonlinearity of the whole system.
Therefore, the idea is to project a large system of equations onto a smaller sub-
space to create a lower dimensional space of reduced unknowns. In this thesis, the
“nonlinear static condensation” and the “modal derivatives” have been presented to
efficiently formulate a subspace of nonlinear differential equations of a geometrically
nonlinear model. Moreover, it has been developed a method to analyse the dynam-
ics of the 3D finite element turbofan jet engine compressor and fan blades. The
nonlinear forced response (NFR) of the structure can be fast computed projecting
of all the equations on a reduced order basis. The computational procedure has
been designed to be adapted to a tip rubbing problems, so that it has been possible
to consider the contact and geometric nonlinearities (large deformations) during the
developing of the in-house code. The flexibility of the code allows to include both
the geometric nonlinearities or the contact. The blade-casing interaction in turbo-
fan jet engines can lead the structure to large deformations and this phenomenon
cannot be neglected during the structural analysis.
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Chapter 1

Introduction

The structural dynamics engineering has dramatically change over the last twenty
years. The companies must fulfil always more stringent requirements to put compet-
itive products on the market and to develop cutting-edge technologies. Nowadays,
several numerical analysis tools are available to efficiently predict the dynamics be-
haviour of the structure. Nevertheless, the computational costs are still too high to
solve a large set of nonlinear differential equations, therefore better numerical meth-
ods with high accuracy and flexibility are strongly needed. The logical response
to this problem is the model order reduction (MOR), where the full model of the
structure may be approximated into a reduced model of less computational com-
plexity. There is a huge range of applications from the automotive sectors to the
aerospace industries where most of the structure behaves nonlinearly. Due to the
stringent requirements of the aerospace industry, where lightweight materials with
high stiffness to weight ratio are commonly used, the nonlinear effects cannot be
neglected during the dynamics design of the structure.

In this project has been developed a method to analyse the dynamics of the 3D
finite element turbofan jet engine compressor and fan blades, so that the nonlinear
forced response (NFR) of the structure can be fast computed projecting of all the
equations on a reduced order basis. The computational procedure has been designed
to be adapted to a tip rubbing problems, so that it has been possible to consider
the contact and geometric nonlinearities during the developing of the in-house code.
The flexibility of the code allows to include either the geometric nonlinearities or
the contact. The idea of developing a code capable to capture the nonlinearities
of the contact and the large deformations came up from a real problem found on
a turbofan jet engine (1.1) at the level of compressor stages. The rubbing between
the blades and the casing of the engine can lead the structure to large deformations
that cannot be neglected during the structural analysis.
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1 – Introduction

Figure 1.1: Assembly Rolls-Royce Trent 7000

The tip rubbing is a phenomenon that must be taken under control because it
is one of the major responsible of the engine failure and maintenance due to the
small gap between the tip blade and the liner (≈ 0.2 mm). The logical response to
this problem would have been to increase the clearance between the blade and the
engine casing; unfortunalely this would cause the engine to a dramatically reduction
of its performances due to the leakages at the blade tip. Moreover, the fatigue loads
acting on the blade tip can also lead to a premature failure or cracking of the blade.

Figure 1.2: Linear Modeshape vs. Nonlinear Modeshape
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The model order reduction applied in linear structural dynamics cannot catch
the nonlinearities of the structure at high oscillation amplitude. Therefore, the lin-
ear modal analysis describes an unrepresentative behaviour of the structures with
large deformations (1.2).

Figure 1.3: Bending (out-of-plane) and Membrane (in-plane) Modeshapes

In case of linear modeshape the structure tends to increase its length, which
is a justified approximation only for small amplitudes. On the other hand, the
nonlinear modeshape well represents the behaviour of the structure with large de-
formations. In addition, the linear analysis does not take into consideration the
bending-membrane coupling (1.3); the risk is to overpredict the response leading
the structure to a conservative design.

The idea of any Model Order Reduction (MOR) is reducing the number of de-
grees of freedom of a given structure, so that it is possible to reduce the number of
unknowns of a large model into a subset of equations faster to solve. In this project
have been used the Reduced Order Models (ROMs) where, projecting a large system
of equations in a smaller subspace, has been possible to create a lower dimensional
space of reduced unknowns.

Overall, the objective of the project is to develop a reduced order model (ROM)
for nonlinear vibrations of geometrically nonlinear structures including contact and
large deformations, so that the nonlinear forced response (NFR) of the structure
can be fast computed projecting all the equations on a reduced order basis (ROB)
able to capture the nonlinearities of the whole system.

3



1 – Introduction

1.1 Outline

The thesis has been written following the same logic of the implemented open-
source code to trace the nonlinear force response of the geometrically nonlinear
structure. In order to reduce the computational time to solve the nonlinear problem,
it has been used a reduced order model technique named non-intrusive (indirect)
method. This latter is a displacement-based indirect method, where the nonlinear
coefficients of the quadratic and cubic stiffness have been calculated imposing a se-
ries of static nodal displacement fields (linear and nonlinear) to determine the nodal
forces fields of the structure. Therefore, this technique can be used within any finite
element software performing the nonlinear static analysis. In this way it has been
possible to evaluate the nonlinear stiffness tensors starting from a structural finite
element model.

Once the nonlinear stiffness tensors have been calculated, the nonlinear set of
ordinary differential equations must be solved. In nonlinear dynamics is common to
use numerical methods to solve nonlinear differential equations. The idea is to use
the harmonic balance method (HBM) and the continuation algorithm (Asymptotic
Numerical Method) to compute periodic solution of the systems described by means
of smooth equations. The aim of this method is to quadratically recast the system
in a quadratic arbitrary polynomial form before applying the harmonic balance.

Finally, the stiffness evaluation procedure has been validated against two ex-
amples available in bibliography: the simply supported plate [1] and the clamped-
clamped beam [2] . In Chapter 8 a further investigation on the coupled modes of 3D
FE beam model has been done to find out why a ROM using the linear modes as
reduced basis is not enough to capture the dynamics of the geometrically nonlinear
structure. A comparison between different techniques to proper select the reduced
basis has been done to build a ROM able to predict the nonlinear behaviour of the
structure including contact and geometric nonlinearities.

Figure 1.4: Procedure Description for Tracing the Nonlinear Forced Response
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Chapter 2

The Finite Element Method

2.1 Introduction to FEM

The finite element method (FEM) is a discretizaion method for solving partial
derivative differential equations. This method allows to solve a continuous problem
in a discretized finite element problem, so that the linear algebraic system of equa-
tions can be solved in a closed form. In this project the FEM has been applied to
structural static and dynamic analysis. In this chapter will be provided only the
main features of the finite element method useful to understand how a finite element
software works. The FEM is based on the subdivision of the continuous physical
structure into a finite number of parts. In literature it is possible to find different
element formulations such as: beam elements, shell elements, plate elements, 3D
solid elements, and many others. Assembling all the structure’s elements it has
been possible to get the finite element formulation of the whole problem [3].

Overall, the finite element method steps to analyse an engineering problem are:

1. Discretize the physical structure into finite number of elements. The mesh is a
grid that approximates the geometry of the problem’s domain, this latter is formed
by nodes and elements.

2. Select the shape function properly. The shape function is used to interpolate
the domain variables over the elements and nodes. Usually, polynomials expres-
sions are selected as shape (interpolation) functions. The degree of the polynomial
is a function of the number of nodes element and if the problem is linear or nonlinear.

3. Evaluate the element properties. Establishing the finite element equation and
writing it into a matrix relatives to the nodal value of the unknown.

5



2 – The Finite Element Method

4. Assemble the element equations. In order to evaluate the global matrices for
the whole system it is necessary to assemble all the element equations. This means
combining the equations of the local elements with all the discretization elements.
Before solving the algebraic system, the boundary conditions have to be imposed. It
means cancelling all the rows and columns corresponding to the degrees of freedom
of nodes where the boundary conditions have been applied.

5. Solve the global system of algebraic equation. Usually, the linear algebraic
system of equation of finite element method is written in sparse notation, and is
symmetric and positive definite. To calculate the solution of the system iterative or
direct methods can be used.

6. Evaluation other parameters of the system. It is possible to calculate addi-
tional parameters, for istance, in mechanical problems strains and stresses are of
interest in addition to displacements, which can be obtained after solution of the
global equation system.

2.1.1 Introduction to Geometrically Nonlinear FE

The finite element method can also be used to analyse nonlinear static, dynamic
and transient problems. The application of nonlinear FEM to the solution of non-
linear static and dynamic problem is more complex than the linear and steady state
problems within the commercial finite element software. They may involve a load
step or time step integration (Newton–Raphson method), the majority of commer-
cial finite element software programs include routines to optimaze the stepping, so
that the solution can be reached in the minimum number of iterations during the
computation.

A large displacement FE analysis is necessary when the structure’s displacements
become so large that the original stiffness matrix of the system doesn’t represent the
stucture. The finite element problems in terms of large displacement can be splitted
into two types: those which result in a small (element) strains, and those resulting in
large finite strains. Small strain behaviour means that the material remains elastic,
and consequently that the structure returns to its original configuration when the
loading is removed. The elements that show large strains, with the exception of
hyperelastic materials (such as rubber), require non-linear material properties (such
as nonlinear costitutive law), that in this project have not been taken into account.

6



2.1 – Introduction to FEM

In continuum mechanics a solid structure is mathematically treated as a contin-
uum body constructed by a set of material particles. The position of all material
particles comprising the body at a given time t is called the configuration of the
body, and it is denoted by C. A sequence of body configurations for all times t
defines the motion of the body. The motion of a body or structure starts from an
initial position, usually undeformed, state at time t=0, called initial configuration,
C0 , to which displacements u are referred. Each point on the equilibrium path
corresponds to a deformed configuration, Cn , at time t = tn.

Figure 2.1: Fixed Global Cartesian Coordinates System (X,Y,Z)

The deformation of the body can be described by two set of coordinates:

1) Lagrangian Coordinates X

2) Eulerian Coordinates x=x(X, t)

In the Lagrangian approach, all physical quantities including displacements,
strains and stresses are expressed as functions of time t and their initial position
X , in the Eulerian approach they are functions of time and their current position.
Nevertheless, both approaches can be used, even if the Lagrangian approach is the
most used in solid and structural mechanics problems. The Lagrangian description
of motion is referred to a fixed global reference frame, expressed in cartesian coor-
dinates (X ,Y,Z).
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2 – The Finite Element Method

In the Lagrangian description displacements of any material point in the solid is
given by:

x(X, t) = X − u(X, t) (2.1)

u(X, t) = X − x(X, t) (2.2)
In order to define the strain we need to know the relative motion of two points on

the body. Considering two points P and Q, where at time t=0 the relative position
is dX and at time t = tn the relative position is dx.

2.1.2 Green-Lagrange Strain Tensor

The deformation gradient [F ], describes the point by point deformation of the
infinitesimal body particles dX , with length ds0 , in C0 (the initial configuration)
to its new position dx , with length ds , in Cn (the current configuration):

dx = F dX (2.3)

[F ] =
C

∂x

∂X

D
=
C

∂(X + u)
∂X

D
= [I] +

C
∂u

∂X

D
= [I] + [G] (2.4)

[F ] =


∂x
∂X

∂x
∂Y

∂x
∂Z

∂y
∂X

∂y
∂Y

∂y
∂Z

∂z
∂X

∂z
∂Y

∂z
∂Z

 (2.5)

[G] =


∂u
∂X

∂u
∂Y

∂u
∂Z

∂v
∂X

∂v
∂Y

∂v
∂Z

∂w
∂X

∂w
∂Y

∂w
∂Z

 (2.6)

where [F ] is the deformation gradient; [I] is unit tensor; [G] is displacement
gradient tensor.
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2.1 – Introduction to FEM

The deformation gradient F describes how much the structure is stretched from
C0 to Cn. The nonlinear analysis has been considered in terms of large rigid body
motion and large deformations. The Green-Lagrange strain tensor is reduced to the
infinitesimal linear strains when the nonlinear terms are neglected.

One finite strain measure that has these desired properties is the Green strain
tensor [ε] , which is a symmetric tensor defining the relationship between the squares
of the length vector dX with length ds0 in C0 to its deformed vector dx with length
ds in Cn :

ds2 − ds2
0 = 2dXT [ε]dX (2.7)

Green strain tensor [ε] can also be expressed in terms of the deformation gradient
[F ] through:

[ε] = 1
2(
è
F T

é
[F ] − [I]) (2.8)

where:

[ε] =

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 (2.9)

The six strain components of the Green strain tensor may be expressed in terms
of the displacement gradients:
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2 – The Finite Element Method

εxx = ∂u

∂X
+ 1

2

A ∂u

∂X

B2

+
A

∂v

∂X

B2

+
A

∂w

∂X

B2


εyy = ∂v

∂Y
+ 1

2

A ∂u

∂Y

B2

+
A

∂v

∂Y

B2

+
A

∂w

∂Y

B2


εzz = ∂w

∂Z
+ 1

2

A ∂u

∂Z

B2

+
A

∂v

∂Z

B2

+
A

∂w

∂Z

B2


εxy = 1
2

A
∂u

∂Y
+ ∂v

∂X

B
+ 1

2

CA
∂u

∂X

BA
∂u

∂Y

B
+
A

∂v

∂X

BA
∂v

∂Y

B
+
A

∂w

∂X

BA
∂w

∂Y

BD

εyz = 1
2

A
∂v

∂Z
+ ∂w

∂Y

B
+ 1

2

CA
∂u

∂Y

BA
∂u

∂Z

B
+
A

∂v

∂Y

BA
∂v

∂Z

B
+
A

∂w

∂Y

BA
∂w

∂Z

BD

εzx = 1
2

A
∂w

∂X
+ ∂u

∂Z

B
+ 1

2

CA
∂u

∂Z

BA
∂u

∂X

B
+
A

∂v

∂Z

BA
∂v

∂X

B
+
A

∂w

∂Z

BA
∂w

∂X

BD

(2.10)

The Green strain tensor is symmetric and if the nonlinear portion (that enclosed
in square brackets) is neglected, we obtain the infinitesimal strains:

(εxx, εyy, εzz, γxy = 2εxy, γyz = 2εyz, γzx = 2εzx) (2.11)

Green strain tensor is often used for problems with large displacements, large
rigid body motions but small strains. Several other finite strain measures are used
in nonlinear continuum mechanics, however, they all have to satisfy the constraints
of finite strain measures, in which they must predict zero strains for arbitrarily
rigid-body motions, and reduce to the infinitesimal strains if the nonlinear terms
are neglected.
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2.1 – Introduction to FEM

2.1.3 PK1 and PK2 Stress Tensors

The force per unit of area is defined as:

t = df

dA
(2.12)

where df is the infinitesimal force vector that acts on the infinitesimal area
element dA in deformed configuration.

Figure 2.2: Body Configuration in Fixed Global Cartesian Coordinates System

The Cauchy or true stress tensor σ, is conjugated to the strain tensor ε. It gives
the current force per unit area in deformed configuration:

t = [σ] n̂ (2.13)

where n̂ is the unit vector outward normal to the infinitesimal area element dA
in deformed configuration. Multiplying σ by the determinant of [F ] (J=det([F ])
gives the Piola-Kirchhoff stress tensor (PK1) τ :

[τ ] = J [σ] = det ([F ]) [σ] (2.14)
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2 – The Finite Element Method

A stress tensor works conjugated to the Green-Lagrange strain tensor [ε], it
has to be referred to the initial undeformed configuration as is the Green-Lagrange
strain tensor. Nevertheless, it may be shown that the 2nd Piola-Kirchhoff stress
tensor (PK2) [S] that gives the infinitesimal force df acting on the undeformed
area dA0 is conjugated to [ε] and related to [σ] through:

[S] = J [F ]−1 [σ] [F ]−T = [F ]−1 [τ ] [F ]−T (2.15)

The Piola-Kirchhoff stress tensors (PK1 and PK2) are used nonlinear finite el-
ement analysis (NFEA) involving large deformations and large rigid body motion,
while the Cauchy stress tensor is a good approximation when the deformations are
small (LFEA).

2.2 Isoparametric Solid Elements

The term ”isoparametric” means that geometry and displacement field are spec-
ified in parametric form and are interpolated with the same shape functions N
(polynomial). Shape functions used for interpolation are polynomials of the local
coordinates (ξ, η, ζ) with −1 ≤ ξ, η, ζ ≤ 1. Both coordinates and displacements are
interpolated with the same shape functions. The hexahedral (or brick-type) linear
8-node (HEXA8) and quadratic 20-node (HEXA20) three-dimensional isoparametric
elements are represented in Fig.2.3 [4].

Figure 2.3: Linear and quadratic 3D finite elements and their representation in the
local coordinate system
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2.2 – Isoparametric Solid Elements

In global coordinates:

{x} = [N ] {xe} (2.16)

{x} = {x y z} (2.17)

{xe} = {x1 y1 z1 x2 y2 z2 . . .} (2.18)

In local coordinates:

{u} = [N ] {q} (2.19)

{u} = {u v w} (2.20)

{δ} = {u1 v1 w1 u2 v2 w2 . . . } (2.21)

Here (u, v, w) are displacements at point with local coordinates (ξ, η, ζ); (ui, vi, wi)
are displacement values at nodes; (x, y, z) are point coordinates and (ui, vi, wi) are
coordinates of nodes. The shape functions of the linear element (HEXA8) are equal
to:

Ni = 1
8 (1 + ξ0) (1 + η0) (1 + ζ0) , i = 1, . . . ,8 (2.22)

ξ0 = ξiξ̂ η0 = ηiη̂ ζ0 = ζiζ̂ (2.23)

where (ξi, ηi, ζi) are the values of local coordinates (ξ, η, ζ) at nodes.

For the quadratic element with 20 nodes (HEXA20) the shape functions can be
written as the set of equations reported in 2.24.
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2 – The Finite Element Method

Ni = 1
8 (1 + ξ0) (1 + η0) (1 + ζ0) (ξ0 + η0 + ζ0 − 2) , vertices

Ni = 1
4
1
1 − ξ2

0

2
(1 + η0) (1 + ζ0) , i = 2, 6, 14, 18

Ni = 1
4
1
1 − η2

0

2
(1 + ξ0) (1 + ζ0) , i = 4, 8, 16, 20

Ni = 1
4
1
1 − ζ2

0

2
(1 + ξ0) (1 + η0) , i = 9, 10, 11, 12

(2.24)

Calculating all values of the shape function at each node is possible to assemble
the matrix of shape function N :

[N ] =

N1 0 0
0 N1 0
0 0 N1

N2 0 0
0 N2 0
0 0 N2

. . .
Ni 0 0
0 Ni 0
0 0 Ni

 (2.25)

The strain-displacement matrix B for three-dimensional elements has the fol-
lowing shape:

[B] =



∂Ni/∂x 0 0
0 ∂Ni/∂y 0
0 0 ∂Ni/∂z

∂Ni/∂y ∂Ni/∂x 0
0 ∂Ni/∂z ∂Ni/∂y

∂Ni/∂z 0 ∂Ni/∂x


(2.26)

Derivatives of shape functions with respect to the global coordinates are obtained
as follows:


∂Ni/∂x

∂Ni/∂y

∂Ni/∂z

 = [J ]−1


∂Ni/∂ξ

∂Ni/∂η

∂Ni/∂ζ

 (2.27)
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2.2 – Isoparametric Solid Elements

where the Jacobian matrix J is:

[J ] =


∂x/∂ξ ∂y/∂ξ ∂z/∂ξ

∂x/∂η ∂y/∂η ∂z/∂η

∂x/∂ζ ∂y/∂ζ ∂z/∂ζ

 (2.28)

The partial derivatives of (x, y, z) in respect to (ξ, η, ζ) are calculated by differ-
entiation of displacements expressed with shape functions and nodal displacements:

∂x

∂ξ
=
Ø ∂Ni

∂ξ
xi ,

∂y

∂ξ
=
Ø ∂Ni

∂ξ
yi,

∂z

∂ξ
=
Ø ∂Ni

∂ξ
zi

∂x

∂η
=
Ø ∂Ni

∂η
xi,

∂y

∂η
=
Ø ∂Ni

∂η
yi,

∂z

∂η
=
Ø ∂Ni

∂η
zi

∂x

∂ζ
=
Ø ∂Ni

∂ζ
xi,

∂y

∂ζ
=
Ø ∂Ni

∂ζ
yi,

∂z

∂ζ
=
Ø ∂Ni

∂ζ
zi

(2.29)

The Jacobian allows to pass from global coordinates (x, y, z) to local coordinates
(ξ, η, ζ):

dV = dxdydz = det (J)dξdηdζ = |J | dξdηdζ (2.30)

Equation of motion of a single element:

[m] {q̈} + [k] {q} = {f} (2.31)
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2 – The Finite Element Method

The element matrices have been calculated as follows [5]:

[m] =
Ú
V

[N ]Tρ[N ]dV =
Ú 1

−1

Ú 1

−1

Ú 1

−1
[N ]Tρ[N ] |J | dξdηdζ

[k] =
Ú
V

[B]T [E][B]dV =
Ú 1

−1

Ú 1

−1

Ú 1

−1
[B]T [E][B] |J | dξdηdζ

{f} =
Ú
V

[N ]T
î
fV
ï

dV +
Ú
S

[N ]T
î
fS
ï
dS

(2.32)

where [m] and [k] are the mass, stiffness element matrices respectively; while
{f} is the force element vector.

After computing the matrices and vectors entries, the assembly process is used
to build the global matrices of the system. Solving the algebraic system of equations
it is possible to calculate the displacements at nodes of the finite element model.
Stresses and strains inside the elements are determined with the use of the displace-
ment differentiation matrix and elastic matrix:

{ε} = [B] {q}

{σ} = [E] {ε}
(2.33)

where [E] is the isotropic linear elastic matrix:

[E] =



λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


(2.34)
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2.2 – Isoparametric Solid Elements

the Lamé constants are:

λ = νE

(1 + ν)(1 − 2ν) , µ = E

2(1 + ν) (2.35)

2.2.1 Assembly Operations 3D Element

The assemble of the element equations into the system of linear algebraic equa-
tions consists to add each element stiffness and mass into the corresponding places
of the global stiffness and mass matrices, and summing the force vector coefficients
into the global force vector. These procedures are always the same regardless of
type of problem and the number of elements used in the finite element analysis [5].

The matrices assembly operations are given by the following relations:

[K] = [A]T [Kd] [A] , Global Stiffness Matrix

[M ] = [A]T [Md] [A] , Global Mass Matrix

{F} = [A]T {Fd} , Global Force V ector

(2.36)

where Kd, Md, Fd are:

[Kd] =

[k1] 0 0
0 [k2] 0
0 0 . . .

 , [Md] =

[m1] 0 0
0 [m2] 0
0 0 . . .

 , {Fd} = [{F1} {F2} . . . ]

(2.37)

[A] is matrix of unit entries (usually never used in FEM codes) providing a
connection between global and local numbers of nodes.
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2 – The Finite Element Method

2.3 Plate Theory

Consider a rectangular flat plate element with constant thickness h. In this sec-
tion has been treated the DKT and DKQ plate elements. The plate elements are
particularly used to model structures where the relationship between dimensions
(characteristic thickness/length) is almost 1/10 . The finite plate elements are most
used in fields such as: civil and mechanical engineering in order to perform the
modal analysis, the analysis of buckling of Euler, analysis of the elastic multi-layer
composite material structures, etc.

In curved structures may be necessary to use a large number elements in order to
approach the geometry of the structure correctly. The “Discrete Kirchhoff“ (DKT
and DKQ) kinematics formulation allows good performances in terms of static and
modal analysis. The degrees of freedom of plate elements are the translations and
rotations of the nodes [4].

2.3.1 Kirchhoff Plate Element

Plate elements are based on the theory of the plates in small displacements
and small deformations. The displacement field changes linearly with the thickness
h(x, y) of the plate.

Figure 2.4: Geometry of the Plate Elements

According to Hencky-Mindlin kinematic theory has been possible to define the
displacement of a single point on the plate:

ux (x, y, z)
uy (x, y, z)
uz (x, y, z)

 =

u(x, y)
v(x, y)
w(x, y)

+ z

 θy(x, y)
−θx (x, y)

0

 =

u(x, y)
v(x, y)
w(x, y)

+ z

βx(x, y)
βy (x, y)

0

 (2.38)
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2.3 – Plate Theory

where (u, v, w) are the displacements of a single plate point with respect to the
average surface and (θx, θy) the rotations along the x and y axes. Nevertheless, it
has been useful to introduce βx and βy in order to symmetrize the formulation of
the problem when the deformation will be defined.

βx (x, y) = θy (x, y) and βy (x, y) = −θx (x, y) (2.39)

The three-dimensional deformations in a point of the plate are given by:

εxx = exx + zκxx, εyy = eyy + zκyy

γxy = 2exx + 2zκxy, γxz = βx + ∂w

∂x
, γyz = βy + ∂w

∂y

(2.40)

where eij represents the membrane deformation in correspondence of the average
plate surface, while κij is the curvature of the average surface.

The membrane deformations and the plate curvatures are:

exx = ∂u

∂x
, eyy = ∂v

∂y
, 2exy = ∂v

∂x
+ ∂u

∂y

κxx = ∂βx
∂x

, κyy = ∂βy
∂y

, 2κxy = ∂βx
∂y

+ ∂βy
∂x

(2.41)

where the deformation εzz, as well as the stress σzz, along z-axis is negligible
with respect the others two directions.
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2 – The Finite Element Method

The stress tensor can be written as:


σxx
σyy
σxy
σyz
σzx

 = C (e, α)


εxx
εyy
εxy
εyz
εzx

 = [C]{e} + z[C]{κ} + [C]{γ} (2.42)

[C] = E

1 − ν2


1 ν 0 0 0
ν 1 0 0 0
0 0 1−ν

2 0 0
0 0 0 k

2 (1 − ν) 0
0 0 0 0 k

2 (1 − ν)

 = E

1 − ν2

C
H1 0
0 H2

D
(2.43)

where [C] is the local tangent rigidity for isotropic linear elastic behaviour, κ
is a factor of transverse correction of sharing (κ=1 for DKT and DKQ), E is the
Young’s modulus and ν is the Poisson’s ratio.

The finite plate elements DKT and DKQ are based on the Coils–Kirchhoff theory
neglecting the transverse distortions γx and γy. The discretization of displacement
field for isoparametric elements may be written as dot product between the kth shape
function and the associated displacement uk.

u =
NØ
k=1

Nkuk , v =
NØ
k=1

Nkvk, w =
NØ
k=1

Nkwk (2.44)

The discretization has been maintained for βx and βy, so that βs is the quadratic
side while βn is the linear one.
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2.3 – Plate Theory

Figure 2.5: Linear and Quadratic Rotations

βx =
NØ
k=1

Nkβxk
+

2NØ
k=N+1

PkCkαk , βy =
NØ
k=1

Nkβyk
+

2NØ
k=N+1

PkSkαk (2.45)

βs

βn

 =
C S

S −C

βx

βy

 (2.46)

where Ci and Si are the directional cosine and sine respectively, and (βx,βy) are:

βx = −∂w

∂x
and βy = −∂w

∂y
(2.47)

The shape functions [N (ξ, η, ζ);P (ξ, η, ζ)] of DKT and DKQ plate elements are:

For DKT element:

N1 (ξ, η) = 1 − ξ − η P4 (ξ, η) = 4ξ(1 − ξ − η)

N2 (ξ, η) = ξ P5 (ξ, η) = 4ξη

N3 (ξ, η) = η P6 (ξ, η) = 1
2(1 − η2)(1 + ξ)

(2.48)
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2 – The Finite Element Method

For DKQ element:

N1 (ξ, η) = 1
4(1 − ξ)(1 − η) P5 (ξ, η) = 1

2(1 − ξ2)(1 − η)

N2 (ξ, η) = 1
4(1 + ξ)(1 − η) P6 (ξ, η) = 4η(1 − ξ − η)

N3 (ξ, η) = 1
4(1 + ξ)(1 + η) P7 (ξ, η) = 1

2(1 − ξ2)(1 + η)

N4 (ξ, η) = 1
4(1 − ξ)(1 + η) P8 (ξ, η) = 1

2(1 − η2)(1 + ξ)

(2.49)

Figure 2.6: DKT and DKQ plate element representation

2.3.2 Assembly Operations Plate Element

The assembly operations for a plate element are the same of 3D element; the
nodes of the plate element have 6 degrees of freedom (ux, uy, uz, θx, θy, θz) or 5 if has
been neglected the rotation along the z-axis (θz = 0).
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2.3 – Plate Theory

Assembly of stiffness matrix:

K[5N×5N ] =
 km [2N×2N ] kmf [2N×3N ]

kTmf [3N×2N ] kf [3N×3N ]

 , Element Stiffness Matrix

(2.50)

km =
Ú
S

BT
mHmBmdS , kmf =

Ú
S

BT
f HmfBmdS , kf =

Ú
S

BT
f HfBfdS (2.51)

Hm =
Ú h/2

−h/2
H dz , Hmf =

Ú h/2

−h/2
H zdz , Hf =

Ú h/2

−h/2
H z2dz (2.52)

with : H = E

1 − ν2 · H1 and H1 =

1 ν 0
ν 1 0
0 0 (1 − ν) /2

 (2.53)

All the previous equations are valid for an isotropic homogeneous elastic behav-
ior of plate element, while the matrices km, kf , kmf are the stiffness matrices of
membrane, flexural and of the coupling between the membrane and the out-of-plane
inflection. The out-of-plane rigidity Hmf is equal to zero if there is a material sym-
metry with respect to the z-axis.

Assembly of mass matrix:

M =


Mm 0 0 Mmf 0

0 Mm 0 0 Mmf

0 0 Mm 0 0
MT

mf 0 0 Mf 0
0 MT

mf 0 0 Mf

 , Element Mass Matrix (2.54)
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2 – The Finite Element Method

Mm =
Ú
S

ρm NTNdS , Mmf =
Ú
S

ρmf NTNdS , Mf =
Ú
S

ρf NTNdS

(2.55)

ρm =
Ú h/2

−h/2
ρ dz , ρmf =

Ú h/2

−h/2
ρ zdz , ρf =

Ú h/2

−h/2
ρ z2dz (2.56)

Once again, if the plate is homogeneous or symmetrical with respect to the z-
axis, then ρmf can be considered nil; ρm, ρf , ρmf are the densities of membrane,
flexural and of the coupling between the membrane and the out-of-plane inflection.
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Chapter 3

Model Order Reduction (MOR)

3.1 Introduction to MOR

During the last decades the size of finite element models, used in industrial and
research applications, is constantly growing. The increased of computational power
and the accuracy of FEM software are leading an interest in nonlinear behaviour
of nonlinear structure. However, the solution of large set of nonlinear equations is
still computationally expensive. The idea of any Model Order Reduction (MOR) is
reducing the number of degrees of freedom of a given structure, so that it is possible
to reduce the number of unknowns of a large model into a subset of equations faster
to solve.

The aircraft industry is very interested in model order reduction (MOR) for non-
linear mechanical system as thin-walled structures. This latter structure is charac-
terized by geometric nonlinearities where the coupling between the bending (out-of-
plane) displacement couples with the axial (in-plane) one. The material is assumed
to remain linear so that the Hook’s law is still applicable.

In literature many MOR for linear mechanical system are widely explained, such
as modal superposition, Guyan reduction, dynamic substructuring, Craig-Bampton
method, Rubin’s method etc. For nonlinear system, it has been possible to identify
two reduction techniques. The first is Proper Orthogonal Decomposition (POD)
where the full solution is necessary to compute a ROM of the structure, it is a
tool to proper select the reduced order basis that will be used during the Galerkin
projection. The second is the reduced order basis (ROB) without computing the
solution of full model; all the equation will be projected on ROB able to capture the
nonlinearity of the system.
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In this project have been used the non-intrusive Reduced Order Models (ROMs)
where, projecting a large system of equations in a smaller subspace has been possible
to create a lower dimensional space of reduced unknowns.

3.2 MOR in Linear Structural Dynamics

The finite element method was developed for linear elastic systems first and then
extended to nonlinear mechanical system. Because of limited resources in terms of
computational power in 1960s and 1970s have been invented reduction and substruc-
turing methods to decrease the computational time of structural dynamics systems.
The scope of this thesis in not to discuss all the reduced order models founded in
literature, so only few methods have been analysed [6].

In linear structural dynamics, the idea is to linearize the internal forces around
an equilibrium point x = 0, so that the governing equation can be written as:

Mẍ+Cẋ+Kx = f (3.1)

where M is the mass matrix, C the damping matrix, K the Jacobian of the
internal forces ∂f/∂x|x=0 and f is the external force vector. Introducing a subspace
V , it has been possible to project the linear operators onto the previous subspace.
Applying the modal transformation x = V q and pre-multiply by the transpose of
subspace V the governing equation become [7]:

V TMV q̈ + V TCV q̇ + V TKV q = V Tf (3.2)

çMq̈ + æCq̇ + æKq = åf (3.3)

with çM , æC, æK, åf are the reduced mass, damping, stiffness and external force
respectively.

The reduced matrices may be considered as a projection of linear basis onto the
subspace V . This latter, if correctly selected, should be able to catch all the dy-
namics of the system.
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3.2.1 Modal Truncation

The simplest model order reduction is the modal truncation. The idea is to
study a dynamical system as superposition of modal displacements calculating the
free motion of the undamped homogeneous system:

Mẍ+Kx = f (3.4)

with the analytical solution equal to:

x(t) = Φcos(ωt + ϕ) (3.5)

substituting the (3.5) in (3.4) and cancelling the time dependence, the eigen-
problem has been formulated as:

ω2MΦ = KΦ (3.6)

solving the eigenproblem the solutions ωi are the eigenvalues (undamped eigen-
frequencies) and Φi the corresponding eigenvectors (mode shapes). The eigenvec-
tors represent the spatial solutions of the homogeneous undamped system oscillating
around its equilibrium position with the associated natural frequencies. Since the
solution of the eigenproblem is not unique, it is useful normalised the eigenvectors
with respect the mass.

ΦTMΦ = I (3.7)

The mass is M -orthogonal as well as the stiffness is K-orthogonal, so that the
modes are orthogonal one to each other. Selecting the eigenvectors Φ, as subspace

27



3 – Model Order Reduction (MOR)

V , it has been possible to write the system as following:

ΦTMΦq̈ + ΦTCΦq̇ + ΦTKΦq = ΦTf (3.8)

only in case of proportional damping C = αK + βM (Rayleigh damping) is
possible to write the equation of motion as:

Iq̈ + 2 · diag(ζω)q̇ + diag(ω2)q = ΦTf (3.9)


q̈1
...

q̈N

+ 2


ζ1ω1 · · · 0
... . . . ...
0 · · · ζNωN




q̇1
...
˙qN

+


ω2

1 · · · 0
... . . . ...
0 · · · ω2

N




q1
...

qN

 =


φT1
...

φTN

 f (3.10)

Using the eigenvectors Φ as modal basis the system has been decoupled into N
independent equations, where N is equal to the number of degrees of freedom of the
full system. It has been obtained a system of N independent ordinary differential
equations (ODEs). In order to create a reduced order model of the system the full
basis Φ has been truncated selecting only the vibration modes of interest. Since all
the equations are independent, the truncation does not affect the other modes.

V = (Φ1, ..., Φn) , with n < N (3.11)

where n is the number of independent equations selected into the reduced basis
V .
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3.2 – MOR in Linear Structural Dynamics

3.2.2 Guyan Reduction

The idea of Guyan reduction is to eliminate all the internal degrees of freedom
of the system by statically forcing the internal nodes of the structure to follow the
boundary nodes. Neglecting the external forces acting on the internal dofs and all
the inertia terms, the equation of the system can be written as:

KII KIB

KBI KBB

xI
xB

 =
 0
fB

 (3.12)

where:

KIIxI +KIBxB = 0 (3.13a)

KBIxI +KBBxB = fB (3.13b)

from (3.13a):

xI = −K−1
II KIBxB (3.14)

substituting (3.14) in (3.13b):

(KBB −KBIK
−1
II KIB)xB = fB (3.15)

and so the Guyan basis is:

Vguyan =
VB
VI

 =
 I

K−1
II KIB

 (3.16)

Using the Guyan reduction (static condensation) is not possible to catch the
dynamics of the internal nodes.
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3 – Model Order Reduction (MOR)

3.2.3 Craig and Bampton Method

The substructuring method invented by Craig and Bampton (CBM) was formu-
lated so that also the dynamics of the internal nodes was considered in the reduced
model of the full system [8]. This method allows to catch all the dynamics of inter-
nal nodes, that was not possible using the static condensation. The internal modes
are computed solving the eigenproblem of the system where the boundary nodes are
fixed. The eigenproblem can be formulated as:

KIIxI = ω2
IMIIxI → Internal Modes (ΦI) (3.17)

The equation of the system can be written as:

C
KII KIB

KBI KBB

D C
xI
xB

D
− ω2

C
MII MIB

MBI MBB

D C
xI
xB

D
=
C

0
fB

D
(3.18)

Where the internal degrees of freedom can be calculated by static condensation:

xI = −K−1
II KIBxB (3.19)

and so, the reduction matrix of the internal modes of the structure is:

VI =
ΦI

0

 (3.20)

where xB and xI are the boundary and internal dofs of the structure. From the
static condensation it is possible to get the reduction matrix of the static modes
on the boundary nodes. The idea is to select only the first m < nI internal modes
keeping all the static modes at the boundary.

VB =
Ψ

I

 (3.21)
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Assembling the reduction matrix of the system:

VCB =
ΦI Ψ

0 I

 (3.22)

x =
ΦI Ψ

0 I

 q
xB

 (3.23)

where q are the intensity parameters of the structure internal modes [size(q) =
size(xI)].

The Craig-Bampton method is used to re-shape a large finite element model into
a subset of smaller matrices containing mass, stiffness and mode shape information
of the structure.

KR = V T
CBKVCB

MR = V T
CBMVCB

(3.24)

with MR and KR the reduced mass and stiffness of the structure. The reduced
mass and stiffness have the following size:

size (MR) = size (KR) = (nB + m) · (nB + m) (3.25)
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3 – Model Order Reduction (MOR)

3.3 Determination of ROM parameters for Geo-
metric Nonlinearities

The aim of this section is to give an overview on the techniques useful to evalu-
ate the nonlinear stiffness coefficients from a structural finite element model. It is
possible to identify two different approaches; the first is an intrusive method (direct)
because the nonlinear coefficients are determined within the finite element formu-
lation. The second method is named non-intrusive (indirect) and it can be used
within any finite element software such as Nastran, Abaqus, Code Aster, Ansys,
etc. where a nonlinear static analysis may be performed. There are two class of
non-intrusive method: displacement-base and force-base indirect method. The first
consists in imposing a series of static displacements field to determine the nodal
forces field prescribing the nodal displacements. In the second one, the idea is to
prescribe a force field instead of imposing a static displacement field at each node.
The stiffness parameters are computed solving the resulting set of equations.

During the computation of the reduced order parameters, only the quadratic
and cubic nonlinearities have been considered. This hypothesis is widely verified
because the Green-Lagrange strain tensor is used within the finite element soft-
ware as strain measure. Green strain tensor [ε] can also be expressed in terms of
the deformation gradient [F ] and it is function of the nodal displacement u [9].
(F = ∂u

∂X + I =⇒ F = O(u))

[ε] = 1
2(
è
F T

é
[F ] − [I]) =⇒ ε = O(u2) (3.26)

The potential energy Π of a deformable body in the domain Ω0 is linked to the
Green-Lagrange tensor by the fourth order material tensor C.

Π =
Ú

Ω0
ε : C : ε dΩ0 =⇒ Π = O(u4) (3.27)

The nodal displacement is a quartic function of the potential energy. Under
the assumption of conservative system, the internal forces are equal to the negative
gradient of the potential energy with respect to the displacement u.

f(u) = −∂Π
∂u

=⇒ f = O(u3) (3.28)
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3.3 – Determination of ROM parameters for Geometric Nonlinearities

Consequently, the internal forces of any elastic system characterized by a forth
order material tensor exhibits cubic nonlinearities with respect to the nodal dis-
placement u.

3.3.1 Intrusive: Direct Method

The idea of direct method is to project the finite element tensors on their modal
counterparts; the main problem is that the quadratic and cubic nonlinear tensors are
not available within the finite element software, so a non-intrusive method, instead
of the intrusive one, is needed to compute them.

Writing the equation of the full finite element model:

Mijẍj + Cijẋj + K
(1)
ij xj + K

(2)
ijkxjxk + K

(3)
ijklxjxkxl = fi (3.29)

applying the modal expansion:

x(t) =
NØ
n=1

qn(t)φ(n) (3.30)

where φ(n) is the basis function and qn(t) are the generalised coordinates. Sub-
stituting (3.30) in (3.29) and neglecting the damping Cij:

M̃ij q̈j + K̃
(1)
ij qj + K̃

(2)
ijkqjqk + K̃

(3)
ijklqjqkql = f̃i (3.31)
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where:

M̃ij = φ(i)
p Mprφ

(j)
r

K̃
(1)
ij = φ(i)

p K(1)
pr φ(j)

r

K̃
(2)
ijk = K(2)

prsφ
(i)
p φ(j)

r φ(k)
s

K̃
(3)
ijkl = K(3)

rsuvφ
(i)
r φ(j)

s φ(k)
u φ(l)

v

(3.32)

As already explained the quadratic and cubic coefficients K̃
(2)
ijk and K̃

(3)
ijkl can not

be computed within any commercial finite element software.

3.3.2 Non-Intrusive: Force-based Indirect Method

The nonlinear reduced order model is built prescribing a set of static loading at
each node of the finite element model, it can be written as [10]:

f (s) = a(s)
r φ

(s)
r (3.33)

Per each imposed static load a displacement vertor x(s) has been calculated.

x(s) = q
(s)
i φ

(i) (3.34)

Substituting (3.34) in (3.29):

K̃
(1)
ij q

(s)
j + K̃

(2)
ijkq

(s)
j q

(s)
k + K̃

(3)
ijklq

(s)
j q

(s)
k q

(s)
l = φ

(i)
j f

(s)
j (3.35)
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3.3 – Determination of ROM parameters for Geometric Nonlinearities

The load scale factor a(s)
r must be selected in such a way the displacement fields

are the same order of magnitude of the panel thickness to be sure that the structure
will be excited in nonlinear range. The load scale factor may be estimated from the
linear analysis:

a(s)
r = ω2

r

φ(r)Tφ(r) · Wc

φ
(r)
c

(3.36)

Where ωr is the natural frequency of the system associated to φ(r), Wc the
desidered displacement at point C on the structure with the associated displacement
φ(r)
c .The ratio between the linear and nonlinear displacements may be considered a

degree of structure’s nonlinearities.

3.3.3 Non-Intrusive: Displacement-based Indirect Method

The indirect methods are useful when the quadratic and cubic nonlinear stiffness
tensors are not available within the finite element software. The equation of motion
of geometrically nonlinear mechanical system can be written as:

MẌ (t) +CẊ (t) +KX (t) + Γ (X (t)) = F (t) (3.37)

whereM , K, C are the mass, linear stiffness and proportional viscous damping
(C = αM + βK), respectively. While X(t) is the displacement response vector
and F (t) the external harmonic force acting on the system. The nonlinear stiffness
force vector Γ (X (t)) represents how much the linear stiffness force diverges from
the nonlinear one. In case of small deformation the nonlinear quadratic and cubic
terms are negligible, therefore the system behaves as the linear one. The mass,
stiffness and proportional damping have been calculated within the finite element
commercial software while the nonlinear quadratic and cubic terms have been eval-
uated with STEP (Stiffness Evaluation Procedure) [1].

Applying the modal transformation has been possible to reduce the size of the
system using the modal truncation, as explained in Chapter 3.2.1, where the system
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3 – Model Order Reduction (MOR)

of N physical degrees of freedom has been reduced in a subset of L-dofs.

X = Φq (3.38)

where Φ is the modal matrix containing the eigenvectors (with L ≤ N) of the
MDOF system (Eq. 3.37) neglecting the nonlinear stiffness force vector. Equation
of motion in modal coordinates:

MΦq̈ +CΦq̇ +KΦq + Γ(Φq) = F (t) (3.39)

pre-multiplying the equation (3.39) by the transposed of modal matrix Φ:

ΦTMΦq̈ + ΦTCΦq̇ + ΦTKΦq + ΦTΓ(Φq) = ΦTF (t) (3.40)

where:

çM = ΦTMΦ = [I]

æC = ΦTCΦ = [2ζrωr]

æK = ΦTKΦ = [ω2
r ]

åγ = ΦTΓ

æF = ΦTF

(3.41)

çM , æC, æK are the modal mass, damping and stiffness, respectively. While q is
the vector containing the modal amplitude associated to each mode-shape, ωr are
the natural frequency of the undamped system and ζr is the modal damping ratio.
The modal mass is equal to the identity matrix I since the eigenvectors are mass
normalised.

çMq̈ + æCq̇ + æKq + åγ (q1, q2, . . . , qL) = æF (3.42)
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3.3 – Determination of ROM parameters for Geometric Nonlinearities

The nonlinear stiffness force vector contains the quadratic and cubic terms in
X(t) and therefore it has been expressed in modal coordinates as:

γr (q1, q2, . . . , qL) =
LØ
j=1

LØ
k=j

arjkqjqk +
LØ
j=1

LØ
k=j

LØ
l=k

brjklqjqkql , r = 1, . . . , L (3.43)

The nonlinear system has been reduced to a simple set of algebraic equation that
can be easily solved with any software having a solver for linear and nonlinear static
analysis. It is important to point out that to study the coupling between the mem-
brane and bending mode-shapes the geometrically nonlinear mechanical systems are
well represented by quadratic and cubic nonlinearities within the nonlinear stiffness
force vector Γ(Φq) .

The nonlinear quadratic and cubic terms αrjk and βrjkl have been calculated pre-
scribing a nodal displacement (physical coordinates) in linear and nonlinear static
solution. The nonlinear forces have been computed imposing a displacements field
associated to the first Lth mode-shapes solving the eigenproblem of the undamped
linear system (Γ(X(t)) = 0 & C = 0).

This means applying a nodal displacement vector to evaluate the nodal force
vector necessary to achieve the desired displacements field of the structure. The
total force vector FT acting on the structure can be written as the sum between the
linear and nonlinear force vectors in physical coordinates. The linear nodal force
vector FL and total nodal force vector FT have been calculated solving the linear
and nonlinear static problem, respectively.

FT = FL + FNL = KXc + Γ (Xc) (3.44)

and so, the nonlinear force vector FNL can be obtained by subtracting the linear
force vector FL from the total one FT :

FNL = Γ (Xc) = FT − FL (3.45)
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It has been possible to notice that for small displacement field the nonlinear
forces acting on the system are negligible; therefore it has been fundamental to
properly select the modal amplitude during the computation of nonlinear quadratic
and cubic stiffness terms.

The number of nonlinear static solutions ΞNL, in Eq. 3.46, is strongly depen-
dent on how many modes have been considered when the modal truncation has been
applied.

ΞNL = 3 ·
A

M !
1! (M − 1)! + M !

2! (M − 2)! + M !
3! (M − 3)!

B
, M = 1, . . . , r (3.46)

Therefore, it has been possible to evaluate the number of linear, quadratic and
cubic coefficients calculated with the displacement-based indirect method. At the
same time, the number of nonlinear static solutions represents the efficiency of the
reduced order model in terms of computational time to perform all the static anal-
ysis with respect to the simulated time response of the full model.

Once solved the linear and nonlinear static analysis to evaluate the nonlinear
force vector FNL, the quadratic and cubic entries of nonlinear tensors are calculated
within three loops.

38



3.3 – Determination of ROM parameters for Geometric Nonlinearities

1st loop

The first loop has been used to calculate the quadratic and cubic entries with
three equal lower indices (j = k = l), while the nonlinear force vector FNL = Γ(Xc)
has been evaluated using the equation 3.45 prescribing the following displacement
fields:

Xc = +φ1q1

Xc = −φ1q1
(3.47)

Projecting the nonlinear forces on the basis Φ, the modal nonlinear force vector
can be written as:

æFNL1 = ΦTFNL1 = ΦTΓ (+φ1q1) = [ar11] q1q1 + [br111] q1q1q1

æFNL2 = ΦTFNL2 = ΦTΓ (−φ1q1) = [ar11] q1q1 − [br111] q1q1q1

(3.48)

The nonlinear stiffness coefficients
è
arjj
é
and

è
brjjj

é
have been determined by solv-

ing the algebraic system of 2 × L linear equations with j = 1,2, . . . , L.

2nd loop

Following the same approach of the first loop, the entries of nonlinear stiffness
tensors with two unequal lower indices (j = k ∧ k /= l or j = l ∧ j /= k or
k = l ∧ j /= l) have been calculated prescribing the displacement fields:

Xc = +φ1q1 + φ2q2

Xc = −φ1q1 − φ2q2

Xc = +φ1q1 − φ2q2

(3.49)
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and so, the nonlinear modal force vector can be written as [1]:

æFNL1 = ΦTFNL1 = ΦTΓ(+φ1q1 + φ2q2) = [ar11] q1q1 + [br111] q1q1q1 + [ar22]q2q2

+ [br222]q2q2q2 + [ar12]q1q2 + [br112]q1q1q2

+ [br122]q1q2q2

æFNL2 = ΦTFNL2 = ΦTΓ(−φ1q1 − φ2q2) = [ar11] q1q1 − [br111] q1q1q1 + [ar22]q2q2

− [br222]q2q2q2 + [ar12]q1q2 − [br112]q1q1q2

− [br122]q1q2q2

æFNL3 = ΦTFNL3 = ΦTΓ(+φ1q1 − φ2q2) = [ar11] q1q1 + [br111] q1q1q1 + [ar22]q2q2

− [br222]q2q2q2 − [ar12]q1q2 − [br112]q1q1q2

+ [br122]q1q2q2

(3.50)

Solving the linear algebraic system of equations, the nonlinear stiffness coeffi-
cients

è
arjk
é
,
è
brjjk

é
and

è
brkkj

é
for j, k = 1,2, ..., L have been determined. In order

to clarify what are the unknowns of the system, the linear algebraic equations have
been written in matrix form:

 q1q2 q2
1q2 q1q

2
2

q1q2 −q2
1q2 −q1q2

−q1q2 −q2
1q2 q1q2


ar12
br112
br122

 =


åFNL1åFNL2åFNL3

−

q2
1 q3

1 q2
2

q2
1 q2

2 −q3
1

q2
1 q3

1 q2
2

q3
2

−q3
2

−q3
2




ar11
ar22
br111
br222

 (3.51)

for instance, imposing the modal amplitudes equal to one (q1 = q2 = 1):

 1 1 1
1 −1 −1

−1 −1 1


ar12
br112
br122

 =


åFNL1åFNL2åFNL3

−

1 1 1
1 1 −1
1 1 1

1
−1
−1




ar11
ar22
br111
br222

 (3.52)
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The procedure is the same followed to implement the stiffness evaluation proce-
dure (STEP ) using the Python language. The system has the following form:

Ax = F −Cd (3.53)

where A and C are the matrix of modal amplitude q, x is the vector of the
unknowns of quadratic and cubic entries of the tensors while d contains all the
coefficients calculated in the first loop.

3rd loop

Finally, the nonlinear stiffness coefficients [brjkl] with three unequal lower indices
(j /= k /= l) have been determined by imposing the displacement field:

Xc = +φ1q1 + φ2q2 + φ3q3 (3.54)

then:

æFNL = ΦTΓ(+φ1q1 + φ2q2 + φ3q3) = [ar11] q1q1 + [ar22] q2q2 + [ar33] q3q3

+ [ar12] q1q2 + [ar13] q1q3 + [ar23] q2q3

+ [br111] q1q1q1 + [br222] q2q2q2

+ [br333] q3q3q3 + [br112] q1q1q2

+ [br221]q2q2q1 + [br113] q1q1q3

+ [br331] q3q3q1 + [br223] q2q2q3

+ [br332] q3q3q2 + [br123] q1q2q3

(3.55)

The linear algebraic equation of the third loop may be solved once calculated all
the coefficients of the previous loops. An alternative procedure to STEP algorithm
may be used with the finite element software which utilize the tangent stiffness ma-
trix evaluated on the full finite element model of the structure.
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Chapter 4

Harmonic Balance Method

4.1 HBM applied to Nonlinear Vibration

The Harmonic Balance Method (HBM) is a numerical method for the compu-
tation of nonlinear ordinary differential equations (ODEs). The harmonic balance
may be used to solve problems formulated in differential form comes from different
engineering fields such as: fluid-dynamics, structures, micro-mechanics (MEMS),
nano-mechanics (NEMS) and dynamics of mechanical systems. HBM is used to
compute periodic solution of ODEs; for this reason, it is adopted to solve differen-
tial equations with periodic time dependence as in case of the dynamics of rotating
machinery.

The idea of harmonic balance method is to develop the periodic oscillation in
Fourier series and then, to determine its coefficients an algebraic system of equa-
tions has to be solved. The number of unknows is strongly related to the low or
high truncation order of Fourier series. To better understand the basics of HBM
it has been decided to start from the nonlinear mechanical system with one degree
of freedom (Duffing Oscillator). The idea is to solve the nonlinear second order
differential equation using the harmonic balance method.

4.1.1 Duffing Oscillator

The Duffing oscillator is the simplest case to model a nonlinear mechanical sys-
tem with geometric nonlinearities. It is described by a nonlinear second order differ-
ential equation representing a single degree of freedom oscillator with cubic spring
(Fig. 4.1) [11].

43



4 – Harmonic Balance Method

Figure 4.1: Duffing Oscillator

The equation of motion of nonlinear oscillator may be written as:

mẍ + cẋ + kx + βx3 = F0cos(Ωt) (4.1)

where m, k, c are the mass, stiffness and viscous damping, respectively; while
β is the nonlinear cubic stiffness, F0 the amplitude of the external force and Ω is
the forcing frequency. If β is equal to zero the system behaves as linear and so, the
response of the system is the sum of the “particular” and “homogeneous” solution.
In case of linear second ODE the response is independent of the initial state of the
system in terms of position x(0) and velocity ẋ(0). Whereas the system is nonlinear
(β /= 0) the superposition principle is no valid anymore; for the nonzero external
force (F /= 0) the steady state force response may be periodic, quasi-periodic or
chaotic with a strong dependence on the initial state of the system [11].

The idea of the harmonic balance is to approximate the periodic solution x(t +
T ) = x(t) with T = 2π/Ω as Fourier series:

xh (t) = a0 +
∞Ø
k=1

[ak cos (kΩt) + bk sin (kΩt)] (4.2)
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Assuming xh(t) Ä x(t) and considering only the 1st harmonic (with the zero
harmonic equal to zero):

xh(t) = a1cos(Ωt) + b1sin(Ωt)

ẋh(t) = −a1sin(Ωt) + b1cos(Ωt)

ẍh(t) = −a1Ω2cos(Ωt) − b1Ω2sin(Ωt)
(4.3)

while the nonlinear term x3 may be written as:

x3
h(t) = (a1cos(Ωt) + b1sin(Ωt))3

= a3
1cos3(Ωt) + 3a2

1b1cos2(Ωt)sin(Ωt)

+ 3a1b
2
1cos(Ωt)sin2(Ωt) + b3

1sin3(Ωt)
(4.4)

The trigonometric identities to linearize the nonlinear stiffness force are:

cos3(Ωt) = 3
4cos(Ωt) + 1

4cos(3Ωt)

sin3(Ωt) = 3
4sin(Ωt) − 1

4sin(3Ωt)

cos2(Ωt)sin(Ωt) = 1
4sin(Ωt) + 1

4sin(3Ωt)

cos(Ωt)sin2(Ωt) = 1
4cos(Ωt) − 1

4cos(3Ωt)

(4.5)
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substituting 4.5 in 4.4:

x3
h(t) =a3

1

3
4cos(Ωt) + 1

4cos(3Ωt)
+ 3a3

1b1

1
4sin(Ωt) + 1

4sin(3Ωt)


+ 3a1b
2
1

1
4cos(Ωt) − 1

4cos(3Ωt)
+ b3

1

3
4sin(Ωt) − 1

4sin(3Ωt)
 (4.6)

Sorting the equation with respect sine and cosine:

x3
h(t) =3

4

a3
1 + a1b

2
1

cos(Ωt) + 3
4

b3
1 + a2

1b1

sin(Ωt)

+ 1
4

a3
1 − 3a1b

2
1

cos(3Ωt) − 1
4

b3
1 − 3a2

1b1

sin(3Ωt)

(4.7)

Neglecting the high-order harmonics cos(3Ωt) and sin(3Ωt) and substituting the
terms ẍh, ẋh, xh and x3

h in the eq. 4.1:

m
3

− a1Ω2cos(Ωt) − b1Ω2sin(Ωt)
4

+ c
3

− a1sin(Ωt) + b1cos(Ωt)
4

+ k
3

a1cos(Ωt) + b1sin(Ωt)
4

+ β

3
4

a3
1 + a1b

2
1

cos(Ωt)

+ 3
4

b3
1 + a2

1b1

sin(Ωt)
 = F0cos(Ωt)

(4.8)
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Balancing the sine and cosine terms (Rc(a1, b1), Rs(a1, b1)) = (0,0):

Rc = (k − mΩ2)a1 + cΩb1 + 3
4β(a3

1 + a1b
2
1) − F0 = 0

Rs = (k − mΩ2)b1 − cΩa1 + 3
4β(b3

1 + a2
1b1) = 0

(4.9)

It has been obtained a system of two linear algebraic equations in two unknowns
(a1, b1) representing the coefficients of Fourier series. Assuming the mass and the
linear stiffness equal to one, in such a way that the natural frequency of the linear
system is equal to the unit, yields:

Rc = (1 − Ω2)a1 + cΩb1 + 3
4β(a3

1 + a1b
2
1) − F0 = 0

Rs = (1 − Ω2)b1 − cΩa1 + 3
4β(b3

1 + a2
1b1) = 0

(4.10)

For this simple example of Duffing oscillator, the solution can be derived ana-
lytically for a fixed set of parameters Ω, F, c, β, while for systems with more degrees
of freedom and harmonics, the numerical solutions and continuation methods are
needed to calculate the steady state response of the nonlinear system:

R(X) =
5
Rc Rs

6T
= 0, with : X =

5
ak bk

6T
(4.11)

The MDOF nonlinear systems may show features such as modal interactions, this
latter can be catch only considering higher harmonics within the Taylor series. Only
the first harmonic is not enough to capture the entire dynamics of the system. Even
for mechanical systems with only one degree of freedom, such as Duffing oscillator,
the number of harmonics plays an important rule. Nevertheless, considering only
one harmonic (H=1) the super and sub-harmonic can not be evaluated in the FRF
of the system.
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4.1.2 MDOF Nonlinear Mechanical System

The idea is to generalise what it has been explained for a SDOF nonlinear system
to a MDOF nonlinear mechanical system with multiple harmonics. The equation of
motion of multi degrees of freedom nonlinear system with periodic forcing may be
written, in generalised coordinates, as [12]:

Mq̈ +Cq̇ +Kq + fnl (q, q̇) = fext (t) (4.12)

The vectors Fnl and Fext gathered the nonlinear and external forces, respectively,
while the mass matrix M is symmetric and positive definite. Since the solution is
periodic, it has been possible to use the Fourier series to calculate the response of
the system q(t) = q(t + T ) Ä qh(t).

qh (t) = a0 +
∞Ø
k=1

[ak cos (kΩt) + bk sin (kΩt)] = IR
I+∞Ø
k=0

cke
ikΩt

J
(4.13)

Considering the real valued formulation of Fourier series and calculating the first
and second derivatives of qh(t), yields:

qh = IR
I ∞Ø
k=0

cke
ikΩt

J

q̇h = IR
I ∞Ø
k=0

ikΩcke
ikΩt

J

q̈h = IR
I ∞Ø
k=0

− (kΩ)2 cke
ikΩt

J
(4.14)
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Substituting the Eq. 4.14 in Eq. 4.12:

M IR
I ∞Ø
k=0

− (kΩ)2 cke
ikΩt

J
+CIR

I ∞Ø
k=0

ikΩcke
ikΩt

J

+KIR
I ∞Ø
k=0

cke
ikΩt

J
+ fnl − fext = r

(4.15)

IR
I ∞Ø
k=0

1è
− (kΩ)2M + ikΩD +K

é
ck + Fnl,k + fext,k

2
eikΩt

J
= r (4.16)

IR
I ∞Ø
k=0
Rke

ikΩt
J

= r (4.17)

The periodic solution qh(t) is only an approximation of the exact solution q(t);
even if the Fourier series is not truncated, with k ranges between zero and infinity,
the error or residue r is nonzero. Assuming the nonlinear forces as smooth in qh(t)
and q̇h(t), yields [12]:

1
π

Ú 2π

0
fnl (q, q̇) e−ikΩtd(Ωt) =


2Fnl,0 k = 0

Fnl, k k /= 0
(4.18)

The idea is to balance the harmonics imposing the residue Rk equal to zero:



R0 (c0, c1, . . . , cH) = 0

R1 (c0, c1, . . . , cH) = 0
...

RH (c0, c1, . . . , cH) = 0

(4.19)
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The Fourier series is truncated to the order H and so, the number of unknowns
are equal to the number of equations governing the algebraic system of the harmonic
balance method, where the residues have been imposed equal to zero. The n(2H +1)
system of algebraic equation in n(2H + 1) unknows has to be solved, where n is the
number of degrees of freedom of the system. The equation 4.16 represents the me-
chanical interpretation of the governing algebraic equation 4.19 where Rk may be
seen as the dynamic force equilibrium in frequency domain.

Rk =
è
− (kΩ)2M + ikΩD +K

é
ck + Fnl,k − Fext,k = 0 (4.20)

with:

Kdyn =
è
− (kΩ)2M + ikΩD +K

é
(4.21)

where Kdyn is the dynamic linear stiffness matrix of the system, Fext,k is the
external force vector and Fnl,k the nonlinear internal force vector.

The efficiency of the HBM is strictly related to the number of harmonics con-
sidered in the Taylor series (k = 1, 2, . . . , H). The number of harmonics H must be
selected in such a way to capture the higher order harmonics caused by the non-
linear forces acting on the system. The higher order harmonics of interest are all
the harmonics multiple of the fundamental frequency of the system. The physical
meaning of the previous sentence is that a nonlinear system, if excited at its first
natural frequency, does not respond with only the imposed frequency; also higher
frequencies participate in the periodic response of the system. Therefore, the re-
sponse of nonlinear mechanical system is magnified due to the interaction between
the low and high-resonances (superharmonic resonance).

The convergence of HBM is related to the number of harmonics, especially in
case of non-smooth systems where q(t) and q̇ are not infinitely differentiable. In this
case to achieve the convergence of the HBM a large number of harmonics may be
required.

One of the costs of HBM is the calculation of nonlinear force Fnl(c0, . . . , cH) in
the equation 4.18. Usually, the Alternating-Frequency-Time (AFT) scheme is used
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4.1 – HBM applied to Nonlinear Vibration

for determining the nonlinear forces, replacing the continuous Fourier transform 4.18
with the discrete Fourier transform computed with the FFT (Fast Fourier Trans-
form) algorithm.

Fnl,k = FFT
5
fnl(iFFT [ck], iFFT [ikΩck])

6
(4.22)

Figure 4.2: Alternating Frequency Time (AFT) scheme

The fast Fourier transform (FFT) has been used to convert the signal from the
time domain to the frequency domain; and viceversa using the inverse Fourier trans-
form (iFFT). According to the Nyquist-Shannon theorem, the number of samples
per period must be large to solve the highest harmonics in the spectrum guarantee-
ing the convergence of HBM.

In structural dynamics field, the most common method to solve the algebraic
equations is the Newton method; the idea is to linearize the residues in a Taylor
series at x(j) in order to calculate the next step x(j+1) as a solution of the linearized
problem [12].

R
1
xj+1

2
= R

1
xj
2

+ ∂R

∂x

----
xj

1
xj+1 − xj

2
= 0 (4.23)
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In the proposed work, the Alternating Frequency Time (AFT) as well as the
Newton method have not been used to solve the nonlinear system, since the all
procedure has been performed in the frequency domain. Nevertheless, the algebraic
system has been solved adopting the Asymptotic Numerical Method (ANM) con-
tinuation algorithm where no iterations are needed.
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Chapter 5

Asymptotic Numerical Method

5.1 Numerical Bifurcation

The Asymptotic Numerical Method (ANM) is a continuation algorithm based on
Taylor series using a quadratic recast of smooth nonlinear systems. The solution of
single branch is computed step by step following the same logic of predictor-corrector
algorithm. The idea is to develop in Taylor series the arc-length parameter, so that
the corrector is not needed due to the accuracy of high order Taylor Series predic-
tion. To better understand the ANM, the general rules of a generic continuation
method has been explained. Usually, the continuation algorithm consists to have:
predictor, parametrization strategy, corrector and step-length control [13].

The predictor-corrector method provides an initial guess for the next iterations
of the corrector. Starting from the continuation step (xj+1, λj), where λ is the con-
tinuation parameter, the continuation methods allow to calculate the next solution
(xj+1, λj + 1) solving the equation F (x, λ) = 0. To solve the previous equation, a
relation that identifies the location of the solution on the branch is needed. This
identification is strictly related to the type of parametrization strategy chosen to
trace the curve. The singularity of the Jacobian matrix necessary to evaluate the
solution is a problem during the prediction and correction process; the idea is to
parametrize the curve by arc-length in order to avoid singularity. The continuation
method starts from a known solution and uses the predictor-corrector scheme to
find the forward solutions at different values of λ [14].
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5 – Asymptotic Numerical Method

Figure 5.1: Predictor-Corrector continuation method

The continuation method is also used to identify the nature of various bifurcation
points. Analysing the eigenvalues of the Jacobian matrix, it is possible to study the
stability of nonlinear systems. To explain the basic concept of nonlinear dynamics
of mechanical system, two coupled 1st ODEs have been considered.

ẋ1 = dx1

dt
= f1(x1, x2)

ẋ2 = dx2

dt
= f2(x1, x2)

(5.1)

Perturbing the system around its equilibrium points (f1, f2) = (0,0) by ∆x1 and
∆x2, respectively; expanding the equations in Taylor series and linearizing the equa-
tions near the equilibrium point, yields [14]:

∆x1 = C1e
λ1t + C2e

λ2t

∆x1 = C3e
λ1t + C4e

λ2t
(5.2)

54



5.1 – Numerical Bifurcation

The coefficients (C1, C2, C3, C4) are determined imposing the initial conditions,
while (λ1, λ2) are the eigenvalues of the Jacobian matrix J .

J =
 ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

 (5.3)

The eigenvalues are calculated by solving the determinant of (J − λI) equal to
zero.

---J − λI
--- = 0 → (λ1, λ2) (5.4)

λ1,2 = 1
2

5
Tr(J) +

ñ
Tr(J)2 − 4 det(J)

6
= 1

2

5
Tr(J) +

√
∆
6

(5.5)

where Tr is the trace of the Jacobian matrix:

Tr(J) = ∂f1

∂x1
+ ∂f2

∂x2
(5.6)

The stability of the system depends on the magnitude of det(J) and Tr(J); it
is possible to identify the following cases [14]:

1st CASE: Tr(J) < 0, det(J) > 0, ∆ > 0

The eigenvalues are real and negative and so, the stationary state is stable be-
longing to a stable node. The perturbations decay.
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2nd CASE: Tr(J) > 0, det(J) > 0, ∆ > 0

The eigenvalues (λ1, λ2) are both real and positive; the exponential term eλi in
the equation 5.2 increased monotonically in time belonging to an unstable node
where the perturbation grows exponentially.

3rd CASE: Tr(J) < 0, det(J) > 0, ∆ < 0

In this case the eigenvalues (λ1, λ2) are complex with the negative real part of
λ1 and λ2. The perturbations may be written as:

∆x = c1e
IR(λt)cos(II(λt) + θ1)

∆y = c2e
IR(λt)cos(II(λt) + θ2)

(5.7)

This represents a damped oscillatory motion and due to the decay term, the
system returns to its original stationary state belonging to a stable focus.

4th CASE: Tr(J) > 0, det(J) > 0, ∆ < 0

The eigenvalues are complex while the real part of (λ1, λ2) is positive. The result
is that the perturbations grow diverging with an oscillation motion. It belongs to
an unstable focus.

5th CASE: Tr(J) > 0 or Tr(J) < 0, det(J) < 0, ∆ > 0

The eigenvalues of the system are real, one positive and one negative; the eigen-
value with positive root increase in time, while the negative decrease exponentially.
The exponential term dominates the system that moves away to the stationary state
leading the system to a saddle point.

6th CASE: det(J) = 0

If the determinant of the Jacobian matrix is equal to zero, the eigenvalues (λ1, λ2)
are both real leading the system to a saddle node bifurcation. In order to describe
the correct behaviour of the system it is important to consider also the nonlinear
terms.
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7th CASE: Tr(J) = 0, det(J) > 0, ∆ < 0

The eigenvalues are both complex with the real part equal to zero; this condi-
tion may lead the system to a critical point (Hopf bifurcation) where the system’s
stability changes. The stability of equilibrium points has been summarized in Fig.
5.2.

Figure 5.2: Phase Diagram

The discussion about the stability of the dynamical system can be easily ex-
tended to a nth order autonomous differential equation:

ẋ = F (x, λ), x ∈ IRn, λ ∈ IRk (5.8)

When the system is in equilibrium (x0, λ0) the left hand-side of the equation is
nil. The idea is to find the set of state variables x and the continuation parameters
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that satisfy the following equation F (x, λ) = 0.

One of the challenge in the scientific world is to determine the root of nonlinear
differential equation, that depends not only on the state variables of the system, but
also on the continuation parameter λ. Assuming that F (x, λ) is a smooth function
in IRn it is possible to calculate the state variable x by Newton’s method [15].

xn+1 = xn − JF (xn)−1F (xn) (5.9)

where JF is the Jacobian of F :

Fx(x,0) = ∂F (x,0)
∂x

(5.10)

The main issue of Newton’s method is the initial guess for the iterations; for
instance, the homotopy method may be used to get the first initial point on the
curve and then using the continuation method to trace the original curve F (x, λ).
Solving the nonlinear equation with Newton’s algorithm the singularity of Jacobian
Fx(x, λk) may be occur in correspondence of a turning point.

5.1.1 Stability Computation with Hill’s Method

Consider a periodically non-autonomous dynamical system governed by the N th

order differential equation [16]:

Ẋ(t) = F (t,X(t), λ) (5.11)

The stability of periodic solution X(t) has been studied by superimposing a
small disturbance x(t), yields:

X(t) = X0(t) + x(t) (5.12)
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5.1 – Numerical Bifurcation

Assuming that the disturbance is linear and expanding the response X(t) in
Taylor series with respect to X0, so that:

ẋ(t) = J(t)x(t) = ∂F

∂X
(t,X0(t), λ0) (5.13)

where J(t) is the Jacobian matrix at (X0, λ0).

ẋ(t) = J(t)x(t) = ∂F

∂X
(t,X0(t), λ0) (5.14)

Consider a linear dynamical system with N -dofs having N linearly independent
solutions qn(t) so that the response x(t) may be written as follows:

x(t) =
NØ
n=1

cnqn(t) (5.15)

where cn is a constant vector having N constants depending on the boundary
conditions of the system. The linearly independent solutions qn(t) of the system
may be expressed, according to the Floquet theory [16], as:

qn(t) = pn(t)eαnt (5.16)

Where pn(t+T ) = pn(t) is a periodic vector and αn are complex numbers called
Floquet exponents; it has been imposed that the function pn(t) has T -periodicity,
so that:

qn(t + T ) = pn(t + T )eαn(t+T ) = qn(t)eαnt (5.17)

The Floquet exponents are used within the Hill’s method to determine the sta-
bility of the periodic response. In case of non-autonomous systems: if the real part
of the Floquet exponent is real and negative the periodic solution is asymptotically
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stable; while if real and positive the solution tends to increase exponentially driving
the system to an unstable periodic solution. The periodic function pn(t) may be
expressed by Fourier series, yields:

pn(t) =
+∞Ø

k=−∞
pkneikΩt, Ω = 2π

T
(5.18)

where Ω is the fundamental frequency and combining the Eq.s 5.18 and 5.16, it
has been possible to get the fundamental solution qn(t) as an infinite sum of har-
monics.

qn(t) =
+∞Ø

k=−∞
pkne(ikΩ+αn)t (5.19)

also the Jacobian is T -periodic, and so it can be written in Fouries series as:

J(t) =
+∞Ø

h=−∞
JheihΩt (5.20)

it yields:

q̇(t) = J(t)qn(t) =
+∞Ø

h=−∞
JheihΩt

+∞Ø
k=−∞

pkne(ikΩ+αn)t

=
+∞Ø

k=−∞

+∞Ø
h=−∞

Jhpkne[i(k+h)Ω+αn]t

(5.21)

that is equal to the first time derivative of the perturbation function:

+∞Ø
k=−∞

pkn(ikΩ + αn)e(ikΩ+αn)t =
+∞Ø

k=−∞

+∞Ø
h=−∞

Jhpkne[i(k+h)Ω+αn]t (5.22)
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since the sums range between minus and plus infinity it is possible to replace
k = k − h in the right-hand side, as follows:

+∞Ø
k=−∞

 +∞Ø
h=−∞

Jhpk−hn − pkn(ikΩ + αn)
e(ikΩ+αn)t = 0 (5.23)

the Eq. 5.23 may be written as an eigenproblem:

(H − sI)u = 0 (5.24)

where H is the Hill matrix, I is the identity matrix and u is an infinite-
dimensional vector, where skn = ikΩ + αn and ukn = pkn. The idea is to calculate the
set of skn solving the eigenproblem, so that it is possible to evaluate αn determining
the set of stability solutions [16]. The Fourier series has been truncated to the H
order so that a system of N(2H + 1) unknowns has to be solved.

5.1.2 Hill’s Method applied to ANM

The stability analysis in case of nonlinear smooth systems can be performed
combining the Hill’s method with the HBM and ANM. When the system is nonlin-
ear the most expensive operation in terms of computational time is the assembly
of the Jacobian matrix; nevertheless, this operation can be efficiently implemented
using the ANM since the system is quadratically recast before the computation of
the Jacobian [16]. A generic quadratic system may be written as:

m(Ż) = c(t, λ) + l(t,Z, λ) + q(t,Z,Z, λ) (5.25)

where c, l, q are the constant, linear and quadratic operators in Z, respectively.
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Even in this case the periodic solution can be extended in Fourier series:

Z(t) =
HØ

k=−H
Z0e

ikΩt (5.26)

Also the Jacobian can be quadratically recast as follows:

J(t) = JC(t, λ0) + JL(t,Z0, λ0) + JQ(t,Z0,Z0, λ0) (5.27)

where JC , JL, JQ are the constant, linear and quadratic Jacobian matrices. Once
calculated the Jacobian matrix, the same procedure explained in Section 5.1.1 has
been followed to determine the stability of periodic solutions.

In the next chapter has been explained how to solve a nonlinear differential
equation using an alternative method for the frequency-based HBM, where no FFT
and Newton’s method are needed to compute the response of the system in the fre-
quency domain. In addition, the ANM, instead of corrector-predictor scheme, has
been used as continuation algorithm to trace the curve F (x, λ) while the stability
of bifurcation points have been computed using the Hill’s method combined with
HBM and ANM.

5.2 Frequency-Based HBM for Continuation Method

In the world of nonlinear dynamics, it is common to deal with numerical method
to solve nonlinear differential equations. The idea is to use the harmonic balance
method (HBM) and the continuation method (ANM) to compute periodic solution
of dynamical systems described by means of smooth equations. The aim of this
method is to recast the system in a quadratic arbitrary polynomial form before
applying the harmonic balance. Using the proposed HBM with ANM, it has been
possible to avoid the Fast Fourier Transform within the AFT method. The aim of
the Asymptotic Numerical Method is to write the equation of motion of a nonlinear
system in quadratic form. The quadratic recast does not represent a limitation
because a mechanical system with quadratic and cubic geometric nonlinearities may
be easily recast in quadratic form introducing auxiliary variables [17].
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5.2.1 Quadratic Recast of an Autonomous System

The idea is to consider an autonomous system of differential equations:

Ẋ = F (X, λ) (5.28)

where X is the state vector of unknowns, F the smooth nonlinear vector and
λ the continuation parameter. The quadratic recast of non-autonomous (forced)
system has been treated separately. All the nonlinearities of the system, Eq. 5.28,
have been recast in a quadratic polynomials as follows:

m(Ż) = c + l(Z) + q(Z, Z) (5.29)

The Eq. 5.29 is a hybrid equation because contains differential al algebraic
equations; the vector Z has the original components of Y plus some new variables
introduced to get the quadratic form. The operators c, l(·), q(·, ·) are the contant,
linear and quadratic vectors with respect to the unknown vector Z; while m(·) is the
linear vector operator with respect to the entry vector Ż. Also a nonlinear system
with a quadratic polynomial nonlinearities can be solved using the HBM with ANM
continuation method [17].

5.2.2 Quadratic Recast of a Periodically Forced System

Consider a periodically forced (non-autonomous) system (Eq. 5.30):

Ẋ = F (t, X, λ) (5.30)

where F is a periodic smooth function in t with a forcing period equal to T .
The idea is to recast the system in a quadratic form as in the case of autonomous
systems and then to calculate the periodic solution with a period pT or T/p (p is
an integer). An example of periodically forced system is the Duffing Oscillator pre-
sented in Chapter 4.
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mẍ + cẋ + kx + βx3 = F0cos(λt) (5.31)

Assume the damping c and the force amplitude F0 constant while the linear stiff-
ness and the mass are equal to one so that the first natual frequency of the linear
system is ωn = 1; use the forcing frequency λ as continuation parameter. Introduc-
ing the auxiliary variable r(t) = x2(t) and writing the equation of motion in state
space, yields:

y = ẋ

0 = r − x2

ẏ = F0cos(λt) − cy − x − βxr

(5.32)

The Eq. 5.32 may be recast as:

m(Ż) = c(t, λ) + l(Z) + q(Z, Z) (5.33)

where Z = [x, y, r]T , while the continuation parameter λ has been included
within the constant operator. The forcing frequency is strictly related to the fre-
quency response of the system as:

λ = jω, j = 0,1,2, ..., p (5.34)

The constant term c(t) is then expanded in Fourier series with respect to ω. The
continuation parameter λ is not an unkown, since it has been chosen as multiple of
ω. This assumption is valid only if the response is synchronous with respect to the
forcing frequency, that means considering the phase equal to zero.
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Introducing the auxiliary variables (arbitrary choice) the unknowns are splitted
in U and Uaux:

U = (x, λ)

Uaux = (r)

Utot = (U, Uaux) = (x, λ, r)
(5.35)

where Uaux is the vector of the auxiliary variables and Utot is the full vector of
unknowns. The residue function of the full vector of unknowns may be written as:

Rtot (Utot) =
C

R
Raux

D
= Rquad(Utot) + Rfun (Utot) (5.36)

The total residue function can be splitted in the function that are quadratic
Rquad and the elementary transcendental function quadratically recast Rfun. The
residue of an elementary function has to be differentiated (dRfun) and since it is an
elementary trascendental function, its differentiated form is quadratic. Therefore,
the residue R(X, λ) may be written as follows [18]:

Rtot (Utot) = [C + L (Utot) + Q (Utot, Utot)] + [Ld (Utot) − f (Utot)] (5.37)

where C(·), L(·), Q(·, ·) are the constant, linear and quadratic operators, re-
spectively; while f(Utot) is a non-quadratic trascendental function that has to be
differentiated to become quadratic.

∂Rtot

∂Utot

= L + Q (Utot, ·) + Q (·, Utot) + Ld − ∂f

∂Utot

(·)

= L + Q (Utot, ·) + Q (·, Utot) + Ld − Qd(Utot, ·)
(5.38)
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where the operator Qd is the bi-linear operator of the differentiated form of
f(Utot). In order to decrease the computational time the system quadratically re-
cast may be written in sparse tensorial formalism.

Ri = Ci +
MØ
j=1

LijXj +
MØ

j,k=1
QijkXjXk, 1 ≤ i ≤ N (5.39)

where Ci, Lij and Qijk are the constant, linear and quadratic sparse tensors,
respectively.

5.2.3 The HBM applied to a Quadratic System

The harmonic balance method has been applied to the system of equations 5.33,
where the unknown vector Z has been decomposed into Fourier series considering
H harmonics [17].

Z (t) = Z0 +
HØ
k=1

[Zc,k cos (kωt) + Zs,k sin (kωt)] (5.40)

All the coefficient of the Fourier series have been collected into a column vector
U having the size of (2H + 1) × Ne, where Ne represents the number of equations
quadratically recast.

U =
è
ZT

0 , ZT
c,1, ZT

s,1, ZT
c,2, ZT

s,2, ... , ZT
c,H , ZT

s,H

éT
(5.41)

Substituting the eq. 5.40 in 5.33 and collecting the terms with the same har-
monics, yields:

ωM(U) = C + L(U) + Q(U, U) (5.42)
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The system 5.42 contains (2H + 1) × Ne algebraic equations in (2H + 1) × Ne

unknowns plus the continuation parameter λ and the angular frequency ω.

Once applied the HBM, the algebraic system R(U) = 0 ∈ IRN with U =è
UT , λ, ω

éT
has to be solved. (N = (2H + 1) × Ne + 1).

5.2.4 The Continuation Method applied to a Quadratic Sys-
tem

The output of the harmonic balance method is an algebraic system of equation
that may be written as follows:

R(U) = 0 (5.43)

Within the continuation method the parameter λ becomes an unknow; the arc-
length parametrization has been used to plot the curve when the continuation pa-
rameter is changing. The continuation step has been computed from the starting
point U0 = (x0, λ0) of the analytic function R(x, λ) while U1 = (x1, λ1) is the unitary
tangent vector at U0. The idea is to compute the Taylor series, truncated at pth or-
der, of the arch-length parameter a = (u − u0)· u1+(λ − λ0)·λ1 = (U − U0)·U1 [18].

U (a) = U0 + aU1 + a2U2 + a3U3 + . . . + apUp (5.44)

Substituting the Eq. 5.44 in Eq. 5.43:

R (U (a)) = R (U (0)) + aR1 + a2R2 + a3R3 + . . . + apRp (5.45)
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where:

R1 = dR

da

----
a=0

= ∂R

∂U
U1

R2 = 1
2

d2R

da2

----
a=0

= ∂R

∂U
U2 − F2 (U1)

R3 = 1
3!

d3R

da3

----
a=0

= ∂R

∂U
U3 − F3 (U1, U2)

...

Rp = 1
p!

dpR

dap

----
a=0

= ∂R

∂U
Up − Fp (U1, . . . , Up−1)

(5.46)

The function FK with k = 1,2, ..., p depends only on the parameters already com-
puted in the series. All the residue Rk share the same Jacobian matrix ∂R

∂U
=
è
∂R
∂x

, ∂R
∂λ

é
at U0. The arc-length parameter has been computed inside the domain [0, amax] set-
ting the residue less than Ôr, reasonably small, the maximum admissible value of a
can be written as:

|R (U (a)) − R(U (0))| < Ôr, a ∈ [0, amax] (5.47)

assuming that R (U (a)) − R(U (0)) = ap+1Rp+1:

amax =
3

Ôr
||Rp+1||

4 1
p+1

(5.48)

The series has been computed by imposing all the coefficients ak of the series
equal to zero as follows:

0 = C + L
NØ
k=0

akUk + Q

A
NØ
k=0

akUk,
NØ
k=0

akUk

B
, k = 1,2, ..., p (5.49)

68



5.2 – Frequency-Based HBM for Continuation Method

The original nonlinear problem has been written as a series of linear algebraic
equations. The series expansion represents only one section of the entire branch of
solutions, to determine the full path of the curve, the calculation of the series must
be repeated taking the forward U0 as starting point. Since it has been used the
ANM continuation method, the solution branch can be calculated section by section
solving a linear algebraic system of equations. The bifurcation points may be easily
traced with a small perturbation thanks to the high-order Taylor series expansion
[17].

Overall, the entire procedure has been performed in frequency domain where an
arbitrary number of harmonics may be used to solve the analytical system, therefore
there is no need to discretize the system in time. Since the ANM works in frequency
domain, the FFT and IFFT are not needed anymore, the consequence is a gain
in terms of computational time with respect the AFT. As already explained, the
Jacobian has been calculated analytically since the system has been quadratically
recast.

5.2.5 Numerical Results of Duffing Oscillator

The nonlinear frequency response of a system governed by Duffing’s equation
has been traced using the frequency-based HBM and ANM as continuation method.
The equation of motion of a damped forced Duffing oscillator for hardening system
(β > 0) may be written as follows:

ẍ + 2ζωnẋ + ω2
nx + β

m
x3 = F0

m
cos(λt) (5.50)

assuming the mass m, the linear stiffness k and cubic nonlinear stiffness β equal
to one, so that:

ẍ + 2ζẋ + x + x3 = F0cos(λt) (5.51)

The amplitude of the system can be obtained by summing the individual ampli-
tude Xi = √

xc,i + xs,i of the odd harmonics, while the even harmonics are all zero
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5 – Asymptotic Numerical Method

because of the quadratic term in the Duffing’s equation has been neglected. The
plot of the sine and cosine coefficients has been reported in Fig.5.3.
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Figure 5.3: Individual Amplitude of Duffing Oscillator (H=25, F0=1, 2ζ=0.05,
ωn=1, β=1)

In Fig.5.3 have been plotted the individual amplitudes sine (xs,i) and cosine (xc,i)
contribution in the frequency response of Duffing oscillator. It has been possible to
notice that, in correspondence of the resonance peak, the sine component is max-
imum while the cosine is nil. The dots-lines represent the unstable branch of the
nonlinear frequency response. The stability analysis has been done within MAN-
LAB 4.0 according to the Hill’s method.

The nonlinear frequency response of Duffing oscillator has been plotted in Fig.5.4
using 25 harmonics (H=25) during the harmonic balance procedure. The typical
nonlinear response of a hardening system as well as the super-harmonic resonances
may be observed.
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Figure 5.4: Nonlinear Frequency Response of Duffing Oscillator (H=25, F0=1,
2ζ=0.05, ωn=1, β=1)

The super-harmonic resonances comprising all the frequencies multiple of the
forcing frequency ω. Although the amplitude of the super-harmonics is much smaller
than the main resonance peak, in case of contact’s study, it plays an important rule.
In case of periodic forcing function F0cos(ωt), the response of the system may be
written as:

x (t) = x0 +
HØ
i=1

[xc,i cos (kiωt) + xs,i sin (kiωt)] (5.52)

Where H is the number of harmonics considered to compute the harmonic bal-
ance, for instance considering only the odd harmonics, the response of the system
is equal to:

x (t) = xc,1 cos (ωt) + xs,1 sin (ωt) + xc,2 cos (3ωt) + xs,2 sin (3ωt)

+xc,3 cos (5ωt) + xs,3 sin (5ωt) + . . .
(5.53)
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5 – Asymptotic Numerical Method

where the third harmonic is the first super-harmonic of the system represented
by the Duffing equation. In the contrary, all the harmonics submultiple of the fun-
damental frequency (ω/3, ω/5, ω/7, . . . ) are called sub-harmonics. The response of
the system can be written as:

x (t) = x0 +
HØ
i=1

5
xc,i cos

3
ω

ki
t
4

+ xs,i sin
3

ω

ki
t
46

(5.54)

considering only the odd harmonics:

x (t) = xc,1 cos (ωt) + xs,1 sin (ωt) + xc,2 cos
3

ω

3 t
4

+ xs,2 sin
3

ω

3 t
4

+xc,3 cos
3

ω

5 t
4

+ xs,3 sin
3

ω

5 t
4

+ . . .
(5.55)

The Duffing Oscillator described by the Eq.5.51 may show a chaotic motion
within a certain range of parameters. It has been possible to notice a strong nonlin-
ear behaviour of the system in correspondence of the super-harmonics resonances,
as shown in Fig.5.5. In order to better understand the chaotic behaviour of the
Duffing oscillator the phase diagram have been plotted in Fig.5.5 at the points
(P1, P2, P3, P4). Even if the forcing term is harmonic in time, the system may
responde as a random motion (Fig.5.8) with a strong sensitivity with respect to the
initial conditions.

At the primary resonance peak the corresponding phase diagram has the shape
of an ellipse, while at point P4 the system behaves as a chaotic motion having four
bases of attraction (attractors). The time spectrum at the super-harmonic resonance
P4 shows a chaotic motion similar to a random vibration.
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Figure 5.5: Superharmonics of Duffing Oscillator (H=25, F0=1, 2ζ=0.05, ωn=1,
β=1)
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Figure 5.6: Phase Diagram of Duffing Oscillator (H=25, F0=1, 2ζ=0.05, ωn=1,
β=1)
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Figure 5.7: Linear Time Evolution of Duffing Oscillator (β=0)
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Figure 5.8: Nonlinear Time Evolution of Duffing Oscillator

In Figure 5.7 has been showed the time evolution of periodically forced Duffing
oscillator with vanished nonlinear cubic stiffness (β=0). As expected, the response
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5.2 – Frequency-Based HBM for Continuation Method

of the system, as well as the time evolution of the velocity, are periodic. Neverthe-
less, the in Fig.5.8 the system has a chaotic behaviour, as already explained above,
in correspondence of the second super-harmonic resonance.
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Figure 5.9: Primary Resonance of Duffing Oscillator

The primary resonance of Duffing oscillator with positive cubic stiffness (β > 0)
has been plotted in Fig. 5.9; it shows the typical bend shape of hardening system
where two stable points and one unstable have been identified. Nevertheless, at
low frequency the system is dominated by the nonlinear stiffness while, the force
amplitude F0 is responsible of the magnification and the bend shape of the pri-
mary resonance peak. At high frequency the inertia of the mass dominates the
system that tends to have a behaviour like the linear one. The Duffing oscillator
is characterized by the jump phenomenon and it is typical of all the nonlinear sys-
tems governed by the Duffing’s equation [19]. Starting from the high-frequencies
and going backward in the spectrum the system with an upward jump reaches a
different domain of attraction due to the presence of the unstable branch; quite
the opposite, following the path from lower to higher frequencies the system with
a downward jump gets the stable branch. The dashed line represents the unstable
branch of the frequency response computed using the asymptotic numerical method.
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Chapter 6

Validation of Stiffness Evaluation
Procedure

The stiffness evaluation procedure (STEP) is a non-intrusive displacement-based
indirect method to evaluate the nonlinear modal stiffness coefficients starting from
an arbitrary finite element model. The aim of this chapter is to validate the
displacement-base indirect method in case of 3D and shell elements, comparing the
results of nonlinear quadratic and cubic coefficients with the following two papers:

1st Test Case: Clamped-Clamped 3D Beam
“Dynamique non-lineaire des structures mecaniques : application aux systemesa

symetrie cyclique” - Aurélien Grolet, PhD Thesis - [2]

2nd Test Case: Simply Supported Plate
“Dertermination of nonlinear stiffness with application to random vibration of

geometrically nonlinear structures” - Alexander A. Muravyov, Stephen A. Rizzi ,
NASA Langley Research Center - [1]

The entire procedure to evaluate the nonlinear stiffness of the quadratic and
cubic tensors has been widely explained in Section 3.3.3. Nevertheless, the stiffness
evaluation procedure has been coded within the Code Aster environment using the
Python language. Considering the nonlinear dynamical system governed by the fol-
lowing equation:

MẌ (t) +CẊ (t) +KX (t) + Γ (X (t)) = F (t) (6.1)
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6 – Validation of Stiffness Evaluation Procedure

The tensor entries arjk and brjkl have been calculated prescribing the nodal dis-
placement in linear and nonlinear static solutions; the nonlinear modal stiffness force
vector may be expressed as:

γr (q1, q2, . . . , qL) =
LØ
j=1

LØ
k=j

arjkqjqk +
LØ
j=1

LØ
k=j

LØ
l=k

brjklqjqkql (6.2)

An example of Python script to evaluate the nonlinear stiffness, using operators
available in Code Aster, has been reported in Fig. 6.1.

Figure 6.1: Example of Python Script in Code Aster (2nd Loop)

The operator CREA_CHAMP has been used to create a field of nodal dis-
placement associated to the first L-mode shapes. The nonlinear forces have been
computed with the operator CALCUL prescribing the field of nodal displacements
DU. Within the operator CALCUL has been possible to perform the linear (PETIT)
and nonlinear (GROT_GDEP) static analysis to evaluate the entries of nonlinear

78



6.1 – Clamped-Clamped 3D Beam

quadratic and cubic tensors. The Code Aster script has been validated against the
NASTRAN script, written by NASA, comparing the nonlinear stiffness terms for a
simply supported plate.

6.1 Clamped-Clamped 3D Beam

The verification studies have been done using a finite element model of 3D beam,
shown in Fig.6.2, having the following material properties:

E = 210 GPa, ν = 0.3, ρ = 7800 kg

m3 (6.3)

where E is the Young’s modulus (or elastic modulus), ν is Poisson’s ratio and ρ
the mass density. The proportional viscous damping (C = 3M) has been used for
the computation of the nonlinear forced response of the beam. The dimensions have
been reported in Tab. 6.1, where L is the length of the beam and S the measure of
its cross section.

L 1 m
S (0.03×0.03)m2

Table 6.1: Dimensions of 3D Beam

x

y z

Figure 6.2: Finite Element Model of 3D Beam
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6 – Validation of Stiffness Evaluation Procedure

The mesh has been done using the isoparametric solid element HEXA20, that
means to have 20 nodes per each brick element. To build the FEM, 10 elements along
the length and 2×2 elements on the cross section have been used. The clamped-
clamped beam has 297 active nodes and 891 total degrees of freedom.

Before using the STEP, it is important to proper select the modes to consider
within the modal basis Φ. The idea is to check the modal forces, calculated during
the STEP, prescribing the nodal displacements of the first mode-shape in linear and
nonlinear static solution.

FT = FL + FNL = KXc + Γ (Xc)

FNL = Γ (Xc) = FT − FL
æFNL = ΦTFNL

(6.4)

The modal forces of the first 34 modes have been reported in Fig. 6.3, where it
seems reasonable to consider only the first bending (1B) and the fourth axial (4A)
eigenvector as modal basis.
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Figure 6.3: Modal Forces 3D Beam prescribing 1B
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6.1 – Clamped-Clamped 3D Beam

Mode Frequency Modal Force
1B 160 Hz 1026 Nm
4A 10426 Hz -518 Nm

Table 6.2: Selected Modes 3D Beam

In Tab. 6.3 have been reported the nonlinear quadratic and cubic terms of non-
linear modal stiffness evaluated taking the 1st transversal mode (bending) and the
4th longitudinal mode (axial) as selected modes in the modal basis used to formulate
the reduced order model of the 3D beam.

a2
11 a1

21 b1
111 b2

222 b2
211

EF 3D SAMCEF -5.1664e8 -1.033e9 1.6308e9 1.15e11 1.3040e10
CODE ASTER -5.2497e8 -1.0499e9 1.6734e09 1.13e11 1.3395e10

Table 6.3: 3D Beam Quadratic and Cubic Tensor’s entries
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0.01
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0.0 2

0.025

Full Model

Linear Model

Figure 6.4: Nonlinear Forced Response of 3D Beam (center beam node y-axis) using
H=3 with a forcing amplitude F0=200 N

Even if the quadratic and cubic entries of the stiffness tensors have been calcu-
lated, within Code Aster, with a maximum relative error less than 3%, the nonlinear
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6 – Validation of Stiffness Evaluation Procedure

frequency response of the 3D beam model, traced with ANM continuation, doesn’t fit
the full response of the structure evaluated with an in-house HBFEM (using libMesh
and LOCA). Computing the nonlinear modal forces as æFNL = ΦT (FT −FL) seemed
reasonable to consider only the 1B and 4A, since they had the greater modal con-
tribution, while the others modal forces associated to the remaining modes, were
almost nil.

Due to the fact that the nonlinear response computed solving the ROM of 3D
beam is far from the response of the full model, further investigations have been
done in Chapter 8.

6.2 Simply Supported Plate

The same procedure to compute the nonlinear stiffness coefficients has been used
for a simply supported plate having the following material properties:

E = 73 GPa, ν = 0.3, ρ = 2763 kg

m3 (6.5)

The finite element model has been built using the DKT plate element element
available in Code Aster, since no others shell elements compatible with the large de-
formation assumption are implemented within the software. The rectangular plate
has the dimensions reported in Table 6.4.

b 254 mm
l 355.6 mm
s 1.02 mm

Table 6.4: Dimensions of Rectangular Plate

where b, l, s are the base, length and the thickness, respectively. The mesh has
been built in such a way to have 56 elements along the length and 40 elements along
the base with a total of 2145 active nodes. The rectangular plate has 12870 active
degrees of freedom because the DKT elements have 6 dofs per each node of the mesh.
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6.2 – Simply Supported Plate

The modal nonlinear forces æFNL, shown in Fig. 6.5, have been calculated pre-
scribing the nodal displacement field associated to the first mode-shape (1M) on the
first 25 modes within the 1st loop of the STEP method.
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Figure 6.5: Modal Forces Simply Supported Plate prescribing 1B

Following the Nasa paper [1], only the first (1M) and fourth (4M) mode-shape
have been considered to compute the reduced order model (ROM).

Figure 6.6: 1st and 4th Mode-shape of the Simply Supported Plate

Nevertheless, also the eighth (8M) and eleventh (11M) eigenvector give a non-
negligible contribution in the nonlinear response of the system, as shown in Tab. 6.5.
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6 – Validation of Stiffness Evaluation Procedure

Mode Frequency Modal Force
1M 58.3 Hz 4240 Nm
4M 215.8 Hz -554 Nm
8M 367.2 Hz -2380 Nm
11M 523.55 Hz -2254 Nm

Table 6.5: Selected Modes Simply Supported Plate

The quadratic and cubic entries of the stiffness tensors, considering only 1M and
4M as selected modes within the stiffness evaluation procedure, have been reported
in Tab. 6.6. The maximum relative error is less than 4%.

b1
111 b1

112 b1
122 b2

111 b2
222

NASA 4.109e12 1.722e12 2.273e13 5.550e11 6.818e13
CODE ASTER 4.077e12 1.744e12 2.181e13 5.459e11 6.599e13

Table 6.6: Simply Supported Plate Cubic Tensor’s entries

More in detail, the QUAD4 instead of DKT element has been used in the Nasa
reference paper; nevertheless, the nonlinear stiffness coefficients fit the tensors en-
tries calculated by the Nasa. The cross section of DKT shell elements remains
perpendicular to its neutral axis, and so no rotations of the cross section are allowed
in this model. The simply supported plate means that the structure is clamped at
its edges where only the rotations DRX, DRY, DRZ are allowed.
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Chapter 7

Nonlinear Frequency Response of
an Inclined Plate

In this chapter has been explained how to model the contact as smooth function
to simulate the tip-rubbing phenomenon. Since the contact has been modelled as
smooth function, it has been possible to apply the ANM continuation method to
trace the nonlinear response of the structure. In order to better understand all the
phenomena linked to the contact and geometric nonlinearities, an inclined straight
plate has been used as case study. The idea is to test if the ANM is also effec-
tive to solve regularized non-smooth dynamics problems like vibrating systems with
contact conditions and friction laws. Instead of using the modal truncation, the
Craig-Bampton method has been adopted to formulate the reduced order model of
the structure where the RITZ basis has been used as reduction matrix of the sys-
tem. Finally, a comparison between the 3D isoparametric solid element and shell
element has been done to find out the more suitable element type to adopt within
the computation of nonlinear frequency response (NFR) including contact and large
deformations.

7.1 Smooth Function for Tip-Rubbing

The idea is to regularize non-smooth function to study the tip-rubbing using
the ANM continuation method to solve the nonlinear system. Consider a 1 DOF
mechanical system in Fig.7.1 governed by the Duffing’s equation:

mẍ + cẋ + kx + βx3 = Fext(t) + FN(x) (7.1)
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7 – Nonlinear Frequency Response of an Inclined Plate

where ẍ and ẋ are the first and second time derivatives of the displacement x;
β is the nonlinear cubic stiffness while Fext and FN are the external periodic force
and the normal contact force acting on the system, respectively.

Figure 7.1: Duffing Oscillator with External Contact Force

The contact phenomenon is a non-smooth problem where the normal contact
force may be written as follows [20]:

FN =


−kc(x − g) if g = 0

0 if g > 0
(7.2)

where kc is the contact stiffness (kc >> k) and g is the gap between the mass
m and the casing. If the gap is greater than zero means that there is no contact
phenomenon, and so the system is governed by the classical Duffing’s equation;
otherwise, if the gap is nil an additional external contact force must be considered
during the computation of the nonlinear forced response.
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7.1 – Smooth Function for Tip-Rubbing

In case of contact-friction a 2 DOFs model in Fig.7.2 must be introduced due to
the presence of the tangential component of the force. The system has been mod-
elled as a belt representing the casing that rotates with the tangential velocity vt,
while the mass may oscillate along the normal and tangential direction.

Figure 7.2: 2 DOFs System to Model the Contact-Friction Phenomenon

where kt and kn are the tangential and normal contact stiffness, respectively.
The normal force Fn may be written as [21]:

Fn =


kn(xn − g) if g = 0

0 if g > 0
(7.3)

while the tangential force Ft is equal to:

Ft =


kt(ẋt − vt) if g = 0

µFn sign(ẋt − vt) if g = 0

0 if g > 0

(7.4)

The Coulomb model of friction has been used to state the tangential contact
force Ft, where µ is the coefficient of friction.
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7 – Nonlinear Frequency Response of an Inclined Plate

To regularize the non-smooth function that describes the contact law of the
structure, the Eq.7.5 must be introduced.

F 2
n − kn(x − g)Fn − Ô2

n = 0 (7.5)

Solving the Eq.7.5 two distinct real solutions may be found, nevertheless, only
the positive one is suitable to model the contact force function shown in Fig.7.3.

Fn = kn(x − g)
2 +

ó5
kn(x − g)

2

62
+ Ô2

n (7.6)
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Figure 7.3: Contact Force Function

The parameter Ôn defines the smoothness of the contact force function; decreas-
ing Ôn, less smooth the system will be.
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7.2 – Clamped-Free Inclined Plate

7.2 Clamped-Free Inclined Plate

The clamped-free straight plate has been modelled to study the nonlinear fre-
quency response including the contact and geometric nonlinearities. The plate has
a slope of 15 degrees with respect to the z-axis to simulate the inclination of a real
HP compressor blade, guaranteeing the perpendicularity between the tip-face and
the casing of the turbo-engine. The cantilever plate has been adopted to study the
tip-rubbing phenomenon, where the plate-root is clamped, and one contact tip node
has been considered. The material properties are stated below:

E = 210 GPa, ν = 0.3, ρ = 7800 kg

m3 (7.7)

The HEXA20 isoparametric solid element has been used to build the finite ele-
ment model of the structure where an uniform mesh of 15×15 with 4 elements along
the thickness has been used, so that the FEM has 4484 active nodes and 13452
degrees of freedom. The dimensions of the plate have been reported in Tab. 7.1.

x
y

z

Figure 7.4: Finite Element Model of 3D Inclined Plate
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7 – Nonlinear Frequency Response of an Inclined Plate

b 300 mm
l 800 mm
s 15 mm

Table 7.1: Dimensions of Inclined Plate

The computation of the nonlinear forced response has been done assuming the
proportional viscous damping (Rayleigh damping) equal to 3M .

7.2.1 RITZ basis as Reduction Matrix in STEP

The STEP method explained in Section 3.3.3 works in modal coordinates where
the modal truncation has been applied to reduced the size of the full system. Con-
sidering only the geometric nonlinearities the STEP method, using the modal trun-
cation is still valid. Nevertheless, in case of a structure including geometric and
contact nonlinearities, a new concept of STEP method must be introduced. Since
the contact problem has been formulated in real coordinate, it is important to have
the contact nodes of the structure in real coordinates.

The idea is to formulate the reduction problem no more in modal coordinate
but using the Craig-Bampton method, so that also the boundary nodes may be
considered. Within the STEP, instead of imposing the nodal displacement field
associated to the internal modes Φint, the RITZ basis has been used as reduction
matrix R. A comparison between the internal modes and the RITZ basis has been
presented below.

Internal Modes as Basis

The equation of motion of the system is in modal coordinates with q as set of
modal equations with reduced dofs:

çMq̈ + æCq̇ + æKq + åγ (q1, q2, . . . , qL) = æF , L ≤ N (7.8)
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7.2 – Clamped-Free Inclined Plate

where:

çM = ΦT
intMΦint = [I]

æC = ΦT
intCΦint = [2ζrωr]

æK = ΦT
intKΦint = [ω2

r ]

åγ = ΦT
intΓ

æF = ΦT
intF

(7.9)

The eigenvalue problem has been solved considering the root and tip both clamped,
because to impose the contact, the real coordinates of the tip must be preserved
within the reduced order model. Prescribing the nodal displacement field of the
first bending on the first 100 modes of the system, it has been possible to find out
the coupled modes of the structure.
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Figure 7.5: Modal Forces Inclined Plate prescribing 1B on 100 modes

In Fig.7.5 has been plotted the nonlinear modal forces F̃NL = ΦT (FT − FL),
while the non-negligible modal forces are shown in Fig.7.6.
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7 – Nonlinear Frequency Response of an Inclined Plate

1A (5100Hz; -27.1Nm)

1B (84Hz; 279Nm)
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Figure 7.6: Coupled Modes in terms of Modal Forces of the Inclined Plate prescribing
1B

Mode Frequency Modal Force
1B 84 Hz 279 Nm
1A 5100 Hz -27.1 Nm

Table 7.2: Selected Modes Inclined Plate

Figure 7.7: 1st Bending and 1st Axial Mode-shape of the Inclined Plate

Using the internal modes listed in Tab.7.3 the nonlinear frequency response of
the tip-node along z-axis has been plotted in Fig.7.8.
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7.2 – Clamped-Free Inclined Plate
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Figure 7.8: NFR of Tip Contact Node along z-axis - H=50, F0=20 N, gap=0.6 mm,
Ôn=1.5, µ=0.1, kc=106 N/m.
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Figure 7.9: Frequency Response of Tip Contact Node along z-axis, comparison
between Contact and Geometric Nonlinearities using the internal modes as basis -
H=50, F0=20 N, gap=0.6 mm, Ôn=1.5, µ=0.1, kc=106 N/m.
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7 – Nonlinear Frequency Response of an Inclined Plate

It has been possible to notice that the contact-node is not affected by the geomet-
ric nonlinearities since the plate has been clamped for the computation of quadratic
and cubic stiffness tensors during the stiffness evaluation procedure. Therefore, us-
ing the internal modes as reduction basis, only the contact nonlinearities can be
caught, and the hypothesis of large deformation is not valid anymore. As shown in
Fig.7.9, the structure in absence of contact behaves as a linear system because the
geometric nonlinearities act only on the internal nodes.

To demonstrate that the system behaves as linear in absence of contact, the
nonlinear forced response has been plotted (Fig.7.10) increasing the amplitude of
the external periodic force and the gap between the tip-plate and the casing.
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Figure 7.10: Nonlinear Frequency Response of Tip Contact Node along z-axis using
the internal modes as basis - H=50, F0=200 N, gap=10 mm, Ôn=0.5, µ=0.1, kc=106

N/m.
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7.2 – Clamped-Free Inclined Plate

Reduction Matrix as Basis

The Ritz basis has been used as reduction matrix to build the reduced order
model of the structure. The Craig-Bampton method, explained in Section 3.2.3,
has been useful to capture the dynamics of the full system taking into account the
internal modes and the static modes on the boundary. The equation of motion of
the system may be written as:

C
KII KIB

KBI KBB

D C
xI
xB

D
− ω2

C
MII MIB

MBI MBB

D C
xI
xB

D
=
C

0
fB

D
(7.10)

where xB and xI are the boundary and internal degrees of freedom of the struc-
ture, respectively.

Following the same procedure adopted in CBM, it has been possible to assemble
the RITZ basis used as reduction matrix within the stiffness evaluation procedure.

R =
ΦI Ψ

0 I

 (7.11)

Where ΦI is the matrix containing all the internal modes of the structure that
has been calculated solving the eigenvalue problem associated to the internal degrees
of freedom of the structure considering the tip-nodes clamped; Ψ is the matrix of
the static modes at the boundary of the structure. The idea is to select only the
coupled internal modes keeping all the static modes on the boundary. Imposing
the reduction matrix R as basis into the STEP, it has been possible to include also
the contribution comes from the static modes at boundary (tip). The equation of
motion of the reduced nonlinear structure may be written as:

MRẍ+CRẋ+KRx+ γ (xL1 , xL2 , . . . , xLL
, xB1 , xB2 , . . . , xBN

) = FR (7.12)
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7 – Nonlinear Frequency Response of an Inclined Plate

MR = RTMR

CR = RTCR

KR = RTKR

γ = RTΓ

FR = RTF

(7.13)

where xL holds the amplitude of the internal modes, it ranges between one and
the number of selected internal modes, while xB is the vector of amplitude of the
tip-nodes having the size of the degrees of freedom of boundary nodes. Instead of
prescribing only the nodal displacement field of the internal modes, also the static
displacement at the tip has been considered in the ROM, playing an important role
in the nonlinear frequency response of the system.

As in the first case, the nodal displacement field calculated prescribing a unitary
static force along the y-axis, has been prescribed to evaluate the nonlinear quadratic
and cubic stiffness tensor of the inclined plate.
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Figure 7.11: Modal Forces Inclined Plate prescribing prescribing a Unitary Static
Force along y on the first 100 modes
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7.2 – Clamped-Free Inclined Plate

1A (5100Hz; -363Nm)

1B (84Hz; -46.3Nm)

-5E+02

-4E+02

-3E+02

-2E+02

-1E+02

0E+00

1E+02

2E+02

3E+02

4E+02

5E+02

6E+02

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000

M
o

d
al

 F
o

rc
e 

(N
m

)

Frequency (Hz)

Modal Forces (unitary static force along y-axis) - Coupled Modes

Axial Modes

Bending Mode

Other Modes

Figure 7.12: Coupled Modes in terms of Modal Forces of the Inclined Plate pre-
scribing an Unitary Static Force along y

Mode Frequency Modal Force
1B 84 Hz -46.3 Nm
1A 5100 Hz -363 Nm

Table 7.3: Selected Modes Inclined Plate

The first bending and axial mode of the plate has been used as internal modes
into the RITZ basis, while DY and DZ have been considered as dofs of the boundary
node. Imposing a unitary static force along the y-axis also the boundary node along
z-axis has been excited, as shown in Tab.7.4.

Direction Node Modal Force
x-axis tip node 7.13E-08 Nm
y-axis tip node 4.45E+04 Nm
z-axis tip node -1.65E+05 Nm

Table 7.4: Modal Forces Boundary Nodes

It has been interested to notice that prescribing the displacement field associated
to the internal modes or to the Ritz basis, the same axial modes have been excited,
as reported in Fig.7.13.
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7 – Nonlinear Frequency Response of an Inclined Plate

Mode 39 5100Hz Mode 60 7820Hz

Mode 71 8925Hz

Mode 79 9772Hz Mode 85 10579Hz

Mode 100 12094Hz

Figure 7.13: Axial Mode-Shapes of Inclined Plate

To compare the modal basis Φint with the RITZ basisR, only two modes (1B,1A)
plus the static contribution along y and z-axis have been considered in the ROM.
The comparison between the nonlinear forced responses in frequency domain has
been shown in Fig.7.14 and 7.15.
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7.2 – Clamped-Free Inclined Plate

12 14 16 18 20 22 24 26 28 30 32

0

0.5

1

1.5

2

2.5
10

-3

Figure 7.14: Nonlinear Forced Response of Tip Contact Node along z-axis including
Geometric Nonlinearities - H=5, F0=20 N.
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Figure 7.15: Nonlinear Forced Response of Tip Contact Node along z-axis includ-
ing Contact and Geometric Nonlinearities - H=5, F0=20 N, gap=0.6 mm, Ôn=0.5,
µ=0.1, kc=106 N/m.
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7 – Nonlinear Frequency Response of an Inclined Plate

Once again, the basis of internal modes is not suitable to capture the geometric
nonlinearities at the boundary node, therefore the Ritz basis must be adopted in
case of a dynamics problem including the tip-rubbing and large deformation.

The geometric nonlinearities have a stiffening effect on the structure due to the
coupling between the bending and axial mode-shapes. The large Deformation leads
to have a bending-membrane coupling and gives rise to membrane stretching (in
plane stresses) when out-of-plane loading is applied.

7.2.2 HEXA20 and DKT Elements for NL Vibrations

In the previous section, the nonlinear forced response of an inclined plate mod-
elled with HEXA20 elements has been shown. Nevertheless, the stiffening effect
applying a force of 20N along the y-axis at tip-node is too high, therefore the non-
linearities are not well representing the behaviour of the structure. For this reason,
a comparison between the isoparametric solid and shell element has been studied in
this section. The idea is to compare the nonlinear frequency response of the inclined
plate using the HEXA20 and DKT element. Each node of a shell element has 6
degrees of freedom (DX, DY, DZ, DRX, DRY, DRZ) instead of 3 (DX, DY, DZ)
as in case of brick element; the DKT inclined plate has 2479 active nodes, and so
14874 active dofs.

The Ritz basis has been used within the STEP method to evaluate the nonlinear
stiffness tensors where only one node has been considered as boundary node for
applying Craig-Bampton. Prescribing a unitary static force along the y-axis, the
values of the modal forces of the first 100 modes have been reported in Fig.7.16.
The first bending and axial mode of the plate have been used as internal modes
into the RITZ basis, while DY, DZ and DRX have been considered as dofs of the
boundary node. Imposing a unitary static force along the y-axis also the boundary
node along z-axis has been excited, as shown in Tab.7.6.

Mode Frequency Modal Force
1B 99.38 Hz 2E+01 Nm
1A 2147.4 Hz -1.99E+02 Nm

Table 7.5: Selected Modes DKT Inclined Plate
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7.2 – Clamped-Free Inclined Plate
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Figure 7.16: Modal Forces DKT Inclined Plate prescribing a Unitary Static Force
along y-axis

Direction Node Modal Force
DX tip node -1.21E-09 Nm
DY tip node 4.27E+04 Nm
DZ tip node -1.58E+05 Nm
DRX tip node -6.32E+01 Nm
DRY tip node 4.66E-11 Nm
DRZ tip node -1.76E-10 Nm

Table 7.6: Modal Forces Boundary Nodes DKT plate

To evaluate the entries of nonlinear tensor, the amplitude of the internal modes
and boundary nodes must be proper selected before using the STEP method. The
amplitude used for the computation of the modal forces of DKT inclined plate are
reported in Tab.7.7.

Coordinate Amplitude
Internal Modes xL 1E-03

Boundary Nodes xB 1E-02

Table 7.7: Amplitude of Internal and Boundary nodes for STEP method
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7 – Nonlinear Frequency Response of an Inclined Plate

As shown in Fig.7.17, the nonlinear response of HEXA20 plate seems to over-
estimate the nonlinear frequency response for a force magnitude of 20 N applied
at tip-node. It has been possible to notice that the maximum displacement along
the y-axis of the plate is around 5 millimetres with an increase in frequency due to
nonlinearities of 7 Hz. The issue is that for a displacement of 5 mm, the dimensions
of the plate are such that it should work in linear region with a small stiffening effect.
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Figure 7.17: Nonlinear Forced Response of Tip Contact Node HEXA20 Plate along
y-axis - H=5, F0=20 N.

In Fig.7.18, the nonlinear forced response of DKT plate has been plotted; in this
case the nonlinearities well representing the behaviour of nonlinear structure with
a periodic forcing amplitude of 20 N. As expected, the increase in frequency for an
amplitude of 4 mm is equal to 0.5 Hz; this is the proof that the inclined plate for a
displacement of 4 millimetres behaves as a linear structure. The expected increase
in frequency (f ≈ 5 ÷ 10 Hz) and amplitude (Amax ≈ 10−2m) corresponding to the
large deformation have been achieved for a periodic external force of 100 N along
y-axis, as shown in Fig.7.19.
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7.2 – Clamped-Free Inclined Plate
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Figure 7.18: Nonlinear Forced Response of Tip Contact Node DKT Plate along
y-axis - H=5, F0=20 N.
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Figure 7.19: Nonlinear Forced Response of Tip Contact Node DKT Plate along
y-axis - H=5, F0=100 N.

103



7 – Nonlinear Frequency Response of an Inclined Plate
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Figure 7.20: Nonlinear Forced Response of Tip Contact Node DKT Plate along
z-axis H=5, F0=100 N, gap=2 mm, Ôn=0.5, µ=0.1, kc=106 N/m.
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Figure 7.21: Contact Force at Tip Contact Node DKT Plate along z-axis - H=5,
F0=100 N, gap=2 mm, Ôn=0.5, µ=0.1, kc=106 N/m.
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7.2 – Clamped-Free Inclined Plate

The nonlinear frequency response including contact of the inclined DKT plate
has been shown in Fig.7.21, where it has been plotted the maximum contact force
over time when the plate touches the casing. Based on these results, it seems that
the shell elements better approximate the behaviour of nonlinear structure due to
a less stiffening effect of the plate. In Fig.7.22 the geometrically nonlinear response
of the plate has been plotted to show that increasing the amplitude of the external
periodic force, the peaks lie always on the same line called “skeleton” or “backbone
curve” of nonlinear response.
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Figure 7.22: Nonlinear Forced Response of Tip Contact Node DKT Plate along
y-axis increasing the forcing amplitude F0 - s=15 mm, H=5.

Nevertheless, the natural frequencies of the linear system in case of DKT and
HEXA20 are different, as reported in Tab.7.8; for this reason a further investiga-
tion is strictly needed. The idea is to reduce the thickness of the HEXA20 plate in
order to have the same dynamics of the structure in terms of natural frequencies.
In Fig.7.23 have been plotted the nonlinear forced response of DKT and HEXA20
plate with a thickness of 5 mm. It has been necessary to reduce the thickness of
the plate because the strongest assumption of DKT element is that the cross section
remains perpendicular to the neutral axis of the plate.
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Figure 7.23: Nonlinear Forced Response of Tip Contact Node DKT Plate along
y-axis - s=5 mm H=7, F0=20 N.

Element fn (s=15 mm) fn (s=5 mm)
HEXA20 19.5 Hz 6.5 Hz

DKT 26.5 Hz 6.7 Hz

Table 7.8: 1st Natural Frequency of HEXA20 and DKT Inclined Plate

The HEXA20 plate shows a remarkable hardening behaviour with respect to
the DKT plate. In both cases the internal resonances appear in NFR of the plate,
anyway to better understand the nature of the internal resonances a deeper analysis
of the nonlinear normal modes (NNMs) is needed, but it is not part of this project.
The nonlinear forced response has been plotted considering 7 harmonics to capture
the nonlinearities of the super-harmonic resonances. The super-harmonics have a
non-negligible amplitude contribution in case of the contact dynamics.

As in case of 3D clamped-clamped beam, only two modes are not enough to prop-
erly describe the dynamics of the full structure. One of the possible reasons could
be that there are non-negligible modal forces at high frequency in the spectrum, in
such a way that the first bending mode couples with in-plane high frequency modes.
Nevertheless, a further investigation has been done in Chapter 8, where it has been
discovered that all the high frequency modes are the so called “thickness modes”.
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Chapter 8

NFR of 3D FE Reduced Order
Model

In this chapter a further investigation on the coupled modes of 3D FE beam
model has been done to find out why a ROM, using the linear modes as reduced
basis, is not enough to capture the dynamics of the geometrically nonlinear structure.
A comparison between different techniques, to proper select the reduced basis, has
been done in order to build a ROM able to predict the nonlinear behaviour of
the structure, including contact and geometric nonlinearities. The 3D model of a
geometrically nonlinear beam has been used as test case.

8.1 Geometrically Nonlinear 3D Beam Model

A clamped-clamped 3D beam, with the same material properties and dimensions
of the beam analysed in Section 6.1, has been used as test case to investigate on the
high-frequency modes coupling. In this case the beam has been meshed using the
isoparametric solid element HEXA20, dividing the domain of the structure in 15 el-
ements along the length and 2×2 on the cross section. The clamped-clamped beam
has 429 active nodes for a total of 1287 dofs. Adopting the same scheme used dur-
ing the validation procedure in Chapter 6 and checking the nonlinear modal forces
calculated during the STEP, seemed reasonable to consider only 2 modes (1B; 4A)
as modal basis within the ROM. Nevertheless, the nonlinear forced response of the
system shows a predominantly hardening behaviour with respect to the full model.
The idea is to plot all the spectrum of the nonlinear modal forces F̃NL to check if
the first bending coupled with high-frequency mode-shapes.
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Figure 8.1: Nonlinear Modal Forces 3D FE Beam prescribing 1B
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Figure 8.2: Nonlinear Modal Forces 3D FE Beam prescribing 1B - Coupled Modes

The Fig.8.1 and Fig.8.2 show that the first bending (1B) coupled with high-
frequency modes in the spectrum, so that they can not be neglected during the
computation of nonlinear stiffness. The 1st bending and the 4th axial modes are
not enough to simulate the dynamics of full system due to a non-negligible modal-
coupling at high frequencies.
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8.1 – Geometrically Nonlinear 3D Beam Model

The linear modes that should be considered within the reduction basis are listed
in Tab.8.1.

Mode Frequency Modal Force
1 1.61E+02 2.85E+03
34 1.04E+04 2.68E+03
167 7.64E+04 6.71E+03
170 7.65E+04 5.80E+03
172 7.65E+04 4.31E+03
252 9.19E+04 2.95E+03
320 1.10E+05 3.01E+03
324 1.11E+05 1.18E+04
328 1.13E+05 2.90E+04
330 1.14E+05 5.11E+04
370 1.20E+05 6.61E+03
629 1.79E+05 7.52E+03
633 1.80E+05 6.00E+03
1064 3.06E+05 6.41E+03
1066 3.07E+05 4.92E+03
1143 3.70E+05 4.67E+04
1147 3.70E+05 3.85E+04
1151 3.70E+05 1.10E+04
1157 3.70E+05 3.54E+03
1176 3.72E+05 6.86E+03
1178 3.72E+05 5.63E+03
1190 4.51E+05 9.23E+03
1192 4.51E+05 7.64E+03

Table 8.1: Selected Modes 3D FE Beam throughout the whole Spectrum

It is also interested to notice that all the modes included into the reduced basis,
with high nonlinear modal force, are axial and thickness in-plane modes, as shown
in Fig.8.3.
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8 – NFR of 3D FE Reduced Order Model

Mode 324 Mode 328

Mode 330 Mode 1143

Mode 1151 Mode 1192

Figure 8.3: Mode-Shapes of Thickness Modes

A convergence study has been done considering the high-frequency modes with
higher nonlinear modal force as reduction basis. In Fig.8.4 have been plotted the
NFRs of 3D FE beam model. It has been possible to demonstrate that including
the high-frequency in-plane modes the NFR of the reduced model tends to the full
one. Three different bases have been used in the convergence study including the
following linear modes:

Φ0 = [1,34]

Φ1 = [1,34,324,328,330]

Φ2 = [1,34,324,328,330,1143,1147,1151,1190,1192]
(8.1)
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8.1 – Geometrically Nonlinear 3D Beam Model
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Figure 8.4: Convergence Study of Nonlinear Frequency Response of 3D FE Beam
centre node along y-axis - H=3, F0=200 N.

The idea is to check if the coupling between the first bending and the high-
frequency modes is due to the Poisson’s ratio or related to a locking in FEM. The
locking phenomenon may be caused, for instance, by a wrong interpolation of the
nodal displacement values along the shape function used within the finite element
method. To understand the connection between the Poisson’s ratio and the thick-
ness modes, the nonlinear modal forces have been calculated assuming the Poisson’s
ratio equal to zero. The linear modes with ν=0 are listed in Tab.8.2 while the whole
spectrum has been plotted in Fig.8.5.

Mode Frequency Modal Force
1 1.60E+02 2.81E+03
32 1.04E+04 2.69E+03
211 8.67E+04 7.98E+03
216 8.68E+04 7.32E+03
219 8.68E+04 2.25E+04
1040 3.12E+05 2.11E+04
1048 3.13E+05 1.40E+04
1055 3.13E+05 5.46E+03

Table 8.2: Coupled Modes 3D FE Beam with nil Poisson’s ratio (ν = 0)
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Figure 8.5: Nonlinear Modal Forces 3D FE Beam with nil Poisson’s ratio (ν=0)
prescribing 1B

Even if the Poisson’s ratio is equal to zero, the 1st bending couples with high
frequency modes which can not be neglected within the computation of ROM due
to the high amplitude of the nonlinear modal forces.

The main issue of the STEP method using the linear modes as reduction basis
is that all the frequency spectrum must be computed to proper select the coupled
modes. For large FE structures, even if the modes are linear, the calculation of the
eigenvectors as well as the ANM continuation method within the MANLAB code
may be very expensive in terms of computational time. The idea is to condensed
all the coupled modes in one single factor that corrects the value of cubic nonlinear
stiffness (β1

111) associated to the excited mode (1B), so that only the first bending
can be considered during the computation of nonlinear tensors. Overall, the issues
to overcome are reported below:

1) Impossibility to run the STEP method to evaluate the nonlinear tensors for
a large set of selected modes.

2) Avoid the computation of the whole spectrum to select the linear modes con-
sidered within the reduction basis.
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8.1 – Geometrically Nonlinear 3D Beam Model

8.1.1 Nonlinear Static Condensation

The nonlinear static condensation is the solution to the first issue, it allows to
condensed all the coupled modes within a factor that corrects the overestimated
value of β1

111, responsible of the extremely large hardening behaviour of the NFR of
the beam. Considering a nonlinear dynamical system governed by the Eq.8.2.

MẌ +CẊ +KX + Fnl(X) = Fext (8.2)

with A2 and B3 the quadratic and cubic tensors, respectively.

Fnl(X) = A2XX +B3XXX (8.3)

The response of the system may be written as [22]:

X ≈ Γ = Φq + Ψp+ Ξh (8.4)

then:

X =
NBØ
r=1
φrqr +

NTØ
s=NB+1

ψsps (8.5)

where Φ, Ψ are the excited and coupled modes, respectively; while Ξ represents
all the other modes in the spectrum that give a negligible contribution into the NFR
of the system. In this case the reduction basis is P=[Φ Ψ], and so the reduced
system can be written as:

P TM Γ̈ + P TCΓ̇ + P TKΓ̇ + P TFnl(Γ) = P TMΦFext (8.6)
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8 – NFR of 3D FE Reduced Order Model

The Eq.8.6 may be developed by component, it yields:

q̈r + 2ζrωrq̇r + ω2
rqr +

NBØ
i=1

NBØ
j=i

αrijqiqj +
NBØ
i=1

NTØ
l=NB+1

αrilqipl +
NTØ

l=NB+1

NTØ
m=l

αrlmplpm+

+
NBØ
i=1

NBØ
j=i

NBØ
k=j

βrijkqiqjqk +
NBØ
i=1

NBØ
j=i

NTØ
l=NB+1

βrijlqiqjpl +
NBØ
i=1

NTØ
l=NB+1

NTØ
m=l

βrilmqiplpm+

+
NTØ

l=NB+1

NTØ
m=l

NTØ
n=m

βrlmnplpmpn = f rext

(8.7)

p̈s + 2ζsωsṗs + ω2
sps +

NBØ
i=1

NBØ
j=i

αsijqiqj +
NBØ
i=1

NTØ
l=NB+1

αsilqipl +
NTØ

l=NB+1

NTØ
m=l

αslmplpm+

+
NBØ
i=1

NBØ
j=i

NBØ
k=j

βsijkqiqjqk +
NBØ
i=1

NBØ
j=i

NTØ
l=NB+1

βsijlqiqjpl +
NBØ
i=1

NTØ
l=NB+1

NTØ
m=l

βsilmqiplpm+

+
NTØ

l=NB+1

NTØ
m=l

NTØ
n=m

βslmnplpmpn = 0

(8.8)

In case of symmetric structures, the coupling between the out-of-plane and
in-plane modes generates high value of alpha coefficients rather than beta. The
quadratic terms will be generated, during the stiffness evaluation procedure, and
the sign of nonlinear modal forces does not change when the nodal displacement
field of the first mode-shape will be projected on the other modes. More precisely,
changing the sign of the prescribed nodal displacement field the nonlinear modal
forces do not change the sign; as it has been possible to notice from the 1st loop
within the STEP method explained in Section 3.3.3.
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Neglecting the terms that produce quasi-zero contribution in terms of nonlinear-
ities, the Eq.8.7 and Eq.8.8 may be written as:

q̈r + 2ζrωrq̇r + ω2
rqr +

NBØ
i=1

NTØ
l=NB+1

αrilqipl +
NBØ
i=1

NBØ
j=i

NBØ
k=j

βrijkqiqjqk

+
NBØ
i=1

NTØ
l=NB+1

NTØ
m=l

βrilmqiplpm = f rext

(8.9)

p̈s + 2ζsωsṗs + ω2
sps +

NBØ
i=1

NBØ
j=i

αsijqiqj +
NTØ

l=NB+1

NTØ
m=l

αslmplpm

+
NBØ
i=1

NBØ
j=i

NTØ
l=NB+1

βsijlqiqjpl +
NTØ

l=NB+1

NTØ
m=l

NTØ
n=m

βslmnplpmpn = 0

(8.10)

Assuming that the beta coefficients are negligible with respect the alpha ones,
and considering only the alpha terms that couple with the excited modes, the Eq.8.10
may be rewritten as:

p̈s + 2ζsωsṗs + ω2
sps +

NBØ
i=1

NBØ
j=i

αsijqiqj = 0 (8.11)

Since the coupled modes are all membrane modes, the in-plane inertia of these
modes can be neglected. Moreover, the forcing frequency is in proximity of the low
resonance frequencies, and so the dynamics of the coupled modes can be neglected
as well.

ps = −
NBØ
i=1

NBØ
j=i

αsij
ω2
s

qiqj, pl = −
NBØ
j=i

NBØ
j=k

αljk
ω2
l

qjqk, pm = −
NBØ
y=k

NBØ
y=z

αmyz
ω2
m

qyqz (8.12)
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substituting in Eq.8.9, it yields:

q̈r + 2ζrωrq̇r + ω2
rqr −

NBØ
i=1

NBØ
j=i

NBØ
k=j

NTØ
l=NB+1

αrilα
l
jk

ω2
l

qiqjqk +
NBØ
i=1

NBØ
j=i

NBØ
k=j

βrijkqiqjqk+

+
NBØ
i=1

NBØ
j=i

NBØ
k=j

NBØ
y=k

NBØ
z=y

βrilm
αljkα

m
yz

ω2
l ω

2
m

qiqjqkqyqz = f rext

(8.13)

Neglecting the terms that generate the nonlinearities of the fifth order, the
Eq.8.13 may be written as:

q̈r + 2ζrωrq̇r + ω2
rqr +

NBØ
i=1

NBØ
j=i

NBØ
k=j

3
βrijk −

NTØ
l=NB+1

αrilα
l
jk

ω2
l

4
qiqjqk + O(q5

i ) = f rext (8.14)

where NB and NT are the number of the excited and total modes, respectively;
while NM = NT − NB is the number of the coupled modes. Applying the static
condensation, the size of the obtained system has been drastically reduced including
only cubic nonlinearities. The symmetry of the quadratic tensor A2 allows to avoid
the computation of the whole tensor, computing only the combination of qi and qj
during the STEP method, so that:

αril = 2φTr A2φiψl = 2ψT
l A2φrφi =


αlir, if r > i
2αlii, if r = i
αlri, if r < i

(8.15)

From the Eq.8.14 it has been possible to identify the factor Cr
ijk

(l) as:

Cr
ijk

(l) =



αlirα
l
jk

ω2
l

, if r > i

2 ·
αliiα

l
jk

ω2
l

, if r = i

αlriα
l
jk

ω2
l

if r < i

(8.16)
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The correction factor Cr
ijk

(l) is a parameter to measure the contribution of the
coupled modes on the excited ones, so that the value of the beta coefficients will be
corrected by the quantities expressed by the Eq.8.16. The idea is to weight the con-
tribution of the correction factor of all the modes of 3D FE beam model described
in Section 8.1. Since only the first bending mode has been considered as excited
mode, the normalised modal correction factor 2(αn

11/ω
2
n)

β1
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has been reported in Fig.8.6.
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Figure 8.6: Normalised Modal Correction Factor on the 1B excited mode.

In Fig.8.8 the modes sorted by normalised modal correction factor have been
reported to demonstrate that only a small percentage (≈ 20%) of the total number
of modes participates in the nonlinear forced response of the structure. The coupled
modes are spread throughout the whole frequency domain and they show an abso-
lutely independence from the mesh refinement, as reported in Fig.8.7 and Fig.8.8.
Moreover, it has been possible to identify a threshold for a significant contribution
of the normalised modal correction factor around 10−15.
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Considering all the coupled modes above the threshold (≈10−15), the reduced
order model of 3D beam converges to the full one thanks to the contribution of the
coupled modes within the correction factor. The overestimate hardening effect was
caused by not having included enough coupled modes in the reduction basis.
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Figure 8.7: Normalised Modal Correction Factor on the 1B excited mode - Mesh
Refinement: 20 HEXA20 elements along the length and 3×3 elements on the cross
section.

Therefore, the static condensation allows to consider only the first bending and
all the coupled modes condensed within the correction factor Cr

ijk
(l), so that it has

been possible to run only the first loop of the STEP method and to have only the
excited modes, plus the correction factor, within the reduction basis. This approach
drastically reduced the size of the nonlinear system making the stiffness evaluation
procedure and the ANM continuation method faster in terms of computational time.
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Figure 8.8: Modes Sorted by Normalised Modal Correction Factor on the 1B excited
mode.
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Figure 8.9: NFR of 3D FE beam (center node along y-axis) with 1287 dofs - com-
parison between the ROM using the nonlinear static condensation and the full beam
model - H=3, F0=200 N.
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Figure 8.10: Convergence Study of corrected cubic stiffness increasing the number
of the modes statically condensed.
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The nonlinear forced response in frequency domain has been plotted in Fig.8.9
to show the convergence of the ROM to the full one, where all the modes with a
correction factor above 10−15 has been statically condensed (black dashed-line). It
is also possible to notice a perfect overlapping between the generic set of coupled
modes statically condensed and the same modes included within the reduction basis
as internal modes, as explained in Section 8.1. It has been calculated that 68 out
of 1287 modes must be statically condensed to have a relative error of 0.1% with
respect to the full model.

8.1.2 Static Modal Derivative

The static modal derivatives follow the same logic of the static condensation
because they are both based on the non-intrusive method to evaluate the nonlinear
stiffness tensors. The modal derivatives allow to accurately approximate the dynam-
ics of the structure considering the linear modeshapes and their modal derivatives
as basis of reduction. The definition of static modal derivative has been formulated
as [24]:

θij = ∂φi
∂qj

= −K−1 ∂

∂qj

3
∇F(φjqj)

4 -----
qj=0

· φi (8.17)

where the nonlinear stiffness matrix ∇F may be defined starting from the restor-
ing force vector F(X) as function of the quadratic and cubic nonlinear tensors; while
∇F(φjqj) represents the nonlinear stiffness matrix projected along the mode φj.

F(X) = KX + A2XX + B3XXX (8.18)

∇F(X) = K + 2A2X + 3B3XX (8.19)

∇F(φjqj) = K + 2A2φjqj + 3B3φjφjq
2
j (8.20)
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Thus the static modal derivative θij can be written as:

θij = −K−1 (2A2φj) · φi = θji (8.21)

The modal derivative is defined as combination of two excited modes φi and φj,
whereas the symmetry of the modal derivatives arises from the symmetry of the
quadratic tensor. Therefore, for NB excited modes, the number of linearly inde-
pendent static modal derivatives is equal to NSMD = NB(NB + 1)/2. The idea is
to build the reduced order basis (ROB) comprising NB excited modes and NSMD

static modal derivatives that subsequently can be used within the STEP method.
The reduction basis of any finite element structure may be wrtitten as P = [Φ Θ],
where the equation of motion and the reduced system have the same shape of the
Eq.8.2 and Eq.8.6. In this case the response of the system has been represented by
a reduction on a linear manifold:

X ≈ Γ = Φq + Θz (8.22)

The equation of motion can be expanded as follows:

q̈ + ζΦq̇ + Ω2
Φq + ΦTMΘz̈ + ΦTCΘż + ΦTKΘz+

+ ΦTA2ΦqΦq + 2ΦTA2ΦqΘz + ΦTA2ΘzΘz+

+ ΦTB3ΦqΦqΦq + 3ΦTB3ΦqΦqΘz + 3ΦTB3ΦqΘzΘz+

+ ΦTB3ΘzΘzΘz = fext

(8.23)

IΘz̈ + ζΘż + Ω2
Θz + ΘTMΦq̈ + ΘTCΦq̇ + ΘTKΦq+

+ ΘTA2ΦqΦq + 2ΘTA2ΦqΘz + ΘTA2ΘzΘz+

+ ΘTB3ΦqΦqΦq + 3ΘTB3ΦqΦqΘz + 3ΘTB3ΦqΘzΘz+

+ ΘTB3ΘzΘzΘz = ΘTMΦfext

(8.24)

where:

IΘ
.= ΘTMΘ, ζΘ

.= ΘTCΘ, Ω2
Θ

.= ΘTKΘ
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The reduced system formulated including the static modal derivatives within the
reduced basis will be much smaller compared to the non-intrusive method (displace-
ment based) and faster to solve with respect to the static condensation, because it
is not necessary to compute the eigenproblem of the full system.

The modal derivatives can be thought as a substitute of the coupled modes within
the reduction basis. Under the same assumptions used to formulate the nonlinear
static condensation in Section 8.1.1, it has been possible to evaluate the modal am-
plitude of the static modal derivatives:

ps = −
NBØ
i=1

2αsii
ω2
s

zii −
NBØ
i=1

NBØ
j=i+1

αsij
ω2
s

zij (8.25)

Recalling the Eq. 8.12 the modal amplitude of the coupled modes that has been
used to condensed all the coupled modes in a single factor, it has been shown that
the amplitude of the coupled modes is a function of the excited modes [23].

ps = −
NBØ
i=1

NBØ
j=i

αsij
ω2
s

qiqj (8.26)

Comparing the Eq.s 8.25 and 8.26 the relation between the amplitude of the
modal derivatives and the modal amplitude of the excited modes can be found [25]:

zii = 1
2qi

2, zij = qiqj (8.27)

In this way the quadratic manifold relation may be found [24]:

Γ(q) = Φq + 1
2Θqq (8.28)

The quadratic manifold is the logic evolution of the linear manifold, where the
reduced system is built projecting the excited modes and the equation of motion
onto the quadratic subspace Γ(q).
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The strength of using the modal derivatives is to avoid the computation of the
full eigenproblem to find the coupled modes. The modal derivatives are directly re-
lated to the excited modes φi; therefore, only the computation of the excited modes
is needed to build the reduced order model of the structure. The idea is to isolate the
quadratic terms and to impose the nodal displacement following the non-intrusive
method.

2A2φiφi = F(φi) + F(−φi) (8.29)

Pre-multiplying the nodal forces evaluated within the finite element software by
the inverse of the stiffness matrix K, the modal derivatives can be found. The SMDs
with different indices have been calculated following the same procedure.

θii = −K−12A2φiφi (8.30)

Since the static modal derivatives has the dimension of a displacement, it has
been interesting to plot (Fig.8.11) the shape of the SMD associated to the first
excited bending mode of the 3D clamped-clamped beam.

Figure 8.11: First Bending Mode of 3D Clamped-Clamped Beam and its Static
Modal Derivative

It is possible to notice that the static modal derivative has the same shape of
an in-plane mode, this means that within the SMDs there are all coupled modes
that could not be neglected in the STEP method to build the reduced model of the
structure. The stiffness evaluation procedure remains always the same, as described
in Section 3.3.3, what has been changed are the sets of the imposed nodal displace-
ments that in case of linear and quadratic manifold comprising the excited modes
Φ and their modal derivatives Θ = [θ11 θ22 . . . θ12 θ13 . . . θ23].
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Overall, the equivalent nonlinear tensors can be always evaluated with the STEP
method applied to the reduction basis including the excited modes and the SMDs.

The reduced system may be formulated making the same assumptions done in
case of static condensation, neglecting the terms which generate the nonlinearities
of the fifth order:

q̈r + ζrq̇r + ω2
rqr +

NBØ
i=1

NTØ
l=NB+1

arilqizl+
NBØ
i=1

NBØ
j=i

NBØ
k=j

brijkqiqjqk+

+
NBØ
i=1

NTØ
l=NB+1

NTØ
m=l

brilmqizlzm = f rext

(8.31)
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NTØ
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NBØ
i=1

NBØ
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asijqiqj +
NTØ
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NTØ
m=l

aslmzlzm+

+
NBØ
i=1

NBØ
j=i

NTØ
l=NB+1

bsijlqiqjzl +
NTØ

l=NB+1

NTØ
m=l

NTØ
n=m

bslmnzlzmzn = 0

(8.32)

Unfortunately, the terms Ils, ζls, and Ω2
ls are not diagonal because the static

modal derivatives do not respect the orthogonality conditions (i.e. the SMDs are
not M-orthogonal and K-orthogonal). Finally, the nonlinear forced response of the
3D clamped-clamped beam has been plotted in Fig. 8.12. The nonlinear response
has been obtained by considering the first bending mode and its static modal deriva-
tives within the reduced basis. Moreover, the response perfectly overlaps the solution
got using the static condensation approach in perfect agreement with the response
of the full model.
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Figure 8.12: Nonlinear Forced Response of 3D clamped-clamped beam; comparison
between the ROMs using the static modal derivatives, the nonlinear static conden-
sation and the full beam model.
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Chapter 9

Conclusions

The linear reduction methods presented in Section 3.2 cannot be applied to a
nonlinear system. Therefore, the computation of a reduced basis must be formulated
using proper methods able to capture the geometric nonlinearities of the structure.
The non-intrusive displacement based method has been applied to evaluate the
nonlinear stiffness quadratic and cubic coefficients, so that the coupling between
the out-of-plane (bending) and in-plane (membrane) modeshapes has been properly
caught, as widely explained in Chapter 8. The stiffness evaluation procedure has
been validated against the simply supported plate [1] and the 3D clamped-clamped
beam [2] with a relative error less that 3 percent comparing the quadratic and cubic
tensors’ coefficients. Nevertheless, the nonlinear forced response of the geometri-
cally nonlinear structure appeared very sensitive to the inclusion of the high modes
(i.e. membrane and thickness modeshapes) in the reduced order basis. For this
reason, the low frequency modes have not been enough to simulate the dynamics of
the full nonlinear system, due to a non-negligible coupling at high frequencies. The
nonlinear forced response of the 3D clamped-clamped beam showed a convergence
to the full model when more coupled modes have been included within the reduced
basis. The coupled modes are widespread throughout the whole spectrum of the lin-
ear model. Moreover, it has been demonstrated that the existence of the thickness
modes is independent of the mesh refinement.

The main issue is that the computation of the nonlinear response becomes ex-
tremely slow increasing the number of coupled modes within the reduction basis.
This procedure is computationally expensive due to the high number of nonlinear
static displacements that must be performed to calculate the nonlinear stiffness ten-
sors. Two approaches have been presented to overcome this problem reducing the
size of the system and speeding up the entire procedure to build a reduced order
model.
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The first method is the so called “nonlinear static condensation” that allowed
to drastically reduce the full model condensing all the coupled modes in one single
correction factor that measures the contribution of the coupled modes on the excited
ones. In this way, the computation of the nonlinear response is extremely fast, be-
cause within the reduced basis have been considered only the first bending (excited
mode) and the correction factor comprising all the coupled modes. However, the
pre-processing to select the coupled modes is still time consuming, because the full
eigenproblem of the structure must be computed.

The second approach is based on the “static modal derivatives” that can be
thought as the logical evolution of the static condensation. Under the hypothesis of
the negligible inertia of the coupled modes, the solution of the eigenproblem is not
needed anymore. The modal derivatives allow to accurately approximate the dy-
namics of the structure considering the linear modeshape and its modal derivatives
as basis of reduction.

The stiffness evaluation procedure remains always the same, as described in Sec-
tion 3.3.3, what has been changed are the fields of the imposed nodal displacements
that in case of linear manifold comprising the excited modes Φ and their modal
derivatives Θ. Overall, the equivalent nonlinear tensors can be always evaluated
with the non-intrusive method applied to the reduction basis including the excited
modes and the static modal derivatives.

Finally, the Asymptotic Numerical Method (ANM) continuation algorithm based
on the Taylor expansion, has been adapted to solve regularized non-smooth dynam-
ics problems like vibrating systems with contact conditions and friction laws. The
ANM continuation algorithm has been used to trace the nonlinear forced response
of the system including the contact and the geometric nonlinearities. An inclined
straight cantilever plate has been used as test case where the contact has been mod-
elled as smooth function to simulate the tip-rubbing phenomenon. Once again, the
basis of internal modes is not suitable to capture the geometric nonlinearities at
the boundary node, therefore the Ritz basis must be adopted in case of a dynamics
problem including the tip-rubbing and large deformation. In this way, it has been
possible to study how the geometric nonlinearities have been activated in case of
tip-rubbing phenomenon. The geometric nonlinearities have a stiffening effect on
the structure due to the bending-membrane interaction; while the tip-rubbing is the
responsible of the curvature change of the nonlinear forced response when the tip
touches the casing.
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