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Abstract

Convolutional Neural Networks(CNNs) are becoming a widely adopted computa-

tional model in many fields. These networks achieve great performances in object

detection, data analysis and visual recognition tasks. Besides, one interesting ap-

plication is pedestrian detection in real-time for self-driving cars domain. Since

they are deployed in such safety-critical environments, it starts to be mandatory

to perform a careful evaluation of their reliability. The main intent of this master

thesis is to analyze the reliability of CNNs during inference phase to characterize

their behaviour in a faulty scenario, i.e., when the classification results deviate from

the correct one. In this work we propose a methodology that evaluates reliability

through a fault-injection campaign, by means of a deliberate insertion of faults into

the target model, aiming to evaluate the effective convolutional neural network be-

haviour under faulty-conditions. In a preliminary phase, faults have been injected

at bit granularity into the weight floating-point representation. In a second step,

since the key operation during convolution is the multiplication, the same operation

has been repeated by a fault injection at the output of multiplications. Experimen-

tal results show that the network works properly only for stuck restricted to certain

locations and, ensuring the same accuracy level of a fault-free inference. For stuck-

at 1 fault injected into the MSB of the floating-point exponential part we achieved

a 12.3% of faults that corrupts output results.
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Chapter 1

Introduction

Nowadays Deep Neural Networks (DNNs) are widely used in different fields of the

applied sciences, thanks to the promising results and their impressive performance

compared with other solutions. They belong to a family of artificial intelligence

algorithms called brain-inspired, able to perform complex operations previously

bounded only to the human supervision.

Convolutional neural networks (CNNs) are one of the most important subsets of

these computational models, mainly applied to analyzing visual imagery, where they

revealed good classification accuracy for input 2D images. For this reason, they are

employed in several computer science fields such as image and video recognition,

recommender system and image classification. More than one decade ago, those

tasks mainly relied on hand-engineered solution and hand-coded algorithms, since

artificial intelligence and machine learning algorithm were not mature enough to

cope with the high computational demand required. Today’s, the perspective of

such applications has totally changed and those old-fashion solutions has been re-

placed with more performing neural networks based models.

Up to now, the research community put a lot of effort into their studies keeping

into consideration the optimization of metrics like model complexity, classification
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1 – Introduction

accuracy, and power consumption. The results obtained from these studies, con-

ducted by both academic and industrial players, go toward the deployment of these

models into more constrained hardware platforms, like Smartphones and embed-

ded CPUs. At the same time, very little importance has been attributed to the

evaluation of host system failures and in particular how several errors could affect

the software stack used during neural network processing. This is a key point for

those DNN models, like convolutional neural network, that aims to be deployed into

safety-critical scenarios, where system failure leading to loss of life and significant

property damage.

During the last years, CNNs have gained a lot of interest in those application

domains where a correct real-time classification of the surrounding environment

should be performed. With their help, autonomous driving as well robotics ap-

plications are capable to recognize an object by analyzing images that come from

input cameras and applying actions in response to events. The object detected by

the system determines the actions to be applied in response to events. Another

example is medical image analysis, in this scenario CNN algorithms process images

computed by special medical equipment, making hypothesis about the presence or

absence of medical diseases.

In past years there were clear examples of car crashes during tests for autonomous

driving evaluation, which caused several victims. These fatalities raised the ques-

tion about what is the degree of safeness of these types of applications and if

there are some methodologies that try to make autonomous car safer. However,

up to now, there are no clear ideas about the possible effects of both hardware

and software faults that could be raised while performing image classification dur-

ing autonomous driving or medical image analysis. Therefore what we propose

is to perform a reliability analysis to asses CNNs behavior under different faulty

scenarios.
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1.1 – Contribution

1.1 Contribution

The goal of this master degree thesis is to evaluate and characterize the reliability of

a neural networks behavior by means of a simulation-based fault injection, aiming

to place data corruptions into the key points of the neural network topology. The

first attempt has been made by placing permanent faults into the weights value,

simulating hardware glitches that affect data storage component such as cache,

RAM and register. Afterwards, another part of the experiment has been performed

by injecting stuck-at faults in a subset of all the multiplication operations.

Initially, our purpose was to perform such fault injection campaign using specif

tool, for an evaluation of these platform at Register Transfer or Architectural of an

accelerator. After a brief exploration of the different hardware accelerator proposed

by the vendors, we decided to follow an approach that target only the software

model of CNNs. For this reason we tried to perform a fault-simulation, starting by

one of the most spread DNN library. Obviously, before the actual fault injection

simulation, we have developed the fault simulator taking in mind our objectives

and. The work done can be summarized in:

• Fault-injector simulator development: a new fault-injection simulator has been

created, taking as starting point Darknet framework.

• Fault-injection simulation: a fault injection has been performed using as target

model Lenet5 CNN topology.

• Result analysis: the results produced by the simulator are processed and an-

alyzed in order to extract the main information, for this aim different scripts

has been developed to extract data.

In the rest of this thesis we try to explain how we developed our simulator and

how we performed our simulation. The experimental results are presented at the

end of this work, giving to reader an explanation about the value computed.
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Chapter 2

Background

This chapter gives a brief introduction of topics that were covered in this master

thesis dissertation, aiming to explain the main results achieved up to now by pre-

vious studies.

We begin by summarizing the main theory behind neural networks, focusing on

convolutional neural networks, the models widely used during this work. They

are also the main architectures adopted for many computer science tasks like image

recognition, natural language processing. Then we move to a brief discussion about

manufacturing testing for digital systems. Among many other techniques used in

this area, we will talk about the fault injection method explaining why it has been

chosen for our experiments with neural networks.

2.1 Neural Networks

Neural networks are computational models that belong to a set of algorithms that

are able to cope with unforeseen circumstances, also called Artificial Intelligence

algorithms. This class of procedures is much closer to human behavior like "reason-

ing" or "learning" concerning other types of programs, allowing to solve problems

of rising complexity that previously were only restricted to human capabilities.
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2 – Background

The recent breakthrough, due to the exceptional performance in various application

domains, is a consequence of the large investigation done in the previous years by

computer scientists, biologists and neuro-scientists, who created a solid ground for

neural network theory. The results achieved by the research lead scientists towards

a new computing paradigm, called brain-inspired computing, borrowing concept

and mechanism from the human neural system.

Starting from 1943, the research community, pushed by the pioneering work done

by Warren McCulloch and Walter Pitts, has suggested different algorithmic models

taking inspiration from their results. With the introduction of their Linear Thresh-

old Unit (LTU) [1], a primitive form of network that could compute various logical

functions using neurons, they have defined key aspects that are the backbone of

artificial neural networks theory.

2.1.1 Multi-Layer Perceptron

The first attempt to reproduce the human brain was done with the introduction of

Multi-Layer Perceptron, a theoretical model composed by a set of artificial neurons

and a set of input and output connections. The last ones allows the neurons to share

information by receiving and forwarding data with their neighbors. It is a weak

representation of biological neural network, which is composed by approximately

86 billion biological neurons, the "computing elements", and 1014 − 1015 synapses

that interconnect them. The information flows through the system by means of

electrical stimulus that are catched and combined by neurons, then the response is

transmitted along the axon, the nerve fiber responsible to conduct electrical poten-

tial, only if the value computed is above a certain threshold.

Below is depicted a simple architecture composed by input layer, output layer and

one single hidden layer.
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2.1 – Neural Networks

Figure 2.1. Neural network architecture

Artificial neurons are structured in layers, each one is stacked one on the top

of the others, creating a simple pipeline. The information enter into the model

through the input layer, is processed by the hidden layers and finally the computa-

tion results exit from the output layer, creating a so called Directed Acyclic Graph

between nodes. Neurons that belong to a given layer can only receive information

from previous layer and forward the results to successive layer, therefore the infor-

mation can only flows from the first to the last layer of the model without cycles.

This is a very important property, called in literature Feed Forward, that allows

the reduction of the computational load involved during training and inference jobs.
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2 – Background

This particular structure can be saw as an hierarchical implementation. enable

also networks to extract informative feature that gradually became more abstract

when the input is processed by the successive stages. For instance if we need to

classify an image, the first hidden layer after the input is in charge to extract infor-

mation about the pixel color. Successive layers receives and combine information

from previous neurons, making it possible to extract edges, lines, figures and so on.

2.1.2 Artificial neurons

The artificial neuron is the basic computational unit behind Multi-Layer Percep-

tron. This entity, like the biological neuron, receives stimulus and computes only

one output at a time without storing a state. Input values are first multiplicated

and accumulated with weights, then summed with bias in order to generate the

neuron’s activation. This value is fed into a non-linear activation function that

propagate the output only if a given threshold is reached.

Equation 1 describe how the neuron output is computed, f function represent a

generic activation function that should be applied to the weighted sum. In literature

we can found different types of activation functions, their main purpose is to convert

a input signal of a node into a output signal.

As we can see, every network is composed by a number of parameters that should

be defined at design time, like number of weights and the activation function; and

learnable parameters, like the weights and bias values.

The exceptional strength of these models allows to arrange the architecture in

different ways, allocating the hyper-parameters in such a way that the network can

be adapted to every workload.
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2.1 – Neural Networks

Figure 2.2. Artificial neuron

Figure 2.3. Biological neuron

2.1.3 Neural network training

As said previously, weight and bias are not hand-defined, but are learned during

training phase. It is a computationally intensive process that delegate to algorithms

the parameters choice, but require a careful evaluation since a bad performed train-

ing can result into low quality accuracy during inference.
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2 – Background

For sake of clarity it is important to briefly describe the Training concept since

it is not obvious. When we talk about training we mean a process that aims is

to minimize the classification error produced by the network. Actually is an opti-

mization problem where parameters to be optimized are weights and biases, while

the objective function to be minimized is expressed as the difference between the

value computed by the network and the ground truth label. There exists different

approach and procedure that try to solve this problem, in last years Stochastic gra-

dient descend gained a lot of popularity thanks to its good performance compared

to other methods. It works using a set of input labelled that are fed during the

computation and represent the source of data that the alogorithm uses in order

to "teach" the network. This approach it is also called Supervised Learning and

differ from Unsupervised Learning since it is strictly necessary to fed the model

with human processed values.

Stochastic Gradient Descent is an iterative process, this means that we cannot

compute the best solution in one step, but we have to iterate until a satisfactory so-

lution is reached. It simply computes a gradient vector that describe each weight’s

influence on the error. The weights are than updated by an amount that goes into

the gradient opposite direction. The magnitude of the update is governed by the

learning rate and it is one of the hyper-parameter that should be carefully choose by

the designer. A small amount of the learning rate can increase the time needed to

converge to a solution, otherwise a too large learning rate can jump the minimum,

resulting in a weak exploration of the weights space.

For a CPU could be very difficult to compute the gradient vector of a multi-

variable function. Differentiation is an abstract formula described in calculus that

doesn’t map to any primitive functionality provided by processors. Gradient com-

putation for cost function in neural network can be a very hard task since the
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2.1 – Neural Networks

differentiation is made with respect to a number of variable that are in the order

of magnitude of 106 − 108.

Backpropagation algorithm give us an efficient method for weights update compu-

tation, overcoming the previous described limitations. It simply works by back-

propagating, into every hidden layer, the error produced in output by the network.

2.1.4 Overfitting

Neural networks are models that try to approximate non-linear function that oth-

erwise could be difficult to represent, for this reason they suffer several problems.

One on the most relevant problem in machine learning field is Data Overfitting, in

particular important in Supervised Learning.

Overfitting can appear when when we lack of good amount of trained data, it is a

generalization problem since the model perform well on input that are close to the

object contained into the training set, but returning poor results for object that

are different from those in training set.

2.1.5 Neural Network optimization

Since the introduction of MLPs, a great number of optimization has been developed

in order to maximize the performance while maintaining the same basic ideas.

There exists a lot of possible strategies, but they can be classified as strategies that

focus on the training time reduction and solutions that try to maximize the output

accuracy. Below are listed some of the most used:

1. Batch Gradient Descent

2. Mini-Batch Gradient Descent

3. Local Response Normalization
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2 – Background

4. Momentum

5. Weights quantization

6. Binarization

2.1.6 Other implementations

Although it is a poor model and bypass the vast majority of the physical phenomena

that occur into the brain, it has revealed extremely high performance compared to

more complex solutions, becoming a de-facto standard in many domains.

In recent years has been proposed different new procedures that are closer to human

brain; one example are Spiking Neural Networks, a class of algorithm that mimic

the signal propagation incorporating the concept of time. For this reason sometimes

they are referred as the 3rd Generation of Artificial Neural Networks for machine

learning. The most important problem behind this models is the difficulty to find

a good learning algorithm that take into account all this feature.

2.2 Convolutional Neural Networks

This is the state-of-the-art solution, in terms of accuracy, in large set of Computer

Vision tasks where the aim is to classify one or more object contained into a single

2D image. Nowadays, Image classification and object detection application widely

implement CNNs, their success is due to the exceptional results, with performance

that can be compared, or in same case outperforming the human accuracy.

One of the most important limitation behind the previously adopted approach was

the difficulty for classificator to ensure shift, scale and distortion invariance of the

input image. This challenge was solved with image pre-processing with the draw-

back that this solution requires great effort for each image to be classified. CNNs

use a totally different approach, in fact they learn features from sets of labeled
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2.2 – Convolutional Neural Networks

images, called training set, in order to classify all the possible inputs.

The structure behind a Convolutional neural networks is substantially similar to

ordinary neural networks. All the neurons are grouped into layers that are respon-

sible to extract informative feature from input, but unlike the last ones they exploit

different ideas that allow to constraint layer shape in a smarter way. Although a

simple neural network can be used to perform classification on 2D image, this is an

impractical choice resulting into a very high number of parameters to be learned,

with negative impact on training time and memory requirement, even for small

images. A picture of 256 × 256 pixels RGB need a input layer of about 300000

neuron ,that can become millions in hidden layers.

Figure 2.4. CNN architecture

Once again, as done previously, it is possible to borrow concept from biology

in order to solve this issue. In particular studies done on cat’s visual cortex [2]

demonstrate that only a small region of neurons are connected. The introduction

of these properties into neural network area is addressed by Kunihiko Fukushima

[3], with the first CNN model, and then improved by Yann Lecun [4] in 1998 with

the first trainable implementation of a CNN, LeNet5. The key properties exposed

in work are: local receptive fields, shared weights and sub-sampling. This three

properties led to a great decrease of the number of parameters to be learned since

every neuron is no more connected with all previous unit, but only to a small region.
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2.2.1 Layers

Unlike the basic form of neural network, there exist a family of layers that can

be chosen to compose a Convolutional Neural Network architecture. Every type

of layer receive an input image, called Input Feature Map, while in output pro-

duce Output Feature Map. They are represented in Tensor form, with dimension

(c × h × w), respectively the number of channels, height and width.

The most important type of layer is the convolutional one, it is the building

block of the entire model. It does most of the computational heavy lifting, has

been reported that 90% of the operation that are performed into one cycle of in-

ference happen this kind of layers. CONV layer consists in an array of learnable

weights, grouped into filters. Every filter, or kernel, is small spatially, but extends

through the full depth of the input volume. Typically a filter can have size 5 × 5

or 3 × 3. During convolution, filters are applied to input receptive fields by means

of a sliding window across the width and the length. Dot operations are performed

between the entries of the filter and the input at any position. This mechanism

produce a 2D activation map, each unit represent the value result from the multi-

plication between the sliding window at a fixed position and the filter.

Figure 2.5. CNN convolutional layer shape

The hyper-parameters that control the convolutional layer shape are depth,

20



2.2 – Convolutional Neural Networks

stride and padding. Depth corresponds to the number of filters that should be

applied, each one learn to respond only to a particular feature; stride indicate the

number of pixel that are used for the window sliding: slide 1 correspond to a move

of 1 pixel at the time and so on. Finally we have padding, can be used to specify

the number of pixel set to 0 added around the border.

Fully connected layer, unlike CONV layer, has connections with all the previ-

ous neurons. They are used before the output layer, connecting the convolutional

pipeline that compute visual feature extraction, in order to assign an output label.

Usually the most of the weights used in a CNN belong to this type of layer.

Pooling layer allows to down-sample the input representation by reducing the

dimensionality. It is used either to the reduce the computational cost and to pro-

duce a more abstract form by summarizing the presence of patch contained into

a feature map. There are two main implementation for this kind of layer: Max

Pooling and Average Pooling Layers. Both the solutions take an input feature

map applying a down-sample window of dimensions k × k. The first one takes the

max value, the second one make an average of the values contained into the window.

2.2.2 CNN architectures

Up to now researchers have produced several network topology in order to reach

good results in terms of accuracy produced during the inference phase. We present

below a list of the most important architecture proposed:

1. Lenet5: It was the first solution proposed for image classification, in particular

has been developed to recognize hand-written digit, it is composed by 7 layer.
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2. AlexNet: Introduced in 2012, it was the first solution that implement CNN

in order to perform Image Classification for the most important challenge in

Computer Vision: ILSVRC.

3. VGGNet: It consists of 16 convolutional layers and is very appealing because

of its very uniform architecture.

4. GoogleNet: developed by Google it achieved a top-5 error rate of 6.67%.

This was very close to human level performance which the organisers of the

challenge were now forced to evaluate.

5. ResNet: At last, the so-called Residual Neural Network (ResNet) by Kaiming

He et al introduced a novel architecture with “skip connections” and features

heavy batch normalization.

2.3 Fault Injection

In literature we can find different techniques and methodologies that can be used

to test the quality of a system. Those technique are aimed to test the reliability

of a system, are widely used in both hardware and software testing and ensure

the correct behavior to the final user. Performing an exploration about the fault

tolerance is a good idea, but for a subset of applicative scenarios where hardware

platform and application can be deployed, this process is mandatory. Safety-critical

application are regulated by many international standards that defines a set of rules

and metrics that the developers must take into account during their job. For in-

stance, ISO 26262 is one of those. It has been created in order to define the test

to be performed and a set of rules for the automotive scenarios, in order to avoid

fatalities due to both hardware and software failures.

One of the most used technique used to assess the dependability of a system is the

fault injection technique. At first it was used only in hardware, but has found wide
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2.3 – Fault Injection

application in software testing.

In the rest of this section we will introduce the main technique used in both hard-

ware and software testing, aiming to explain the techniques upon we relied for the

development of this work.

2.3.1 Software testing

Software testing is one of the phases of the project development. It is an investi-

gation done to ensure the quality of the software, aiming to find bugs that could

be insert during the design or the development phase. The aim of every test is to

maximize the coverage, i.e. the measure that describe the portion of code executed

during test. Obviously, it doesn’t exist technique that allow to achieve 100% of

coverage, in particular for complex software, but there are some techniques that

can be exploited to cover a subset of all the software components.

One of the most used technique used in software testing is the fault injection. It is

very easy to use because ti require the a simple insertion of faults into the source

code. The idea behind this technique is to explicitly follow error handling path

that otherwise might not be followed.

The main idea behind this kind of techniques is to inject fault into the system in

order to force a wrong behaviour that otherwise cannot be executed. Actually there

are two different approach that can be used:

• Compile-time injection

• Run-time injection

Compile time fault injection is the simplest type of fault injection because allows

the injection of fault at compile time, by changing the code of the software module

under test. One of the most widespread is called Mutation test, it changes code

statements to insert data or operation perturbations.

Run time fault injection is more complex since requires a software trigger that
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explicitly inject fault into the source code. However it is more powerful, compared

with compile time injection, since allows to simulate either hardware and software

faults. For instance can be simulated corruption of RAM, CPU registers and I/O

map.

2.3.2 Hardware testing

In VLSI, during the last years has been developed different methodologies and tools

that go towards the system testing. Unlike software, testing process involves more

steps to be performed since we must face physical limitation.

One of the more widespread technique used by integrated circuits designer is Design

for Testability (DFT), that add testability feature to the design. It allows to manage

in a easier way all the test performed during the several steps of the hardware

manufacturing flows.

However, there exists other techniques that can be used and doesn’t afflict the

original design. One of those is the fault injection. It works by assessing the fault

tolerance of a system by the deliberate insertion of faults, they can be classified

into [5]:

• Hardware fault injection

• Simulation-based fault injection

• Emulation-based fault injection

The first approach relies to special hardware to introduce faults. More in details,

it uses external physical sources to introduce perturbation into the system state.

For instance, in Radiation Testing hardware components are hit intentionally ex-

posed to ionic radiation in order to trigger transient faults.

In simulation based fault injection, the target system and the fault injector are

simulated through a software process. With respect to the hardware simulation is
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2.3 – Fault Injection

easier and not requires special hardware to be used. However it require additional

time overhead since the entire system should be simulated in software.

With the Emulated fault injection, the fault injection is performed into re-programmable

platforms, like FPGA. This approach is a trade-off between the first and the second

approach since the system is tested in hardware without the necessity to use special

hardware.
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Chapter 3

Proposed approach

In this chapter we will explain in details how we dealt with the problem of reliability

analysis of a neural network, discussing about pros and cons of the approach that

we selected. Our primary goal is to perform a reliability analysis, bounded only

to convolutional neural networks, that verifies the fault tolerance of these models

during the inference phase, highlighting when the result deviates from the correct

one.

To achieve this objective we propose a simulation-based fault injection, assessing

the behavior of CNN topology by the deliberate insertion of faults into the system

to determine its response. The correctness of the network is assessed with a com-

parison between the results computed by the model subject of the fault injection

and a reference model that computes correct results.

In literature there exists different methodologies that can be used to place faults

into a system, they can be briefly classified as: hardware fault injection, simulation-

based fault injection and emulation-based fault injection. Obviously, the method-

ology selection process should be made carefully, because a correct decision made

in this phase determines the achievement of objectives. We have chosen to follow

the second approach since it’s the easiest and more convenient way. The other
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3 – Proposed approach

approaches widely rely on special hardware that try to access the subject system,

requiring a non-negligible economic cost for the equipment purchasing. With a

fault injection made using as target system a software model, we can also easily

track its internal state, making successive analysis more easier to be understood.

The biggest shortcoming is the impossibility to simulate every single system mech-

anism, indeed a complete simulation may employ too many hours before the actual

results.

Previous works conducted on this topic focus the characterization of output results

in term of Silent Data Corruption, taking into account only fixed modules that com-

pose the network and executing the simulation only under soft-error constraint. In

[?]uthors faced a different analysis using a permanent fault model, by injecting bit

flips on a subset of weights associated to a defined layer.

Since the very earlier phases of this work, our aim was to use commercially avail-

able tools that can be exploited to perform this kind of simulation. During the

time spent for this work we didn’t find a reference implementation of CNN hard-

ware accelerator to perform a fault-injection simulation at Register Transfer Level.

For this reason we focused our effort upon a self-made software-level fault injector,

aiming to imitate the same effect of a data corruption insert at Register Transfer

Level or Architectural level. In next section of this chapter will be explained the

fault injector expected work and how to simulation should be performed for the

experiment success.

3.1 DNN fault injector: adopted strategy

As stated in the previous paragraph we decided to adopt a full software level fault

injection strategy. This means that we performed our analysis at the highest level

of abstraction of the neural network application stack, bypassing all the possible
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hardware structure where the application runs [6]. Our aim, using this approach,

is to perform a reliability analysis that is independent from the error source, either

software or hardware. This idea is consequence of the key role that the software

layer plays into the propagation of faults raised at hardware layer. When physical

defects or soft errors afflict hardware components like RAM, cache and registers,

the faults could be propagated or could be masked. The latter behavior is trig-

gered in particular if the system has been designed taking in mind some types of

protection techniques.

Figure 3.1. Hardware fault propagation

With fault injection we mean an iterative technique that inject one fault at a
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time into a system, evaluating at the same time the results corresponding to some

input stimulus. Convolutional neural network are very complex system, today’s

there exists many architecture that are accounted to be composed by many thou-

sand of neurons, grouped in layers. Therefore performing an exhaustive exploration

about all the erroneous conditions is not feasible. Moreover, for every fault injected

into the network topology should be performed two separate inference computa-

tions: one to detect the reference value, another one to compute the faulty value.

To overcome this issue we decided to bound our experimentation only to a subset

of all the operations that are scheduled into a single cycle of inference, taking into

account only those that could be source of unreliability.

As stated in previous chapter, inside a single layer, the weights values and the

previous layer’s activations are multiplied and summed-up in order to compute

neuron activation. This is a very delicate step because one error raised during

this operation lead to completely different results. Moreover, since DNNs have

a hierarchical structure, these errors can heavily afflict successive computation,

leading to a wrong classification of the input image.

At this point, two possible question are: what is the DNN fault tolerance degree, if

we inject permanent fault into the weights? What is the DNN fault tolerance degree,

if we inject permanent faults into the multiply-and-accumulate (MAC) operation?

We try to answer those questions by performing several fault injections, bounding

the analysis only to the effects of failures that could raise into those two scenarios

that can be summarized into:

• Permanent fault injection into weights

• Permanent fault injection into resulting value of multiplication

Initially we have performed a permanent fault injection into the weights to have

a preliminary evaluation of the effects of this faults. Afterwards we have decided

30



3.1 – DNN fault injector: adopted strategy

to enter into details, performing a more specific analysis by assessing the bahaviour

under permanent fault at the multiplication output.

With this type of solution we detach the fault simulation from any particular hard-

ware implementation. Actually it is not completely true, because there are many

other factor that affect the computation in hardware, like scheduling, pipeline etc.

In order to reach a statistically relevant analysis of the results, the fault list to

be fed to the fault injector has been statically generated. The fault to be injected

has been selected randomly using a uniform error distribution. This has lead to a

better evaluation of the possible system failures even without performing a complete

analysis of all the possible cases.

3.1.1 Fault injection environment

Performing a fault injection simulation, either into a software or hardware system,

is not a straightforward operation: it requires a deep knowledge of its properties

and a clear understanding of its behaviour. Moreover, a correct configuration of

the actors that take part into the simulation can be a burden, especially for those

system regulated by many thousand parameters.

In order to minimize the potential sources of errors, during the fault simulation

development we decided to take inspiration from other fault simulation tools, both

industrial and academic, borrowing the high level structure of the components in-

volved. One of the most interesting solution is explained into [7]. It has been

selected as starting point for our work, implementing in software the fault injector.

So far has been done a high-level description of the simulator intended work,

its configuration and what are the results that we expect to see. Now it’s time

to explain how the environment has been developed, introducing all the software

modules involved during the simulation high-level description. We will talk about

31



3 – Proposed approach

Figure 3.2. Fault injection environment

environment configuration and each module involved during our simulations. The

simulator architecture can be synthesized by describing the following components:

• Fault injector

• Fault library

• Monitor

• Data collector

• Data analyzer

This implementation allows to control in every moment the fault injector job.

This work is done by the monitor, it continuously supervise the entire simulation

process by reading the information from the fault library. The fault library, or fault

list, is a database that contains the information about the faults to be injected into

the target system.

Despite every component has great importance, fault injector requires a more

depth explanation since it is the "heart" of the fault simulation. This module,

developed at software level, aims to place permanent data corruption at bit level
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granularity, simulating system failure that can be addressed to glitches in hardware

components. One property that we have ensured is the totally unawareness of the

injector about the numerical representation selected at software level. It simply

takes the fault from the list of fault and inject at run-time the data corruption into

the variables that contains the results of computation.

The separation between the fault list and the fault injection allows to create

a more scalable architecture. In fact a fault injector should be general enough in

order to handle all the possible fault model and fault location. Otherwise, it results

constrained to a fixed number of fault location,making subsequent modifications

more difficult.

Monitor is component that handle the entire simulation cycle, selecting the exam-

ples to be fed into the system and the fault to be injected. While the monitor

ensure the the correct behaviour of the fault injector, the Data collector read the

target model output and store those value into several external files.

Data analyzer is the tool that is in charge to elaborate the information produced

the simulator.

3.1.2 Simulation life-cycle phases

Once that our fault injector simulator has been developed, its possible to shift the

attention to the next step. The fault injection simulation represents the core of the

entire work, allowing to perform our fault tolerance evaluation on Convolutional

Neural Network by means of fault injected into the model.

To better explain our simulation, we divided the simulation life-cycle in three

phases:

• Simulation set-up

• Fault injection

33



3 – Proposed approach

• Result analysis

Before starting the actual fault injection, it’s necessary to set-up the environ-

ment with a careful configuration of all the module that are involved during the

simulation. During this phase should be chosen a CNN architecture model that

describe the target neural network topology; a test set that contains the examples

supplied to the model, and finally a fault list. The last configuration file is an array

of records that explicitly informs the injector about fault locations and fault model

to be injected. Afterwards, the model is fully trained feeding a training set until a

satisfactory level of accuracy is reached. Otherwise, it’s possible to set the network

hyper-parameters by using pre-trained weights.

At this point is necessary to do a just little bit clarification about the meaning

of test set in this context. Actually, for the experiments perspective there are two

different test set, one is used to evaluate trained model skills, the other one instead

contains the source input that fed the system under test during simulation. In order

to perform a comparison between fault free and fault-injection results, a golden run

is performed feeding the test set without injecting any fault, with the purpose of

collecting values that come out from system under ideal conditions.

After the simulation set-up phase is completed, the actual fault injection starts

by iterating over the entries contained into the fault list. This means that the

simulator injects one fault at a time into the network and evaluates the results

corresponding to the input stimulus applied to the model. The input fed to the

CNN model are taken from a set of examples, which constitute the test set. Since

our evaluation has been bounded to Convolutional Neural Network, the test should

be created starting from data set of images already available on-line.

34



3.1 – DNN fault injector: adopted strategy

3.1.3 Fault tolerance metrics

A key point for a correctly experimentation is the choice of the metric to be em-

ployed. Choosing the correct metrics help to validate hypotheses and ensure that

we make progress towards our goal. In our case, we don’t need to make of com-

plex metrics, instead we use simple criteria that allows to have a clear idea about

the fault propagation. We define the Silent Data Corruption (SDC) probability as

the probability that a fault injected affects the application (or system) correct be-

haviour. For our convolutional neural network fault injector, the application of this

criteria is not straightforward as it may appears, since there are several parameters

that are produced in output.

Convolutional neural network, by the machine learning point of view, is a classifica-

tor model. This means that given a input it return a value that represent a category

the data belongs to. Generally speaking, each time a convolutional neural network

perform an inference, it assigns a confidence score to each category. This value

represents the probability that the model’s input belongs to the specified class.

For this reason we decided to use adapt SDC metric taking into account not also

the classification value, but both classification value and confidence score. Conse-

quently, we decided to use this new criteria, as specified in [8]:

• SDC-1 : The top ranked element predicted by the DNN is different from the

predicted value of the fault-free execution.

• SDC-10%: The confidence score of the predicted element varies by more than

-10/+10% of its fault-free execution.

• SDC-20%: The confidence score of the predicted element varies by more than

-20/+20% of its fault-free execution.

This metric allow to perform a more fine-grained detection of faulty behaviour.

In the first experiment we used a slightly different nomenclature, in fact we used
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the Masked, Critical SDC and Non Critical SDC. Anyway, the meaning is the same

as the previous metrics: Masked means that the fault injected has been masked

by the model, i.e. the result is the same of the golden run. Critical SDC means

that the output performed with the fault injected is different from the golden run

output. At the end, Non Critical SDC means that the output is the same, but the

confidence score is above or below the maximum threshold.
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Chapter 4

Case study

The purpose of this chapter is to show to reader a detailed report of the work done,

carefully explaining either implementation and simulation details. In particular, in

next sections we try to explain the following two points, that were introduced into

the first chapter of this dissertation:

• Convolutional neural network fault injector development

• Lenet5 fault injection experiment

In the first part we will explain the overall structure of the simulator, starting

from its conceptual design and the implementation made to achieve our fault in-

jection results. Instead, in the second part we will talk about the actual simulation

performed using as target Lenet5, a very popular CNN topology developed by Yann

LeCunn, explaining all the decisions made during the simulation setup as well the

optimization performed in order to speed-up the process.

Afterwards, a reliability analysis was performed using Lenet5 as target topology,

injecting either stuck-at 1 and stuck-at 0, before into the input weights, after into

the output of the multiplicator. In next sections will be explained how to fault in-

jection has been though, highlighting the implementation details and all the built-in

modules offered by Darknet in order to perform a classification of images.
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4.1 Darknet

Since our aiming is to perform a software fault-injection into a neural network

model, we selected as target system for the simulation a framework named Darknet.

This tool provides a software platform able to perform end-to-end processing for a

generic DNN topology. Our strategy has been focused towards the customization

of this tool to encompass our software fault injector, providing a full environment

for simulation-based fault injection.

As stated in proposed approach chapter, our goal is not to assess fault tolerance

of every DNN type. Instead, we focus our attention only to the evaluation of Con-

volutional Neural Network. For this reason, Darknet source code has been modified

to perform fault injection only into the most relevant types of layers: Convolutional

and Fully Connected. Other types of layer as well other functional units are left

untouched. Anyway, the software fault injector has been developed in order to be

scalable enough, ensuring the right compatibility with future work related to dif-

ferent types of fault model and architecture types.

As stated earlier, we used as starting point for our simulator Darknet. This

framework has been developed by Joseph Redmond for academic purpose, aiming

to propose a training and inference platform easy to use. Its strengths is undoubt-

edly the extreme flexibility: a complete prototyping of a user defined topology,

starting from model definition, can be done in few steps. The core computational

unit has been written in C language, making it very easy for being studied, under-

stood and of course extended. Moreover, one interesting aspect is that has been

developed to exploit GPU parallelism, for both inference and training, by using

CUDA library. The entire source code has been released into a open source repos-

itory maintained by the author.
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Since it has been developed as a framework, it allows to develop every kind of

network topology by providing a full eco-system of neural network functionalities.

It can be thought as a platform were each user can create her own topology simply

by specifying, into a set of distinct configuration files, the sequence of layers to be

included and the hyper-parameter to be used, if any. The framework is in charge

to parse the configuration files, written in human readable format, and instantiate

the correct topology by interconnecting the instance of each layer type.

4.2 Darknet fault simulator

The simulator heavily rely on the functionality offered by the Darknet framework.

This not means that the original structure has been totally changed, instead we

created the conditions to perform a fault injection into DNN target topology adding

functionality that before were not include. Specifically the original structure has

been left untouched, ensuring the same operation that were offered by the frame-

work.

Our strategy behind the implementation of the simulator relies on the observation

of the framework execution. We can split the framework life-cycle into two phases:

• neural network building context

• neural network execution

When we invoke the Darknet tool, the first thing that is done is the creation of

a building context. It represent the starting point for all the successive evaluation

on the network. Within this context, it is possible to use different tools to exploit

the building blocks offered by the framework, allowing users to build its own archi-

tecture. This context can be thought as a skeleton that holds up all the successive

computations made with DNNs.

After the DNN deployment into the Darknet context, its entire life-cycle is handled
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by framework, offering to user all the possible actions to be performed with DNN,

such as training, classification, testing. Despite each neural network deployed lives

into the Darknet process, its behaviour is totally independent from the rest of the

platform.

Its overall structure is composed by a front-end module, called darknet.c that

controls the entire life-cycle of a neural network, acting as entry-point of all the

successive computation. It’s the main interface between the framework and users,

offering all the operations to be performed on neural networks. During the simula-

tor development, it has been the first component to be modified, in order to adapt

Darknet to a fault injection simulation. This module has been extended, offering

the possibility to perform a simulation simply by switching to "fault simulation"

from command line.

Afterwards, into the source code we added a new module, named fault_simualator.c.

This has been associated to the main darknet.c in order to be launched every time

the user selects "fault simulation" from the contextual menu.

Into fault-simulator.c was created several new functions and data structures, the

most important one is the perform-simulation.

Obviously the framework need the target network for the fault injection. For this

reason in this context we used the same functionalities used for training and infer-

ence to deploy a new CNN topology.

It receives from user test set, fault list and the output directory where the simula-

tion results should be placed, as well all the others configuration files that allows to

build-up a neural network. It is composed by two nested while loop, the external

one loop on the test set, the internal one instead iterate over the entries of the fault

list. In this way the simulator changes the behavior of the network topology by

injecting one fault a time, evaluating at the same time the output of the model.
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The value resulting from this computation are then stored into the file system

using the functionalities offered by the data_collector.c module. It is in charge to

create the resulting file adding all the information returned by the neural network

under test: confidence score and classification label.

4.2.1 Fault injector development

The fault injector is the key component behind the simulator. It was developed

starting from the convolutional_layer.c and fc_layer.c modules of Darknet. In

particular those files contains all the functions and data structure that are used

by the parser to deploy a neural network. The most important functions are the

backward and forward. The former is used only during training phase, the latter

instead is used only during the inference phase.

Daknet, as many other framework, is not capable to perform a convolution between

weights and input feature maps in a easy way. Indeed, to perform convolution and

weights multiplication, it relies on some algebraic functions that allows to handle

this operations in the form of multiplication between matrix. The core module used

by the convolutional and fully connected layers is called gemm.c, it supplies a set

of functions that performs multiplication in matrix form.

We added a new module called gemm_faulty.c that produces the same results of

the gemm.c, implementing data corruption. Generally speaking the injection works

by selecting a subset of all the multiplications, in agreement with the information

specified by the fault list, acting into the result stored in the variables.

In particular, we didn’t used any timer trigger since we didn’t know when it was

possible to inject the fault into the variable, for this reason we modified the matrix

multiplication algorithm implemented in order to place data corruption at a fixed

number of multiplications. We used a counter that count the number loops of the

matrix multiplication. With this simple mechanism we bypassed more complex

implementation achieving the same results.
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4.3 Lenet5 fault injection experiment

The next step is to discuss the simulation carried out, describing in details all the

configurations made. We recall that during our experiments we performed two

different simulation. We performed a preliminary simulation, intended to evaluate

the neural network resiliency by injecting permanent fault into the input weights.

Afterwards, a simulation was performed with the injection of stuck-at 1 and stuck-

at 0 into the result of the multiplicator.

All the simulations has been performed using a 16 cores CPU, disabling CUDA

library for GPU inference mode. To further optimize the time required to perform

a simulation, we decided to use a better strategy aimed to exploit the full power of

our CPU. Instead of a single large simulation carried out over the entire test set, we

performed several smaller simulations using disjoint subset of the original test set.

Those simulations have been scheduled in parallel, earning a remarkable speed-up

of result computation.

4.3.1 Simulation set-up

During this phase, the fault simulation is prepared by deploying all modules nec-

essary for the experiment. The first thing to be done, in chronological order, is the

CNN set-up. The neural network is created starting from the high-level description

and a set of already trained hyper-parameters. Darknet parser read the description

and interconnect the different instances of the layer between them, while loading in

every convolutional and fully-connected layer the hyper-parameters specified in an

external file. In order to speed up the simulation we decided to use a pre-trained

set of weights, available on-line from [11].

Test set and fault list are loaded into the environment, simply b passing as argu-

ment those files to the Darknet executable. The first file contains the sequence
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of examples to be provided to the simulator, while the second contains a list of

entries which specify the fault model and the fault location. The fault list should

be generated before the actual begin of the simulation.

Another important aspect that must not be overlooked in any way is the golden

run. When we deal with simulation-based fault injection, we must compare the

value resulting from the fault injection with a set of reference value. Those refer-

ence value should be generated before the actual fault injection, without any fault

injected into the model. Obviously the input to be fed to the model must be the

same of those used for the fault injection, otherwise it’s not possible to compare

the results.

4.3.2 Lenet5 topology

Once we have introduced the Darknet framework, it’s necessary to talk about the

topology used in this case study. For what concerns our experiment, the fault tol-

erance evaluation of a CNN has been made using a Lenet5 topology.

From its introduction, has been proposed many new model, more deeper and pow-

erful that Lenet5. We have chosen it because it is composed by only 5 layers, 3

convolutional layers and 2 fully connected. In the table below we show the number

of parameters that compose each layer of the architecture.

Figure 4.1. Lenet5 architecture
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The input layer receive 32×32 pixel input image of hand-written character. To-

gether with the fact that the topology is composed by only 5 layers, This property,

together with the previous one, has led us to this topology. In this way it was much

simpler the evaluation of the neural network behavior.

4.3.3 Test set

When we are dealing with simulation-based fault injection, one of the key point is

the test set selection. The difference between a good test set and a bad one is the

capacity to stimulate corner case, resulting in a better exploration of model under

test.

In VLSI testing there exist techniques that automatically generate a test set, ac-

cording to the digital design, in order to speed-up and reduce the effort required by

humans. However, in our case, since the model is a convolutional neural network,

it’s not very easy to generate a test set. The first trouble resides to the fact that

the input examples that must passed to the simulator are composed by 2D images,

so we cannot manually selects input cases that can stimulate corner case. For this

reason we have employed a subset of images contained in MNIST, 70000 pictures

that represent handwritten digits, from 0 to 9.

4.4 Result analysis

The fault injector simulator produce a huge quantity of files, each one describe the

result computed by the target system during the fault injection. Our simulations

produced more than 1000 files, with a total size of 6,4 GB. Since a manual evalu-

ation of those results is not feasible, we developed several scripts for a automatic

evaluation of the information stored into the files.

Our script has been written in Python, using a data analysis library named Pandas.
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Thanks to this library we joined all the information contained into several files into

a single data structure. In this way it was much easier to compare the faulty results

with the golden prediction.
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Chapter 5

Experimental results

The aim of this chapter is to explain the main results achieved by our fault injection

campaign performed using our Convolutional Neural Network injector. We will en-

ter into the details by describing the results obtained, at the same time we will try

to give a characterization about the fault tolerance of the Lenet5 CNN topology.

The first section shows the main results achieved by our preliminary analysis, con-

ducted with permanent fault placed into the input weights. In the second section we

will show the results achieved trying to carry out a more complex simulation, which

approaches the real behavior of a hardware platform. We injected both stuck-at 1

and stuck-at 0 at the output of the multiplication between weight and input feature

map in both Convolutional and Fully Connected layer.

5.1 Weight value distribution

The CNN behaviour, like all the implementation of DNN, is strictly related to the

value assumed by theirs hyper-parameters. Therefore, before our results analysis is

important to have clear ideas about the overall structure of the Lenet5 architecture,

in order to draw the right conclusions.
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The image below depict the distribution of the weights value used for our simula-

tions. As we can see the values are centered around the value 0, with a variation

between -0.2 - 0.2.

Figure 5.1. Weight value distribution

5.2 Weights corruption

Our preliminary analysis has been performed by randomly injecting stuck-at 1 and

stuck-at 0 fault into the weight. The images below shows the result in terms of

percentage of faults Masked, Non Critical SDC and Critical SDC. To have a clear

idea about the behaviour of the network, we differentiate the fault injection charts

per layer (from layer 0 to layer 3).

In those three charts, the first thing that can be noticed is that the percentage

of Critical SDC is higher into the first 2 layers, i.e the convolutional layers. At

the same time the percentage of Masked faults is higher in the last 2 layers, i.e.
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Figure 5.2. Masked faults

Figure 5.3. Non Critical SDC
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Figure 5.4. Critical SDC

the Fully Connected layers. Those results are quite interesting because shows a

different trend with respect to the result obtained by soft error injection in [8].

Indeed, the convolutional layer are supposed to be more resilient to the presence

of faults. This behavior is due to the fact that convolutional layers are in charge

to extract the features from the input image, therefore permanent fault lead to a

wrong elaboration of the information contained into the image.

Another important result highlighted from this analysis is the distribution of the

most critical bits of the variable that store the weights. All the faults that lead to

Critical SDC, belong to the exponential part (i.e. bit 30 down to bit 23) of the 32

bit floating point representation.

5.3 Multiplication corruption

In this second part we will show the results that we achieved during our analysis fo-

cused on the output of the multiplication between weights and input feature maps,
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injecting permanent fault in both convolutional and fully connected layers.

This simulation is quite different from the previous one, indeed it has been com-

puted by entering more into the details about the operation that happens into the

hardware platform. The metric used in this analysis is very similar to the previous

one. Moreover, we decide to perform an analysis to show the most predicted label

produced by the model under faulty conditions.

5.3.1 Stuck-at 0 fault

We begin our result evaluation starting by the least critical fault model, stuck-at

0. The chart below shows that the probability of having a SDC is substantially

the same for all the fault location, with the SDC-1 probability into the range of

0.0075% − 0.02%.

Figure 5.5. SDC frequency for stuck-at 0 faults

SDC-10% and SDC-20% are practically the same in every fault location, with

slight variation of -0.0001% between the bit 26 and bit 29. Those results are in

line with our hypothesis, since a the weights distribution says that the weight are
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centered around the value 0. This means that the higher bits of the exponential

part of the floating point are set to 0. For this reason a stuck-at 0 injected doesn’t

affects the CNN behaviour.

5.3.2 Stuck-at 1 fault

After the analysis of stuck-at 0 results, we can discuss the results that has been

computed by the stuck-at 1 injection. Compared with the previous results, this

chart show a great variation of SDC between bit 30 and 29, in particular if we

inject stuck-at 1 into the bit 30 of the variable there is the probability of 12,3% to

have a misclassification in output.

Figure 5.6. SDC frequency for stuck-at 1 faults

Within this section we also introduce the chart of the most predicted labels.

The image below depicts the results of the analysis conducted in order to show the

most predicted label after the injection of stuck-at 1.

We noticed that the more than the 90% of the stuck-at 1 result in a label
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Figure 5.7. Frequency of faulty predicted labels

predicted of 5. After an investigation we found that the when we inject stuck-

at 1 into the variable containing the activation it saturate to the maximum value.

However we didn’t find any explanation to this result since we didn’t get the chance

to use visualization tools for the hidden layers.
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