
POLITECNICO DI TORINO

Master’s Degree Course in Computer Engineering

Master’s Degree Thesis

Mixed Real-Time Visualization
Framework for FGB IoT sensors

Supervisors
Prof. Bartolomeo Montrucchio
Prof. Andrea Sanna

Candidate
Maria Giulia Canu
237023

July 2019

Written in LATEX on July 11, 2019
This work is subject to the CC BY-NC-ND Licence

Contents

List of Figures vi

List of Tables viii

Listings ix

Abstract x

Acknowledgements xii

1 Introduction 1
1.1 General Description . 1
1.2 Fiber BRAGG sensor . 2
1.3 Document structure . 3

2 Previous work 4
2.1 System overview . 4

2.1.1 Physical system . 5
2.1.2 Interrogator . 5
2.1.3 Middleware . 6
2.1.4 Cloud Network . 6
2.1.5 Analysis Framework . 7

3 State of art 8
3.1 Augmented Reality in Industry 4.0 8

3.1.1 IoT Integration . 9
3.1.2 Maintenance and Monitoring system 11

3.2 Example of non AR monitoring system 14

4 Proposed Real-Time Framework 16
4.1 General description . 16
4.2 Unity3D engine . 16
4.3 Data visualization . 18

4.3.1 Shader-base Heatmap . 19
4.4 Data collection . 21

4.4.1 Mongo DB . 22
4.4.2 TCP-Based Protocol . 22

iv

4.5 Available AR technologies . 24
4.5.1 Microsoft Hololens . 25
4.5.2 Vuforia . 26

5 Implementation Details 28
5.1 Common features . 28

5.1.1 Class structure . 29
5.1.2 Multi-thread communication 37
5.1.3 Heatmap Shader . 38
5.1.4 Middleware connection . 40

5.2 Desktop solution . 41
5.2.1 Overview . 42
5.2.2 In game features . 43
5.2.3 Real time graph . 51
5.2.4 End simulation features . 52

5.3 Hololens solution . 54
5.3.1 MRTK v2 Release Candidate 1 54
5.3.2 Limitation . 55
5.3.3 Overview . 55
5.3.4 Marker-base recognition . 58
5.3.5 Sensors customization . 58

6 Test and Result 61
6.1 Measurement Log . 61
6.2 Performance: Case studies . 61

6.2.1 Case study: Carbon Fiber Reinforced Polymer sheet 62
6.2.2 Case study: Fuselage ICARUS 62
6.2.3 Case study: Emulator . 64
6.2.4 Case studies analysis . 65

6.3 Review and usability test . 66

7 Future Work 68
7.1 Missing features . 68
7.2 Custom image-tracking and real-time graph implementation 68
7.3 Hololens 2 porting . 69

8 Conclusion 70

Acronyms 71

Bibliography 74

v

List of Figures

1.1 Microsoft© Hololens headset . 2
1.2 FBG sensor structure . 2

2.1 Framework architecture . 5
2.2 SmartScan© interrogator . 6

3.1 Augmented Reality Examples . 8
3.2 Example of discrepancy check in AR 10
3.3 Example of usage IoT in real-time machine inspection 11
3.4 AR Wireless Power Measurement System for a Manifacturing Line . . 12
3.5 Pipe planning application on Android tablet 12
3.6 BMW© 2015 AR application . 13
3.7 AR application for production quality 13
3.8 FOV comparison . 14

3.8a FOV comparison between AR HMD 14
3.8b FOV comparison between AR and VR headset and human one 14

3.9 FBG bi-state monitoring system . 14

4.1 Unity Logo . 17
4.2 Example of rendering pipeline . 20
4.3 Example of the visualization system 21
4.4 Steps to execute the Air-Tap gesture 26
4.5 Steps to execute the Bloom gesture 26
4.6 Vuforia Engine examples . 27

4.6a Image Target Example . 27
4.6b Model Target Example . 27

5.1 Representation of the sensors in the framework 29
5.1a Temperature sensor model . 29
5.1b Displacement sensor model . 29

5.2 Main framework’s GUI elements . 34
5.3 Multi-thread connection schema for MongoDB 38
5.4 Multi-thread connection schema for TCP Connection 38
5.5 Multi-thread connection schema on middleware client 41
5.6 Desktop application home view . 42
5.7 Parameters to customize during the import status 45

vi

5.8 Custom HeatMap colors GUI . 47
5.9 Update heatmap on the model and UI 47
5.10 ChangePos status main screen . 48
5.11 Selected sensor’s glowing effect . 49
5.12 Example of the real-time graph with 64 sensors 51
5.13 Example of a Log file with five active sensors 53
5.14 Example of line graph generated by the python’s script 53
5.15 MRTK logo . 54
5.16 Hololens main GUI . 56
5.17 Hololens’s virtual keyboard . 57
5.18 Vuforia’s main scene elements on the Unity scene 58
5.19 Menu sensor GUI for sensor’s insertion 59
5.20 Menu sensor GUI for displacement sensor’s customization 60
5.21 Monitoring phase example on the ICARUS wing 60

6.1 Comparisons between line graph obtained from the sample received
from the interrogator . 62
6.1a Visualization framework real-time line graph 62
6.1b Matlab line graph . 62

6.2 Fuselage displacement Hololens test 63
6.3 ICARUS ’s first wing test . 63
6.4 Comparisons between line graph obtained from the sample received

from the interrogator . 64
6.4a Visualization framework real-time line graph 64
6.4b Matlab line graph . 64

6.5 Visualization Framework Delay overview 66

vii

List of Tables

4.1 ConfigPacket payload description . 24

6.1 CFRP sheet measured delay in ms 62
6.2 Desktop: Fuselage displacement measured delay in ms 63
6.3 Hololens: Fuselage displacement measured delay in ms 63
6.4 Desktop: Emulator delay in ms . 64
6.5 Hololens: Emulator delay in ms . 65
6.6 Desktop: performance with and without the real-time graph 65

viii

Listings

5.1 Status enum description . 28
5.2 MongoDBManager class . 30
5.3 TCPManager class . 31
5.4 MonitoredObject class . 33
5.5 GUIManager class . 35
5.6 GameManager class . 36
5.7 Sensor struct . 37
5.8 vertOutput struct description . 39
5.9 Fragment shader original code . 39
5.10 Fragment shader modified code . 40
5.11 GUIManager import methods . 44
5.12 Calculation of sensor’s position . 45
5.13 MonitoredObject import methods 46
5.14 Selected sensor’s model position update 49
5.15 Selected sensor’s model rotation update 50
5.16 GUIManager graph methods . 52
5.17 NetworkInterface difference between desktop and Hololens imple-

mentation . 57

ix

Abstract

The objective of this thesis is to design one of the first real-time visualization frame-
works for Fibre Bragg Grating (FBG) sensors, which supports both VR (virtual
reality) and AR(Augmented reality) technology. Those sensors measure the varia-
tion of the refractive index of the optical fibre core caused by strain or temperature.
Nowadays, this technology had spread out in a different field, usually as part of
a preventive monitoring system, because of its advantage to work in environments
subject to EMI and strong electrical potential where other sensors cannot be used.
At the same time, technologies such as Virtual Reality and Augmented reality are
widely used in the emerging [4], aerospatial, automotive [6] and industrial plant [14],
include AR devices in their production line for decades. Indeed, it is one of the best
technology for maintenance and quality control tasks because of the mix of virtual
visual and textual information superimposed as a hologram on the physical object.
Another exploring branch for AR is Internet of Things (IoT), with systems com-
monly known as ARIoT. Those tools are synchronized with a cloud platform that
collects data from different sensors and shows in real-time the whole set of details
needed by technicians to solve their task. Workers discern more easily how the
object is working and how to react in case of failures. They show more concentra-
tion on doing their task and a significant increase in their performance in terms of
speed and problem solving (if compared to equivalent desktop applications). The
best results are seen with Head Mounted Display instead of Hand Handled Dis-
play (smart-phones or tables) because the operator’s hands are free and there is no
necessity to shift between instructions and the devices that need maintenance.

The proposed work is an improvement of a previously developed framework created
as a general open source tool for any FBG-based system. Its integration is justified
by the lack of real-time monitoring systems for those sensors in literature.
Two different applications were developed with Unity3D engine, one for desktop
system and another one for the Microsoft© Hololens headset. Both accept any kind
of 3D models as input and allows to fully customize the position and rotation of
the sensors and their size on its surface. They communicate with a middleware
client that directly retrieves data from the sensors. This choice was necessary to
reduce the response time of the visualization framework now able to display data at a
satisfactory rate. To increase the performance even more both application are multi-
thread, the main thread manages the GUI and all the user inputs and the secondary
thread manages the socket. A dispatcher class permits the communication between
secondaries and the main thread.

x

The desktop application is provided with a line graph that is updated in real time
to show the trend of the sensor during the monitoring phase. Furthermore, it per-
mits to change model directly in the application without the need to recompile the
program in the Unity Editor. The AR application superimposes the hologram of the
monitored object in the correct location and orientation by exploiting the Vuforia
Engine image-target recognition system.
The project was developed in collaboration with the DAUIN, DIMEAS and DISAT
department of Politecnico di Torino, as part of the Inter-Departmental Center for
Photonic technologies (PhotoNext). The case study was performed with two main
physical systems: a Carbon Fiber Reinforced Polymer sheet (CFRP) and the fuse-
lage of the ICARUS Unmanned Aerial Vehicle developed by DIMEAS. In both
cases, the objective was to monitor the displacement of the two systems in real
time. They represent the intensity of the retrieved value with a different colour
based on the difference with idle value.
The application was used by some members of the ICARUS team and showed fast
response time and to be easy and intuitive to use. In particular, the Hololens
implementation was the one that had the biggest impression, so much that it was
suggested to use it in future flight tests.

xi

Acknowledgements

Thanks to Professor Bartolomeo Montrucchio and Professor Andrea Sanna for the
opportunity they give me with this thesis.

Thanks to Mauro, Edoardo and Mohammad, for all the support and help during
this months.

Thanks to my family and friends to support and comfort me during this month of
huge stress.

Last but not least, thanks to Alessandro that is always on my side and encourage
me to do my best even if we are very far from each other.

xii

Chapter 1

Introduction

The following chapter presents a general description of the proposed framework plus
a brief description of FBG sensor.

1.1 General Description
This thesis aims to implement a mixed real-time visualization system. It is an
improvement of a previously proposed IoT architecture for a generic system that uses
FBG-base sensors [5]. The whole architecture is required as part of the PhotoNext
group research project regarding FBG technology and system monitoring [17].
FBG sensor is an optical device able to measure temperature, strain, and displace-
ment of a generic physical system. Nowadays it is widely used as a preventive
monitoring tool in different fields thanks to its advantage to work in extreme con-
dition, such as explosive and electronic radiation environment, or situations with
a substantial electromagnetic interference or potential difference. The only way to
retrieve data from these sensors is with a particular piece of hardware called inter-
rogator. It extracts both raw and peak data and forwards the samples to ad-hoc
software, usually developed by the same vendor of the interrogator.
Other than this software, no other open source real-time visualization system seems
to exists for those type of sensors. In addition, no prototype was found that shows in
real time the location of a FBG sensor upon a 3D model and its value in literature.
During the last 20 year, solutions that integrate VR/AR become more and more
widespread and advanced. Monitoring and maintenance system made AR one of the
most adapted and productive tools in the different industrial field, with its peak in
the automotive [6, 16] and aerospatial one. Its feature to superimpose mixed type
of visual information on the physical world increases the quality of an operator’s
work. Especially headset or wearable devices deliver better performance and higher
concentration during work [4]. Because of its widespread use as a maintenance
tool, AR devices are usually connected to IoT networks [21]. Detailed information,
update in real-time, are displayed on the screen of those devices without the need
of other computer interfaces.
Based on those observations, a real-time monitoring framework for FBG IoT sensors
was developed.

1

1 – Introduction

It is split into two application: a VR application for desktop/laptop and an AR
application for the Microsoft© Hololens headset.
The VR application is proposed in situations where the user is far from the monitored
object or if the object itself is in motion. It shows a CAD model with information
about the location of the sensors upon its surface, based on the measurement from
the sensor the area around it changes colour. Besides, it displays a message box
with the id of the sensor, and its last measurement retrieve from the database.

Figure 1.1: Microsoft© Hololens headset

Source: [13]

The AR application, instead, is meant to in-site monitoring where the system has
small-medium dimensions. In this case, the CAD model is superimposed on the
monitored object by using a mark based system. The user is free to move around it
and interact with it using hand gestures.

1.2 Fiber BRAGG sensor

Figure 1.2: FBG sensor structure

Source: [27]

2

1 – Introduction

An FBG sensor can be defined as a "very high sensitive and versatile optical device for
measuring several physical parameters including for example: strain, temperature,
pressure, vibration and displacement" [27]. In its basic form is build as "a permanent
periodic refractive index modulation inscribed in the optical fiber core exploiting pho-
tosensitivity" [27]. FBG sensors "exploit the presence of a resonance condition for
which they reflect incident light at the so-called Bragg wavelength defined as:" [27]

λB = 2 · neff Λ (1.1)

"Where neff is the effective core refractive index of the fundamental mode and Λ is
the grating pitch." [27]
Nowadays, it is possible to define different sensor’s profile based on parameters
such as peak reflectively and wavelength bandwidth. The possibility to perform
this customization during the production stages permits to reduce costs for mass
production and also to be adopted in large structures which require a huge number
of sensors. Any change in the refractive index or sensor pitch caused by external
influences such as temperature or strains manifests as a wavelength shift, according
to the following formula:

∆λB = λB[(α + ζ)∆T + (1 − pε)∆ε] (1.2)
"[...] α and ζ are the thermal expansion and thermo-optic coefficients, pε is the
effective photo-elastic constant of the fiber material and ∆T , ∆ε are the applied
temperature and longitudinal strain variations". [27] General Bragg wavelength value
is approximately 1550 µm. Thanks to the fact that the parameter to be measured
are part of the wavelength value and optical fibers feature the low attenuation and
transmission capacity, FBG sensors permit a reliable signal detection even if the
sensor and control unit far forms each other.
Thanks to the usage of multiplexing techniques, it is possible to manage multiple
sensors on the same cable. These are divided into two major categories:

• Wavelength Division Multiplexing (WDM) where multiple FBG sensors can be
cascaded in a single optical link with different nominal center wavelengths.

• Time Division Multiplexing (TDM) where the sensors have the same central
wavelength, but they can be identified using the signal flying time.

1.3 Document structure
This document is divided in seven chapters: a brief summary of the previous work
(chapter 2), a general description of the state of the art of Augmented Reality (AR)
in Industry 4.0 (chapter 3), a in-detail description proposed real-time framework
(chapter 4), its implementation details (chapter 5), test and results of the developed
tool (chapter 6), possible improvements (chapter 7) and the conclusion (chapter 8).

3

Chapter 2

Previous work

This chapter summarizes the previous work by giving a general description of the
framework and then a more detailed one for each layer. An in-depth report can be
found on [5].

2.1 System overview
The aim of this thesis is to expand a previously designed software architecture for
a generic system which integrates a set of FBG sensors independently from the
physical object or devices used. It was requested by the PhotoNext research group
project that focuses on FBG sensors and their monitoring system.

The architecture allows to integrate FBG sensors into a general IoT platform easily,
but in the future it is planned to be extended to any type of sensors.
It features a middleware layer which collects data and forwards it to a low latency
cloud database. The proposed implementation is fully open source and uses popular
and well tested third-party software, also open source.
It is subdivided into five main layers:

• Physical system: the monitored object which uses FBG sensors.

• Interrogator: the device used as interface for the sensors.

• Middleware: layer which provides connectivity to the interrogator.

• Cloud network: it stores and collects data in a safe and reliable way

• Visualization and Analysis framework: it allows to observe the measure-
ments in real time by using the VR/AR framework or to analyze data after
the measurement.

4

2 – Previous work

Figure 2.1: Framework architecture

Source: [5]

2.1.1 Physical system

The physical system layer consists of a general object monitored by a set of FBG sen-
sors. It could be any system that requires continuous temperature (or displacement)
checks in specific points of its structures. The reasons could be various, starting from
identify structural issues in real-time or collecting data for offline analysis.

2.1.2 Interrogator

The interrogator is a hardware device able to read data from a set of FBG sensors. It
provides both raw and peak data of the sensors; the last is obtained by a particular
algorithm from the raw data. Usually, any interrogator vendor provides software
able to read data from the fibre. The one used as a case study was the SmartScan©

one from SmartFibres©. It communicates with the SmartSoft Application Software©

using a custom UDP protocol on a LAN connection. It supports up to 64 FBG (4
channels, 16 gratings per channel).

5

2 – Previous work

Figure 2.2: SmartScan© interrogator

Source: https://www.smartfibres.com/products/smartscan

2.1.3 Middleware
The middleware is the central piece of the architecture which provides the IoT con-
nectivity between the interrogator and the cloud network. It was implemented a
C++ abstract interrogator class to keep the framework detached from the physical
interrogator. The provided middleware client is optimized to work in a multi-thread
environment able to handle continuous raw and peak data at high speed. The re-
ceived packet needs to be parsed in a new format compatible with the one supported
by the cloud platform database.
Each measurement is associated with different metadata (position of the sensors
on the object, time-stamp, variation, etc.). Metatada is crucial for the fact that
data inside the cloud is used by different layers of the architecture. Each one has
a different purpose, such as real-time visualization for the AR/VR framework and
offline analysis for the analysis one.

2.1.4 Cloud Network
The cloud network layer is implemented using the open source KaaIoT platform, a
framework commonly used in the IoT application. It supports a wide range of non-
relational databases, more efficient in term of reading/writing speed compared to the
relational ones. KaaIoT improves its performance even more by allowing multiple

6

https://www.smartfibres.com/products/smartscan

2 – Previous work

insert operations on different databases at the same time. Thus, the system should
be fast enough to collect the data from the interrogator and store it securely. It
provides all the security measures by using the TLS protocol for the data packet and
a token-based system to authenticate third-party applications. KaaIoT supports
data in a particular format specified by a JSON schema, and it permits to fully
customize the data inside the structure depending on the aim of the application.
In this particular case, only two types of schemas are used, one for raw data and
another for peak data.
The NoSQL database used in the proposed model is MongoDB; it was chosen for
its high-speed performance for insertion and retrieve operation, as shown in [3].

2.1.5 Analysis Framework
The analysis framework is the highest layer of the architecture in terms of abstrac-
tion, and it provides an offline analysis of the received data by providing different
type of graphs.
The objective was reached by using the web-based notebook Apache Zeppelin, fully
integrated with the KaaIoT platform because it is Apache based. It was proposed
only for evaluation purpose and has not to be considered as a final element for the
architecture. Apache Zeppelin requires a MongoDB interpreter to retrieve the JSON
objects correctly.

7

Chapter 3

State of art

The following chapter presents a general overview of the State of The Art of the
Augmented Reality usage in industry. It begins with a definition of Industry 4.0,
followed by a description of what ARIoT is and it concludes by some implementation
example in the monitoring and managing field.

3.1 Augmented Reality in Industry 4.0
The term Industry 4.0 was introduced for the first time by the German government
in 2013; it was a strategic initiative aimed at the digitalization of factories for
achieving higher productivity, efficiency, and flexibility.
Today it is commonly referred to as the fourth industrial revolution for its integration
into the production line new technologies such as IoT, cloud computing and cognitive
computing (voice recognition, computer vision, machine learning, etc.) [19].

Figure 3.1: Augmented Reality Examples

Source: [21]

Augmented Reality (AR) stands out as a mix of technologies inside the cognitive

8

3 – State of art

computing category. AR is a technology aimed to "enhance" the real world per-
ception with virtual objects that are superimposed on a physical object. The first
example of this technology can be dated 1968 when Ivan Sutherland performed its
first experiment creating the first Head Mounted Display, the first device to support
both AR and VR. The system, called "the Sword of Damocles" was only able to
display a wired cube in the middle of the user field of view (FOV) and be able to
move around it.
In the following years, it was proposed the first documented implementation of
Augmented Reality, for the industrial purpose, was developed by the two Boeing
engineers (Tom Caudell and David Mizell) in 1990 which developed a head-mounted
display to visualize a plane’s specific schematics on a board [1].
Since there, researchers in different universities delved into this promising technology
and only after few years ARTookit was exposed for the first time at SIGGRAPH in
1999. With its open source release in 2001, the usage of AR spread out in different
industrial fields, especially nowadays because of the reduced costs of the devices able
to implement it [15]. Mobile devices like smartphones and tablets now feature a full
range of sensors and have the hardware capability to execute an Augmented Reality
application with good performance. Cheaper Head Mounted Displays (HMD) and
other wearable devices are released into the market and, with it, a large amount of
open source SDK, which increases the number of companies able to invest in it.
The domain of application of IAR is vast, as described in [1,15] it is a powerful tool
for helping workers during their task and can easily teach them new procedures with
intuitive step by step applications. It speeds up quality control and maintenance
operations, reduces the cause of errors and increases efficiency with its usage of
visual, textual, and auditorium information. IAR decreases the cost even during the
early design and manufacturing stages, in this way the number of physical prototypes
shrinks because a mixed reality environment allows a virtual model to appear as a
hologram into a real environment.
For this reason, it is also essential to check the differences between the mock-up
and the CAD model. The model has to match perfectly the virtual one to progress
into the planning and finally the construction of the product. Example of this
application was seen since 2007 as described in [34]. The operation was usually
done not in real-time because of the high computational load, but nowadays the
process of "discrepancy check" is almost immediately, one implementation of this is
reported in [33].

3.1.1 IoT Integration
Internet of Things (IoT), also called to as "Internet of Everything", defines a network
of devices capable of Internet connectivity that communicates with each other and
with external systems. It is one of the pillars of Industry 4.0 and has a vast range
of application that goes from house automation and energy management to trans-
portation and medical assistant [2, 5, 21, 35]. Because the inclusion of new element
in the network is straightforward, it is no surprise that applications which mix both
IoT and AR already exist.

9

3 – State of art

Figure 3.2: Example of discrepancy check in AR

Source: [33]

In a monitoring environment, IoT systems collect a huge amount of information that
needs to be visualized in real-time. Data is usually saved in massive databases and
operators should retrieve them in a fast and efficient way. By using an AR app on a
smartphone (or tablet) connected to the system, it possible to show the details of a
component as text or images upon the real object immediately. The usage of Head
Mounted Display (HMD, headset with smartglasses) produces even better results,
hands are free and any maintenance operation can be executed more efficiently
without any distraction. In fact, the use of Hand-Held Display (HHD) can reduce
the worker’s attention because it has to switch continuously between instructions
and the industrial process itself as described in [4]. In general, Augmented Reality
and IoT (ARIoT) is used in monitoring, fault diagnostic and inspection application.

Example of this technology are described in [21] and is clear that prototypes of
ARIoT can be found in different industrial fields. One of them was developed for
helping farmers identifying insects species. Not all farmers are not able to recognize
which ones are beneficial or not for the growth of the crops, so the usage of AR
can simplify the task. Another model represents the underground networks by
exploiting the usage of AR, GNSS, GIS and a set of sensors. In this way, its possible
to avoid damaging existing infrastructure during digging and prevent a huge money
loss. Another method used for ARIoT was proposed for providing manuals for
different industrial equipment. It is able not only to execute a target recognition
but also to display the necessary details upon the observed object. Nestor Lobo et
al. implemented the Intelli-Mirror model used to detect a user and display upon
it images of clothes. It also displays information about the garment such as name
price, size, and name.

10

3 – State of art

Figure 3.3: Example of usage IoT in real-time machine inspection

Source: [35]

3.1.2 Maintenance and Monitoring system
"’Maintenance’ means all the corresponding technical and administrative actions,
including monitoring and control operations, intended to maintain [...] an entity in
a specified state or under conditions Dependability data, (Availability, Reliability,
Maintainability and Security) enabling it to perform a required function" [7]. Any
company highly invests in maintenance to reduce costs, time and increase the quality
of their products. Maintenance tasks are performed periodically to check the status
of a device, but, if the next control is performed too far in time, it is hard to know
the exact moment in which an object breaks. Preventive systems are designed for
this scope. The usage of programmable logic controllers, microcomputers, etc. offers
a system that collects the status of the monitored devices in real-time. With AR is
possible to visualize those data immediately and to apply any needed procedures to
solve the fault or prevent it.

The number of projects and prototypes, which integrate AR in maintenance pro-
cedures, increases every year. As described in [7], a lot of models exploit mobile
Augmented Reality and the usage of hand gesture to facilitate the execution of a
task. Also, there are examples of collaborative systems where different technicians
share the same mixed reality view and work together at the same procedure. The
same [7], proposed a preventive maintenance system for a cement company. The
application is developed with Unity3D© and ARToolKit for android devices and is
able to show in real-time and on-site all the data related to any pieces of equipment.
Amici et al. [1] proposed a measurement system for a manufacturing line of an
office kit in 2018. Each part of the line is equipped with a QR code to display
information about voltage, current, power and energy consumption. Besides, the
system is programmed to send an alarm in case of over-voltage or over-current.
Palmarini et al. [16] summarized the AR applications in maintenance by using an
SLR approach, in other works they search, appraise, synthesize and analyze all the
paper available at the moment. The document shows a higher interest in AR usage in

11

3 – State of art

aviation, automotive, and industrial plant. Its introduction produces a reduction in
terms of human error and time performing the procedure. Even if with good results,
the technology does not seem to be mature in terms of robustness and reliability.

Figure 3.4: AR Wireless Power Measurement System for a Manifacturing Line

Source: [1]

Figure 3.5: Pipe planning application on Android tablet

Source: https://ieeexplore.ieee.org/document/6162911

Fraga-Lamas et al. [4] evaluated the reliability of AR systems in the shipyard in-
dustry. The paper shows a collaborative AR system where an operator can place
virtual notes upon production models and share them between coworkers. Another
system allows users to visualize pipe plans and modify them in case of design errors.
The automotive industry was one of the first to integrate AR in its industrial process.
As Abdul Halim reported in [6], early implementations of AR started in 2002 with
the ARVIKA project that uses HMD and markers to recognize car components and
superimpose on them the corresponding CAD model, plus other useful information.
Just in 2006, a mobile markless AR system was proposed, it works with different

12

https://ieeexplore.ieee.org/document/6162911

3 – State of art

light conditions and is able to recover in case of tracking failures. BMW© realized a
similar system in 2015, but it used a unique data goggle instead of mobile devices.

Segovia et al. [22] proposed an AR tool for production quality. Its usage, compared
to a computer interface or handwritten data, provided the fastest and best results
in term of interaction and problem solving of the users.

Figure 3.6: BMW© 2015 AR application

Source: https://www.youtube.com/watch?v=P9KPJlA5yds

Figure 3.7: AR application for production quality

Source: [22]

A case study of AR for nuclear maintenance is described in [14], the aim was to
help workers to see hazards that cannot been see by human eyes. This is crucial
during the maintenance operation in which the radiation level can increase and is
important to perform the task in the most efficient way possible.

13

https://www.youtube.com/watch?v=P9KPJlA5yds

3 – State of art

3.2 Example of non AR monitoring system
Augmented Reality is a promising technology and will become an essential tool for
industrial applications, but due to its low reliability and hardware capability it is
not mature yet. Head Mounted Displays, such as Hololens or Magic Leap, have a
limited FOV (field of view) compared to the Virtual Reality headset, and even more
restricted if compared to the human one.
For this reason, aside from the cost of the devices, the usage of VR or desktop
applications are also greatly diffuse in Industry 4.0. An example of a real-time
monitoring system for a bridge structure was developed in 2010 and described in [20].
The acquisition of the 3D model of the bridge is performed using a point cloud data
obtained by a three-dimension laser scanner, in this way is possible to collect data
regarding changes on the surface and to convert them into displacement data.

(a) FOV comparison between AR HMD (b) FOV comparison between AR and VR
headset and human one

Figure 3.8: FOV comparison

Source: https://casques-vr.com/

Another one explained [37], shows a 3D Real Time system for cable temperature
management. The system is browser-based and gives a 3D model of the monitored
power well, for each wire is possible to know the position and value of temperature.
The system also posses an alarm system based on the real-time data and send an
alert with a pop-up message plus the position and identification of the cable.

Figure 3.9: FBG bi-state monitoring system

Source: [11]

14

https://casques-vr.com/

3 – State of art

One of the aims of this thesis is to propose a 3D real-time monitoring system for
FBG fiber, but it seems that no example of it already exists in previous articles.
The only similar case is illustrated in [11], where a bi-state monitoring system was
proposed for a blade in a rotating aero-engine. The system collects data from the
FBG sensor and stores them into a database. Then a VR application, that works
as a client, simulates the temperature of the blade based on the collected data, as
well as the dynamic strain. The user can interact with the object by changing its
rotation and the simulation it wants to perform.

15

Chapter 4

Proposed Real-Time Framework

The following chapter illustrates the general structure of the proposed framework
describing the used technologies and the main motivation behind their selection.

4.1 General description
The real-time visualization framework, as illustrated in 1, is splitted into two appli-
cations.
The first one is a classic desktop program to be executed in any circumstance with-
out the need for external devices. It was designed to avoid the user’s need to modify
the source code because it wants to change model, sensor position, texture, or net-
work configuration. The second one was implemented to run on an AR environment;
it is a "less-customizable" version compared to the desktop one due to motivations
described in the following chapters. Despite its limitation, it permits the complete
customization of the sensors upon the 3D model surface even if model and texture
are static.
Both programs need to retrieve the most recent measures from the cloud platform,
one for each active sensor. Because of this, they are designed to be multi-thread
to maintain the GUI responsive. Communication between secondary threads and
the main one, in charge of rendering and collection of user inputs, is permitted by
a dispatcher system. It collects in a queue the operations that the main thread has
to execute for the secondary one.

4.2 Unity3D engine
Unity3D is a cross-platform game engine, developed by Unity Technologies© and it
was announced in 2005 during the Worldwide Developers Conference. At the mo-
ment, it is one of the most used engine for developing 2D, 3D, virtual and augmented
games, simulations and other similar virtual experience. Even if it was born as a
game platform, it is adopted as a production tool outside the game industry be-
cause it implements a wide number of features and extensions. Other than that, it

16

4 – Proposed Real-Time Framework

is supported in more than 25 platforms becoming the perfect tool if an application
has to work on different devices.

Figure 4.1: Unity Logo

Source: https://unity.com/

A good definition of a game engine is "[...] the software that provides game creators
with the necessary set of features to build games quickly and efficiently" [31]. Usually,
the core elements of an engine are :

• The Graphics rendering dedicated to the visual outcome of an interactive
application. Unity has its own real-time rendering pipeline that implements
global illumination, ray-tracing, and physical based rendering. At the same
time, it provides the tools to build a custom pipeline to be optimized for a
particular platform or hardware.

• The Physics system used to handle physical simulations in real-time, in
particular Unity uses the one developed by NVIDIA© called PhysX©, open
source since 2018.

• The Graphical User Interface (GUI) and a set of tools (button, slider,
etc) provided to build one.

• The Scripting, maybe the most important, used " to define the logic of your
game components by adding behaviours" [31]. In this way, it is straightfor-
ward to control the elements in the scene and to create relationships between
them. Unity offers a scripting API in C# that is converted to a C++ backend
(IL2CPP) to increase the performance.

Nowadays, Unity is one of the best tools for developing AR/VR applications thanks
to its cross-platform support; thus companies from more industrial fields such as
automotive and aerospace had introduced it into their work pipeline. A manifesta-
tion of that is the PiXYZ© plugin that imports CAD models directly into the engine
and handles different optimization operations that make the 3D model usable inside
Unity for real-time developing [29,31].

17

https://unity.com/

4 – Proposed Real-Time Framework

The fundamental element in Unity is GameObject that can represent anything from
3D objects, camera, lights, etc. It serves as containers of components, the functional
parts of the engine, which describes how a GameObject should behave. By default,
any GameObject has a Transform component that dictates the location, rotation,
and scale of the GameObject itself. It can contain more than one components, each
one with a set of properties that the user can adjust to achieve the expected result.
Unity gives developers a set of built-in components that generate the main elements
in a scene (the environment in which the application (game) is developed) such
as cameras, lights, meshes, canvas, rigid object and more. Besides that, Unity
permits to build custom components using the C# language. Exploiting the concept
of inheritance of the OOP, the user is able to create a derivate class of built-in
MonoBehaviour one that works as "blueprint". It can overwrite some particular
functions that execute custom snippets of code in different moments of the Unity
pipeline. The most commonly used are the Update one, called at each frame update,
and the Start one, called before the application starts and is useful to variable
initialization or similar operations [29].

Unity proposes three different plans depending on the user’s need:

• Personal, a free licence, released for beginner or company with annual incomes
less than 100$K.

• Plus, the less expensive licence, targeted to hobbyists or small companies with
annual revenue of 100$K. Compared to the free options it gives learning course
to master the engine and the Unity Analytic tool used to collect user feedback,
crashes and exceptions in real-time.

• Pro, the more expensive licence, targeted to freelancers or professionals. It
provided all the advantages of the Plus options plus custom support, priority
access to Unity experts, and so more.

The project was developed using a Personal licence since its usage is limited only for
research purposes. Besides, it is one of the most used tools for developing Hololens
application [30], so forums and websites are full of guides and suggestions to help
beginners in the learning phase.

4.3 Data visualization
One of the most important aspects of a visualization system is how data should be
rendered to be simple to understand. Since the early development stages, the idea
was to provide both textual and visual information to represent how the data are
varying during the monitoring phase.
Textual data are the easiest to implements thanks to the GUI system offered by the
Unity Editor. "The Canvas component represents the abstract space in which the UI
is laid out and rendered. All UI elements must be children of a GameObject that
has a Canvas component attached" [29]. The Canvas component specifies how the

18

4 – Proposed Real-Time Framework

GUI should be rendered with respect to the camera. The Render Mode property
does this job for us, it can have three different values but only two are interesting
for the purpose of this project:

• Screen Space - Overlay, the Canvas is scaled to fit the screen and the UI
elements are placed on top of the scene. In this way, even if no camera exists,
the UI is rendered and changes only in function of the screen’s size/resolution.

• World Space, the Canvas is considered as a generic plane in the scene.

In the desktop application, the GUI is rendered with the Render Mode property set
to the Screen Space - Overlay value . Thus, all the UI elements are treated as 2D
objects making pretty simple the operation of translation on the screen space. With
the support of the EventSystem component, any input devices data is collected and
can be used to trigger different events. For the scope of this application, a simple
message box, which contains the sensor’s id and a wavelength value, was built. They
are rendered upon all the scene’s objects and near the screen position of each sensor.
This grant the visibility of the text in any situation without the worry that other
elements of the scene can hide it. To make the messages appear, the user can point
the mouse’s cursor on the sensor’s area of interest or can click on a checkbox that
displays all the message boxes at the same time.
On the other hand, the Hololens version’s Canvas is rendered in World Space.
Because of the limited FOV of the Hololens, it is necessary to not restrict it even
more with the inclusion of a fixed GUI, in addition, the user could not always frame
the monitored object. The message box levitates upon the position of the sensors
and to make it visible is necessary to perform the air-tap gesture to the area of
interest of the sensor. The message is always facing the camera direction; thus the
displayed value is always visible even if the user is moving around the hologram. It
could make all the messages visible at the same time by "tapping" on a checkbox.

4.3.1 Shader-base Heatmap
Even if textual data are essential, the user has to quickly understand how the data
are evolving through time and what it is its relationship with the previous value.
For this reason, visual information that involves colour applies perfectly on a visu-
alization system.
One of the proposed features was to create a heatmap on the surface of the 3D
model. To explain how it was developed, it is important first to know how meshes
and materials work in Unity.

A 3D model, or mesh, contains a set of 3D coordinates (vertex) group together in
triangles (a group of three vertexes). Each vertex carries additional information
such as colour, normals (the direction that the vertex is facing) and 2D coordinate
called UV. To be able to render any object in the scene, Unity required a Mate-
rial component which wraps a shader that has a set of property that permits its
customization [28].

19

4 – Proposed Real-Time Framework

Shaders can be described as a small program executed by the GPU in different points
of the rendering pipeline. It is composed of small core units able to execute in a
very efficient way calculation between vector, matrix, or a mix of the two. Thanks
to the high level of parallelization that those type of hardware can offer, shaders
are executed in an efficient and fast way and can manipulate an object’s surface to
behave in a certain way such as metal, diffuse or glass. A shader is executed for
each pixel of the final render and is in charge of evaluating its final colour, which
depends on the type of surface, light, and other properties.

Figure 4.2: Example of rendering pipeline

Source: https://www.researchgate.net/publication/262398551_Cloud_and_Mobile_
Web-Based_Graphics_and_Visualization/

There are different types of shades that take place in different points of the rendering
pipeline. The most important ones are the vertex and fragment shader. The first one
is called for each vertex, and its main purpose is to transform the coordinate from
3D world space to 2D screen one (the depth information of each pixel is inside a
special buffer called Z-buffer). At this stage, colour, normals, position, and texture
coordinate can be manipulated, for examples by light information. On the other
hand, the fragment shader calculates the colour of each fragment, which is the data
unit used to generate a single pixel. It receives as input the value calculated by the
vertex shader and can perform some post processing effect.

Unity gives to the developer the possibility to write custom shaders with a similar
C language that is successively converted into a native shader one such as GLSL,
HLSL, Vulkan, Metal etc. The syntax contains mixed elements from the CG and the
HLSL shader language. Unity’s shader is divided into two main areas: properties,
which are the input value of the shader, and sub-shaders, which contains the actual
code. It is important to know that those sub-shaders are executed in a specific
order, starting from the further object from the camera to the nearest one. The user
can change the render order by exploiting the Tag properties inside any sub-shader.
They can be used in different contexts to specify, for example, light information,
transparency etc.

In the proposed visualization system, the heatmap was obtained with a custom
vertex/fragment shader inspired by this tutorial [38]. The shader draws each pixel
differently based on the vertex’s distance from the sensor coordinates. The colours

20

https://www.researchgate.net/publication/262398551_Cloud_and_Mobile_Web-Based_Graphics_and_Visualization/
https://www.researchgate.net/publication/262398551_Cloud_and_Mobile_Web-Based_Graphics_and_Visualization/

4 – Proposed Real-Time Framework

are picked from a texture received as input. Each sensor is the centre of a sphere
where the radius is the distance between the latest wavelength’s value and the idle
one.
When the middleware client sends a new packet, the application calculates a new
radius and intensity, which defines the colour of the vertices that surround the
sensor. Then, they are normalized to be inside a certain range and avoid that a
single sensor can contain the whole mesh. At the end, they are saved as a global
variable on the shader, declared inside it using the uniform keyword. Those are
updated at execution time as Material’s component properties by a set of functions,
which receive as parameters the property ID and the value to set. They accept base
types such as float and int but also structs defined in a shader such as matrices,
colours, textures and arrays. Setting and updating array are the central operations
around this custom shader, all the heatmap’s values (position and new radius and
intensity value) are refreshed at the same time easily and compactly. The only flaw
is that Unity uses the same HLSL principle in which an array’s dimension is fixed
after the first initialization.

Figure 4.3: Example of the visualization system

4.4 Data collection
As the data visualization feature, the data collection one is a crucial element inside
a real-time visualisation framework. The application should always be ready to
collect new user inputs and to update the GUI, but at the same time, it must
not freeze when it is waiting for new values from the server. The simplest way
to accomplish this outcome is with a multi-thread program. The .Net framework
offers different asynchronous programming patterns but the task-based asynchronous
pattern (TAP), available since .Net 4.X, was chosen as the more suitable for a
network communication and, more important, it is well integrated with the Unity
engine.

Now the problem is to decide which layer of the previous framework should commu-
nicate with the visualization one. The following sections describe the two proposed
solutions; it is given more emphasis on the one used at the end.

21

4 – Proposed Real-Time Framework

4.4.1 Mongo DB
MongoDB is a document-based database that stores data in a JSON-like format.
It is classified as a NoSQL database which means that data aren’t stored in the
tabular format. As described in 2.1.4, it is part of KaaIoT platform and is rated as
one of the best NoSQL databases for IoT system. In fact, it shows great results in
term of response time, and throughput compared to other NoSQL databases when
executing the "post" and "get" operations [3]. It is adopted as the main database for
the cloud network layer because it was the only one able to manage the load from
the middleware layer.

Microsoft© releases a MongoDB C# Driver as DLL. These can be easily added
to a Unity project as plug-ins by just copying them into the project directory. The
class MongoDBManager was developed to be in charge to manage the connection with
the database. When the user confirms the network configuration, the InitMongoDB
method is called to initialize the connection. In case of errors, no exception is thrown
by the driver, so it was necessary to check if the database is reachable through a
ping operation. This method is executed by the main thread to block any user input
in case the configuration is not correct and avoid that it can start the simulation.
The user can retrieve two kinds of information from the database: the sensors’
configuration and the sensors’ measurements. The first one is retrieved before the
simulation start by calling the RequestSensorsConfiguration method. It check if
at least one sensor is configured for the current monitored object and it is executed
on the main thread for the same reason of InitMongoDB.
The simulation can start only if the database is reachable and the user decides
launch it, only on this occasion a new thread is created. Its life span depends on the
length of the simulation, and it is released only when it stops. The thread calls the
UpdateSensorInformtion method, which retrieves the most recent JSON file and
extracts all the measurements.
Because the C# driver is not well optimized, the application was not able to fol-
low the huge amount of data produced by the interrogator and was generally very
slow during execution. For this reason, it was abandoned after the first months of
development. Even so, the class remained inside the final project even if the newest
version was never tested.

4.4.2 TCP-Based Protocol
The MongoDB implementation alone did not reach the demanded specifications
because of the poor optimization of the driver. Even if the database is able, on the
middleware side, to manage the throughput of the interrogator, the driver interface
was not designed to manage those amount of data at the requested speed. In our
test case, the SmartFibres© SmartScan produces, if all 64 sensors are activated, 64
new peck data every 400 µs (called a frame). Each sample is encoded in 2 bytes and
packed into a UDP datagram (up to 1500 bytes) where the first 36 bytes represent
the header and the remaining one the payload. In the example configuration, a
UDP packet contains up to 11 frames (each frame is 128 bytes). The maximum

22

4 – Proposed Real-Time Framework

transmission speed is 4.4ms because the interrogator wait to fill up the UDP packet
before sending it.
Because of the high speed that the visualization system has to manage, the com-
munication was conducted at a lower level of abstraction to achieve better control
of the sent or received data. Beside, the middleware client and the real-time visual-
ization framework didn’t communicate directly. Thus, it could implicate additional
delays between the two services. As a consequence of that, it was decided to make
the visualization framework communicates directly to the middleware client through
sockets. If the packet is forwarded to the visualization system without any delay,
the data updates too fast to be readable by any human user. Because of this, only
the last frame of each UDP packet was redirected. After the write operation on the
socket, an additional 8 ms delay was added to ensure the readability of the sam-
ples. The final implementation managed to reach a speed comparable to the official
SmartSoft Application Software.

It was decided to make the two layers communicate through TCP packets in a
local network (LAN/WLAN), using a developed custom protocol. Because TCP
is a stateful protocol, it guarantees that all packets reach destination without any
concerns that they can be lost. This is crucial during the initialization phase, where
both applications need to achieve a state in which they can send or receive data.
When the simulation starts, a single socket is opened between the two, then, every
time the middleware client receives a new UDP packet from the interrogator, it
writes a new frame inside the socket’s stream. In this way, the visualization system
is notified only when new samples are available, and it has enough time to process
them and to update the UI. The socket is closed only at the end of the simulation.

The custom TCP protocol defines five packet types:

• DataPacket: it contains the sample from the last frame.

• RequestConfig: it requests a configuration packet to the middleware client.

• ConfigPacket: it contains a list of all the active sensors for the current
monitored object.

• RequestDataStart: it requests to start the monitoring phase.

• RequestDataEnd: it requests to stop the monitoring phase.

• EndThreadPacket: it is sent to stop the execution of the TCP server.

The content of the TCP datagram is divided into a header part, define by the id
of the packet (32-bit integer value between 0 and 6) follow by the payload. For
the RequestConfig, RequestDataStart, RequestDataEnd and EndThreadPacket
type, there is no payload. Instead, the DataPacket and ConfigPacket have a fixed
payload which contains the last frame and the active sensors’ list, respectively.
The DataPacket payload is 768 bytes long and consists of a list of 64 elements
which encoded two data, the sensor sample (encoded as a 32-bit float) and the scan

23

4 – Proposed Real-Time Framework

timestamp in µs (encoded as a 64-bit integer). In case the sensor is not active, both
wavelength and timestamp are set to 0.

The ConfigPacket payload is 1600 bytes long. The aim of the ConfigPacket mes-
sage is to let the visualization framework know which sensors are active before the
simulation start. The payload is divided into 64 units of 25 bytes and each unit
keeps the configuration for a single sensor. The 25 bytes are divided as described in
the following table.

ConfigPacket Payload
Bytes Range Description
0-4 ID of the sensors which is a 32-bit integer inside a range of

0-16
5 Boolean value which indicates if the sensor is active or not
6-8 Sensor’s wavelength in idle encoded as a 64-bit float. It could

be zero even if the sensor is active
9-12 Sensor’s wavelength maximum variation encoded as a 64-bit

float. It could be zero even if the sensor is active
13-24 Sensor’s position in world coordinate (x,y,z each one as 32-

bit float) to locate it in the correct position on the model’s
surface. If the position is unknown, the sensor is located in
the origin

Table 4.1: ConfigPacket payload description

4.5 Available AR technologies
One of the strongest points of the proposed real-time visualization system is the AR
implementation. As the technology matures, new devices and SDK are announced to
the public. In 2018, the Magic Leap One headset from MagicLeap Inc.© (announced
in a demo in 2015) was finally available in the USA with a larger FOV, compared
with other competitors. In the same year, the first official release of the Google SDK
ARCore (and its equivalent iOS version ARKit) was finally released for a limited
set of smartphones, and now, only one year later, the number of supported devices
is duplicated. In late 2018, Microsoft itself announced the Hololens 2, it features a
better hardware and a larger FOV compared to its first generation.

Among all the headsets available, the Microsoft© Hololens (first generation) was
considered the most suitable device for this project because of its wide integration
in similar industrial fields and the advantages of a headset compared to an mobile
device. Other than that, it is well integrated to the Unity Engine thanks to the
Mixed Reality Toolkit SDK. As described [32], the Hololens hologram’s stability is
quite good with a displacement error of 5.83 mm but if integrated with a mark-base
system, like Vuforia, improve the accuracy on the horizontal plane when the vertical
one has an accuracy of circa 4 cm [10].

24

4 – Proposed Real-Time Framework

Nowadays, the best solution to identify the position and rotation of an object in real-
time is to use a marker-base system. Even if different deep-learning/machine learn-
ing solutions already exist for pose estimation and object recognition those aren’t
fast enough to guaranteed a stable frame-rate, especially for the Hololens hardware.
Between all the market-based system available, the Vuforia Engine seemed the best
solution thanks of its accuracy and good integration with both the Hololens headset
and Unity Engine. Also, it is a tool extensively used and, thus, well tested.
In the following sections, there is an in-detail description of both the technologies.

4.5.1 Microsoft Hololens

Hololens is a pair of mixed reality smart glasses developed and manufactured by
Microsoft©. Its tracking technology derives from the Kinect, a device also produced
by Microsoft© for the Xbox gaming console, able to perform pose estimation using
a set of RGB camera and an IR sensor. It was the first HMD compatible for the
Window Mixed Reality platform under Windows 10.
Hololens features a set of high-definition lens, equipped with an optical projection
system able to produce multidimensional images in full colour (holograms), able
to mix the real world objects with virtual ones. To be able to understand the
surrounding environment, Hololens is provided with an IMU (inertial measurement
unit), which features an accelerometer, gyroscope, and magnetometer. In addition,
it uses an Intel Cherry Trail SoC, which includes both CPU and GPU, and an HPU
(Holographic Processing Unit), a co-processor able to perform spatial mapping and
gesture recognition. The HPU and SoC have 1 GB of LPDDR3 each and share 8MB
SRAM. Plus the SoC controls a 64GB eMMC and runs the Windows 10 operating
system. HoloLens features IEEE 802.11ac Wi-Fi and Bluetooth 4.1 Low Energy
wireless connectivity. It also is provided to an internal rechargeable battery, with
an average life of 2 and half hours of active use [13,36].

Exploiting the features of HPU, Hololens uses different types of inputs such as gaze,
gesture, and voice, referred to as GGV. The Gaze tracks the position of the forward
vector of the user’s camera in the mapped area allowing the user to interact to the
object it is pointing on. The gaze pointer is visible as a white circle that follows the
head movement, similar to a mouse’s cursor. Once the user targets an object with
the gaze, it can interact with it using hand gestures. Hololens tracks either or
both hands visible to the device if they are a ready stage (back of the hand facing
the camera and index finger up) or in a pressed stage(same as ready stage but with
index finger down). Those gestures are tracked inside a cone know as "gesture frame"
that extends in all direction the display frame where holograms appear [13,36]. The
Hololens has two main gesture:

• Tap-air is a gesture which mimics a mouse click. It consists of a pressed stage
(index up) followed by a release one (index down). With it, it is possible to
execute a hold, manipulate and navigation operation on the hologram object.

25

4 – Proposed Real-Time Framework

Figure 4.4: Steps to execute the Air-Tap gesture

Source: [13]

• Bloom is a special gesture that is used to open the start menu of Windows 10
when an application is running. "To do the bloom gesture, hold out your hand,
palm up, with your fingertips together. Then open your hand" [12].

Figure 4.5: Steps to execute the Bloom gesture

Source: [13]

4.5.2 Vuforia
Vuforia Engine is the most used platform for AR development because of its wide
support in different devices such as smartphone, tablet, eyewear, and platforms like
Android, iOS, UWP and Unity Engine. The API is released in C# for the Unity
Engine and in C++ for the other ones.

It supports different type of object recognition that can be summarized in two main
categories: Images and Objects.
Image targets is a market-based tracking system. The engine tracks the main fea-
tures of an image that are stored inside a database. The database can be download
and used, as an additional package, for runtime comparisons. It supports PNG or
JPEG both in colour or grayscale with a maximum size of 2MB.
Model Target is a markless tracking system that uses the object’s geometry to locate
it in space. The trackable object should be rigid, fixed in the environment its

26

4 – Proposed Real-Time Framework

(a) Image Target Example (b) Model Target Example

Figure 4.6: Vuforia Engine examples

Source: https://library.vuforia.com

locate into and with recognizable surface features. A model target is created using
the Model Target Generator (MTG) application, which is provided as part of the
Vuforia Engine SDK. It takes as input a 3D model of the tracked object, and then it
checks its suitability. Then, the user chooses a Guide View, a frame of the 3D model
where it can change angle and distance from the camera. After that, it generates a
database that can be used as a package inside the user’s application. Additionally,
it can train the database using a deep-learning cloud service where the model is
trained to recognize different Guide Views or all object’s sides.
Vuforia Engine also provides an extended tracking functionality which maintains
the model into the scene even if its target is no longer in the field of view of the
camera. It is integrated with devices such as Hololens or smartphone which support
ARCore/ARKit SDK because they can perform spatial mapping or plane detection
[8].

27

https://library.vuforia.com

Chapter 5

Implementation Details

The following chapter describes the implementation details of the proposed frame-
work. It starts with the common features on both applications and then it details
the elements only available on the desktop and the Hololens implementation.

5.1 Common features
During the initial design of the two applications, it was clear that they should both
follow a general structure and code implementation because the two development
platforms are quite different from each other. In particular, they differ in input
devices (or methods), user interaction with the virtual environment and hardware
capability that required to design different strategies to obtain the best result in term
of usability and performance to follow the requirement dictated by the middleware
client. After in-depth considerations of all the available possibilities, it was decided
to design a set of elements in a way that they required the minimum set of discrep-
ancies between the two implementations and, in general, didn’t need modifications
at all. These features are explained in the following sections.

The primary choice was to specify different states in which an application should
be. These can change in number between the applications, but two are used in the
whole framework: Menu and Monitoring.

1 public enum Status {
2 MONITORING ,
3 MENU
4 }

Listing 5.1: Status enum description

During the Menu status, the user can interact with the GUI and set different con-
figurations regarding the network, the insertion, modification, and elimination of
sensors inside the system and the type of measure it wants to perform. For the
last option, the user can choose between only two types of measure: temperature
and displacement. The first one represents a sensor with a sphere and the second
with a parallelepiped. Furthermore, the user can also modify the position of the

28

5 – Implementation Details

sensors upon the surface of the 3D model. In case the user wants to measure the
displacement of the object, the rotation of the sensor can also be adjusted. It rotates
around the normal of the plane in which is placed.

(a) Temperature sensor model (b) Displacement sensor model

Figure 5.1: Representation of the sensors in the framework

Instead, in the Monitoring state, the framework receives data from the middleware
client (or retrieved from MongoDB). The user cannot modify any configurations and
it is only able to visualize the data on the model as textual or visual information.

5.1.1 Class structure
A significant portion of the code was shared between the two applications splitted in
different classes. These define the parts of the structure used to make the primary
and secondary threads to communicate (UnityMainThreadDispatcher), to control
the monitored object status and the configuration of its sensors (MonitoredObject),
to support the socket interaction with the middleware client (or MongoDB) (TCPMa-
nager and MongoDBManager) and to manage the GUI (GUIManager). At last, one
class (GameManager) is in charge to direct the other ones and to handle the appli-
cation’s status and error messages between the different threads. All of this classes
extend the MonoBehaviour Unity class, so they are represented as objects that have
a location inside the scene. Let’s go in order and explain each class in details.

The UnityMainThreadDispatcher class is in charge to contain a list of methods
requested by the secondary thread to be executed by the main one (source code [18]).
It implements a singleton pattern, which means that only one instance of that class
exists for all the running time of the application. The secondary threads save each
request in an Action object and call the methods Enqueue. It inserts the object
inside a Queue collection, which guaranteed the first come, first serve rule. Inside
the Update function, the less recent Action is dequeued securely and invoked on the
main thread. This is reassured by the fact that the Update method, of all the classes
that extend MonoBehaviour, is called inside the Unity Pipeline, which is executed
in single-thread.

The MongoDBManager class is in charge to manage the communication with a Mon-
goDB database inside the cloud network platform. Its implementation is explained
in 4.4.1.

29

5 – Implementation Details

1 public class MongoDBManager : MonoBehaviour {
2 ...
3

4 /// Method that initialize the mongo ’s variable
5 public bool InitMongoDB () {...}
6

7 /// Method to get the sensors configurations
8 public void RequestSensorsConfiguration () {...}
9

10 // Method to start thread that get data sensors from database
11 public bool StartRequestSensorData () {
12 ...
13 Task.Run (() => UpdateSensorInformtion ());
14 ...
15 }
16

17 /// Method that retrievex samples to the database
18 void UpdateSensorInformtion () {...}
19

20 }

Listing 5.2: MongoDBManager class

The TCPManger, similar to MongoDBManger, regulates the communication with the
middleware client through TCP packets. The connection is via LAN/WLAN, so
both of the system should be connected to the same network. To support this,
the Awake function, executed before the application starts, saves all the unicast
addresses associated to a set of the network interfaces available on the system inside
a list. This set contains only interfaces that can transmit data packet and it excludes
all the loopback and virtual interfaces. When the user inserts and confirms IP and
port of the middleware client, the method InitTcpListener is executed. First, it
checks if the entered address has the same subnet of one of network interface and,
if at least one exists, it performs a ping operation to see if its reachable. In case
everything goes right, it creates two TCP listeners on two separate thread: the first
one listens on the port value entered by the user (wait for configuration packet), and
the other one listens on the previous port value incremented by one (wait for data
packet). In the case of a negative outcome, the application shows an error message
and invites the user to insert the configuration again.
One thread executes the ListenerConfig method and the other one the ListenerData
method. Both remain active until the TerminateThread bool variable is set to false.
When the user wants to change network configuration or to close the application,
the variable is set to true and guaranteed that the threads are released without the
worry of resource leakage. A loopback packet is sent to wake a listener in case is
waiting for a TCP client.
ListenerConfig, as the name suggests, wait only for ConfigPacket, it calls the
ServeConfigPacket to parse the content of the custom TCP payload and then it
advises the main thread to save the update configuration.
Instead, ListernData waits only for DataPacket. When a new client establishes

30

5 – Implementation Details

a connection, it calls ServeClientData. The method cycles until the client’s net-
work stream contains at least one frame. For each message, it examines the header
first and, if is correct, it parses the content, otherwise discards it. When parsing
the message, it updates not only the information concerning the active sensors but
also calculate data for the visualization system. The radius and intensity of each
sensor is determined based on the maximum variation from all sensors, which guar-
antee a coherent heatmap visualization. At the same time, it updates a sensor’s
configuration in some particular circumstance:

• The sensor’s idle value is zero. The physical system is on a resting stage before
starting a monitoring phase, and so the value measured by an FBG sensor.
Thus, the first received data becomes the idle value.

• The sensor’s maximum value is smaller than the one measured. The applica-
tion updates the sensor’s variation and the global variation to normalize the
heatmap.

At the end of each message, ListernData advises the main thread to update the
GUI and the monitored object’s heatmap.
When the user wants to request a new configuration or to start the monitoring
phase, it sends a TCP packet to the middleware client. The Send method performs
the previous operation; the type of message is specified by the input argument type.
If it is not correct, the application displays an error message.

1 public class TCPManager : MonoBehaviour {
2 ...
3 List <string > allLocalIP = new List <string >();
4

5 public void Awake () {
6 // Get LAN address
7 ...
8 }
9

10 /// It start the TCPListener based on the information setted by
the user

11 public bool InitTcpListener () {
12 ...
13 Task.Run (() => ListenerConfig (AddressInfo .Port));
14 Task.Run (() => ListenerData (AddressInfo .Port +1));
15 ...
16 }
17

18 /// TCP Server for the application , it run on a different
thread

19 public void ListenerData (Int32 port) {
20 ...
21 while (! GameManager . instance . TermianteThread) {
22 using (client = server . AcceptTcpClient ()) {
23 ServeClientData (client);
24 }
25 }
26 ...

31

5 – Implementation Details

27 }
28

29 /// TCP Server for the network configuration
30 public void ListenerConfig (Int32 port) {
31 ...
32 while (! GameManager . instance . TermianteThread) {
33 using (client = server . AcceptTcpClient ()) {
34 ServeConfigPacket (stream);
35 }
36 }
37 ...
38 }
39

40

41 /// Send message to the interrogator client
42 public void Send (TypeMessage type) {...}
43

44 /// Serve data packet
45 void ServeClientData (TcpClient result) {...}
46

47 /// Serve configuration packet
48 void ServeConfigPacket (NetworkStream stream) {..}
49

50 }

Listing 5.3: TCPManager class

Since now, the named classes don’t change between the two application because
their implementation works in both development platforms. Instead, the following
ones are implemented quite differently except for few methods.

The protagonist of the framework is the MonitoredObject class, which manages the
visualization of both textual and visual information on the 3D model and the user
interaction depending on the application’s status. Also, it is in charge to update the
sensors upon the model’s surface in terms of position, rotation, size, and models.
Inside the Awake function, it prepares the 3D model by merging the different parts
in a single mesh and it extracts information about the sensors’ position by looking
for parts with name SensorGR_CH where GR stay for the grating and CH for the
channel of the sensor.
Each time the sensor’s configuration is updated, the SetSensor method is called
to update the sensor’s model position, if it already exists, or to create a new one.
The value saved inside the configuration dictates the position of the sensor, but, if
it is not specified, the application choose a random point on the object’s surface; in
both cases, the method doesn’t update the rotation because there is no field for this
value inside the sensor’s configuration packet. The user can also change the sensor’s
model (ChangeTypeSensor) and its size (ChangeSizeSensor).
The class generates, for each sensor, a message box used to visualize the data during
the Monitoring phase. When a user tries to interact with the sensor, or with its
influence’s radius, the ShowText method pops up the panel near the pointed position.
If a user decides to see all the message boxes at the same time, the application

32

5 – Implementation Details

calls ShowAll instead. In the menu status, the HideAll and HideText methods are
invoked to hide all the notes.
The main aim of MonitoredObject is to update the shader’s heatmap. Each time a
new frame arrived at the ListenerData thread, the UnityMainThreadDispatcher
calls UpdateShader which receives in input two lists: one of the new properties
(radius, intensity) and the other with the last frame’s samples. The class maintains
a reference to the Material component, and so it immediately updates the shader
with the function material.SetVectorArray("_Properties", newProperties).
Besides, if the sensors measure displacement, the method gives the sensor a different
color if it is loose or pull. Another essential operation that the class performs is to
update on the sensors’ position inside the heatmap in case the monitored object is
rotated or translated.

1 public class MonitoredObject : MonoBehaviour {
2

3 public Material material ;
4 ...
5 void Awake () {
6 // Get all the object ’s meshes , combine them and extract ’s

sensors ’ position
7 ...
8 }
9

10 void Start () {...}
11

12 void Update () {
13 // Update position of the sensors if the main object was

moved
14
15 }
16

17 /// Update Heatmap properties
18 public void UpdateShader (Vector4 [] newProperties , List <

KeyValuePair <UInt64 , float >> wav) {...}
19 }
20

21 /// Update sensor information
22 public void SetSensor (Vector2 defaultProperties) {...}
23

24 /// Change size of each sensor
25 public void ChangeSizeSensor (float newSize) {...}
26

27 /// Change type sensor based on the type of measurament
28 public void ChangeTypeSensor () {...}
29

30 /// Show panel with sensor information
31 private void ShowText (Vector3 point , string nameCollider)

{...}
32

33 /// Show all sensor ’s panel
34 /// </summary >
35 private void ShowAll () {...}
36

33

5 – Implementation Details

37 /// Show panel with sensor information
38 private void ShowText (Vector3 point , string nameCollider ,

List < KeyValuePair <UInt64 , float >> wav , Vector4 [] newProperties)
{...}

39

40 /// Show all sensor ’s panel
41 private void ShowAll (List < KeyValuePair <UInt64 , float >> wav)

{...}
42

43 /// Hide all the sensor ’s panel
44 private void HideAll () {...}
45

46

47 /// Hide panel when outside of object
48 private void HideText () {...}
49

50 }

Listing 5.4: MonitoredObject class

The class GUIManager is used to control the main graphical interface, activate/de-
activate parts of it, based on the user’s choices and the application’s status, and
verify the input values. The base schema of the UI used for this framework is the
following one.

Figure 5.2: Main framework’s GUI elements

It includes three main areas: Server/Network configuration, Measurement configu-
ration and two buttons used to contact the server/database.
The first lets the user chooses on a dropdown menu between TCPConnection and
MongoDBServer; the first is the default option and provides two input field where IP
and Port can be entered. In case the IP has an incorrect format, an error message

34

5 – Implementation Details

is displayed. Depending on the selected option, the GUIManager rearranges the
panel’s size and shows additional input fields (Database and Collection name). A
Save button is located on the same high as the dropdown menu. If no data is
entered, the user cannot interact with the other parts of the GUI because the class’s
Start function disables them. Only when it inserts a functional configuration and
it clicks on the Save button, the ConfirmNetworkConfiguration method enables
the other parts of the GUI, disables the network one except for the confirmation
button, substituted with the Cancel one. TheMeasurement configuration part shows
a dropdown menu with the temperature and displacement option, which switch the
sensors’ model, and a slider for changing the size. At last, there is a Get configuration
from server/database button to request a ConfigPacket and the Start Monitoring
which starts the Monitoring phase. To stop it, the user has to interact in different
ways based on the application’s platform.

1 public class GUIManager : MonoBehaviour {
2 ...
3 void Start () {...
4 // Set default value on input field
5 SetDefaultValueInputField ();
6

7 // Disable the sensor and measure menu
8 ...
9 }

10

11 /// Actuvate / Deactivate sensor ’s configuration button
12 public void ToggleSensorConfigurationMenu (bool value) {
13 }
14

15 /// Set the current configruation on GameManger
16 public void ConfirmNetworkConfiguration (GameObject button)

{...}
17

18 /// Change GUI depending on the type of network configuration
19

20 public void ToggleNetworkConfigurationMenu (bool value) {...}
21

22 /// Set default value on the network configuration input field
23 public void SetDefaultValueInputField () {...}
24

25

26 /// Change rectangle size of the Network UI + activate /
deactivate option correalted only to the database one

27 public void ChangeNetworkMenu () {...}
28

29 /// Change IP address : in case of an invalid one an error
message is

30 public void ChangeIPAddress () {...}
31

32 ...
33 /// Other input check methods
34 ...
35

35

5 – Implementation Details

36 }

Listing 5.5: GUIManager class

Last but not least, the "director" class GameManager manages the "life" of the en-
tire applications and works as intermediate for inter-class connection. Like the
dispatcher, it implements a singleton pattern and it is the first custom script to be
executed in the Unity pipeline to ensure a correct initialization of all the application’s
variables. It contains a set of methods that can be divided into three main categories:
network configuration, sensor configuration, components and status managing. Also,
it acts as a "local" database for a set of global variables affordable by any element
of the framework at any moment. It guarantees the end of any secondary thread by
updating the TerminateThread flag.

1 public class GameManager : MonoBehaviour {
2 ...
3 /// List all classes instances
4 ...
5 public bool SetConfiguration { get; private set; }
6 public List <Sensor > SensorsFromNetwork = new List <Sensor >();
7 public Status statusGame { get; private set; }
8 public volatile bool TermianteThread = false;
9 ...

10 public static GameManager instance = null;
11

12 /// Set singleton and init values
13 Awake {...}
14 ...
15 // Network Configuration Methods
16 // ---
17 NETCONF_METHODS
18 ...
19 // Sensor Configuration Methods
20 // ---
21 SENSORCONF_METHODS
22 ...
23 // Component / Status managing Methods
24 // ---
25 STATUSMANAGING_METHODS
26 ...
27 }

Listing 5.6: GameManager class

The network configurations methods manage the interaction between the GUIManager
and the TCP/MongoDBManager instances. Depending on the user actions and input
value, it sets the SetConfiguration property and applies or cancels the previously
confirmed setting with the methods StartUp and ShutDown. Both of them are
called by the ConfirmConfigurationNetwork method, used for saving or deleting
a network configuration. When the user changes IP, port or others parameters, the

36

5 – Implementation Details

equivalent UpdateParameter method substitutes the old setting with the new one
and forwards the configuration to the TCP/MongoDBManager instance.
The sensor configuration methods, instead, are the middle chain between the TCPManager/
MongoDBManager /GUIManager classes and the MonitoredObject one. Each time
the user adjusts the senor’s position or request a new configuration, it is called
UpdateSensorInfo in charge to create or update a list, which collects the sensors’
configuration. If necessary, it notifies the MonitoredObject to update the model’s
positions. During the Monitoring phase, the dispatcher is used to call GameManager
methods to forward the data directly to the MonitoredObject which update the
heatmap and panels with ad hoc-methods. At last, it manages each component’s
life cycle directly using InitClassName methods. The passage between the Menu
and Monitoring status (and viceversa) is executed by the Start/EndSimulation
functions. The global flag statusGame dictates the current’s application status and
forces the classes to behave differently after a new phase is set.

To conclude, the framework represents a sensor’s configuration as a Sensor struct.
It contains id, channel, idle wavelength, maximum wavelength variation, position
plus some additional data calculated to speed up the control operations.

1 public struct Sensor {
2 public float MaxWavelenght ;
3 public int SensorID { get; set; }
4 public int Channel { get; set; }
5 public bool Active { get; set; }
6 public float WavelenghtIdle { get {...} set {...} }
7 public float MaxVariation { get {...} set {...} }
8 public Vector3 Position { get {...} set {...} }
9 ...

10 }

Listing 5.7: Sensor struct

5.1.2 Multi-thread communication
It was mentioned previously that the framework works on a multi-thread environ-
ment. The main thread is in charge to execute the Unity Pipeline and, so, it manages
GUI and user inputs where the secondary ones are in charge of the network com-
munication. The dispatcher list and the shared variables of GameManager are the
only resources shared between the multiple threads, which it means they need to
be protected to guarantee mutual access and avoid data corruption. Depending on
which network configuration the user chooses, the framework works in two different
multi-thread system.
If the user wants to connect to a MongoDB database, there is only one new thread
during the Monitoring state. After a new JSON file is parsed, the network thread
calls the dispatcher to send the last frame to the GameManager in charge to update
the shared sensor’s list. During this operation, the concurrent list access is secure
thanks to lock statements used in the get and set operations.

37

5 – Implementation Details

MongoDB Database

Visualization Frameworks

Main
Thread

Query
Thread

Dispatcher
Queue

Figure 5.3: Multi-thread connection schema for MongoDB

If the user wants to adopt the TCP connection, the application manages two different
thread that works as servers. These are instantiated when the user confirms the net-
work settings and listen in two different ports. One handles only the ConfigPacket
when the other one waits only for DataPacket messages. They work in two separate
game status, so they don’t interfere with each other. In this way is easier to manage
the application’s concurrency and at the same time increase the parallelism. Similar
to the MongoDB situation, the shared data are protected by lock statement.

Middleware Client

Visualization Frameworks

Main
Thread

Listener
DataPacket

Thread

Dispatcher
Queue

Listener
ConfigPacket

Thread

Figure 5.4: Multi-thread connection schema for TCP Connection

5.1.3 Heatmap Shader
As previously described, the heatmap shader receives in input a texture, the number
of active sensors, their positions in word space, and their properties split into radius
and intensity. The shader calculates the distance between the current vertex and
the sensor coordinate, it normalizes the value based on its radius and it gets the
color intensity from the texture, according to its intensity.

38

5 – Implementation Details

Unity takes advantage of the HLSL build-in vectors created form basic types. A
3D vector, for example, is saved as a float3 with x,y,z components when the 2D
equivalent (float2) only has two (x,y). Those structures are usually used to save
colors and coordinates, but a programmer can exploit them to store additional
parameters that the shader needs to perform its task. In this case, the sensor’s
properties utilize a 2D vector type to save radius and intensity.
As previously described, a vertex and fragment programs compose the heatmap
shader.
The vertex one receives as input the appdata_base struct defined in UnityCG.cginc
which holds raw data correlated to position, normal and one texture coordinate of
the current vertex. The program calculates the world and screen coordinate, and the
color for each vertex. In particular, the color is estimated from the vertex normal
and some built-in light variables declared in UnityLightingCommon.cginc file. All
of these parameters are saved inside a vertOutput struct which is the output value of
the vertex shader. The value after ":" are HLSL semantics that represents individual
mesh’s data elements.

1 struct vertOutput {
2 float4 pos : POSITION ;
3 fixed4 diff : COLOR0 ;
4 fixed3 worldPos : TEXCOORD1 ;
5 fixed2 uv : TEXCOORD0 ;
6 };

Listing 5.8: vertOutput struct description

vertOutput is the input argument of the fragment shader, which is the one actually
in charge to generate the heatmap. The program cycles to all the active sensors and
calculates the influence of each one based on how far it is from the current vertex.
If it is inside the influence’s radius, it calculates the intensity and accumulates it to
the h variable. The value summed in h corresponds to the i-th width pixel of the
input texture.

1 half4 frag(vertOutput output) : SV_TARGET {
2 // Loops over all the points
3 half h = 0;
4 for (int i = 0; i < _Points_Length ; i++) {
5 // Calculates the contribution of each point
6 half di = distance (output .worldPos , _Points [i]. xyz);
7 half ri = _Properties [i].x;
8 ...
9 h += hi * _Properties [i].y;

10 }
11 ...
12 half4 color = tex2D(_HeatTex , fixed2 (h, 0.5f));
13 color *= output .diff;
14 return color;
15 }

Listing 5.9: Fragment shader original code

39

5 – Implementation Details

In the original implementation, there was no smooth transition between two values,
so, to obtain a better visual result, it was developed an alternative version. The
shader receives two properties arrays, one including the previous frame and the other
the last frame. It lerps (linear interpolate) between the two based by an interpolant
value update directly by MonitoredObject on the Update function.

1 half4 frag(vertOutput output) : SV_TARGET {
2 // Loops over all the points
3 half h = 0;
4 for (int i = 0; i < _Points_Length ; i++) {
5 ...
6 half ri = lerp(_OldProp [i].x, _NewProp [i].x, _Blend);
7 ...
8 h += hi * lerp(_OldProp [i].y, _NewProp [i].y, _Blend);;
9 }

10 ...
11 }

Listing 5.10: Fragment shader modified code

The visual result was a soft animation between the two heatmap, which was satis-
fying to watch. Unfortunately, this version doesn’t work properly for fast data rate
since the application doesn’t have the time to refresh the interpolant properly.

5.1.4 Middleware connection
To include the update visualization framework into the IoT one was necessary to
adapt the middleware client to communicate with it correctly. For this reason, a
new version of the client was developed, which maintains the same structure of the
one implemented for the [5].
It was realized in C++ for Linux with the aim of maintains the same performance
in terms of speed and throughput. To achieve this goal, two additional threads
were introduced to manage the conversation with the new visualization framework:
one runs the TCP server to listen for data and configuration packet requests or
data end transmission requests, the other sends frames as a continuous network
stream for the duration of the monitoring phase. On the original middleware, the
interrogator interface already talks with the device through UDP datagrams, so
it already exists all the necessary mechanism to guarantee a correct concurrent
execution. However, to facilitate the implementation and because the application
didn’t require a strict real-time implementation, the C++11 thread core feature was
used instead of the phthread POSIX API since it gives a higher level of abstraction
to the developer without the risk of losing performance. The class defines a set of
atomic boolean values as global variables to save the user’s request and guaranteed
the correct termination of the threads avoiding memory leakage. To manage the
mutual access to shared resources a C++ mutex was used. The usage of lock_guard
and unique_lock wrapper classes ensure that the lock is released a the end of a
code block delimited by curly brackets.
For each frame of the packet, the main thread saves the samples inside a local

40

5 – Implementation Details

Visualization Frameworks

Middleware client

Interrogator
Interface

Interrogator

TCP
Listener

Main
Thread

Sender
Thread

Message
Queue

Shared
Data Sensor

Configuration

Figure 5.5: Multi-thread connection schema on middleware client

vector, but only the last one is copied inside a global vector shared with the "sender"
thread. This one instantiates a new socket to the TCP server of the visualization
frameworks only when the middleware client receives a RequestDataStart packet.
Thus, the server sets the atomic boolean send_data_holo to notify the "sender"
thread to create it and to write a new DataPacket message each 8 ms. When it
receives an RequestDataEnd packet, the thread closes the socket and waits for a new
request. Instead, a RequestConfig is managed directly by the server’s thread. The
first frame is utilized to extract the current system configuration by identifying the
activate sensors and save them inside a list of sensorConfig struct. The application
terminates when it receives a SIGINT (interrupt signal) and force all the tread to
terminate in a controlled and clean way.

5.2 Desktop solution
The framework was first implemented as a desktop application but designed to
reuse the code for the Hololens’s implementation. It was developed and tested on
a Windows environment but thanks to the Unity cross-platform feature there is no
problem to be ported for other OSs. It implements a broad set of new procedures
and extends the common ones. A desktop interface is more known for a user to
interact, so it was easier to implement new features in a way that the user feels it
natural and intuitive. Also, desktop OSs has a very established way of accessing the
file system and installing new programs, even if now users are more familiar with
mobile interfaces than the one offered by a classic personal computer. At the same
time, it is the most comfortable platform for implementing a new application because
it permits to both debug, test and develop the program on a "native" environment.

41

5 – Implementation Details

5.2.1 Overview

Figure 5.6: Desktop application home view

The previous image is the file home screen of the desktop application after it started.
It is divided into three main areas.
The left section, called Configuration Menu extends the standard GUI (5.2). From
the top, it contains a new section called Change HeatMap Color composed by a
list of different color gradients with a plus symbol at the end. At the base, it
shows the Sensor Configuration panel which includes the already mentioned Get
configuration from server/database button. Aside from that, an additional button is
introduced (Change sensors position on model) to make the user update the sensors
transformation and a scrollable view, called Sensor Data, arranged in four main
sections, one for each interrogator’s channel. Each segment is also a scrollable view
composed of sixteen rows. A single row holds a number (the id of the sensor inside
the channel), the idle and the max variation value (both input fields). The right
part is entirely new and includes two buttons (Import obj model and Import default
model) and a dropdown menu with a list of different preloaded 3D models. The
central part, instead, is left free because it is the portion of the screen that the 3D
model should occupy. Upon it, there is a gray bar that is used to display error and
debug messages useful not only to a developer but also to a user as textual feedback.

By just locking to the desktop interface is evident that the users have more options
from the base implementation. During the design phase, it was clear that some
structural elements need to be refreshed to assured a better role subdivision and
code organization inside the program.
Therefore, two new statuses were introduced. First, the Menu status was split in
two: Menu and ChangePos. Now the Menu one works as an "idle" mode where the
user interactions are limited only to the GUI and can’t no more approach the 3D

42

5 – Implementation Details

model in any way. Instead, ChangePos is activated after the push of the Import
default model button. Here the user must not interact with any UI elements but
only with the 3D models, for this reason all menus are hidden. It can interact with
the sensors’ models and changing their position and rotation as it wishes. Besides,
the user can also rotate the object around its pivot by simply clicking on the mesh’s
surface with the mouse’s left button and hold it when moving it in any direction; as
result, the object rotates toward the cursor’s last pointed coordinate. In this way,
it is easier to find the correct spot in which locate the sensor and its presented in
a very intuitive and straightforward way so anyone doesn’t have any problem to
remember how to do it just after the first try.
The new status, Import, is pretty straightforward. In fact it allows the user to
import either a .obj model by selecting it from the file system or one of the four
models already part of the application, called "default". The right side of the GUI
permits the switching back and forward to this status.

5.2.2 In game features
By the previous section, it is clear that each new graphical element corresponds to
new features:

• The user can select the 3D model of the object directly inside the application.

• The user can modify the idle and variation value of the sensors.

• The user can customize the heatmap colors.

A detailed description of each point is located in the following subsections

3D model import

As described in the previous section, the new status Import lets the user select
any .obj model from the file system. In this way, there is no need to recompile the
program each time it is required to change the monitored physical system. This is an
advantage because the end user doesn’t need to learn Unity or to coding to apply this
small modification, plus errors and bugs caused by the lack of experience are entirely
avoided. To realize this feature was necessary to use two external tools to reduce
the developing time: one recreates a GUI interface for the file system during the
execution time [25] and another automatically import a .obj as a GameObject [24].
Those are managed directly by the GUIManager using the menu on the right. When
the user clicks on the Import obj model button, a file browser interface appears. It
shows only .obj file and directories, but it is simple to extend it to any formats by
adding the new extension to a list.
Here, the user can decide to select a file or go back to the main screen, but it
cannot interact with any other GUI elements to avoid errors or failures. After the
file selection, the LoadFileUsingPath is called to perform the actual import by the
ObjLoader class which parses the file and extracts all the essential data such as
vertex, normals, triangles and more to represent a 3D model into the scene.

43

5 – Implementation Details

1 ...
2 public string [] fileExtentions = new string [] {"obj"};
3 ...
4

5 /// Call the File Browser prefab and instantiate it
6 public void CallerFileBrowser () {
7 ...
8 FileBrowser fileBrowserScript = fileBrowserObject .

GetComponent < FileBrowser >();
9 fileBrowserScript . SetupFileBrowser (ViewMode . Landscape);

10 fileBrowserScript . OpenFilePanel (fileExtentions);
11 ...
12 }
13

14 /// Load a file if the path is not null
15 private void LoadFileUsingPath (string path) {
16 if (path. Length != 0)
17 GameObject obj = new OBJLoader ().Load(path);
18 ...
19 }
20

21 /// In case the browser is closed the black panel is deactivate
22 private void CloseBrowser () {...}
23

24 /// Reset import menu Gui
25 public void ResetImportMenu () {...}
26

27 /// Load prefabs
28 public void LoadDefaultPrefab (TMP_Dropdown value) {...}
29 ...

Listing 5.11: GUIManager import methods

After that, the MonitoreObject class is in charge of executing different procedures
on the mesh, fufilled by OpenNewMonitoredObject. To also avoid possible errors
caused by interaction with other GUI elements, beside the import one, the Configu-
ration Menu (left part) was hidden. The application should ensure that the object is
always big enough to be visible on the center of the screen and composed by a single
mesh to easy the manipulation during the Monitoring and ChangePos phase. First,
the MonitoredObject transform component is reset and the rendering one disable.
The current sensor’s configuration and models are withdrawn and the new object’s
reference is saved into a global variable. Then, it seeks for mesh components inside
the children of the imported object (if they exist) and combines them into a single
mesh (CombineMeshes). The resulting one usually doesn’t have the pivot in the
correct position, to know how far it is from the actual center of the mesh the appli-
cation exploits its bounding volume, simplified as a box. From it, Unity calculates
its center; if it is different from a zero vector, any single mesh’s vertex is translated
which permit the change of the pivot’s coordinate (CenterMesh). Because the size
of the 3D model could be huge, with respect to Unity’s virtual world, it’s necessary
to normalize the volume to be inside a cube of 1.5 unit long. It is achieved by the

44

5 – Implementation Details

method NormalizeMesh. Firs it extracts the higher dimension of the bounding vol-
ume and divides every single vertex coordinates to that value. The original center
and the max dimension are saved into global variables because they can be reused
to transform the sensor’s position arrived from the middleware client since they are
correlated to the original pivot and size. However, ManageImportMonitoredObject
doesn’t have only to "normalize and center" the model, but also extracts possible
information regarding sensors position and ID. It was one of the most delicate fea-
tures to implements caused by the huge number of events that can occur during the
previous operations. Each sensor is identified by a specific label which associates
the 3D coordinate to the grating and channel of the sensor (SensorGR _CH). After
unifying the sensor’s object into a single mesh and extract its center, it necessary
to calculate the global position of the sensor. Because during the mesh combing the
resulting mesh could be mirrored along one of the three axes (or a mix of them), a
XOR bit-wise operation is executed between the coordinate of original vertex and the
one from the combined mesh (before all the transformation) to check if they have
the same sign or not. The final sensor’s coordinate is calculated in the following
way.

1 ...
2 sensor . transform . position = 1.5f * ((sensorCenter -

originalCenter) / maxDimension);
3 ...

Listing 5.12: Calculation of sensor’s position

At last, the original sensor’s objects are destroyed and substituted by a compliant
model provided by the visualization system.

Figure 5.7: Parameters to customize during the import status

Afterward, the user sees a new GUI where it can specify some parameters before
it can confirm and end the model’s import. It can control the mesh’s rotation and

45

5 – Implementation Details

size. Three different input fields identify the rotation parameters (x,y,z), and a
slider distinguish the size one. These avoid strange effects when turning the model
around its pivot. If it diverges from the center of the object (corresponding to the
center of the screen) and the object doesn’t face the camera, the interaction with
the 3D model results confusing and unpleasant for the user because of the mismatch
between action and feedback on the screen.
The user can undo the import procedure any time by simply clicking the ESC key.
Instead, it pushes the Confirm Import button to confirm the parameters. Then,
the GameManager is notified and concludes the import phase. Before returning on
the Menu status, the object needs to be transformed once again based on the user’s
inserted data. As before, the operation is executed per vertex. If applied on the
Transform component, the effect could not be pleasant because, in its "idle" status,
the object isn’t facing the right direction. For confirming the sensor’s position and
rotation, a new model is instantiated for each sensor. The final mesh is assigned to
the MonitoredObject object and the imported one destroyed.

1 ...
2 /// Start import new Monitored object model (only .obj format)
3 public void OpenNewMonitoredObject (GameObject sourceObject)

{...}
4

5 /// Update rotation of the object .
6 public void UpdateRotation (TMP_InputField field) {...}
7

8 /// Update local scale of the object
9 public void UpdateScale (Slider slider) {...}

10

11 /// Method that combine the mesehes
12 private void CombineMeshes (List < CombineInstance > list ,

GameObject objectC) {...}
13

14 /// Normalize the mesh of the GameObject
15 /// </summary >
16 private float? NormalizeMesh (GameObject objToNorm) {...}
17

18 /// Resize the mesh
19 private void ReduceSizeMesh (GameObject objToNorm , float size

) {...}
20

21 /// Center the mesh
22 private Vector3 ? CenterMesh (GameObject obToCenter) {...}
23

24 /// Confirm the model imported
25 public void ConfermModel () {...}
26

27 /// Stop the import procedure
28 public void CancelImport () {...}
29 ...

Listing 5.13: MonitoredObject import methods

46

5 – Implementation Details

Heatmap customization

In a visualization tool it is fundamental to customize the color of the heatmap or
graph. If the user is more familiar with a set of color is correct that it can use it; also
it should be able to switch between different palette depending on the information
that it wants to see. The desktop application supplies this possibility. In the top part
of the left panel, it was added a menu called Change HeatMap Color. If clicked on
the different gradient square, the user can change the heatmap color instantaneously
to other default palettes; the selected one is identifiable by a black outline. However,
if it clicked on the plus symbol, a new interface appear:

Figure 5.8: Custom HeatMap colors GUI

When this new panel appears, all other GUI elements are colored in gray to represent
the fact they are disabled. The current big square represents the selected hue with
all the possible combination with white and black (value). The hue can be changed
by the slider below. On the right, there are two buttons: one confirms the chosen
heatmap colors, the other cancels the operation. At last, there is a white rectangle
with upon nine smaller one which divided it in section. When clicked upon the big
square, a new color appears on the outlined box. The bigger rectangle is refreshed
on the corresponding position with the same color blended between the two white
sides. If clicked on another small rectangle, named gradient color, it is possible to
execute the same operation and, so, create a new palette. After decided which colors
are adapt or preferred for the new palette, the user has only to click on Confirm.
Then, a new gradient appears at the top of the default squares, outlined in black
and applied on the 3D model.

Figure 5.9: Update heatmap on the model and UI

47

5 – Implementation Details

The heatmap customization is available only in Menu mode. Two classes, inde-
pendent by the main application structure, control its behavior. TextureManager
manages the GUI menu, it collects the event of every single gradient color and up-
dates the view every time a new colormap is available. It is also responsable to show
the Color-pickers GUI and disable the other GUI elements. On the Awake function
it uploads the default heatmap as Image’s component inside a viewport’s content.
They are automatically imported as Texture2D objects, so there is no problem to
use them as a parameter for the shader.
GradientGUI, instead, handles the Color-pickers GUI and the back-end logic. Inside
the Start function, it creates for each hue value a Texture2D with all the white
and black shades. In this way when the user changes hue the texture is already
calculated and just needs to be swapped, without the worry of any additional delay.
It manages a Gradient object divided into nine main sectors (associated with an
index). When the user selects a gradient color, the application defines which section
of the rectangle needs to be updated. To pick a new color, the function PickColor
extracts the color information of the pointed pixel inside the 2D texture and use it
to update the gradient.

Sensor position and orientation customization

One of the most significant features mentioned was the possibility to customize
the position and rotation of sensors upon the 3D model’s surface. The desktop
implementation had a new status (ChangePos) dedicated to conducting the task
exploiting the MonitoredObject class to implement it.

Figure 5.10: ChangePos status main screen

The pressing of the Change sensors position on model button starts the ChangePos
mode, but if no sensor is active on the surface, the application doesn’t change status
and notifies the user with an error message. Otherwise, the main GUI is hidden and

48

5 – Implementation Details

the only form of interaction is with the mouse on the surface of the model. The only
textual information is the message upon the error panel which alerts the user to use
the ESC key to return in Menu mode and a check-box used to show all the sensor’s
ID. In fact, each sensor is provided with a panel to display its ID composed by this
label ChX GrYY ; for example, a sensor located in the first channel with grating two
has an ID equal to Ch1Gr2. The user can view the message box by hover the mouse’s
cursor upon the sensor’s model or clicking on the mentioned check-box. In case the
user rotates the monitored object, the panels are developed to follow the sensors’
position at each MonitoredObject’s Transform adjustments.
If a sensor’s position needs to be updated, the user clicks with the left mouse button
on the sensor’s 3D model, if picked a glowing red aura surrounds it. Instantly the
model follows the mouse cursor upon the system’s surface and with just another
left-click it is released. During all the "picked" period the sensor has the glowing
effect to alert the user which one it has selected.

Figure 5.11: Selected sensor’s glowing effect

The implementation exploits the usage of the Raycast, which cast a ray from
the camera’s position in direction of a pointed coordinate. It stops when it hit a
GameObject equipped with a Collider component used to check physical collisions,
which can also comprehend situations where the user wants to interact with a partic-
ular object. The MonitoredObject is provided with MeshCollider which matches
the shape of the monitored object’s mesh perfectly. Even the sensor’s model has
its own collider used to be recognized by the ray during the selection phase. When
selected, the sensor’s collider is disabled so it can follow the the object’s surface.
If omitted, it climbs back the ray until it reaches the camera. The model’s correct
position is essential, but it feels rough since it doesn’t follow the surface’s curvature
and sometimes intersects it. The effect is quite visible if the sensor’s model is the
parallelepiped, where half of the was not visible. Therefore, the model should be
rotated accordingly to the surface’s curvature. It was used the normal of the hit
point and the up vector of the world space to reach the desired result.

1 ...
2 Transform t = selectedSensor . transform ;
3 t. position = hit.point;
4 t. rotation = Quaternion . FromToRotation (Vector3 .up , hit. normal);
5 ...

Listing 5.14: Selected sensor’s model position update

49

5 – Implementation Details

Another import detail is the sensors’ orientation on the surface. For displacement’s
measure, it is fundamental to know the pointing direction of the fiber to have a
visual clue about its path and, as a consequence, the orientation of the displacement.
The user can accomplish this operation by holding down the mouse’s right button
on the sensor’s model. In this case, the object should rotate around the normal
of the surface in which is placed. Each vertex of a mesh is associated with normal
vector (vertex normal) calculated from other vertexes contained in the same triangle.
Within the RaycastHit parameters, there is also the index of the poked triangle of
the collider’s mesh. From there, it is straightforward to extract the vertex index,
and so the normal’s value. These parameters are only available if a MeshCollider
is used; therefore, after the first hit, the sensor’s model collider is disabled. When
the user releases the right button, the collider is immediately re-enabled.

1 ...
2 Transform t = selectedSensor . transform ;
3 MeshCollider meshf = GetComponent < MeshCollider >();
4 Vector3 [] triangles = meshf. sharedMesh . triangles ();
5 Vector3 [] normals = meshf. sharedMesh . normals ();
6

7 Vector3 normal = normals [triangles [hit. triangleIndex *3]];
8 t. RotateAround (pivot , transform . rotation * normal , 1);
9 ...

Listing 5.15: Selected sensor’s model rotation update

Sensor data customization

The previous feature permits the customization of position and rotation of the sensor
upon the system’s surface, but there no option to delete or add new ones. Without
these possibilities to change the sensor’s number, the modification of their trans-
form’s properties is pointless. The middleware clients indeed provide all the nec-
essary information about active sensors but its not uncommon that some sensors
could be broken or not present inside that configuration.
For this reason, it was designed a set of custom GUI elements to represent all the
possible sensors supported by the SmartScan interrogator. In total it contains 64
sensors divided into four different sections (maximum the number of channels), each
one containing 16 sensors (also called grating, the maximum number of sensors
supported on a fibre). The Sensor Data part in the left side of the main screen
represents the described elements. Each section’s sensor is created at run-time by
the GUIManager and by default represents an inactive sensor. Each sensor is a "row"
of three elements: the ID (grating) and two input fields for the idle wavelength and
maximum wavelength variation, the last estimated by the user or obtained after
some tests. If the user fills at least one of this two, the application set that sensor’s
as active and generates a new model upon the object’s surface. To eliminate it, the
text in both fields should be canceled. Then, the sensor is considered as inactive
and the program deactivates the corresponding GameObject to be reused in case of
a user’s error.

50

5 – Implementation Details

This part was developed during the early stages of the program’s life and it became
less relevant going further in time because of some late update it both the middleware
client and the visualization framework. It was preserved not only for the sake of
integrity but also because it was the fastest way to add sensors to debug or test the
application.

5.2.3 Real time graph
One of the late features of the framework was the introduction of a real-time up-
dated graph. The end users need to study the behavior of the sensor in different
circumstance and displaying only the last measured wavelength wasn’t very useful
in this context. A sample without any back history is just a number but if correlated
to past or feature measurses it starts to acquire value. One right way to see how a
sensor evolves during time is to use a line graph, that represents in the x-axis the
time and y-axis the wavelength value. The graph feature wasn’t developed from
scratch, but it was integrated using an external plug-in called Graph and Chart [23].
The reasons are simple, fist it is the best tools in Unity for this purpose and also
supports real-time insertion for a high data-rate. Last, the time to implement even
a simplistic version of it wasn’t enough. So, instead of including an in-development
functionality, it was adopted something already tested by a vast number of devel-
opers. More information about the tool can be found in its documentation [9].

Figure 5.12: Example of the real-time graph with 64 sensors

For this project, it was chosen to use a line graph. The plug-in permits its cus-
tomization by script, without the need to always use the Unity Editor. With a
handful of functions it possible to add new categories, new points and customize the
horizontal or vertical view to automatic resize the graph or to scroll the horizontal
view after it reaches a given number of points per category. The plug-in also creates
a legend for each line represented inside the graph. The GUIManager class contains
different methods that permit the initialization and the update of the graph based
on the number of active sensors. The InsertCategory method adds new categories

51

5 – Implementation Details

linked with active sensors, in case the user switch between two sensor’s configura-
tion it removes the ones that are no longer active. Each category is distinguishable
by a different color that is picked randomly with the method Random.ColorHSV()
offered by the Unity Engine. The method saves the number of active sensors and
then decides to make the views scrollable after a given number of samples. If the
number is lower than 40, it accepts until 20.000 points per line, but if it is bigger
than 40, only 200 points per line are visible on the screen. Even if it seems unreason-
able, this guaranteed that the application could maintain an acceptable frame-rate
and performance in terms of speed and memory usage. Besides, it avoids that the
application crashes if a line reaches the maximum number of vertex permitted for a
mesh inside Unity. When a new DataPacket is parsed, the UpdateCategory method
is executed with the update wavelength samples as input. Each sensor’s frame is
associated with a timestamp that represents the instant in which the interrogator
scans the fibres and retrieves the peak wavelengths. Because it is measured in mi-
croseconds, the application uses it as a unique ID and discards possible duplicates
received from the interrogator. It updates all the categories with wavelength value
different from zero and shows only the variation between the new sample and the
idle one. The x-axis doesn’t show the timestamps, but the time-span between the
first received data and the newest one converted in seconds.

1 ...
2 /// Insert a new category on the Line graph
3 public void InsertCategory () {...}
4

5 /// Update the line graph , a point for each active sensor
6 public void UpdateCategory (List < KeyValuePair <UInt64 , float >>

wav) {...}
7

8 /// Set the line graph as visible
9 public void ShowGraph () {...}

10

11 /// Set the line graph as not visible
12 public void HideGraph () {...}
13 ...

Listing 5.16: GUIManager graph methods

It is given the user the possibility to hide the graph by simply clicking on the Hide
Graph button below the graph’s legend. The same operation on the Show Graph
one restores the default’s view.

5.2.4 End simulation features
The real-time visualization system provides a simple data analysis tool at the end
of each monitoring operations that received at least one packet from the middleware
client. The tool provides two main features: a log file and a line graph. Both are
managed by an additional class called LogManager. The GameManager is in charge
of calling its initialization method IntLog before the Monitorng phase starts. It
creates the log file and creates an additional thread to write the data asynchronously

52

5 – Implementation Details

to the rest of the application. All the received samples are saved into a shared queue
called LogQueue by the TCPManager (o theMongoDB one). Instead, the WriteOnLog
method retrieves and writes them in order into the file. The log is written in a CSV
format and with the following template:

Figure 5.13: Example of a Log file with five active sensors

The operation continues for all the Monitoring phase and only when the user
switches to the Menu one the method exits from its while loop. It extracts all
the remaining measures from the queue to complete the log. After that, it closes
the file and executes an external program on a different thread using the Process
class functionalities. The program consists of a short python script that includes
the Numpy and Pandas library, widely used in the machine learning and data science
field for data analysis. In this case, it was used for its straightforward methods to
retrieve all the measures from the CSV file and build a line graph, successively saved
as a PNG image. The operation is not immediate but requires a few seconds. After
that, the image is available on the build directory of the framework. At the end of
the script’s execution, both threads terminate.

Figure 5.14: Example of line graph generated by the python’s script

Because in Windows doesn’t have a default python interpreter, it was used the
Anaconda distribution that automatically sets the Windows registers to execute the
phyton.exe command anywhere on the command line.

53

5 – Implementation Details

5.3 Hololens solution
As described in the chapter 3, AR technology is widespread in the various industrial
field for its advantage of superimposing virtual information on a real environment.
In maintenance and monitoring task, headsets show better user’s performance and
focus. For these reasons, it was decided to implement the application for the Hololens
platform instead of a port to other hand handled device ones. Compared to a general
desktop interface, Hololens offers a different approach, especially in terms of input
capability. Even if a "mouse clicker" device exists, the user interacts more likely
using hand gestures or voice input, because it is more intuitive and doesn’t require
nothing else than the headset itself. However, it creates a more satisfying immersive
experience, thanks to the spatial mapping and the accurate hologram anchor system.
The user can move far for the hologram and continue to see it in the same position
even after sudden head movement.
The Hololens port uses the majority of the standard architecture of the visualization
platform, but some procedure required small adjustments. The different interaction
system and the possibility to navigate through the "mixed reality" world required
to think the interaction system over to guaranteed the same level of comfort when
using the interface or carrying out tasks.

5.3.1 MRTK v2 Release Candidate 1
During the first months of design, Microsoft© announced the new Hololens model
(called 2) that could be released in the late 2019 or 2020. As a consequence of that,
a new SDK was developed by the Microsft Mixed Reality Toolkit (MRTK) team
to create a unified set of features and components for Unity to help developers to
build application supported by a various set of devices such Hololens (model 1 and
2), Windows Mixed Reality headsets and OpenVR headsets (HTC Vive / Oculus
Rift) [26]. It is the successor of the original Hololens Toolkit that didn’t receive any
update since 2017.

Figure 5.15: MRTK logo

During the development of the application, MRTK V2.0 betas and refreshes were
released, but it was decided to develop the application using the RC1 release (Release
Candidate 1) which is described as an intermediate version between the beta and

54

5 – Implementation Details

the official release. On the GitHub page, it is reported that is pretty near the release
stage if not for small bugs and small finish touches. On the current state, July 2019,
the RC2 was released.
The usage of the new MRTK 2.0 was essential to support a complete (or partial
depending on the SDK bugs) porting to the new Hololens device which should solve
the significant interaction problem encounter in this implementation. In general, the
new SDK gives all the useful tool to implement the port in a simple way. One of the
most significant advantages was the inclusion of an emulator that can be activated
directly on the Unity Game Player. With it, is possible to run the application on
a similar environment before tests it directly on the Hololens headset. Another
useful component adapts the Unity UI elements into Hololens thanks to the Canvas
Utility one plus additional scripts that easy the interaction with different objects on
the mixed reality when near them. With a set of interfaces, the user can implement
how an object reacts depending on the type of interaction like pointers, gestures,
voice, etc. In the Hololens port, the user can interact with GUI and 3D model only
with the air-tap gesture, considered a pointer’s type.

5.3.2 Limitation
Nowadays, the Hololens’ hardware is a little bit outdated and it wasn’t sure if it
was capable of handling all the desktop features. Then, the limited FOV permits
that only a small area supports the holograms, reducing the situation in which the
application could be used. In fact, the application isn’t able to frame entirely large
objects or building but just a small portion of it, which makes difficult to understand
what it is inspecting. To avoid low frame rates and, as consequences, low usability
of the device, only the sensor’s number customization was fully implemented. The
model’s import was discarded because of the limited capacity of the Hololens’s flash
memory and the huge number of space that a 3D model can occupy. The heatmap
customization was considered at first but then discarded because it doesn’t consider
essential for the port.
Even if the MRTK Unity plug-in is the best available tool for developers, it has some
limitations. Since the first Hololens SDK the user doesn’t have the raw access of
the camera stream and the sensor’s data directly in Unity but should uses external
tools or third-party library. So it wasn’t an easy task to perform computer vision
operations such as object and image tracking.

5.3.3 Overview
The Hololens port, as previously announced, goes through a series of small changes
due to platform issues.
First of all, the main GUI is untouched if compared to the default one but follows
the user inside the virtual world. This was decided to not limit the user’s FOV
even more due to the already limited visual capability of the device. It is possible
to reduce the dimension of the GUI to a little square by just clicking on the minus
button. All the elements are hidden except for a black panel used to display errors

55

5 – Implementation Details

and messages and another plus button used to restore the Canvas at its default
state.

Figure 5.16: Hololens main GUI

The Canvas always follows the user around the scene by positioning on the upper
right of the screen when the camera stops moving. On the Unity Editor, the Canvas
rest location can be changed by using a drop-down menu on the GuiFollowCamera
component. It provides other customizable parameters such as movement speed,
maximum and minimum distance from the user. This implementation isn’t enough
to guaranteed good user experience. In fact, the Hololens’s gaze works as a mouse
cursors and it is always at the center of the screen. So, every time the camera
moves the Canvas does the same, therefore clicking any UI elements becomes a
chore. To avoid this unpleasant pattern, the GuiFollowCamera extends not only the
MonoBehaviour but also the IMixedRealityFocusHandler interface. It defines how
an object reacts to a focus enter/exit, or in other words, how an object reacts when
the gaze points on it. In this case, the usability is implemented in a straightforward
way, until the user is facing the Canvas, it stays still. However, when the gaze focuses
on another object, it starts to follow the camera again. In this case, the interaction
is more manageable and intuitive, especially for someone who never used an AR
headset before.
Another problem to solve was the insertion of the network configuration. By de-
fault, the input field works with a physical keyboard and don’t automatically create
a virtual one. To solve this issue at every InputField object is provided with two
main components: InputFieldHolo and Event Trigger. The second is used to
call the OpenSystemKeyboard method when the user performs an air-tap gesture
on a InputField object. It opens the system’s virtual keyboard and disables the

56

5 – Implementation Details

Canvas’s GuiFollowCamera component to avoid any difficulty caused by the cam-
era’s movement. When the user clicks outside the keyboard or cancels the operation,
the system hides the keyboard but doesn’t disable the object. This can cause failures
when the user wants to open the virtual keyboard in a second moment. As coun-
termeasure both the CloseKeyboard and Update methods set the keyboard status
as inactive before reactivating the GuiFollowCamera’s component.

Figure 5.17: Hololens’s virtual keyboard

All the Hololens application are built as UWP, means that the application is con-
verted into IL2CPP back-end when it needs to be uploaded on the device. Unity in-
cludes a Windows Runtime support that let the user calls native system WR API to
execute some code snippets. In the current application, it is used to retrieve the net-
work interface’s local IP because System.Net.NetworkInformation is not fully sup-
ported in UWP. The desktop application uses the NetworkInterface.GetAllNet-
workInterfaces() method to return a list with all the available network interfaces
but in WR API the NetworkInformation.GetHostNames() is adopted instead.

1 // Get LAN address Desktop
2 foreach (NetworkInterface item in NetworkInterface .

GetAllNetworkInterfaces ()) {
3 ...
4 allLocalIP .Add(ip. Address . ToString ());
5 }
6 // Get LAN address Hololens
7 #if ENABLE_WINMD_SUPPORT && UNITY_WSA
8 foreach (HostName lhn in NetworkInformation . GetHostNames ()){
9 ...

10 allLocalIP .Add(lhn. ToString ());
11 }
12 #endif

Listing 5.17: NetworkInterface difference between desktop and Hololens
implementation

57

5 – Implementation Details

5.3.4 Marker-base recognition
One of the best engine used for image-target recognition is the Vuforia. It is well
integrated with the MRTK and exploits the spatial mapping features of the Hololens
thanks to the extend tracking feature. So, an object remains on the located placed
even if the camera does not frame the target.

Figure 5.18: Vuforia’s main scene elements on the Unity scene

The scene objects necessary to use the Vuforia engine are only two:

• the AR camera, which includes a Vuforia Behaviour component used to spec-
ify where the world reference is attached. In the Hololens case, it is always
on the device itself. The behavior is defined by the Vuforia Configuration
when the user sets up the device target, the image’s database, extended track-
ing and many more options.

• the ImageTargat object which includes the Image target behavior compo-
nent. It changes size depending on the marker’s dimension, and the user can
choose between the images inside the default database or from a custom one.
The 3D model, that appear after the marker is tracked, should be its child on
the scene’s hierarchy. The user has all the freedom to positioning and scaling
the object.

5.3.5 Sensors customization
The sensor’s customization was completely redesigned for the Hololens implemen-
tation. As for the desktop implementation, it permits to add, remove, or update a
sensor’s upon the 3D model’s surface, but there are executed only in Menu mode.
When the image is tracked for the first time, the application performs some operation
on the 3D model, similar to the one applied during the Import mode on the desktop
application. All the described operation are implemented on the MonitoredObject
class. In the Awake method, all the mesh components are listed and merged in a
single one. In this case, it is essential that the model maintains the same position,
size, and rotation concerning the root element (ImageTarget). Before the merging,
the parent, position, rotation and scale’s parameters of the MonitoredObjetct are
saved in temporary variables, and then the Transform component reset. As in the
desktop application, the delicate steps is to extract all the sensor’s configuration
data and position them correctly on the 3D model’s surface. The application is per-
formed to ensure that the sensor’s size is not altered after the MonitoredObjetct’s
Transform parameters are reinserted.
After that phase, the user can interact with the 3D object using the air-tap gesture
thanks to the implemented IMixedRealityPointerHandler. Here the object reacts

58

5 – Implementation Details

differently when the user index is up, down or performs a "click" (rapid succession
of up and down) and based on the application’s status. Because the Monitoring
implementation doesn’t diverge from the default one, the focus is directed only on
the Menu one.

Figure 5.19: Menu sensor GUI for sensor’s insertion

By performing an air-tap on the 3D model’s surface, the application shows a new
GUI. The main one is temporarily disabled to avoiding error or confusion by the
user. The new Canvas, called Menu Sensor, permits the insertion of a new sensor
that is not currently active on the 3D system. Menu Sensor is provided with two
drop-down menus (Channel and Sensors) and two buttons (Ok and Cancel). The
menu is locked on the pointed user’s position and it is always facing the camera to
be always visible by the user. The two drop-down menus show the available sensor
depending on the selected channel’s value. When its value is modified, the sensor’s
options are refreshed to contains only the available gratings. The chosen pair can
be confirmed or cancelled the operation by pushing the namesake button. In both
cases, the main GUI returns visible and Menu Sensor is disabled. Its behavior
is managed by the SensorCanvas class which shows only the available sensor’s for
channel and forwards the user’s decision to the GameManager. It updates the sensor’s
configuration, if necessary, and notifies the MonitoredObject to disable the Menu
Sensor. The MonitoredObject saves the coordinate of the hit location and the
associated normal. Those are necessary to place a sensor in the designated position
and be sure that is rotated correctly with respect of the 3D model curvature’s surface.
The SetSensor method has some slight differences compared to the standard one.
It discriminates the updates from the network from the other ones to avoid that the
active sensors are repositioned in a wrong spot.
If the user points to a sensor’s model, the Menu Sensor shows two different buttons,
the Update and Delete one. The first substitutes the selected sensor with the one
specified by the drop-down menus when the second deactivates it. In case the
measurement type is Displacement, there is an additional option, Rotate. If pressed,

59

5 – Implementation Details

Figure 5.20: Menu sensor GUI for displacement sensor’s customization

the user has to point the same sensor again and holds the pressed pose until the
object reached the desired rotation. In this case, the gaze should pass through the
sensor’s model to be sure it works. The same rule of the desktop application is
applied to rotate the object correctly.

Figure 5.21: Monitoring phase example on the ICARUS wing

60

Chapter 6

Test and Result

The chapter presents the analysis of the proposed framework in terms of performance
and usability. Each application is tested separately but using the same criteria. In
term of performance, the most important features that need to be analyzed is the
delay between when the middleware client sends the packet and when the visual-
ization system updates the heatmap. Another important aspect is the utilization
of CPU, GPU and memory. Unfortunately only one time it was possible to the
Hololens on a real system environment due to technical problems, the others were
performed with the desktop application.
Both are analyzed in different scenarios to determine the advantages and drawback
of the framework.

6.1 Measurement Log
The delay analysis is performed thanks to an additional log file created only for
this purpose. It measures the difference between the timestamp retrieved on the
middleware client before it writes on the socket and the timestamp retrieved when
the dispatcher calls the UpdateShader method. The two systems are synchronized
on the same NTP server to reduce the time differences. The Hololens system was
provided with an additional thread that transmits the data to another device in
charge to save the information into a CSV file.

6.2 Performance: Case studies
The framework was tested in different cases scenarios using real physical systems or
the interrogator emulator developed in [5]. The middleware client and the emulator
itself were installed inside a Raspberry Pie© 3 model B on a Rasbian (Debian
based distribution made for ARM processor series) OS. They are connected to a
hidden WLAN without internet access to recreate an environment in which the
whole architecture should be used. All of the tests are performed with the option
ShowAll panels activate.
The physical tests case were executed on an laptop Asus K53SD with an Intel©

61

6 – Test and Result

i5 2450M processor, a NVIDIA GeForce 610M and 8GB of RAM. Instead, the
emulator tests were performed on a desktop machine with an Intel© i7-7700 processor
with the integrated graphics card Intel© HD 630 and 16 GB RAM.

6.2.1 Case study: Carbon Fiber Reinforced Polymer sheet
This experiment consists of a bending test of a CFRP sheet where each step there is
a delay of one minute (in this case only ten seconds). After it reaches the maximum
bending, it slowly returns to its idle position. The configuration of the system had
only one fiber active (channel 1, grating 1). The measure was performed only on
the desktop application. The following table shows the average delay between all
the simulation’s period. Each sample represents a new DataPacket received inside
the network stream.

Simulation period Number of packets Average Delay
50s 6084 106,2ms

3min 01s 11940 102,8ms

Table 6.1: CFRP sheet measured delay in ms

At the end of the simulation, the application usage of CPU was 40% and the GPU
25%, in terms of memory it occupied 243MB. The application run smoothly without
delay when interacted. The following graphs show consistence between the data
received from the interrogator (calculated in Matlab) and the one visualized by the
desktop application.

(a) Visualization framework real-time line
graph (b) Matlab line graph

Figure 6.1: Comparisons between line graph obtained from the sample received from
the interrogator

6.2.2 Case study: Fuselage ICARUS
The most interesting experiment was performed on the fuselage of the ICARUS
Unmanned Aerial Vehicle, developed by DIMEAS. Due to limited supplies of FBG
fibers, the application was ultimately tested on the fuselage of the plane. Some
initial bug-test was performed with the wing but no measurements were performed

62

6 – Test and Result

at that time, but the application already showed great performance in terms of
speed.

Figure 6.2: Fuselage displacement Hololens test

Figure 6.3: ICARUS ’s first wing test

On the final part of the fuselage was attached a small plastic cart, water was grad-
ually added to measure where and how it bends. To perform small tests it was
used a set of weights instead. There are four fiber installed on the fuselage, with
the following configuration: CH01GR01, CH02GR01, CH03GR01, CH03GR02. The
test was performed on both the application, desktop and Hololens.

The following tables shows the average delay between all the simulation’s period.
Each sample represents a new DataPacket received inside the network stream.

Simulation period Number of packets Average Delay
26min 27s 94642 110,6ms

Table 6.2: Desktop: Fuselage displacement measured delay in ms

Simulation period Number of packets Average Delay
24min 20s 600249 74ms

Table 6.3: Hololens: Fuselage displacement measured delay in ms

Similar to the previous test case, the desktop application usage of CPU this time
was 50% and the GPU remains the same (25%). In this case, the memory usage

63

6 – Test and Result

was a little bit higher reaching 300MB in total. Overall, it run smoothly for all the
simulation period.
The Hololens showed, instead, high usage of the CPU, near the 100% with a variable
refresh rate between 20 and 40 fps. The memory usage reached its peak at 250MB
with a maximum of 900MB available. Even if the fps weren’t constant, it run the
application without any visual problem or slowdown.
The following graphs show consistence between the data received from the inter-
rogator (calculated in Matlab) and the one visualized by the desktop application.

(a) Visualization framework real-time line
graph (b) Matlab line graph

Figure 6.4: Comparisons between line graph obtained from the sample received from
the interrogator

6.2.3 Case study: Emulator
The biggest amount of tests were performed using the interrogator emulator due to
the limited access to the SmartScan© interrogator. Besides, it was the only way to
test the performance of the frameworks on its maximum capacity or, in general with
a high number of active sensors.
The desktop and Hololens application were tested with different sensors’ configu-
ration, which vary in duration and sensors’ number. In this way it is possible to
see how both react in different scenarios. On the desktop environment, some of the
monitored logs required data cleaning because when the application is set to back-
ground it is paused and the packets are not processed until it is reset as foreground.
Due to this issue, some of the timespans were altered and so not considered.

Sensors Simulation period Number of packets Average Delay
4 18min 2s 130724 66,2ms
12 2min 12s 13464 69,5ms
64 52min 4s 380954 94.4ms

Table 6.4: Desktop: Emulator delay in ms

The Hololens showed, even in those cases, high usage of the CPU, near the 100%,
and memory usage with a peak of 248,1MB. It maintained an acceptable frame-
rate on the first three scenarios, with values between 17 and 34 fps, but, in the
latter situation, they dropped on a fix 7fps for all the monitoring phase. Due to

64

6 – Test and Result

Sensors Simulation period Number of packets Average Delay
2 6min 20s 199140 50,6ms
8 5min 24s 141579 80,4ms
20 1min 17s 14534 81,0ms
40 9min 14s 215608 99.2ms

Table 6.5: Hololens: Emulator delay in ms

those result, it possible assume that the application runs very poorly with all the 64
active sensors . The motivations could be various, but hardware limitations, poor
optimization and the speed in which the device has to update all the scene elements
could be the main causes of this phenomena. It could be interesting to test the
application on the announced Hololens 2 to verify these observations.
Furthermore, on the desktop application is tested how the presence of the real-time
graph affects the performance in term of CPU, GPU and memory usage. The two
test case were chosen base on the feature of the graph to be scrollable after it reaches
a number of points per line. The tests are performed in the same timespan of 30
minutes to obtains a fair comparison.

Sensors Graph CPU % GPU % Memory(MB)
8 Yes 22 59 189.4
8 No 22.5 77,6 182.8
64 Yes 30.78 54.2 227.5
64 No 21.2 61.6 208.9

Table 6.6: Desktop: performance with and without the real-time graph

6.2.4 Case studies analysis
Overall the framework performs with quite well based on the provided requirements
with an average delay of 100ms for each packet. In particular, the desktop results
showed a slight delay during both physical tests if compared with the emulator. It
can be caused by the limited hardware capability of the laptop, which was released
in 2011 when the hardware components of the desktop were on the market since
2017. The observation is also confirmed by the Hololens outcomes, which didn’t
show any relevant differences between the various test cases.
The Hololens showed difficulties to manage the rendering, especially in configuration
with more than 40 sensors. With the option ShowAll turned off, it manages the
configuration without a similar performance of the 20 sensors’ one. The only test
performed with 56 sensors shows similar fps results of the previous case, but when
the ShowAll checkbox is activated the application quickly slow down until it is not
able to render the scene anymore. Based on the data collected by the external
devices, the application was, in fact, receiving and analyzing the packets but wasn’t
able to update all the scene objects for the scheduled time, even if the majority of

65

6 – Test and Result

it was only text. As said on the previous section, this can be due to the Hololens
limited hardware capability, which is enforced by the fact that, in general, the CPU
usage of the application was always near the 100% with small reduction when only
the Canvas was framed.
The desktop application shows different performance based on the hardware in which
was executed. In general, memory usage showed good results in both cases, but
CPU and GPU vary depending on the hardware components. As said before, the
CPU usage variation can be justified by the outdated hardware of the laptop. An
interesting observation can be made regarding the GPU usage. The laptop reported
a shallow usage compared to the desktop, which was quite high. It can be caused by
a lack of external GPU on the desktop machine when in the laptop one is assembled
with an Nvidia one. Even if it is quite outdated, it shows better performance
compared to the integrated card. In addition, the application was tested on another
machine with an Intel© i7-6700 processor and a Nvidia Geforce 1060 6GB, and it
showed similar CPU e Memory usage but a lower usage of the GPU with only 10%.
Besides, the desktop application shows no relevant performance variation between
the visualization or not of the line graph.

Figure 6.5: Visualization Framework Delay overview

6.3 Review and usability test
Another important review aspect was the usability of the framework. It was decided
to make the Icarus’s member test both applications and then ask a few questions.

66

6 – Test and Result

Because of the limited number of people that had to work with the FBG fibres, it
wasn’t possible to perform a test with a huge number of people but it was considered
more relevant show the application to real end-users instead test it with a general
audience due to the circumstance in which this application should be used.
The desktop application results easy and immediate to use after it was explained
the principal commands. The existence of a customizable heatmap, model importer
and the pop-up panels was really appreciated. However, the real-time graph was the
feature that received the biggest praise, with a limited interest in the "visualization"
part of the framework. The Hololens, instead, manifested a huge general enthusiasm.
Even if the first minutes there was a little bit of confusion due to the unfamiliarity
with this kind of devices, the users didn’t have any problem to learn the commands
and, as for the desktop one, it was intuitive and straightforward to use. However,
they reported feeling a little bit annoyed when using the virtual keyboard. In the
end, they seem interested in using the application on a flight test to monitoring
purposes.
The framework was presented to the PhotoNext (Inter-Dipartimental Center for Pho-
tonic technologies) research group and different professors of DIMEAS and DISAT
interested in the product. A demo of the desktop application was performed to
show in real time its performance, plus it was showed a demonstrative video of
the Hololens part, recorded when tested on the ICARUS’s fuselage. At the end,
they were satisfied by the final results, so much that the whole framework will be
exhibited at the Festival della Tecnologia in November 2019 in Turin.

67

Chapter 7

Future Work

In the following chapter lists all the possible improvements and new features that
can be included in the mixed real-time visualization frameworks in future releases.

7.1 Missing features
Even if the platform is entirely functional, it requires some fixes and improvement
for reaching its full potential. The Hololens port doesn’t support a discrete number
of features available on the desktop one. It could be interesting to implement a full
custom system when the user can choose from the cloud platform the 3D model that
it wants to use during the simulation. Besides, it can support a configuration system
that preserves all the necessary parameters to position the monitored object in the
correct position given the marker position. In this way, the application doesn’t have
to worry about the format of the 3D model, because the cloud platform provides to
send the correct data. A similar feature can be extended to the desktop application,
in particular, it could be interesting to increase the 3D formats and add use a
configuration system in which the user can save its setting such network address,
sensors’ position, default heatmap and other custom parameters.

7.2 Custom image-tracking and real-time graph
implementation

The initial framework was developed to be released as an open source tool that any-
one can use, test and improve. Unfortunately, both the mark-base system (Vuforia)
and the real-time graph (Graph and Chart [23]) are not open source tools. Vuforia
gives a Free Development license for developing and prototyping but since June 2019
its required a paid license to sell or distribute the product. A similar observation
can be made for the Unity plug-in because it is can only be purchased on the Unity
Assets store, so doesn’t exist an open source release at the time. An alternative of
the mark-base system it could be the usage of a Machine Learning model to perform
object recognition and pose estimation. For example, the services provided by the

68

7 – Future Work

Azure platform allow to create and train a simple model to perform Object recogni-
tion that is compatible with the Hololens’s device. In addition, Microsoft© releases
in June an article in which explains how developers can exploit the functionality of
the Hololens camera and so developers can implement a custom object recognition
system exploits open source library such as OpenCV.
Graph and Chart, even if its the best tool on the market, it cannot be applied to the
context of an open source platform. The plug-in was used to reduce the developing
time and use a tool already well know and tested by the Unity developers. Overall, it
could be interesting to implement a simplified version of the tool that works only as
a real-time line graph. It can require a long developing time due to the performance
requirements, but for the framework, it can be highly beneficial because it can be
implemented to make possible a port of this tool for the Hololens’ implementation.

7.3 Hololens 2 porting
Thanks to the MRTK V2.0 RC1, the developed code for Hololens application should
be already compatible for the announced Hololens 2. However, due to the state of the
SDK, the first official released is not published yet so it could be plausible that some
minor changes occur. Even with small modifications, it should be a priority to test
the application on the new hardware as soon as it is distributed. According to the
MRTK, the new features should resolve the main issues that the current application
has. For example, the virtual keyboard usage should become more intuitive to
use because the device will be able to understand the hand’s direction and point
an object with them instead of using the gaze. Also, the integration of an ARM©

processor (Qualcomm Snapdragon 850) instead of using an Intel© Atom will improve
performance and power efficiency. Especially in the application’s case which suffers
from a low fps rate.

69

Chapter 8

Conclusion

This thesis aims to produce, develop and test a Mixed real-time visualization frame-
work for FBG IoT sensors. The expected goal was to improve the previous IoT ar-
chitecture for FBG sensors with a system that manages the monitoring of a generic
physical object by exploiting the VR and AR technologies. The choice of using the
Microsoft© Hololens headset provides to thought carefully about the structure of the
framework. After an in-depth analysis of the previous work and the requirements,
the system had to reach a good compromise between speed and performance. It
was designed a set of core features and classes that can easily be exploited in dif-
ferent platform and can follow a general structure that obtains solid performances
with minimal delays between the original architecture and the visualization system.
Then, the two application (desktop and Hololens), which composed the framework,
required just small adjustment to the core structure. However, the two platforms
had their weak and strong points that needed different design choice to an efficient
and comfortable experience for the end user.
The project is a collaboration with DIMEAS, DISAT and DAUIN departments as
part of the Inter-Departmental Center for Photonic technologies (PhotoNext). It
results in a stimulating environment that makes the design process quite challenging.
In particular, the collaboration with the ICARUS team’s member was crucial for the
final product. Thanks to them, it was possible to discuss and decides the essential
features that need to be included inside the framework and how they should be
presented to offers a user-friendly experience.
The final result showed good performance, which respected the initial requirements,
in real and simulated case scenario. Both interfaces were considered easy to under-
stand, and the different features pretty straightforward to learn and remember.

70

Acronyms

API Application Programming Interface

AR Augmented Reality

ARIoT Augmented Reality and Internet of Things

CAD Computer-Aided Design

CFRP Carbon Fiber Reinforced Polymer

CG C for Graphics

CSV Comma-separated values

CPU Central Processing Unit

eMMC embedded MultiMediaCard

FBG Fibre Bragg Grating

DAUIN Dipartimento di Automatica e Informatica

DIMEAS Dipartimento di Ingegneria Meccanica e Aerospaziale

DISAT Dipartimento Scienza Applicata e Tecnologia

DLL Dynamic-Link Library

FOV Field Of View

GIS Geographic Information System

GLSL OpenGL Shading Language

GNSS Global Navigation Satellite System

GPU Graphics Processing Unit

GUI Graphical User Interface

HHD Hand-Held Display

HLSL High Level Shader Language

71

8 – Conclusion

HMD Head Mounted Display

HPU Holographic Processing Unit

IAR Industrial Augmented Reality

IL2CPP Intermediate Language To C++

IMU Inertial Measurement Unit

IoT Internet of Things

JPEG Joint Photographic Experts Group

JSON JavaScript Object Notation

LPDDR Low-Power Double Data Rate Synchronous Dynamic Random Access
Memory

MTG Model Target Generator

MRTK Microsft Mixed Reality Toolkit

NTP Network Time Protocol

OOP Object Oriented Programming

RGB Red Green Blue

RC Release Candidate

SDK Software Development Kit

SIGGRAPH Special Interest Group on GRAPHics and Interactive Techniques

SLR Systematic Literature Review

SoC System on Chip

SRAM Static Random-Access Memory

PNG Portable Network Graphics

TAP Task-based Asynchronous Pattern

TCP Transmission Control Protocol

TLS Transport Layer Security

UI User Interface

UDP User Datagram Protocol

UWP Universal Windows Platform

72

8 – Conclusion

VR Virtual Reality

WR Windows Runtime

WLAN Wireless local area network

73

Bibliography

[1] T. T. Amici, P. H. Filho, and A. B. Campo. Augmented reality applied to a
wireless power measurement system of an industrial 4.0 advanced manufactur-
ing line. In 2018 13th IEEE International Conference on Industry Applications
(INDUSCON), 2018.

[2] V. Cozzolino, O. Moroz, and A. Y. Ding. The virtual factory: Hologram-
enabled control and monitoring of industrial IoT devices. In 2018 IEEE In-
ternational Conference on Artificial Intelligence and Virtual Reality (AIVR),
2018.

[3] Edison Pignaton de Freitas Diogo Augusto Pereira, Wagner Ourique de Morais.
NoSQL real-time database performance comparison, 2017.

[4] P. Fraga-Lamas, T. M. Fernández-Caramés, Ó Blanco-Novoa, and M. A. Vilar-
Montesinos. A review on industrial augmented reality systems for the industry
4.0 shipyard. IEEE Access, 2018.

[5] Mauro Guerrera. Algorithms and methods for fiber bragg gratings sensor net-
works. Master’s thesis, Politecnico di Torino, 2018.

[6] A. Z. Abdul Halim. Applications of augmented reality for inspection and main-
tenance process in automotive industry. In Journal of Fundamental and Applied
Sciences, 2018.

[7] R. Hamidane, L. H. MOUSS, A. Bellarbi, and R. MAHDAOUI. Implementation
of a preventive maintenance system based on augmented reality. In 2018 3rd
International Conference on Pattern Analysis and Intelligent Systems (PAIS),
2018.

[8] PTC Inc. Vuforia developer library. https://library.vuforia.com.
[9] Bitsplash Interactive. Graph and chart documentation. http://bitsplash.

io/graph-and-chart.
[10] D. Krupke, F. Steinicke, P. Lubos, Y. Jonetzko, M. Görner, and J. Zhang.

Comparison of multimodal heading and pointing gestures for co-located mixed
reality human-robot interaction. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2018.

[11] Q. Liu, Q. Wei, J. Luo, Z. Li, Z. Zhou, and Y. Fang. A bi-mode state monitoring
system for aero-engine components based on FBG sensing. In Proceedings of
the 2014 International Conference on Innovative Design and Manufacturing
(ICIDM), 2014.

[12] Microsoft. Gestured. http://archive.is/v8Two.
[13] Microsoft. Mixed reality documentation. https://docs.microsoft.com/

it-it/windows/mixed-reality/.

74

https://library.vuforia.com
http://bitsplash.io/graph-and-chart
http://bitsplash.io/graph-and-chart
http://archive.is/v8Two
https://docs.microsoft.com/it-it/windows/mixed-reality/
https://docs.microsoft.com/it-it/windows/mixed-reality/

Bibliography

[14] Geoffrey Momin, Raj Panchal, Daniel Liu, and Sharman Perera. Case study:
Enhancing human reliability with artificial intelligence and augmented reality
tools for nuclear maintenance. In Volume 2: Heat Exchanger Technologies;
Plant Performance; Thermal Hydraulics and Computational Fluid Dynamics;
Water Management for Power Systems; Student Competition, 2018.

[15] Francesco De Pace, Federico Manuri, and Andrea Sanna. Augmented reality in
industry 4.0. American Journal of Computer Science and Information Tech-
nology, 2018.

[16] Riccardo Palmarini, John Ahmet Erkoyuncu, Rajkumar Roy, and Hosein Torab-
mostaedi. A systematic review of augmented reality applications in mainte-
nance. Robotics and Computer-Integrated Manufacturing, 2018.

[17] Photonext. Photonext. http://www.photonext.polito.it/it/.
[18] PimDeWitte. Unitymainthreaddispatcher. https://github.com/

PimDeWitte/UnityMainThreadDispatcher.
[19] F. Pires, J. Barbosa, and P. Leitão. Quo vadis industry 4.0: An overview

based on scientific publications analytics. In 2018 IEEE 27th International
Symposium on Industrial Electronics (ISIE), 2018.

[20] D. Qiu and L. Gao. Application of virtual reality technology in bridge struc-
ture safety monitoring. In 2010 International Conference on Computer and
Information Application, 2010.

[21] V. Rajan, N. V. Sobhana, and R. Jayakrishnan. Machine fault diagnostics and
condition monitoring using augmented reality and IoT. In 2018 Second Inter-
national Conference on Intelligent Computing and Control Systems (ICICCS),
2018.

[22] Daniel Segovia, Miguel Mendoza, Eloy Mendoza, and Eduardo González. Aug-
mented reality as a tool for production and quality monitoring. Procedia Com-
puter Science, 2015.

[23] Unity Access Store. Graph and chart by bitsplash interactive. https:
//assetstore.unity.com/packages/tools/gui/graph-and-chart-78488.

[24] Unity Access Store. Runtime obj importer by dummies-
man. https://assetstore.unity.com/packages/tools/modeling/
runtime-obj-importer-49547.

[25] Unity Access Store. Simple file browser by graces games. https:
//assetstore.unity.com/packages/tools/input-management/
simple-file-browser-98451.

[26] Mixed Reality Toolkit Team. What is the mixed reality toolkit. https://
microsoft.github.io/MixedRealityToolkit-Unity/README.html.

[27] Infibra Technologies. Fbg overview. http://www.infibratechnologies.com/
technologies/fiber-bragg-gratings.html.

[28] Unity Technologies. Tutorial - rendering and shading. https://learn.unity.
com/tutorial/rendering-and-shading#5c7f8528edbc2a002053b538.

[29] Unity Technologies. Unity api documentation. https://docs.unity3d.com/.
[30] Unity Technologies. Unity api documentation. https://unity3d.com/unity/

features/multiplatform/vr-ar.
[31] Unity Technologies. What is a game engine? https://unity3d.com/

75

http://www.photonext.polito.it/it/
https://github.com/PimDeWitte/UnityMainThreadDispatcher
https://github.com/PimDeWitte/UnityMainThreadDispatcher
https://assetstore.unity.com/packages/tools/gui/graph-and-chart-78488
https://assetstore.unity.com/packages/tools/gui/graph-and-chart-78488
https://assetstore.unity.com/packages/tools/modeling/runtime-obj-importer-49547
https://assetstore.unity.com/packages/tools/modeling/runtime-obj-importer-49547
https://assetstore.unity.com/packages/tools/input-management/simple-file-browser-98451
https://assetstore.unity.com/packages/tools/input-management/simple-file-browser-98451
https://assetstore.unity.com/packages/tools/input-management/simple-file-browser-98451
https://microsoft.github.io/MixedRealityToolkit-Unity/README.html
https://microsoft.github.io/MixedRealityToolkit-Unity/README.html
http://www.infibratechnologies.com/technologies/fiber-bragg-gratings.html
http://www.infibratechnologies.com/technologies/fiber-bragg-gratings.html
https://learn.unity.com/tutorial/rendering-and-shading#5c7f8528edbc2a002053b538
https://learn.unity.com/tutorial/rendering-and-shading#5c7f8528edbc2a002053b538
https://docs.unity3d.com/
 https://unity3d.com/unity/features/multiplatform/vr-ar
 https://unity3d.com/unity/features/multiplatform/vr-ar
https://unity3d.com/what-is-a-game-engine
https://unity3d.com/what-is-a-game-engine

Bibliography

what-is-a-game-engine.
[32] Reid Vassallo, Adam Rankin, Elvis C. S. Chen, and Terry M. Peters. Hologram

stability evaluation for microsoft HoloLens. In Medical Imaging 2017: Image
Perception, Observer Performance, and Technology Assessment, 2017.

[33] O. Wasenmüller, M. Meyer, and D. Stricker. Augmented reality 3d discrepancy
check in industrial applications. In 2016 IEEE International Symposium on
Mixed and Augmented Reality (ISMAR), 2016.

[34] S. Webel, M. Becker, D. Stricker, and H. Wuest. Identifying differences be-
tween CAD and physical mock-ups using AR. In 2007 6th IEEE and ACM
International Symposium on Mixed and Augmented Reality, 2007.

[35] I. Wijesooriya, D. Wijewardana, T. De Silva, and C. Gamage. Demo abstract:
Enhanced real-time machine inspection with mobile augmented reality for main-
tenance and repair. In 2017 IEEE/ACM Second International Conference on
Internet-of-Things Design and Implementation (IoTDI), 2017.

[36] Wikipedia. Microsoft hololens. https://en.wikipedia.org/wiki/
Microsoft_HoloLens.

[37] Jun Xu Xiyang XU Xiongming Zhou, Wenqun Su. 3d real-time display system
for cable temperature monitoring. In CICED 2010 Proceedings, 2010.

[38] Alan Zucconi. Arrays and shaders: heatmaps in unity. https://www.
alanzucconi.com/2016/01/27/arrays-shaders-heatmaps-in-unity3d/.

76

https://unity3d.com/what-is-a-game-engine
https://unity3d.com/what-is-a-game-engine
https://en.wikipedia.org/wiki/Microsoft_HoloLens
https://en.wikipedia.org/wiki/Microsoft_HoloLens
https://www.alanzucconi.com/2016/01/27/arrays-shaders-heatmaps-in-unity3d/
https://www.alanzucconi.com/2016/01/27/arrays-shaders-heatmaps-in-unity3d/

	List of Figures
	List of Tables
	Listings
	Abstract
	Acknowledgements
	Introduction
	General Description
	Fiber BRAGG sensor
	Document structure

	Previous work
	System overview
	Physical system
	Interrogator
	Middleware
	Cloud Network
	Analysis Framework

	State of art
	Augmented Reality in Industry 4.0
	IoT Integration
	Maintenance and Monitoring system

	Example of non AR monitoring system

	Proposed Real-Time Framework
	General description
	Unity3D engine
	Data visualization
	Shader-base Heatmap

	Data collection
	Mongo DB
	TCP-Based Protocol

	Available AR technologies
	Microsoft Hololens
	Vuforia

	Implementation Details
	Common features
	Class structure
	Multi-thread communication
	Heatmap Shader
	Middleware connection

	Desktop solution
	Overview
	In game features
	Real time graph
	End simulation features

	Hololens solution
	MRTK v2 Release Candidate 1
	Limitation
	Overview
	Marker-base recognition
	Sensors customization

	Test and Result
	Measurement Log
	Performance: Case studies
	Case study: Carbon Fiber Reinforced Polymer sheet
	Case study: Fuselage ICARUS
	Case study: Emulator
	Case studies analysis

	Review and usability test

	Future Work
	Missing features
	Custom image-tracking and real-time graph implementation
	Hololens 2 porting

	Conclusion
	Acronyms
	Bibliography

