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Abstract

Unmanned Aerial Vehicle (UAV) is becoming an important tool for military and
civilian operations due to its growing applications. Examples of such applications
are delivery, sensing, mapping, surveillance and search and rescue, where the manned
mission is hard.

The mathematical modelling of the UAV starts with the characterization of its
kinematics, dynamics and forces and moments, which generates the 12 nonlinear or-
dinary differential equations. The aerodynamic flow in the design considers laminar
flow in the operating velocity range. Linearization is performed around the equi-
librium point which is also called the trim condition. The trim condition depends
on the flight scenario. Linearization generates the state space matrix, where the
modelling is carried out with the decoupling of the longitudinal and lateral mode
separately. We then proceed with the autopilot design using Linear Quadratic Reg-
ulator (LQR) techniques with integral action for both the longitudinal and lateral
modes. The core part of the longitudinal is the roll controller and lateral is the
heading controller. Next, we present the guidance for the path following that uses
the vector field method with constant kpath for the waypoint and straight line fol-
lowing.

Simulation results show the behaviour of the dynamic model. The LQR control
with the integral action behaves as expected, which holds the height during the
path following at constant altitude. The actuator signal is also shown based on
the different values of the path constant. Simulink and MATLAB are the main
software tools that were used to illustrate the performance of the resulting closed
loop system for different control parameters. This model implementation with the
full UAV nonlinear dynamics brings higher accuracy to the performance evaluation
and it is suitable to test different controllers and guidance algorithms.
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Chapter 1

Introduction

1.1 Motivation

In the past few years, there has been a significant development in the advancement
of Unmanned Aerial Vehicle(UAV) technology. Something that started with the
military application, didn’t take much time to reach the civilian interest. To the
places where manned operation is hard to achieve a UAV is used to perform. In
the recent years with the emerging of high power density batteries, long range and
low power micro radio devices, cheap airframes, and powerful microprocessors and
motors, UAV technology has become applicable in civilian circumstances, especially
for small UAVs because they are expendable, easy to build and operate.

The use of UAVs in medical field is one of the most interesting application like
shown in the figure 1.1 and figure 1.2. At present, there are many UAVs that trans-
fer medicine and blood from different remote places to the city and vice-versa. The
companies like Vayu and Zipline are revolutionizing the industry. The another ap-
plication is the surveillance of the wildlife which is also very interesting.

1.2 Literature

Small UAVs have a relatively short wingspan and light weight[7]. They can be
operated by only one to two people [4]. Many can even be hand-carried and hand-
launched. In fact, small UAVs are designed to fly at low altitude (normally less
than 1000 feet) to provide a close observation of the ground objects. This low flight
altitude may make the UAVs easy to crash [5]. A robust and accurate autopilot
system is indispensable for small UAVs to successfully perform the task. Autopilots

Figure 1.1: Vayu Medical Drone, source:[18] Figure 1.2: Zipline Drone, source:[20]
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CHAPTER 1. INTRODUCTION

are systems to guide the UAVs in flight with no assistance from human operators.
Autopilots were firstly developed for missiles and later extended to aircrafts and
ships since 1910’s [16].A minimal autopilot system include attitude sensors and on-
board processor. Due to the high nonlinearities of the air plane dynamics, a lot of
intelligent control techniques have been used in autopilot systems to guarantee a
smooth desirable trajectory navigation, Nowadays, technological advances in wire-
less networks and micro electro-mechanical systems (MEMS) make it possible to use
the inexpensive micro autopilots on small UAVs [5].

Generally, the idea of the UAVs are considered as autonomous but mostly they
are semi autonomous. The mission and corresponding desired paths are defined by
the operator and during the flight the operator always monitors the behaviour of
the aircraft. UAVs are generally developed based on the task they need to perform.
For the surveillance, one would want them to follow given waypoint and maintain
loiter in the region as we would be scanning the area. To control these vehicles, one
approach is radio control that requires human pilots to control the UAV through
radio signals. Another method is the use of autopilots, where the autopilot can
automatically keep the airplane on the desired state. The most interesting is the
mixed control where the inner loop is the autopilot and the outer is controlled by
the pilot. In general the autopilot controls the velocity and altitude and the pilot
controls the waypoint and path.

Trajectory tracking and path following are among the basic motion control tasks
that autonomous aircraft are required to execute, in order to perform some desired
application. In trajectory tracking, the vehicle follows a given trajectory with time
constraints, and thus, trajectory tracking controllers require the vehicle to track a
time-parametrized trajectory by commanding its forward speed and orientation [1].
In classical path following, the vehicle is required to converge to and follow a given
desired geometric path. Several approaches have been proposed for UAV trajectory
tracking. An approach for tight tracking of curved trajectories is presented in [14].
Rather than pursuing the trajectory tracking approach, this research explores path
following where the objective is to be on the path rather than at a certain point at a
particular time. There are different algorithms for following the path, some of them
can be summarized as the nonlinear guidance law(NLGL) [14], vector field approach
[12] and many other methods. Vector field path following technique accurately
follows the path than other techniques but consumes large control effort compared
to the NLGL method [15]. The vectors in the field are directed toward the path to
be followed and in the desired direction of flight. The vectors also serve as heading
commands to the Micro Aerial Vehicle(MAV). The method is currently applicable
to paths composed of straight lines and arcs [12].

1.3 Objective and Contribution

The main goal of this thesis is to develop the mathematical model, analyze and
design a control system for UAV guidance. The mathematical model is developed
and tested in the simulink, and for which the autopilot is also designed using the
LQR method. The path following algorithm is also implemented and evaluated.

9



CHAPTER 1. INTRODUCTION

1.4 Organization of the dissertion

The whole of the thesis is divided into three main chapters:

• Chapter 1 deals with the general introduction of the UAV and the motivation
to carry the project. In this chapter we can see the different literature and
concept that has been used till date.

• Chapter 2 is the mathematical modelling, where we present the derivation
of the UAV model starting from the reference frame to the forces. In this
chapter we develop the corresponding nonlinear equations and also describe
the linearization procedure to obtain the state space model.

• Once the state space model is generated we will proceed with the Chapter 3,
where we will develop the autopilot using the LQR method with the integral
action and also the path following algorithm.

• Chapter 4 present the simulation results that illustrate the time evolution of
the relevant signals of the plant and the controller using the simulink. We will
see the behaviour of the UAV by changing different control parameters.

• Chapter 5 is the Conclusion, which deals with the summary of the thesis along
with the future perspective of the thesis.

10



Chapter 2

Mathematical Modelling

2.1 Coordinate Frames

The knowledge of the coordinate frame is the first step to introduce before formu-
lating the dynamic and kinematic equation of the UAV. Different parameter works
in different frames as [6]:

• Newton’s equations of motion are derived relative to a fixed, inertial reference
frame. However, motion is most easily described in a body-fixed frame.

• Aerodynamic forces and torques act on the aircraft body and are most easily
described in a body-fixed reference frame.

• On-board sensors like accelerometers and rate gyros measure information with
respect to the body frame. Alternatively, GPS measures position, ground speed,
and course angle with respect to the inertial frame.

• Most mission requirements, like loiter points and flight trajectories, are specified
in the inertial frame. In addition, map information is also given in an inertial
frame.

2.1.1 Coordinate Frame Transformation

Figure 2.1: Vector Rotation about the k-axis

Any vector whose value is known in one frame can be multiplied with the rotation
matrix to obtain the value in the other frame, when the origin is at the same point
[3]. For example, let us consider a vector as shown in the figure 2.1 P 0 denoted in

11



CHAPTER 2. MATHEMATICAL MODELLING

the reference frame R0. The value of the vector in the reference frame R1 is given
by P 1 with the rotation matrix R1

0 thus,

P1 = R1
0P

0

The notationR1
0 is used to denote a rotation from coordinate frame F 0 to coordinate

frame F 1. For the rotation angle,θ and any unit vector we would have the following
different condition based on the right handed reference frame rule:

The rotation around the X axis with right hand rule is given by;

R1
0 =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ


The rotation around the Y axis with right hand rule is given by;

R1
0 =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


The rotation around the Z axis with right hand rule is given by;

R1
0 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


The rotation matrix R1

0 has the following properties:

(Rb
a)
−1

= (Rb
a)
T

= Ra
b

Rc
bR

b
a = Rc

a

det(Rb
a) = 1

2.2 Aircraft frame

As, mentioned in the earlier section there are different frame associated with the
micro aerial vehicle. All the frames are well described in the reference [2]. and are
as follows:

2.2.1 Inertial Frame (F i)

This frame is also called Earth Fixed reference frame. It is a point in the surface
of the earth with the X axis pointing towards the north and the Y axis pointing
towards the east and the Z axis pointing down. It is also called North East Down
reference frame.

2.2.2 Vehicle Frame (F V )

The orientation of the axis in this reference frame is same as the earth fixed reference
frame as shown in the figure 2.2, the origin point is acting in the center of the mass
of the vehicle.

12



CHAPTER 2. MATHEMATICAL MODELLING

Figure 2.2: Vehicle Frame,F v to Vehicle Frame ,F v1, source:[2]

2.2.3 Vehicle Frame-1 (F V 1)

This frame is generated by the rotation of the vehicle frame F V with angle ψ, along
the Z−axis. The angle ψ is called heading angle. The rotation matrix is given by:

Rv1
v (ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (2.1)

Any vector pv1, would be given by the following equation, where pv is the vector in
the vehicle frame (F v).

pv1 = Rv1
v (ψ)pv

Figure 2.3: Vehicle Frame ,F v1 to vehicle frame2, F v2, source:[2]

2.2.4 Vehicle Frame-2 (F V 2)

This frame is generated by the rotation of the vehicle frame F V 1 with angle θ,
along the Y -axis as shown in the figure 2.3. The angle θ is called pitch angle. The
rotation matrix is given by:

Rv2
v1(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (2.2)

13



CHAPTER 2. MATHEMATICAL MODELLING

Any vector pv2, would be given by the following equation, where pv1 is the vector
in the vehicle frame-1 (F v1).

pv2 = Rv2
v1(θ)pv1

Figure 2.4: Vehicle Frame ,F v2 to Body frame, F b, source:[2]

2.2.5 Body Frame (F b)

This frame is generated by the rotation of the aircraft from the vehicle frame-2
(F V 2) along the X-axis, with the angle φ as shown in the figure 2.4. This angle is
also called roll angle or bank angle. The rotation matrix is given by:

Rb
v2(φ) =

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

 (2.3)

Any vector pb, would be given by the following equation, where pv2 is the vector in
the vehicle frame-2 (F v2).

pb = Rb
v2(φ)pv2

Figure 2.5: Body Frame ,F b to stability Frame, F s, source:[2]
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CHAPTER 2. MATHEMATICAL MODELLING

2.2.6 Stability Frame (F s)

Aerodynamic forces are generated as the airframe moves through the air surrounding
it. We refer to the velocity of the aircraft relative to the surrounding air as the
airspeed vector, denoted Va.The magnitude of the airspeed vector is simply referred
to as the airspeed(Va).

To generate lift, the wings of the airframe must fly at a positive angle with respect
to the airspeed vector. This angle is called the angle of attack and is denoted by α.
The angle of attack is defined as a left-handed rotation about jb and is such that
it aligns with the projection of Va onto the plane spanned by ib and kb as shown
in the figure 2.5. The need for a left handed rotation is caused by the definition
of positive angle of attack, which is positive for a right-handed rotation from the
stability frame is axis to the body frame ib axis. The rotation matrix is given by

Rs
b(α) =

 cosα 0 sinα
0 1 0

− sinα 0 cosα


Stability frame helps us rigorously define angle of attack and is useful for analyz-

ing stability of aircraft.
Any vector represented in the body frame can be represented in the stability

frame with the help of the rotation matrix Rs
b.

ps = Rs
b(α)pb

Figure 2.6: Stability frame, F s to Wind frame Fw, source:[2]

2.2.7 Wind Frame (Fw)

The angle between the airspeed vector and the ib-kb plane is called the side-slip
angle and is denoted by β as shown in the figure 2.6. The wind frame is obtained
by rotating the stability frame by a right-handed rotation of β about ks. The unit
vector iw is aligned with the airspeed vector Va

15



CHAPTER 2. MATHEMATICAL MODELLING

The rotation matrix is given by:

Rw
s (β) =

 cos β sin β 0
− sin β cos β 0

0 0 1


Wind frame helps us rigorously define side-slip angle. Side-slip angle, is nominally
zero for tailed aircraft.
The rotation from the stability frame to the wind frame is given by:

pw = Rw
s (β)ps

The rotation from the body frame to the wind frame is given by:

Rw
b (α, β) = Rw

s (β)Rs
b(α)

=

 cos β sin β 0
− sin β cos β 0

0 0 1

  cosα 0 sinα
0 1 0

− sinα 0 cosα



=

 cos β cosα sin β cos β sinα
− sin β cosα cos β − sin β sinα
− sinα 0 cosα


The rotation from the wind frame to the body frame is given by the rotation matrix:

Rb
w(α, β) = (Rw

b )T (α, β) =

cos β cosα − sin β cosα − sinα
sin β cos β 0

cos β sinα − sin β sinα cosα

 (2.4)

Which is the transpose of the equation− 1.1.

2.3 Airspeed, Wind speed and Ground speed

When developing the dynamic equations of motion for a UAV, it is important to
remember that the inertial forces experienced by the UAV are dependent on veloci-
ties and accelerations relative to a fixed (inertial) reference frame.

The aerodynamic forces, however, depend on the velocity of the airframe rela-
tive to the surrounding air. “When wind is not present, these velocities are the
same.”However, wind is almost always present with UAV’s and we must carefully
distinguish between airspeed.

Va is the velocity vector of the UAV represented in the wind frame and has three
components (Va 0 0)T , where Va is the magnitude of the aircraft velocity along the
X-direction.

The ground speed vector (Vg) represented with respect to the inertial frame. The
wind velocity relative to the inertial frame is given by Vw.

The ground speed vector V b
g can be represented in the body frame as:(u v w)T .

Where, u v and w are the body frame velocity components. Now, V b
g is the velocity
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of the UAV with respect to the inertial frame but (expressed)represented in the body
frame.

Body frame component of the airspeed vector are V b
a = (ur vr wr)

T can be written
in the body frame as:

Va = Vg −Vw (2.5)

Vb
g =

uv
w


Vb
w =

uwvw
ww


= Rb

v(φ, θ, ψ)

wnwe
wd


Rb
v is obtained by multiplying equation, 2.1,2.2 and 2.3

The airspeed vector is in wind frame is given by:

Vw
a =

Va0
0


Now, we would represent the airspeed from the wind frame to the body frame by
using the above equation along with the equation 2.4.

Vb
a =

urvr
wr

 =

u− uw
v − vw
w − ww



Vb
a =

urvr
wr


= Rb

w

Va0
0


Rb
w is from equation 2.4

=

cos β cosα − sin β cosα − sinα
sin β cos β − sin β sinα

cos β sinα 0 cosα

Va0
0



The airspeed vector body frame component can be represented by the airspeed
magnitude Va, angle of attack (α), and the side-slip angle (β) as:urvr

wr

 = Va

cosα cos β
sin β

sinα cos β

 (2.6)
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The expressions that are commonly used in formulation of the equation of motion
for a UAV as the aerodynamic force and moments are expressed by:

Va =
√
u2
r + v2

r + w2
r (2.7)

α = tan−1

(
wr
ur

)
(2.8)

β = sin−1

(
vr√

u2
r + v2

r + w2
r

)
(2.9)

2.4 Kinematic model of Controlled Flight

Figure 2.7: Wind Triangle source:[2]

Figure 2.8: Flight path angle, source:[2]
, source:

The ground speed vector(Vg)can be represented in the inertial frame by rotating it
to the intertial frame as shown in the figure 2.7 and figure 2.8.

Vi
g =

cosχ − sinχ 0
sinχ cosχ 0

0 0 1

 cos γ 0 sin γ
0 1 0

− sin γ 0 cos γ

Vg0
0

 (2.10)
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Vi
g = Vg

cosχ cos γ
sinχ cos γ
− sin γ


which gives: ṗnṗe

ḣ

 = Vg

cosχ cos γ
sinχ cos γ

sin γ

 (2.11)

Similarly, the airspeed vector(Va) can be represented in the inertial frame by ro-
tating it along from the body frame to the inertial frame as shown in the figure 2.7
and figure 2.8:

Vi
a =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 cos γa 0 sin γa
0 1 0

− sin γa 0 cos γa

Va0
0

 (2.12)

Alternatively, using the wind triangle equation we have from equation 2.5.ṗnṗe
ḣ

 = Va

cosψ cos γa
sinψ cos γa

sin γa

+

 wn
we
−wd


2.5 No wind case

In the absence of wind we will have following simplifications:

Va = Vg Airspeed equals groundspeed

ψ = χ Heading equals course

γ = γa Flight path angle equals air-mass-referenced flight path angle

u = ur Velocity equals velocity relative to the air mass

v = vr

w = wr

2.6 Kinematics

2.6.1 Translation Kinematics

The translational velocity of the Micro Aerial Vehicle(MAV) is commonly expressed
in terms of the velocity components along each of the axes in a body-fixed coordinate
frame. The translational position of the MAV is usually measured and expressed
in an inertial reference frame. Thus, we would have the rotation matrix from the
body frame to the inertial frame. As in our case the vehicle frame is identical with
the inertial frame, thus, we would rotate the body frame to the vehicle frame by the
rotation matrix Rv

b , which is obtained by multiplying equation [2.1,2.2 and 2.3] [6].
The rate of change of the position in the north, east and down is the velocity of the
aircraft in the inertial frame, and is given as[2]:ṗnṗe

ṗd

 ,
d

dt

pnpe
pd

 = vv = Rv
bv

b = Rv
b

uv
w

 (2.13)
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ṗnṗe
ṗd

 =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

uv
w

 (2.14)

Where, cθ is cos θ and sθ is sin θ and similarly for other trigonometric values,
Here,

(
ṗn ṗe ṗd

)
are the linear velocity in the inertial frame but the angles ( φ θ ψ)

are in different Frame. The velocity u v w are in the body frame.

2.6.2 Rotational Kinematics

The relationship between angular positions φ, θ, and ψ and the angular rates p, q,
and r is also complicated by the fact that these quantities are defined in different
coordinate frames.

The angular rates are defined in the body frame F b. The angular positions (Euler
angles) are defined in three different coordinate frames: the roll angle φ is a rotation
from F v2 to F b about the iv2 = ib axis; the pitch angle θ is a rotation from F v1 to
F v2 about the jv1 = jv2 axis; and the yaw angle ψ is a rotation from F v to F v1

about the kv = kv1 axis. The body-frame angular rates can be expressed in terms
of the derivatives of the Euler angles, considering a proper rotation;pq

r

 =

φ̇0
0

+Rb
v2 (φ)

0
˙̇θ
0

+Rb
v2 (φ)Rv2

v1 (θ)

0
0

ψ̇


The p,q,r is the angular velocity that would be measured by the gyros fixed in

the aircraft, with their axis in the body frame.

=

φ̇0
0

+

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

0

θ̇
0

+

1 0 0
0 cosφ sinφ
0 − sinφ cosφ

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

0
0

ψ̇



=

1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ

φ̇θ̇
ψ̇


Inverting the above equation, we would have:φ̇θ̇

ψ̇

 =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

pq
r

 (2.15)

The angular rate of the Euler angles are given by the above equation based on the
inertial frame/Vehicle Frame.

2.6.2.1 Total Kinematics Equation

From 2.13 and 2.15 we will have Six of the 12 state equations for the UAV relating
to position and velocity:
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ṗnṗe
ṗd

 =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

uv
w


φ̇θ̇
ψ̇

 =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

pq
r


The remaining six equations will come from applying Newton’s 2nd law to the
translational and rotational motion of the aircraft.

2.7 Dynamics

2.7.1 Translational Dynamics

Newton’s 2nd Law acts on the intertial frame and is given by:

m
dVg

dti
= f

• f is the sum of all external forces

• m is the mass of the aircraft

• Time derivative taken wrt inertial frame

• Vg is the velocity with respect to the intertial frame.

Since, all our values are in the body frame thus we would write it in the body frame:
Using the expression

dVg

dti
=
dVg

dtb
+ ωb/i ×Vg (cross− product)

In the Body Frame we have,

Vb
g =

uv
w

 ωbb/i =

pq
r

 f b =

fxfy
fz

 .

m

(
dVg

dtb
+ ωb/i ×Vg

)
= f

Expressing m
(
dVg

dtb
+ ωb/i ×Vg

)
= fb in the body frame gives

m

(
dVb

g

dtb
+ ωbb/i ×Vb

g

)
= f b,

Since
dVb

g

dtb
=

 u̇
v̇
ẇ

 we have that

 u̇v̇
ẇ

 = −

pq
r

×
uv
w

+
1

m

fxfy
fz

 =

rv − qwpw − ru
qu− pv

+
1

m

fxfy
fz


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2.7.2 Rotational Dynamics

Newton’s 2nd Law states that:
dh

dti
= m

• h is the angular momentum vector

• m is the sum of all external moments

• Time derivative taken wrt inertial frame

Therefore we have
dh

dti
=
dh

dtb
+ ωb/i × h = m.

Expressing in the body frame gives

dhb

dtb
+ ωbb/i × hb = mb.

If the aircraft is symmetric about the ib-kb plane, then Jxy = Jyz = 0 and

J =

 Jx 0 −Jxz
0 Jy 0
−Jxz 0 Jz


This symmetry assumption helps to simplify the analysis. The inverse of J becomes

J−1 =
adj(J)

det(J)
=

 JyJz 0 JyJxz
0 JxJz − J2

xz 0
JxzJy 0 JxJy


JxJyJz − J2

xzJy

=

 Jz
Γ

0 Jxz
Γ

0 1
Jy

0
Jxz
Γ

0 Jx
Γ


where

Γ
4
= JxJz − J2

xz

Γ1 =
Jxz(Jx − Jy + Jz)

Γ
, Γ2 =

Jz(Jz − Jy) + J2
xz

Γ
, Γ3 =

Jz
Γ
,

Γ4 =
Jxz
Γ
, Γ5 =

Jz − Jx
Jy

, Γ6 =
Jxz
Jy
,

Γ7 =
(Jx − Jy)Jx + J2

xz

Γ
, Γ8 =

Jx
Γ
, Γ = JxJz − J2

xz.

Define

mb 4=

 l
m
n


Then

ω̇bb/i = J−1
[
−ωbb/i ×

(
Jωbb/i

)
+ mb

]
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can be expressed asṗq̇
ṙ

 =

 Jz
Γ

0 Jxz
Γ

0 1
Jy

0
Jxz
Γ

0 Jx
Γ

 0 r −q
−r 0 p
q −p 0

 Jx 0 −Jxz
0 Jy 0
−Jxz 0 Jz

pq
r

+

 l
m
n


=

 Jz
Γ

0 Jxz
Γ

0 1
Jy

0
Jxz
Γ

0 Jx
Γ

 Jxzpq + (Jy − Jz)qr
Jxz(r

2 − p2) + (Jz − Jx)pr
(Jx − Jy)pq − Jxzqr

+

 l
m
n


=

 Γ1pq − Γ2qr + Γ3l + Γ4n
Γ5pr − Γ6(p2 − r2) + 1

Jy
m

Γ7pq − Γ1qr + Γ4l + Γ8n


where, Γ’s are functions of moments and products of inertia.

2.8 Summary of the Dynamics and Kinematics

The objective of this part is to calculate the force vector f b and moment mb, in the
body frame. The equations of motion are a system of 12 first order ODE’s:ṗnṗe

ṗd

 =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

uv
w


 u̇v̇
ẇ

 =

rv − qwpw − ru
qu− pv

+
1

m

fxfy
fz

 ,

φ̇θ̇
ψ̇

 =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ

pq
r


ṗq̇
ṙ

 =

 Γ1pq − Γ2qr
Γ5pr − Γ6(p2 − r2)

Γ7pq − Γ1qr

+

Γ3l + Γ4n
1
Jy
m

Γ4l + Γ8n


2.9 Forces and Moments

The external forces are a combination of gravitational,
aerodynamic, and propulsion:

f = fg + fa + fp.

The external moments are a combination of aerodynamic, and propulsion:

m = ma + mp.

2.9.1 Gravity Force

The gravity vector expressed in the vehicle frame is

fvg =

 0
0
mg

 .
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Expressed in the body frame we have

f bg = Rb
v

 0
0
mg


=

 cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 0
0
mg


=

 −mg sin θ
mg cos θ sinφ
mg cos θ cosφ


2.9.2 Aerodynamic Force

Aerodynamics is the force generated due to the shape of the body passing through
the air. In this case, we will only consider all the forces are generated due to the
effect of the wing assuming laminar flow. The general expression for Lift, Drag and
Moment acting on the aircraft is given by:

Flift =
1

2
ρV 2

a SCL

Fdrag =
1

2
ρV 2

a SCD

m =
1

2
ρV 2

a ScCm

where, CL,CD,Cm are non dimensional aerodynamic coefficients along the Z-direction,X-
direction, Y-direction respectively, .

To better understand the aerodynamic effect on the aircraft we can decouple the
longitudinal and lateral aerodynamic force,thus simplifying the equations.

2.9.2.1 Longitudinal Aerodynamics

The longitudinal aerodynamics creates force and moment in the ib-kb plane, also
called the pitch plane. The forces are in the ib and kb plane also called the drag
force and lift force respectively and the moment about the jb axis.
It is heavily influenced by the angle of attack(α), pitch rate (q) and the elevator
deflection (δe), In the general nonlinear case we have:

Flift ≈
1

2
ρV 2

a SCL(α, q, δe)

Fdrag ≈
1

2
ρV 2

a SCD(α, q, δe)

m ≈ 1

2
ρV 2

a ScCm(α, q, δe)

24



CHAPTER 2. MATHEMATICAL MODELLING

Expanding CL as a Taylor series and keeping only the first order (linear) terms
gives

Flift =
1

2
ρV 2

a S [CL0 + CLαα + CLqq + CLδeδe]

=
1

2
ρV 2

a S

[
CL0 + CLαα + CLq

c

2Va
q + CLδeδe

]
where the coefficients CL0 , CLα

4
= CLα(stability derivative), CLq

4
= CL

qc
2Va

(stability

derivative), and CLδe
4
= CLδe(control derivative) are dimensionless quantities.

Fdrag =
1

2
ρV 2

a S

[
CD0 + CDαα + CDq

c

2Va
q + CDδeδe

]

m =
1

2
ρV 2

a Sc

[
Cm0 + Cmαα + Cmq

c

2Va
q + Cmδeδe

]
For the given above equation we would have:

CL(α) = (1− σ(α)) [CL0 + CLαα] + σ(α)
[
2 sign(α) sin2 α cosα

]
The blending function is given by:

σ(α) =
1 + e−M(α−α0) + eM(α+α0)

(1 + e−M(α−α0)) (1 + eM(α+α0))

Then,
CD(α) = parasiticdrag + induceddrag;

CD(α) = CDp +
(CL0 + CLαα)2

πeAR

where e is the Oswald efficiency factor

Now let us focus on the linear Lift and Drag Model which would be valid for the
small deviation of the angle of attack from triming condition, in this case:

CL(α) = CL0 + CLαα

CD(α) = CD0 + CDαα

As the aerodynamic force(Lift and Drag) are acting on the stability frame, we have,

f s =

(
fx
fz

)
thus, we need to bring it to the body frame through the rotation by the angle of
attack forming the rotation matrix, Rb

s.

fbs = Rb
sf

s(
fx
fz

)
=

(
cosα − sinα
sinα cosα

)(
−Fdrag

−Flift

)
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Thus, the total longitudinal force acting on the body would be given as;

(
fx
fz

)
=

1

2
ρV 2

a S


[−CD(α) cosα + CL(α) sinα]

+
[
−CDq cosα + CLq sinα

]
c

2Va
q +

[
−CDδe cosα + CLδe sinα

]
δe

−−−
[−CD(α) sinα− CL(α) cosα]

+
[
−CDq sinα− CLq cosα

]
c

2Va
q +

[
−CDδe sinα− CLδe cosα

]
δe


and the pitching moment would be given as:

m =
1

2
ρV 2

a Sc

[
Cm0 + Cmαα + Cmq

c

2Va
q + Cmδeδe

]
2.9.2.2 Lateral Aerodynamics

The Lateral aerodynamics creates force and moment in the ib-jb plane, also called
the pitch plane. The forces are in the ib and jb direction and the moments about
the ib and kb axis.

fy =
1

2
ρV 2

a SCY (β, p, r, δa, δr)

l =
1

2
ρV 2

a SbCl(β, p, r, δa, δr)

n =
1

2
ρV 2

a SbCn(β, p, r, δa, δr)

fy ≈
1

2
ρV 2

a S

[
CY0 + CYββ + CYp

b

2Va
p+ CYr

b

2Va
r + CYδaδa + CYδr δr

]
l ≈ 1

2
ρV 2

a Sb

[
Cl0 + Clββ + Clp

b

2Va
p+ Clr

b

2Va
r + Clδaδa + Clδr δr

]
n ≈ 1

2
ρV 2

a Sb

[
Cn0 + Cnββ + Cnp

b

2Va
p+ Cnr

b

2Va
r + Cnδaδa + Cnδr δr

]
where for symmetric aircraft, CY0 = Cl0 = Cn0 = 0.

Cmα , C`β , Cnβ , Cmq , C`p , Cnr are called the stability derivatives because their values
determine the stability of the aircraft.

Static Stability Derivatives

• Cmα - longitudinal static stability derivative. Must be ≤ 0 for stability: increase
in α causes and downward pitching moment.

• C`β - roll static stability derivative. Associated with dihedral in wings. Must
be ≤ 0 for stability: positive roll φ causes a restoring moment.

• Cnβ - yaw static stability derivative. Weathercock stability derivative. Influ-
enced by design of tail. Causes airframe to align with the wind vector. Must
be greater than or equal to zero for stability: cocks airframe into wind driving
β to zero.
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Dynamic Stability Derivatives

• Cmq , C`p , Cnr are known as the pitch damping derivative, roll damping deriva-
tive, and yaw damping derivative, respectively. The quantify the level of damp-
ing associated with angular motion of the airframe.

Control Derivatives

• Cmδe , C`δa , and Cnδr are the primary control derivatives and quantify the effect
on the control surfaces on their primary intended axes of influence.

• C`δr and Cnδa are the cross-control derivatives.

The Aerodynamic data are generally given by the computation fluid dynamics soft-
ware(CFD) or wind tunnel analysis of the design. One of the interesting open source
software is the XFLR5 software [8].

2.9.3 Propeller Thrust

The propulsive force is acting along the iw direction of the wind frame,thus, we need
to rotate it to the body frame.
The pressure entering the prop would be given as:

Pupstream = P0 +
1

2
ρV 2

a

The pressure exiting the prop would be given as:

Pdownstream = P0 +
1

2
ρV 2

exit

where, P0 is the static pressure, ρ is the density of air, Vexit is the speed of the air
as it leaves the propeller.
The exit velocity:

Vexit = (kmotorδt − Va)
where, kmotor is the motor efficiency constant and δt is the control input which is the
throttle deflection.
Total Force generated by the prop is given by:

Fxp = SpropCprop(Pdownstream − Pupstream)

=
1

2
ρSpropCprop

[(
kmotorδt)

2 − V 2
a

]
fp =

1

2
ρSpropCprop

(kmotorδt)
2 − V 2

a )
0
0


Where, Sprop is the area swept out by the propeller, Cprop is the aerodynamic coef-
ficient for the propeller. The propeller torque is modeled as:

Tp = −kTp(kΩδt)
2

mp =

−kTp(kΩδt)
2

0
0


Propeller speed(Ω) = kΩδt
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where, kTp is the constant for the propeller determined by the experiment.
Mostly we would consider the effects of this propeller torque are usually relatively
minor. If unaccounted for, the propeller torque will cause a slow rolling motion in
the direction opposite the propeller rotation. It is easily corrected by applying a
small aileron deflection, which generates a rolling moment to counteract the propeller
torque [2].

2.10 Summary

2.10.1 Forcefxfy
fz

 =

 −mg sin θ
mg cos θ sinφ
mg cos θ cosφ

+

1

2
ρV 2

a S

 CX(α) + CXq(α) c
2Va
q + CXδe (α)δe

CY0 + CYββ + CYp
b

2Va
p+ CYr

b
2Va
r + CYδaδa + CYδr δr

CZ(α) + CZq(α) c
2Va
q + CZδe (α)δe


+

1

2
ρSpropCprop

(kmotorδt)
2 − V 2

a

0
0


Where,

CX(α)
4
= −CD(α) cosα + CL(α) sinα

CXq(α)
4
= −CDq cosα + CLq sinα

CXδe (α)
4
= −CDδe cosα + CLδe sinα

CZ(α)
4
= −CD(α) sinα− CL(α) cosα

CZq(α)
4
= −CDq sinα− CLq cosα

CZδe (α)
4
= −CDδe sinα− CLδe cosα

2.10.2 Moments

 l
m
n

 =
1

2
ρV 2

a S


b
[
Cl0 + Clββ + Clp

b
2Va
p+ Clr

b
2Va
r + Clδaδa + Clδr δr

]
c
[
Cm0 + Cmαα + Cmq

c
2Va
q + Cmδeδe

]
b
[
Cn0 + Cnββ + Cnp

b
2Va
p+ Cnr

b
2Va
r + Cnδaδa + Cnδr δr

]


+

−kTp(kΩδt)
2

0
0


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2.10.3 Nonlinear Equations

The nonlinear equation are as follows:

ṗn = (cos θ cosψ)u+ (sinφ sin θ cosψ − cosφ sinψ)v + (cosφ sin θ cosψ + sinφ sinψ)w

ṗe = (cos θ sinψ)u+ (sinφ sin θ sinψ + cosφ cosψ)v + (cosφ sin θ sinψ − sinφ cosψ)w

ḣ = u sin θ − v sinφ cos θ − w cosφ cos θ

u̇ = rv − qw − g sin θ +
ρV 2

a S

2m

[
CX(α) + CXq (α)

cq

2Va
+ CXδe (α)δe

]
+
ρSpropCprop

2m

[
(kmotorδt)

2 − V 2
a

]
v̇ = pw − ru+ g cos θ sinφ+

ρV 2
a S

2m

[
CY0 + CYββ + CYp

bp

2Va
+ CYr

br

2Va
+ CYδa δa + CYδr δr

]
ẇ = qu− pv + g cos θ cosφ+

ρV 2
a S

2m

[
CZ(α) + CZq (α)

cq

2Va
+ CZδe (α)δe

]
φ̇ = p+ q sinφ tan θ + r cosφ tan θ

θ̇ = q cosφ− r sinφ

ψ̇ = q sinφ sec θ + r cosφ sec θ

ṗ = Γ1pq − Γ2qr +
1

2
ρV 2

a Sb

[
Cp0 + Cpββ + Cpp

bp

2Va
+ Cpr

br

2Va
+ Cpδa δa + Cpδr δr

]
q̇ = Γ5pr − Γ6(p2 − r2) +

ρV 2
a Sc

2Jy

[
Cm0 + Cmαα+ Cmq

cq

2Va
+ Cmδe δe

]
ṙ = Γ7pq − Γ1qr +

1

2
ρV 2

a Sb

[
Cr0 + Crββ + Crp

bp

2Va
+ Crr

br

2Va
+ Crδa δa + Crδr δr

]

2.11 Linearization

Model linearization is based on the small disturbance theory. According to this
theory, analysis is done under small perturbations of motion characteristics [10].
Before the linearization it is important to understand the equilibrium state of the
physical system also known as the trim condition of the aircraft.The basic block
model is shown in the figure 2.9. There are different flight envelope and thus the
linearization is needed to produce respecting all the flight condition.
The steps involved for the computation of the state space model of the aircraft
include:

• Compute the trim state

• Decouple the model

• For each mode consider the other mode to zero, for example for longitudinal
mode, later model would become zero.

• Compute the Jacobin of each mode

2.11.1 Equlibrium state

Stability is a property of an equilibrium state. To discuss stability we must first
define what is meant by equilibrium. If an airplane is to remain in steady uniform
flight, the resultant force as well as the resultant moment about the center of gravity
must both be equal to 0. An airplane satisfying this requirement is said to be in a
state of equilibrium or flying at a trim condition [13].
For a small unmanned aerial vehicle we would have the following approximation:
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• Flat earth

• Mass of the aircraft is constant

• No change in air density(ρ) due to altitude

• All the angular and linear acceleration equals to zero

{ṗ, q̇, ṙ, u̇, v̇, ẇ, , V̇a}

• Rate of change of angle of attack(α̇) and rate of change of side-slip angle(β̇) is
equal to zero.

The aircraft is supposed to operate in different flight condition and every flight
envelope has its own trimming points thus, based on each flight envelope we would
have different consideration.The aircraft scenarios are as follows:

• Steady Straight and Level flight

{φ, φ̇, θ̇, ψ̇} = 0

• Steady Turn
{θ̇, φ̇} = 0

ψ̇ is non zero and called turn rate

• Steady Level Climb.
{φ, φ̇, ψ̇} = 0

θ̇ is called climb rate

• Climbing Turn.
φ̇ = 0

ψ̇ is called turn rate and θ̇ is called climb rate and are non zero.

2.11.2 Decoupling

For an aircraft it is common to assume that the longitudinal modes are decoupled
from the lateral modes. The key assumption is that the fuselage is slender that
is, the length is much larger than the width and the height of the aircraft. It is
also assumed that the longitudinal velocity is much larger than the vertical and
transversal velocities [9].

In order to decouple the rigid-body kinetics in longitudinal and lateral modes
it will be assumed that the states (v, p, r, φ) are negligible and assumed zero in
the longitudinal channel while (u,w, q, θ) are negligible when considering the lateral
channel.

2.11.3 State Space Modelling

For any nonlinear equations given by ẋ = f(x, u) where, x is the state and u is the input.
The trim condition is ẋ∗ = f(x∗, u∗).
Let x̄ = x− x∗ be the deviation from trim. Then,

˙̄x = ẋ− ẋ∗

= f(x, u)− f(x∗, u∗)

= f(x+ x∗ − x∗, u+ u∗ − u∗)− f(x∗, u∗)

= f(x∗ + x̄, u∗ + ū)− f(x∗, u∗)
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Figure 2.9: Block diagram of Linearization steps

Using a Taylor series expansion around trim gives

˙̄x = f(x∗, u∗) +
∂f(x∗, u∗)

∂x
x̄+

∂f(x∗, u∗)

∂u
ū+H.O.T − f(x∗, u∗)

≈ ∂f(x∗, u∗)

∂x
x̄+

∂f(x∗, u∗)

∂u
ū

4
= Ax̄+Bū

Thus, we have the state matrix A and input matrix B for the system. Since the
system is LTI the matrices A and B have constant elements

2.11.4 Longitudinal Dynamics

Now formulating the longitudinal dynamics equation we would have(all the lateral
consideration are zero).

states(ẋlon) =


u
w
q
θ
h

 Input(ulon) =

(
δe
δt

)
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The given nonlinear equations of motion for the longitudinal mode is given by:

u̇ = −qw − g sin θ +
ρ(u2 + w2)S

2m

[
CX0 + CXα tan−1

(w
u

)
+ CXδeδe

]
+
ρ
√
u2 + w2S

4m
CXqcq +

ρSprop

2m
Cprop

[
(kδt)

2 − (u2 + w2)
]

ẇ = qu+ g cos θ +
ρ(u2 + w2)S

2m

[
CZ0 + CZα tan−1

(w
u

)
+ CZδeδe

]
+
ρ
√
u2 + w2S

4m
CZqcq

q̇ =
1

2Jy
ρ(u2 + w2)cS

[
Cm0 + Cmα tan−1

(w
u

)
+ Cmδeδe

]
+

1

4Jy
ρ
√
u2 + w2SCmqc

2q

θ̇ = q

ḣ = u sin θ − w cos θ

where we have used α = tan−1
(
w
u

)
and Va =

√
u2 + w2.

Now, we would compute the Jacobin and thus would obtain the linearized state
space model.

2.11.4.1 Jacobian Matrices

Alon =
∂flon

∂xlon

=



∂u̇
∂u

∂u̇
∂w

∂u̇
∂q

∂u̇
∂θ

∂u̇
∂h

∂ẇ
∂u

∂ẇ
∂w

∂ẇ
∂q

∂ẇ
∂θ

∂ẇ
∂h

∂q̇
∂u

∂q̇
∂w

∂q̇
∂q

∂q̇
∂θ

∂q̇
∂h

∂θ̇
∂u

∂θ̇
∂w

∂θ̇
∂q

∂θ̇
∂θ

∂θ̇
∂h

∂ḣ
∂u

∂ḣ
∂w

∂ḣ
∂q

∂ḣ
∂θ

∂ḣ
∂h

 Blon =
∂flon

∂ulon

=


∂u̇
∂δe

∂u̇
∂δt

∂ẇ
∂δe

∂ẇ
∂δt

∂q̇
∂δe

∂q̇
∂δt

∂θ̇
∂δe

∂θ̇
∂δt

∂ḣ
∂δe

∂ḣ
∂δt


2.11.4.2 Longitudinal State-Space Equation

˙̄u
˙̄w
˙̄q
˙̄θ
˙̄h

 =


Xu Xw Xq −g cos θ∗ 0
Zu Zw Zq −g sin θ∗ 0
Mu Mw Mq 0 0
0 0 1 0 0

sin θ∗ − cos θ∗ 0 u∗ cos θ∗ + w∗ sin θ∗ 0



ū
w̄
q̄
θ̄
h̄

+


Xδe Xδt

Zδe 0
Mδe 0

0 0
0 0


(
δ̄e
δ̄t

)

The equation of the coefficient above can be found in the table A.1.

2.11.5 Lateral Dynamics

Now formulating the lateral dynamics equation we would have(all the longitudinal
consideration are zero).

States(ẋlat) =


v
p
r
φ
ψ

 Input(ulat) =

(
δa
δr

)
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The given nonlinear equations of motion for the Lateral Dynamics is given by:

v̇ = pw − ru+ g cos θ sinφ+
ρ
√
u2 + v2 + w2S

2m

b

2

[
CYpp+ CYrr

]
+
ρ(u2 + v2 + w2)S

2m

[
CY0 + CYβ tan−1

(
v√

u2 + w2

)
+ CYδaδa + CYδr δr

]
ṗ = Γ1pq − Γ2qr +

ρ
√
u2 + v2 + w2S

2

b2

2

[
Cppp+ Cprr

]
+

1

2
ρ(u2 + v2 + w2)Sb

[
Cp0 + Cpβ tan−1

(
v√

u2 + w2

)
+ Cpδaδa + Cpδr δr

]
ṙ = Γ7pq − Γ1qr +

ρ
√
u2 + v2 + w2S

2

b2

2

[
Crpp+ Crrr

]
+

1

2
ρ(u2 + v2 + w2)Sb

[
Cr0 + Crβ tan−1

(
v√

u2 + w2

)
+ Crδaδa + Crδr δr

]
φ̇ = p+ q sinφ tan θ + r cosφ tan θ

ψ̇ = q sinφ sec θ + r cosφ sec θ

where we have used β = tan−1
(

v√
u2+w2

)
and Va =

√
u2 + v2 + w2.

Now, as similar to the longitudinal case we would perform the Jacobin and thus we
would obtain linearized state space model.

2.11.5.1 Jacobian Matrices

Alat = ∂flat
∂xlat

=



∂v̇
∂v

∂v̇
∂p

∂v̇
∂r

∂v̇
∂φ

∂v̇
∂ψ

∂ṗ
∂v

∂ṗ
∂p

∂ṗ
∂r

∂ṗ
∂φ

∂ṗ
∂ψ

∂ṙ
∂v

∂ṙ
∂p

∂ṙ
∂r

∂ṙ
∂φ

∂ṙ
∂ψ

∂φ̇
∂v

∂φ̇
∂p

∂φ̇
∂r

∂φ̇
∂φ

∂φ̇
∂ψ

∂ψ̇
∂v

∂ψ̇
∂p

∂ψ̇
∂r

∂ψ̇
∂φ

∂ψ̇
∂ψ

Blat = ∂flat
∂ulat

=


∂v̇
∂δa

∂v̇
∂δr

∂ṗ
∂δa

∂ṗ
∂δr

∂ṙ
∂δa

∂ṙ
∂δr

∂φ̇
∂δa

∂φ̇
∂δr

∂ψ̇
∂δa

∂ψ̇
∂δr


2.11.5.2 Lateral Space-Space Model


˙̄v
˙̄p
˙̄r
˙̄φ
˙̄ψ

 =


Yv Yp Yr g cos θ∗ cosφ∗ 0
Lv Lp Lr 0 0
Nv Np Nr 0 0
0 1 cosφ∗ tan θ∗ q∗ cosφ∗ tan θ∗ − r∗ sinφ∗ tan θ∗ 0
0 0 cosφ∗ sec θ∗ p∗ cosφ∗ sec θ∗ − r∗ sinφ∗ sec θ∗ 0



v̄
p̄
r̄
φ̄
ψ̄



+


Yδa Yδr
Lδa Lδr
Nδa Nδr

0 0
0 0


(
δ̄a
δ̄r

)

The equation of the coefficient can be found in table A.2
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Guidance and control

After the development of the state space model in the previous chapter, now we will
address the controller design. We will first design the autopilot and then work with
the path following algorithm.

3.1 LQR controller

Figure 3.1: Block diagram LQR

Given the state space equation,

ẋ = Ax+Bu (3.1)

and the cost function for the continuous infinite time horizon:

J =

∫ ∞
0

xTQx+ uTRu (3.2)

where, Q ≥ 0, is symmetric positive semi-definite matrix and R > 0, is symmetric
positive definite matrix , in the Linear Quadratic Regulator (LQR) problem, the goal
is to find the feedback control signal u as shown in the figure 3.1 that minimizes J .
In equation 3.2 Q and R are called weight matrices, where Q focus on how important
the state is, and R focuses on the how expensive the control cost is.
The optimal solution for the cost function 3.2 is

u = −Kx

where K = R−1BTS and S satisfies the Algebraic Riccati Equation(ARE).
The general procedure for the LQR would be:

1. A and B matrix known from the plant model which is in the form of equation
3.1.
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2. Choose Q and R matrices

3. Solve ARE for S
ATS + SA− SBR−1BTS +Q = 0

4. Compute K = R−1BTS

5. Choose the K solution for the stable system

In Matlab we would directly use the function lqr() and thus the controller gain
is,

Klqr = lqr(A,B,Q,R)

The linear feedback control signal would be

u = −Klqrx

A major problem that needs to be addressed is the selection of the diagonal weights
Q and R, which directly interfere in the control signal(u) in the system. It is the
trail and error method that would give the best value of the Q and R matrices.

LQR with Integral Action

The objective of the integral is to remove the steady state error from the system.
Given, the state space as equation:

ẋ = Ax+Bu (3.3)

y = Cx (3.4)

(3.5)

where,y is the output that we would want to drive to the reference signal (r).
Then, we would consider the integral error as,

z =

∫ t

0

r(τ)− y(τ)dτ (3.6)

ż = r − Cx (3.7)

the dynamic equation 3.3 and 3.7 can be written as:

(
ẋ
ż

)
=

(
A 0
−C 0

)(
x
z

)
+

(
B
0

)
u+

(
0
I

)
r (3.8)

Design of tracking is to make the system stabilize, if x(∞),z(∞) and u(∞) approach
constant value, then ż = 0, so y(∞) = r. In steady state condition equation 3.8
becomes: (

ẋ(∞)
ż(∞)

)
=

(
A 0
−C 0

)(
x(∞)
z(∞)

)
+

(
B
0

)
u(∞) +

(
0
I

)
r(∞) (3.9)

considering r to be constant, then r(∞) = r(t) = r is constant value, for t > 0.
subtracting Equation 3.8 with 3.10, then we get:

(
ẋ(t)− ẋ(∞)
ż(t)− ż(∞)

)
=

(
A 0
−C 0

)(
x(t)− x(∞)
z(t)− z(∞)

)
+

(
B
0

)
(u(t)− u(∞))

+

(
0
I

)
(r(t)− r(∞))

(3.10)
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For,
x(t)− x(∞) = xe(t)
z(t)− z(∞) = ze(t)
u(t)− u(∞) = ue(t)
thus, the error equation can be written as:(

ẋe
że

)
=

(
A 0
−C 0

)
︸ ︷︷ ︸

Ā

(
xe
ze

)
+

(
B
0

)
︸ ︷︷ ︸
B̄

ue (3.11)

The control signal for the above equation is given by:

ue(t) = −Kxe(t) + kIze(t) (3.12)

Here, it formulated by considering the augmented matrix Ā and B̄, It is important
to consider the dimension of the B̄ as it has the rows equal to the Ā and column
equal to the number of control input(u) and Q being diagonally equal to the number
of rows of the Ā matrix.The rest is similar with the LQR design method.
With the matlab command being;

Klqr = lqr(Ā, B̄, Q,R)

3.2 Autopilot

The autopilot is responsible for all the flight envelope(take off, ascent, cruise, decent,
landing). As, we have already decoupled the longitudinal and lateral mode, thus we
would design the autopilot separately for both the condition.

3.2.1 Longitudinal Controller

The longitudinal autopilot is responsible to track the height and the velocity of
the aircraft. As the state space matrix for the longitudinal controller is given in
the section 2.11.4.2, where we would take the state xlon = (u,w, q, θ, h)T and the
control input, u = (δe, δt).The objective of the longitudinal controller is to drive
the altitude(h) to the commanded altitude(hc) and the airspeed(Va) to commanded
airspeed (V c

a ). Therefore we augment the state with:

Error, zθ =

∫ t

0

(
hc(τ)− h(τ)
V c
a (τ)− Va(τ)

)
dτ

ż =

(
hc

V c
a

)
−Hlonxlon

Hlon =

(
0 0 0 0 1
u∗

V ∗
a

w∗

V ∗
a

0 0 0

)
Finally, we would have the augmented matrix as:

Ālon =

[
Alon [0]
−Hlon [0]

]
B̄lon =

[
Blon

[0]

]
3.2.1.1 Height tracking

In the figure 3.2, we would see the behaviour of the nonlinear model of the aircraft to
track the given height. The figure 3.3 and 3.4 shows the change in velocity and pitch
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angle respectively, with figure 3.5 showing the height tracking error.The actuator
movement is shown in figure 3.7 and 3.6 which corresponds to throttle deflection
and elevator deflection respectively.

Figure 3.2: Height(m) vs time(seconds) Figure 3.3: Velocity(Va)(m/s) vs time

Figure 3.4: Pitch angle (θ)(in degree) based on
height tracking vs time

Figure 3.5: Height tracking error vs time

Figure 3.6: Elevator deflection(δe)(in degree)
vs time

Figure 3.7: Throttle movement(δt) vs time

3.2.1.2 Velocity tracking

Figure 3.8, displays velocity tracking behaviour of the aircraft. The figure 3.9 shows
the change in pitch angle to maintain the velocity. It is very clear that, at a constant
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altitude we could see the increase in velocity would decrease the pitch angle. The
elevator deflection is shown in the figure 3.10 and the throttle movement is shown
in the figure 3.11.

Figure 3.8: Velocity(m/s) vs time Figure 3.9: pitch angle(θ) vs time

Figure 3.10: Elevator deflection(δe)(in degree)
vs time

Figure 3.11: Throttle movement(δt) vs time

3.2.2 Lateral Controller

As derived in section 2.11.5.2, we have the state space equation as:

ẋlat = Alatx+Blatu

where, xlat = (v, p, r, φ, ψ)T , and ulat = (δa, δr)
T .

The objective of the lateral controller is to hold the course angle(χ) to the desired
course angle(χc). This is achieved by assuming,

ψ = χ

The integral error is given by:

zχ =

∫ t

0

χc(τ)− χ(τ)dτ

żχ = χc − Clatxlat
Clat =

[
0 0 0 0 1

]
Now the lateral augmented state space equation would be
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Ālat =

[
Alat 0
−Clat 0

]
B̄lat =

[
Blat

0

]
Here, the the course controller or the heading controller would track the heading
angle as shown in the figure 3.12 and the error is shown by the figure 3.13. The
aileron and rudder movement required to track the given heading is shown in the
figure 3.14 and 3.15 respectively.

Figure 3.12: Course angle(χ)(in degree) vs time
Figure 3.13: Heading angle error(eψ) based on
height tracking vs time

Figure 3.14: Aileron deflection(δa)(in degree)
vs time

Figure 3.15: Rudder deflection(δr)(in degree)
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3.3 Path Manager

This section describes the vector field guidance strategies which deals with the
straight-line and orbit following which can be used to follow a series of waypoints.
The path manager is responsible to generate the desired course angle(χc), desired
velocity(V c

a ) and desired altitude(hc), which is then sent to the autopilot.

Figure 3.16: Architecture of the Control

3.3.1 Waypoint

A waypoint has three components one in each north, east and down direction. In
this work we only consider the lateral case where the height is kept constant by the
autopilot. Waypoint following is a common method of trajectory following in which
several waypoints are selected on the reference trajectory and the vehicle is guided
to pass through all waypoints [17] thus creating a path.We will use the notation:

W = {w1, w2, w3, w4, w5....wn}

where,W , is the waypoint path with w1, ..wn being the waypoint point in the inertial
frame.

Any two points in space could be joined by the straight line. Thus we could say
that between the waypoint we would have straight line that connects them. The
vehicle is required to accurately fly past the waypoints before reaching the final tar-
get.The trajectory to the second waypoint would be affected by the heading angle at
the first waypoint. Similarly, the heading angle at the last waypoint determines the
trajectory to the final target. Thus, an unreasonable heading angle at the current
waypoint may result in the violation of constraints for the next waypoint or the final
target [11].

Waypoint Switching

The problem related to the waypoint is to search for the proper method to switch
between the waypoint in order to follow the path properly. To this end, we would
consider the half plane method as mentioned in the reference [2].
The aircraft tracks straight-line path from wi−1 to wi until it enters H(wi,ni), at
which point it will track straight-line path from wi to wi+1.

For example, let us say that i is 2 and thus we would have three waypoint w1,
w2 and w3,the plane would be divided by the point w2, as shown in the figure 3.17,
where the aircraft would be starting to track the straight line made with point w1

and w2, and the function H(r,n) which would define the plane would be negative
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Figure 3.17: Half plane approach

till it crosses the middle waypoint w2 and become positive as reached close to the
waypoint w2 and then i becomes 3 and now it starts to follow the line made with
the points w2 and w3 and so on the code keeps running till the final value of the
index is found.
Given point r ∈ R3 and normal vector n ∈ R3, define half plane

H(r,n)
4
= {p ∈ R3 : (p− r)Tn ≥ 0}

Define unit vector pointing in direction of line wiwi+1 as

qi
4
=

wi+1 −wi

‖wi+1 −wi‖

Unit normal to the 3-D half plane that separates the line wi−1wi from the line
wiwi+1 is given by

ni
4
=

qi−1 + qi
‖qi−1 + qi‖

The final output of the waypoint algorithm would generate the unit directional
vector q, which contains the component in the north, east and down direction and r,
which is the origin for the straight line and also the component in the inter inertial
frame.

The algorithm mentioned above is:
Waypoint path, w = {w1, w2, w3}
Initialize the waypoint index: i = 2

r = wi−1

qi−1
4
=

wi −wi−1

‖wi −wi−1‖

qi
4
=

wi+1 −wi

‖wi+1 −wi‖

ni
4
=

qi−1 − qi
‖qi−1 − qi‖

H = (p− r)T ∗ n

if,
H ≤ 0

if,
i ≤ N− 1

i = i + 1
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end
end

out = [rT ,qTi−1]T

We next describe the vector-field-based trajectory-following guidance laws that use
a construction of vector fields that surround a reference trajectory and guide the
vehicle toward it[12].

3.3.2 Straight line following

A straight line can be defined by two vectors in 3 dimensional plane one being the
position and other being the direction.

Pline(r,q) = {x ∈ R3 : x = r + λq, λ ∈ R}

In the above equation, r is the origin of the line and q is the unit vector that points
to the direction of the line in the 3-D plane.
The course angle of the line as measured from the north is given by;

χq
∆
= atan2

qe
qn

(3.13)

where, q = (qn, qe, qd)
T , stating the north east and down component of the unit

vector.
Line following problem is solved generally considering the frame relative to the

straight line. Considering the rotation along the z-axis (which is aligned along the
inertial frame), we will have the transformation from inertial frame to path frame
as

RPi
4
=

 cosχq sinχq 0
− sinχq cosχq 0

0 0 1

 (3.14)

Figure 3.18: Straight line path

Path error(ep) as expressed in the path frame can be given as:
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ep =

epxepy
epz

 4
= RPi

(
pi − ri

)
r is a constant position in inertial frame and whose derivative is zero and p is
expressed in the inertial frame which is [pn, pe, pd]

T and the derivative is given by
equation 2.11.

Let us consider the kinematics of the relative error dynamics in path frame with
constant altitude: (

ėpx
ėpy

)
=

(
cosχq sinχq
− sinχq cosχq

)(
Vg cosχ
Vg sinχ

)
= Vg

(
cos(χ− χq)
sin(χ− χq)

)
Regulate the cross-track error epy to zero by commanding the course angle:

ėpy = Vg sin(χ− χq)

The lateral straight line path following problem is to select χc so that epy tends to
zero when the course angle of the line χq is known. The strategy in this section will
be to construct a desired course angle at every spatial point relative to the straight-
line path that results in the UAV moving toward the path. The set of desired course
angles at every point will be called a vector field because the desired course angle
specifies a vector (relative to the straight line) with a magnitude of unity.

Finally the objective is to construct the vector field so that, when epy is large,
the aircraft approaches to the path with the course angle χ∞ ∈ (0, π

2
]. The desired

course the aircraft need to follow is based on the cross track error, So,

χd(epy) = −χ∞ 2

π
tan−1(kpathepy)

where,kpath is a positive constant that influences on how fast the aircraft has to
approach the desired line, the rate of transition from the χ∞ to zero.
Large values of kpath result in short, abrupt transitions, while small values of kpath
cause long, smooth transitions in the desired course. The command for lateral path
following is the sum of two terms given by:

χc(t) = χq + χd = χq − χ∞
2

π
tan−1(kpathepy) (3.15)

The equation 3.15 is affected by the value of χq as derived in the equation 3.13,
where atan2 returns the value in the ±π. Slight change in χq would bring sudden
large change in the course angle, which is not expected thus, we would have:

χq = atan2(qe, qn) + 2πm (3.16)

where m = {1,−1} and depends as

−π ≤ χq − χ ≤ π
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The algorithm to follow the straight line would be given as;

χq = atan(qe, qn)

whileχq − χ ≤ −pi
χq = χq + 2π

whileχq − χ ≥ π

χq = χq − 2π

end

epy = sinχq(pn − rn) + cosχq(pe − re)

χc = χq − χ∞
2

π
tan−1(kpathepy)

3.3.3 Orbit following

We can define a orbit path as

Porbit(c, ρ, λ) =
{

r ∈3: r = c + λρ
(
cosϕ, sinϕ 0

)>
, ϕ ∈ [0, 2π)

}
where, c is the center of the circle in the inertial frame, ρ is the radius of the circle,λ
is 1 for the clockwise direction and -1 for the anti-clockwise direction, and ϕ is the
phase angle of the relative position as seen in the figure 3.19

Figure 3.19: Circular path with radius ρ

It is easier to analyze in polar coordinates and we will consider constant altitude
which would give the flight path angle (γ) to zero and thus the equation 2.11 can
be rewritten as: (

ṗn
ṗe

)
=

(
Vg cosχ
Vg sinχ

)
Geometrically from the figure 3.19, we would have the rate of distance from the
center normally and tangentially in the polar coordinates would be given as:

ḋ = Vg cos(χ− ϕ)

ϕ̇ =
Vg
d

sin(χ− ϕ)
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If we have the aircraft in the orbit we define, the χ0 as below

χo = ϕ+ λ
π

2

The final objective for us is to bring the aircraft to the orbit by bringing the per-
pendicular distance to the radius of the circle and the course angle to the course
angle of the orbit.

We would have two conditions for this case:

• When the distance d from the center is large than radius ρ then,
we would have desired course angle(χd) ≈ χo + λπ

2
.

• when distance d is equal the radius ρ,then,
we would have desired course angle(χd) equal to χo.

Therefore, let the desired course angle be computed as:

χd(d− ρ, λ) = χo + λ tan−1

(
korbit

(
d− ρ
ρ

))
Then we would have the commanded course angle generated as:

χc(t) = ϕ+ λ

[
π

2
+ tan−1

(
korbit

(
d− ρ
ρ

))]
The orbit angle(ϕ) must be computed considering the effect of sudden jump of 2π
while transiting from π to −π., thus,

ϕ = atan2(pe − ce, pn − cn) + 2πm

The algorithm for the lateral circular path is given as follows:

d =
√

(pn − c− n)2 + (pe − ce)2

ϕ = atan2(pe − ce, pn − cn)

while ϕ− χ ≤ −π
ϕ = ϕ+ 2π

while ϕ− χ ≥ −π
ϕ = ϕ− 2π

end

χc(t) = ϕ+ λ[
π

2
+ tan−1(korbit(

d− ρ
ρ

)]
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Simulation results

This chapter describes the implementation and simulation of the UAV model and the
proposed controllers for several test scenarios. For the Linearization we have used
the Simulink and MATLAB directly. We create the Matlab function for the force
and moments that has the state and actuator control as the input and generates the
force as the output as shown in the figure 4.1.

Figure 4.1: Trim block in Simulink

The model designed in the simulink includes the nonlinear model with all the
nonlinear equations and thus we are now required to trim the model and linearize
the model using the trim values. For this we use the trim function in the matlab and
also use the linmod function that outputs the linearization around the generated
trim values. The matlab code is given as:

trim(filename, x0, u0, y0, ix, iu, iy, dx0, idx)

[A,B,C,D] = linmod(filename, xtrim, utrim)

Now, once the state space matrix is generated we then separate the longitudinal and
lateral state space matrix and thus obtain system dynamic matrices necessary for
generating the LQR controller.

4.1 Aircraft Model

The next tables show the values of the model parameters used for simulation. These
values were taken from [2].
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Figure 4.2: Zagi 60 HP electric model airframe, source:[19]

4.1.1 Physical Parameter

Table 4.1: Geometry of the Aircraft

Parameter Description Value
m mass of the aircraft 1.56Kg
S wing surface area 0.2589 m2

b wing span 1.4224 m
c chord length 0.3302 m

Sprop Surface area of the propeller 0.0314m2

ρ Air density 1.2682kg/m2

kmotor motor coefficient 20
e oswald efficiency 0.9

Table 4.2: Moment of Inertia Data

Moment Value
JX 0.1147 Kgm2

JY 0.0576 Kgm2

JZ 0.1712 Kgm2

JXZ 0.0015 Kgm2
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4.1.2 Aerodynamic coefficent

Table 4.3: Aerodynamic coefficient data

Longitudinal coefficient Value Lateral coefficient Value
CL0 0.09167 CY0 0
CD0

0.01631 Cl0 0
Cm0

-0.02338 Cn0
0

CLα 3.5016 CYβ -0.07359
CDα 0.2108 Clβ -0.02854
Cmα -0.5675 Cnβ -0.00040
CLq 2.8932 CYp 0
CDq 0 Clp -0.3209
Cmq -1.3990 Cnp -0.01297
CLδe 0.2724 CYr 0
CDδe 0.3045 Clr 0.03066
Cmδe -0.3254 Cnr -0.00434
Cprop 1.0 CYδa 0

M 50 Clδa 0.1682
α0 0.4712 Cna 0.1682
ε 0.1592

CDp 0.0254

4.2 State Space Matrix

The state space matrix obtained from MATLAB is given as:

Longitudinal Mode:

Alon =


−0.454653673118648 0.0917411892577683 −0.864212811454343 −8.98777814898664 0
−1.06376723875552 −4.90784812684167 12.9712426627808 −3.73402061060811 0
0.360792817681557 −4.63539544994353 −7.27172280590767 0 0

0 0 0.949792954946042 0 0
0.400754824687156 −0.870186377875349 0 12.2130111947080 0



Blon =


−0.504983700194440 8.63929252197672

6.38262550062489 0
−79.5245276238215 0

0 0
0 0


Lateral Mode:

Alat =


−1.34070933501494 0.772363528094415 −12.9595017505407 9.29902987648858 0
−2.06971828950236 −3.27412887764330 1.62740860315965 0 0
4.40544321372776 0.260851137160438 −4.39246644894759 0 0

0 1.00000000000001 0.0714932279410995 −1.31851562471148e− 13 0
0 0 0.953275152609940 0 0



Blat =


0 −3.02343635753036

18.6251312139587 24.1095346723967
14.0750177252039 −7.05874272555448

0 0
0 0



48



CHAPTER 4. SIMULATION RESULTS

4.3 Path following

In the simulation, we could see the behaviour of the aircraft moving in the inertial
frame while following the waypoint and orbit. For the waypoint as shown in figure
4.3, we have several different values of the path constant(kpath).We start with the
value kpath = 0.01 where it can be seen that the aircraft does not follow the path
but tries to orient in the direction. With the value of kpath = 0.05, we could see
there is an improvement in following the path but, during the curve we will have
higher deviation. Note that this error decreases as the value increases to kpath = 0.1.
However,for values from 0.05 to 0.1 the aircraft does not touch the waypoint 1 and
waypoint 4. Notice that if we increase the kpath = 0.5 we would see very good be-
haviour at first while tracking the waypoint 1 till the waypoint 3, but during the
waypoint 4 there is an oscillation that soon converges to the path. For the value
kpath = 2.0 we see higher oscillation from starting and would also end with oscilla-
tion. This is due to large values of kpath results in short, abrupt transitions, while
small values of kpath cause long, smooth transitions in the desired course.Further we
also have much higher values of the actuator and more higher changes in the state
associated with the higher values of the path constant.

Figure 4.3: Waypoint tracking with different values of kpath

Figure 4.4 shows the orbit following for different values of korbit. We compare the
behaviour of the aircraft and the error associated to follow the given orbit with the
value of korbit = 0.1 and korbit = 2.0, where the initial behaviour of the aircraft is
almost the same but the final locus of the position is different. In general, we can
conclude stating that higher value of the korbit brings low error. Figure 4.5 shows the
velocity behaviour of the aircraft and the figure 4.6 shows the altitude. During the
initial entry to the orbit we can see the fluctuation due to the nonlinear behaviour of
the aircraft but later it is constant. This behaviour brings the change in the control
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signal as shown in the figure 4.9 and figure 4.10.

Figure 4.4: Orbit tracking with different values of korbit

Figure 4.5: Velocity(m/s) vs time(s) for the
value of orbit constant korbit=2

Figure 4.6: Altitude(m) vs time(s) for the value
of orbit constant korbit=2

Figure 4.7: Throttle(δt) vs time(s) for the
value of orbit constant korbit=2

Figure 4.8: Elevator deflection(δe)(in degree) vs
time(s) for the value of orbit constant korbit=2
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Figure 4.9: Rudder deflection(δr) (in degree)
vs time(s) for value of orbit constant korbit=2

Figure 4.10: Aileron deflection(δa)(in degree)
vs time(s) for the value of orbit constant
korbit=2

The figure 4.11 shows the waypoint tracking in the inertial frame with kpath = 0.1,
starting from the initial coordinate[0 0 100]. We could see the altitude and velocity
behaviour of the aircraft to track the given waypoint in the figure 4.12 and 4.13
respectively. Figure 4.15 shows the pitch angle behaviour and figure 4.14 shows the
course angle. As the vector field guidance strategy creates straight line between the
waypoints which the aircraft is commanded to follow. This strategy shows during
the change in the altitude the aircraft nonlinear behaviour adds up and thus there
is slight fall in altitude before the climb.

Figure 4.11: Waypoint following in the inertial frame with kpath=0.1
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Figure 4.12: Altitude(m) vs time(s) to follow
the given waypoint,kpath=0.1

Figure 4.13: Velocity(m/s) vs time(s) to follow
the given waypoint kpath=0.1

Figure 4.14: Course angle(χ) (in degree) vs
time(s) to follow the given waypoint,kpath=0.1

Figure 4.15: Pitch angle(θ) (in degree) vs
time(s)to follow the given waypoint,kpath=0.1
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Conclusion

In this thesis, we studied the modelling and control of a class of fixed wing Un-
manned Aerial Vehicles (UAVs). The work was structured into various chapters.
The first chapter was dedicated to the mathematical modelling of the aircraft where
we started with the introduction of the several reference frames associated with the
aircraft. In the kinematics modelling, we studied the relation between the velocities
(linear and angular) and the position and orientation. The kinematic equations were
divided into translation and rotational kinematics. After the kinematics we moved
to the dynamic equation, that captures the translations dynamic and rotational
dynamic as a function of force and moments, resulting in 12 nonlinear differential
equations with 6 Degree of freedom along with the control input.

The aircraft is a nonlinear model, so we first proceed with its linearization us-
ing the trim condition. The trim condition is available for different flight envelops.
Based on the cruise case where the aircraft is at a constant altitude, we formulated a
linear model as in section 2.11. To make the design easy we decoupled the longitudi-
nal and lateral modes. The longitudinal autopilot consisted of the height and velocity
controller and the lateral autopilot consisted of the heading controller assuming the
heading(ψ) angle is equal to the course angle(χ). LQR control strategy was used to
design the autopilot. Next, we devoted to the design of the path following algorithm
with the waypoint following (section 3.3.2 ) and the orbit following(section 3.3.3).
The main goal is to make the UAV to be able to autonomously follow a predefined
path. Path following algorithms ensure that the UAV will follow the predefined
path in two or three dimensions. A requirement for these path-following algorithms
is that they must be accurate and robust to wind disturbances. Control techniques
are popular for path-following applications. They provide the robustness to wind
disturbances mention before. There are several control techniques applicable in the
UAV including linear control, nonlinear control, intelligent control, hybrid control
and robust control. In section 3.3.2, we used the vector field method and thus sim-
ulated the behavior of the aircraft with different values.

The nonlinear behavior of the aircraft had a direct effect on the control signals,
namely the fact if the actuators saturate one would easily stall the aircraft. In this
thesis, we illustrated the performance of the standard vector field method of path
following that had higher efficiency for the waypoints that were further compared
to the waypoints that were closer. Since knowledge of the plant model is one of
the most important parts for control design, the method used proved to be efficient
for modelling that uses Simulink to linearize which is easy to implement and allows

53



CHAPTER 5. CONCLUSION

us to deal with any form of small fixed-wing UAV. The future aspect of the thesis
is to extend the work to test and compare different control algorithm based on
performance and simplicity. For the future task, we will use the plant model to
design the outer loop nonlinear guidance controller for path following and object
tracking (moving and stationary). This type of control algorithms seem promise as
they can deal with the error created in the inner loop. This thesis would also be
extended to create a hardware in the loop simulation using the nonlinear model.

54



Appendix A

Appendix

55



APPENDIX A. APPENDIX

Table A.1: Longitudinal coefficient equation

Longitudinal Formula

Xu
u∗ρS
m

[
CX0

+ CXαα
∗ + CXδe δ

∗
e

]
− ρSw∗CXα

2m +
ρScCXqu

∗q∗

4mV ∗
a

− ρSpropCpropu
∗

m

Xw −q∗ + w∗ρS
m

[
CX0

+ CXαα
∗ + CXδe δ

∗
e

]
+

ρScCXqw
∗q∗

4mV ∗
a

+
ρSCXαu

∗

2m − ρSpropCpropw
∗

m

Xq −w∗ +
ρV ∗
a SCXq c

4m

Xδe

ρV ∗2
a SCXδe

2m

Xδt
ρSpropCpropk

2δ∗t
m

Zu q∗ + u∗ρS
m

[
CZ0 + CZαα

∗ + CZδe δ
∗
e

]
− ρSCZαw

∗

2m +
u∗ρSCZq cq

∗

4mV ∗
a

Zw
w∗ρS
m

[
CZ0

+ CZαα
∗ + CZδe δ

∗
e

]
+

ρSCZαu
∗

2m +
ρw∗ScCZq q

∗

4mV ∗
a

Zq u∗ +
ρV ∗
a SCZq c

4m

Zδe
ρV ∗2
a SCZδe

2m

Mu
u∗ρSc
Jy

[
Cm0

+ Cmαα
∗ + Cmδe δ

∗
e

]
− ρScCmαw

∗

2Jy
+

ρSc2Cmq q
∗u∗

4JyV ∗
a

Mw
w∗ρSc
Jy

[
Cm0 + Cmαα

∗ + Cmδe δ
∗
e

]
+

ρScCmαu
∗

2Jy
+

ρSc2Cmq q
∗w∗

4JyV ∗
a

Mq
ρV ∗
a Sc

2Cmq
4Jy

Mδe

ρV ∗2
a ScCmδe

2Jy

Table A.2: Lateral coefficient equation

Lateral Formula

Yv
ρSbv∗

4mV ∗
a

[
CYpp

∗ + CYrr
∗
]

+ ρSv∗

m

[
CY0

+ CYββ
∗ + CYδa δ

∗
a + CYδr δ

∗
r

]
+

ρSCYβ
2m

√
u∗2 + w∗2

Yp w∗ +
ρV ∗
a Sb
4m CYp

Yr −u∗ +
ρV ∗
a Sb
4m CYr

Yδa
ρV ∗2
a S
2m CYδa

Yδr
ρV ∗2
a S
2m CYδr

Lv
ρSb2v∗

4V ∗
a

[
Cppp

∗ + Cprr
∗
]

+ ρSbv∗
[
Cp0 + Cpββ

∗ + Cpδa δ
∗
a + Cpδr δ

∗
r

]
+

ρSbCpβ
2

√
u∗2 + w∗2

Lp Γ1q
∗ +

ρV ∗
a Sb

2

4 Cpp
Lr −Γ2q

∗ +
ρV ∗
a Sb

2

4 Cpr
Lδa

ρV ∗2
a Sb
2 Cpδa

Lδr
ρV ∗2
a Sb
2 Cpδr

Nv
ρSb2v∗

4V ∗
a

[
Crpp

∗ + Crrr
∗
]

+ ρSbv∗
[
Cr0 + Crββ

∗ + Crδa δ
∗
a + Crδr δ

∗
r

]
+

ρSbCrβ
2

√
u∗2 + w∗2

Np Γ7q
∗ +

ρV ∗
a Sb

2

4 Crp
Nr −Γ1q

∗ +
ρV ∗
a Sb

2

4 Crr
Nδa

ρV ∗2
a Sb
2 Crδa

Nδr
ρV ∗2
a Sb
2 Crδr
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