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Abstract

Parkinson’s disease (PD) is the second neurodegenerative disorder, expressed by

motor and non-motor symptoms. One of the primary motor symptoms is gait

impairment, that occurs with episodic (freezing of gait and festination) and contin-

uous disturbances, characterized by reduction of step length and gait velocity and

increase in stride-to-stride variability, that with postural instability intensifies fall

risk. Currently, to assess motor condition and gait impairment progress, subjective

and qualitative clinical evaluations are used, which may have negative effects on

diagnosis, follow-up and treatment. Therefore, gait analysis systems (laboratory-

based or laboratory-free) have been developed, providing objective and additional

information to neurologists. The aim of this study was to carry out the assessment

of PD walking, by the construction of a systems capable to detect steps, identify

initial (heel-strike) and final (toe-off) contacts of gait cycle and discriminate them

between left and right, in order to prove the feasibility of a simple and low cost sys-

tem for home monitoring of gait impairment in PD subjects. Data acquisition was

executed with a waist-mounted smartphone, which includes several inertial sensors.

A total number of 75 participants took part in the study, divided into three gro-

pus, consisting of neurological healthy people and two composed of PD subjects,

respectively. Data processing of acceleration signals was executed offline: wavelet

transform has been applied to vertical and anteroposterior components, and auto-

correlation function of vertical acceleration was computed. Spatio-temporal param-

eters and symmetry indices have been extracted and then correlated with subject

age, disease duration, UPDRS items and H&Y scores. Significance tests between

different groups have been also performed. Results were promising, with 95.3% of

total steps detected and over 85% of the parameters values in physiological ranges.

The high correlation coefficients and parameters trends are well in line with results

found in literature. The alghorithm showed good sensitivity to gait variability, ex-

pressed by step and stride variability and symmetry indices. Given the promising

results, togheter with ADL-like data aquisition, the proposed alghorithm could be

used for remote monitoring of PD patients clinical (e.g. disease progression) and

therapeutic (e.g. on/off state) condition, also in free-living environments.
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dra, per l’estrema comprensione ed il forte incoraggiamento che mi hanno trasmesso

costantemente in questi anni, credendo sempre in me e nelle mie possibilità.
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Chapter 1

Parkinson’s disease

Parkinson’s disease (PD) is a devastating neurodegenerative pathology related to

age, with a multifactorial etiology. It owes its name to James Parkinson who

wrote in 1817 a monograph entitled ’Essay on the Shaking Palsy’. He described

with extreme details the apparent clinical signs of some patients in which an im-

balance is created between the inhibitory and excitatory mechanisms, in favor of

the latter. Excitatory (cholinergic) innervation prevails over inhibitory innerva-

tion, progressively causing a series of symptoms, such as resting tremor, hypertonia

with rigidity, akinesia, postural instability, speech and writing disorders, and also

anxiety-depressive symptoms. To date, no therapy has been found for PD, which

is cured only with symptomatic treatments.

1.1 Pathology and pathogenesis

PD always show pathological hallmarks.The most important is the preferential, as

massive and progressive, degeneration of dopaminergic nigrostriatal neurons, whose

cell body is located at the level of the Substantia Nigra pars compacta (SNpc), while

the projections mainly branch towards the putamen and partly into the caudate.

The SNpc takes its name from the presence of neurons containing neuromelanine,

a dark pigment consisting of dopamine polymers (DA) embedded in a glyco-lipid

matrix. Macroscopically, the degeneration of these neurons results in the depig-

mentation of the SNpc (Fig.1.1) [20][11][18][1]. The ventrolateral cell groups (or

1



1 – Parkinson’s disease

Figure 1.1: Neuropatholofy of Parkinson’s disease. a)Schematic representation of the
nigrostriatal (red) pathway with normal pigmentation of the SNpc. b)Nigrostriatal path-
way (dashed red) in PD, with marked loss of dopaminergic neurons and depigmentation
of SNpc.[20].

nigrostriatal pathway) are most vulnerable due to calcium transients, leading to cel-

lular stress, homeostasis interruption, and death. Cell death is associated with the

disruption of the cell membrane and the release of pro-aggregating nuclear factors

that could trigger the α-synuclein aggregation, a small highly conserved presynap-

tic protein [5][6]. Loss of dopaminergic neurons in this area starts before the onset

of disease motor symptoms, probably leading to the genesis of two of these, namely

bradykinesia and rigidity, due to the corresponding decrease in dopamine [18][3].

At the onset of symptoms, about 60% of SNpc dopaminergic neurons have already

been lost. However, neuronal loss in PD also occurs in many other brain regions

[11][20].

Another hallmark is Lewy pahology, caused by aggregation of intracytoplasmatic

abnormally folded proteins, in particular α-synuclein, parkin and ubiquitin. In

a misfolded state, these proteins become insoluble and give rise to ”Lewy bodies

(LBs)” and ”Lewy neurites”, intracellular inclusions within the cell body and pro-

cesses (mostly axonal) of neurons, respectively [11][5]. LBs have a diameter of about

15µm, and their accumulations can be caused by mutations and multiplication of

SNCA, the gene encoding α-synuclein, by impairment of the ubiquitin-proteasome

2
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system (UPS) and by corruption of the lysosomal autophagy system (LAS) [14],

which are very important for intracellular proteolysis [4][18][7][30]. Initially, α-

synuclein misfolds in a small number of cell, than gradually engages more brain

region with disease progression [14].

In PD patients brain other types of protein aggregations than α-synuclein were also

found. They synergise with Lewy pathology and contribute to the clinical expres-

sion of Parkinson’s disease. Some of these are β-amyloid plaques and tau-containing

neurofibrillary tangles, the protein inclusions typical of Alzheimer’s disease [11],

that seems to be a key factor for the cognitive decline in PD [19].

Oxidative stress is another important features of PD pathogenesis, which impli-

cates the release of oxydoradicals, eliciting the aggregation of α-synuclein and UPS

system failure [18][7]. Also mitochondrial dysfunction play a key role, leading to

both reduced ATP production and accumulation of electrons that aggrave oxidative

stress, with the final outcomes of apoptosis and cell death [18][14][7].

The last phenomen implicated with pathogenesis of PD is neuroinflammation, man-

ifesting with an active inflammatory response in the brain, mediated primarily by

resident astrocytes and microglia, producing cytokines that augment apoptosis, and

promoting α-synuclein misfolding (Fig.1.2) [18][14][11].

1.2 Risk factors

Although the etiology of PD has not yet been fully clarified, the hypothesis of a

multifactorial origin in which environmental and genetic components are involved

is now accepted.

Several studies have shown that numerous factors can increase the risk of develop-

ing the disease, or even seem to decrease it. About environmental factors, pesticide

exposure, prior head injury, rural living, β-blocker use, agricoltural occupation,

well-water ingestion, middle-age obesity and lack of excercise could increase the

risk. Also use of antypsychotics might enhance risk of developing PD, but addi-

tional studies are needed to confirm this associations. Instead, tobacco smoking,

coffee drinking, non-steroidal anti-inflammatory drug use, calcium channel blocker

use, and alcohol consumption seems to decrease it [11][19][4][3][7].

Regarding genetic factors, in about 95% of cases there is no correlation with

3



1 – Parkinson’s disease

Figure 1.2: Diagram of the concept of the etiology and pathogenesis of Parkinson’s disease,
[18].

them, and PD is defined as ’idiopathic’ or ’sporadic’. The remaining 5% is at-

tributed to inherited genetic mutations and PD is called ’familial’. They are char-

acterized by mutations, and the most important occurs in GBA, which encodes

β-glucocerebrosidase. As already mentioned, SNCA mutation, that encodes α-

synuclein protein, leads to its aggregation and is assocated with inherited Parkin-

son’s disease. Also mutations in LRRK2 and parkin cause this type of PD, dom-

inantly and recessively respectively, and mutations in PARK7 are related to early

onset of the disease [11][15][11][19][14].

So, the risk of developing Parkinson’s disease is clearly multifactorial, and a futher

understanding of risk factors and their interactions is expected to have broad im-

plications for the elucidation of pathogenic mechanism and individualisation of

treatment [11].

1.3 Epidemiology

Parkinson’s disease is the second most common neurodegenerative disorder after

Alzheimer. It is mainly an illness of later life, so is more common in developed

4
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countries where people live longer [7]. The estimated prevalence of PD in indus-

trialized countries is 0.3% in the general population, 1.0% in people older than

60 years, and 3.0% in those aged 80 years and older, with incidence rates of 8 to

18 per 100000 person-years [8]. In Europe the prevalence at age between 85 and

89 has been reported as 3.5% [9] and in Italy the estimated average prevalence

is 157,7/100000 [10]. Both incidence and prevalence increase nearly exponentially

with advancing age [11]. So with an aging population and rising life expectancy

worldwide, the number of people with PD is expected to increase by more than 50%

by 2030 [12]. Moreover, the incidence seems to vary within subgroups definded by

race and ethnicity. In particular it seems be greater in Hispanics, followed by non-

Hispanic Whites, Asians and Blacks [13]. Regarding the patient’s gender, in most

population PD incidence and prevalence are 1.5 to 2.0 times higher in men than in

women [14](Fig.1.3), and age at onset is 2.1 years later in women than in men [8].

Clinical signs emerge in a wide age range, including the young, even if it occurs

infrequently under 40 years of age [15]. The median age of onset is 60 years; the

mean duration of the disease from diagnosis to death is 15 years, although patients

can live for decades with PD [8].

Figure 1.3: Incidence and prevalence of Parkinson’s disease. a)Prevalence of Parkinson’s
disease in men and women per 100000 individuals. b) Incidence rate of Parkinson’s disease
per 100000 person-years,[14].

5
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1.4 Diagnosis

The evaluation of PD is difficult because the expression of the disorder varies from

patient to patient (intra-patient variability), and is also significantly influenced by

emotional state, response to drugs, and other variables [17]. Hovewer, the diagnosis

of PD is still largely a clinical one, as there is no definitive test able to confirm the

diagnosis during life [15][16]. From a practical perspective, the first step for the

diagnosis of PD is a careful analysis of patient’s history. In particular, in-depth

investigations must be carried out, trying to define emerged symptoms and their

sequence (such as premotor symptoms), to analyze if patient is exposed to en-

vironmental risk factors, to record past and present medical impairments and to

examine possible neurological disorders in other family members [15]. At this point,

careful clinical examination follows. The disease is clinically defined by presence of

bradykinesia and at least one additional cardinal motor feature (rigidity and/or rest

tremor), additional supporting and exclusionary criteria, and response to levodopa.

The latter is very helpful, indicating presynaptic dopamine deficiency with intact

postsynaptic dopamine receptors, features typical of PD [18]. The clinical findings

are usually asymmetrical and remain the same throughout the disease, with gait

and balance affected later [15][18][4][14][19][16][11].

There are no practical diagnostic laboratory tests for PD, and in most cases, the

diagnosis is made only with these clinical examinations, but in specific circum-

stances, other ancillary investigations are needed. Imaging techniques are used

to differentiate Parkinson’s disease with motor symptoms from disorders without

presynaptic dopaminergic terminal deficiency [11]. Positron emission tomography

(PET) with fluorodopa (FDOPA) is one of the available technologies, that mea-

sures levodopa uptake into dopamine nerve terminals, but the costs and limited

accessibility make it difficult to use [15][18]. Dopamine transporter (DAT) imaging

with single photon emission computed tomografy (SPECT) is also a very useful ap-

proach, because it is sensitive for the detection of presynaptic dopaminergic neuron

degeneration in the striatum [11][15]. Brain structural imaging, either by computed

tomography (CT) or magnetic resonance imaging (MRI) can be performed, where

the latter is preferred [15]. Standard MRI has a marginal role in PD diagnosis,

but high and ultra-high-field MRI combined with advanced techniques are used to

6
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enhance diagnostic accuracy for Parkinson’s disease versus other types of degener-

ative parkinsonism [11][14].

Genetic testing is not part of the routine diagnostic process, except in patients in

whom there is a specific suspicion for a possible genetic cause (for example sugges-

tive family history and early onset) [14][11]. Although several studies have assessed

α-synuclein and other proteins concentrations in cerebrospinal fluid (CSF), there is

currently no clinically useful CSF-based diagnostic test for PD. This is also true for

blood biomarkers, although associations of different serum or plasma parameters

with disease progression have been described [14][11].

1.5 Clinical Features

The clinical expressions of Parkinson’s disease can be divided into two categories:

motor symptoms and non-motor symptoms.

The onset of motor symptoms is usually unilateral and asymmetry persists through-

out the disease, even in advanced stage. From this standpoint, PD is characterized

by four cardinal features [14][7]:

� Bradykinesia. It is the most characteristic clinical feature of PD, and it refers

to slowness of movement. It may be manifested by a delay in the initiation

of a movement and by slowness of its execution. Other aspects include a de-

lay in arresting movement, amplitude and speed decrementing of repetitive

movements, and inability to execute simultaneos or sequential actions. In ad-

dition to whole body slowness and impairment of fine motor movement, other

manifestations of bradykinesia involve drooling due to impaired swallowing

of saliva, monotonous dysarthria, loss of facial expression (hypomimia), re-

duced arm swing when walking (loss of automatic movement), micrographia,

reduced amplitude of voice and decreased stride length during walking. Its

clinical assessment is carried out by globally observing the patient’s sponta-

neous movements while sitting or walking, and asking him to perform some

repetitive movements in a wide and fast way, such as opening and closing the

hand, tapping the foot on the ground. During these tasks the examiner looks

for a possible decrease or loss in the amplitude.[15][16][17][18][20][7].

� Rest tremor, that is the most common and easily recognised symptom of PD.
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It is defined as a rythmic oscillatory involuntary movement that comes about

when the affected body part is relaxed. It is unilateral, but over time it can

affect both sides. Characteristically, rest tremor disappears or decreases its

intensity as soon as a finalized movement is performed to execute a certain

actions, and during sleep [15][16]. Commonly, this motor symptom manifests

as a resting ”pill-rolling” hand tremor, that is a supination-pronation tremor

which might be evident when the patient is asked to do fine finger movements

with the other hand or to walk. Occasionally it involves legs, jaw and tongue,

whereas head tremor is not typical of PD [9][15][19]. It occurs at a frequency

between 4 and 6 Hz, and can be intermittent at the beginning, being present

only in stressful and anxious situations, but with the progression of the disease

it tends to be present most of the time and worsen in amplitude with stress

or excitement [18][7]. In clinical practice, tremor is observed when the limb

muscles are relaxed, elicited by patient’s focus on a particular mental task,

such as countdown with eyes closed [15].

� Rigidity. It indicates an increase in muscle tone at rest or during movement,

and is characterized by an increase in resistance during passive mobilization of

an extremity, independent of direction and velocity of movement [48]. Rigidity

can affect limbs, neck and trunk and appears in several daily activities, like

dressing, writing and turning in bed. Typically, during examination of a seg-

ment, it is increased by voluntary movement of other body parts (Froment’s

maneuver) [15][16][7].

� Postural and gait impairment. They include postural instability and parkinso-

nian gait. Postural instability occurs mainly in advanced stages of PD and is

caused by a reduction in straightening reflexes, so that subject is not able to

spontaneously correct imbalances or to maintain an upright posture. There-

fore the patient is more subject to falls (often resulting in hip fractures) which

can occur in all directions even if more frequently forward. As the disease

progresses, the subject assumes a stooped posture, in which the trunk is bent

forward, arms are kept close to trunk and bent, as knees. In the later stages

it is also possible to appreciate permanent curvature of neck and back. Clini-

cally, it is evaluated by the pull test: the examiner stands behind the patient

and applies a pull in order to assess the ability to regain balance.
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Parkinsonian gait is slow and hypokinetic, occurs on a narrow base, and is

characterized by short shuffling steps and reduced step length, which gives the

observer the impression that the patient is chasing own center of gravity. An-

other gait disturbance than shuffling is motor blocking, that is called freezing

of gait[9][15][17].

There are many other motor findings in PD, most of which are directly related to

one of cardinal signs [17].

Although the motor symptoms of PD dominate the clinical picture, parkinsonian

subjects also present several non-motor symptoms (Fig.1.4). These include sen-

sory complaints, cognitive impairment, psychiatric symptoms, sleep disorders, au-

tonomic dysfunction, pain and fatigue [11][16][18]. Frequently, some of these can

anticipate the onset of classic motor symptoms by years or even decades [15][14][7],

such as impaired olfaction, constipation, depression, excessive daytime sleepiness

(EDS), and rapid eye movement sleep behavior disorder (RBD)(Fig.1.5). This pe-

riod is called premotor or prodromal phase [11], and its features vary from patient

to patient [9]. With the disease progression, worsening of motor features occurs,

and there is an emergence of complications related to long-term symptomatic treat-

ment, including motor and non-motor fluctuations, dyskinesia (abnormal involun-

tary movement) and psychosis [11]. Severity of bradykinesia, rigidity, gait and

balance progress similarly, while tremor severity appears to be rather stable over

time, possibly indicating different underlying pathophysiological processes [7].

1.5.1 A focus on gait impairment

Gait disorders in PD is caused by imbalance of cortical and subcortical activities

with inhibition of the primary motor cortex, putamen, and cerebellum, which are

replaced by overactivation of non-typical brain areas. Some factors that contribute

to damage gait are a decrease in the senses of proprioception, discrimination, and

position.

Gait impairments can be divided into two types: continuous and episodic. Episodic

disturbances have a random, intermittent and unpredictable nature. These include

freezing of gait (FOG), festination gait (FSG), and start hesitation. FOG occurs

most often in PD patient who are in an advanced state of the disease. It is a

form of akinesia (loss of movement) and consists of a sudden and transient inability

9
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Figure 1.4: Non-motor features of Parkinson’s disease, [15].

to start or continue a movement. Patients report the feeling that their feet are

glued to the ground, expecially when turning or walking through narrow passages,

crossing streets or approaching a destination. FOG episodes can be provoked by

asking the subject to turn around, giving rise to ’turning hesitation’. FSG is an

intermittent episode of few seconds in which patients bend the trunk forward and

have an uncontrollated propulsion, where steps become progressively smaller and

more rapid. In this case, they report the feeling that were pushed from behind.

Continuous disturbances, instead, refer to the alterations of walking pattern that

are evident even after a first analysis, persist (and worsen) during the disease pro-

gression and are almost always evident. These include slow ambulation (partly
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Figure 1.5: Clinical symtoms and time course of Parkinson’s disease progression,[11].

manifestation of bradykinesia), absence or reduction of arm swing, longer double

support, and impaired postural control. The subject also has a loss in the abil-

ity to generate sufficient stride length, causing a reduction in gait velocity and an

increased time with the feet on the ground. Moreover, higher stride-to-stride vari-

ability is also a characteristic feature of gait in PD[34][15][17][31][33][32].

From a clinical standpoint, it is possible to divide gait disorders and its progression

in four stages [31]:

� Stage 1: Initial gait disturbances. In this phase patient starts to manifest some

disturbances, like decreased gait speed, decreased arm swing, bradikynesia,

shortened steps and increased stride-to-stride variability. However, they do

not predominantly affect patient’s quality of life [31].

� Stage 2: Mild to moderate functional gait disturbances. It is characterized by

shuffling and hypokinetic gait; steps are shorter and lower limb decreases the

muscular force applied to employ the foot push-off or hip pull-up. Impairments

begin to be more present and mainly disturb the patient. Flexed joints and

stooped trunk are also manifested [31].

� Stage 3: Significant functional gait disturbances. In addition to events already

mentioned in the previous phases, at this stage episodic walking disorders

take place, ie FOG and FSG. Both of them occur in an uncontrolled and
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unpredictable way, and have a temporal duration of seconds, rarely exceeding

30s.

� Stage 4: Appearance of falls on the background of other gait disturbances.

Both episodic and continuous disturbances work together to intensify the risk

of falls in PD. Indeed, falls are one of the main consequences of motor impair-

ments, and with disease progression they become more present and debilitat-

ing. Many of these result from sudden changes in posture, in particular turning

movements of the trunk, rising from chair or bed, or when trying to perform

more than one activity simultaneously with walking or balancing. About 50%

of patients report recurrent falls during a year (Fig.1.6), and these could cause

injuries, hip fractures, fear of falling, a restriction in daily activities, loss of

independence, increased mortality. Patients do not have capacity to produce

adequate toe lift and foot pitch, causing greater energy expenditure. In ad-

dition, in this advanced stage of PD subjects tend to have bent knees when

standing and walking on tiptoe [31][32][34].

Figure 1.6: Fall rates in PD compared to age-matched controls in different duration of
follow-up,[34].

12



1 – Parkinson’s disease

1.6 Rating Scale

In assessing the motor and non-motor symptoms, signs and disabilities of PD, rat-

ing scale are used to quantify the impairment and assign a value to a particular

features or symptom in question [17][16][2]. Motor scales are the best-known and

most widely used, but non-motor symptom scales are equally important. Combined

with a motor scale, these give a more balanced picture of how a person is affected

by disease [2].

1.6.1 Hoehn-Yahr scale

A method to staging PD is Hoehn-Yahr scale (H&Y). This (Tab.1.1) is simple

and of easy application, and used to compare groups of patient with PD and to

provide gross assessment of disease progression, raging from stage 0 to stage 5. It

does not give precise information about the patient’s motor state, nor does it take

into account non-motor symptoms. Furthermore it is not useful for monitoring

individual responses of a subject to therapy [17][16].

Table 1.1: Hoehn-Yahr Scale.

Point Observation

0 Asymptomatic
1 Unilateral involvement only
2 Bilateral involvement without impairment of balance
3 Mild to moderate involvement; some postural instability

but physically independent; needs assistance to recover
from pull test

4 Severe disability; still able to walk or stand unassisted
5 Wheelchair bound or bedridden unless aided

1.6.2 UPDRS

The Unified Parkinson’s Disease Rating Scale (UPDRS) is used to track the pro-

gression of disease, and it is the most well established scale for assessing disability

and impairment[17][16][11]. It is made up of four part:
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� Part I: Evaluation of mental activity, behaviour and mood.

� Part II: Self-evaluation of activities of daily living.

� Part III: Evaluation of motor function.

� Part IV: Evaluation of complications of therapy.

Each part involves several items to appointing a value to a particular features.

The UPDRS testing is carried out by a healthcare professional. Points assigned to

every item are based on the person’s response, as well as observation and physical

examination, and range from 0 to 4. The total cumulative score ranges from 0

(no disability) to 199 (total disability). The scale was introduced in 1987 and has

since been updated by specialists from the Movement Disorder Society (MDS) to

include new assessments of non-motor symptoms [2]. The UPDRS is often used

with H&Y scale, and the Schwab and England Activities of Daily Living (ADL)

Scale. Relating to Part III of UPDRS scale, items more inherent to this document

are:

� ’Leg Agility (3.8)’, Tab.1.2.

� ’Arising from Chair (3.9)’, Tab.1.3.

� ’Gait (3.10)’, Tab.1.4.

� ’Freezing of gait (3.11)’, Tab.1.5.

� ’Postural Stability (3.12)’, Tab.1.6.

� ’Posture (3.13)’, Tab.1.7.

1.6.3 Other scales

The Schwab and England ADL Scale is a means of measuring ability to perform

daily activities in terms of speed and independence through a percentage figure.

High percentages indicate a high level of independence while low percentages indi-

cate dependence [2].

There are also many scales, such as the Parkinson’s Disease Questionnaire-39 (PDQ-

39) and the Parkinson’s Disease Quality of Life Questionnaire (PDQL), that at-

tempt to assess the overall health related quality of life[17].
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Table 1.2: Leg Agility, item 3.8

Initially it consists in placing the patient’s feet on the ground in a comfort-
able position, and then ask him to beat them 10 times, with the greatest
amplitude and as quickly as possible.

Point Observation

0: Normal No problems.
1: Slight Any of the following: a) the regular rhythm is broken with

one or two interruptions or hesitations of the movement;
b) slight slowing; c) amplitude decrements near the end of
the task.

2: Mild Any of the following: a) 3 to 5 interruptions during the
movements; b) mild slowness; c) amplitude decrements
midway in the task.

3: Moderate Any of the following: a) more than 5 interruptions during
the movement or at least one longer arrest (freeze) in ongo-
ing movement; b) moderate slowing in speed; c) amplitude
decrements after the first tap.

4: Severe Cannot or can only barely perform the task because of
slowing, interruptions or decrements.

Table 1.3: Arising from chair, item 3.9

It consists in having the patient sit on a chair, with the back resting well
on the seatback. He is asked to cross his arms over his chest and stand up.

Point Observation

0: Normal No problems. Able to arise quickly without hesitation.
1: Slight Arising is slower than normal; or may need more than one

attempt; or may need to move forward in the chair to arise.
No need to use the arms of the chair.

2: Mild Pushes self up from arms of chair without difficulty.
3: Moderate Needs to push off, but tends to fall back; or may have to

try more than one time using arms of chair, but can get
up without help.

4: Severe Unable to arise without help.
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Table 1.4: Gait, item 3.10

The patient is asked to walk at least 10 meters to evaluate both the right
and the left side. This item measures multiple behaviors: stride amplitude,
stride speed, height of foot lift, heel strike during walking, turning, and arm
swing, but not freezing.

Point Observation

0: Normal No problems.
1: Slight Independent walking with minor gait impairment.
2: Mild Independent walking but with substantial gait impair-

ment.
3: Moderate Requires an assistance device for safe walking (walking

stick, walker) but not a person.

4: Severe Cannot walk at all or only with another person
’
Äôs assis-

tance.

Table 1.5: Freezing of gait, item 3.11

The presence of fog episodes during the walk, the possible start hesita-
tion and the interruptions of the movements (expecially when turning and
reaching the end of the task) is evaluated.

Point Observation

0: Normal No freezing.
1: Slight Freezes on starting, turning or walking through doorway

with a single halt during any of these events, but then con-
tinues smoothly without freezing during straight walking.

2: Mild Freezes on starting, turning or walking through doorway
with more than one halt during any of these activities,
but continues smoothly without freezing during straight
walking.

3: Moderate Freezes once during straight walking.
4: Severe Freezes multiple times during straight walking.

1.7 Treatment

To date, PD is an incurable progressive disease, and there is no available treatment

that stops its progression [9][19]. Therefore, the management deals with reducing

and alleviating motor and non-motor symptoms. So, it is a symptomatic treatment.
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Table 1.6: Postural Stability, item 3.12

It consists of a retropulsion test, called a pull-test, that takes place while
the patient is in an upright posture, with open eyes and feet, and applying
a rapid traction force on his shoulders so that the patient must take at
least one step back to recover his posture.

Point Observation

0: Normal No problems: Recovers with one or two steps.
1: Slight 3-5 steps, but subject recovers unaided.
2: Mild More than 5 steps, but subject recovers unaided.
3: Moderate Stands safely, but with absence of postural response; falls

if not caught by examiner.
4: Severe Very unstable, tends to lose balance spontaneously or with

just a gentle pull on the shoulders.

Table 1.7: Posture, item 3.13

Posture and postural reflexes are evaluated while the patient is standing
after getting up from a chair and while walking.

Point Observation

0: Normal No problems.
1: Slight Not quite erect, but posture could be normal for older

person.
2: Mild Definite flexion, scoliosis or leaning to one side, but patient

can correct posture to normal posture when asked to do
so.

3: Moderate Stooped posture, scoliosis or leaning to one side that can-
not be corrected volitionally to a normal posture by the
patient.

4: Severe Flexion, scoliosis or leaning with extreme abnormality of
posture.

Several therapies are adopted, which can be divided into three groups:

� Pharmacological treatment. It is chiefly a dopamine (DA) replacement ther-

apy. DA is a neurotransmitter of neurons affected during PD. So, deficency of

dopamine result in alteration at the downstream nuclei, that can be restored

with this treatment. A variety of dopaminergic agents are available. The most

powerful and effective drug is levodopa (L-DOPA), a DA precursor introduced
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in therapy at the end of the 60s. It is usually administered with two inhibitors:

a decarboxylase inhibitor to prevent formation in the peripheral tissues, and

catechol-O-methyltransferase inhibitor to extend its plasma half-life and to

prolong the duration of action of each dose [18]. However, after some years,

the use of L-DOPA is complicated by the evolution of shorter duration of re-

sponse to individaul doses (wearing off symptoms), alternative phases with

good and poor response to medication (on-off symptoms), drug-induced invol-

untary movement of the head, trunk or limbs (dyskinesias), and psychosis [14]

[18][19][15][9][11].

A very advantageous approach to maintain constant levodopa plasma con-

centrations is the administration of a levodopa-carbidopa concentrate in the

duodenum (known as Duodopa) through a percutaneous endogastric tube con-

nected to a portable infusion pump. This pump allows adjustment of the drug

dose according to the patient’s condition. This approach has partly reduced

the dyskinesias typical of the advanced stages of PD. Furthermore, even a

subcutaneous infusion of apomorphine (a powerful antagonist of DA) leads to

an improvement in motor fluctuations.

Moreover, in the last few months, a new drug has been marketed: Ongentys,

also known as Opicapone. This is an inhibitor of COMT enzymes that degrade

L-DOPA at the peripheral level. Therefore it allows to increase the amount of

absorbed L-DOPA, reducing motor fluctuations at the end of the dose. So, it

is administered only to patients already treated with L-DOPA.

Other drugs used in treating PD symptoms are dopamine agonists. They have

good efficacy, and compared to L-DOPA are less likely to produce motor com-

plications, but are more likely to cause hallucinations, confusion and psychosis,

and provide less symptomatic benefit. So, thery are not recommended to el-

derly over age of 70 years [18][15][14]. Subjects with PD also use dopamine

releaser, like amantadine, that relieves symtoms (also dyskinesia) but produces

mental effects, and monoamine oxidase type B (MAO-B) inhibitors [18][14].

The efficacy of each of these drugs, as well as their adverse-event, need to be

fully explained to the patient when treatment options are being considered,

and seems to be also influenzed by placebo response [19].

There are also nondopaminergic agents that are useful to treat L-DOPA re-

sistant (”non-dopaminergic”) features (treatment-resistant tremor, freezing of
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gait, postural instability, falls, swallowing and speech disturances), but also

non-motor features, like cognitive and psychotic defects [18][14].

� Surgical treatment. It is characterized by stereotaxic deep brain stimulation

(DBS), that can be unilateral and bilater. It is made up of a neurostimulator,

that is placed subcutaneously in the anterior and superior region of the thorax,

and an electrode positioned in the brain. Once the system is in loco, electri-

cal impulses sent from the generator into the brain reduce abnormal electrical

signals and alleviate PD motor symptoms. It is used when patient have ad-

vanced PD with an excellent L-DOPA response but also motor complications

due to long-term medical treatment. The average time to surgical treatment is

about after 10-13 years after diagnosis of PD, and location needs to be individ-

ualized for each patient. However, treatment of subthalamic nucleus (STN)

reduce bradykinesia and levodopa dosage, and therefore dyskinesia severity

[18] [15][9][11]. It can also alleviate gait impairment and postural instability,

improving asymmetry of gait and joints range of motion, and increasing step

length and velocity [31]. Moreover, targeted gene therapy and cell transplan-

tation are also included in this group [11].

� Exercise-based treatment, which seem to improve symptoms that do not re-

spond to pharmacological and surgical therapies, like mobility, postural con-

trol and balance. This consist of physical therapy with cueing to improve gait,

excercise to improve balance, training to build up muscle power and increase

joint mobility [19][14].
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Chapter 2

Gait Analysis

2.1 Gait Cycle

Walking can be defined as ”a method of locomotion involving the use of the two

legs, alternatly, to provide both support and propulsion”. Formally, walking uses a

ripetitious sequence of limb motion to move the body forward while simultaneosuly

maintaing stance stability [21].

Human walking is identified by gait cycle cyclical sequence. Gait cycle (GC) is

characterized by so-called gait events, that are defined on the basis of feet contact

with the ground. They are:

� Heel Strike (HS): the impact of the heel on the ground, ie represents the

beginning of load phase, also referred as initial contact (IC). However, for a

pathological gait it is possible that either the toe, side of a foot or even the

whole foot first touches the ground rather than heel [44].

� Toe-Strike (TS): the impact of the toe on the ground and it represents the end

of load phase.

� Heel-Off (HO): the detachment of the heel from the ground; it starts the push

phase.

� Toe-Off (TO): the detachment of the toe from the ground; it concludes the

push phase, also referred as final contact (FC).
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GC is the time interval between two successive and repetitive events of ipsilateral

foot (on the same side of the body). It is considered to begin from the contact of

one foot with ground (IC) and to finish with next same foot contact. So, gait cycle

consists of two steps: left and right. The step begins with the contact of ipsilateral

foot and ends with that of contralateral (other side of the body) foot. The sequence

of the steps (left-right or right-left) depends on the person’s first step.

It is divided in two phases: stance phase and swing phase (Fig.2.1), that are defined

by gait events. The stance indicates the period during which the foot of considered

lower limb lies on the ground, so begins with the heel-strike (IC) and ends with

the toe-off (FC) . The swing, on the contrary, refers to the period in which foot

is in the air for the limb advancement, begins with TO and ends with a new heel-

strike. Usually, during normal walking, their physiological values are about 60%

and 40% of GC, for stance phase and swing phase respectively. However, these

vary according to walking speed: if velocity increases, stance becomes smaller and

the swing increases [47]. Moreover, GC can be divided in two other phases: single

support and double support. The first occurs when leg is in swing phase and the

other is in stance, therefore body weight is supported by a single limb. It starts

with toe-off of the contralateral foot and ends with a heel strike of the same. The

second takes place when both limbs rest on the ground, begins with contralateral

limb heel strike and finishs with the toe off of the limb in question. Physiologically,

a healthy walking has a single support around 80% and double support around 20%

of GC.

2.2 Gait Parameters

The detection of gait events mentioned above allows to obtain several spatio-

temporal parameters, that produce a quantitative description of gait. Therefore

they reflect the ability of subject and provide information about movement pattern

changes. The parameters of greatest relevance with this document are listed below.

� Temporal Parameters

– Stride Time [s], time between two consecutive HS of the same foot. For

healthy person it is on average about 1.03s [44].

– Stride Frequency [Hz], considered as the reciprocal of stride time.
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Figure 2.1: Gait cycle phases, [22].

– Step Time [s], time between HS of ispilateral foot and HS of controlateral

foot. Is considered as half of stride time.

– Step Frequency [Hz], considered as the reciprocal of step time.

– Stance Time [s], time between HS and TO of the same foot.

– Stance Duration [%GC], stance time as percentage of the gait cycle.

– Swing Time [s], time between TO and HS of the same foot.

– Swing Duration [%GC], swing time as percentage of the gait cycle.

– Double Support Time [s], time between HS of one foot and TO of the

controlateral.

– Double Support Duration [%GC], double support time as percentage of

gait cycle.

– Single Support Time [s], time between TO of foot and HS of the contro-

lateral.

– Single Support Duration [%GC], single support time as percentage of gait

cycle.

� Spatial Parameters
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– Step Length [m], distance between HS of ispilateral foot and HS of con-

trolateral foot. It is the displacement occuring during step time.

� Spatio-Temporal Parameters

– Gait Velocity [m/s], velocity during gait cycle. It is the average displace-

ment in unit time.

– Cadence [N.step/min], measured as the number of steps taken in certain

time, usually as the number of steps per minute. It is inversely propor-

tional to time cycle and related to leg length.

2.3 Gait analysis

Gait analysis is commonly referred to the quantitative description of all mechan-

ical aspects of walking [56]. It consists of gait parameters calculation and their

evaluation. It can have several purposes. Certainly, the most common applications

are clinical, sport and rehabilitation. Depending on area of interest, it takes into

account a greater or lesser number of parameters. In particular, clinical application

is that in which the greatest number of parameters are calculated to assess the

degree of disease or its progress. Gait analysis can be classified into two groups:

laboratory-based and laboratory-free. The two categories are discussed below.

2.3.1 Laboratory-based gait analyis

A standard gait laboratory, usually located in a hospital or a research center, fre-

quently have four systems for evaluating gait:

1. A motion-capture system, which digitally tracks the patient’s movement and

captures the three-dimensional movements of the body. It is made up of

synchronized cameras, marker placed over the skin of one or more anatomical

segments, and computer software that acquires and processes marker position

during walking. In particular, it allows to reconstruct the marker 3D-trajectory

from 2D images offered by cameras. This system allows to estimate gait spatio-

temporal parameters, but its potential goes beyond this aspect, since they are

thought for 3D kinematics measurements. [25][27].
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2. A video system, which records images of the patient while walking, and provide

a degree of quality control of the motion-capture data. It permits to view the

patient movement from different and multiple angles simultaneously, leading

to a complete understanding of its pattern. Furthermore, from this system is

possible to obtain basic gait parameters, like stride length, speed and cadence.

3. Force platform and pressure platform, where gait is measured by pressure or

force sensors and moment transducers when the subject walks on them. The

first measures force trasmitted to the floor when walking (Ground Reaction

Force GRF), the second find the evolution of foot pressure on the floor in

real time, that may reach up to 120%-150% of the patient’s body weight

in his maximum expression, when the heel touches the floor (HS). If used

individually, these devices are basic, and can be used to obtain a general idea

of gait problems a patient may have, but when integrated with the motion-

capture system they allow to assess the mechanism of movement.

4. An EMG system, which is used to record muscle activity during gait, a process

referred to as ’dynamic EMG’. If gait is altered, then also the muscular activity

during the same will be altered. EMG is a very useful non-invasive technique

used to understand the changes in gait function and gait phase detection [28].

Some examples of optoelectronic systems used in gait analysis are Vicon, Qualisys

Motion Analysis or OptoTrack. In particular, Vicon system provides a clinically

validated solution in any gait analysis or rehabilitation environment, and can be

used to measure or give real-time feedback on the movements of the whole body or

a single part, including hands, face, feet and spine, across different applications, like

stroke rehabilitation, posture analysis, and balance studies. For these reasons, it is

the most commonly and widely choosen (Fig.2.2) [45][53]. To date, analysis with

these systems is widely accepted as ’gold standard’ for gait analysis, because it is

very good in measuring position, and produces well-quantified and accurate results

over short distances. On the other hans, it requires that markers always must be

seen by cameras, therefore needing the right environmental conditions; presents

very long set-up times to position markers adequately, leeding to expensive and

cumbersome equipment attached to the body; and has a limitated workspace for

the patient’s movement, so only a narrow number of consecutive strides can be

measured [23][25][26][27][55].
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Figure 2.2: Example of marker positioning with Vicon system, [45].

2.3.2 Laboratory-free gait analysis

This type of analysis does not require the use of bulky or permanently localized

devices in a laboratory, thus allowing to detect and quantify gait in any place and

at any time. It is carried out using different devices:

1. Inertial measurement unit (IMU), that aggregates different type of MEMS

sensors, such as accelerometers, gyroscopes and magnetometers, individually

or combined. It measures and reports on object’s velocity, acceleration, ori-

entation, and gravitational forces. Accelerometer is the most common type of

inertial sensor, and its ability to measure changes along its sensitive axis makes

it suitable for measuring motion status in human gait; instead gyroscope is an

angular rate sensor that measure the angular velocity of the feet or legs while

walking. IMU can be located on several parts of the body, such as feet, knees,

thighs or waist, individually or combined, so they are weareable system (WS).

The sufficient number of IMU to be used to obtain a relevant and complete
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analysis is under investigation, but certainly the complexity of the measure-

ments is linked to the number of sensors worn by the subject. Moreover, the

miniaturization of IMU allows the possibility of integrating them on instru-

mented insoles for gait analysis. They are ultra-small size, portable, low cost

and pratical useful for longer and natural movements. Furthermore, they do

not require a specific laboratory, but they can be used everywhere, and have

a theorically unlimited workspace. So, IMU can be successfully used for accu-

rate, non-invasive, and ambulatory motion tracking. However, they allow to

estimate temporal and spatial parameters, but the integration of acceleration

signals is subject to drift, leading to measurement errors. In addition, where

the magnetometers are present, they are influenced by the surroundings and

so they limit the settings for the analysis [25][24][26][28][23][55]. However, the

measurements of inertial systems can be compared to optoelectronic systems

(like Vicon), which to date represent the gold standard, to assess validity,

reliability and accuracy [59][55], Fig.2.3.

Figure 2.3: Example of IMU measurements compared to Vicon system, representing heel
strike and toe off detection, [58].
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2. Smartphone, for the purpose of data collection in daily life. This use is becom-

ing increasingly popular thanks to its easy transport and rich sensing abilities.

It is equipped with accelerometers, gyroscopes and magnetometers that allow

it to be employed in an ever increasing number of fields of application, such as

tracking and positioning, activity recognition, health monitoring, telemedicine

and telerehabilitation. It is a cheaper and user-friendly alternative to IMUs

[49][26][50], which can be used by practically everyone. Indeed, nowadays, any

subject belonging to all age groups has one.

3. Goniometers, ie sensors used to measure the angles of human joints, as an-

klees, knees, hips, ecc. They can be various (strain gauge-based, inductive or

mechanical), and are usually fitted in intrumented shoes to measures ankle to

foot angles [28][24]. Also force-plate sensors can be embedded into footwear

for this type of analysis [25].

A complete view on the advantages and disadvantages of both categories is shown

in Tab.2.1.

2.4 Gait analysis in Parkinson’s disease

Since it is necessary to evaluate the motor symptoms of PD and their progress

during disease, many clinical assessments have been developed, where the most

common include the Timed up and Go test and the postural instability and gait

disability score derived from the UPDRS. These assessments are easy to accomplish

in clinical setting, because they require little equipment, and also provide imme-

diate outcomes that can be reported to the patient. However, these tests show

poor sensitivity and specificity for identifying prospective fallers in PD population,

and may not be sufficiently sensitive to detect changes in balance and walking in

people who have mild to moderate disease severity, like motor fluctuations, FOG,

falls [52]. This happens because they are subjective and qualitative measurements,

which have a negative effect on the diagnosis, follow-up and treatment of pathology

[23][24][60]. They only offer biased evaluations taken over short periods of time, do

not take into account the long-term patient mobility, but only indicate the condi-

tion at the moment. Moreover, the assessment is dependent on clinician’s expertise

and individual training [27]. So, it would be helpful for clinicians to be reliably
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Table 2.1: Comparison between advantages and disadvantages of laboratory-based and
free systems.

Type of system Advantages Disadvantages

Laboratory-based

� Repeatability and less exter-
nal factor interference due to
controlled environment

� Widely accepted as ’gold
standard’

� Good at measuring position

� Well-quantified and accu-
rate results over short dis-
tances

� Long set-up time

� Requires adequate environ-
mental conditions

� Expensive and cumbersome
equipment

� Limited workspace

� Limited number of mea-
sured stride

� Impossible monitoring natu-
ral movement during real life

� Poor at measuring accelera-
tion

Laboratory-free

� Low cost

� Useful to monitor longer and
natural movement

� Employment in any place,
not needing controlled envi-
roment

� Possibility of being wireless
that enhace usability

� Promotes autonomy and ac-
tive role of patient

� Unlimited workspace

� Non invasive

� Good at measuring accelera-
tion (IMU and smartphone)

� Power consumption restric-
tions due to limited battery
duration

� Complex alghoritms needed
to estimate parameters
(IMU and smartphone)

� Susceptibility to noise and
interference of external fac-
tors

� Amplification of measure-
ment error during integra-
tion of acceleration signal

� Poor at computing precise
position, due to baseline
drift

and objectivelly informed about several aspects, such as severity of gait disorder,

progression of gait disability, therapeutic effects of applied interventions, in order

to quantify the real degree of the disease, and based on it, to optimize treatment,

and help to reduce different rating strategies [52][25][27][28].
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Therefore, several approaches are utilized to overcome these problems, and to im-

prove the objectivity of measures, in order to track symptoms progression and

evaluate patient risks, resulting in more efficient measurement and providing spe-

cialists with a large amount of reliable information. In particular, gait analysis

allows to detect changes in gait that produce key information about patient’s qual-

ity of life, reducing the error margin caused by subjective techniques [23][24].

A large number of useful gait parameters can be evaluated by both gait categories

previous discussed, to improve the sensitivity, accuracy, reproducibility, and feasi-

bility of measurements about changes in motor behaviours [61][27][28]. Laboratory-

based systems surely represent the gold standard in gait analysis, but considering

the clinical application to Parkinson’s disease, they exhibit several problems. In

fact, a disadvantage is that the monitoring process is carried out in a controlled

enviroment in which the patient feels safe, but many subjects experience the most

severe episodes of impaired gait, FSG and FOG (that present episodic and unpre-

dictable nature) while at home [25]. Moreover, their limited workspace does not

allow the acquisition of a lot information. So, for these reasons, they result partly

inadequate for this application.

Instead, ambulatory gait analysis can provide valuable systems for anywhere-anytime

monitoring of PD individual’s motor behavior [26][49][54]. In fact, this type of anal-

ysis allows to evaluate fluctuating events in response to medication, to capture falls

or FOG episodes, and to assess all physical activities in everyday life, that occur

over long periods and outside the clinical examination room [61][27]. In particular,

a significant number of literature studies supports the use of wearable system, that

have recently shown good reliability for assessing individuals with PD, especially

for acceleration-based measures calculated in the time domain. They are able to

assess standing balance and walking differences for different subgroups of subjects,

like PD fallers and non-fallers, people with PD and controls, people with different

PD subtypes, and also contribute to the diagnosis beetween idiopatich PD and

drug-induced parkinsonim [23][26][28]. Latt et al. [29] used two inertial sensors

(accelerometers, Fig.2.4) located in two different body zones (head and sacrum)

to detect and evaluate differences between fallers and non fallers in elderly people

with PD and controls. Their results show significant differences between analyzed

groups (reduced walking speed and step length and increased step time variability),
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Figure 2.4: Use of two wereable sensors: accelerometers on head and sacrum,[29]

.

confirming the reliability of these sensors. Also Weiss et al. [35][36][88] used 3D ac-

celerometer on lower back to compare PD and controls, PD freezers and non-freezer,

and PD fallers with non-fallers. Yang et al. [37] make use of 3D accelerometer lo-

cated on lateral pelvis to investigate PD and controls. Instead Van Emmerik et

al. [38] used 1D accelerometer on shank to valuate stride timing variability dur-

ing gait between PD and control. In their study, Hubble et al. [23] report an

overview of wearable sensors types for PD gait analysis to assess standing balance

or walking stability, used by other studies published between January 1994 and

December 2014. The results (Fig.2.5) demonstrate that the most common sensor

used is three-dimensional accelerometer. Nevertheless, in the last few years a large

number of studies used smartphone. The figure 2.6 shows exponential growth over

the years in the use of wearable sensors, but above all smartphones, in neurological

studies. Pepa et al.[39] used it on waist for freezing of gait detection in PD, show-

ing very good sensitivity and specificity (89% and 97% respectively); also Capecci

et al. [40] used smartphone for the same purpose; Vezoc̆nik and Juric [41] esti-

mate average step length; Ellis et al. [42] assess gait variability; Arora et al. [43]
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Figure 2.5: Types of wereable sensors used in PD gait analysis,[23]

.

Figure 2.6: Number of studies of smartphones and wearable sensors in neurology in the
last 15 years,[46].

differentiate PD subject by healty controls with high accuracy. All these studies

highlight that smartphone-based gait analysis can be an alternative to conventional

gait analysis methods, particularly when those are cost-prohibitive, cumbersome,

or inconvenient.

Hubble et al. [23] also reported the location on patient’s body where the sensor is

placed, and the most suitable position that provide adequate information for gait

analysis is lumbar or sacral region of the trunk (Fig.2.7)[44][51]. This location, al-

though centered, has previously shown to reflect lower extremity movement during
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Figure 2.7: Position of wereable sensors used in PD gait analysis,[23]

.

walking [36], and it is useful for step detection. In fact, if the device is placed on

the left lateral side of waist, signals from the left leg are more prominent than those

from the right leg and vice versa, as shown in Fig.2.8, causing several problems.

Maetzler et al. [60] report that collection of disease-relevant gait data may even

Figure 2.8: Acceleration obtained from two positions of sensor- a)Acceleration obtained
from L3. b) Acceleration obtain from lateral side of waist,[44]

.

be possible using a single wereable sensor worn at the lower back, through accel-

eration signal of the vertical axis that allows to assess gait variability computing

stride-to-stride variability. This is very useful to predict the risk of future falls.
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Furthermore, always using a sensor at the lower back, differences of anticipatory

postural adjustament between untreated PD patients and control individuals were

found, and this is very important because it is a parameter related to increased

risk of FOG and falling [60]. Also falls, which are sporadic and episodic events that

require long monitoring, balance impairment and mild postural sway abnormalities

can be detected by single sensor with triaxial accelerometer worn at the lower back,

like smartphone [60]. Therefore, the best operational solution for gait analysis in

PD seems to be the use of a 3D accelerometer (as a single inertial sensor or using

the one present in smartphone), positioned at lower waist.

In conclusion, wearable sensors provide a light-weight, portable and affordable al-

ternative to more expensive three-dimensional motion analysis systems and are

effective for detecting changes in standing balance and walking stability among

people with PD [23]. This will enable patients with movement disorders to benefit

from an analysis that has been limited to academic laboratories and state-of-the-art

medical centers [27].
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Chapter 3

Gait assessment

This chapter describes materials and methods that have been used to extracting and

analyzing measured signals. Different spatio-temporal parameters were calculated

both in PD subjects and in elderly controls. All calculations and signal processing

were performed using Matlab R2018b software.

3.1 Materials

3.1.1 Smartphone sensors characteristics

Before proceeding with the acquisition and elaboration of signals, smartphone sen-

sors characteristics have been evaluated, in particular sampling frequency, range

and resolution, to understand if these were suitable for conducting gait analysis.

� Sensors sample frequency has to respects the Nyquist theorem, according to

which this must be at least twice the maximum useful frequency of the signal

to be acquired. Human activity acceleration signal lie in the 0-20 Hz band

[63], therefore a frequency of at least 40 Hz must be set. Anyhow, the 3-5 Hz

has been defined as ’locomotor band’ [40], and it has also been observed that

normal walking has a principal frequency around 2Hz [62].

� Acceleration signal amplitude range depends on considered direction, location

of sensor and body weight. Considering a waist-mounted sensor, acceleration

amplitude during walking lies in the range ±1g, with g being the gravitational

acceleration.
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The Tab.3.1 shows the characteristics of smartphone sensors, demonstrating that

it is an adequate device for data acquisition.

Table 3.1: Smartphone sensors characheristics

Range Resolution Sample Frequency

Accelerometer ±2 g 4 · 10−3 g 200 Hz

Gyroscope ±34.9 rad/s 1.1 · 10−3 rad/s 200 Hz

Orientation 360° 1° 200 Hz

Sensor data were collected by an application called ’Sensor Log’ and exported in

CSV format. This application is just one of many available that can acquire signals.

It is simple to use: the user has to click a button to start recording, and press it

again to stop it. So, signals are stored and appear as a database in the history

section of the app, which can then be imported to a software, like Matlab.

3.1.2 Sample characteristics

The sample involved in this study consists of 75 individuals, divided into three main

groups: one consisting of neurological healthy people, and so utilized as controls,

and two composed of PD subjects, called Phase 1 and Phase 2. Control data

have been collected at the ”Orfanelle” nursing home - Chieri (To) while PD data

have been taken from Center of Parkinson and Movement Disorder - ”Molinette”

Hospital (To). In this case, neurologists selected subjects to be included in the

study, and provided information on their disease status. This study was conducted

in accordance with the declaration of Helsinki, and patients have been informed

about the purpose of the study and gave their consent.

Regarding controls, collected informations concern age, gender and possible use of

walking aids. In Phase 1 the presence of FOG episodes and disease duration are

also evaluated. For patients in Phase 2, scores for some items of the UPDRS scale

provided by neurologists have been collected. Tables 3.2, 3.3 and 3.4 provide a

complete picture of all information about the three groups.
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Table 3.2: Control group caractheristics

Number Gender(% Male)
Age (years)

Gait Assistance (%)
(Mean±SD)

14 28.6 84.9±7.7 35.7

Table 3.3: Phase 1 group caractheristics

PD subjects - Phase 1

Number 36
Gender (% Male) 64.4
Age (years) (Mean±SD) 64.9±9.3
Gait Assistance (%) 16.7
Disease Duration (years) (Mean±SD) 9.5±5
FOG Episodes (%)
Yes 11.2
Hesitation 16.7

3.1.3 Positioning and protocol

In order to acquire data, smartphone has been positioned on the waist, at lower

back level, for the following reasons:

� It is a comfortable position, if compared with the others (head, ankle, shank);

� It is close to body center of mass, typically 5th lumbar vertebrae (L5), pro-

viding global informations about motor control of walking [64][66];

� It also allows to monitor other symptoms of PD, such as bradykinesia, dyski-

nesia and FOG;

� It permits to discriminate different groups, such as fallers and non-fallers,

controls and PD subjects, PD with no FOG episodes and PD with FOG, etc.,

as previously discussed.

A belt has been used to fix smartphone on the participants waist, equipped with

an elastic band that guaranteed adherence to the body (Fig.3.1). The used exper-

imental protocols are two: one for the controls and PD subjects of Phase 1, and

the other for PD subjects of Phase 2. In particular, the first is the six-minute-

walking-test, which consists of walking participants back and forth along a hallway

during this time interval. It has gained clinical acceptance due to its ease of setting
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Table 3.4: Phase 2 group caractheristics

PD subjects - Phase 2

Number 25
Gender (% Male) 40
Age (years) (Mean±SD) 73.6±8
Disease Duration (years) (Mean±SD) 6.1±4.6
H&Y (Mean±SD) 2.3±1
Item Arising Chair (Mean±SD) 1.7±1
Item Gait (Mean±SD) 1.4±0.8
Item FOG
Mean 0.5
Range 0 to 2
Item Postural Stability (Mean±SD) 1.5±1.2
Item Posture (Mean±SD) 1.4±0.7
Mean Item Leg Agility (Mean±SD) 1.2±0.6
Average Score (Mean±SD) 1.1±0.6

Figure 3.1: Smartphone belt, smartphone position and reference axes.

up, administration, patient tolerance, reproducibility and similarity to normal daily

activities [65]. Participants quit the test if not able to continue. Indeed, the second

is represented by the protocol used by neurologists to perform the evaluation of

motor functions as required in Part III of the UPDRS scale. Therefore, in this

case, the data is acquired in semi-supervised conditions. Different of other studies

present in literature, no video recording has been performed, but a chronometer

was used, that started when the subject is wearing the smartphone belt. In case

of Phase 1 patients, annotations of any noteworthy events (such as hesitations,

FOG episodes) have been made, while in Phase 2 the time instants in which the
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different UPDRS tasks are performed have been recorded. Furthermore, in order

to analyze and apply a gait assessment method to acquired signals, these have been

previously labeled offline based on the activity carried out by the subject. In par-

ticular, a Matlab interface has been used, that employs a vector of the same signal

length and containing different numbers (1 for walking, 2 for turn, etc.) associated

with each sample. This allows to easily distinguish and identify walking windows

between the various activities performed by the subject.

3.2 Methods

After an initial pre-processing phase of the acquired signals, gait events have

been identified (in particular HS and TO), that allows to calculate several spatio-

temporal parameters, also differentiated between right and left steps. This is fol-

lowed by calculation of correlation coefficients and statistical analyses.

3.2.1 Pre-processing

First of all a pre-processing phase was considered necessary. It consists of mean

capture of the values by each axis, that are later subtracted from corresponding

axes, in order to eliminate offsets and misalignment. Then, a passband filter was

applied to the input signals, in order to remove the gravitational component and

high frequency noise. The choice of cut-off frequency is very important: it has to

take into account the frequency content of the walking signal, and make a choice

that does not distort it too much and has no impact on the analysis. Therefore,

noting that human activity acceleration signals lie in the 0-20 Hz band, locomotor

band is up to 3-5Hz, and literature studies usually make use of cut-off frequencies

between 15-20 Hz [66][69], the selection of bandpass filter upper frequency fell back

to 20 Hz, and lower frequency has been set to 0.5 Hz. The type of filter is an

IIR Butterworth of order 3. Fig. 3.2 shows its frequency response. Furthermore,

the anteroposterior (AP) acceleration was further filtered with an order 3 IIR But-

terworth low-pass filter with cut-off frequency of 5 Hz. As previously described,

through offline labeling all the windows corresponding to the walking activity for

each subject have been extracted.
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Figure 3.2: Frequency response of designed IIR Butterworth filter.

3.2.2 Trunk acceleration pattern

The selected position to placing the smartphone (waist at the level of the lower

back) allows to obtain information about the movement of both limbs and to define

a pattern of trunk acceleration. Although there is a inter-subject variation and

small asymmetries between right and left steps, it can be considered similar for

different subject and speed [68][69].

� Antero-posterior (AP) acceleration pattern. AP acceleration increases during

single support phase when, after mid-stance, the body is falling forward and

downward. Instead, during the transition from single to double support (ie

after controlateral foot contact) it decreases because the forward fall of the

body changes into an upward movement. Thus, foot contact (IC) coincides

with the peak of AP acceleration (Fig.3.3, AP5), which occurs at 0% and

50% of the stride cycle. Furthermore, in some subjects additional peaks or

indentations superposed on the basic pattern can be identified, corresponding

to the beginning or the end of swing phase, or to forefoot loading (Fig.3.3

AP3, AP4 and AP6 respectively), and which vary from cycle to cycle and

also with walking speed. AP3 and AP4 peaks are caused by hip flexion-

extension movements, developed to perform the swing phase, which act on

the pelvis, affecting trunk acceleration. AP1 represents the minimum reached

value [68][69].

� Vertical (V) acceleration pattern. Also vertical acceleration has a pattern char-

acterized by increasing and decreasing phases, due to support moments gener-

ated in ankle, knee and hip joints. The peak of this acceleration (Fig.3.3, V3) is
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Figure 3.3: Pattern of lower trunk vertical (top) and antero-posterior (bottom)
accelerations,[68].

reached very quickly after foot contact (IC, Fig3.3:V2). The indentation imme-

diately after this peak (FC, Fig.3.3:V4) represents toe-off instant (contralateral

FC), generated by the leg movement during this gait event [68][69][70][71]. V3,

V5 and V6 represent foot flat, mid-stance and initial push off respectively.

� Mediolateral (ML) acceleration pattern. Left-right acceleration has small am-

plitude compared to V and AP accelerations and is related to subsequent left

and right foot placements. Peaks are found around the istants of foot contact,

both left and right, and they seems to be related to its medially directed im-

pact. Moreover, it shows a more variable pattern from subject to subject and

due to this it is less studied [68][69].

Generally, these acceleration patterns maintain the same structure even at different

walking speeds, but as the latter increase, they enhance in amplitude and become

more pronounced. This is especially true for V and AP accelerations [69][72].
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3.2.3 Identification of gait events: Wavelet transform

In order to calculate typical gait spatio-temporal parameters, it is necessary to first

identify two fundamental gait events: heel-strike and toe-off, which correspond

respectively to initial contact and final contact of gait cycle [73]. The IC is repre-

sented in AP acceleration pattern by more prominent peak (AP5) and FC by the

first indentation after the greater amplitude peak of V acceleration (V4). Neverthe-

less, it is not easy to identify these moments, since in this study signals have been

collected by smartphone, but above all they derive from elderly or PD-affected

subjects, which therefore do not present a standard gait. In fact, both groups

are expected to have slower gait pattern, the first due to age and reduced muscle

strength, while in the case of PD subjects, due to disease progression. This pro-

duces either a reduced amplitude of peaks and indentations of acceleration signals

or even disappearance of some of these, making their identification and interception

difficult if not impossible by standard methods, as the application of a threshold.

So, for these reasons, it has been decided to not identify gait events directly on

the acquired signals but to apply the Wavelet transform, as already performed by

other studies [68][74][73][67][75][76][77].

Wavelet transform

The Wavelet transform yields a time frequency decomposition of a signal which

may separate individual signal components more effectively than short-time Fourier

transform (STFT). It can be mainly divided into discrete and continuous forms.

The latter decomposed a continuous time signal into wavelets. The Continuous

Wavelet Transform (CWT) of a signal x(t) is given as:

CWT (a, b) =
1√
a

∫ +∞

−∞
x(t) Ψ∗

(t− b
a

)
dt (3.1)

where Ψ∗(t) is the complex conjugate of the wavelet function Ψ(t), a > 0 is the

dilation parameter (scale) and b ∈ R is the location parameter (time shift). Ψ(t),

usually called as mother wavelet function, must satisfy certain mathematical criteria

like finite energy to be admissible. Moreover, since wavelets must have zero mean,

their transform is the frequency response of a passband filter. Wavelet transform
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allows to preserve all information without down-sampling, which makes it appro-

priate for tasks like peak detection and pattern matching [73][74]. Indeed, this

technique removes extraneous signal fluctuations while preserving the underlying

frequency variation, thus allowing proper detection of time related features present

in the original signal. CWTs are particularly effective in noise suppression, base-

line drift correction, and overlapping peaks resolution. So, it allows to accurately

determine the timing of events that may otherwise be concealed within irregular

acceleration patterns [67].

From a practical point of view, CWT compares signal to shifted and compressed or

stretched versions of mother wavelet Ψ(t). Stretching or compressing a function is

collectively referred to as dilation or scaling and corresponds to the physical notion

of scale. The scale a is inversely proportional to the spectral components: the

smaller the scale factor, the more compressed the wavelet. Conversely, the larger

the scale, the more stretched the wavelet. So, low scales or high frequencies provide

more local information while high scales or low frequencies provide relatively more

global information about the signal. To summarize, the general correspondence

between scale and frequency is:

� Small scale a −→ Compressed wavelet −→ Rapidly changing details −→ High

frequency.

� Long scale a −→ Stretched wavelet −→ Slowly changing, coarse features −→
Low frequency.

This multi-resolution property of CWT makes it appropriate for gait analysis [73].

Nevertherless, even if there is a general relationship between scale and frequency,

there is not a direct relationship. It is customary to refer to a pseudo-frequency

corresponding to a scale, according to the following equation:

Fsc =
Fc

a ·∆
(3.2)

where Fc represents the center frequency of the wavelet (approximation of the

leading dominant frequency), a is the scale, ∆ represents the sampling period and

Fsc is the pseudo-frequency [58].
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Mother wavelet function and scale choice

It is necessary to choose the most appropriate scale and mother wavelet function

to perform the wavelet transform. In the CWTs there are different families and

several mother wavelets. Depending on signal features to be detected, one has

to be selected. In particular, the wavelet shape should resemble the form of the

signal to analyze in order to extract the features that allow the characterization of

gait. It has been chosen to use two different mother wavelets, one applied to AP

acceleration and the other to V acceleration, since they have different patterns.

� For AP acceleration, the gaussian wavelet of type 1 (Gaus1), shown in Fig.3.4,

has been chosen, ie the first derivative of the Gaussian function. It follows

the decreasing evolution of AP acceleration which is found after the peak

corresponding to the HS, Fig.3.8.

Figure 3.4: Mother Wavelet for AP acceleration: Gaus1.

� For V acceleration, the gaussian wavelet of type 2 (Gaus2), shown in Fig.3.5,

has been selected, ie the second derivative of the Gaussian fuction, also known

as the ”mexican hat”. It has a shape comparable to the analyzed signal: a

peak flanked by two valleys. In Fig.3.9 it is reported as Gaus2 intercepts the

features of vertical acceleration.

Regarding the scale, by varying values of the parameter a and the position pa-

rameter b, it is possible to obtain the CWT coefficients C(a,b). These coefficients

illustrate how well a wavelet function correlates with a specific signal. Thus greater

the correlation, the higher will be the CWT coefficients and vice-versa. In this way
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Figure 3.5: Mother Wavelet for V acceleration: Gaus2.

it is possible to select the most suitable scale. For this reason, all walking win-

dows detected by offline labeling and related to each subject have been connected

together, obtaining for each analyzed group a vector constituting the AP acceler-

ation and another relative to the vertical component. The wavelet transforms of

these vectors have been carried out by varying the scale parameter from 1 to 50,

and focusing attention on obtained coefficients, being representative of matching

quality.

� For AP acceleration, looking at Fig.3.6, it is possible to observe how the max-

imum value of coefficients (between 50-80) is reached for scales from 16 to 41

and only in some vector parts. Therefore, in order to perform a satisfactory

wavelet transform of the AP acceleration in its entirety, a scale of 14 was cho-

sen. This allows to obtain good coefficients (in a range of 20-40) but above

all to carry out analysis with higher frequency resolution compared to larger

scales, which is essential to intercept local informations of AP acceleration

patterns. So, a=14 is the first scale that intercepts rapidly changing details.

� For V acceleration, it is even more important to use a low value of dilation

parameter, since the primary purpose is matching the valley immediately after

the peak, corresponding to toe-off instant, ie the contralateral final contact.

Therefore high frequency resolution is required. Fig.3.7 highlights that, com-

pared to AP acceleration case, the scales which allow to obtain the highest

coefficients are shifted towards low values (range 2-20). Therefore a=6 has

been selected, as it enables to obtain high coefficients values and at the same

time guarantees an adequate high frequency resolution.
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(a) Global wiev.

(b) Coefficient-scale detail.

Figure 3.6: Wavelet transform 3D representation of AP acceleration in terms of parame-
ters a, b, and coefficients.
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(a) Global wiev.

(b) Coefficient-scale detail.

Figure 3.7: Wavelet transform 3D representation of V acceleration in terms of parameters
a, b, and coefficients.
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Regarding frequency resolution, as reported in equation (3.2), the pseudo-frequency

value is connected to selected dilation parameter, and will be higher for vertical ac-

celeration, having used a smaller scale. Tab.3.5 shows these values and summarizes

the implemented choices.

Table 3.5: Mother wavelet and scale choice.

Acceleration Component Mother Wavelet Fc Scale ∆ Fsc

Anteroposterior Gaus1 0.2 Hz 14 0.005 2.86 Hz

Vertical Gaus2 0.3 Hz 6 0.005 10 Hz

The selected mother wavelets, as well as the picked scale values, allowed to ade-

quately intercept the desired local informations of the signal, as shown in Fig.3.8

and 3.9. Therefore, the next step consists in the identification of the IC and FC

Figure 3.8: Application of ’Gaus1’ with a=14 to AP acceleration pattern. The rectangle
shows how the chosen mother wavelet and scale intercept very well the decreasing AP
acceleration pattern.

instants on the newly calculated wavelet transforms of each participant walking

window. So, the Matlab findpeaks function has been used, which allows to detect
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Figure 3.9: Application of ’Gaus2’ with a=6 to V acceleration pattern. The rectangles
show how the chosen mother wavelet and scale intercept very well the local informations
of V acceleration.

all the peaks above a certain threshold, set to 0.35 times the standard deviation

of the window signal for CWT AP acceleration, and to 0 for the CWT vertical

component. In addition, only the peaks that are distant at least 76 samples are

identified, that (with a sampling frequency of 200 Hz) corresponds to a time in-

terval of 0.38s. Fig.3.10, 3.11 and 3.12 show the obtained results, where obviously

the contralateral FCs always occur after the ICs. For the following analyses and

for calculation of the spatio-temporal parameters, only walking windows in which

the number of detected ICs is greater or equal to 5 have been considered (ICs≥5).

This is considered as the minimum number of steps executed by a participant that

may identify the walking pattern.

3.2.4 Autocorrelation function

In order to compute parameters related to gait symmetry, the autocorrelation func-

tion of vertical acceleration has been evaluated. This component was previously
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Figure 3.10: Inital contact instants detected on AP acceleration wavelet transform.

filtered by a 4th-order Buttherworth filter with cut-off frequency of 3 Hz. The auto-

correlation function will be also used to evaluate the performance of step detection

algorithm.

An estimate of autocorrelation function is represented by a sequence of autocorre-

lation coefficients over increasing time lags. A raw autocorrelation coefficient (A)

is the sum of the products of a time series xi (i=1, 2, . . . , N) multiplied by a

time-lagged replication of the time series (xi+m), where the lag parameter m is the

phase shift in number of samples:

A(m) =

N−|m|∑
i=1

xixi+m (3.3)

Both biased and unbiased estimates can be calculated. In this study the Matlab

xcorr function has been used to calculate the unbiased autocorrelation estimate. In

particular, this alternative is produced by dividing the raw autocorrelation coeffi-

cient by the number of samples representing the overlapping part of the time series
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Figure 3.11: Final contact instants detected on V acceleration wavelet transform.

and the time-lagged replication:

A(m)unbiased =
1

N − |M |

N−|m|∑
i=1

xixi+m (3.4)

Since a real signal produces real and also even autocorrelation, its plot is conven-

tionally organized symmetrically with the zero shift located centrally, corresponding

to the maximum of the function, and also normalized. Moreover, a cyclic signal

produce autocorrelation coefficients with peak values for lags equivalent to the pe-

riodicity of the signal, called dominant periods. So, the plot of autocorrelation

estimate can be used to inspect the structure of a cyclic component within the

time series. For trunk acceleration during walking the coefficients can thus be pro-

duced to quantify first and second dominant period, representing phase shift equal

to one step and one stride respectively, and associated peaks values [78]. Fig.3.13

shows an example of autocorrelation function and its associated dominant periods,

d1 and d2. Therefore, for all walking window belonging to each subject, the au-

tocorrelation function of the vertical acceleration component has been calculated.
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Figure 3.12: Superposition of anteroposterior and vertical acceleration wavelet transforms
with detected initial and final contact instants.

The, from each of them the dominant period d1 has been extracted, corresponding

to the window step time. The number of executed steps by each subject has been

computed according to the following equation:

Nstep =
W∑
i=1

Li

d1i

(3.5)

where Li is the i-th window length, d1i is the i-th window step time, and W cor-

responds to the total number of window. Nstep was obviously rounding off to the

nearest whole number.

Since no video recording was performed, but only a chronometer has been used

to note the istants of most significant events, the number of steps completed by

the participants is unknown at first glance. Therefore the number of step in (3.5)

calculated by autocorrelation function together with the offline labeling windows,

allow to have a rough idea about the walking pattern quantity. Tab.3.6 shows the
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Figure 3.13: Autocorrelation function of vertical acceleration, where d1 is the first domi-
nant period representing phase shift equal to steps and d2 is the second dominant period
corresponding to stride phase shift.

average number of detected walking windows for each subject belonging to the dif-

ferent groups and the average number of steps in each of them.

Table 3.6: Quantification of the walking pattern.

Mean Windows Number for Subject Mean Step Number for Window

Control 12 23
Phase 1 12 18
Phase 2 4 11

3.2.5 Calculation of spatio-temporal parameters and sym-

metry/regularity indices

From the identification of the IC and FC gait events, a different number of spatio-

temporal parameters have been calculated, which allow to make assessments about
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the quality of walking in the different groups of participants. They are computed

as Mean±SD (Standard Deviation) for each walking window and then mediated for

each subject. These are:

� Cadence [N.step/min]:

Cadence =
NICs · 60

Li

fs

(3.6)

where NICs is the number of ICs in a window, Li the i-th window length and

fs the sampling frequency.

� Stride Time [s], as the time interval between two non-consecutive ICs (belong-

ing to the same foot), representative of the gait cycle:

StrideT ime = ICj+2 − ICj (3.7)

� Step Time [s], as the time interval between two consecutive ICs (belonging to

different foot):

StepT ime = ICj+1 − ICj (3.8)

� Swing Time [s], as the difference between IC and the previous FC:

SwingT ime = ICj+1 − FCj (3.9)

� Swing Phase [%GC], swing expressed as percentage of gait cycle.

� Stance Time [s], as the difference between FC and the previous IC:

StanceT ime = FCj+1 − ICj (3.10)

� Stance Phase [%GC], stance expressed as percentage of gait cycle.

� Single Support Time [s], as:

SingleSupportT ime = (ICj − FCj−1) + (ICj+1 − FCj) (3.11)

� Single Support Phase [%GC], expressed as percentage of gait cycle.
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� Double Support Time [s], as:

DoubleSupportT ime = (FCj − ICj) + (FCj−1 − ICj−1) (3.12)

� Double Support Phase [%GC], expressed as percentage of gait cycle.

� Step Length [m], estimated using the upward and downward movements of

the trunk. Zijlstra et al. [79] have demonstrated that three-dimensional dis-

placements of the lower trunk during walking are well predicted by an inverted

pendulum model of the body’s centre of mass (COM) trajectory. Assuming

a compass gait type, COM movements in the sagittal plane follow a circular

trajectory during each single support phase. In this model, changes in height

of COM depend on step length. Thus, when changes in height are known, this

parameter can be predicted from geometrical characteristics as:

StepLength = 2 ·
√

2lhj − h2j (3.13)

where hj is equal to the change in height of the COM, and l is pendulum length.

Changes in vertical position have been calculated by a double integration of

vertical acceleration through cumtrapz function and then detrend function to

remove integration drift. The amplitude of changes in vertical position (hj) has

been determined as the difference between highest and lowest position during

a step cycle. Instead, the pendulum lenght l is represented by leg length. Since

this value for each subject has not been annotated, a unique value has been

selected for all participants that could be representative for both women and

men. This is 0.85 m. So, from these data, step length has been estimated [69].

� Gait Velocity [m/s], computed as the ratio between step length and step time:

GaitV elocity =
StepLengthj
StepT imej

(3.14)

� The variation coefficient (CV) has been also calculated for some of the param-

eters just described, as:

CV =
SDparameter

Meanparameter

· 100 (3.15)
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since it is another way to express the variability of a parameter.

Some of these parameters are reported in Fig.3.14. Moreover the algorithm removes

the parameters value of stride time, swing and stance (and subsequently of double

and single support) not belonging to specific ranges:

1. The average stride time is considered to be around 1.03s, but in particular

cases it can decrease to 0.67s (for young subject)[81], or significantly increase

due to a very slow pattern, reaching values close to 1.18s [35]. So it has been

chosen to remove stride time values lower than 0.7 s, as this study does not

include young subjects, but only elderly controls and PD partecipants.

2. Regarding swing, PD subjects may not have physiological values but lower

ones, even around 33% of GC. To maintain a certain security level due to

inter-subject variability, it has been decided to remove swing values lower

than 29.5%. As for the upper limit, 45.5% has been set, because excessive

swing values (and consequently too small stance values) are only typical at

high walking speeds, and this is not the considered case [47].

3. About stance, the discussion is reciprocal to the swing, so the lower limit has

been set at 55.5% and the upper limit at 70.5%.

Moreover, symmetry/regularity indices have also been calculated in addition to

spatio-temporal parameters. In particular these were obtained from the previously

implemented autocorrelation function [78], as shown in Fig.3.15. They are:

� Step Regularity Ad1 : it is the autocorrelation coefficient corresponding to the

first dominant period d1 that represents a phase shift of one step. So, it is an

expression of the regularity of vertical acceleration signal between neighboring

steps. It ranges between 0 and 1: if it assumes low values, this demonstrates

low regularity between steps; on the contrary values around 1 indicate more

rythimc, consistent and stable walking pattern.

� Stride regularity Ad2 : it is the autocorrelation coefficient corresponding to the

second dominant period d2 that represents a phase shift of one stride. So, it

is a measure of the regularity between neighboring strides. As well as Ad1, it

ranges between 0 and 1, with the same meaning.
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Figure 3.14: Some of temporal parameters: stride time, step time, stance and swing.

� Symmetry, computed as the ratio between step regularity and stride regularity:

Symmetry =
Ad1

Ad2
(3.16)

A ratio closer to 1 represents greater symmetry between left and right steps,

while values closer to 0 indicate poorer symmetry.

3.2.6 Identification of right and left steps

Once ’global’ parameters have been calculated, it has been decided to subdivide the

identified steps (ICs) into right and left ones, in order to obtain extra symmetry

indices that can provide additional information on the gait of control group but,

above all, of PD subjects.

Discrimination between left and right steps was based upon an analysis of mediolat-

eral movements of the lower trunk. Experimental data and model predictions have

shown that the COM, and consequently also the lower trunk, describes an approx-

imately sinusoidal path between the medial borders of the feet during subsequent
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Figure 3.15: Autocorrelation function of vertical acceleration, where Ad1 is the autocor-
relation coefficient representing step regularity and Ad2 is the autocorrelation coefficient
corresponding to stride regularity.

foot placement. During single support, the COM reaches its maximum lateral po-

sition towards the stance leg. Hence, discrimination of left and right foot contacts

can possibily be based on mediolateral acceleration or position data [69]. It has

been decided to employ acceleration rather than position data to avoid integration

problems. First, ML acceleration has been subjected to a recalibration process.

Secondly, it was low-pass filtered with 3-th Butterworth with cut-off frequency of

1Hz. Finally, it has been used to implement two methods that allow to distinguish

right and left steps.

Recalibration process

While vertical and anteroposterior accelerations did not require this step since the

applied wavelet transform corrects the baseline drift, working directly on the ML

acceleration requires to remove the contribution of the gravitational acceleration

acting on the mediolateral axis, due to incorrect positioning of the smartphone.
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A common source of error with a waist-mounted smartphone is the resting device

angle due to waist girth, clothing, or the device’s holster [80]. The recalibration

method corrects accelerometer axis orientation by applying a quaternion rotation

transformation to the device’s raw data. It involves constructing the quaternion

rotation matrix by way of the axis-angle representation. A rotation matrix describes

a coordinate system orientation with respect to another orientation. A vector ~V in

the initial reference frame F can be transformed into a vector ~V ’ in a rotated frame

F’ by multiplication of ~V with the rotation matrix between F and F’. Rotation

matrices are orthogonal, square and invertible:

RT = R−1, detR = 1. (3.17)

First, the axis vector is produced by taking the cross product of the initial orien-

tation gravitational vector with the desired orientation gravitational vector. Then,

the dot product is used to solve for the rotation angle α, which is then used with

axis vector as input to build the quaternion rotation matrix. Finally, all raw ac-

celerometer data thereafter are multipilied by the rotation matrix to achieve the

corrected orientation. It is desired to have the gravitational component application

only along the vertical axis, ie in X direction. The initial vector ~Vi contains the

mean acceleration values along the three axes, obtained from the walking window

which for each subject had the greatest length:

~Vi = Xî+ Y ĵ + Zk̂ (3.18)

Instead, the final vector ~Vf is:

~Vf = X ′̂i+ Y ′ĵ + Z ′k̂ = [−9.81, 0, 0] (3.19)

Considering the initial vector ~Vi and the desired vector ~Vf , it is possible to express

the following equation:
~Vf = R~Vi (3.20)
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To construct the set of quaternions that yield the required rotation, it is necessary

to first produce an axis-angle pair. The axis vector ~A can be found from the cross-

product bewteen ~Vi and ~Vf :

~A = ~Vi × ~Vf = (9.81Z)ĵ + (−9.81Y )k̂ (3.21)

The axis vector ~A from (3.21) can then be normalized by dividing the magnitude

of ~A:
~Anorm =

(
Z√

Y 2 + Z2

)
ĵ −

(
Y√

Y 2 + Z2

)
k̂ (3.22)

The angle between vectors can be expressed as the cosine from the dot product.

Using initial vector ~Vi and vector ~Vf we obtain:

~Vi · ~Vf = ‖~Vi‖‖~Vf‖ cos(α) = XX ′ + Y Y ′ + ZZ ′ (3.23)

Since Y’ and Z’=0, and the magnitude of ~Vf equals X’, the equation becomes:

α = arccos

(
X

‖~Vi‖

)
(3.24)

Therefore, since the axis-angle pair was obtained, it can be use to build the quater-

nion rotation matrix as:

R(q0, q1, q2, q3) =

1− 2(q22 + q23) 2(q1q2 − q0q3) 2(q0q2 + q1q3)

2(q1q2 + q0q3) 1− 2(q21 + q23) 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q0q1 + q2q3) 1− 2(q21 + q22)

 (3.25)

where q0,q1,q2,q3 are:

q0 = cos(α/2) (3.26a)

q1 = sin(α/2)Anorm,x′ (3.26b)

q2 = sin(α/2)Anorm,y′ (3.26c)

q3 = sin(α/2)Anorm,z′ (3.26d)

So, multiplying the raw acceleration by the rotation matrix in equation (3.25), the

revision of orientation has been obtained [80].
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Distinction’s methods

After the recalibration process, the ML acceleration is used to divided the previously

detected ICs in right and left steps. Two different methods have been implemented:

� Method 1 : evaluation of the ML acceleration sign at the time instants defined

by the ICs;

� Method 2 : sign evaluation of the ML acceleration area between zero-crossing

points of the AP acceleration wavelet transform.

Fig.3.16 and 3.17 show these methods, where positive sign corresponds to a left step,

while the negative one to the right. These methods have been applied to all three

Figure 3.16: First method to divide steps into left and right: ML acceleration sign at ICs
istants.

groups, providing errors in some cases, ie the physiological alternation between right

and left step was failed. The following table (Tab.3.7) shows them and highlights

how the first method is more precise in the steps differentation for Phase 1 and

Phase 2 groups, while the second has provided a smaller error for controls. Therefore

no method out performs the other one, as they have different performances for each
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Figure 3.17: Second method to divide steps into left and right: sign of ML acceleration
area between zero-crossing of CWT AP acceleration.

Table 3.7: First differentiation errors between left and rigth steps.

Mean Error %

Controls Phase 1 Phase2

Method 1 10.3 13.1 7.4
Method 2 5.6 28.4 8.5

group. To solve this problem and globally reduce the error that may have a negative

impact on variability and asymmetry results, it has been decided to combine their

action: first of all, it has been chosen to consider and analyze only walking windows

in which both methods provided an error less than 20%; then, for each considered

window the method that returned the minor error was selected. In this way it has

been possible to obtain a significant improvement: the error is less than 5% for all

groups, as shown in Tab.3.8. However, for the subsequent calculations, incorrectly

subdivided steps have not been taken into account.
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Table 3.8: Final differentiation errors between left and right steps.

Mean Error %

Controls Phase 1 Phase2
2.7 4.4 2.1

3.2.7 Calculation of extra symmetry indices

After steps differentiation into right and left, in order to have a more complete

picture of gait, it is possible to compute new symmetry indices, different from those

obtained with the autocorrelation function, and relative to previously calculated

spatio-temporal parameters, both for mean and standard deviation. The used

equation is:

IndexLR =

∣∣∣∣ Parameterleft − Parameterrigth
max(Parameterleft, Parameterright)

∣∣∣∣ (3.27)

These indices have lower limit equal to 0, which occurs when the numerator differ-

ence is null, but does not have an upper limit. In fact, the greater the difference

of the considered parameter between right and left, the greater the asymmetry will

be. To have a complete view, Tab.3.9 lists all parameters and indexes that have

been calculated in this report.

3.2.8 Computation of Correlation Coefficients

To conduct gait assessment, the next step has been to investigate the of correla-

tion between the previously calculated spatio-temporal parameters and symmetry

indices and the variables characterizing the two groups of PD subjects, listed in

Tab.3.3 and 3.4. In particular, for Phase 1 the correlation between 56 parameters

and the variables gender, age, gait assistance, disease duration and FOG episodes

have been evaluated, while for Phase 2 between the same 56 parameters and scores

of UPDRS tasks (gait, FOG, postural stability, arising from chair, posture, mean

leg agility and scores average). In addition, the correlation with the H&Y score

has been also calculated. It has been decided to calculate two types of correlation

coefficients: Pearson product-moment (r) and Spearman’s rank (ρ) correlation co-

efficients, to measure the linear correlation, both with a significance level of 0.05.

These evaluations have been carried out by corrocoef and corr Matlab functions.
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Table 3.9: Summary of computed spatio-temporal parameters and symmetry indices.

Spatio-temporal parameters Symmetry Indices

Cadence [N.step/min] (Mean±SD) Step Regularity Ad1 (Mean±SD)

Stride Time [s] (Mean±SD) Stride Regularity Ad2 (Mean±SD)

Step Time [s] (Mean±SD) Symmetry (Mean±SD)

Swing Time [s] (Mean±SD) LR Stride Time (Mean & SD)

Swing Phase [%GC] (Mean±SD) LR CV Stride Time

Stance Time [s] (Mean±SD) LR Swing Time (Mean & SD)

Stance Phase [%GC] (Mean±SD) LR CV Swing Time

Single Support Time [s] (Mean±SD) LR Stance Time (Mean & SD)

Single Support Phase [%GC] (Mean±SD) LR CV Stance Time

Double Support Time [s] (Mean±SD) LR Single Support Time (Mean & SD)

Double Support Phase [%GC] (Mean±SD) LR CV Single Support Time

Step Length [m] (Mean±SD) LR Double Support Time (Mean & SD)

Gait Velocity [m/s] (Mean±SD) LR CV Double Support Time

CV Cadenza LR Swing GC (Mean & SD)

CV Stride Time LR CV Swing GC

CV Swing GC LR Stance GC (Mean & SD)

CV Stance GC LR CV Stance GC

CV Single Support GC LR Single Support GC (Mean & SD)

CV Double Support GC LR CV Single Support GC

CV Step Length LR Double Support GC (Mean & SD)

CV Gait Velocity LR CV Double Support GC

LR Step Length (Mean & SD)

LR CV Step Length

3.2.9 Statistical analysis: significance tests

Some tests have been performed to assess statistically significant differences be-

tween examined groups. Three comparisons have been accomplished, using only 27

parameters:

� Comparison 1: between elderly controls group and PD subjects group (joining

Phase 1 and Phase 2);

� Comparison 2: PD subject of Phase 2 have been divided into different groups

according to their H&Y score and the comparisons have been carried out only

between adjacent score groups.

� Comparison 3: Phase 1 and Phase 2 have been connected and then patients
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have been divided into subjects that manifest FOG episodes (YFOG), do not

show these episodes (NFOG) or have hesitation (HES). Then comparisons

between all groups have been accomplished.

Depending on the data distribution of each parameter, different strategies have

been performed:

1. If the parameter at hand had normal distributions for both groups indipendent

T-test was carried out, through Matlab ttest2 function with significance level

of 0.05. The distributions have been investigated by lillietest Matlab function

and also by a visual inspection, as this function does not take into account

skewness.

2. If the parameter had non-normal but continuos distributions for both groups

or if one distribution was normal and the other non-normal but continuos, the

Wilcoxon test has been accomplished through Matlab runksum function with

significance level of 0.05.

3. If parameter has at least one discontinuos distribution, no test has been con-

ducted.
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Chapter 4

Results

This chapter includes results related to algorithm performance, correlation coeffi-

cients and significance tests previously carried out.

4.1 Algorithm performance

First of all, the number of steps (represented by ICs number) detected by the al-

gorithm has been compared with Nstep in (3.5), calculated from autocorrelation

function. So, it has been considered as a ’standard value’. This comparison pro-

vides an estimate of the implemented wavelet-based method reliability. Tab.4.1

shows the number of steps in each group detected both by the wavelet transforms

and autocorrelation methods. It can be seen that for all three groups the algorithm

Table 4.1: Reliability of implemented method.

Autocorrelation Method (#) Wavelet Method(#) Wavelet Method (%)

Control 3068 2955 96.3
Phase 1 7545 7182 95.2
Phase 2 1145 1071 93.5

Total 11758 11208 95.3

detects more than 90% of the steps. The lower value is obtained for PD subjects

belonging to Phase 2, justified by the fact that these participants have fewer walk-

ing windows for patient and also a smaller number of steps in them (Tab.3.6), ie the

walking pattern may not be completely developed as in the other two groups, since
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the initiation strides profoundly alter the pattern. Over all, the wavelet method is

able to detect 95.3% of the performed steps, therefore it shows good reliability and

gives greater importance to the subsequent analyzes.

Secondly, since only a smartphone has been used on waist and parameters and in-

dices have not been extracted directly from acceleration signal but from its wavelet

transform, an error is expected. The dominant period d1 extracted from the auto-

correlation function allows to evaluate the error executed by the algorithm in the

calculation of step time. Indeed, d1 corresponds exactly to the time employed by

the subject in each walking window to make a step, and it is considered as the

standard. Therefore the computation error of step time has been first evaluated

for each partecipant walking window, then mediated for each of them, and finally

mediated for each group in the study. Tab.4.2 shows these mean values for each

groups, highlighting an almost constant difference around 15ms. Phase 2 has the

largest difference and this could occurs for the same reasons as before: a not com-

pletely developed acceleration pattern.

Table 4.2: Difference between step time from autocorrelation function and wavelets
method.

Error [s]

Controls Phase 1 Phase 2
0.015 0.015 0.018

Finally, the algorithm has a good detection rate of physiological values. Indeed, as

summarized in Tab.4.3, in all cases both for controls and PD subjects it found stride

time greater than 0.7s; for swing and stance %GC the obtained physiological values

are always greater than 85%, ie 93% and 87% for controls and PD subjects respec-

tively. This confirms that despite having a slight delay in the ICs identification,

the algorithm can be used to carry out an adequate gait analysis.

Table 4.3: Detected physiological values

Stride Time Swing & Stance
(>0.7s) (>29.5% & <45.5%) & (>55.5% & <70.5%)

Controls 100% 93%
PD Subjects 100% 87%
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4.2 Correlation Coefficients - Phase 1

As for phase 1, the correlation coefficients obtained between 56 parameters and the

variables gender, age, gait assistance, disease duration, FOG episodes have been

analyzed. The most significant values are shown in the following tables, where

the parameter related to the considered variable, the correlation coefficient, the

significance level (p-value) and the type of correlation (Pearson or Spearman) are

indicated. The parameters not present in the tables have significance levels greater

than 0.05.

Age

With advancing age an increase in stance and a corresponding decrease in swing,

with reducted single support and increased double support, have been found. There-

fore PD subjects keep for longer both feet on the ground during gait cycle. Also

a growth in single and double support variability has been detected. However, the

greatest correlation coefficient has been discovered for the mean step length (r =-

0.62 and p <0.001). Also mean gait velocity decreases (reflecting slower walking

pattern), and it is more variable, as reported in Tab.4.4.

Table 4.4: Correlation coefficients - Phase 1, Age.

Age (p<0.05)

Parameter r p Type

Swing %GC Mean -0.45 0.019 Spearman
Stance %GC Mean 0.47 0.014 Spearman
Single Support %GC SD 0.49 0.01 Spearman
Double Support %GC SD 0.49 0.01 Spearman
Single Support %GC Mean -0.40 0.043 Spearman
Double Support %GC Mean 0.40 0.043 Spearman
Step Length Mean -0.62 <0.001 Spearman
CV Gait Velocity 0.40 0.039 Spearman
Gait Velocity Mean -0.40 0.043 Pearson

Gait Assistance

If PD subjects make use of walking aid, a raising in swing stance, single support and

double support variability, expressed as SD and CV, has been identified. However,
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the distinctive parameters for this variable are the swing and stance symmetry

indices: significant differences between values corresponding to right and left limbs

are highlighted. The Tab.4.5 summaryzes coefficients.

Table 4.5: Correlation coefficients - Phase 1, Gait Assistance.

Gait Assistance (p<0.05)

Parameter r p Type

Swing %GC SD 0.49 0.01 Pearson
Stance %GC SD 0.47 0.014 Pearson
CV Swing %GC 0.40 0.039 Pearson
Single Support %GC SD 0.40 0.04 Pearson
Double Support %GC SD 0.40 0.04 Pearson
CV Double Support %GC 0.43 0.026 Pearson
LR Swing Time Mean 0.46 0.016 Spearman
LR Stance Time Mean 0.50 0.007 Spearman
LR Swing %GC Mean 0.46 0.016 Spearman
LR Stance %GC Mean 0.50 0.009 Spearman

Disease Duration

As the disease progress, a general increase in parameters variability has been de-

tected. Indeed, stance, swing, single support, gait velocity and step length are

all more variable. Nevertheless, the most relevant parameter in the correlation of

disease duration is certainly stride time variability, expressed indistinctly as SD or

CV. It is a distinguishing feature of PD gait, and increased falls risk is associated

to it. The Tab.4.6 shows obtained coefficients.

Gender

In order to perform this type of correlation, men were assigned score 0 and women

1. It has been found that women spend more time to stride, but at the same time

they have more regularity than men. For the latter, less variability in stance time

has been also recorded, as shown in Tab.4.7.

FOG Episodes

To carry out this correlation, score 0 has been assigned to patients that do not

usually show FOG episodes, 1 to those who manifest them. Increases in swing,
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Table 4.6: Correlation coefficients - Phase 1, Disease Duration.

Disease Duration (p<0.05)

Parameter r p Type

Swing %GC SD 0.45 0.018 Spearman
Stance %GC SD 0.44 0.02 Spearman
CV Swing %GC 0.56 0.002 Spearman
CV Stance %GC 0.47 0.014 Spearman
CV Single Support %GC 0.57 0.002 Pearson
Stride Time SD 0.49 0.01 Pearson
CV Stride Time 0.53 0.005 Pearson
Gait Velocity SD 0.51 0.007 Spearman
CV Gait Velocity 0.5 0.008 Spearman
Step Length SD 0.42 0.031 Spearman

Table 4.7: Correlation coefficients - Phase 1, Gender.

Gender (p<0.05)

Parameter r p Type

Stride Time Mean 0.39 0.044 Pearson
LR Stance Time SD 0.55 0.003 Pearson
LR Stance Time CV 0.44 0.02 Pearson
Stride Regularity Ad2 Mean 0.46 0.016 Pearson

stance, single support and double support variability have been found. On the

other hand, step length decreases, just like symmetry index of stride time variability.

This means that the difference between the variability of right and left stride time

tends to be less. This may be due to reduction in step regularity, ie subjects with

FOG have an intrinsically variable walking pattern at each step. Tab.4.8 shows

correlation coefficients.

4.3 Correlation Coefficients - Phase 2

A linear correlation between previously calculated parameters and indices of the 25

patients belonging to Phase 2 and UPDRS task scores has been sought. Relations

have been detected only for items of gait, postural stability, FOG, arising from chair

and also H&Y score. Tab.4.9 shows their groups cardinality. Only parameters for

which a correlation with a significance level lower than 5% has been found are

reported in the following tables, that include also root-mean-square-error (RMSE).
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Table 4.8: Correlation coefficients - Phase 1, FOG Episodes.

FOG Episodes (p<0.05)

Parameter r p Type

Swing %GC SD 0.40 0.04 Pearson
CV Swing 0.49 0.01 Spearman
Stance %GC SD 0.42 0.028 Pearson
Cv Stance 0.48 0.012 Spearman
Single Support %GC SD 0.44 0.021 Pearson
CV Single Support 0.50 0.009 Spearman
Double Support %GC SD 0.44 0.021 Pearson
Step Length Mean -0.40 0.036 Spearman
LR Stride Time SD -0.49 0.01 Spearman
LR Stride Time CV -0.49 0.01 Spearman
LR Single Support %GC Mean 0.43 0.027 Pearson
Step Regularity Ad1 Mean -0.50 0.009 Spearman

Table 4.9: Groups cardinality for each analized UPDRS item.

0 1 2 3 4 NaN

Gait 3 11 9 2 - -
Postural Stability 6 7 5 7 - -
FOG 15 6 3 - - 1
Arising Chair 6 11 4 3 - 1
H&Y 2 3 6 11 1 2

Gait Item

Tab.4.10 underlines that step length and gait velocity parameters are optimally

correlated with gait item score. In particular, as this score increases, there is a clear

reduction in the two parameters, confirming that PD subjects have a slower walking

pattern. Decreases in step regularity and symmetry have also been found. Fig.4.1

shows the boxplots of stride length and gait velocity relating to PD subjects divided

according to gait item score, while Fig.4.2 exhibits step regularity and symmetry

trends. As previously explained by correlation coefficients, all these parameters

have a decreasing trend with non-overlapping boxplots. However, group with zero

score does not respect this trend.
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Table 4.10: Correlation coefficients - Phase 2, Gait Item.

Gait Item (p<0.05)

Parameter r p RMSE Type

Step Length Mean -0.72 0.002 0.068 Pearson
Gait Velociy Mean -0.68 0.005 0.015 Spearman
Step Regularity Ad1 Mean -0.54 0.032 0.152 Spearman
Symmetry Mean -0.58 0.022 0.176 Pearson

(a) Step Length as a function of UPDRS gait
item score.

(b) Gait Velocity as a funcion of UDPRS
gait item score.

Figure 4.1: Step Length and Gait Velocity as functions of UPDRS gait item score.

Postural Stability Item

From this calculation (Tab.4.11), decreases of step regularity and step length have

been identified. On the contrary, increases in swing, stance, but above all stride

time variability have been found. Since the latter is highly associated with falls

risk, subjects with greater postural instability are also more likely to fall. Fig. 4.3

exhibits parameters tendency.

FOG Item

As for FOG item, the most correlated parameter is cadence, which increases its vari-

ability, both expressed as SD and CV (Tab.4.12). In fact, subjects that manifest

these episodes do not have a regular walking pattern, especially when the episodes

also occur on a linear way and not only in narrow spaces or during turning. More-

over, a decrease in symmetry indices of single and double support variability has
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(a) Step Regulrity as a function of UPDRS
gait item score.

(b) Symmetry as a funcion of UDPRS gait
item score.

Figure 4.2: Step Regularity and Symmetry as functions of UPDRS gait item score.

Table 4.11: Correlation coefficients - Phase 2, Postural Stability Item.

Postural Stability Item(p<0.05)

Parameter r p RMSE Type

Swing %GC SD 0.55 0.032 0.887 Spearman
CV Stance 0.52 0.046 2.258 Spearman
Step Length Mean -0.53 0.041 0.069 Pearson
Stride Time SD 0.53 0.043 0.034 Spearman
CV Stride Time 0.58 0.024 2.828 Spearman
Step Regularity -0.55 0.032 0.149 Spearman
Symmetry -0.52 0.047 0.186 Spearman

been detected. Fig.4.4 shows trend of correlated parameters to the change of FOG

item score.

Arising from chair item

The correlation with ”arising from chair” item did not yield very significant results:

only increases in swing and stance variability have been found. Tab.4.13 shows these

values, while Fig.4.5 illustrates their trends.

H&Y

The correlation with H&Y score produced good results: clear decreases in step reg-

ularity (-0.73), symmetry (-0.75), step length (-0.64) and gait velocity (-0.53) have
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(a) Swing %GC SD as a function of UPDRS
postural stability item score.

(b) CV Stride Time as a function of UPDRS
postural stability item.

(c) Step Regularity as a function of UPDRS
postural stability item.

Figure 4.3: Swing %GC SD, CV Stride Time, Step regularity as functions of UPDRS
postural stability item score.

Table 4.12: Correlation coefficients - Phase 2, FOG Item.

FOG Item(p<0.05)

Parameter r p RMSE Type

Cadence SD 0.69 0.005 4.339 Spearman
Cadence CV 0.63 0.011 5.675 Spearman
LR Single Support %GC SD -0.57 0.025 0.185 Spearman
LR Double Support %GC SD -0.57 0.025 0.185 Spearman

been found, which show a worsening of walking pattern as the disease progresses.

Tab.4.14 shows the obtained values, and Fig.4.6 shows their trend.
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(a) Cadence SD as a function of UPDRS
FOG item score.

(b) LR Single Support %GC SD as a func-
tion of UPDRS FOG item.

Figure 4.4: Cadence SD and LR Single Support %GC SD as functions of UPDRS FOG
item score.

Table 4.13: Correlation coefficients - Phase 2, Arising Chair Item.

Arising Chair Item(p<0.05)

Parameter r p RMSE Type

Swing %GC SD 0.55 0.032 0.969 Spearman
CV Stance 0.58 0.024 2.452 Spearman

4.4 Significance Tests

The following subsections describe results acquired by significance tests carried out

between various groups. For all comparisons only parameters for which groups were

statistically different are shown in tables , along with the corresponding p-value.

4.4.1 Comparison 1: Controls vs PD subjects

The first comparison has been accomplished between elderly controls groups and

PD subjects group (joining Phase 1 and Phase 2). From significance test (Tab.4.15)

it results that controls have a slower walking pattern (reduced swing, greater stance

and reduced speed) and also greater variability in terms of single support, double

support and stide time. Instead, PD subjects exhibit for greater variability in

cadence, less step regularity and symmetry. This happens because the groups are

not well stratified by age.
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(a) Swing %GC SD as a function of UPDRS
Arising Chair item score.

(b) CV Stance as a function of UPDRS
Arising Chair item.

Figure 4.5: Swing %GC SD and CV stance as functions of UPDRS FOG item score.

Table 4.14: Correlation coefficients - Phase 2, H&Y.

H&Y(p<0.05)

Parameter r p RMSE Type

Step Regularity Ad1 -0.73 0.002 0.153 Spearman
Symmetry -0.75 0.001 0.193 Spearman
Step Length -0.64 0.010 0.080 Spearman
Gait Velocity -0.53 0.044 0.166 Spearman

4.4.2 Comparison 2: PD Phase 2 according to H&Y

For this comparison (Tab.4.16, 4.17, 4.18, 4.19) PD subjects of Phase 2 have been

included. They have also been divided in different groups, according to their H&Y

score. Only groups with adjacent H&Y score have been analysed.

The attention has been mainly focused on stride regularity and simmetry. In this

regard, these parameters showed significant differences between groups with H&Y

stages 2-3 and 3-4, therefore in the most advanced stages of disease, showing a clear

reduction. More generally, the most significant differences between parameters have

been found always in comparison of these groups.

4.4.3 Comparison 3: PD subjects YFOG, NFOG, HES

In this comparison PD subjects of Phase 1 and Phase 2 have been included and

divided into three groups: those presenting FOG episodes, not presenting and
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(a) Step Regularity Ad1 as a function of
H&Y.

(b) Symmetry as a function of H&Y.

(c) Step Length as a function of H&Y. (d) Gait Velocity as a function of H&Y.

Figure 4.6: Step Regularity, Symmetry, Step Length and Gait Velocity as functions of
H&Y.

expressing hesitation. Significant differences between all groups have been sought,

in order to evaluate informations about continuos walking pattern. A large number

of these have been found in the comparison between NFOG and HES (Tab.4.21),

and NFOG and YFOG (Tab.4.22), while between HES and YFOG (Tab.4.20) the

differences were smaller.
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Table 4.15: Comparison 1: Controls vs PD subjects.

Comparison 1(p<0.05)

Parameter Controls (Mean ± SD) PD (Mean ± SD) p-value

Cadence SD 3.62±1.25 5.72±2.30 0.0008
Swing %GC Mean 38.95±2.65 39.45±1.73 0.038
Stance %GC Mean 61.22±2.53 60.70±1.71 0.026
Single Support %GC SD 2.51±1.34 2.17±1.40 0.003
CV Single Support 5.13±2.35 4.37±2.32 <0.0001
Double Support %GC SD 2.51±1.34 2.17±1.40 0.003
CV Double Support 11.86±5.66 10.78±7.03 0.008
Stride Time SD 0.042±0.02 0.033±0.02 <0.0001
CV Stride Time 3.31±1.47 2.91±1.53 0.007
Step Time Mean 0.63±0.05 0.56±0.05 <0.0001
Step Time SD 0.039±0.017 0.033±0.018 0.001
Gait Velocity Mean 0.69±0.10 0.77±0.16 <0.0001
Gait Velocity SD 0.073±0.026 0.082±0.035 0.049
Step Regularity Ad1 0.83±0.06 0.77±0.14 0.0002
Symmetry 1.08±0.07 1.01±0.13 <0.0001

Table 4.16: Comparison 2: PD group with H&Y=0 vs PD group with H&Y=1.

Comparison 2: H&Y=0 and H&Y=1(p<0.05)

Parameter PD H&Y=0 PD H&Y=1 p-value
(Mean ± SD) (Mean ± SD)

Stride Time Mean 1.17±0.04 1.07±0.06 0.017
Step Time Mean 0.59±0.02 0.54±0.03 0.030
Gait Velocity Mean 0.64±0.03 0.85±0.11 0.004

Table 4.17: Comparison 2: PD group with H&Y=1 vs PD group with H&Y=2.

Comparison 2: H&Y=1 and H&Y=2(p<0.05)

Parameter PD H&Y=1 PD H&Y=2 p-value
(Mean ± SD) (Mean ± SD)

Stride Time Mean 1.07±0.06 1.25±0.10 0.002
Step Time Mean 0.54±0.03 0.62±0.05 0.002
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Table 4.18: Comparison 2: PD group with H&Y=2 vs PD group with H&Y=3.

Comparison 2: H&Y=2 and H&Y=3(p<0.05)

Parameter PD H&Y=2 PD H&Y=3 p-value
(Mean ± SD) (Mean ± SD)

Stride Time Mean 1.25±0.10 1.14±0.10 0.003
Step Time Mean 0.62±0.05 0.57±0.05 0.004
Step Length Mean 0.45±0.06 0.35±0.07 < 0.0001
CV Step Length 10.94±5.59 15.70±5.73 0.009
Step Regularity Ad1 0.79±0.06 0.60±0.12 < 0.0001
Symmetry 1.16±0.08 0.96±0.13 < 0.0001

Table 4.19: Comparison 2: PD group with H&Y=3 vs PD group with H&Y=4.

Comparison 2: H&Y=3 and H&Y=4(p<0.05)

Parameter PD H&Y=3 PD H&Y=4 p-value
(Mean ± SD) (Mean ± SD)

Stride Time Mean 1.14±0.10 1.30±0.09 0.011
Stride Time SD 0.055±0.040 0.132±0.098 0.027
CV Stride Time 4.66±3.22 9.89±6.67 0.042
Step Time Mean 0.57±0.05 0.65±0.04 0.005
Step Time SD 0.051±0.039 0.109±0.066 0.020
Step Length Mean 0.35±0.06 0.27±0.02 0.012
Gait Velocity Mean 0.63±0.15 0.43±0.05 0.008
Step Regularity Ad1 0.60±0.12 0.30±0.12 0.001
Symmetry 0.96±0.13 0.54±0.22 0.001

Table 4.20: Comparison 3: PD HES vs PD YFOG.

Comparison 3: PD HES vs PD YFOG

Parameter PD HES PD YFOG p-value
(Mean ± SD) (Mean ± SD)

Swing %GC Mean 39.66±1.17 38.95±2.21 0.014
Cv Swing 10.93±2.49 8.77±3.70 0.0001
CV Stance 7.60±2.31 5.83±2.63 0.0001
CV Single Support 7.84±3.11 5.93±2.94 0.0026
Stride Time Mean 1.24±0.14 1.14±0.10 0.0001
CV Stride Time 6.11±2.96 3.51±1.67 < 0.0001
Step Time Mean 0.62±0.07 0.57±0.05 0.0005
Gait Velocity Mean 0.61±0.10 0.68±0.15 0.034
Symmetry 0.82±0.23 0.97±0.16 < 0.0001
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Table 4.21: Comparison 3: PD NFOG vs PD HES.

Comparison 3: PD NFOG vs PD HES

Parameter PD NFOG PD HES p-value
(Mean ± SD) (Mean ± SD)

Swing %GC SD 2.06±1.05 3.31±0.80 < 0.0001
CV Swing 6.06±2.63 10.93±2.49 < 0.0001
Stance %GC SD 2.00±0.97 3.14±0.80 < 0.0001
CV Stance 4.01±1.93 7.60±2.30 < 0.0001
Single Support %GC SD 1.80±1.23 2.70±0.92 < 0.0001
CV Single Support 3.62±1.78 7.84±3.11 < 0.0001
Double Support SD 1.80±1.23 2.70±0.92 < 0.0001
CV Double Support 8.98±6.18 12.54±4.59 0.0001
Stride Time Mean 1.11±0.08 1.24±0.14 < 0.0001
Stride Time SD 0.027±0.013 0.079±0.044 < 0.0001
CV Stride Time 2.42±1.13 6.10±2.96 < 0.0001
Step Time Mean 0.56±0.04 0.62±0.07 < 0.0001
Step Length Mean 0.45±0.07 0.37±0.03 < 0.0001
Step Length SD 0.035±0.017 0.051±0.017 < 0.0001
CV Step Length 8.27±4.83 13.69±4.23 < 0.0001
Gait Velocity Mean 0.81±0.14 0.61±0.10 < 0.0001
CV Gait Velocity 9.47±4.87 15.98±5.83 < 0.0001
Stride Regularity Ad2 0.81±0.06 0.67±0.19 0.0002
Symmetry 1.05±0.07 0.82±0.23 < 0.0001

Table 4.22: Comparison 3: PD NFOG vs PD YFOG.

Comparison 3: PD NFOG vs PD YFOG

Parameter PD NFOG PD YFOG p-value
(Mean ± SD) (Mean ± SD)

Swing %GC Mean 39.64±1.48 38.95±2.21 0.003
Cv Swing 6.06±2.67 8.77±3.70 < 0.0001
Stance %GC Mean 60.45±2.63 61.27±2.07 0.0002
CV Stance 4.01±1.93 5.83±2.63 < 0.0001
Single Support %GC Mean 79.79±2.68 78.74±4.82 0.033
CV Single Support 3.62±1.78 5.93±2.94 < 0.0001
Double Support %GC Mean 20.21±2.68 21.26±4.82 0.035
CV Double Support 8.98±6.18 15.45±9.19 < 0.0001
Stride Time Mean 1.11±0.08 1.14±0.10 0.005
CV Stride Time 2.42±1.13 3.51±1.67 < 0.0001
Step Time Mean 0.56±0.04 0.57±0.05 0.0016
Step Length Mean 0.45±0.07 0.39±0.08 < 0.0001
CV Step Length 8.29±4.82 13.16±4.61 < 0.0001
Gait Velocity Mean 0.81±0.14 0.68±0.15 < 0.0001
CV Gait Velocity 9.47±4.87 14.65±4.53 < 0.0001
Stride Regularity Ad2 0.81±0.06 0.69±0.12 < 0.0001
Symmetry 1.05±0.07 0.97±0.16 < 0.0001
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Discussion

The correlations for PD subjects of Phase 1 mainly provide general information on

the disease, both regarding continuous and episodic motor disturbances. In partic-

ular, correlations with subject age and disease duration are of considerable interest

for continuous impairment. As for age, a large number of PD walking features

have been detected: a definite reduction in step length and gait velocity has been

observed, followed by increase in stance at swing expense. These results clearly

indicate the presence of a slower and compromised, non-rhythmic walking pattern,

since gait velocity increases its variability. Increases in single and double support

variability have been also identified. Therefore, globally, it is possible to conclude

that, with age progression, motor symptoms related to gait impairment tend to

worsen, where the reduced and shorter step length (which has the greatest correla-

tion coefficient, -0.62) could be the triggering cause of the other gait distubances, as

reduced gait velocity and increased time with the feet on the ground. These results

agrees with those present in literature, as Schlachetzki et al. [82] that exposes the

same parameters trends.

The PD gait motor disturbances also include features that are not always easily

identifiable during routine clinical observation, but which can be detected by gait

analysis systems. One of these is the loss of ability to produce a steady gait rhythm,

resulting in higher stride time variability, that is a characteristic feature of gait in

PD, closely associated with risk of falls. The correlation with disease duration

shows this feature trend, both expressed as SD and CV, where their magnitude

tends to increase (0.53), as also reported by Hausdorff [34]. Stride time variability
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is a manifestation of a general gait variability, which is also expressed by detected

increase in variability of other parameters, such as swing, stance, gait velocity and

step length.

For episodic disturbances, correlation with FOG episodes provide some useful in-

formations. First of all, reduction in step regularity has been detected (-0.50), ie

patients that manifest these episodes show a less rhytmic and consistent walking

pattern. Moreover, similar to correlation with age and disease duration, increase

in general gait variability has been found, expressed by CV or SD growth of swing,

stance, single support and double support, but also by a reduction in symmetry

indices of stride time variability. This means that gait variability is a general fea-

ture, and not primarily focused on a specific lower limb.

Correlations with gait assistance and gender provide information not related to the

general disease, but more specific to the examined cases: if PD subject uses a walk-

ing aid, there is a difference between right and left stance/swing, as expressed by

relative symmetry indexes and as it is reasonable to expect. About gender, women

seem to have a greater stride time but at the same time a higher gait regularity,

and therefore greater stability.

The UPDRS Part III is a means widely used by neurologists to evaluate motor

functionality of PD subjects, but it is affected by inter and intra rater variabil-

ity. Indeed, clinicians do not always assign the same score for an item to a given

patient. This can occur because the entries pertaining to a particular score of a

specific item are not sufficiently clear, but allows for further interpretation by neu-

rologists. Therefore, the need to quantify the UPDRS items has been felt, in order

to provide more precise and objective information that can be used by clinicians,

in addition to their experience, to assign a given score.

According to the definition of UPDRS gait item, is given a score to gait by ob-

serving mainly changes in step length and velocity. The high detected correlation

values correspond to clinician’s gait rating: they underline that step length and

gait velocity are significantly reduced (-0.72 and -0.68, respecively) in patients who

have substantial gait impairment compared to those who have a lower score (min-

imal or absent damage). The reduction of step regularity (-0.54) also confirms the

typical and highly variable gait pattern, while increase of asymmetry agrees with

the unilateral nature of the disease.

The performance in pull test determines score assigned by neurologists to postural
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stability item. In particular, more are the steps performed by the subject to recover

posture and balance or if these are totally absent and subject falls if not supported,

higher the score will be. In addition to pull test observation, the extracted corre-

lation coefficients provide a useful supplementary information: the increase in gait

variability, expressed by swing and stance variability, step regularity and stride time

variability. The latter is related to an increased falls risk, confirming that postural

instability is highly related to these events, endangering patients and worsening

their quality of life. Instead, the reduction of step length means that the subject

takes smaller steps, transferring body weight between limbs more frequently.

Patients in a moderate stage of the disease (H&Y stage 3) show a clear reduction

of most the identifying gait parameters: step length (-0.64) and velocity (-0.53).

Also step regularity and symmetry are significantly reduced (-0.73 and -0.75, re-

spectively). The first one agrees with the fact that as the H&Y score increases,

the patient is more affected by disease and gait impairment, thus showing a greater

general gait variability. On the other hand, symmetry is partially in contrast with

H&Y scale entries. According to these, score 1 indicates unilateral involvement and

2 a bilateral. However, in patients belonging to these two groups approximately the

same symmetry value has been found, and a distinct reduction comes from score

2 onwards. This can be explained by the fact that, although the disease initially

reveals itself in a unilateral way and subsequently tends to affect both sides, nev-

ertheless it keeps a unilateral nature, ie there will be always a more affected side.

The results of gait, postural stability and H&Y correlations are consistent with

those achieved from other studies: Schlachetzki et al. [82] found PD gait characheris-

tics including short steps, shuffling gait and postural instability features, using in-

ertial sensors units attached laterally to both shoes and comparing parameters to

UPDRS gait score; Das et al.[83] obtained mean speed correlation coefficient of

-0.51 with UPDRS gait task using motion capture data; Salarian et al.[86] reported

high negative correlations between stride length and velocity with UPDRS gait

item having use of body-attached gyroscopes.

However, in this work, it has been found that subjects with scores equal to 0 do

not respect trend parameters correlated with these UPDRS item, and this may

depend on two reasons: a low population in this group or a non-precise distinction

of subjects with scores 0 and 1 by neurologists.

Regarding arising chair item, only increases in swing and stance variability have
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been found, while about FOG item the noteworthy result is the correlation with

cadence SD that significantly intensifies (0.69). Also reduction in symmetry vari-

ability indices of single and double support has been detected. This means that

there is a tendency to have the same degree of variability on both lower limbs.

The general comparison between controls and PD subjects shows contrasting re-

sults compared to those in literature. Schlachetzki et al.[82] reported reduction

of stride length and increase of stride time, ie manifestations of a pattern with

reduced cadence and gait velocity, reflecting typical bradykinetic characteristics of

gait in PD; Wahid et al.[84] obtained higher cadence and smaller step length in

PD subjects than in controls; Sofuwa et al.[85] found lower walking velocity and

stride length, Salarian et al.[86] reported significantly different gait parameters (like

reduced velocity and stride length) between PD subject and controls.

However, in the present work, the opposite has been noted. Controls have a much

slower walking pattern than PD subjects: they show a greater swing and a lower

stance (keeping feet more time on the ground); have greater variability in single and

double support expressed as SD or CV; spend longer time to make a stride with

even greater variability (having greater falls risk), and also gait velocity and its

variability are reduced. Nevertheless, these results have a specific cause: controls

group has a mean age of 84.9 years, significantly higher than the PD subjects group

age (70.1). Therefore, it is reasonable that these participants, having an advanced

age and a reduced muscular strength, manifest a much slower walking pattern than

subjects with a distinctly inferior age, even if with PD. However, these evidences

highlight a notheworhty aspect of PD walking: despite controls have slower pattern,

PD patients exhibit statistically significant differences concering cadence variabil-

ity, step regularity and symmetry. In particular, the greater cadence variability is

confirmed as one of gait PD features, as well as highest variability to make steps,

exposing subject to greater falls possibilities. Instead, about symmetry, this has

been found significantly lower than controls, confirming again the asymmetric man-

ifestation of the disease motor symptoms.

About comparison 2, executed between groups with adjacent H&Y scores, results

confirm what has been obtained with correlation coefficients. There is a decreasing

trend of step regularity and symmetry, but this occurs only in the most advanced

stages of disease, confirming that groups with H&Y equal to 0, 1 and 2 are not well

differentiated. Therefore, even highlighting this problem, it is possible to claim
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that most advanced stages of PD are characterized by a more variable, less stable

and non-rhythmic walking pattern and by asymmetry that continues to manifest

itself, even if the motor symptoms are widespread on both lower limbs. Also re-

ductions of step length and gait velocity have been found only in these advanced

stage, while other parameters, although presenting significant differences between

various groups, have a variable trend, like stride time and step time.

Regarding the last comparison (number 3), it shows that it is possible to clearly dis-

criminate subjects that not usually manifest FOG episodes from those who manifest

them or express hesitations, while the other two groups appear to be closer and less

distinguishable. Indeed, NFOGs express a less compromised walking pattern than

HESs: gait variability, expressed by swing, stance, single support, double support,

stride time, step length and gait velocity SD or CV is significantly lower; mean

values of stride time and step time are smaller (and therefore velocity is greater),

and finally even the rhythm of stepping and symmetry have higher values. Also

compared to YFOG group, the NFOGs have a better and faster walking pattern:

in addition to a lower gait variability, a lesser swing time (and consequently greater

stance), higher speed, better stride regularity and higher symmetry have been also

found. Instead, as for comparison between YFOGs and HESs, the latter seem to

have most compromised gait: they manifest greater variability, higher step time and

stride time, and reduced velocity and symmetry. However, this comparison should

be further investigated, also increasing HES group population which is lower com-

pared to the other two groups.

Therefore, based on this, we can claim that the most significant comparison is

between NFOGs and YFOGs. It represents a further demonstration of results pre-

viously observed in Phase 1 and Phase 2 correlations: subjects that manifest FOG

episodes have an evident and growing arrhythmicity of stepping, short steps, and

a marked increase in gait variability, expressed by swing, stance, double support,

single support. In addition, they spend more time with both feet on the ground,

as shown by increased stance and double support phases and by corresponding

decrease of swing and single support. Also raised stride time variability has been

found, emphasizing that FOG, together with postural instability, contribute to ex-

posing subject to a greater risk of falls. All these results about comparison between

NFOG and YFOG are consistent with literature: Shah et al. [87] reported same

parameters trend using pressur sensor impregnated mat and Weiss et al. [88] found
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that freezers had decreased stride regularity compared with non-freezers.
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Conclusions

The application of wavelet transform to vertical and anteroposterior acceleration

components allows to detect 95.3% of steps perfomed by participants and to obtain

parameter values in physiological ranges. Their trend follows clinically relevant pat-

terns and confirms what is present in literature: reduced swing in favor of stance,

reduced gait velocity and step length, asymmetry, but especially increase of gait

variability. The trend of this feature has been found in all performed analyses: cor-

relations with age, disease duration, UPDRS item score, H&Y score, comparison

between controls and PD, and also between NFOG and YFOG. It is mainly rep-

resented by an increase of stride time variability and by a reduction of step/stride

regularity. Therefore, PD subjects have a less consistent, arrhythmic and less stable

walking pattern, especially in advanced stages of disease.

This work has shown that it is possible to adequately and satisfactorily perform

gait assessment in PD through wearable systems, such as a single waist-mounted

smartphone, which has the capability to detect changes of some spatio-temporal

parameters that are difficult to appreciate during a routine clinical examination.

To implement this, it is not necessary for subjects to walk long distances, as demon-

strated by Phase 2 group, whose data have been acquired in ADL-like conditions,

which makes this approach usable also in a domestic environment. It allows to

describe current motor state of PD subject, and can be also extremely useful to

monitor the progress of gait impairment, providing in this regard additional and

objective informations (also about UPDRS item) that can be employed by neurol-

ogists to modify appropriately and specific for each patient the pharmacological
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treatment. Furthermore, expressing good sensitivity towards the detection of gait

variability, it is also possible to predict and control the risk of falls associated with

it and postural instability, that compromise patient quality of life. Finally, hav-

ing demonstrated good performance for PD subjects with gait impairment, it can

be also used in rehabilitation environment to monitor the improvement of subject

motor conditions, or to evaluate healthy subjects gait.
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[62] Joan Cabestany and Ángels Bayés, Parkinson’s Disease Management through

ICT: The REMPARK Approach.

92



Bibliography

[63] Ronny K. Ibrahim, Eliathamby Ambikairajah, Branko G. Celler, Nigel H.

Lovell, Time-frequency based features for classification of walking patterns,

15th International Conference on Digital Signal Processing, Cardiff, 2007,

pp. 187-190.
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