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Abstract

Parkinson’s disease is the second most common neurodegenerative disorder after
Alzheimer. Nowadays more than 10 million people worldwide are affected and this
number is increasing at a rate of 60 thousands new diagnoses per year in US only. It
has an impact on the US healthcare industry of 23 billion dollars per year represented
by direct and indirect costs.
Periodically quantify the severity of the symptoms is important to arrange the med-
ication doses and schedule the intake times to avoid or keep at minimum the side
effects of the medications and keeping always a low level of impairment caused by
the symptoms. This is a problem of drug titration, typical of those drugs that have a
wearing off effect, like Levodopa, used for Parkinson’s Disease.
Today to quantify the severity of motor symptoms, simulated tasks are performed by
patients under the observation of clinicians who patiently assigns scores to each task.
These procedures take a lot of time to both patients and clinicians and represent an
important part of the total cost upon the healthcare industry.
Wearable sensors and modern techniques of data analysis and Artificial Intelligence
can help in this task by predicting the severity of motor and non motor symptoms,
allowing for continuous monitoring, objective analysis and saving time and money
to patients and hospitals. The Motion Analysis Laboratory (Harvard Medical School)
collected data from 27 patients with Parkinson’s Disease, during performed tasks in
the laboratory environment and simulated activity of daily life (SADL) in an apartment-
like environment.
This thesis is part of a bigger project where different hospitals and universities in
Boston, MA are involved called BlueSky project. Aim of this project is to use all the in-
formation from all different kind of sensors (accelerometric and physiological data)
to accurately predict changes in the severity of Parkinson for both motor and non-
motor symptoms.
The main focus of the thesis is on the analysis of accelerometric data acquired from
wrists and feet. However the first months have been spent analyzing other physio-
logical data such as Galvanic Skin Response and Heart Rate Variability for the study
of non motor symptoms.

Finally, a machine learning approach has been used. Different regressor models have
been tested, the focus has been on the study of temporal patterns through Recurrent
Neural Networks, the overall error is reported in terms of Root Mean Squared Error as
used in regression problems, however the characteristics of the classifier are derived
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from the regressor to a better comparison among different models. The best results
obtained are using a LSTM (Long-Short Term Memory) network on the output of the
RF (Random Forest) leading to an overall accuracy of 81.4% (4 classes) and RMSE
of 0.55. However this approach is better only in the laboratory dataset, while in the
apartment dataset the only Random Forest has better performances.
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Preface

The aim of this chapter is mainly to list and discuss the works done during the al-
most 9 months spent in Boston at the Motion Analysis Lab, Department of Physi-
cal Medicine and Rehabilitation at Harvard Medical School and affiliated with the
Harvard-MIT Division of Health Sciences and Technology, and the Wyss Institute for
Biologically Inspired Engineering.

This chapter has strongly been suggested by my supervisor Paolo Bonato, director
of the laboratory. This is because many works done during this internship weren’t
related to the work of my thesis.

The first 1 to 2 months have been spent mainly working on HRV signals, investigating
the nature of non-linear dynamic signals and applying non-linear analysis on ECG
using the Kubios GUI, Matlab® and deploying by myself other Matlab scripts. Partic-
ular attention has been given in the study of physiological effects of the Autonomic
Nervous System in the HRV and the effect of Parkinson’s Disease on it.

To follow, the attention moved to another physiological signal: the Electro-Dermal
Activity (EDA) or Galvanic Skin Response (GSR). This signal took me more time and
energies. The analysis started this time basically from the development of a protocol
for data acquisition, then the protocol has been tested on me and other few subjects,
the data has been acquired using the Shimmer sensor and elaborated from scratch.
On the other hand I’ve also elaborated GSR signals already acquired by the lab, the
problem was that these signals for logistic issues, have been acquired in the shoulder
(a wrong body location for the GSR). However the analysis done highlighted even if
in few subjects, how the number of fluctuations in the GSR changed between state
ON and OFF of the disease. Nevertheless the signals were too corrupted and a new
experiment with a new protocol was necessary.

Then I moved to the work explained in this thesis.

Of course during this experience I was surrounded by different engineers and physi-
cians working on their own projects who often needed help even if only for data ac-
quisition. The main experiences done in data acquisition regarded experiments with
exoskeletons, different EMG acquisitions and the usage of the Vicon system for gait
analysis.

I honestly want to thank professor Bonato and Demarchi for having done this expe-
rience possible and having enriched my curiosity on the scientific world.
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Chapter 1

Introduction

1.1 Parkinson’s disease

Parkinson’s disease (PD) is a neurodegenerative disease caused by the progressive loss
of dopaminergic pathways in an area of the brain going from the substantia nigra in
the midbrain to the corpus striatum in the basal ganglia [17]. PD is the most common
illness regarding motor symptoms and the second most common neuro disease after
Alzheimer. Parkinson’s disease has been firstly descripted by James Parkinson in 1817,
nowadays 7 to 10 million people are affected with a prevalence of 41 per 100 000 in the
fourth decade of life to over 1900 per 100 000 in people over 80 years old [12]. A recent
study in US affirms that the prevalence of Parkinson’s disease across North America
will increase from 680 000 individuals older than 45 to 930 000 in 2020 and 1 238 000
in 2030. [14]. The incidence of PD usually increase with the age and tends to stabilize
over 80 years of age. Around 4% of the diagnosis regards people younger than 50 years
old.

1.1.1 Neuroanatomy overview

Since different times medical terms and biological concepts will be used, an overview
of the basic is briefly reported in the introduction. The nervous system controls all the
body activities, maintaining the homeostasis and responding to all different kind of
stimuli, both internal and external. It can be anatomically divided in Central Nervous
System (CNS) and Peripheral Nervous System (PNS).

Peripheral Nervous System

The peripheral nervous system connects the CNS with the rest of the body and it’s
located in the spinal cord. Its functions are sensory and motors. The motor functions
are the ones that interest us the most since many of the PD symptoms are related to
these functions. The motor functions are provided by 2 main systems:

2



Chapter 1. Introduction

• Somatic: skeletal muscle effectors

• Autonomic: smooth muscles, involuntary activity of the respiration, cardiac
activation and gland effectors

In Parkinon’s Disease, both these functions are altered. Many studies report auto-
nomic dysregulation focusing on signals like Heart Rate Variability (HRV) or Galvanic
Skin Response (GSR). These type of signals (which have been part of my work during
the first months at the Motion Analysis Lab) can be taken using wearable sensors in
a non-invasive way.
The autonomic Nervous System (ANS) can still be divided in 2 antagonist systems:

• Sympathetic Nervous System: fight or flight response

• Parasympathetic Nervous System: rest and digest response

These 2 systems together regulate many physiological functions of our organism. For
instance the heart rate and the sweating response are both controlled by the ANS. Par-
ticularly in the heart rate, the sympathetic have a positive chronotropic effect while
the parasympathetic has a negative chronotropic effect. A positive chronotropic ef-
fect means increasing the heart rhythm, while a negative chronotropic effect decrease
the rhythm. To show how PD affects also the ANN, many different studies conducted
even in the Motion Analysis Lab have focused on the study of HRV. The first part of
my work has actually been the study of HRV and GSR in subjects with PD to highlight
the changes in state ON and OFF of the disease. It’s now possible detect tremor in
early stages of PD by looking at the only HRV [20] and predicting the FoG akynesia
few seconds in advance by sensing the only GSR [27].

Central Nervous System

The central Nervous System is the orchestra conductor of our body. In here all the
main tasks start and the various equilibrium of our body are kept under control.

The encephalon or brain is the organ which conduct everything. Anatomically it can
be divided in:

• cerebrum

– telencephalon

– diencephalon

• brain stem

– mesencephalon or midbrain

– pons

– medulla

• cerebellum

3



1.1. Parkinson’s disease

Figure 1.1: Autonomic Nervous System [1]

4



Chapter 1. Introduction

(a) (b)

Figure 1.2: Brain structure, sagittal plane view (a) and longitudinal view (b) [19]

Basal Nuclei

The basal nuclei or basal ganglia are nuclei of gray matter that help in controlling
the activity of skeletal muscles. When we refer to basal nuclei we are talking about 3
different nuclei which are:

• caudate nucleus

• globus pallidus

• putamen

These nuclei communicate with the substantia nigra in the midbrain. In Parkin-
son’s disease the substantia nigra is covered by abnormal aggregations of proteins
called Lewy bodies mainly composed of alpha-synuclein. The substantia nigra trans-
mit information through the thalamus to the premotor and prefrontal cortices. This
substantia is strongly involved in motor patterns and when PD occurs, the lack of
dopamine and the aggregation of Lewy bodies obstruct the normal composition of
movements. Figure 1.3 shows how the basal nuclei are connected with other struc-
tures.

1.1.2 Biological fundamentals of Parkinson

Looking at the histopathology, there is the loss of dopaminergic neurons in substantia
nigra, presence of Lewy bodies (cytoplasmic accumulation of ubiquitylated and mis-
folded α-sinuclein in neurons) and Lewy neurites (filament inclusions). Problems
raise from a lack of dopamine. This neurotransmitter binds specific receptors in dif-
ferent brain areas (nigrostriatal for movement control, memomimic-mesocortical for
emotional control or infundibular, which controls hormone release such as Growth
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1.1. Parkinson’s disease

Figure 1.3: Basal nuclei and neighbours

Hormone (GH) and Prolactin Inhibiting Factor). It is produced by tyrosine hydroxy-
lation to L-dopa and then decarboxylated to dopamine. The entire pathway is shown
in figure 1.4

It is the precursor of noradrenalin and adrenalin. The 95% of cases of PD are spo-
radic, while the 5% has a genetic basis (both AD and AR). AD (Autosomal Dominant)
form is related to point mutations or increased gene dose of α-sinuclein (accumula-
tions and inclusions). Whereas, AR (Autosomal Recessive) form is characterized by
an early onset: there are alterations impinging on genes that are not simply related to
the production of α-sinuclein, but other proteins linked to energetic pathways (such
as Parkin, PINK1, DJ-1, all related with autophagy).

Thus, even if we do not know precisely α-sinuclein biological function (very likely it
is not a crucial one, it is expressed in the dopaminergic neurons of substantia nigra),
if the mutation affects Parkin, PINK1 or DJ-1, we will have cells that cannot perform
autophagy (in particular mitophagy). For example, PINK1 specifically targets dys-
functional mitochondria (so they are targeted for degradation), if this removal opera-
tion doesn’t work properly, there will be an accumulation of damaged mitochondria.
Anyway,α-sinuclein has not a direct function in reduction of dopamine (which is less
available because we lose a neuronal population). This protein has a high turnover:
the degradation occurs with the ubiquitination after the glycosylation. Generally, au-
tophagy degrade oligomers, leading to the formation of Lewy bodies and Lewy neuri-
tis, which contain aggregated misfolded proteins, mainlyα-sinuclein. Perhaps, these
bodies contribute to neuronal death, acting like a “storage” of unwanted material col-
lecting all the aggregates to leave the rest of the free.
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Figure 1.4: L-Dopa pathway [2]

In healthy neurons, α-sinuclein is ubiquitinated by Parkin (Ub-ligase E3) in order to
transfer it to the proteasome or with p62 to the autophagy system. In affected neu-
rons, mutated or high amounts or altered (not depending on DNA)α-sinuclein forms
profibrils, then fibrils, leading to neurodegeneration. There are 5-6 mutations that
are being recognized and all of them are affecting one of the proteins mentioned be-
fore (PINK1, Parkin, etc.). Lack of PINK1 is crucial not simply because it is involved
in autophagy modulation, but also because it recognizes dysfunctional mitochon-
dria. If there is a mutation of PINK1/Parkin or there are problems with the formation
of autophagosome and an engulfment of the lysosome, we have an accumulation of
damaged mitochondria, which release factors that are normally segregated in them
and cause cell death. Consequence is a condition of oxidative stress leading to in-
flammation.

Mitochondrial fission and fusion play critical roles in maintaining functional mito-
chondria when cells experience metabolic or environmental stress. Fusion helps mit-
igate stress by mixing the contents of partially damaged mitochondria as a form of
complementation. Fission is needed to create new mitochondria, but it also con-
tributes to quality control by enabling the removal of damaged mitochondria and can
facilitate apoptosis during high levels of cellular stress. Disruptions in these processes
affect normal development, and they have been implicated in neurodegenerative dis-
eases, such as Parkinson’s. Lack of fission anticipates the accumulation of damaged
mitochondria and the pattern could be worse: with fission, we save x% of mitochon-
dria (delaying the loss of energy control), but if we cannot activate the fission, we
cannot have this small amount of saving.

To summarize, Parkinson’s disease is usually considered a chronic, progressive neu-
rodegenerative movement disorder. However it’s well known to have a variety of non-
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1.1. Parkinson’s disease

Figure 1.5: Parkin-induced mitophagy [33]

motor symptoms related to the autonomic nervous system. The cause of the disease
remains predominantly unknown even if genetic and environmental factors play a
key role in the development of the disease. For now there is still no cure to this dis-
ease although some medications such as Levodopa are very effective in tackling the
symptoms. When Levodopa is no longer enough or the side effects (such as Dyski-
nesia) are too strong, another alternative is based on an implantable device for deep
brain stimulation (DBS).

1.1.3 Symptoms

The symptoms of Parkinson are essentially divided in 2 groups:

1. Motor symptoms

2. Non-motor symptoms
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Figure 1.6: Ration between Mitochondrial damage and replacement of mitochondria in PD

(a) Levodopa [3] (b) Deep Brain Stimulation implantable device
[3]

Figure 1.7: Levodopa (a) and DBS (b) are the most common ways to treat Parkinson nowadays

The motor symptoms are usually referred as parkinsonisms since they are the most
obvious and spreaded symptoms of this disease, they consist of:

• Tremor: only present when muscles are resting and disappear while sleeping
as well as with action (one side shakiness)

• Bradykinesia: early stages, slowed movements

• Hypokinesia: reducted movements

• Akinesia: abrogation of movements

• FoG: Freezing Of Gait, form of akinesia

While the non-motor symptoms are also called secondary effects and can be summa-
rized in:
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• Cognitive disturbances: abstract thinking, rule acquisition, planning

• Visuospatial difficulties: orientation of drawn lines and facial recognition

• Impulse control disorders: gambling, binge eating, compulsive behaviour

• Dementia may occur in some subjects

• Mood difficulties: depression, apathy or anxiety are the most frequent

• Sleep and emotional problems

All these symptoms are so penalizing that the WHO (World Health Organization) rated
Parkinson to be on the same level of disability of amputee limbs, congestive hearth
failure, deafness, drug dependence and tuberculosis [11].

1.2 Unified Parkinson’s Disease Rate Scale (UPDRS)

The severity of Parkinson’s disease is scored following the standards of Unified Parkin-
son’s Disease Rating scale. During an UPDRS evaluation, the patient perform scripted
tasks under the observation of a clinician who score the subject in 5 different states
of severity for each task. It’s important to highlight that the UPDRS score is just a
way to evaluate the state of the disease in that particular period of time, these scores
can change based on medication time and ON/OFF state of the disease, not to men-
tion the natural progress of the disease makes the UPDRS score a tool for temporary
evaluation. The tasks are divided in 4 stages, each thought in such a way to take into
account different aspects of the disease. Each of these tasks is scored between 0 and
4, as is possible to imagine, this process takes many hours and represents a cost in
terms of money and time. Research is focusing on how to automate this process us-
ing wearable devices and new data classification techniques.

1.3 BlueSky project

“The term blue skies research implies a freedom to carry out flexible, curiosity-driven
research that leads to outcomes not envisaged at the outset.” [24] In this outlook, this
project aims to investigate the possibility of classifying the motor fluctuation of PD
by using wearable sensors and Machine Learning techniques. We don’t know what to
expect or either the real feasibility of such approach in daily life, however it’s possible
that in a future more or less closer this work will be used in a real scenario.

The scenario would be the complete characterization of motor symptoms in a remote
way and without the need of a clinician to analyze the movements of the subject to
understand his level of impairment. This would save money to the healthcare indus-
try and time for both clinicians and patients. To tackle this problem the schema in
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Figure 1.8: UPDRS evaluation

Figure 1.9: General ML schema [13]

figure 1.9 has been adopted. In figure 1.9, the normal scenario of Machine Learn-
ing is represented. In our case, the sensor data is the data acquired by the wearable
sensors. Train is the data acquired in the lab sections while test is the data acquired
during the apartment sessions. The preprocessing and feature extraction/selection
are steps built on the training data and then redone on the test data. Different mod-
els, strategies and tuning of parameters have been done to obtain the better results
possible on top of the train data. The models that reported the lowest error have been
then used on the test data. Aims of this blue sky project is to develop tools for predict-
ing the severity of motor fluctuations in Parkinson. Among the different symptoms,
this work will focus on predicting the impairment level of Dyskinesia.
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1.4 Dyskinesia

Quoting “parkinson.org” [4] “Dyskinesias are involuntary, erratic, writhing movements
of the face, arms, legs or trunk. They are often fluid and dance-like, but they may also
cause rapid jerking or slow and extended muscle spasms. They are not a symptom of
Parkinson’s itself. Rather, they are a complication from some Parkinson’s medications.”
Usually the medications refer to Levodopa, a miscalculation of the dose of Levodopa
can cause LID, which stands for Levodopa Induced Dyskinesia.

1.4.1 ON/OFF state

With the progression of time in which the subject use Levodopa, the medication starts
to work lesser and lesser and its wearing off time starts to decrease, triggering the
ON/OFF phenomenon. Ideally if you have a regular Levodopa intake, the symptoms
shouldn’t vary depending on the medication intake and you should be covered for the
entire your day if the dose and times are studied ad hoc. However patients feel better
immediately after the medication intake “ON” and worse before taking the next dose
“OFF”. Eventually the “ON” periods will be shorter and shorter.

In this study, 5 different sessions have been performed and each session had a differ-
ent transition between ON and OFF state as shown in figure 1.12.

Drug titration

Drug titration refers to an effect of adjustment of medication dose to keep constants
the effects against the disease and at the same time keep under control the side effects
of the medication itself.

Referred to Levodopa, the side effect is the LID, to avoid the dyskinesia, patients should
stay in the state OFF of the disease, however Parkinson patients in state ON can barely
walk, often they prefer to overdose in Levodopa and have dyskinetic events instead
of staying without the possibility to walk. Figure 1.10 represents the adjustments of
doses and how side effects increase with the increasing of doses.

1.5 Study setup

1.5.1 Data Collection

Data collection was structured in such a way to enhance the development of anal-
ysis methods of biological data to quantify motor and non-motor signs and motor
fluctuations in 2 different environments:

• Laboratory: scripted tasks
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Figure 1.10: Drug titration [5]

• Home-like: monitoring of ADL (Activity of Daily Life)

Participants to the study, delayed their medication intake in such a way to arrive in a
“OFF” state. In each session the some scripted tasks were performed and scored in
the UPDRS scale. Recordings have been performed on 60 healthy volunteers and 27
PD patients in the study conducted at Spaulding Rehabilitation Hospital, Boston,MA.

Figure 1.11: Typology of sensors used and body locations

Session 1, 3 and 5 are present for each patient while the presence of session 2 and
4 depend on the medication’s effect rapidity. After session 1, participants took their
medication and in session 2 the effects of “OFF/ON” transition are studied. Since
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some participants have a fast “OFF/ON” transition, these participants won’t have a
session 2. Session 3 is performed in a “ON” state, session 4 in “OFF/ON” transition
and finally session 5 in “OFF” state again. Session 4 as well as session 2 is optional
and depend on the transition rapidity.

Figure 1.12: ON/OFF state among sessions

One of the objectives of the BlueSky project is to create a model for Bradykinesia,
Tremor and Dyskinesia able to classify these events in real time in a home environ-
ment using data collected by wearable sensors. Future outlooks may be able to imple-
ment these classifiers on daily life garments and smart watches and be able to moni-
tor the fluctuation’s trend. As already mentioned this thesis is mainly focused on de-
veloping the classifier for Dyskinesia events. All the motor fluctuations are analyzed
implementing a windowing technique. Different window lengths have been investi-
gated in literature and a window of 5 seconds length seem to be the one to reach best
results. After having pre-processed and windowed the signal, different techniques
and strategies have been thought and implemented to reach our goal.

Figure 1.13: From Data acquisition to Brain Storming

It’s interesting notice how the level of dyskinesia is spread among the subjects and
between lower limbs and upper limbs, figure 1.14. We can notice that the greatest part
of the time the dyskinesia is not present at all and different subjects have different
duration of the trial. Moreover, looks like, generally for the population considered,
the dyskinesia is more present in the lower limbs than upper limbs.
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Figure 1.14: How dyskinesia is present among subjects

1.6 Wearable sensors and Artificial Intelligence

Nowadays many different sensors are available to record physiological data in a non
invading way. For physiological data we mean all the data retrievable from the body
that can allow the understanding of the state of the body. Examples of physiologi-
cal data are blood pressure, Electrocardiogram (ECG), Electroencephalogram (EEG),
Galvanic Skin Response (GSR), Surface Electromyography (sEMG) and many others.
All the listed are signals that can be recorded in a non invading way, however there
are also physiological signals that require a certain level of invasion (for instance In-
tramuscular EMG). Moreover wearable sensors are able to sense its location in the
space and it’s sensible to movements and accelerations, thanks to accelerometer, gy-
roscope and magnetometer present in the sensor. These signals can’t be considered
physiological but can be used to understand how movements are performed by the
subject and this can ease the process to make diagnoses. These last sensors are par-
ticularly used in Human Activity Recognition (HAR). It’s in this field where most of
the research is focusing at. Many public datasets are available to download and public
competitions (above all on kaggle) are spreading worldwide. The kaggle competition
HAR with smartphones [6] has been seen by 100k users, 12k have downloaded the
dataset and 130 different solutions have been provided. In HAR the goal is to under-
stand which action is the subject doing by analyzing the data from IMU (Inertial Mo-
tion Unit). Usually in these problems the most important data derive from tri-axial
angular velocity (provided by the gyroscope) and tri-axial accelerometric data (from
the accelerometer). Usually this typology of problems require a net to be trained on
provided labels. This approach is called Supervised learning.
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1.6.1 Supervised learning

Supervised learning is a branch of machine learning where the desired output is known
and the model will try to change its weights in order to output something the most
similar possible to the desired output. This is an iterative process that requires many
labeled data, and a back-propagation algorithm to rearrange the weights. In this sub-
section some basic training concepts are explained.

Back-propagation

Back-propagation is a way for the net to keep into account the difference between the
prediction and the real value. It’s important during training since it allows to correct
the internal parameters (weights of the net) in a way that minimize the cost function
which can be seen as a measure of the error. This error can be calculated after every
batch or after some random samples and hence this updating of weights can be done
during different periods of training. Different algorithms can be applied to minimize
the cost function, the most common one is the stochastic gradient descent. This al-
gorithm is an optimization algorithm since it’s trying to minimize the cost function.
The most used cost function is the Mean Squared Error (MSE). Particulars on the algo-
rithms will be investigated further in the Methods chapter. An other very used variant
of the stochastic gradient descent is the adam optimization.
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Methods

2.1 Introduction

The accelerometric data have been collected from 27 subjects with Parkinson’s dis-
ease. The patients arrived in an OFF state, meaning they didn’t take their medication
that morning. There were 5 sessions where a number of tasks has been repeated,
session two and four were optional, depending on the rapidity of transition from OF-
F/ON and ON/OFF of the patient. The wearable sensors used to detect dyskinesia
were located on the wrists and the shoes of the subject. Each task had different dura-
tion in time and the clinician gave a score in the UPDR scale to each limb where the
sensors were attached. Each task has associated one score for sensor. The subjects
have been recorded and the dyskinesia severity of each limb has been scored by qual-
ified clinicians who watched the recordings. Figure 2.1 shows how rates are grouped
among tasks while table 2.2 is a short summary that link the code of the task with its
meaning.

2.2 Machine Learning Approach

The Machine Learning methodology has been adapted. The entire chapter will pay
particular attention to each step represented in figure 1.9. The raw signals have been
collected using the OPAL wearable sensor from APDM technologies. These data have
been then filtered in the domain of interest. 2 bands are interesting for the extrapo-
lation of features, the band in the resting frequencies (between 0.4 and 2.8) and the
band in the dyskinesia frequencies (between 1 and 3 Hz).

The filtered signals have been saved and then windowed in windows of 5 seconds
length. The choice of 5 seconds derive from further studies and personal experience
of the members of the Motion Analysis Lab. In 5 seconds there is information enough
to understand if the movement is dyskinetic or not. However there can be 2 differ-
ent type of dyskinesia, one is slower in the time but quasi-periodic, another is more
unpredictable and manifest itself through strong jerks. After the signals have been
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Figure 2.1: Number of tasks for score. From this graph is possible to notice how the scores are
distributed among different tasks for each limb

windowed, features are extracted from each window. To solve the problem of mis-
classified data, clear outliers have been removed, an heuristic threshold on the range
of the amplitude of the signal has been superimposed and a first regressor has been
used to firstly clear the dataset. This last step is done by selecting only those sam-
ples classified by the model with a certain level of confidence. Those samples clearly
misclassified are not used to train the following model.

To follow a feature selection is done. Features are selected through Out Of Bag Fea-
ture importance, implemented in the Random Forest algorithm. This is the most
natural choice when the Random Forest is the model chosen. Both binary and multi-
class performance are evaluated. The binary model is a classifier, while the multi-
class has been implemented as a regressor. This is done because a continuous output
is wanted and by doing the regression the model is taking into account the nature of
the problem in which an error between 0 and 1 counts less of an error between 0 and
3.

Data visualization is done using the t - Stochastic Neighbor Embedding (t-SNE), a
technique that allows the visualization in a 2d or 3d space of multidimensional datasets.
From this technique is clear how samples belonging to different classes are over-
lapped in the feature space.

On the other hand, to keep into account the temporal sequence of the signals, the
Long-Short Term Memory recurrent neural network has been studied, tuned and eval-
uated. Firstly it’s been tested on the raw data of each window, then on the extracted
features (each feature is extracted on 5 seconds’ signal) and finally on the output of
the Random Forest. This last procedure can be thought as the brain of a clinician
whom internally makes decisions each 5 seconds and eventually he has to find a way
to score the entire task based on the sequence of the scores given throughout the task.
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This methodology has then been confronted with the median of all the decisions and
performance are evaluated in terms of regression (RMSE and MAE are reported) and
in terms of classification, confusion matrices are obtained by rounding the prediction
of the regressor to the closest integer number.

2.3 Data Collection

The first step of the chain is certainly collect data. To do so, elegibility criteria are
needed to be sure of collecting data from the right people and a protocol has to be
used for reproducibility purposes. Some statistics of the chosen population are re-
ported. The data are collected in 2 different environments:

• Laboratory

• Apartment

In the laboratory the patient had to accomplish some standardized tasks, while in the
apartment the subject was free to do whatever he wanted. In figure 2.2(a) and 2.2(b)
the 2 environments are visible.

(a) Lab setting (b) Apt setting

Figure 2.2: (a) Laboratory environment (b) Apartment environment

2.3.1 Elegibility Criteria

• People with current diagnosis of PD consistent with UK Parkinson’s Disease So-
ciety Brain Bank Criteria.

• Responding to Levodopa

• stable configuration of the disease for at least 4 weeks
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• able to understand and recognize the wearing-off symptoms and recognize their
improvement after the dose of Levodopa.

• NOT in a current state of neurological disease (PD excluded)

• NOT implanted medical devices (DBS included)

Statistics of the subjects are reported in table 2.1 and in figures 1.14 and 2.1

Table 2.1: Participant Characteristics

Characteristic Statistics

Number of subjects 27
Age (years) 66.1 ± 8.2 (42 - 80)
Height (cm) 175.4 ± 10.3 (152 - 196)
Weight (lbs) 182.7 ± 34.9 (116 - 260)
Gender (%)
Males 19 (73.1)
Females 7 (26.9)
Handedness (%)
Left 3 (11.5)
Right 23 (88.5)

2.3.2 Protocol

27 subjects have been selected. The table 2.2 resume the tasks that the patients had
to do in each section. 5 sections are present, each of them count the same number of
tasks, however task number 2 and 4, since were transitional tasks were more likely to
not present the entire sequence of tasks. The acronym SADL stands for “Simulated
Activity of Daily Life” while CSS stands for “Conversation Speech Session” and were
tasks regarding no physical effort but only psychological or emotional. Fig 1.12 shows
the state ON/OFF of the patients and how they switch among states because of the
L-DOPA assumption.
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Task Code Description

adl_bot SADL: Shake 5x, open bottle, drink and close
adl_cbk SADL: Carry a book (out and back 10m) and place it on a table
adl_coa SADL: Buttoning a lab coat
adl_csc SADL: Carry a suitcase (out and back 10m) and hold 90s up with forearm at 90°
adl_dor SADL: Opening and closing a door
adl_drk SADL: Pour a cup of water and take two drinks
adl_eat SADL: Eat with a spoon 2x
adl_fld SADL: On the table, fold a piece of paper in half 4x
adl_jew SADL: Putting on / removing jewelry
adl_rem SADL: Remote control use
adl_sen SADL: Writing a sentence
adl_sho SADL: Tying a shoe
adl_wel SADL: Write elelelel (cursive) 10x
adl_zip SADL: Zipping a zipper
spc_con CSS: Conversation
spc_pic CSS: Picture description
spc_ptk CSS: PATAKA
spc_rea CSS: Reading
spc_rev CSS: Reverse counting
ss_3min sitting_3
ss_ahml ahm_left_3
ss_ahmr ahm_right_3

Table 2.2: Brief description of the tasks associated to each code

The patients were recorded and then scored following the UPDR scale explained in
section 1.2, page 10 by qualified clinicians. It’s to highlight that the clinicians rated
the videos, hence they could have viewed more than one time the task performed to
give an accurate score.

2.3.3 Hardware

The hardware used during the data collection is the OPAL from APDM wearable tech-
nologies. This device offers 3-axis accelerometer, magnetometer and gyroscope. It is
one of the most used wearable device in the laboratory for research in motor symp-
toms.
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Table 2.3: OPAL sensors characteristics

Accelerometer Gyroscope Magnetometer

Axes 3 axes 3 axes 3 axes
Range ±166, ±2000d e g /s ± 8 Gauss
Noise 120 µg /

p
H z 0.025 d e g /s/

p
H z 2 mG a u s s/

p
H z

Sample rate 250 Hz 250 Hz 250 Hz
Resolution 14 bit 16 bit 12 bit

Table 2.4: Hardware characteristics

Hardware Characteristics

Dimensions 43.7 x 39.7 x 13.7 mm (LxWxH)
Weight < 25 grams (with battery)
Material Polycarbonate, Glass
Internal storage 8 Gb, (∼ 450h Storage)
Battery life Synchronous Logging: 12h, Asynchronous Logging: 16h

2.4 Signal Preprocessing

From the raw data acquired by the sensors to the actual data used to train the differ-
ent models some operations are done in order to improve the performances of the
models.

• Sensors data and events in the lab

– Load raw sensors data from csv files (OPALs and Biostamps) for each sub-
ject and each lab session (1 to 5)

– Load events data from csv files and create a table with starting and ending
time of each task (for all subjects and sessions). Assign to each task the
clinical scores. For each motor symptom, the severity classes 3 and 4 are
merged (too little samples for class 4)

– Extract OPALs data, resample at 32 Hz (from original fs = 128 Hz)

– OPALs data from the lumbar and the sternum signals are not considered
in the analysis

– Merge the sensors data for each session and create a continuous time se-
ries from the beginning to the end of the lab visit

– Filter the signal in the “Dyskinesia band”, the filter applied is Chebyshev
Type II band-pass filter, with cut-off frequencies: [1 – 2.8 Hz].
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– Segment the filtered data in different signals, each of them will be the sig-
nal referred to a task. To each task is assigned a score.

– Apply windowing to each signal. The signals have been windowed with
length of 5 seconds and 50% overlap between 2 consecutive windows.

• Apartment data

– Load raw data from csv files (OPALs sensors) for each subject

– Extract OPALs data, resample at 32 Hz (the original is 128 Hz) and fill the
gaps with NaNs

– Apply filtering to the continuous raw sensors data (same filtering described
above). The resulting data structure is used as input for the motor symp-
toms severity estimation algorithms in apartment.

An already existing model has then been used to classify the windows between rest-
ing or not resting windows. This model was developed for tremor analysis on the
same dataset. However this classifier doesn’t allow the separation between voluntary
movements and dyskinetic movements. Another model is needed to perform this
separation.

2.5 Feature Extraction and Selection

2.5.1 Feature extraction

The extraction of the features is not the aim of this thesis. The features were already
extracted at my arrival. However an understanding of the extracted features is nec-
essary. Features can be divided in 5 main different areas. A total of 90 features have
been extracted.

Macro areas of features

• Time and frequency domain

• Position, Velocity and Jerk

• Rest band and Dyskinesia band ratio among Rms, range, dominant freq. Am-
plitude and total power of the PSDs

• Segment Velocity features

• Correlation among sensors
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Time and frequency domain are the most traditional family of features. They refer to
the set of features that can be extracted in the time domain (such as: mean, std, vari-
ance, entropy, kurtosis, skewness, etc.) and the features from the Fourier transform
of the signal (maximum amplitude, main component, total power, etc.).

Position, Velocity and Jerk are sets of features that are extracted by processing the
accelerometric signals. Paricularly, previous windowing of the signal, the accelero-
metric signals have been integrated by trapezoid numerical integration to get the the
velocity and a further integration is done to get the position. To get the jerk, a deriva-
tion is done. All the time and frequency features extracted for the acceleration are
extracted for velocity, position and jerk.

Rest band and Dyskinesia band are semi-overlapped bands in the frequency domain,
however these set of features could be used to distinguish among voluntary and in-
voluntary (hence, dyskinetic) movements.

Segment velovity features refers to a set of features taken from the work of Keijsers et
al. [21].

The last features refers to correlation intra-sensor (among different channels of the
same sensor) and correlation inter-sensors (among same channel of different sen-
sors). The firs is useful to understand how the movement of the same limb is done,
it’s aim is to understand which is the level of correlation among the different direc-
tions. The least instead can be more difficult to understand if the nature of dyskinesia
isn’t clear. It refers to the fact that probably dyskinesia is happening in only one limb,
many times dyskinesia can be unilateral meaning that probably there will be a low
level of correlation among controlateral and opposite limbs.

2.5.2 Feature selection

Since the principal model chosen for the classification of the dyskinesia is the Ran-
dom Forest and this model offers the possibility of ordering the features by impor-
tance, the feature selection has been performed using the RF model.

Number of features

The features can be mainly ordered by calculating the Variance as a measure of im-
purity and the Out Of Bag (OOB) error as a metric for the importance of a subset of
features. More in detail, to choose the number of features, the following approach
can be followed:

Feature Importance

The importance of the features is calculated by keeping into account the impurity in
each tree split. For classification the measure of the impurity is the Gini index while
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Algorithm 1 Criterion for choose the number of features

1: Order the features by feature importance
2: for i in number of features do
3: Train a RF model with the subset of i features in the ordered list of features
4: Compute the OOB error

5: Choose the number of features corresponding to the minimum OOB error

Figure 2.3: Number of features

for regression the impurity is measured by the variance.

In Random Forest there are typically hundreds to thousands different decision trees,
usually these trees are built by looking to a random subset of the features and a ran-
dom subset of the samples. This is done to guarantee that the trees are not correlated
each other and at least, the overfitting is avoided. At each tree splitting, a decision is
made. Let’s call the split location node. In a node a question based on the features
present in that node is done. The answer to the question can lead to different branch
(or leaves) of the tree. The importance of the feature can be derived by looking at how
pure the bucket created by the split is [7].

In a regression approach the impurity is the variance of the bucket. A low variance is
expected if the samples ended in a leaf are all similar among each other. This makes
sense in a regression problem since the mathematical nature of the samples and their
similarity in terms of classes is what matters. A high variance is expected in those
buckets created without using a feature that is important. Hence, by measuring the
average of the variance among the buckets and keeping into account which features
are used and which are not, a ranking of the features can be computed.
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2.5. Feature Extraction and Selection

Figure 2.4: Features selected by Random Forest feature selection approach

Figure 2.4 shows the features sorted by feature importance. Only the first 30 features
are shown, according to the number of features retrieved from the OOB regression
error. It’s interesting how the first features are mainly related to cross-correlation fea-
tures intra and inter sensors. At least in part this could explain why the Random For-
est outperforms the Long Short Term Memory nets using raw data. Raw data indeed
don’t have any information regarding what the other limbs are doing and only rely
on their own information. Hence RF models have more information than the LSTM
based on raw signals.

Considerations on the Selected features

The correlation has been computed using the xcorr function provided by Matlab®.
The first selected feature is the Timelag of the cross-correlation (cc) of the X and Z
channel (timelag_cc_Y is a way to call the cc among X ans Z), however also the other
cross-correlation in the other channels have been selected. The cross correlation of
different channels in the same sensor is important because it’s a measure of how the
movement is done and which delays are recorded in different directions during a task.

The entropy of the jerk is another feature which clearly makes sense. At the beginning
of the work, the idea was to create a binary classifier for voluntary and not voluntary
movements based only on entropy features. This is due to the fact that the entropy
is a measure of how disordered is a signal, in this case a movement. What expected
was a high level of entropy in those signals of clear dyskinesia and low level in pure
voluntary movements. Indeed all the models had the problem to not be able to mis-
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classify the voluntary movements in dyskinetic movements. This approach will be
further investigated in subsection 2.9.1.

2.6 Data balancing

The dataset is strongly unbalanced towards the zero class, hence a data balancing
technique is needed. At first an approach based on hierarchical classifiers has been
proposed and performed based on the fact that the first classifier would have nat-
urally separated class 0 from the others and the remaining dataset for further clas-
sification is already more balanced. This method has been tried, however the poor
performance of the binary classifier (in terms of sensitivity) and the fact that a sin-
gle regressor was explicitly demanded by my supervisor in the lab made another ap-
proach the preferred one.

In the chosen approach, a binary classifier is firstly used and then the result of such
a classifier is used as a feature with the relative score. This will provide the following
RF the ability to understand with how much probability the previous classifier was
certain about the fact that the sample represents a dyskinetic movement or not.

2.6.1 SMOTE

While dealing with classification problems, the percentage of the classes in the classes
leads an important rule, however there are scenarios where it’s not possible to have
balanced data. In these conditions the model may try to fit the majority class by cre-
ating a bias in the predictions, in the same time the accuracy will stay high but it’s not
objective since our model is biased in the majority class. It’s the same problem for
rare diseases or natural disasters. Different strategies see the down-sampling of the
majority class in a random way or the oversampling of the minority class.

• Down-sample the majority class in a random way.

In this case there is a huge loss of probably useful data, since we’re limitating the
number of samples to the class with less data. It’s true though that by using this
approach, all the data used for training is real data and the classifier won’t be
biased anymore. However there is a concrete risk that the classifier will mistake
more times when tested on elements similar to the ones excluded by down-
sampling

• Oversample the minority classes by repetition

The second approach is to decide to not delete any sample, instead of augment-
ing the minority classes to the number of samples of the majority class. This is
done by simple random repetition of the samples in the classes until the same
or similar number of samples is contained in each class. However by doing so,
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2.6. Data balancing

Figure 2.5: SMOTE algorithm [18]

a bias is inserted in the minority classes, more in detail, the samples in the mi-
nority classes are more important than the samples in the majority class and an
overfitting on the minority class is possible.

• SMOTE Synthetic Minority Oversampling Technique

To overcome the problem of overfitting in the minority classes due to simple
repetition of the samples, the SMOTE approach is used. This method allow the
synthetic repetition of the samples in the minority classes. In this way all the
classes will have a similar number of elements and all the elements in each class
will be different among each other.

Algorithm 2 SMOTE steps

1: Identify the feature vector and its nearest neighbour
2: Compute the distance between the 2 of them
3: Multiply this distance by a random number between 0 and 1
4: Identify a new point in the line segment by adding the random number to feature

vector
5: Repeat the process for identifier feature vector

28



Chapter 2. Methods

2.6.2 ADASYN

Another more sophisticated variance of SMOTE is the ADASYN algorithm. This al-
gorithm is the algorithm used to balance the datasets. ADASYN stands for Adaptive
Synthetic Sampling Approach for Imbalanced Learning.

This method follow the same steps proposed in algorithm 0 but instead of adding
the new samples in the segment of the distance among the real samples, ADASYN
increase the variability by adding a random number to move out of such segment by
90°. Although this method looks very similar to SMOTE, this simple change is cre-
ating new samples that don’t present any more the linear dependency with the non
synthetic data.

Algorithm 3 ADASYN steps

1: Identify the feature vector and its nearest neighbour
2: Compute the distance between the 2 of them
3: Multiply this distance by a random number between 0 and 1
4: Identify a new point in the line segment by adding the random number to feature

vector
5: From this point move of a random factor in perpendicolar direction respect to the

distance vector
6: The selected point will be the new synthetic point
7: Repeat the process for identifier feature vector

2.7 Data visualization

Visualizing 90 features in a 3D splace is not an easy task. Different techniques can
help, for instance after a dimensionality reduction technique, such as PCA or after
the chosen feature selection method, it’s possible to decide to plot the samples in the
feature space constituted by the 3 main features. However there is a technique which
is created appositely to solve this problem, the t-Stochastic Neighbour Embedding.

2.7.1 t-SNE

This technique allows data visualization of multiple features in a 2D or 3D space with-
out performing any rotation of the matrices nor dimensional reduction. The points
plotted and the referring axes don’t have any more a physical significance. The only
aim of this technique is to separate as mush as possible elements of different classes
by playing with different factors.
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The t distribution

The Student’s t is one of the biggest breakthrough in statistics as it allows inference
to small samples with unknown population variance. This setting has a huge real life
application. The t-normal distribution looks very similar to the normal distribution
but it has fatter tails. This is important because it allows for a higher dispersion of
variables as there is more uncertainty.

The formula to identify the t-distribution is

tn−1,α =
x̄ −µ
s/
p

n
(2.1)

n : sample size
x̄ : sample mean
µ: population mean
s/
p

n : Standard error of the sample

It’s very similar to the normal distribution, indeed it’s an approximation of it. However
there are degrees of freedom. Usually for a sample of n there are n−1 degrees of free-
dom. After 40 degrees of freedom, the t-statistic is almost identical to the z-statistic
(normal distribution). Hence, as the degree of freedom change with the sample size,
for a large number of samples the t-statistic and the z-statistic can both be used. How-
ever, the importance of t-statistic is in a little number of samples.

Introduction to t - Stochastic Neighbour Embedding

t - Stochastic Neighbour Embedding (t-SNE) is a statistical method winner of the
Merck Viz Challenge in 2012 launched by Kaggle. In the kaggle blog [8] Laurens Van
der Maaten, creator of this technique and winner of the competition said: “T-SNE
represents each object by a point in a two-dimensional scatter plot, and arranges the
points in such a way that similar objects are modeled by nearby points and dissimilar
objects are modeled by distant points.”

The following are the reasons to use this technique in data visualization instead of the
PCA followed by scatter plots of the 2 or 3 principal components.

• The main focus of this technique is to model small pairwise distances, like local
structure, in the space

• This technique implement a way to correct the enormous difference in volume
between a multi-feature space and a 2 dimensional or 3 dimensional map

This is a very strong non linear technique that can be divided in 2 main stages:

1. a probability distribution over couples of samples with all the features is built
in a way that similar samples have higher chance of being chosen while points
not very similar will have a much lower probability of being chosen.
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2. a similar probability distribution is built for the samples in the 2D or 3D space,
the t-SNE minimizes the Kullback–Leibler coefficient between the distribu-
tions in the low dimensional space and the high dimensional one with respect
to the locations of the samples in the space.

The Kullback-Leibler divergence for 2 discrete probability distributions P and Q is
defined as:

DKL(P ‖Q ) =−
∑

x∈X
P (x ) log
�

Q (x )
P (x )

�

(2.2)

while for continuous probability distribution the equation 2.2 become:

DKL(P ‖Q ) =

∫ ∞

−∞
p (x ) log
�

p (x )
q (x )

�

d x (2.3)

This divergence is usually used as measure of the information gain and means how
much information is lost if the distribution Q is used to approximate P . The mini-
mization of this divergence is computed using the descent gradient in t-SNE.

Laurens van der Maaten explained that:

“The similarity of datapoint x j to datapoint xi is the conditional probability, pj |i , that
xi would pick x j as its neighbor if neighbors were picked in proportion to their proba-
bility density under a Gaussian centered at xi .” [26].

Being N the number of features and xi the object explained by the i t h feature, t-SNE
compute the following probabilities:

pj |i =
exp
�

−‖xi −x j‖2/2σ2
i

�

∑

k 6=i exp
�

−‖xi −xk‖2/2σ2
i

� (2.4)

pi j =
pj |i +pi | j

2N
(2.5)

t-SNE goal is to reflect the probabilities pi j in a 2D or 3D map as better as possible.
To do so, a Student t-distribution is used to estimate similarities qi j among 2 or 3
dimensional objects.

qi j =
(1+ ‖yi −y j‖2)−1

∑

k 6=l (1+ ‖yk −yl ‖2)−1
(2.6)

The Kullback Leibler divergence of these 2 distributions is expressed by equation 2.2
and the result lead to the location in the low dimensional map of the points.

K L (P ||Q ) =
∑

i 6= j

pi j log
pi j

qi j
(2.7)

In figure 2.6 is possible to notice how, nevertheless the power of such technique, the
samples are strictly overlapped each other. There is however a trend and at least for
samples belonging to class 0 and class 3 (except for some samples) there is a separa-
tion. The boundaries among the classes however is really not strict and many points
of different class have features similar to other classes.
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Figure 2.6: t-SNE on down-sampled dataset

This can be explained highlighting the fact that the signals are only acceleromet-
ric signals and probably there is not enough information for a proper classification.
Moreover the sensors were placed in the only extremity of the limbs, this means that
if the dyskinetic event occurred in the proximal site of the limb the sensor might not
sense the event at all.

2.8 Models

2.8.1 Random Forest

Details about how Random Forest work and what is it can be found in appendix A.
This subsection will focus on the choice of some parameters useful to make the model
work properly.

Choice of parameters

The main parameters chosen for make the model work are the number of trees present
in the forest. This number usually vary from few dozens to hundreds or thousands of
trees. However the more the trees the more the model will be over-fitted. There is a
way to estimate the proper number of trees needed.

The Out Of Bag Error can be used to chose the correct number of trees for training
the model.
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Figure 2.7: OOB to decide the number of trees

In this work 100 trees are sufficient since adding other trees won’t decrease that much
the OOB error.

2.8.2 LSTM

For the Long Short Term Memory is harder to perfectly set all the parameters to make
the model work. Moreover the LSTM require a pre-processing of the data that is not
required from the only Random Forest.

Pre-process of data sequences

There are different pre-processing for the data depending on which will be the input
to the net. Keeping into account that the 3 main methods have been:

1. Feed the net with raw data

This approach doesn’t need a particular pre-process if the data is fed already
windowed. Indeed the sequences will have the same length and the LSTM won’t
have any issue. However a common practice even for this approach would be
to standardize the tasks. More on standardization will be explained in the next
item.
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2. Feed the net with extracted/selected features

This approach require standardization to be computed. Indeed the LSTM to
work at its best require the data with mean centered in 0 and a standard devia-
tion equal to 1.

z (x ) =
x −µ
σ

(2.8)

where µ is the mean andσ the standard deviation. This transformation is gen-
erally required when working with RNN.

After the standardization is computed, the sequences have to be ordered in or-
der to avoid a data loss or a data corruption depending on the method chosen
to equalize the length of the sequence in each mini-batch.

The training session will occur in mini-batch, each of these mini-batch must
have all the sequences with the same number of elements (meaning that all the
temporal sequences must have the same duration). In our case this is not true,
since different task can have different duration. To solve this problem 2 choices
can be done:

• Zero-padding: to all the sequences with shorter duration of the longest
in the batch will be added a sequence of 0 such as eventually their length
will be the same of the longest and all the sequences in the batch will have
same number of elements

• Shortest: By choosing this approach, all the sequences longer than the
shortest in the batch will be cut to the same length of the shortest.

Zero-padding is introducing some corruption in the sequence but is not wast-
ing any data. The Shortest method instead is not introducing any noise but is
keeping out some information that could be valuable.

Normally the sequences are mixed before being fed to the net. This approach
however increase the corruption of data in case zero-padding is chosen and
increase the data loss if the length of the shortest one is the one of the entire
mini-batch. So it’s important to order the sequences previously. Then a proper
mini-batch size will be chosen.

3. Feed the net with the output of the Random Forest In this case the ordering of
the sequences is necessary. However no data standardization is required.

Figures 2.8 and 2.9 represents respectively the effect of zero-padding and truncation
on unordered and ordered sequences.

Choice of parameters

The parameters used to train the nets are reported in the Matlab snippet code. This
architecture is not the only one tried. Many different architectures have been tried,
eventually this has been chosed because 3 layers is the general suggestion for RNN
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Figure 2.8: Zero-padding to the longest sequence [9]

Figure 2.9: Truncation on the shortest sequence [9]

in Human Activity Recognition (HAR) classification problems. However the perfor-
mance don’t change significantly with any change of the architecture (except obvi-
ously structures without any sense).

What has been noticed is that by increasing the number of layers the computational
time notably increase while the performance don’t change that much. Hence the ar-
chitecture used eventually will use only one layer, however if computational times do
not constitute a problem, 3 layers is the best option.

1 inputSize = NumberFeatures;
2 numHiddenUnits1 = 80;
3 numHiddenUnits2 = 100;
4 numHiddenUnits3 = 60;
5

6 layers = [ ...
7 sequenceInputLayer(inputSize)
8 bilstmLayer(numHiddenUnits1, 'OutputMode', 'sequence')
9 bilstmLayer(numHiddenUnits2, 'OutputMode', 'sequence')

10 bilstmLayer(numHiddenUnits3, 'OutputMode', 'last')
11 dropoutLayer(0.3)
12 fullyConnectedLayer(1)
13 regressionionLayer]
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14

15 %% Train the network with architecture and options specified
16 net = trainNetwork(X, Y, layers, options);

• Learning Rate: 0.005

• Learning Rate Drop Factor: 0.5

• Learning Rate Drop Period: 10 epochs

• Number of epochs: 200

• Validation: Leave one subject out

• L2 regularization factor: 0.0005

• Batch size: 32

• Optimization algorithm: adam

• Batch uniformation: truncation to shortest

LSTM architecture

The proposed architecture uses 3 layers of BiLSTM, the first 2 are used with “Output”
set to “Sequence”, the last is set to “Last”, meaning that we are interested on classi-
fication. However the final layer will be the RegressionLayer, this layer translate the
output to the continuous and will make the net conscious of the fact that the loss to
minimize is the Mean Squared Error. In detail the proposed network is resumed by
the following layers:

2.9 Difficulties

The main problem to tackle for the recognition of the windows is the fact that the
dyskinetic event can occur as a burst and hence can be present only in one or few
windows, while all the others of the task will not present dyskinetic behavior, however
since all the windows of the task have the same associated score, some of them have
an intrinsic error.

Lee et al.[23]proposed a method to address the potential mismatch between the char-
acteristics of accelerometric data segments of 5 seconds length and the UPDRS score
given from the rater to the entire task.

In his work he used the WEKA implementation of Expectation Maximization (EM) to
cluster the dataset and remove all the samples that overlap in other clusters, then a RF
regressor has been used to predict the membership of new windows. This approach
relies on the robustness of the RF to overfit for facing the problem of unbalanced data.

36



Chapter 2. Methods

However that approach has been mainly used for tremor recognition and the condi-
tions are slightly different. Indeed in tremor recognition the assumption is to work
only in “resting” intervals, meaning that all the movements recognized as voluntary
are not evaluated. Moreover tremor usually has a certain level of continuity and, if
the task has a severity different from zero there is a good possibility that the tremor
has been present throughout the task.

The clustering approach formed as first step 2 main clusters that (by looking the di-
mensions of the clusters) were consistent with the “resting” and “not resting” classes.
However this behavior doesn’t allow the correct identification of the 2 clusters “Dysk-
inesia” and “Not dyskinesia”. Moreover it was a bit critical for the data, indeed by
applying this procedure most of the data was unused and the training data was too
little to properly train a model.

2.9.1 Voluntary movement prediction

Dyskinesia can be very similar to voluntary movements from an accelerometric point
of view. The filter applied to the raw data in the band from 1 Hz to 2.8 Hz should re-
move the components of the movements related to gross changes in the body motion,
however it removes only part of the voluntary movements. A model based on the
previous classifier is proposed. Figure 2.10 is the schema for assessing the label to
the unlabeled data. Indeed since no evaluation has been computed to classify move-
ments between voluntary and not voluntary, an algorithm has to be implemented.
The following assumptions are done:

• If the maximum among the range of the 3 accelerometric channels is below
a certain heuristic chosen threshold (0.1 m/s 2) then we can consider that no
movement at all is happening, hence the window is no further considered.

• A further and better investigation to understand if a movement is present, is
then done by the model for resting prediction. If the limb is resting, no matter
if there is dyskinesia or not, there isn’t a voluntary movement.

• When the movement is detected, it can be both dyskinetic or purely voluntary.
To distinguish between them, the dyskinetic score given by the clinician is ob-
served.

After having given the labels to the dataset, a Random Forest classifier has been trained
with Leave one subject out technique. This is done to leave the prediction as more
general as possible. The new prediction will be the real label assigned to each window.
This is done to keep into account also those voluntary movements done in presence
of dyskinesia.
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Figure 2.10: Voluntary movement schema for label assessment
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2.10 Regression or Classification

One of the main problem was to understand if it is better to tackle the problem by
doing a regressor model or a classifier one.

2.10.1 Regression

Regression is generally used when continuous predictions are required. As an exam-
ple, if you want to predict the height of a person based on some geographical and per-
sonal characteristics other than height, you probably need a regressor model. How-
ever if you want to categorize people in classes such as “short”, “normal height” or
“high”, you need a classifier. In this example is possible passing from regression to
classification by setting a threshold in the predicted height.

In our problem, the specifications of the project were to obtain a continuous output,
meaning we need a regression approach. For regression, the most used indicators are
MAE and RMSE:

Mean Absolute Error (MAE)

Let’s call our ground truth θ and our prediction θ̂ , we can define the error of the pre-
diction as the difference between them. This error can be positive, if the prediction
is greater than the truth or negative viceversa. However we are mostly interested in
understand the absolute value of this error for each predicted value compared with
the respective ground truth. Hence we sum all the absolute value of the errors ei and
then we average the results.

MAE =

∑n
i=1

�

�θi − θ̂i

�

�

n
=

∑n
i=1 |ei |
n

. (2.9)

This is a very used indicator since its meaning is easily interpretative.

Root Mean Squared Error (RMSE)

In this indicator there is a squared operation instead of the absolute value for the
error. This means that large errors will influence much more than smaller ones.The
Mean Squared Error (MSE) is the expected value of the squared error.

RMSE(θ̂ ) =
q

MSE(θ̂ ) =
q

E((θ̂ −θ )2). (2.10)

This indicator is penalizing much more all the predictions that are are further from
the real value. In our problem this is a good indicator since it’s not the same mistaking
between severity 1 and 2 or between 1 and 3. RMSE always for the same reason is very
influenced from the outliers.
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2.10.2 Classification

Classification instead is used in problems where the final wanted output is a label.
It’s full of different indicators for classification problems. In this work classification is
mainly used for binary classification such as predictions regarding voluntary move-
ments or the model for distinguish among dyskinetic and not dyskinetic movements.
To explain the variety of indicators used in classification problems, let’s firstly intro-
duce the following terminology valid for a binary classification:

• True Positive (TP): is the amount of elements truly predicted as positive

• False Positive (FP): is the amount of elements predicted as positive but that
were negative

• True Negative (TN): is the amount of elements truly predicted as negative

• False Negative (FN): is the amount of elements predicted as negative but that
were positive

All these amounts have a place in the so called Confusion Matrix reported in figure
2.11: Starting from these 4 quantities reported in the Confusion Matrix, a really big

Figure 2.11: Binary Confusion Matrix

number of indicators can be calculated, the principals are reported in table 2.5.
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Table 2.5: Binary classification indicators

Indicator name Mathematical formula

Accuracy ACC =
TP +TN

P +N
=

TP +TN

TP +TN+FP +FN

False Negative Rate (FNR) FNR=
FN

P
=

FN

FN+TP
= 1−TPR

False Positive Rate (FPR) FPR=
FP

N
=

FP

FP +TN
= 1−TNR

Sensitivity (TPR) TPR=
TP

P
=

TP

TP +FN
= 1−FNR

Specificity (TNR) TNR=
TN

N
=

TN

TN+FP
= 1−FPR

Positive Predictive Value (PPV) PPV =
TP

TP +FP
= 1−FDR

Negative Predictive Value (NPV) NPV =
TN

TN+FN
= 1−FOR

False Discovery Rate (FDR) FDR=
FP

FP +TP
= 1−PPV

False Omission Rate (FOR) FOR=
FN

FN+TN
= 1−NPV

F1 Score F1 = 2 ·
PPV ·TPR

PPV+TPR
=

2TP

2TP +FP +FN
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Results

Different methods and models have been tried to get the lowest error possible dur-
ing predictions. Following the results in terms of Confusion Matrixes (CM) and main
indicators of the principal approaches are reported.

3.1 Random Forest model

3.1.1 Binary classification
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Figure 3.1: RF performances in binary classification

Accuracy: 89.3%
Sensitivity: 63.7%
Specificity: 97.1%
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3.1.2 Multi-class regression
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Figure 3.2: RF performance in multi-class regression

For multi-class classification, specificity and sensitivity have been calculated for each
class to show the differences. Then to summarize the overall performance, the results
have been averaged.

Table 3.1: RF performances

Sensitivity Specificity Precision F1 Score

Class 0 0.91 0.79 0.94 0.92
Class 1 0.42 0.90 0.17 0.24
Class 2 0.45 0.93 0.41 0.43
Class 3 0.31 0.99 0.91 0.46

Accuracy: 79.1%
Sensitivity: 52.1%
Specificity: 90.5%
Precision: 60.5%
F1 Score: 51.2%

In terms of regression the RMSE and MAE are reported:

RMSE: 0.64
MAE: 0.29
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3.2 LSTM model

3.2.1 Raw data performance
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Figure 3.3: LSTM performances on raw signals

Table 3.2: Performance LSTM on raw signals

Sensitivity Specificity Precision F1 Score

Class 0 0.96 0.29 0.82 0.88
Class 1 0.27 0.93 0.16 0.20
Class 2 0.07 0.99 0.58 0.14
Class 3 0.02 0.99 0.64 0.03

Accuracy: 76.5%
Sensitivity: 33.1%
Specificity: 80.3%
Precision: 55.1%
F1 Score: 31.3%

In terms of regression the RMSE and MAE are reported:

RMSE: 1.12
MAE: 0.89
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3.2.2 Features based performance
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Figure 3.4: LSTM performance on features

Table 3.3: Performance LSTM on features of the signal

Sensitivity Specificity Precision F1 Score

Class 0 0.87 0.58 0.89 0.88

Class 1 0.09 0.96 0.13 0.11

Class 2 0.26 0.93 0.33 0.29

Class 3 0.72 0.93 0.18 0.28

Accuracy: 73.9%
Sensitivity: 48.4%
Specificity: 84.9%
Precision: 38.2%
F1 Score: 39.0%

In terms of regression the RMSE and MAE are reported:

RMSE: 0.85
MAE: 0.41
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3.2.3 LSTM on RF output
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Figure 3.5: LSTM performance on RF output

Table 3.4: Performance LSTM on RF

Sensitivity Specificity Precision F1 Score

Class 0 0.94 0.78 0.93 0.94
Class 1 0.21 0.97 0.47 0.29
Class 2 0.43 0.94 0.46 0.44
Class 3 0.93 0.94 0.31 0.47

Accuracy: 81.4%
Sensitivity: 62.8%
Specificity: 91.0%
Precision: 54.5%
F1 Score: 53.6%

In terms of regression the RMSE and MAE are reported:

RMSE: 0.55
MAE: 0.26
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3.3 Apartment data

In the data apartment, only the best models are tried. Hence, the only Random Forest
and the LSTM after the RF are confronted.

3.3.1 Random Forest multiregression
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Figure 3.6: RF on apartment data

Table 3.5: Performance RF on apartment data

Sensitivity Specificity Precision F1 Score

Class 0 0.87 0.75 0.89 0.88
Class 1 0.34 0.92 0.43 0.38
Class 2 0.43 0.90 0.39 0.41
Class 3 0.61 0.96 0.23 0.34

Accuracy: 73.5%
Sensitivity: 56.5%
Specificity: 88.3%
Precision: 48.6%
F1 Score: 50.3%

In terms of regression the RMSE and MAE are reported:

RMSE: 0.69
MAE: 0.38
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3.3. Apartment data

3.3.2 LSTM on RF - Apartment
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Figure 3.7: LSTM on RF for apartment data

Table 3.6: Performance LSTM on RF for apartment data

Sensitivity Specificity Precision F1 Score

Class 0 0.87 0.75 0.90 0.89
Class 1 0.34 0.92 0.40 0.37
Class 2 0.39 0.89 0.33 0.36
Class 3 0.45 0.96 0.25 0.32

Accuracy: 72.7%
Sensitivity: 51.3%
Specificity: 88.1%
Precision: 46.9%
F1 Score: 48.3%

In terms of regression the RMSE and MAE are reported:

RMSE: 0.90
MAE: 0.46

48



Chapter 3. Results

3.3.3 Error per subject

Figure 3.8: RMSE per subject

Figure 3.9: MAE per subject
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Chapter 4

Conclusions

To conclude, the performance of the proposed models are still too poor to be used
in real-life scenario. The lack of sensitivity makes the classifier too unreliable. How-
ever this research has been conducted on the basis of only accelerometric sensors.
This was a specification to be respected and it was just an attempt to see if, with
modern deep learning techniques, the information inside the accelerometric signals
was enough to perform with good performance the classification. Usually the mo-
tor symptoms are studied using not only the accelerometer but also magnetometer,
gyroscope and many times also Electromyography and/or Vertical Ground Force sen-
sors (these last sensors are actually mainly used for Freezing of Gait or other forms of
akinesya).

Other interesting fact is the evaluation of the LSTM net on the output of the RF. This
idea has been elaborated to give a sense of temporal continuity of the predictions of
the Random Forest. It’s interesting notice how the LSTM improve the results of the RF
in the laboratory dataset while its effect is not relevant in the apartment dataset. This
can be explained by the fact that in the laboratory the tasks were repeated different
times and since they were standardized a certain similar pattern among the subjects
is present in the same task. On the other hand, the subjects were totally free in the
apartment environment, hence the resulting temporal sequence was different from
the laboratory. Since the LSTM was trained on the predictions of the RF but in the
lab, it makes sense that it performs better than the median of the predictions in the
lab but not in the apartment where the conditions changed.

Nevertheless this work showed how wearable sensors and modern techniques of Ar-
tificial Intelligence can be very useful in the medical field not only for medical images
and diagnosis but also in the field of medical signals and their classification even in a
very complex scenario like the prediction of severity of LID. It’s important to highlight
the fact that in recognition of these symptoms there is also an intrinsic error due to the
fact that different clinicians can disagree in the severity of dyskinesia of a movement.
Indeed the experience of the clinician play a key role in its scores. The doctor will
tend to assign the worst possible score to the subject who present the highest level of
impairment he has ever seen, however another doctor, with usually more experience
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won’t tend to assign the highest severity very easily.

Finally the results obtained in the Apartment environment are the first ever. To best in
my knowledge, no other studies ever tried to predict Levodopa Induced Dyskinesia
in a totally free environment. All the precedent studies reported results in terms of
scripted tasks in the laboratory environment.

Clinical observation for drug titration is for now not intended to be overtook by algo-
rithms and machines. It’s a too delicate issue and a clinical decision is still necessary.
However in a future, thanks to the development of always more sophisticated sensors
and understanding of physiological data and motor patterns would be possible to de-
ploy an AI-powered DSS (Decision Support System) for clinicians for all the different
motor symptoms of Parkinson’s disease.
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Future Outlooks

Since it’s actually the first time an experiment like this (in the apartment) has ever
been conducted, it’s plenty of future works and improvements. For sure it’s very pos-
sible to improve the Recurrent Neural Network by a better understanding of the ar-
chitecture and of the parameters to set the net. However the real future improvement
would be to consider not only the accelerometric data but also data from other sen-
sors, indeed the gyroscope can be very useful to understand the real orientation of
the limbs and this can be a key feature for predict dyskinesia.

In my opinion the idea of training a model in data obtained from scripted tasks is a bit
limitative if then the model has to be tested in real-life scenarios. What I would sug-
gest as future work is to have a training set obtained in similar conditions of the test
set. This means that the data acquisition would both be taken in a simulated apart-
ment full of cameras and then the dyskinetic movements will be rated by experts.
However the data should be enough to train a model.

Another major issue was the lack of true positives. There were too many true neg-
atives and few cases of dyskinesia. Moreover all the cases of dyskinesia were over-
lapped in the space of features. Probably a bigger dataset with more clear true posi-
tive would be the best for a proper development of the model.

Finally, many other paths can be tried in the Machine Learning field, it’s plenty of
different Deep Learning techniques that might be more efficient than the Random
Forest. The investigated one (LSTM) didn’t lead to great results, however other paths
could be tried. To itemize some of them:

• CNN 1D for signal analysis

• GRU instead of LSTM

• Autoencoders for feature extraction

• Boltzman Machines for feature extraction

Another limitation could have been the sensors location. It’s possible that since they
were in the body extremity, they weren’t that sensible to dyskinetic movements oc-
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curring in the proximal part of the limb. For instance if a sever dyskinetic movement
occurred on the thigh, the clinician rated the symptom as 3, however it’s possible
that in the foot the movement was near to be null. In similar way, if the dyskinetic
movement appear on the thigh and the real score is 3, the sensor will now sense a
different signal respect to the dyskinesia present in the thigh. This will confound a
lot the model since it will see signal with different features have the same score and
signals with similar features have the same score.
To try to fix this issue, more sensors may be needed.

Otherwise a total different and new approach could be used to tackle this problem,
instead of focusing on the mere signals acquired by different body locations or even
physiological signals, since clinicians rates the these symptoms based on videos an
AI could do the same.

Indeed we can discuss infinitely about the sufficiency or not of the information con-
tained in accelerometric signals. The fact is that since the clinician is rating a video,
the video has for sure the information to make that decision. Hence a total different
model would be needed. A real future outlook could be the development of DSS (De-
cision Support Systems) based on Artificial Intelligence that could be connected on
cameras in the very apartment of the subject. This would avoid the encumbrance of
some wearable devices but could creat some bureaucratic and privacy issues.

The alternative could be standardize the apartment and the camera location and ask
to the subject to arrive in the location and set him free to do whatever he wants while
observed by cameras connected to the AI.
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Appendix A

Random Forest

Random Forest is an ensemble method created from decision trees. An ensemble
is a way to use many different weak learners and combine their contribute in a way
to create a better model. In the classification setup of the ensemble, the different
learners give their contribute by voting their result, the final result will be the one
which received more votes. In the regression setup the different results are averaged.

A.0.1 Decision Tree

A decision tree is a simple model where many different decisions are taken in a binary
mode. Each decision brings to a branch with a different path of further decisions, the
input and the output are connected by this path of different decisions usually based
on simple thresholds. Traditionally decision trees can be create manually, their power
is in the easy explication and comprehension of the connection between input and
output. A decision tree can be interpreted as a flowchart-like structure where each
node test a feature of the dataset, each branch is the result of the test and each leaf is
the final class (classification tree) or value (regression tree).
All classification tree algorithms have to address two common problems:

“How to split a node t and when to stop splitting it?”
The term Classification And Regression Tree (CART) is a hypernym used to refer to
both regression and classification decision trees. These trees are based on the same
general idea but they slightly differ on the procedure used to determine where and
how the branch is split [16].
C4.5 and CART follow the exhaustive search approach where the basic steps are ex-
posed in algorithm 4. Being X the set of predictor variables and S a subset of the
values taken by X , in such a way that S ∈ X . [25]

The stop criterion in algorithm 4 is related to the level of impurity of the child nodes.
The metric for impurity depends on the algorithm used, nowadays the scikit-learn
tool in Python and the Matlab functions to create DTs, both use the CART algorithm
which use the Gini impurity. There are literally tons of different algorithms for choos-
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Algorithm 4 Pseudocode for tree construction - Exhaustive search

1: Start at the root node
2: for each X do
3: Find the set S that minimizes the sum of the node impurities

in the two child nodes and choose the split S ∗ ∈ X ∗ that gives the
minimum overall X and S

4: if Stopping criterion is reached then
5: Exit
6: else
7: Apply step 2 to each child node in turn

Figure A.1: This is an example of a decision tree structure. Left: the leaves show the prob-

ability of a certain event based on the decisions upon the input variables. Middle 3-

dimensional plot of the decision tree based on the path represented on the figure in the

left, Right: Aerial view of the middle plot. The chances of the event studied is higher in

the darker areas. [28]

ing how and where split a branch. During this work, the Random Forest has been de-
veloped on the basis of Decision Trees created with the CART algorithm. Gini impu-
rity function: It’s an indicator of how often an item chosen randomly from the subset
is mislabeled if it was labeled in a random way according to the distribution of labels
in the subset. Supposing i ∈ {1, 2, ..., J } being J the total number of classes and pi the
part of elements labeled as i in the subset. The Gini impurity represents the sum of
probability
∑ J

i=1 pi of an element labeled as i times the probability
∑

k 6=i

pk = 1−pi of

mistaking during classification of the element.

IG (p ) =
J
∑

i=1

pi

∑

k 6=i

pk =
J
∑

i=1

pi (1−pi ) =
J
∑

i=1

(pi −pi
2) =

J
∑

i=1

pi −
J
∑

i=1

pi
2 = 1−

J
∑

i=1

pi
2

Decision trees are very easy to implement and are useful when the problem is easy
to model and usually few features are involved. However as a drawback they easily
tends to overfit on the training set, hence their generalization power is little. Here
different procedures can be used to enhance this aspect.
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Figure A.2: How to choose the algorithm for Decision Tree

A.0.2 Bagging

The word bagging comes from bootstrap aggregation. The general idea consists in
splitting the data in random different ways, feed these subdata to decision trees, each
of them will provide different results, to reduce the variance the results will be aver-
aged if a regressor is desired or a voting system will be used if a classifier is preferred
instead.

IDEA: build a number of decision trees on bootstrapped training samples and, each
time a split in a tree is considered, randomly chose m predictors (as split candidates
from the full set of M predictors.

Figure A.3: General Ensemble schema [31]
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Neural Networks for Time Series

One clear deficiency of Neural Network models compared to symbolic models is the
difficulty in dealing with temporal series and be able to keep in consideration items
in an ordered way. Prediction problems constitute a special subclass of function ap-
proximation problem in which the following values need to be determined from past
values. HAR (Human Activity Recognition) is a classical field where there is a clear
need to keep into account previous items in order to predict the followings or classify
a determined movement. Using the sequence of the signal in movement will help to
model complex activity details and enhance the performance in recognizing patterns
useful for classification and regression models. Recently many studies have explored
different types of RNN for HAR.

B.0.1 Convolutional Neural Networks

Bidimensional CNNs can extract translational invariant local features in a great way,
however they become ineffective when modelling temporal patterns in data. But one
dimensional CNNs are actually one of the possible approaches. With RNN, you would
use a cell that takes as input previous hidden state and current input value, to return
output and another hidden state, so the information flows via the hidden states.

With one dimensional CNNs, you would use time-invariant filter functions in paral-
lel to sliding windows along the input sequence, and stack such windows on top of
each other, in such a way that higher-level windows would look for patterns within
the lower-level patterns. Using such sliding windows can be useful for finding repeat-
ing patterns within the temporal data. However, nowadays, Matlab doesn’t have any
procedure to implement CNN-1D on temporal data. For this reason Python has been
used to try this approach.
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B.0.2 Recurrent Neural Networks

If you think to your brain which contains billions of neurons, they’re all connected
together somehow and there are many loops without any single direction. When we
make a decision now we are not making that decision based only on what we see/hear
now but based also on past events. In figure B.1 the hidden layer is just connected

Figure B.1: Most basic Recurrent Neural Network

back to itself. Since the independent variable here is time our 3 major data variables
need to be indexed by time so we call our input x (t ) instead of just x , we call our
output h (t ) instead of y and we call the hidden layer value h (t ) instead of just h .

x (t ) = g i v e n (B.1)

y (t ) = s o f t ma x (W T
0 h (t ) + b0) (B.2)

h (t ) = f (W T
i x (t ) +W T

h h (t −1) + bh ) (B.3)

y (t ) only depends on h (t ), calculating y (t ) is as simple as usually is, it’s just a regular
dense layer. We multiply our transposed weight matrix and add our bias vector and
apply an activation function which can be a sigmoid, an hyperbolic tangent, a soft-
max or whatever else. The layer of interest in a RNN is the hidden layer, to calculate
h (t ) we have both a term that depends on x (t ) and a term that depends on h (t − 1).
Since x (t ) is a vector of size D and h (t ) is a vector of size M, we need to set the weight
matrix to be consistent with these vector sizes. Assuming we’re doing multi classing
classification where K is the number of classes:

s ha p e (x (t )) =D s ha p e (Wi ) =D ×M (B.4)

s ha p e (h (t )) =M s ha p e (Wh ) =M ×M (B.5)

s ha p e (y (t )) = K s ha p e (Wo ) =D ×K (B.6)
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One way to think about h (t ) is that is just a feature vector as it was in a feed forward
neural network but it also contains a memory of the past via h (t −1). You can think at
Wh as a weight matrix that tells h (t )which part of h (t −1) are important to remember
and which are not. One way to think to a RNN is just to unroll it along time, so imagine
time going horizontally and the Neural Network going upward then we can unroll the
NN, a schematic representation is shown in figure B.2. This brings us to a very impor-
tant idea which is about not thinking to a sequence as a sequence in time but rather
as a static set of inputs. In such a case we have simply a Neural Network with shared
weights, so we see that Wi , Wh and Wo all show up t times. So it’s a specially designed
NN with the same weights repeated over and over again. In this scenario it’s like all

Figure B.2: View of a RNN unrolled as a Feed Forward ANN

happening at the same time with this not common architecture for a ANN. Theoreti-
cally these weights could also be different weights but it’s more common while using
the RNNs to use the same weights. A question that may raise is “why is not possible to
feed a Feed-forward Neural Network with my sequence? Why do we need this special
architecture?”. Suppose to have a sequence x (t ) = [x (1), x (2), x (3), x (4)] but instead
of having T (in this case T = 4) different input vectors of size D , we have a big input
vector of size T ×D . In an analog way, there will be T different h and T different y in
order to have all the same variables of before except that now they’re all concatenated
together.

Let’s calculate the total number of parameters for a Feed-forward net with one input
layer, one hidden layer and one output layer in which each layer has the same number
of neurons (note that this is required in our hypothesis of comparing RNN with Feed-
forward ANN):

• Input parameters:

– T = 161 (sequence length)

– D= 3 (input dimensionality)

– M = 25 (hidden layer size)

– K = 4 (number of output classes)

• Wi→h = T ×D ×T ×M = 1 944 075 parameters

• Wh→o = T ×M ×T ×K = 2 592 100 parameters
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• Total: 4 536 175 parameters without counting the bias terms.

Wi→h is the input to hidden weight matrix
Wh→o is the hidden to output weight matrix

This is a huge number of parameters and is exhaustive in terms of computation time.
However it’s been mathematically demonstrated that the Feed-forward architecture
is able to approximate every kind of function, so it should work.

Let’s have a look of the number of parameters involved in a Recurrent architecture.

• Input parameters:

– T = 161 (sequence length)

– D= 3 (input dimensionality)

– M = 25 (hidden layer size)

– K = 4 (number of output classes)

• Wi→h = D ×M = 75 parameters

• Wh→h =M ×M = 625 parameters

• Wh→o =M ×K = 100 parameters

• Total: 800 parameters without counting the bias terms.

In RNN you have a structure which allows you to have a fraction of the weights and
allows you to use those weights in a more intelligent way.

The numbers used are the numbers in my thesis where each windows was long Other
than the fact of huge number of parameters, Feed-forward Neural Netwroks suffer of
the fact that the input must be equal in size. However normally sequences don’t sat-
isfy this requirement. This problem is also present for RNN however there are ways
to tackle and partially solve the issue. Recurrent Neural Network (RNN) contains
connections from output nodes to previous layers and they allow interconnections
among nodes of the same layer. RNNs are, nowadays, the gold standard for temporal
series analysis and they find huge utilization in Natural Language Processing (NLP)
and in general, in every field in which prediction is the goal.

Recently many studies have explored different kind of RNN models for HAR. Inoue
et al. (2016) looked at the best combination of architecture and optimal parameter
values to get the best performance possible. They noticed that by increasing the num-
ber of layers, the computational time and the memory usage increases and they con-
cluded with an optimal architecture of 3 layers.

Many different models of RNN have been proposed along time, in this work mainly 2
different types of RNN have been used:
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Figure B.3: RNN unrolled in time. Back-propagation highlighted [29]

• BiLSTM (Bidirectional Long Short Term Memory)

• BiGRU (Bidirectional Gate Recurrent Unit)

The bidirectional approach means that each sequence will pass twice through the
different cells, once reversed respect to the other. This reverse-time approach is pos-
sible only in offline predictions but it’s been shown to considerably increase the per-
formance of both LSTM and GRU.

The long term dependencies problem

The exploding gradient is a problem due to the fact that the norm of the gradient
will increase until exploding during training a Recurrent Neural Network. It’s been
introduced at first in Bengio et al. (1994)[22]. In the gradient descent algorithm we’re
trying to find the global minimum of the cost function. A generic RNN, with input ut

and state xt where t is the time step:

xt = F (xt−1, ut ,θ ) (B.7)

By defining

• ut is the input at time t

• xt is the hidden state of the network at time t

• Wr e c : the parameters of the model given as recurrent weight matrix

• b: is the bias

• Wi n the input weight matrix, collected in θ for the general case.

• x0 is given by the user, learned or imposed at 0

• σ is an element-wise function.

• E =
∑

1≤t≤T Et represents a measure of the performance of the network
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• Et =L (xt ) is the error obtained from the output at time t

By writing the equations of gradients in a sum of products form, Pascanu et al. [30]
derived the following formulas:

∂ E
∂ θ
=
∑

1≤t≤T

∂ Et

∂ θ
(B.8)

∂ Et

∂ θ
=
∑

1≤k≤t

�

∂ Et

∂ xt

∂ xt

∂ xk

∂ +xk

∂ θ

�

(B.9)

∂ xt

∂ xk
=
∏

t≥i>k

∂ xi

∂ xi−1
=
∏

t≥i>k

WT
r e c d i a g (σ′(xi−1)) (B.10)

∂ +xk
∂ θ is the partial second derivative of the state xk with respect to θ .

“To understand this phenomenon we need to look at the form of each temporal compo-
nent, and in particular at the matrix factors ∂ xt

∂ xk
that take the form of a product of t−k

Jacobian matrices. In the same way a product of t−k real numbers can shrink to zero or
explode to infinity, so does this product of matrices” [30]. This represents an explosion
or a vanishing of the long term components making impossible to the model to learn
patterns in events temporally far among each other.

B.0.3 Long Short Term Memory LSTM

LSTM are special RNN designed to avoid the problem of Long-Term dependencies.
It’s actually specially designed to find patterns in long periods of time. They were
firstly introduced by Hochrereiter & Schmidhuber in “Long Short-Term Memory” (1997)
[32]. Generally we can imagine the RNN to combine in some way the input in time t
with the output of the previous cell state. In figure B.4 the RNN uses a simple t a nh
activation function for each cell, however in this way, there’s no protection for Wr e c

when is back-propagated through the chain. In figure B.5 is represented the structure
of the LSTM. The cell state is like a conveyor belt whereas the important information
is passed from cell to cell with only few controlled changes. These changes are done
by gate layer units.

The first step B.7 shows the behavior of the forget gate layer. The sigmoid neural
network concatenate the output of the precedent cell ht and the current input xt and
outputs a value ft that is informative of what to forget about the previous cell state
Ct−1.

In step 2, figure B.8 the input gate layer and the input modulation gate layer decide
how to update the old cell state in a way that will keep into account the new informa-
tion arrived combined with the past cell output.

Step 3, figure B.9 is where the update of the cell state really take place.

Finally, step 4 represented in figure B.10 decides the output of the current cell. This
output ht will be a combination of the current cell state, the previous output and the

64



Appendix B. Neural Networks for Time Series

Figure B.4: General architecture of a standard RNN, the repeating module contains a single layer
[34].

Figure B.5: LSTM schema, the repeating module contains 4 interacting layers [34].

Figure B.6: Legend of the symbols used in the LSTM schemas [34].

current input. Since ht is finally obtained by a point-wise multiplication between the
output of a sigmoid layer and a tanh function, its range will stay in (-1, 1).

B.0.4 Gate Recurrent Unit GRU

This is a pretty dramatic change of the LSTM, it’s been firstly introduced by Cho et al.
in 2015 [15]. It’s mainly composed by 2 gates: the update and the reset gate and the
update gate. This last gate the forget and input gate of the LSTM in a single one.

The main advantage of the GRU over the LSTM is a minor number of trainable param-
eters resulting in more robustness to overfitting and a decrease in terms of compu-
tational time. Figure B.11 shows the math behind each gate, while figure B.12 shows
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Figure B.7: LSTM Step 1 [34].

Figure B.8: LSTM Step 2 [34].

Figure B.9: LSTM Step 3 [34].

Figure B.10: LSTM Step 4 [34].
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the differences among the gates in LSTM and GRU.

Figure B.11: Gate Recurrent Unit - GRU [34].

Figure B.12: LSTM and GRU, comparison among gate layers [10]
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