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Introduction 

Objective 

The present work is framed in the field of maintenance engineering. Its primary aim is the 
application of a statistical technique and the evaluation of its effectiveness on monitoring 
performance and health condition of complex equipment of a cogeneration plant. This plant is 
serving food industry. More specifically, the case study regards one internal combustion 
diesel engine. Nowadays, maintenance plays a decisive role in the path towards sustainable 
manufacturing and data-driven predictive maintenance strategies are expected to yield 
multiple benefits: minimization of negative environmental impacts, increase in the life span of 
facilities and reduction in maintenance costs. For example, the consumption of hydraulic oil 
of a machine tool can be decreased. By measuring crucial parameters like the concentration of 
particles and the water content in the hydraulic oil, it is possible to change the fluid only when 
necessary. Whenever the lubrication oil is substituted later than the conservative maintenance 
schedule suggested by the supplier, the annual quantity of waste lubricating oil is reduced. As 
a further example, if the degradation process of a SCR system is monitored, then appropriate 
maintenance tasks will be executed prior to component failure. These actions permit to use 
the component more efficiently, with concurrent cuts in the emissions of NOx pollutants. 

Expected results 

This research aspires to develop a method for the gathering, the rationalization and the 
validation of the available operational data. The first part of the study is dedicated to data 
processing and to the creation of a reference model for the internal combustion engine, on the 
basis of the available database. The monograph contains the definition of computational codes 
and verification of model robustness and accuracy, with the support of maintenance history 
for the components under examination. Moreover, output results analysis is offered, for the 
purpose of identifying incipient conditions of drop in operational performance and/or of 
operational problems that are dissimilar from those due to regular working cycles of the 
endothermic engine, ICE. 

State of the art 

Before 1950, maintenance was essentially unplanned, taking place only when breakdowns 
occurred. Between 1950 and 1960, preventive maintenance (PM), also named planned 
maintenance, was introduced. The idea behind this technique is to establish periodic intervals 
for machine inspections and maintenance regardless of its health condition. Even though this 
policy sometimes reduces equipment failures, it is labour-intensive, it does not remove 
catastrophic failures and it results in unnecessary maintenance. In this context, condition-
based maintenance (CBM) steps in. Condition based-maintenance suggests maintenance 
interventions either founded on information gathered via online monitoring or based on a non 
real-time signal processing, like vibrational monitoring. CBM tries to avoid superfluous 
maintenance duties by performing maintenance actions only when an incipient failure 
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condition is observed. A CBM program, if properly defined and successfully implemented, 
can significantly lessen maintenance costs [1] [2]. Furthermore, CBM is an efficient method 
for switching from classical “fail and fix” practices to a “predict and prevent” methodology. 

Generally, the target of CBM is the informed judgement that supports maintenance decisions 
and the success of CBM relies upon three connected processes: monitoring, diagnostics and 
prognostics. Diagnostics is the process of estimating the health status and the equipment 
degradation exploiting information delivered by the condition-monitoring system. The most 
important objectives of diagnostics are: 

a) fault detection, which indicates that an unwanted event is impending; 
b) fault isolation, which locates the faulty component; 
c) fault identification, which facilitates the ascertainment of the root cause of the fault. 

Prognostics is the skill to forecast the evolution of engine deterioration [3]. In other words, 
prognostic aids in foretelling how much time is left before a failure (or a fault) arises, given 
the current state of the system and its past operating profile. The time left previous to 
observing a failure is called remaining useful life [1]. Lastly, recent years are witnessing the 
rapid development of prognostics and health management (PHM), that aims to supply users 
with an integrated view of the health state of a machine or an overall system. This is 
achievable thanks to the growth of information technology, IT. Health management is the 
process of performing opportune and prompt maintenance actions and making precise 
logistics decisions based on outcomes from diagnostics and prognostics, available resources 
and operational request [4]. 

The present thesis addresses the aforementioned topics, with a particular attention to 
diagnostic and prognostic in maintenance decision making. 

Methodology and case study 

In order to fulfil these intentions, it is necessary to process a big amount of data. A large raw 
database concerning a whole year of equipment operation was supplied. The preliminary step 
consists in defining, for endothermic engine, operating conditions, such as “full load”, 

“derated”, “stand-by”, etc. In case of several operating conditions, the creation of as many 
databases as the number of operating conditions is needed. Then the issue of rationalization of 
the entire data set is coped with. This procedure requires two stages. The first is on the single 
parameter, with the use of a control criterion based upon standard deviation. The second 
demands a comparison between subsets of parameters. A choice of significant variables is 
realized and the selection is grounded in Failure Modes and Effects Analysis, FMEA. FMEA 
is a qualitative and inductive methodology that allows highlighting the failure modes of 
different components that could affect the system’s functionality. The approach in FMEA 
seeks to point out a rational strategy for maintenance. In fact, FMEA involves reviewing 
systems to discover the mode of failure that may occur and its effect. The FMEA audit 
produces information on the range of variables to be quantified for specific failure modes. 
The various parameters to be considered are usually those which connote a fault condition, by 
either a decrease or an increase in the characteristic measured value [5] [6]. After the selection 
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of most relevant variables, z-score normalization is carried out. At this stage a trend of each 
important variable, with respect to time, is shown. When the percentage of retained data is 
suitable for a statistical analysis, the last step comprehends the application of one distinct 
statistical technique, Principal Component Analysis. Output results are essential for drawing 
conclusions, according to the prearranged goal. Flowchart in Figure 1 outlines the logical 
scheme followed throughout this experimental research. Blue blocks are within the scope of 
data pre-processing and they are described in the first half of Chapter 1 and Chapter 2; red 
blocks refer to statistical investigation of data and it is detailed in the second half of Chapter 1 
and Chapter 2. 
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Figure 1. An overview of the methodology 
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Chapter 1 – Theoretical aspects 

This chapter starts with an exposition of the tools developed for data pre-processing. Some 
alternative options of data processing are sketched, since the procedure followed was not the 
only possible solution. Subsequently, the chapter establishes the mechanics and properties of 
the data-analytic technique that was named Principal Component Analysis, PCA. A paragraph 
is then devoted to the multivariate quality control procedure which was employed in the 
current thesis, the Hotelling T2 statistic. Lastly, another method is introduced, the Q-statistic, 
and the reasons that promoted the choice of the former test will be explained. 

Chapter 1 attains the objective of covering the theoretical framework underlying this case 
study. 

Tools developed for data pre-processing 

Data acquisition is a series of steps that comprehend the collection, the conversion and the 
recording of useful data from a physical asset. The hardware of data acquisition systems 
usually comprises sensors, an amplifier circuit, an analogue-to-digital (A/D) converter, a data 
transmission device and a data recording circuit. A sensor is a converter that measures a 
physical quantity and converts it into a signal which can be read by an operator or by an 
electronic device. An electronic amplifier is an electronic instrument that elevates the power 
of a signal, ensuring the output matches the input signal shape, with a greater amplitude. An 
A/D converter is a tool which enables the conversion of a continuous physical quantity 
(generally voltage) into a digital number that represents the quantity amplitude. Digital 
signals bringing information on the health state of the component have to be conveyed to the 
control computer. 

Data processing plays a pivotal role in machinery prognostics and maintenance management 
and decision making. One of the first stages of data processing is data cleaning because data 
always contain outliers and errors. The scope of data cleaning is enhancing the chances that 
error-free data are employed for study and modelling. Without data cleaning step, the analyst 
could run into the “garbage in garbage out” situation. Incorrect data are due to several causes, 

such as human mistakes or sensor faults. There is not usually a simple way to clean data [1]. 

The abundance of data, coupled with the necessity for powerful data analysis tools, can be 
depicted as a data rich but information poor situation. In fact, a tangible risk is that this vast 
amount of data, collected and stored in large data repositories, could be seldom used to take 
important decisions. Efforts to extract the knowledge embedded in the huge amount of data 
are then extremely valuable. Therefore, data pre-processing, which is a branch of the broad 
subject called data mining, aims at improving the quality of a database, to prepare the basis 
for a reliable statistical research. The actions required for the knowledge discovery process 
are: 

1) data cleaning, to remove noise and inconsistent data; 
2) data integration, where multiple data sources may be merged; 
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3) data selection, where data suitable for the examination task are retrieved from the 
database; 

4) data transformation, where data are consolidated and turned into fitting forms for 
mining by conducting summary or aggregation and/or reduction operations; 

5) data mining, a key process where brilliant methods are executed to extract data 
patterns; 

6) pattern evaluation, to recognize the patterns which are really interesting; 
7) knowledge presentation, where reports and visualization techniques are utilized to 

show mined knowledge to operators and users. 

 

Figure 2. Knowledge discovery process as an iterative sequence of steps [7] 
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Figure 2 summarizes the knowledge discovery process as an iterative sequence of stages. 
Stages 1 through 4 are different types of data pre-processing, where data are prepared for 
mining. 

For a successful data pre-processing it is indispensable to have an overall view of the 
available database. A statistical description aids in identifying features of the data and 
underlining which data values should be treated as outliers. Statistics studies the collection, 
analysis, interpretation and presentation of data. Data mining has an intrinsic and strong link 
with statistics. A statistical model is a set of mathematical functions that outline the behaviour 
of the elements in a target class in terms of random variables and their related probability 
distributions. Quantities such as sensor measurements are thus considered random variables. 
Applying statistical techniques in data mining is far from trivial. A significant challenge is 
how to scale up a statistical method over a big database. Various statistical methods have a 
certain degree of complexity in computation and algorithms should be cautiously structured 
and adapted to avoid unacceptable computational costs. 

Another fast-growing discipline, closely related with data mining, is machine learning; it 
investigates how computers can learn from data to identify complicated patterns and to make 
clever decisions. Anyway, the above-mentioned matter goes beyond the scope of this thesis 
[7]. 

Outliers may be detected adopting statistical tests that assume a probability model for data, 
hence the reason for a look at a statistical quality control method. A method deriving from 
Shewhart control charts has been chosen. Control charts are mainly determined by two values: 
the upper and lower control limits. To use these charts, data generated for a single monitored 
parameter are separated into subgroups and subsets statistics, like the subgroup average and 
standard deviation, are computed. When the subset statistic does not fall within the two limits, 
the inference is that there is at least one outlier in that subgroup, which is discarded [8]. 

Delving into the details, let suppose to have N independent and normally distributed 
observations of a parameter X(t), which is interpreted as a random variable with mean μ0 and 
variance σ0

2. These N observations can be seen like a sequence of m random samples {Xij; i = 
1,...,n; j = 1,...,m} with n = N/m elements for each sample. The mean of a specific sample is: 

    
 

 
    

 

   

            (1) 

This statistic has mean and variance that are connected with those belonging to X: 

       μ
 
             

σ 
 

 
 (2) 

If the process is under a statistical control condition, 1 - α is the probability that any sample 
mean will fall between 

μ
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 α      μ 
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 α   (3) 
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It is customary to replace uα/2 by 3, yielding α = 0.0027 and a probability equal to 99.73%, so 
that three-sigma limits are employed. For the current work, a two-sigma rule was adopted, 
only with upper control limit, because it proved to be a good compromise between the risk of 
pointing out a false outlier and the risk of missed outlier; in the latter drawback the control 
method is not able to detect an outlier. Two-sigma rule reduces the indicated probability to 
95.46%. 

The values for μ0 and σ0
2 have to be estimated on the basis of available data samples: 
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with: 
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The result coming from equation (4) defines the central line of    chart while ±2 times the 
result given by the square root of (5) specifies the two distances, from central line, at which 
upper and lower control limits for    chart have to be drawn. The space delimited by the upper 
control limit (UCL) and the lower control limit (LCL) is called control band. The statistic to 
insert into    chart, for each mth sample, is the one provided by (1). 

On    chart, the statistic Sj, gained with the square root of (6) is represented. In order to assess 
the central line and control limits for    chart, it is necessary to compute average and variance 
of Sj: 

      σ               σ 
      

   (7) 

where: 

   
    

 
  

      
   

  
 (8) 

The coefficient c4 is frequently reported in existing literature on the subject, arranged in 
tabular form, since it varies according to sample size n. Instead of utilizing equations in (7), 
the following two excellent approximations were chosen: 

      σ                (9) 

        σ 
           (10) 

Thanks to this second option, after the selection of n, MATLAB code can automatically 
evaluate last equations. 
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Equation (9) brings to the central line of    chart, whereas the square root of (10) multiplied by 
2 produces the distance, from central line, where control limits have to be plotted [9]. The 
final assumption for this particular case study is that control chart related with average,    
chart, is not significant and may lead to the wrong elimination of data samples. 

An alternative method for statistical quality control is represented by    and R charts. R 
denotes the range of the sample, in other words, the difference between the largest and 
smallest observations inside the sample. Both methodologies should be based on at least 20 to 
25 subgroups or samples and this constraint is amply honoured, since every parameter is 
made of thousands of measurements. Generally,    and    charts are preferable to their 
counterparts,    and R charts, when the sample size n is moderately large, namely n > 10. The 
range method for estimating the variance of a variable X(t) loses statistical efficiency for 
moderate to large samples. In view of the fact that in this study n = 20,    and R charts are 
clearly not a compatible possibility. 

As stated above, a parameter X(t) located in the database is seen like a random variable with 
normally distributed observations. Broadly speaking, if x is a normal random variable, it 
follows the normal probability distribution: 

     
 

    
  

 
 
 
   
 

 
 

           (11) 

The mean of the normal distribution is μ and the variance is σ
2 > 0. The visual appearance of 

the normal distribution is a symmetric and bell-shaped curve, displayed in Figure 3. There is a 
straightforward interpretation of the standard deviation of a normal distribution. For example, 
the 68.26% of the population values fall in the interval determined by the mean minus and 
plus one standard deviation. 

 

Figure 3. Areas under the normal distribution [10] 
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Considering that a uniform and organized database, the output of data pre-processing, is a 
fundamental requirement for a truthful statistical analysis, it is common practice to apply this 
transformation: 

  
   

 
 (12) 

The aforementioned operation is known as z-score normalization or zero-mean normalization 
or simply standardization, because it converts a normally distributed random variable, 
denoted by N(μ,σ

2), into an N(0,1) random variable [10]. It is worth underlining that 
parameters standardization entails the removal of measurement unit from every variable, since 
standard deviation is expressed in the same units of measurement. The measurement unit 
employed may affect data analysis. For instance, a variable could seem to contribute to a great 
extent to the overall variability of the system, just because its scale of measurement has larger 
magnitudes than the other variables. Standardization finds a nice answer to this issue, trying 
to give all variables an equal weight. An alternative for data normalization is min-max 
normalization, which performs a linear transformation on the original data. Let suppose that 
minQ and maxQ are the minimum and maximum values of a variable Q. Min-max 
normalization maps a value vi of Q to vi’ in the range (new_minQ,new_maxQ) by calculating 

  
  

       

         
                             (13) 

Min-max normalization maintains the relationships among the original data values [7]. 

Z-score normalization is the last mosaic piece of data pre-processing and it follows temporal 
alignment of data, a problem connected with this peculiar case study whose solution will be 
discussed in the respective section. 

Methodology of Principal Component Analysis 

Maintenance activity merges different techniques and methods to decrease maintenance costs 
while augmenting availability, reliability and safety of equipment. As a consequence of this, 
one generally speaks about failures diagnostic, development of strategic responses at 
management level and scheduling of these actions. The above-stated steps are in line with the 
need of perceiving and understanding the phenomena, with the aim of acting accordingly. 
However, instead of comprehending a failure event which has just occurred, predicting or 
anticipating its manifestation seems more convenient in order to adopt suitable 
countermeasures; this is defined as the prognostic process. Prognostic permits to boost safety, 
reduce maintenance costs and down time, owing to an improvement in maintenance 
organization. Prognostic is based on assessment criteria, whose limits are dependent on the 
system itself and on the desired performance. Strictly speaking, the accuracy of a prognostic 
system is connected to its capability to approximate and forecast the equipment degradation. 
Prognostic methods can be associated with one of the following two approaches, each of them 
with pros and cons: model-based and data-driven approach. The model-based method 
supposes that a precise mathematical model can be formulated from first principles. For 
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instance, fatigue models founded on physics have been extensively used to characterize the 
genesis and the propagation of structural anomalies. The main benefit of model-based 
approaches is their ability to include a physical comprehension of the monitored system. The 
strong correlation with a mathematical model may also turn out to be a weak point: it is 
sometimes difficult or even impossible to simulate system behaviour. Data-driven method 
exploits real data to recognize features revealing the deterioration of components and to 
foresee the global system functioning. Data-driven approaches can be categorized into two 
distinct classes: artificial intelligence (AI) techniques, such as artificial neural networks 
(ANNs), and statistical techniques like multivariate statistical methods. The strength of data-
driven procedures consists in their ability to convert high-dimensional and noisy data into 
pieces of information which are crucial to diagnostic and prognostic decisions. A major 
disadvantage of data-driven approaches is their heavy reliance on the quantity and quality of 
system operational data [11]. 

The technique that best suits the purpose of this work is the Principal Component Analysis, a 
multivariate statistical method in which a number of related variables are transformed into a 
smaller set of uncorrelated variables. PCA method dates back to Karl Pearson in 1901, even 
though the widespread procedure used nowadays had to wait for Harold Hotelling who made 
a fundamental contribution to the technique development. 

A basic knowledge of matrix algebra is indispensable for the grasp of the present section. 
Some essential definitions and operations linked to matrix algebra will be briefly reported, 
whereas theorems are not germane to this dissertation and will not be included. In this 
paragraph, the method of principal components is explained by dint of a small hypothetical 
two-variable example, involving a couple of parameters that are part of the case study. These 
variables are the coolant Δp in Charge-Air Cooler for banks A and B. The example 
encompasses 15 pairs of observations which were obtained with a 10 minutes time span 
between two pairs of measurements, as displayed in Table 1. 

Minutes of the 
month 

Coolant Δp bank A 

[mbar] 
Coolant Δp bank B 

[mbar] 
35860 81.9 78.9 
35870 78.6 73.5 
35880 75.2 68.1 
35890 71.9 62.8 
35900 72.2 62.4 
35910 75.2 67.5 
35920 78.2 72.6 
35930 81.2 77.7 
35940 84.2 82.8 
35950 85.6 87.0 
35960 82.4 81.6 
35970 79.2 76.2 
35980 76.1 70.7 
35990 72.9 65.3 
36000 71.1 62.8 

Table 1. Data for PCA example 
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The preparation of Figure 4 is one of the first things to be considered, because a scatter 
diagram for such a limited number of samples would easily point out any outliers or other 
aberrations in the data as well as indicate the relationship between the two variables. 

 

Figure 4. Scatter plot of PCA example data 

The compulsory prerequisite for the clarification of PCA method is to determine the sample 
means, variances and the covariance between the two variables for the data in Table 1. Let x1 
be the variable coolant Δp bank A and the variable coolant Δp bank B be denoted by x2. The 
vector of sample means is: 

    
   

   
   

     
     

   

and the sample covariance matrix is: 

   
  

    

     
    

          
          

   

where the main diagonal elements of S are the variances and the off-diagonal elements are the 
covariances. Although the correlation coefficient between x1 and x2 is not required, it is often 
convenient to employ it, rather than the covariance. The correlation coefficient is defined as: 
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where s1 and s2 are the standard deviations of the two variables (i.e. just the square roots of 
the respective variances). The correlation coefficient r lies in the range [-1,1]. A vanishing 
covariance, viz. r = 0, is only a necessary condition for independence, but it is not a sufficient 
condition. 

The principal components procedure takes advantage of a noteworthy result from matrix 
algebra. A p x p symmetric, non-singular matrix, like the covariance matrix S, may be 
reduced to a diagonal matrix L by premultiplying and postmultiplying it by a particular matrix 
U such that: 

       (14) 

The diagonal elements of L, l1, l2,..., lp are called the characteristic roots or eigenvalues of S. 
Matrix U is orthonormal (i.e. both orthogonal and normalized) and its columns, u1, u2,..., up 
are termed the characteristic vectors or eigenvectors of S. The eigenvalues are obtained from 
the solution of the following characteristic equation: 

         (15) 

where I is the identity or unit matrix. More specifically, I is a square matrix that has ones on 
the diagonal and zeros elsewhere. The equation (15) produces a pth degree polynomial in l 
from which the values l1, l2,..., lp are calculated. In this instance there are p = 2 variables and 
hence 

        
            

            
                         

The values that satisfy this equation are l1 = 83.84 and l2 = 0.21. The characteristic vectors are 
given by the solution of the equations 

            (16) 

and 

   
  

   
   

 (17) 

for i = 1, 2,..., p. For the proposed example, i = 1 yields: 
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These are two homogeneous linear equations in two unknowns. Let t11 = 1 and merely use the 
first equation: 

                  

The solution is t21 = 1.6939. These results are then placed in the normalizing equation (17) to 
obtain the characteristic vector u1: 

   
  

   
   

 
 

       
 

   
      

   
      
      

   

In similar fashion, using l2 = 0.21 and letting t22 = 1, the second characteristic vector u2 
becomes: 

   
  

   
   

 
 

       
 
       

   
   

       
      

   

These characteristic vectors form the matrix 

          
             
            

   

U is orthonormal, that is 

  
           

           
       

In general terms, an orthonormal p x p matrix is a square matrix with the following properties: 

1)       , where     is the determinant of  ; 
2)     

  
        

  
      for all i, j and this implies that the sum of squares of any 

column or row is equal to unity; 
3)        

 
      for all j ≠ k, to wit, the sum of crossproducts of any two columns is 

zero and implicates that the coordinate axes, represented by these two columns, 
intersect at an angle of 90°. 

This signifies that      ; consequently, for an orthonormal matrix  ,       , where     
is the inverse of  . 

Furthermore 
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verifying equation (14). 

From a geometrical point of view, the routine just described can be interpreted as a principal 
axis rotation of the original coordinate axes x1 and x2 about their means. The elements of the 
characteristic vectors are nothing more than the direction cosines of the new axes related to 
the old. The Figure 5 highlights the angle θ11 between the x1-axis and the first new axis and 
the angle between this new axis and the x2-axis, θ21; u11 and u21 are the cosines of θ11 and θ21, 
respectively. 

 

Figure 5. Direction cosines for u1 of PCA example data 

Figure 6 contains the same relationships for u2, which locates the second new axis. In 
particular, θ11 = θ22 = 59.44°, θ21 = 90° - θ11 = 30.56° and θ12 = 90° + θ11 = 149.44°. Except 
for p = 2 or p = 3, equation (15) is not used in practice as the resulting equations become 
unwieldy. Iterative and numerical procedures, such as the power method, are available for 
obtaining both the characteristic roots and vectors. Most computer packages have currently 
substituted the power method with more efficient techniques; MATLAB library function pca, 
widely exploited in Chapter 2, utilizes, by default, the Singular Value Decomposition (SVD) 
algorithm. 
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Figure 6. Direction cosines for u2 of PCA example data 

The previously attained principal axis transformation enables to transform p correlated 
variables x1, x2,..., xp into p new uncorrelated variables z1, z2,..., zp. The coordinate axes of the 
aforesaid new variables are identified by the characteristic vectors ui which constitute the 
matrix U: 

           (18) 

The term in square brackets in (18) is the difference between the p x 1 vectors of observations 
on the original variables and their corresponding means. In the present example,        is a 
matrix with 2 rows and 15 columns. The transformed variables are named the principal 
components of x or PCs for short. The ith principal component is 

     
        (19) 

and has mean equal to zero and variance equal to li, the ith characteristic root. To distinguish 
between the transformed variables and the individual transformed observations, the latter ones 
are called z-scores. Substituting only the first two couples of example data in (18) produces 
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so the z-scores for the first observation are z1,1 = 7.495 and z2,1 = -0.421. The variance of z1 is 
equivalent to l1 = 83.84, while the variance of z2 is equal to l2 = 0.21. Table 2 includes, for the 
considered observations, the deviations from their means and the principal components along 
with a quantity that will be properly introduced later [12]. 

Minutes of the 
month 

       
[mbar] 

       
[mbar] z1 z2 T2 

35860 4.2 6.2 7.495 -0.421 1.529 
35870 0.9 0.8 1.167 -0.325 0.527 
35880 -2.5 -4.6 -5.211 -0.142 0.422 
35890 -5.8 -9.9 -11.453 0.005 1.565 
35900 -5.5 -10.3 -11.645 -0.457 2.627 
35910 -2.5 -5.2 -5.728 -0.447 1.360 
35920 0.5 -0.1 0.189 -0.438 0.929 
35930 3.5 5.0 6.106 -0.429 1.334 
35940 6.5 10.1 12.023 -0.419 2.575 
35950 7.9 14.3 16.351 0.510 4.448 
35960 4.7 8.9 10.074 0.521 2.522 
35970 1.5 3.5 3.797 0.531 1.536 
35980 -1.6 -2.0 -2.515 0.404 0.866 
35990 -4.8 -7.4 -8.792 0.415 1.754 
36000 -6.6 -9.9 -11.860 0.694 4.006 

Table 2. Results of PCA illustrative example 

The concept of principal components is graphically illustrated in Figure 7. The first principal 
component z1 accounts for most of the variability in the two initial variables x1 and x2. The 
information embedded in the whole set of all p PCs is perfectly equivalent to the information 
in the complete set of all original process variables. More generally, the basic intent of 
principal components is to find a new set of orthogonal directions that identify the maximum 
variability in the original data; this leads to a database representation which requires fewer 
than the initial p variables. Therefore, if a set of p (> 2) variables has substantial correlations 
among them, then the first few k (< p) PCs will hopefully provide a satisfactory description of 
the process [10] [13]. The larger k is, of course, the better the fit of the PCA model; 
conversely, the smaller k is, the more simple the model will be [12]. There are different 
criteria to choose the optimum number of retained PCs. The eigenvalues associated with each 
principal component reveal how much information, viz. variation, each PC explains. One can 
look at the cumulative percent variance captured by the first few PCs and select a number of 
PCs that accounts for a target percentage of the variability of data [14]. The proportion of the 
total variability in the original data explained by the ith principal component is given by the 
ratio 

    
  

          
     (20) 

Thus, one can easily assess how much variability is explained by keeping just a few (k) of the 
p principal components by computing the sum of the eigenvalues for those k components and 
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comparing that amount to the sum of all p eigenvalues [10]. This is the criterion adopted in 
the current study. For the treated example, the (20) yields λ%1 = 99.75% and λ%2 = 0.25%. 

Another common technique is to accept the PCs whose eigenvalues exceed the average 
characteristic root. The rationale here is that any deleted PC has a root smaller than the 
average. 

 

Figure 7. Plot of the example observations with respect to their PCs 

The quantity shown in Figure 8 indicates the overall conformance of an individual 
observation vector to its mean or an established standard. This quantity, due to Hotelling, is a 
multivariate generalization of the Student t-test and it is used to determine if the process is in 
control. The original form of T2 is: 

                    (21) 

The equation (21) does not involve PCA and is a statistic often employed in multivariate 
quality control. In the context of this research, Hotelling T2 control chart is exploited to 
highlight the presence of outliers that might be helpful to predict an impending failure event. 
The above-mentioned chart is a direct analogue of the Shewhart    chart and it needs an upper 
control limit, which is: 
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         (22) 

where n is the number of observation vectors and Fp,n-p,α is the F-distribution, connected with 
a level of significance α. The suitable value of Fp,n-p,α can be found in tabular form or with the 
aid of MATLAB finv command, which returns the inverse of the F cumulative distribution 
function. Obviously, Hotelling T2 control chart has only an upper control limit because T2 is a 
squared quantity. For the same reason, the ordinate scale is sometimes logarithmic. In the 
example examined in this chapter, p = 2, n = 15,            = 3.8056, so           

  = 8.1966. 
The last column of Table 2 reports the results of (21), represented in Figure 8 by green dots: 
there are no points out of control on the chart shown. 

 

Figure 8. Hotelling T2 control chart for PCA example data 

A further interesting property of PCA is the fact that equation (18) may be inverted so that the 
original parameters can be stated as a function of the full set of principal components: 

        (23) 

This implies that, given the z-scores, the values of the original variables can be uniquely 
determined. However, x will be perfectly recreated only if all the PCs are used. In cases where 
k < p PCs are retained, a simple estimate    of x will be produced. The Q-statistic is based on 
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the sum of squares of the distance of      from the k-dimensional space that the PCA model 
defines [12]. Hotelling T2 statistic is a measure of the variation within the PCA model, while 
the Q-statistic measures the lack of model fit for each sample. The latter one is evaluated as 
the difference between the data point and its projection on the PC model [14]. It has been the 
experience of several practitioners, particularly but not restricted to the physical sciences and 
engineering, that the greatest advantage of the Q-statistic is its ability to detect bad data, 
measurement errors, and the like [12]. A similar task pertains to data pre-processing and has 
already been carried out at this stage. In light of such considerations, Hotelling T2 method was 
chosen, since it does not seem strictly related to the specific subset of retained PCs and it is 
intrinsically independent of the PCA. 
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Chapter 2 – Case study 

The case study section explains the pathway to the transformation of a raw database, coming 
from a real cogeneration plant, into a data set which is ready for a statistical investigation; this 
transformation was possible thanks to a MATLAB code, built from scratch by the author. 
Details about the script are provided, in order to satisfy a curious reader. Then, the selection 
process of parameters subsets is delineated and the Principal Component Analysis is applied 
to the data pertaining to three months of 2017 plus May 2018. Finally, the focus of the 
statistical research concentrates on a larger group of variables, with a three-dimensional 
representation. 

The goal of the present part is the disclosure of the most relevant variables involved in the 
study and of the modalities that allowed the construction of a “tidy” and organized database. 

Moreover, the most appreciable results deriving from the synergy between PCA and Hotelling 
T2 statistic are included. 

Data pre-processing 

The methodology subsection contained in the Introduction touches upon FMEA key role in 
identifying failure modes of components. FMEA also suggests to measure some parameters 
because they potentially indicate the presence of faults. The aforesaid systematic approach 
provides information on the range of parameters that need to be measured for particular 
failure modes [15]. 

Failure Modes and Effects Analysis applied to the endothermic engine recommended plant 
manager to monitor all the 37 variables reported in Table 3. The large raw database coming 
from the field covers a period of 13 months, namely the 2017 calendar year plus May 2018. 
The latest month will turn out to be useful in the last part of this thesis. As shown in the first 
column of the table, each variable can be associated with a component, whose acronym is 
clarified at the bottom of the table (see legend to Table 3). Unfortunately, not all the sensors 
measurements were correctly recorded. For example, data sets on fuel oil flow rate at engine 
inlet were only available for November 2017, December 2017 and May 2018. Engine 
operating load is at the top of variables list because it is essential for the definition of ICE 
operating condition, which is the proper initial step of data pre-processing. The lack of engine 
operating load data set, of course, would have made worthless a full month of data. ICE 
database consisted of more than 20.5 millions of numbers, split into roughly 150 comma 
separated value files, CSV, on a monthly basis. Comma separated value files are a plain text 
format utilized for storing data in a tabular structure; the CSV format is popular, largely 
because of its versatility and because it can be loaded as a spreadsheet in software packages 
such as Microsoft Excel. Each file began with a header row, usually reporting sensors tags 
with each field separated by a comma. Observations were recorded in contiguous rows and 
fields were once again separated by commas. Every variable was registered in a distinct 
column. The total amount of numbers comprising the ICE database was determined with the 
help of Excel COUNTA function, a function that counts the quantity of cells that are not 
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empty in a specified range. The estimate is conservative, for sure, since it does not take into 
consideration indispensable pieces of information: timestamps linked with signals. 

 
A = Available data set; N/A = Not Available data set 

Year 
2017 2018 

Component Parameter 

             

G Engine 
operating load A A A A A A A A A A A A A 

FC 
Fuel oil flow 
rate at engine 

inlet 
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A A A A 

E 

Temperatures 
of cylinders 
A1, A2, A3, 

A4, A5 
exhaust gases 

A A A A A A A A A A A A A 

E 

Temperatures 
of cylinders 
A6, A7, A8, 

A9, A10 
exhaust gases 

A A A A A A A A A A A A A 

E 

Temperatures 
of cylinders 
B1, B2, B3, 

B4, B5 
exhaust gases 

A A A A A A A A A A A A A 

E 

Temperatures 
of cylinders 
B6, B7, B8, 

B9, B10 
exhaust gases 

A A A A A A A A A A A A A 

E 

Coolant Δp in 

Charge-Air 
Cooler (banks 

A and B) 

A A A A A A A N/A A A A A A 

TC 
Environmental 

temperature 
and humidity 

A A A A A A A A A A A A A 
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TC 

Revolutions 
per minute 

(banks A and 
B) 

A A A A A A A A A A A A A 

TC 

Inlet 
temperatures 
(banks A and 

B) 

A A A A A A A A A A A A A 

TC 

Outlet 
temperatures 
(banks A and 

B) 

A A A A A A A A A A A A A 

SCR 
Backpressure 

at SCR system 
inlet 

A A A A A A A A A A A A A 

SCR 
Differential 

pressure drop 
in SCR system 

A A A A A A A A A A A A A 

SCR 
Specific 

consumption 
of NH3 

A A A A A A A A A A A A A 

SCR 

Inlet and 
outlet 

temperatures 
of exhaust 

fumes 

A A A A A A A A A A A A A 

Legend 

G Generator 
FC Fuel Circuit 
E Engine 

TC Turbocharger 
SCR Selective Catalytic Reduction System 

Table 3. Parameters included in the work and their availability during the 13 months 

Usual operating pressures, temperatures and mass flow rates of a 10 MW ICE are displayed in 
Figure 9. Modern combustion engines are equipped with turbochargers, with the aim of 
raising the output and improving the efficiency. 

The database brought along some critical issues, joined to its real field origin and outlined in 
the current paragraph. The first problem occurs when a measuring device was unable to 
record an observation; this translates into void cells, like described in Table 4. A similar 
situation is given by the complete absence of data for a considerable portion of a day or for 
whole days. For instance, Table 5 outlines the dearth of data for exhaust gases temperatures of 
cylinders B1, B2, B3, B4 and B5, in the lapse between 18:29:28 of 22nd June 2017 and 
17:46:26 of 26th June 2017. 
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Figure 9. Typical temperatures, pressures and mass flows from a 10 MW combustion engine [16] 

Date Time 

Temperature 
of cylinder 
A6 exhaust 
gases [°C] 

Temperature 
of cylinder 
A7 exhaust 
gases [°C] 

Temperature 
of cylinder 
A8 exhaust 
gases [°C] 

Temperature 
of cylinder 
A9 exhaust 
gases [°C] 

Temperature 
of cylinder 

A10 exhaust 
gases [°C] 

06/01/2017 11:18:16 398 413 431 411 425 
06/01/2017 11:19:00 398 413 431 411 425 
06/01/2017 11:19:44      
06/01/2017 11:20:28      
06/01/2017 11:21:12      
06/01/2017 11:21:56 399 414 431 412 426 
06/01/2017 11:22:40 399 414 431 412 426 

Table 4. Short sequence of missing data 

Date Time 

Temperature 
of cylinder 
B1 exhaust 
gases [°C] 

Temperature 
of cylinder 
B2 exhaust 
gases [°C] 

Temperature 
of cylinder 
B3 exhaust 
gases [°C] 

Temperature 
of cylinder 
B4 exhaust 
gases [°C] 

Temperature 
of cylinder 
B5 exhaust 
gases [°C] 

22/06/2017 18:28:00 483 441 473 476 482 
22/06/2017 18:28:44 483 441 473 476 482 
22/06/2017 18:29:28 483 441 473 476 482 
26/06/2017 17:46:26 487 445 477 493 485 
26/06/2017 17:47:07 487 445 477 493 485 
26/06/2017 17:47:48 486 445 476 493 484 

Table 5. Unavailability of data for several days 

Table 6 highlights another issue, already recognizable in the preceding table. Some 
parameters were irregularly sampled, although they are part of the same month. The example 
reveals that at the beginning of July data capture was executed with a frequency of one 
measure per 41 seconds, while towards the end of July the time span between two values is 26 
seconds. Moreover, this non-uniformity in data sampling also appears for larger amount of 
time elapsed for two consecutive signals, as shown in Table 7. 
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Date Time 

Temperature 
of cylinder 
B1 exhaust 
gases [°C] 

Temperature 
of cylinder 
B2 exhaust 
gases [°C] 

Date Time 

Temperature 
of cylinder 
B1 exhaust 
gases [°C] 

Temperature 
of cylinder 
B2 exhaust 
gases [°C] 

02/07/2017 04:27:00 469 429 25/07/2017 05:42:00 471 428 
02/07/2017 04:27:41 469 429 25/07/2017 05:42:26 471 428 
02/07/2017 04:28:22 469 429 25/07/2017 05:42:52 471 428 
02/07/2017 04:29:03 469 429 25/07/2017 05:43:18 471 428 
02/07/2017 04:29:44 469 429 25/07/2017 05:43:44 471 428 
02/07/2017 04:30:25 469 429 25/07/2017 05:44:10 471 428 

Table 6. Irregular signals sampling for short time span 

Date Time 

Backpressure 
at SCR 

system inlet 
[mbar] 

Date Time 

Backpressure 
at SCR 

system inlet 
[mbar] 

14/02/2017 00:49:43 42.5 12/10/2017 14:57:54 27.5 
14/02/2017 01:49:43 33.8 12/10/2017 15:02:54 28.8 
14/02/2017 02:49:43 36.2 12/10/2017 15:07:54 30.0 
14/02/2017 03:49:43 40.2 12/10/2017 15:12:54 31.2 
14/02/2017 04:49:43 30.7 12/10/2017 15:17:54 32.4 
14/02/2017 05:49:43 39.9 12/10/2017 15:22:54 33.6 

Table 7. Uneven data collection for long time span 

Data acquisition was sometimes not synchronized, with variables recorded starting from 
disparate instants of the same month. The case just mentioned is typified by Table 8, where 
parameters belonging to the same nature, such as temperatures of cylinders exhaust gases, 
were registered beginning from different days and times of January 2017. 

Date Time 

Temperature 
of cylinder 
B1 exhaust 
gases [°C] 

Temperature 
of cylinder 
B2 exhaust 
gases [°C] 

Date Time 

Temperature 
of cylinder 
B6 exhaust 
gases [°C] 

Temperature 
of cylinder 
B7 exhaust 
gases [°C] 

03/01/2017 17:29:32 445 404 05/01/2017 16:31:28 409 433 
03/01/2017 17:30:16 445 404 05/01/2017 16:32:12 410 434 
03/01/2017 17:31:00 445 404 05/01/2017 16:32:56 410 434 
03/01/2017 17:31:44 445 404 05/01/2017 16:33:40 410 434 
03/01/2017 17:32:28 446 405 05/01/2017 16:34:24 410 434 
03/01/2017 17:33:12 446 405 05/01/2017 16:35:08 410 434 

Table 8. Temporal misalignment of data sampling 

An additional peculiarity found in the database is the presence of redundancy of data; a CSV 
file occasionally held data pertaining to the prior or to the following month. As illustrated by 
Table 9, extra data share an almost equal timestamp but there is no overlap in acquisition 
time. MATLAB code managed this kind of supplementary information appropriately. A 
further obstacle to address, preparatory to data pre-processing, was the incorrect structure of 
recorded values in some CSV files. Those files contained measurements in the configuration 
“integer part – comma – decimal digit – comma”. Thus, comma character was employed in 

delimiting fields and in dividing the integer parts from the fractional parts. The concurrence 
of the above-stated wrong format and negative numbers starting with a zero (Table 10) gave 
rise to a thorny issue. 
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Date Time 

Temperature 
of cylinder 
B1 exhaust 
gases [°C] 

Temperature 
of cylinder 
B2 exhaust 
gases [°C] 

Date Time 

Temperature 
of cylinder 
B1 exhaust 
gases [°C] 

Temperature 
of cylinder 
B2 exhaust 
gases [°C] 

02/02/2017 17:25:48 456 415 02/02/2017 17:25:40 456 415 
02/02/2017 17:26:32 456 415 02/02/2017 17:26:24 456 415 
02/02/2017 17:27:16 456 415 02/02/2017 17:27:08 456 415 
02/02/2017 17:28:00 456 415 02/02/2017 17:27:52 456 415 
02/02/2017 17:28:44 455 414 02/02/2017 17:28:36 455 414 
02/02/2017 17:29:28 455 414 02/02/2017 17:29:20 455 414 

Table 9. Redundancy of data in CSV files 

Date-Time,Backpressure at SCR system inlet,Differential 
pressure drop in SCR system,Specific consumption of 

NH3,Exhaust fumes temperature at outlet,Exhaust fumes 
temperature at inlet 

22-05-2017 11:49:43,-0,9,0,5,0,0,30,6,27,5, 
22-05-2017 12:49:43,-0,8,0,8,0,0,31,2,27,7, 
22-05-2017 13:49:43,-0,7,1,0,0,0,31,8,27,9, 

22-05-2017 14:49:43,27,2,1,9,130,4,319,1,76,3, 
22-05-2017 15:49:43,19,8,5,4,97,8,248,5,143,8, 
22-05-2017 16:49:43,12,3,8,9,65,2,177,9,211,4, 

Table 10. Anomaly in CSV file format 

Splitting blindly comma separated values into different columns would have led to an 
automatic conversion of “-0” into “0”, since Excel is not capable of distinguishing cells with 

“-0” from cells with “0”, unless these data are stored like words. A workaround consists in 

selecting “Text” for column data format, while exploiting the Text to Columns Excel 
function. It was then necessary to use Excel CONCATENATE function that joins two or 
more text strings into one string. Specifically, three types of cell were joined: the cell with 
measurement integer part, a cell with a dot and the cell holding observation fractional part. 
The cells resulting from the described operation were ultimately formatted as numbers. 

Last but not least, there are outliers inside the database; outliers are observations that differ 
considerably from the bulk of the data and Table 11 provides an example. It seems highly 
improbable that fuel oil flow rate drops to zero in few minutes before jumping suddenly to 
1856 liters per hour. Additional examples of outliers or “bad” values can be full scale values. 

Date Time 

Fuel oil flow 
rate at 

engine inlet 
[L/h] 

31/05/2018 23:46:00 1855 
31/05/2018 23:46:44 1854 
31/05/2018 23:47:28  
31/05/2018 23:48:12  
31/05/2018 23:48:56 0 
31/05/2018 23:49:40 1856 

Table 11. Outlier in a data set 
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All these difficulties arisen from the case study contributed to the need of a model which 
rationalizes and validates available operational data. The problem was handled by a 
MATLAB code, whose details are now explained. An intuition of paramount importance 
allowed the generation of an artificial seconds counter, equally applied to all observations. 
This temporal reference system works on a monthly basis, like the entire data pre-processing, 
and has its origin at time 00:00:00 of the first day of the month under analysis. For instance, 
00:00:59 of 1st March 2017 corresponds to 60 seconds. Time scale construction was carried 
out in every Excel worksheet that collected raw data pertaining to a precise month. The 
implementation of this idea demands little effort, namely the creation of two new cells for 
each timestamp. One cell reports the number representing the day of the month, obtained 
making use of a couple of Excel functions, i.e. DATE and YEAR. In the other cell, seconds 
counter is calculated with the aid of the following Excel functions: HOUR, MINUTE and 
SECOND. HOUR function returns the hour of a time value; the hour is given as an integer, 
ranging from 0 to 23. MINUTE and SECOND functions yield the minutes and the seconds of 
a time value, respectively. Both minutes and seconds are integers in the interval [0,59]. The 
formula adopted to determine seconds counter (SC) was: 

                                                     (24) 

where DoM stands for day of the month and tv is the cell with time value. The remaining 
terms of (24) are the amount of seconds in a day sD, the quantity of seconds per hour sH and 
the number of seconds per minute sM. In order to enhance the effectiveness of MATLAB code 
exposition, a practical example is provided. It involves the temperature of cylinder A1 
exhaust gases, covering the period from the 07:00:08 of 19th January 2017 to the 10:30:52 of 
20th January 2017, as summarized in Table 12. 

Date Time Seconds 
counter 

Engine 
operating 
load [kW] 

Date Time Seconds 
counter 

Temperature 
of cylinder 
A1 exhaust 
gases [°C] 

19/01/2017 07:00:08 1580409 6972 19/01/2017 07:00:08 1580409 385 
19/01/2017 07:00:52 1580453 6972 19/01/2017 07:00:52 1580453 385 
19/01/2017 07:01:36 1580497 6972 19/01/2017 07:01:36 1580497 385 
19/01/2017 07:02:20 1580541 6972 19/01/2017 07:02:20 1580541 385 
19/01/2017 07:03:04 1580585 6972 19/01/2017 07:03:04 1580585 385 
19/01/2017 07:03:48 1580629 7889 19/01/2017 07:03:48 1580629 385 
19/01/2017 07:04:32 1580673 8305 19/01/2017 07:04:32 1580673 406 

... ...  ... ... ...  ... 
20/01/2017 10:29:24 1679365 0 20/01/2017 10:29:24 1679365 108 
20/01/2017 10:30:08 1679409 0 20/01/2017 10:30:08 1679409 108 
20/01/2017 10:30:52 1679453 0 20/01/2017 10:30:52 1679453 108 

Table 12. Initial and final observations of data pre-processing example 

The choice of these temporal limits was focused on checking, confirming and showing the 
behaviour of proposed model. Maintenance history of internal combustion engine recounts a 
failure event that concerned fuel oil pump of cylinder A1, with engine shutdown at 09:20 of 
20th January 2017. Fuel oil seepage occurred and it entailed a reduced fuel flow rate in 
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combustion chamber. Temperature of cylinder A1 exhaust gases inevitably decreased before 
plant stoppage, while the overall engine power output remained constant with small 
oscillations. 

MATLAB script loads solely two data columns per variable from the Excel worksheet 
associated with a specific month: the column of signals and the column of seconds counter, 
which compresses date and time of a captured signal into a single number. Some parameters, 
like the backpressure at SCR system inlet, were sampled every 60 minutes (see Table 7) but 
the overwhelming majority of data acquisition frequencies was higher than one measure per 
minute. With the aim of unifying data representation within the same time step, a time scale 
of one minute was settled on. In accordance with this choice, a special care was required by 
parameters whose collection timestamps were a multiple of the minute. Each observation was 
extended for a certain amount of minutes and two options were examined. In case of variables 
recorded every hour, for example, the first possibility assumes that the acquired value lasts for 
the successive 59 minutes; the second alternative is founded on the principle that observation 
holds good for the 30 minutes that precede and the 29 minutes that follow the moment the 
measurement was captured. The first option prevailed over the other one because it only 
implies a guess about the upcoming values, i.e. the ensuing 59 minutes. The second idea, 
conversely, involves a supposition about both the future and the past. The method is 
graphically illustrated in Figure 10 that pertains to a short part of January 2017. 

 

Figure 10. Example of data extension 
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Magenta dots indicate original backpressure data, whereas each blue line is composed of 59 
neighbouring dots, to wit, the added data. The procedure was not repeated on the last 
observation recorded, owing to the fact that the value might have been obtained close to the 
end of the month; this would have caused an inexact extension until the early minutes of the 
succeeding month. The parameter selected for the example which accompanies the text does 
not require the technique just detailed, as one can infer from Table 12. Figure 11 shows the 
trend of the temperature of cylinder A1 exhaust gases, prior to data pre-processing. Looking 
at x axis, the lack of raw data for a sizeable portion of January 2017 is evident. Furthermore, a 
handful of data points are far from the regular working range. 

 

Figure 11. Raw data trend of the temperature of cylinder A1 exhaust gases 

One salient issue of the case study that needed to be tackled before the actual data pre-
processing was the presence of missing data. When MATLAB reads data columns from 
Excel, it stores empty cells with NaN, namely Not-a-Number. NaN elements bring trouble 
during calculations and had to be erased. The first logical step was the substitution of data 
values equal to 0 with NaN. This was feasible thanks to MATLAB standardizeMissing 
function and it was performed on the following variables: fuel oil flow rate, operating 
temperatures and revolutions per minute. An overview of the database induced the 
elimination of data below or equal to 0 from the parameters related to SCR system, since such 
values do not have any physical meaning. The last stage was the utilization of MATLAB 
rmmissing command, which removes NaN values together with their linked seconds counters. 
At this point, all matrices were exclusively filled with numbers. 
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The only interesting operating mode for the endothermic engine was the full load working 
condition. From a conceptual perspective, it is important to reveal that data extension 
procedure was never applied to the signals reporting engine power, regardless of the month 
under analysis. This was possible because the frequency of data sampling for engine operating 
load was higher than one measure per minute, when data were available. In addition, the 
power was considered to be described in a Boolean way and therefore not subjected to 
statistical variations. In light of the above, the power is free from constraints imposed by 
statistical quality control and had the fundamental purpose of defining the full load operating 
condition. In this regard, a threshold was set at 7800 kW. A matrix with 3 columns was built. 
Each row of the matrix refers to a specific minute of the month, hence the sum of the rows is 
equal to the number of minutes in the month. The first column keeps track of the number of 
minutes elapsed from the beginning of the month, in ascending order. The second column 
contains the values of power produced by the engine when system was running at full load. 
The algorithm was designed to check each 60 seconds time span, one by one. If two or more 
data of power higher than 7800 kW were found, the arithmetic mean of those values was 
written in the second column; if only one valid value of power was found, that number was 
directly stored in the second column; in all other cases, the code recorded NaN in the second 
column. The third column is composed of 0 and 1: 1 denotes a minute with an interesting 
engine operating mode, otherwise 0 is assigned to the fitting row. Then, a significant quantity 
was computed, namely the percentage ratio between the number of minutes associated with 
the full load operating condition and the total number of minutes in the month: 

   
                                                     

                    
     (25) 

Obviously, FL = 100% in an ideal situation, while FL = 49.2% in January 2017. The closing 
program instructions for power permitted the writing of first two columns of the aforesaid 
matrix onto a Microsoft Excel spreadsheet file, by virtue of a combination of MATLAB 
xlswrite and num2cell functions. The latter function allows to convert a numeric array into a 
cell array with consistently sized cells and without alterations to numeric values. 

Data pre-processing that pertain to the other 36 variables is now addressed; from now on, the 
actions performed and explained for one parameter, the temperature of cylinder A1 exhaust 
gases, extend to all variables. The knowledge of the minutes characterized by the absence of 
information about power or by a negligible operating condition granted the possibility of 
discarding data that fall within those minutes. With this intent, MATLAB code transformed 
each uninteresting minute into its respective interval of seconds, according to the 
aforementioned temporal reference system. Afterward, the program scanned all the variable 
column that retained the seconds counters in order to delete the rows holding both data and 
seconds that were part of useless time spans. This operation did not require seconds counters 
(with their respective signals) to be in chronological order, bypassing the obstacle of data 
redundancy in CSV files (see Table 9). Indeed, before data pre-processing, a supplementary 
string of data can always be added at the top or at the bottom of raw data columns, as long as 
it concerns the same parameter and month. Figure 12 shows the rationalization process 
applied to the observations set of the example. Baby blue dots represent the values of internal 
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combustion engine power, whereas dark blue horizontal line is the established limit for the 
operating condition. Magenta circles draw attention to the values of temperature that were 
rejected. The right side of the graph depicts the behaviour of the model when the engine was 
shut down. 

The algorithm evaluated the percentage ratio between the number of data left after working 
condition control and the total number of available input data for the actual data pre-
processing: 

   
                                                    

                                                            
     (26) 

For instance, OC = 95.5% for the temperature of cylinder A1 exhaust gases in January 2017. 

 

Figure 12. Operating condition control applied to the example data 

For the purpose of achieving an accurate statistical quality control, parameter observations 
were sorted in ascending order with respect to time or, more precisely, seconds counters. This 
was carried out with the help of MATLAB sortrows function and managed data additions, 
where they occurred. As stated in the subsection devoted to the theoretical aspects, a method 
having its origin in Shewhart control charts was employed, with a sample size n = 20. As a 
consequence, at most only 19 observations were left out from statistical quality control. 
Considering that each variable was made up of thousands of measurements, 19 signals can 
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really be deemed an irrelevant amount. The number of samples m was computed by means of 
MATLAB floor function: 

               
                                                    

 
  (27) 

The floor function rounds the argument to the nearest integer towards minus infinity. At this 
point, a n-by-m matrix was generated; each of its columns stored one of the m samples or 
subgroups. Quantities defined in (1), (2), (4), (5), (6), (9) and (10) were estimated with the aid 
of MATLAB mean and var commands. It is worth reminding the reader that the 2σ upper 
control limit criterion on    chart was adopted. Figure 13 illustrates the statistical check 
implemented on the temperature of cylinder A1 exhaust gases. For consistency’s sake, Figure 
13 includes exclusively the subgroups connected with the period of time that concerns the 
example. 

 

Figure 13. Execution of the statistical quality control on the example data 

Red dots represent samples statistic Sj, while bright green and blue horizontal lines 
correspond to the central line and upper control limit, respectively. Magenta circles emphasize 
small data clusters that did not pass the statistical test, like some subgroups at the beginning 
and at the end of example time span. Once the samples not in compliance with statistical 
requirement were identified, the column vector of variable observations was paired with the 
corresponding column vector of seconds counters. However, it has to be noted that a degree 
of caution was exercised. In order to ensure an error-free combination of the two vectors, 
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uninteresting data were replaced by NaN elements. Then, NaN values, together with their 
seconds counters, were removed through rmmissing function at a stroke. Again, a meaningful 
quantity was determined. Specifically, the percentage ratio between the amount of data left 
after statistical quality test and the total number of data available at the start of data pre-
processing: 

   
                                                    

                                                            
     (28) 

SQ = 89.5% for the temperature of cylinder A1 exhaust gases in January 2017. 

The objective of the last part of MATLAB code is the temporal alignment of data. The 
developed strategy called for the conversion of each minute of the month into an interval of 
60 seconds, according to the temporal reference system introduced. For example, the first 
minute of the month is equivalent to the interval [1,60]; the second minute is defined in 
[61,120] and so on up to the last minute of the month. In this way, minute by minute, the 
program searched for parameter observations associated with seconds counters that fell in the 
interval of the minute under review. If two or more data were found, the average of those data 
was recorded in the kth row of a new column vector, where k is the number of the minute 
involved in the iteration. In case of a month with 31 days, k goes from 1 to 44640 and the new 
vector containing data has, of course, a length of 44640. If only one value was detected, that 
measurement was written on the suitable vector position; NaN was registered whenever no 
data were found. Afterward, the number TA was calculated as follows: 

   
                                                      

                    
     (29) 

The numerator is the amount of data per minute that are useable in a statistical assessment; 
hence, NaN elements were not taken into account for TA evaluation. On the other hand, the 
denominator represents the amount of data that would be available in a perfect case. TA is a 
percentage ratio, like all the other values given by (25), (26) and (28). By the way, a direct 
comparison between (25) and (29) is allowed and the relation TA ≤ FL always holds. For 
instance, TA = 46.1% for the temperature of cylinder A1 exhaust gases. 

Figure 14 outlines the impact of temporal alignment on the example data. The vertical dash-
dotted line indicates the exact minute during which the engine was shut down: the 27921th 
minute of January 2017. As one can clearly deduce from Figure 14, the algorithm excluded 
few samples that were really close to the plant stoppage. If a sharp spike in the temperature 
occurred, MATLAB code would have eliminated the subgroups connected with the spike. The 
logical sequence of steps followed for the implementation of the different filters turned out to 
be an effective model. 

The last operation on data was the z-score normalization for each of the variables here 
considered. The methodology that supports the above-mentioned procedure has already been 
covered in the theoretical section of Chapter 1. In the end, the program wrote all the valid data 
on a Microsoft Excel spreadsheet file, as it did for engine operating load. Since the case study 
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comprehended 13 months, 13 Microsoft Excel files were generated. A uniform database was 
therefore accessible for use in any further statistical research and Table 13 gives an idea of 
how the observations have been organized. 

 

Figure 14. Temporal alignment performed on the example data 

May 2018 

Minute of 
the month Power [kW] Fuel oil flow 

rate [l/h] 

Normalized 
fuel oil flow 

rate 
... 

Temperature 
exhaust at 
SCR inlet 

[°C] 

Normalized 
temperature 
exhaust at 
SCR inlet 

1    ...   
2    ...   
... ... ...  ... ...  

44639 8269 1856 0.44766 ...   
44640 8275 1855 0.24732 ...   

Table 13. Structure of Excel worksheet containing processed data 

Annex A comprises one of data pre-processing expected results (see Figure 1), the trends of 
all the variables in May 2018. May 2018 has been chosen because it is representative of a 
month of plant optimal functioning. 

The MATLAB code expressly built for data pre-processing has several advantages: 

 it has been improved in terms of computational time, clearing items that lost their 
utility during the code execution from the system memory; 
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 it accepts data that are not in chronological order; 
 it has a flexible structure, because new variables can be added to the program with a 

few changes; 
 it is possible to distinguish between more than two operating conditions, modifying 

and increasing the number of thresholds set for working conditions but keeping the 
same basis; 

 it is adaptable to any month of the year; 
 it works also in case of leap years, needing a simple correction on the number of days 

in February. 

Table 14 is the complete summary of data pre-processing on the internal combustion engine 
database. The information provided in the table will be commented in the second part of 
Chapter 2, since the output of data pre-processing constitutes the starting point of Principal 
Component Analysis. 

 Year 

2017 2018 

Parameter Filters 

             

Engine 
operating load FL 49.2 93.9 89.5 43.0 30.0 30.8 16.7 0.0 33.5 45.4 28.4 17.5 78.1 

Fuel oil flow 
rate at engine 

inlet 

OC - - - -      -   91.4 

SQ - - - -      -   84.9 

TA - - - -      -   72.6 

Temperature 
of cylinder A1 
exhaust gases 

OC 95.5 99.2 87.8 44.5      46.9   83.2 

SQ 89.5 82.6 78.2 39.0      45.0   72.5 

TA 46.1 78.5 79.7 37.7      43.6   68.2 

Temperature 
of cylinder A2 
exhaust gases 

OC 95.5 99.2 87.8 44.5      46.9   83.2 

SQ 91.4 80.3 82.4 39.0      45.0   72.2 

TA 47.1 76.3 84.1 37.8      43.5   67.9 

Temperature 
of cylinder A3 
exhaust gases 

OC 95.5 99.2 87.8 44.5      46.9   83.2 

SQ 88.6 86.7 81.6 36.2      43.8   72.4 

TA 45.6 82.3 83.4 35.1      42.4   68.1 
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Temperature 
of cylinder A4 
exhaust gases 

OC 95.5 99.2 87.8 44.5      46.9   83.2 

SQ 89.2 84.3 81.6 39.0      44.8   72.5 

TA 45.9 80.1 83.2 37.8      43.3   68.1 

Temperature 
of cylinder A5 
exhaust gases 

OC 95.5 99.2 87.8 44.5      46.9   83.2 

SQ 84.8 82.8 81.9 38.8      44.8   72.7 

TA 43.7 78.7 83.6 37.6      43.4   68.3 

Temperature 
of cylinder A6 
exhaust gases 

OC 57.7 95.8 90.7 41.3      46.9   83.2 

SQ 51.3 76.3 79.1 34.4      43.8   73.5 

TA 43.7 74.1 77.8 35.7      42.4   69.1 

Temperature 
of cylinder A7 
exhaust gases 

OC 57.7 95.8 90.7 41.3      46.9   83.2 

SQ 50.7 80.0 79.5 36.5      44.8   71.6 

TA 43.3 78.1 78.0 37.9      43.4   67.3 

Temperature 
of cylinder A8 
exhaust gases 

OC 57.7 95.8 90.7 41.3      46.9   83.2 

SQ 51.3 87.5 86.6 36.2      44.5   73.5 

TA 43.7 85.6 85.2 37.6      43.1   69.1 

Temperature 
of cylinder A9 
exhaust gases 

OC 57.7 95.8 90.7 41.3      46.9   83.2 

SQ 51.6 82.4 84.7 37.0      44.9   72.6 

TA 44.0 80.5 83.2 38.4      43.4   68.3 

Temperature 
of cylinder 

A10 exhaust 
gases 

OC 57.7 95.8 90.7 41.3      46.9   83.2 

SQ 50.6 79.8 79.0 36.4      45.9   71.3 

TA 43.2 77.9 77.4 37.8      44.4   67.0 

Temperature 
of cylinder B1 
exhaust gases 

OC 54.4 95.9 90.5 40.3      46.9   83.2 

SQ 49.4 82.5 82.1 36.2      46.2   74.0 

TA 44.8 80.6 80.8 38.6      44.7   69.5 

Temperature 
of cylinder B2 
exhaust gases 

OC 54.4 95.9 90.5 40.3      46.9   83.2 

SQ 47.7 81.3 81.1 36.1      43.0   80.6 

TA 43.3 79.4 79.8 38.5      41.6   75.7 

Temperature 
of cylinder B3 
exhaust gases 

OC 54.4 95.9 90.5 40.3      46.9   83.2 

SQ 48.3 78.9 77.5 34.7      44.8   72.0 

TA 43.8 76.9 76.0 37.0      43.4   67.7 
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Temperature 
of cylinder B4 
exhaust gases 

OC 54.4 95.9 90.5 40.3      46.9   83.2 

SQ 47.2 79.6 77.5 33.6      44.0   73.9 

TA 42.8 77.6 76.1 35.9      42.6   69.4 

Temperature 
of cylinder B5 
exhaust gases 

OC 54.4 95.9 90.5 40.3      46.9   83.2 

SQ 49.7 80.0 81.8 35.9      42.4   72.8 

TA 45.1 78.0 80.9 38.3      41.1   68.5 

Temperature 
of cylinder B6 
exhaust gases 

OC 57.9 95.8 90.6 41.5      46.9   83.2 

SQ 50.8 80.3 79.7 36.4      44.8   73.9 

TA 43.2 78.3 78.4 37.6      43.4   69.4 

Temperature 
of cylinder B7 
exhaust gases 

OC 57.9 95.8 90.6 41.5      46.9   83.2 

SQ 50.7 80.1 82.9 37.4      44.2   73.3 

TA 43.1 78.2 81.5 38.6      42.8   68.9 

Temperature 
of cylinder B8 
exhaust gases 

OC 57.9 95.8 90.6 41.5      46.9   83.2 

SQ 50.6 79.9 82.0 40.6      44.1   73.2 

TA 43.0 78.1 80.7 42.1      42.7   68.8 

Temperature 
of cylinder B9 
exhaust gases 

OC 57.9 95.8 90.6 41.5      46.9   83.2 

SQ 49.8 79.7 81.8 35.7      44.1   72.1 

TA 42.4 77.6 80.2 36.9      42.7   67.8 

Temperature 
of cylinder 

B10 exhaust 
gases 

OC 57.9 95.8 90.6 41.5      46.9   83.2 

SQ 51.0 80.4 77.7 35.7      42.9   72.8 

TA 43.3 78.4 76.2 36.9      41.6   68.5 

Coolant Δp in 

Charge-Air 
Cooler, bank 

A 

OC 50.2 93.9 89.4 43.1      45.4   78.2 

SQ 48.0 89.4 84.0 40.6      41.7   66.1 

TA 46.8 89.2 83.0 40.4      41.7   66.0 

Coolant Δp in 

Charge-Air 
Cooler, bank 

B 

OC 50.2 93.9 89.4 43.1      45.4   78.2 

SQ 47.5 89.1 84.5 40.4      41.4   66.3 

TA 46.3 88.9 83.5 40.2      41.3   66.2 

Environmental 
humidity 

OC 57.2 95.9 89.8 46.6      46.9   83.2 

SQ 54.0 86.3 80.0 39.9      40.7   70.7 

TA 45.7 84.2 79.2 37.0      39.5   66.4 



40 
 

Environmental 
temperature 

OC 57.2 95.9 89.8 46.6      46.9   83.2 

SQ 49.6 82.2 77.9 39.8      40.3   72.2 

TA 40.8 79.6 77.2 36.5      39.1   67.9 

Revolutions 
per minute, 

bank A 

OC 53.0 95.9 98.0 47.5      57.1   91.4 

SQ 51.4 91.8 94.0 45.8      55.7   90.1 

TA 47.5 90.0 85.7 41.4      44.3   77.0 

Revolutions 
per minute, 

bank B 

OC 52.0 95.9 90.2 45.7      57.1   91.5 

SQ 50.4 92.3 86.5 43.8      55.8   90.7 

TA 47.5 90.3 85.7 41.2      44.4   77.3 

Turbocharger 
inlet 

temperature, 
bank A 

OC 52.0 99.1 85.0 40.3      46.9   83.2 

SQ 48.6 88.8 77.1 35.7      45.3   71.4 

TA 45.6 42.7 34.9 38.1      43.8   67.1 

Turbocharger 
outlet 

temperature, 
bank A 

OC 52.0 95.9 90.0 40.3      46.9   83.2 

SQ 46.0 83.3 80.4 36.2      45.0   66.8 

TA 43.2 81.2 79.7 38.6      43.5   62.9 

Turbocharger 
inlet 

temperature, 
bank B 

OC - - 84.8 40.3      46.9   83.2 

SQ - - 77.6 35.4      45.0   70.0 

TA - - 35.2 37.8      43.6   65.9 

Turbocharger 
outlet 

temperature, 
bank B 

OC 52.0 95.9 90.0 40.3      46.9   83.2 

SQ 46.0 81.1 79.5 36.2      45.3   67.1 

TA 43.3 79.2 78.7 38.7      43.9   63.1 

Backpressure 
at SCR system 

inlet 

OC 98.4 93.9 89.5 43.0      55.9   88.1 

SQ 87.7 84.3 83.8 40.3      48.9   79.0 

TA 32.3 84.2 82.8 40.2      39.6   69.9 

Differential 
pressure drop 

in SCR system 

OC 50.2 93.9 89.3 43.3      55.6   78.7 

SQ 50.2 93.9 86.9 41.5      52.5   75.5 

TA 49.1 93.8 85.4 41.1      42.8   74.8 

Specific 
consumption 

of NH3 

OC 50.2 93.9 89.3 50.3      56.0   88.2 

SQ 50.2 93.9 86.9 47.1      53.0   86.1 

TA 49.1 93.8 85.4 40.1      42.9   76.1 
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Exhaust fumes 
temperature at 
SCR system 

outlet 

OC 50.2 93.9 89.3 43.2      46.2   78.1 

SQ 50.2 93.9 87.8 41.5      44.8   76.5 

TA 49.1 93.8 86.3 41.2      44.0   76.3 

Exhaust fumes 
temperature at 
SCR system 

inlet 

OC 50.2 93.9 89.3 43.2      46.2   78.1 

SQ 50.2 93.9 88.1 42.1      45.3   77.1 

TA 49.1 93.8 86.6 41.8      44.5   76.9 

Legend 

FL Full Load 
OC Operating Condition 
SQ Statistical Quality 
TA Time Alignment 

Table 14. A summary of the whole data pre-processing 

Application of Principal Component Analysis 

The criteria that led to the ICE parameters selection and to the identification of appropriate 
data samples, in order to study engine performance, are now expounded. Three factors 
influenced months and parameters subsets choice for the application of PCA technique: 

 FL, i.e. the fraction of minutes of the month with a full load operating condition (see 
(25) in Chapter 2), equal to or larger than 40%; 

 Subdivision of parameters in conformity with FMEA grouping of variables by 
component (see Table 3 in Chapter 2); 

 The percentage of minutes where data of each and every variable within a subset were 
simultaneously available had to be around 20%. 

Translating the first and third sentences into numbers, a month of 31 days that meets the 
above-stated requirements has at least 17856 minutes with the plant working at full load; 
moreover, any individual subset, which underwent the statistical evaluation here reported, 
comprised approximately 8900 minutes retaining a comprehensive collection of validated 
measures. According to the Table 14, the months that satisfied the constraint on FL were: 
January 2017, February 2017, March 2017, April 2017, October 2017 and May 2018. 
However, measurements about turbocharger inlet temperature (bank B) were not properly 
recorded during the first two months of 2017 and consequently these months were excluded 
from the statistical investigation. 

The second criterion suggested the association of parameters that are principally related to 
possible system anomalies. At the component level, a parameter deviation can truly be linked 
to a possible failure. The case study considered in this thesis involved three major 
components: the engine, the turbocharger and the Selective Catalytic Reduction system. 
Figure 15, Figure 16 and Figure 17 provide a representation of the aforementioned 
components. 
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Figure 15. Cylinder and fuel injection system of the ICE [16] 

 

Figure 16. Layout of the Selective Catalytic Reduction system [16] 
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Figure 17. Cutaway drawing of the turbocharger [17] 

Four groups of variables were therefore established: 

1) temperatures of cylinders exhaust gases (bank A), coolant Δp in Charge-Air Cooler 
(bank A) and backpressure at SCR system inlet; 

2) temperatures of cylinders exhaust gases (bank B), coolant Δp in Charge-Air Cooler 
(bank B) and backpressure at SCR system inlet; 

3) revolutions per minute (banks A and B), turbocharger inlet and outlet temperatures 
(banks A and B), environmental temperature and humidity; 

4) backpressure at SCR system inlet, differential pressure drop in SCR system, specific 
consumption of NH3, inlet and outlet temperatures of exhaust fumes in SCR system. 
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Principal Component Analysis and Hotelling T2 statistic were applied to the four groups; the 
complete set of figures can be found in Annex B, whereas Table 15 shows the most salient 
information that was obtained from the utilization of the two techniques. 

 2017 2018 

Groups Type of retrieved 
information 

    

First 
subset 

(Engine) 

% of useful data 50.3 19.1 30.9 33.3 

Number of useful data 22465 8230 13788 14844 

% of total variance 
explained by first two PCs 64.29 67.71 91.02 72.11 

Number of observations 
that exceed T2 limit 1161 581 670 969 

Second 
subset 

(Engine) 

% of useful data 44.7 21.6 28.4 36.4 

Number of useful data 19937 9332 12691 16251 

% of total variance 
explained by first two PCs 62.31 67.55 90.76 69.06 

Number of observations 
that exceed T2 limit 2160 690 1086 836 

Third 
subset 
(TC) 

% of useful data 25.1 26.4 32.5 44.1 

Number of useful data 11225 11393 14496 19702 

% of total variance 
explained by first two PCs 74.32 77.92 76.40 92.61 

Number of observations 
that exceed T2 limit 512 834 658 944 

Fourth 
subset 
(SCR 

system) 

% of useful data 81.4 39.2 35.8 66.2 

Number of useful data 36345 16936 15982 29539 

% of total variance 
explained by first two PCs 70.21 79.01 80.77 87.96 

Number of observations 
that exceed T2 limit 1565 1096 911 1972 

Table 15. Relevant information retrieved during the application of PCA and Hotelling T2 statistic (2D approach) 

A comparison between the four months is presented in Figure 18, Figure 19, Figure 20 and 
Figure 21. 
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Figure 18. Plot of the first two PCs for the first set of parameters (all months) 

 

Figure 19. Plot of the first two PCs for the second set of parameters (all months) 
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Figure 20. Plot of the first two PCs for the third set of parameters (all months) 

 

Figure 21. Plot of the first two PCs for the fourth set of parameters (all months) 
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Stop Restart  

Day Time Day Time Failed equipment 

2017 

March 

9 09:30 9 12:44 Engine (cylinders A2, B1, 
B2) 

16 10:05 16 11:12 Engine (cylinder A2) 

17 07:00 19 13:00 Engine (all cylinders) 

24 04:00 24 05:00 Engine (cylinder A8) 

27 08:50 27 09:50 Engine (cylinder A8) 

28 08:22 28 09:31 Engine (cylinders A9, B7) 

30 12:00 30 13:38 Engine (cylinder B5) 

April 

8 17:35 8 19:56 Engine (cylinder B8) 

12 20:00 12 21:10 Engine (cylinder A9) 

14 06:40 18 18:15 Engine (cylinder B8) 

October 

1 00:00 4 18:15 Engine (all cylinders), 
turbocharger, SCR system 

6 03:44 6 04:35 Engine (cylinder A10) 

8 08:25 8 10:45 Engine (cylinder B1) 

12 23:12 13 01:10 Engine (cylinder B1) 

15 12:15 15 13:03 Engine (cylinder A7) 

16 21:54 17 02:10 Engine (cylinder B1) 

29 19:58 31 15:00 SCR system 

2018 May 

1 00:00 4 09:45 SCR system 

6 08:00 6 08:40 Engine (cylinder A2) 

8 15:00 8 16:15 Engine (cylinder A10) 

9 19:20 9 20:03 Engine (cylinder B4) 

25 07:42 25 11:50 Engine (cylinders B4, 
B5), turbocharger 

Table 16. ICE maintenance history 
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Even though the amount of useful data was enough to perform a reliable statistical study (see 
Table 15), the results were hardly interpretable and not explanatory, according to engine’s 

maintenance history that is reported in Table 16. The number of considered principal 
components was increased by one and, at the same time, one (and only one) large group of 
relevant variables has been examined. The group encompasses 33 parameters: temperatures of 
cylinders exhaust gases (banks A and B), coolant Δp in Charge-Air Cooler (banks A and B), 
revolutions per minute (banks A and B), turbocharger inlet and outlet temperatures (banks A 
and B), backpressure at SCR system inlet, inlet temperature of exhaust fumes in SCR system, 
fuel oil flow rate at engine inlet, environmental temperature and humidity. Table 17 has the 
same kind of information of Table 15 but it concerns the three-dimensional approach. 

 2017 2018 

 Type of retrieved 
information 

    

All the 
relevant 
variables 

% of useful data 12.8 10.0 19.5 17.3 

Number of useful data 5720 4325 8684 7711 

% of total variance 
explained by first three PCs 67.25 69.71 89.58 75.64 

Number of observations 
that exceed T2 limit 611 443 611 659 

Table 17. Relevant information retrieved during the application of PCA and Hotelling T2 statistic (3D approach) 

In the latter approach, the quantity of valuable data is lower than in the former one but PCA 
often reveals relationships that were not previously suspected and this was the case. Figure 22 
outlines different operating zones. As an example, dark blue dots represent the period from 
the 09:45 of 4th May 2018 (just after the restoration of SCR system) to the 08:00 of 6th May 
2018 (see Table 16). Plant stoppage was due to the failure of engine’s cylinder A2. An 
optimal functioning zone for the ICE can be identified by magenta dots. Figure 23, Figure 24 
and Figure 25 show that points corresponding to a good operating condition for the system are 
located in the same area, with the exception of October 2017. The problem still had to be 
translated because this piece of information was not ready for use. There is the necessity of 
providing human operators with warnings and Hotelling T2 statistic was applied with this 
intent. As illustrated in Figure 26, Figure 27, Figure 28 and Figure 29, research outcomes 
regarding the months of March 2017 and May 2018 are interesting, although warnings are not 
always given with adequate advance notice. In addition, these kinds of warnings are not 
specific: they merely offer an indication of forthcoming problems and the information is at the 
machine level. Table 18 includes the final results deriving from the observation of Hotelling 
T2 charts. Confidence limits associated with output results should be calculated for the 
purpose of reaching a prognosis. 
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Figure 22. Plot of the first three PCs for the large set of parameters in May 2018 

 

Figure 23. 3D comparison between May 2018 and March 2017 
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Figure 24. 3D comparison between May 2018 and April 2017 

 

Figure 25. 3D comparison between May 2018 and October 2017 
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Figure 26. Hotelling T2 statistic for the large set of parameters in March 2017 

 

Figure 27. Hotelling T2 statistic for the large set of parameters in April 2017 
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Figure 28. Hotelling T2 statistic for the large set of parameters in October 2017 

 

Figure 29. Hotelling T2 statistic for the large set of parameters in May 2018 
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 2017 2018 

Type of retrieved 
information 

    

Detected incipient failures 4 2 3 3 

Missed warning signals 0 1 2 1 

False alarms 1 0 1 1 

Table 18. Final results inferred from Hotelling T2 charts 

The first row of Table 18 keeps a careful tally of the number of impending failures which are 
correctly identified through Hotelling T2 control charts: this is one expected result of the 
current study. The second row contains the number of cases in which incipient failures are not 
detected; these unwelcome outcomes are the worst situation, since a component breaks down 
without warning and it is urgent for the maintenance crew to put the machine back to work. 
The described scenario threatens the success of predictive maintenance. False alarms (last row 
of Table 18) imply the misclassification of healthy components as a component that is close 
to a failure. These alerts can cause trouble and they may lead to unnecessary maintenance 
costs. 
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Chapter 3 – Conclusions 

Before drawing conclusions from the results, some considerations should be mentioned. The 
goal of this thesis was the evaluation of the effectiveness of PCA and Hotelling T2 statistic on 
monitoring health condition of a complex equipment, which operates in a cogeneration plant. 
This objective entailed the creation of a sophisticated MATLAB code, to pre-process a 
massive amount of data (more than 20 millions of numbers). After the intricate but necessary 
rationalization and validation of the available database, the focus was shifted to the 
application of Principal Component Analysis. A multivariate analysis technique like PCA 
helps in handling data with complicated correlation structure. Moreover, PCA is a dimension 
reduction method and thereby is fit for purpose in the present research. It did not give 
remarkable results with the two-dimensional approach, whereas it highlighted discernible 
engine’s problems in the three-dimensional approach. As showed in Figure 22, magenta dots 
represent points of engine regular working conditions. The cloud of black dots that occupy the 
central part of the graph corresponds to a loss of engine performance, due to fouling 
phenomenon at turbocharger level. The cloud of dots at the right side of the plot can be 
connected to imminent failures of fuel injection systems. PCA was followed by Hotelling T2 
statistic, which is suitable for establishing whether or not the system failures were foreseeable 
events. As reported in the last part of Chapter 2, in the considered period (4 months), 12 out 
of 16 incipient failures would have been detected. Even if prognostics, like any other 
prediction techniques, cannot have a 100% success rate in forecasting failures, a model tuning 
process is recommended. Nevertheless, one can imagine a real-time monitoring system; the 
opportunity to inform a human operator about an incipient failure, together with the 
possibility of associating that forthcoming failure with a position in the PCA 3D space, would 
be a very interesting support in maintenance decision making process. After a model 
refinement, components residual useful life estimation can be carried out. The transition from 
diagnosis to prognosis requires classification and regression models, which are used for 
forecasting time-series data. Both the methods belong to the class of supervised learning 
techniques and they are effective when the failure reference model is constructed. 

Finally, the following additional comments on the specific case study seem legitimate. There 
is margin for improvement in data collection. For example, some files containing data were 
poorly or incorrectly formatted and this situation should be avoided. The number of long 
sequences of missing data should be minimized. Furthermore, the goal of turning large 
volumes of data into actionable information was pursued without having fuel oil consumption 
for March, April and October. Obtained results cannot be profitably used in the immediate 
future also because chemical composition and physical characteristics of fuel oil were 
unknown. Since the combustion process is influenced by the type of fuel, a data sheet with 
defined reference ranges for the fuel physical-chemical characteristics would be strongly 
advised. This statement is especially valid when esterified fuel oil are used, like in the 
considered cogeneration plant. 
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Annex A 

 

Figure A-1. Trend of engine operating load 

 

Figure A-2. Trend of fuel oil flow rate 
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Figure A-3. Trend of temperatures of cylinders A1, A2, A3, A4 and A5 exhaust gases 

 

Figure A-4. Trend of temperatures of cylinders A6, A7, A8, A9 and A10 exhaust gases 
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Figure A-5. Trend of temperatures of cylinders B1, B2, B3, B4 and B5 exhaust gases 

 

Figure A-6. Trend of temperatures of cylinders B6, B7, B8, B9 and B10 exhaust gases 



59 
 

 

Figure A-7. Trend of coolant Δp in Charge-Air Cooler 

 

Figure A-8. Trend of environmental humidity and temperature 
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Figure A-9. Trend of turbocharger revolutions per minute 

 

Figure A-10. Trend of turbocharger temperatures 
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Figure A-11. Trend of SCR system pressures 

 

Figure A-12. Trend of NH3 consumption 
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Figure A-13. Trend of temperatures of SCR system exhaust fumes 
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Annex B 

 

Figure B-1. Plot of the first two PCs for the first set of parameters in March 2017 

 

Figure B-2. Hotelling T2 statistic for the first group of data in March 2017 
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Figure B-3. Plot of the first two PCs for the first set of parameters in April 2017 

 

Figure B-4. Hotelling T2 statistic for the first group of data in April 2017 
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Figure B-5. Plot of the first two PCs for the first set of parameters in October 2017 

 

Figure B-6. Hotelling T2 statistic for the first group of data in October 2017 
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Figure B-7. Plot of the first two PCs for the first set of parameters in May 2018 

 

Figure B-8. Hotelling T2 statistic for the first group of data in May 2018 
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Figure B-9. Plot of the first two PCs for the second set of parameters in March 2017 

 

Figure B-10. Hotelling T2 statistic for the second group of data in March 2017 
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Figure B-11. Plot of the first two PCs for the second set of parameters in April 2017 

 

Figure B-12. Hotelling T2 statistic for the second group of data in April 2017 
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Figure B-13. Plot of the first two PCs for the second set of parameters in October 2017 

 

Figure B-14. Hotelling T2 statistic for the second group of data in October 2017 
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Figure B-15. Plot of the first two PCs for the second set of parameters in May 2018 

 

Figure B-16. Hotelling T2 statistic for the second group of data in May 2018 
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Figure B-17. Plot of the first two PCs for the third set of parameters in March 2017 

 

Figure B-18. Hotelling T2 statistic for the third group of data in March 2017 
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Figure B-19. Plot of the first two PCs for the third set of parameters in April 2017 

 

Figure B-20. Hotelling T2 statistic for the third group of data in April 2017 
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Figure B-21. Plot of the first two PCs for the third set of parameters in October 2017 

 

Figure B-22. Hotelling T2 statistic for the third group of data in October 2017 
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Figure B-23. Plot of the first two PCs for the third set of parameters in May 2018 

 

Figure B-24. Hotelling T2 statistic for the third group of data in May 2018 
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Figure B-25. Plot of the first two PCs for the fourth set of parameters in March 2017 

 

Figure B-26. Hotelling T2 statistic for the fourth group of data in March 2017 
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Figure B-27. Plot of the first two PCs for the fourth set of parameters in April 2017 

 

Figure B-28. Hotelling T2 statistic for the fourth group of data in April 2017 
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Figure B-29. Plot of the first two PCs for the fourth set of parameters in October 2017 

 

Figure B-30. Hotelling T2 statistic for the fourth group of data in October 2017 
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Figure B-31. Plot of the first two PCs for the fourth set of parameters in May 2018 

 

Figure B-32. Hotelling T2 statistic for the fourth group of data in May 2018 
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