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Abstract

The Water-Cooled Lithium-Lead (WCLL) is one of the four breeding blanket concepts proposed by Eu-
rope for the demonstrating fusion power reactor DEMO. In the WCLL, tritium, required for the D-T
fusion reaction, is produced in the electrically conducting lead-lithium that flows inside the blanket. Its
velocity field is strongly influenced by the external magnetic field used for plasma confinement due to a
magnetohydrodynamic (MHD) effect, and by the temperature field. The non-isothermal condition is due
to the presence of the heat flux incident on the first wall, the plasma-facing area of the blanket, and the
volumetric heat generation caused by the flux of energetic particles passing though the component. To
avoid high temperatures, the WCLL is cooled with water, flowing in EUROFER tubes. The prediction of
the velocity profile of Pb-Li and water is required to compute the transport of tritium inside the module,
that allows to determine the T inventory and losses.

In the thesis worj, in a first step, the reliability of the developed MHD codes has been checked
solving benchmark cases, analytical and experimental, for which solutions are known. Then, the analysis
of the WCLL module has been carried out, using the COMSOL multiphysics tool. Fluid dynamics
with buoyancies has been solved for a quarter of module, the minimum relevant domain. MHD effects
and tritium transport have been introduced in three simplified geometries with increasing complexity.
In particular, a straight duct filled with lead-lithium with zero, one and two coolant tubes has been
considered. Different tritium transport mechanisms (advection-diffusion of T into the lead-lithium eutectic
alloy, transfer of tritium from the liquid interface towards the EUROFER, diffusion of tritium inside the
steel, transfer of tritium from the EUROFER towards the coolant, and advection-diffusion of diatomic T
into the water) have been included. With this study, it has been possible to evaluate the temperature
field, velocity profiles of both lead-lithium and water and the concentration of tritium in the liquid metal,
coolant and pipes.
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Sommario

Il WCLL (Water-Cooled Lithium-Lead) è uno dei quattro breeding blanket proposti dall’Europa per il
reattore a fusione dimostrativo DEMO. Nel WCLL il trizio, richiesto per la reazione di fusione Deuterio-
Trizio, è prodotto nel Piombo-Litio circolante all’interno del blanket, che è elettricamente conduttivo. Il
suo campo di velocità è fortemente influenzato dal campo magnetico esterno usato per il confinamento
del plasma grazie ad un effetto magnetoidrodinamico (MHD), e dal campo di temperatura. La condizione
non isoterma è dovuta alla presenza di un flusso termico incidente sul first wall, l’area del blanket che si
affaccia sul plasma, e dalla presenza di generazione di calore volumetrica dovuta dal flusso di particelle
che attraversa il componente. Per evitare alte temperature, il WCLL è raffreddato ad acqua, circolante in
tubi di EUROFER. La determinazione del profilo di velocità del Pb-Li è richiesta per calcolare il trasporto
di trizio nel modulo, che permette di definire l’inventario di T e le perdite.

In questo lavoro di tesi, in un primo passo, è stata verificata l’affidabilità dei codici MHD sviluppati,
risolvendo casi di benchmark analitici e sperimentali, di cui le soluzioni sono note. Successivamente è
stata effettuata l’analisi del WCLL, utilizzando il software COMSOL multiphysics. È stata risolta la
fluidodinamica accoppiata con il trasporto di calore per un quarto di modulo, che è il minimo dominio
considerabile. Gli effetti di MHD e il trasporto di Trizio sono stati introdotti in tre geometrie simplificate,
con complessità crescente. In particolare è stato considerato un condotto rettangolare di PbLi contenente
zero, uno e due tubi. Diversi meccanismi di trasporto del T (avvezione-diffusione del T nel Pb-Li, trasfer-
imento del trizio dal liquido all’EUROFER, diffusione del trizio all’interno del metallo, trasferimento
del T dall’EUROFER all’acqua refrigerante e avvezione-diffusione del trizio diatomico nell’acqua) sono
stati inclusi. Con questo studio è stato possibile valutare il campo di temperatura, i profili di velocità
del Piombo-Litio e dell’acqua e la concentrazione del trizio nel metallo liquido, nel refrigerante e nelle
strutture.
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Introduction

In the Demonstration Fusion Power Reactor (DEMO), the fuel is a high temperature deuterium-tritium
plasma. Differently from deuterium, abundant in nature, tritium must be produced within the power
plant. The breeding blanket fulfills this task, and different blanket design are proposed by the EUROfusion
Consortium. The Water Cooled Lithium Lead (WCLL) is developed by ENEA, where tritium is produced
in the liquid PbLi, that flows under the magnetic field used for plasma confinement. This produces a
magnetohydrodynamic effect that influences the flow behavior, and as consequece the tritium transport.
The prediction of T concentrations in the blanket is of main interest, both to guarantee fuel self-sufficienty
and from a safety point of view.

In the first chapter, a brief description of DEMO and its relevance in the development of nuclear fusion
reactors is presented. The different concept of breeding blanket are shown, focusing on the WCLL.

The second chapter displays a formal description of the magnetohydrodynamic effect under the low Rm
approximation, and significant case study are solved analytically. The effect of non-isothermal conditions is
also included, presenting the analytical solution of relevant magnetoconvection problems. The theoretical
description of tritium transport applyed to the WCLL is shown, considering all the relevant phenomena
that characterize the transport in the different domains and materials of the blanket. Lastly, the solution
strategy of the MHD and transport coupling is presented.

In the third chapter, a method for the verification and validation of MHD codes is followed, in order
to check the reliability of the developed codes. Three benchmark problems, consisting of different cases,
are solved, and the results are compared to known analytical, numerical or experimental solutions. A 2D
fully developed MHD flow is analysed, solving Shercliff and Hunt cases using different codes. A 3D MHD
flow in a non-uniform magnetic field is solved and compared to experimental results. Lastly, two cases
with buoyancy, differentially and uniformly heated duct, are also investigated.

In the last chapter, the results of the WCLL breeding unit analysis are shown. In the first part,
the CFD analysis of half the module has been carried out, starting from a convergence study, in order
to limit the discretization error and choose the reference mesh. Next, due to the complexity of the
WCLL geometry, MHD and tritium transport are introduced in three simplified geometries, consisting
in a rectangular PbLi duct with zero, one or two water tubes. The temperature and velocity fields, and
tritium losses and inventories are obtained.
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Chapter 1

The DEMO project

1.1 DEMO

The Demonstration Fusion Power Reactor (DEMO) is a crucial step towards the commercial use of fusion
power. It will exploit the knowledge gained by the International Thermonuclear Experimental Reactor
(ITER) experience, another D-T reactor that is currently under construction since 2003 in Cadarache
(France). DEMO is under development by the EUROfusion Consortium with EU Horizon 2020 funds,
and shall demonstrate:

1. A high availability for fusion power plants [31].

2. The production of hunderds of MW of electrical energy.

3. The solution of physics and technical issues.

4. The economic feasibility of electric power generation from nuclear fusion reactions.

5. Nuclear safety and acceptable environmental impact (low radioactive waste).

6. Tritium self-sufficiency.

The latter requirement is explained by the fact that DEMO must rely on tritium supply from external
sources only for the plant start-up, then, it is expected a tritium consumption of about 22 kg of tritium
per year, while the current tritium production capacity from CANDU reactors is currently limited to
about 20 kg per year globally [1].

The configuration of the main systems of DEMO is presented in Fig. 1.1. In DEMO the burning
plasma is confined in the tokamak thanks to a particular configuration of magnetic fields, generated by
superconducting magnets. In particular in the figure the central solenoid, the toroidal field (TF) coils
and the poloidal field (PF) coils are shown. Inside the vacuum vessel the high heat flux is discharged in
the divertor targets, that intersect the scrape-off layer that contains most of the particles that escape the
plasma confinement.

The breeding blanket sorrounds most of the plasma surface, and has different functions. It extracts the
power from the reactor for energy production, it shields the sensitive components behind it (for example
the magnets) from the incoming flux of high energetic particles, and it breeds tritium. This is possible
thanks to the following reactions between neutrons and lithium, that is contained in the blanket.

n1 + Li6 −−→ T3 + He4 (1.1)

n1 + Li7 −−→ T3 + He4 + n1 (1.2)

15
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Figure 1.1: Configuration of the DEMO tokamak main systems [2].

The first one has a bigger probability to occur and is exoenergetic, while the latter consumes energy
and requires high energy neutrons, but it produces an additional neutron. The tritium breeding ratio
(TBR) of a fusion plant is the ratio between the generated and burnt tritium, and must be bigger than
one to have tritium self-sufficiency. Looking at the first reaction, that is the more likely, it is evident
that the maximum TBR obtainable is 1 and is possible only if every fusion neutron reacts with the Li.
To compensate for the neutrons not interacting, and to obtain a TBR bigger than one, the blanket also
contains a neutron multiplier, generally beryllium or lead.

Four blanket concepts are currently designed for DEMO reactor. The Helium Cooled Pebble Bed
(HCPB) is a solid breeder that uses Li in ceramic form as breeder and beryllium as neutron multiplier.
It is researched by KIT, CIEMAT and HAS. The Helium Cooled Lead Lithium (HCLL) uses helium as
coolant and eutectic Pb15.8Li as breeder and multiplier, developed by CEA, IPP.CR and KIT. The Dual
Coolant Lead Lithium (DCLL) is cooled by PbLi that is also the tritium breeder and multiplier. It works
at high temperatures (> 700◦C) that leads to high thermal efficiency. The last design is the Water Cooled
Lead Lithium (WCLL) researched by ENEA and object of this work. It is described in the next section.

1.2 WCLL breeding blanket

The Water Cooled Lead Lithium (WCLL) breeding blanket is cooled by high pressure water and uses
eutectic Lead Lithium as neutron multiplier and tritium breeder. The reference design is the WCLL BB
2018 [23]. The DEMO WCLL blanket system is divided into 16 sectors in the toroidal direction, with two
inboard and three outboard segmets each. In the poloidal direction the blanket is divided in 7 modules.

The breeding blanket is feeded with water by the manifolds, that develop in poloidal direction, where
it enters at 295◦C and exits at 328◦C, and is connected with the first wall and the breeding zone. The
blanket is feeded with PbLi by the PbLi manifolds.

A particular of the outboard segment is presented in Fig. 1.2. Vertical and horizontal stiffening
plates reinforce the breeding zone to withstand the thermo-mechanicanical loads for every condition. The
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Figure 1.2: WCLL 2018 OB segment [23].

Figure 1.3: WCLL 2018 OB equatorial breeding unit geometry [23].

breeding zone is made by a breeding unit, showed in Figure 1.3 repeated along the poloidal direction. The
coolant flows in the double wall tubes (in blue), having inner and outer diameters equal to 8 mm and 13.5
mm respectively, and must ensure a maximum temperature in the structural material, made by Eurofer,
below the limit of 550◦C. In orange are presented the square coolant channels that removes the heat from
the first wall (FW), facing the burning plasma. The FW is coated with a tungsten layer of 2 mm.

The PbLi circulates through the blanket at 328◦C and carries the tritium breeded, ultimately to the
tritium extraction system. The PbLi is a conducting fluid that flows under the magnetic fields used for
plasma confinement, and the resultant magnetohydrodynamic effect lead to an increase in pressure losses,
that must be below an acceptable value. In addition, MHD has an impact on the flow behavior, that then
affect tritium transport. The distribution of tritium in the breeding blanket is important from a safety
point of view, being T a radioactive element, and the losses must be minimized.



18 CHAPTER 1. THE DEMO PROJECT



Chapter 2

Theoretical background

In the present work, the effect that the presence of a magnetic field has on a liquid metal in motion and
finally on the trasport of tritium is analyzed. The equations governing magnetohydrodynamics and tritium
transport will be described in this chapter, as well as the introduced assumptions to the development of
the investigated problems.

2.1 The magnetohydrodynamic effect

A non magnetic and electrical conducting fluid1 that flows in presence of a magnetic field is affected
and affects B. This mutual interaction of fluid flow and magnetic fields is what magnetohydrodynamics
studies.

The interaction arises as a result of Faraday and Ampere laws and the Lorentz force experienced by
a current carrying body. The process can be divided in steps:

1. The relative movement of a conducting fluid and a magnetic field causes an electromotive force
thanks to Faraday’s law of induction, so electrical currents will develop.

2. Induced currents give rise to an induced magnetic field, according to Ampere’s law, that adds to
the original magnetic field.

3. The combined magnetic field interacts with the current density giving rise to a Lorentz force that
acts on the conductor.

To obtain a mathematical formulation of magnetohydrodynamics, it is necessary to recall the equations
that describe the interested physics. In particular, the study of fluid dynamics coupled with electromag-
netism requires Navier-Stokes equations of continuity and momentum conservation and the four Maxwell’s
equations.

Starting from electromagnetism, and, for non magnetic materials, Maxwell’s equations are:

∇ · E =
ρe
ε

(2.1)

∇ ·B = 0 (2.2)

∇× E = −∂B
∂t

(2.3)

1Fluids with these two characteristics are liquid metals, plasmas and strong electrolytes.
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∇×B = µ

(
J + ε

∂E

∂t

)
(2.4)

where E and B are the electric and magnetic field, J is the current density, ρe is the charge density, µ
is the magnetic permeability and ε is the permittivity. In addition charge conservation 2.5 and Ohm’s
law 2.6 are considered

∇ · J = −∂ρe
∂t

(2.5)

J = σ
(
E + u×B

)
(2.6)

where σ is the electric conductivity, u is the conductor velocity, and the volumetric Lorentz force

F = ρeE + J ×B (2.7)

Considering the purpose of the work, these seven equations may be simplified. Firstly charge density is
analyzed. It can be demonstrated that, in conductors that are travelling at speeds much less the speed
of light, ρe is very small [13]. It follows that the right terms in equations 2.1 and 2.5 are negligible. In
addition, ρeE in Lorentz force equation is really small compared to J ×B. Lastly, in MHD displacement
currents are negligible [3], so the Ampere-Maxwell equation 2.4 become Ampere’s law. Under these
considerations, equations from 2.1 to 2.7 can be rewrtite as follows:

∇ ·B = 0 (2.8)

∇× E = −∂B
∂t

(2.9)

∇×B = µJ (2.10)

∇ · J = 0 (2.11)

J = σ
(
E + u×B

)
(2.12)

F = J ×B (2.13)

The equations 2.8 to 2.13 are all that is needed to know about electromagnetism for magnetohydrody-
namics.

Now fluid mechanics is considered. Liquid metals can be treated as incompressible fluids, so conser-
vation of mass reduces to continuity equation

∇ · u = 0 (2.14)

Navier-Stokes equation is:

ρ
∂u

∂t
+ ρ (u · ∇)u = −∇p+ µ∇2u+ J ×B (2.15)

where we Lorentz force J ×B is added as an external contribution.
All the equations needed to study MHD have been presented. It is interesting to present four dimen-

sionless numbers which regularly appear in magnetohydrodynamics. The first is the well known Reynolds
number
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Re =
ρUL

µ
(2.16)

where L and U are characteristic lenght and velocity scales of the motion. It is representative of the ratio
of inertia to viscous forces. The interaction parameter

N =
σB2L

ρU
(2.17)

expresses the ratio of the Lorentz force to inertia. The third one is the Hartmann number [15], that
represents the ratio of the Lorentz force to viscous forces, and is expressed as

Ha = BL (σ/µ)
1/2

(2.18)

The last dimensionless number is the magnetic Reynolds number

Rm = µσUL (2.19)

that, recalling the transport equation for the magnetic field,

∂B

∂t
= ∇×

(
u×B

)
+

1

µσ
∇2B (2.20)

is the ratio between the two right members of eq. 2.20. In other words, Rm is the ratio between induction
and diffusion of the magnetic field. The magnetic Reynolds number will be now discussed introducing the
next assumption, called the low-Rm approximation.

In the present work is studied liquid metal MHD with an imposed steady magnetic field. In this
problems the magnitude of u is always kept around 0.001 − 1 m/s, and considering typical values for
σ, µ and l, it follows that Rm<<1 . In this case, the magnetic field associated with induced currents
is negligible by comparison with the imposed magnetic field. Simplifications of the governing equations
will follow. E0, B0 and J0 are the fields that exist when u = 0, and e, b and j are the infinitesimal
perturbations in E, B and J which occur due to the presence of a small velocity field. Faraday’s law for
this quantities became:

∇× E0 = 0 (2.21)

∇× e = −∂b
∂t

(2.22)

And Ohm’s law

J0 = σE0 (2.23)

j = σ
(
e+ u×

(
B0 + b

))
(2.24)

In eq. 2.24 the term u × b can be neglected being a second order term. Eq. 2.22 gives e ∼ ub, so also e
can be neglected in Ohm’s law. Ohm’s law for the summed current densities became:

J = J0 + j = σ
(
E0 + u×B0

)
(2.25)

From 2.21 we know that E0 is irrotational, so it is E0 = −∇φ, where φ is the electric potential. Ohm’s
law is finally

J = σ
(
−∇φ+ u×B0

)
(2.26)

and the leading term in the Lorentz force per unit volume is
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F = J ×B0 (2.27)

The last two equations are all that is required to evaluate Lorentz force.
Summarizing, the following equations describe fully the magnetohydrodynamic effect in the low-Rm

approximation for a steady imposed magnetic field B0.

∇ · u = 0 (2.28)

ρ
∂u

∂t
+ ρ (u · ∇)u = −∇p+ µ∇2u+ J ×B0 (2.29)

∇ · J = 0 (2.30)

J = σ
(
−∇φ+ u×B0

)
(2.31)

In this description of MHD, boundary conditions are still missing. They are presented in the following
sections, associated with the respective problems studied.

2.1.1 Shercliff’s and Hunt’s cases

The laminar, fully developed, incompressible flow of a conducting fluid driven by a pressure gradient along
a rectangular duct under an imposed transverse magnetic field is considered. Shercliff [33] and Hunt [16]
solved analytically this problem using different boundary conditions. In particular, in Shercliff’s case,
the four walls of the duct are non-conducting, while in Hunt’s case, the two walls perpendicular to the
magnetic field are conducting. Hunt’s solution will be followed, being Shercliff’s the particular case in
which the conductivity of the walls is zero.

Considering the assumptions, the time derivative and the intertial term are null in Navier-Stokes
equation, and eq. 2.29 becomes

0 = −∇p+ µ∇2u+ J ×B0 (2.32)

while 2.30 and 2.31 remain the same. Ampere’s law is

∇×H = J (2.33)

with H = B/µ to simplify the notation.
The geometry considered is shown in Figure 2.1.
The flow is directed in z, the imposed magnetic field has an intensity B0 and is directed in y. Walls

AA are parallel to the magnetic field and are called side walls. For the following analysis, they are
non-conducting and long 2a. BB are called Hartmann walls, have a conductivity σw and are long 2b.

Considering that the induced field is small compared to the one imposed, that the only non-null com-
ponent of u is uz and that conditions, except pressure, are invariant in the z-direction [33], equation 2.31
can be expressed in components as follows:

Jx = σ

(
−∂φ
∂x
− uzB0

)
(2.34)

Jy = σ

(
−∂φ
∂y

)
(2.35)

Current conservation and Ampere’s law give

∂Jx
∂x

+
∂Jy
∂y

= 0 (2.36)
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Figure 2.1: Cross-section of the rectangular duct with magnetic field in y-direction. The walls AA lie at
x =+

− b and BB at y =+
− a [16].

Jx =
∂Hz

∂y
(2.37)

Jy = −∂Hz

∂x
(2.38)

and Navier-Stokes

0 = −∂p
∂z

+ µ

(
∂2

∂x2
+

∂2

∂y2

)
uz + JxB0 (2.39)

Now the derivative in y of 2.34 and the derivative in x of 2.35 are obtained:

∂Jx
∂y

= σ

(
− ∂2φ

∂x∂y
−B0

∂uz
∂y

)
(2.40)

∂Jy
∂x

= σ

(
− ∂2φ

∂x∂y

)
(2.41)

Substituting Eq. 2.41 in 2.40

∂Jx
∂y
− ∂Jy

∂x
= −σB0

∂uz
∂y

(2.42)

and 2.37, 2.38 in 2.42

0 = B0
∂uz
∂y

+
1

σ

(
∂2

∂x2
+

∂2

∂y2

)
Hz (2.43)

Substituting 2.37 and 2.38 in Navier-Stokes equation we get:

0 = −∂p
∂z

+B0
∂Hz

∂y
+ µ

(
∂2

∂x2
+

∂2

∂y2

)
uz (2.44)
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To simplify the notation V = uzµ/
(
−∂p∂z

)
/a2, H = Hzµ

1/2/
(
−∂p∂z

)
/a2/σ1/2, and l = b/a, ξ = x/a,

η = y/a. Being a the characteristic length of this problem, the Hartmann number is Ha = aB0(σ/µ)1/2.
Finally, Equations 2.43 and 2.44 become:

∂2H

∂ξ2
+
∂2H

∂η2
+ Ha

∂V

∂η
= 0 (2.45)

∂2V

∂ξ2
+
∂2V

∂η2
+ Ha

∂H

∂η
= −1 (2.46)

The boundary condition on H for the two conducting walls is the thin wall condition, calling t the
wall thickness and n the versor normal to the wall

∂H

∂n
= H

σa

σwt
(2.47)

valid when t << a. We can call cw = σwt
σa wall conductivity ratio. The boundary condition on V is the

no-slip condition (V = 0) at the walls.
Hunt [16] found an analytical solution starting from Equations 2.45 and 2.46, expressing H and V as

Fourier series in ξ, with coefficients functions of η,

V =

∞∑
k=0

vk(η) cosαkξ (2.48)

H =

∞∑
k=0

hk(η) cosαkξ (2.49)

1 =

∞∑
k=0

ak(η) cosαkξ (2.50)

where αk = (k + 1/2)πl and ak = 2(−1)k
αkl

. Substituting these in 2.45 and 2.46 we get:

v′′k − α2
kvk + Hah′k = −ak (2.51)

h′′k − α2
khk + Hav′k = 0 (2.52)

with boundary conditions at η =+
− 1, V = 0 and ∂H

∂η =−+ H/cw, at ξ =+
−, V = 0 and H = 0. The solution

found by Hunt contains hyperbolic functions that, for high Ha, give values out of the range of any existing
computer. Ni et al. [24] reformulated Hunt’s formula as

V =

∞∑
k=0

2(−1)k cos(αkξ)

lα3
k

(1− V 2− V 3) (2.53)

V 2 =

(
cwr2k + 1−exp(−2r2k)

1+exp(−2r2k)

)
exp(−r1k(1−η))+exp(−r1k(1+η))

2

1+exp(−2r1k)
2 cwN + 1+exp(−2(r1k+r2k))

1+exp(−2r2k)

(2.54)

V 3 =

(
cwr1k + 1−exp(−2r1k)

1+exp(−2r1k)

)
exp(−r2k(1−η))+exp(−r2k(1+η))

2

1+exp(−2r2k)
2 cwN + 1+exp(−2(r1k+r2k))

1+exp(−2r1k)

(2.55)

H =

∞∑
k=0

2(−1)k cos(αkξ)

lα3
k

(H2−H3) (2.56)
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H2 =

(
cwr2k + 1−exp(−2r2k)

1+exp(−2r2k)

)
exp(−r1k(1−η))+exp(−r1k(1+η))

2

1+exp(−2r1k)
2 cwN + 1+exp(−2(r1k+r2k))

1+exp(−2r2k)

(2.57)

H3 =

(
cwr1k + 1−exp(−2r1k)

1+exp(−2r1k)

)
exp(−r2k(1−η))+exp(−r2k(1+η))

2

1+exp(−2r2k)
2 cwN + 1+exp(−2(r1k+r2k))

1+exp(−2r1k)

(2.58)

where

N =
(
Ha2 + 4α2

k

)1/2
(2.59)

r1k, r2k =
1

2

(
+
−Ha +N

)
(2.60)

and l, cw and αk have the already shown expression. The calculated V from eq. 2.53 can therefore be
used to calculate uz, from the definition of V

uz = µ−1V

(
−∂p
∂z

)
a2 (2.61)

and the current densities Jx and Jy can be found from Ampere’s law (equations 2.37 and 2.38) including
the definition of H found in eq. 2.56

Jx = µ−1/2
∂H

∂y

(
∂p

∂z

)
a2σ1/2 (2.62)

Jy = µ−1/2
∂H

∂x

(
∂p

∂z

)
a2σ1/2 (2.63)

where ∂H
∂y and ∂H

∂x are

∂H

∂y
=

∞∑
k=0

2(−1)k cos(αkξ)

lα3
k

(
∂H2

∂y
− ∂H3

∂y

)
(2.64)

∂H2

∂y
=

(
cwr2k + 1−exp(−2r2k)

1+exp(−2r2k)

) r1k
a exp(−r1k(1−η))+

r1k
a exp(−r1k(1+η))

2

1+exp(−2r1k)
2 cwN + 1+exp(−2(r1k+r2k))

1+exp(−2r2k)

(2.65)

∂H3

∂y
=

(
cwr1k + 1−exp(−2r1k)

1+exp(−2r1k)

) r2k
a exp(−r2k(1−η))+

r2k
a exp(−r2k(1+η))

2

1+exp(−2r2k)
2 cwN + 1+exp(−2(r1k+r2k))

1+exp(−2r1k)

(2.66)

∂H

∂x
=

∞∑
k=0

−2(−1)k αk

a sin(αkξ)

lα3
k

(H2−H3) (2.67)

Another quantity that will be used is the volumetric flow rate, that can be found, dimensionless,
integrating V on the cross section of the duct.
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Figure 2.2: Channel geometry. Harmann layers are denoted by “H” and side layers by “S”. “C” are the
corner regions [7].

(2.68)

Q̃ =

∫ 1

−1

(∫ l

−l
V dξ

)
dη

=

∞∑
k=0

2(−1)k

lα4
k

(sin(αkl)− sin(−αkl))2−
cwr2k + 1−exp(−2r2k)

1+exp(−2r2k)
1+exp(−2r1k)

2 cwN + 1+exp(−2(r1k+r2k))
1+exp(−2r2k)

(
1

r1k
− 1

r1k
exp(−2r1k)

)

−
cwr1k + 1−exp(−2r1k)

1+exp(−2r1k)
1+exp(−2r2k)

2 cwN + 1+exp(−2(r1k+r2k))
1+exp(−2r1k)

(
1

r2k
− 1

r2k
exp(−2r2k)

)
and the dimensional volumetric flow rate is

Q = Q̃

(
∂p

∂z

)
a4/µ (2.69)

2.1.2 Magnetoconvection

The flow of the electrically conducting fluid caused by buoyancy in a long vertical channel of rectangular
cross section is considered. The imposed magnetic field is B = B0ŷ and the gravitational acceleration
g = −gx̂ is alligned with the channel axis, as shown in figure 2.2.

In order to consider the buoyancy forces, heat transfer, in addition to magnetohydrodynamics, must
be solved. The temperature distribution is governed by
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ρcp
∂T

∂t
+ ρcp (u · ∇)T = k∇2T +Q (2.70)

where T is the temperature, ρ is the density of the fluid, cp is its isobaric specific heat and k is the thermal
conductivity and Q is the volumetric heat source. The MHD equations (from eq. 2.28 to 2.31) are still
valid, but the gravity term ρg must be added to 2.29. For the stationary case and in dimensionless form,
the equations governing magnetoconvection become

∇ · u = 0 (2.71)

Gr

Ha4 (u · ∇)u = −∇p+
1

Ha
∇2u+ J × ŷ + T x̂ (2.72)

∇ · J = 0 (2.73)

J = −∇φ+ u× ŷ (2.74)

Pe (u · ∇)T = ∇2T +Q (2.75)

where u and J are the velocity and the electric current density vectors, scaled by the reference quantities
u0 = ρ0βg∆T/σB2 and J0 = σu0B. T is the difference between the local temperature and the reference
temperature T0, scaled by the characteristic temperature difference ∆T . ρ0 is the density of the fluid at
T0 and β is the thermal expansion coefficient of the fluid, according to the Boussinesq approximation.
The difference between the local pressure and the isothermal hydrostatic pressure at T0, scaled by LJ0B
is called p, where L is a typical length scale measured in direction of the magnetic field. V is the
electric potential scaled by Lu0B and Q is the volumetric heat source scaled by k∆T/L2. Lastly, Ha =
LB(σ/ρ0ν)1/2 is the already known Hartmann number,

Gr = βg∆TL3/ν (2.76)

is the Grashof number, that express the importance of buoyant effects,

Pe = u0Lρ0cp/k (2.77)

is the Peclet number that gives the ratio of convective to the conductive heat flux.
The boundary conditions are the no-slip condition at the duct walls,

u = 0 (2.78)

and the thin wall condition for electric currents

J · n̂ = cw∇2
wφ (2.79)

where n̂ is the versor normal to the wall and ∇2
w is the two-dimensional Laplacian in the plane of the

wall. The thermal conditions are

T = Tw (2.80)

for a perfectly conducting wall or

n̂ · ∇T = −qw (2.81)

for a given wall heat flux qw.
It is possible now to introduce some simplifications. Firstly, considering that the fluid has an excellent

thermal conductivity, that is fairly valid for liquid metals, Pe<<1, so the convective heat flux is negligible.
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The temperature distribution becomes independent of the flow, and can be calculated in a first step. The

last simplification is that the interaction parameter N = σB2l
ρu = Ha4/Gr is sufficiently large. In this case,

inertia effects in the momentum balance can be neglected. It is a reasonable assumption, because, for the
problems addressed in this work, the value of Ha is generally 103 − 104. The simplificated equations are

0 = ∇2T +Q (2.82)

∇ · u = 0 (2.83)

0 = −∇p+
1

Ha
∇2u+ J × ŷ + T x̂ (2.84)

∇ · J = 0 (2.85)

J = −∇φ+ u× ŷ (2.86)

with the already discussed boundary conditions.
For high values of Ha the flow region splits into distinct subregions, as shown in figure 2.2. In the

core region viscosity effects are negligible, and the momentum is balanced between the pressure gradient
∇p, the Lorentz force J × ŷ and the buoyant force T x̂. Viscosity plays its role within the boundary layers
near walls. The viscous layers perpendicular to the magnetic field are called Harmann layers and their
thickness scales with Ha−1. The layers parallel to B are called side layers, and they scale with Ha−1/2.
Depending on the wall conductivity ratio cw, the side layers can carry a significant fraction of the total
flow rate.

Buhler [7] solved analytically the problem using matched asymptotic method, taking advantage of the
different characteristics of the flow regions. In a first step the core solution is obtained, in a second step
the core solution is matched with the solution in the Hartmann layers and, finally, the solution in the side
layers is calculated. The corner regions are not considered explicitly since they do not carry a significant
flow rate and they match the solution in the side layers with the solution in the Hartmann layers.

A duct closed at both the ends is considered. There is no forced pressure difference applied to generate
the flow, that is purely buoyancy driven. The channel is long enough that a fully developed regime
establishes within a significantly large region along the channel axis. In these conditions, the total net
flow rate in the duct cross section must be zero.

Two applications are considered. In the first problem, a uniform heat flux ∇T = ẑ crosses the duct
between the isothermal walls at z =+

− b. The temperature profile is symmetric with respect to y = 0 and
is simply

T = z (2.87)

The potential φ in the three subregions is:

φH =
1

2
c−1H z2 (2.88)

φcore = φH +
1

2

(
y2 − 1

)
(2.89)

φs =
1

2

(
y2 − 1

)( b

cs + 1

)
(2.90)

where cH and cs are the wall conductivity ratios for the Hartmann walls near the Hartmann layers and
for the side walls near the side layers. The only nonzero velocity component is ux, and for the core is
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Figure 2.3: Velocity distribution in a perfectly conducting duct with T = z and Ha = 1000 [7].

ux,core =
(
c−1H + 1

)
z (2.91)

and for the side layer is

ux,s =+
− 4

α

β3

(
b

cs
+ 1

)
Ha1/2 exp(−αζ) sin(αζ) cos(βy) (2.92)

at z =+
− b, where α = π1/2/2, β = π/2 and the side layer coordinate ζ = Ha1/2(b − z). The velocity

distribution in the duct for cs = cH =∞ and Ha = 1000 is shown in figure 2.3.
In the second application a uniform volumetric heat generation across the duct Q = 1 is consid-

ered. Harmann walls are adiabatic, and the side walls are kept at the same constant temperature. The
temperature takes the form

T = −1

2
z2 + Θ (2.93)

The core potential is

φcore = φH −
z

2

(
y2 − 1

)
(2.94)

with the Harmann potential

φH =
z

cH

(
Θ− z2

6

)
(2.95)

The velocity in the core is

ux,core =
1

2

(
1− y2 −

(
1 + c−1H

)
z2
)

+
(
1 + c−1H

)
Θ (2.96)

and in the side layer is



30 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.4: Velocity distribution in a perfectly conducting duct with a volumetric heat generation Q = 1
and Ha = 100 [7].

ux,s = −4
α

β3

(
b+ c−1s

(
Θ− b2

2

))
Ha1/2 exp(−αζ) sin(αζ) cos(βy) (2.97)

Θ is found from the condition that the total net flow rate must be zero∫ 1

−1

(∫ b

−b
(ux,core + ux,s) dz

)
dy = 0 (2.98)

and is

Θ =
b2

6

(
1 + c−1H

)
b− c−1s(

1 + c−1H
)
b− c−1s /3

(2.99)

The velocity profile for a perfectly conducting duct and Ha = 100 can be seen in fig. 2.4.

2.2 Tritium transport in the WCLL-BB of DEMO

Tritium is produced within the liquid PbLi due to the following reactions between neutrons and lithium:

n1 + Li6 −−→ T3 + He4 (2.100)

n1 + Li7 −−→ T3 + He4 + n1 (2.101)

Neutrons come from the burning plasma as products of the deuterium-tritium fusion reaction, and are
also generated in the liquid metal thanks to the moltiplication reaction with lead, Pb(n,2n).

The WCLL is a complex system, constitued by multiple regions of different materials. As a conse-
quence, there are different processes that affect the behavior of tritium transport in the WCLL:
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Figure 2.5: Radial profile of the tritium production in the PbLi for the HCLL [42].

1. Advection-diffusion of T into the lead-lithium eutectic alloy.

2. Adsorption/desorption of tritium at the LM/Eurofer interface.

3. Diffusion of tritium in the steel.

4. Recombination/dissociation of T at the structure/coolant interface.

5. Advection-diffusion of diatomic tritium in the coolant.

Considering advection and diffusion of tritium in the liquid metal, the assumption made is that tritium
does not affect PbLi properties nor flow behavior, it is considerable as a passive scalar and magnetohy-
drodynamics is so independent from tritium transport [42]. The mass transport equation is:

∂cT,LM
∂t

+ uLM · ∇cT,LM = ∇ · (DT,LM∇cT,LM ) + ˙ST,LM (2.102)

where cT,LM is the tritium concentration in the liquid metal, uLM is PbLi velocity, DT,LM is the tritium

diffusivity in the liquid metal and ˙ST,LM is the molar tritium generation rate in the PbLi, that is space-
dependent. The tritium generation rate is calculated from neutronics codes, and in absence of relations
for the WCLL studied, in this work are used values obtained for the Helium Cooled Lead Lithium (HCLL)
breeding blanket [41] [25].

At the LM/Eurofer interface Sievert’s law (eqs. 2.103, 2.104) and continuity of partial pressures
Eq. 2.105 are applied

cT,LM = KS,LM
√
pT,LM (2.103)

cT,Eu = KS,Eu
√
pT,Eu (2.104)

pT,LM = pT,Eu (2.105)

from which the following relation can be obtained:
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cT,LM
cT,Eu

=
KS,LM

KS,Eu
(2.106)

where cT,Eu is the tritium concentration in the Eurofer, KS,LM is the Sievert constant of tritium in the
LM and KS,Eu is the Sievert constant of T in the structural Eurofer.

The adsorbed tritium diffuse through the solid structure. The diffusion equation can be written as:

∂cT,Eu
∂t

= ∇ · (DT,Eu∇cT,Eu) (2.107)

where DT,Eu is the tritium diffusivity in the Eurofer.

At the Eurofer/water interface flux continuity is applied, considering the dissociation and recombina-
tion phenomena:

(−DT2,w∇cT2,w + cT2,w · uw) · n̂|w/Eu= −kdpT2,w + krc
2
T,Eu (2.108)

(−DT,Eu∇cT,Eu) · n̂|Eu/w= 2(kdpT2,w − krc2T,Eu) (2.109)

cT2,w is the diatomic tritium concentration in the water, DT2,w and DT,Eu are, respectively, the diffusion
coefficients of tritium in water and Eurofer, pT2,w is the tritium partial pressure in the water, kd is the
dissociation coefficient and kr is the recombination coefficient.

Advection and diffusion of tritium in the coolant water is described by the mass transport equation:

∂cT2,w

∂t
+ uw · ∇cT2,w = ∇ · (DT2,w∇cT2,w) (2.110)

The inlet boundary conditions in all the i domains are set to zero

ci = 0 (2.111)

while at the outlet it is assumed that the diffusion contribution is much smaller than the convective
contribution (perfect extraction from the blanket):

n̂ ·Di∇ci = 0 (2.112)

The initial condition have been set to zero.

This model gives as output the concentration of tritium. It is also interesting to express tritium losses,
that are defined as the ratio between the tritium permeated through the Eurofer structures (pipes, baffle)
to the total tritium generated in the PbLi [43]:

ΦWCLL = 100

∫∫
JpermdAi∫∫∫

˙ST,LMdVLM
(2.113)

where ΦWCLL are the tritium losses in the WCLL, Jperm is the total flux that permeates from the PbLi
domain to the Eurofer domain through the Ai surfaces. Another quantity investigated is the tritium
inventory IWCLL,i for the WCLL in the i -th domain:

IWCLL,i = MT

∫∫∫
cidVi (2.114)

where MT is the tritium atomic weigth, Vi is the volume of the i -th domain.
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Figure 2.6: Flow chart of the solution strategy for new WCLL geometry.

2.3 Solving magnetohydrodynamics and tritium transport

The solution for magnetohydrodynamics and tritium transport is obtained using COMSOL multiphysics.
As already said, thanks to the fact that tritium does not affect the flow, transport can be decoupled from
the other physics.

As expressed in Fig. 2.6, in a first step the turbulent model is solved for the water pipes. Then
fluid dynamics, electromagnetism and heat transfer are solved together iteratively, exploiting the gravity
ramping technique (described in Section 4.1.2). The temperature and velocity profiles obtined are used
as input for the tritium transport model, that is then solved.
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Chapter 3

Benchmark of the code

Smolentsev et al. [34] proposed a method for verification and validation1 (V&V) of MHD codes, consisting
of a series of benchmark problems whose results are known from experimental data or trusted analytical
and numerical solutions. In particular, the five problems cover a wide range of magnetohydrodynamic
flows which are of interest for fusion applications: a) 2D fully developed laminar steady MHD flow, b) 3D
laminar, steady developing MHD flow in a non-uniform magnetic field, c) MHD flow with heat transfer
(magnetoconvection), d) quasi-two-dimensional MHD turbulent flow and e) 3D turbulent MHD flow.

In this work Smolentsev procedure is taken as reference, and the first three cases, involving laminar
flows, are solved. For the first two benchmarks, the problems selected by Smolentsev are considered, while
for case c) (magnetoconvection), the problems selected are the one proposed by Di Piazza and Buhler [26],
that are particularly interesting for the WCLL analysis.

3.1 2D fully developed MHD flow

An electrically conducting fluid flows in a rectangular duct and it is subject to a uniform transverse
magnetic field. The problem is illustrated in Section 2.1.1, and was analytically solved by Shercliff [33]
for a non-conducting duct and by Hunt [16] for a duct with electrically conducting walls. In both cases
the flow forms two Harmann layers at the walls perpendicular to the magnetic field and two side layers
parallel to the magnetic field, with thickness scaling as 1/Ha and 1/Ha1/2, respectively. In Figure ??, the
dimensionless velocity profile for the case Ha = 500 is reported as example for both Schercliff and Hunt
cases. In the case of electrically conducting walls, high-velocity jets near the side walls are produced, with
width that also scales with 1/Ha1/2, forming a “M-shaped” velocity profile, shown in Figure 3.1b. The
nature of this characteristic velocity profile will be explained in the subsection 3.1.2.

The problem, for both cases, is solved in three different ways. Analytically, solving the equations
obtained in Section 2.1.1 (eqs. 2.53, 2.56, 2.62, 2.63 and 2.68). Numerically, using a MATLAB R© code
that solves the system of ordinary differential equations 2.51 and 2.52 with their respective boundary
conditions. Lastly, the problem is solved using the software COMSOL Multiphysics R©. To minimize the
computational cost, considering that the solution is symmetric in both x and y axis, just a quarter of
domain is considered, applying proper boundary conditions. In particular, for fluid dynamics:

u · n̂ = 0 (3.1)

where n̂ is the unit vector perpendicular to the boundary and directed outward. For electromagnetism
symmetry boundary conditions are electrical insulation

J · n̂ = 0 (3.2)

1Briefly, verification is the process of determining if the code is “solving the equations right”, validation is the process of
determining if the code is “solving the right equations”.
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(a) Shercliff’s case. (b) Hunt’s case.

Figure 3.1: Dimensionless velocity profile for Ha = 500. The magnetic field is directed along η.

in the side perpendicular to the magnetic field, and φ = 0 in the side parallel to B.

An example of mesh used is shown in Figure 3.2, similar to the one proposed by Sahu et al. [32].
Elements are generated in x and y direction with a geometric distribution, maximizing the number of
cells in the side and Harmann layers. The problem is invariant in z, so only one element is used in the
direction of the flow.

Analytical, numerical with Matlab and COMSOL solutions are compared to those reported by Smo-
lentsev. The chosen parameter of comparison is the dimensionless flow rate Q̃, obtained integrating the
dimensionless velocity over the channel’s cross section. This, being an integral parameter, is better suited
as a comparison value than the local velocities. The described cases have been developed for different Ha
number: 500, 5000, 10000 and 15000.

3.1.1 Shercliff’s case

Shercliff’s case is now considered. In Fig. 3.3 is presented the dimensionless velocity profile for Ha = 500
and Ha = 15000. It is evident the reduction of the velocity and the side layer width with the increase of
Ha.

In Table 3.1 is shown the comparison of the dimensionless volumetric flow rate Q̃ between the bench-
mark value and our results. The relative error, defined in percentage as

ε =

∣∣∣∣∣ Q̃S − Q̃Q̃S

∣∣∣∣∣× 100 (3.3)

where Q̃S is Smolentsev’s value and Q̃ is the volumetric flow rate obtained by our calculations, is small (<<
1%) for the analytical and numerical solutions. For Ha = 500 and Ha = 5000, solved with COMSOL R©,
the error is still small (0.014% and 0.05% respectively), but it increases for the other two cases, and it is
maximum for Ha = 15000, with a value of 4.07%. For the present work results with an error < 10% are
considered reasonable, so this is more than acceptable. The main reasons why lower errors were difficult
to obtain and why they get bigger with Ha is that convergence is slower as Ha is increased and cw is
reduced [37], and for Shercliff’s case cw is zero for all the four walls.
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Figure 3.2: Typical mesh used in COMSOL multiphysics R© solution.

(a) Ha = 500. (b) Ha = 15000.

Figure 3.3: Dimensionless velocity profile for Shercliff’s case and Harmann numbers 500 and 15000.

Ha Analytical Error [%] Numerical Error [%] COMSOL R© Error [%]

500 7.6799× 10−3 0.0015% 7.6565× 10−3 0.3062% 7.6691× 10−3 0.1419%

5000 7.9020× 10−4 0.0006% 7.8642× 10−4 0.4787% 7.9062× 10−4 0.0532%

10000 3.9655× 10−4 0.0121% 3.9461× 10−4 0.4777% 3.9119× 10−4 1.3392%

15000 2.6479× 10−4 0.0045% 2.6348× 10−4 0.4979% 2.5401× 10−4 4.0748%

Table 3.1: Obtained values of dimensionless volumetric flow rate Q̃ for Shercliff’s case.
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(a) Ha = 500. (b) Ha = 15000.

Figure 3.4: Dimensionless velocity profile for Hunt’s case and Harmann numbers 500 and 15000.

Ha Analytical Error [%] Numerical Error [%] COMSOL R© Error [%]

500 1.4053× 10−3 0.0244% 1.4013× 10−3 0.2631% 1.4082× 10−3 0.2278%

5000 1.9066× 10−5 0.0222% 1.8987× 10−5 0.4328% 1.9035× 10−5 0.1835%

10000 5.1616× 10−6 0.1440% 5.1407× 10−6 0.5482% 5.1349× 10−6 0.6597%

150000 2.4174× 10−6 0.3129% 2.4076× 10−6 0.7177% 2.4096× 10−6 0.6351%

Table 3.2: Obtained values of dimensionless volumetric flow rate Q̃ for Hunt’s case.

3.1.2 Hunt’s case

For the Hunt’s case the Harmann walls have a conductivity ratio cw = 0.01. The value has been selected
following Smolentsev’s procedure. In Fig. 3.4 is shown the dimensionless velocity profile. The “M-shaped”
profile is evident, and it is explained by the fact, as noticeable from Figure 3.5, that in the side layers
the y component of the current density is dominant, and being parallel to the magnetic field, it does not
contribute to the Lorentz force J ×B that acts against the flow. In the core region Jy vanishes, while Jx
is big, leading to a greater force.

From figure 3.4 it is also evident that the width of the spikes near the side walls reduces for increasing
Ha numbers.

Table 3.2 is shows the comparison of the dimensionless volumetric flow rate Q̃ between the benchmark
value and our results. For Hunt’s case it was easier to obtain smaller errors and ε is less than 1% in
every computation. Particularly, it is in the order of 0.1% for Hartmann 500 and 5000, and reaches the
maximum value of 0.635% for Ha = 15000.
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Figure 3.5: Current density profile for Hunt’s case at Ha = 500. B is directed in the y direction. It is
evident that the leading component of J in the core is perpendicular to the magnetic field, while in the
side layers Jx is small.

3.2 3D developing MHD flow in a non-uniform magnetic field

In the second benchmark case a conducting fluid flows in a square duct in the presence of a non-uniform
magnetic field at the exit from a magnet. This case was investigated experimentally at the Argonne
National Laboratory with ALEX (Argonne’s Liquid Metal Experiment) facility [27] [29] [28]. The system
employed euthetic NaK as working fluid in a room temperature closed loop. Maximum Hartmann numbers
attainable were up to 6.6× 103 with interaction parameters in the range of 103 − 105, values interesting
for the development of liquid metal breeding blankets.

The solution for this problem is obtained with COMSOL multiphysics. Equations are those solved for
the 2D fully developed MHD flow case, explained previously in Section 3.1. The only difference is that
now the magnetic field changes in the direction of the flow x. This requires the additional discretization
of the domain in the x direction, and a typical mesh used in shown in 3.6. The symmetry of the problem
is exploited, and, again, only a quarter of duct’s cross section is considered. The mesh is similar to the
previous cases in directions y and z, and a symmetric distribution of elements is adopted in the direction
of the flow, maximizing the number of cells in the central region, where the B field is changing the most.

The parameters adopted for the study are Ha = 2900, N = 540 and cw = 0.07, as proposed by Smo-
lentsev [34]. The quantity selected for the comparison with the experimental results is the dimensionless
transverse pressure difference, that is the pressure difference developed between the centerline of the duct
and the wall in the direction perpendicular to both the magnetic field and the flow, scaled by σLUB2

0 and
it is a function of x.

Results are presented in Figure 3.7. In 3.7a is shown the magnetic field profile scaled by B0 and
the transverse pressure difference obtained by Picologlou et al. [27] experimentally and numerically, both
expressed as a function of the dimensionless coordinate x/L. In 3.7b is shown the solution obtained with
the COMSOL tool. It can be seen that the behavior is the same, but there is a slight difference in the
numerical value of the ∆p. In the experimental case it has a maximum value of ∼ 0.05, while in COMSOL
solution it has a maximum value of 0.04. This discrepancy depends on different factors. Firstly, it was
not possible to have the exact profile of the magnetic field, that was exported manually from Fig. 3.7a.
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Figure 3.6: Typical mesh used in COMSOL multiphysics R© solution.

(a) ALEX experiment measurements and numerical solu-
tion [27].

(b) COMSOL solution.

Figure 3.7: Magnetic field and transverse pressure difference profile as a function of x/L. M indicates the
Hartmann number, while N is the interaction parameter.
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(a) Di Piazza and Buhler solutions [26]. (b) Analytical and COMSOL solutions obtained in the
present work.

Figure 3.8: Comparison between analytical and numerical solutions of velocity profile for a differentially
heated duct in the y = 0 plane, with T = z, Ha = 100 and cw = 1. Only half duct is considered.

Another source of error derives from the fact that it was not possibile to increase too much the number
of elements due to limitations in computational resources.

3.3 Magnetoconvection

The third case proposed by Smolentsev is now introduced with reference to the work proposed by Di
Piazza and Buhler. The managetoconvection problem is mathematically described in Section 2.1.2. In
particular, the two cases introduced in Section 2.1.2, differentially and uniformely heated duct, are solved
analytically and numerically employing a COMSOL multiphysics code.

3.3.1 Differentially heated duct

The two boundaries at z = −1 and z = 1 are kept at different temperatures and there is not internal heat
generation, so the temperature profile becomes linear.

The analytical solution is obtained solving equations from 2.87 to 2.92. The problem is 2D, and
COMSOL solution is found using a mesh similar to Fig. 3.2.

In Fig. 3.8 it can be seen the comparison of the velocity profile for Di Piazza and Buhler (Figure 3.8a)
and the analytical and COMSOL (Figure 3.8b) solutions. Only half the duct in the plane y = 0 is
presented for Ha = 100 and cw = 1. Velocity exhibits a linear profile in the core, where viscous effects
are negligible and buoyancy is balanced by Lorentz forces. The side layer is governed by viscous effects
and by the current pattern, and high velocity jets are produced.

A qualitative evaluation has been carried out. The agreement between DP&B solution and the one
presented in this work is quite good, while for both graphs the analytical and numerical solutions do not
perfectly match in the side layers. This is due the fact that the asymptotic approach, followed to obtain
the analytical solution, does not apply exactly because relevant currents flow parallel to the wall within
the side layer [26].

In Fig. 3.9 the potential profile is presented, and the gradient in the side layer sustain the velocity
peak.
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(a) Di Piazza and Buhler solution [26].
(b) COMSOL solution.

Figure 3.9: Potential profile for a differentially heated duct in the plane y = 0, with T = z, Ha = 100 and
perfectly conducting walls.

A sensitivity analysis, changing the wall conductance ratio, is shown in Fig. 3.10, for Ha = 100. It is
interesting to notice that for the lower values of cw the damping effect of magnetohydrodinamics is less
evident, while in the core region the solution is still dominated by Lorentz forces and exhibits a linear
behavior, with a slope of ∼ Ha for the perfectly insulating walls case [6]. In the lower conductivity cases,
jets are not present. This is due the fact that for low values of cw the side layer becomes better conducting
than the side walls and high current jets are now present in the layers, parallel to the side walls. They are
also parallel to B, so they do not interact with the magnetic field, therefore the electric magnetic forces
in the side layers become negligible and the dominant effect is due to viscous dissipation.

Again a good agreement between DB&B solution and the one obtained for this work is noticeable,
proving the accuracy of the codes developed.

3.3.2 Uniformly heated duct

For the uniformly heated duct, internal heat generation is present and the boundary at z = −1 and z = 1
are kept at an equal temperature, so the temperature profile established is parabolic. In a pure fluid
dynamic case with buoyancies the flow goes up in the centre of the duct and down close to the walls
kept at the constant temperature, considering the other walls adiabatic. In the MHD case, for high wall
conductivity ratios, the additional forces damp the velocity profile in the core region, as can be seen in
Figure 3.11 for Ha = 100, and velocity jets are present in the side layers. For small values of cw, jets
are no more present, like in the case of differentially heated duct, and the solution at the side layers is
dominated by viscous effects.

A similar sensitivity analysis is shown in Fig. 3.12, for Ha = 1000. It is evident that for higher
Hartmann numbers the thickness of jets decreases, scaling with ∼ Ha−1/2 [26].

Figure 3.13 shows the normal wall current, the interval 1 < ζwall < 3 is referred to the Hartmann
walls, while the others to the side walls. The selected value of Ha is 1000 and J · n̂ for different values
of cw is displayed. It can be seen that is small in the side walls for small wall conductance ratio. Like
in the differentially heated duct case, the side layers become better conducting than the side walls and
high currents flow in the layers parallel to the walls and to the magnetic field, giving little contribution
to Lorentz forces.

All the displayed figures show that results obtained with the COMSOL multiphysics tool are in good
agreement with the solutions of Di Piazza and Buhler, emphasizing the reliability of the code developed.
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(a) Di Piazza and Buhler solutions [26].
(b) COMSOL solution.

Figure 3.10: Velocity profiles for half duct in the plane y = 0 for a differentially heated duct with T = z,
Ha = 100 and for different values of the wall conductivity.

(a) Di Piazza and Buhler solutions [26].
(b) COMSOL solution.

Figure 3.11: Velocity profiles in the plane y = 0 for a uniformly heated duct with Q = 1, Ha = 100 and
for different values of the wall conductivity.
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(a) Di Piazza and Buhler solutions [26].
(b) COMSOL solution.

Figure 3.12: Velocity profiles in the plane y = 0 for a uniformly heated duct with Q = 1, Ha = 1000 and
for different values of the wall conductivity.

(a) Di Piazza and Buhler solutions [26].
(b) COMSOL solution.

Figure 3.13: Currents normal to the walls in an internally heated duct with Q = 1, Ha = 1000 and
different values of cw.



Chapter 4

Results

The analysis of the WCLL model is now shown. Due to the complexity of the geometry, the minimum
considerable domain is half the module. The CFD model is solved for this domain, considering buoyancy
contribution. The magnetohydrodynamic effect and tritium transport are only included in three simplified
models of the WCLL. In particular, a straight, rectangular duct with zero, one and two coolant tubes is
analyzed. Both the pure MHD and the magnetoconvection case are solved.

4.1 CFD analysis

4.1.1 Grid convergence study and mesh selection

To ensure a minimum discretization error due to insufficient spatial resolution, a grid convergence study
is performed, using the grid convergence index (GCI) method, as suggested by the ERCOFTAC Best
Practice Guidelines [10] [12] [30]. Three different grids are selected and are indicated as M1, M2 and M3,
where M1 is the most fine and M3 the coarser. They should have geometrically similar cells with a grid
refinement factor:

r =
hcoarse
hfine

(4.1)

bigger than 1.3, where hcoarse and hfine are the rapresentative cell size of the coarser and finer meshes,
respectively. h is defined as:

h =

(
1

N

N∑
i=1

∆Vi

)1/3

(4.2)

where N is the number of elements and ∆Vi is the volume of the i -th cell. The grid refinement must
be done systematically, with a structured refinement even if the grid is unstructured. In the present
work, the meshes developed are hybrid, consisting in both structured and unstructured meshes. In the
refinement process, homogeneous refinements for the cells are obtained using the built-in function of
COMSOL multiphysics, as shown in Fig. 4.1. The CFD model is solved using these meshes.

Twenty variables, local and global, are selected to carry out the GCI calculations, presented in Ta-
ble 4.1. The inlet and outlet locations of PbLi exit are identified by a matrix notation, where the rows
indicate the entrance/exit whereas the columns identify the position moving in toroidal direction. The
results of the method are shown in Fig. 4.2.

Low values of GCI indicate the grid independency, and for this work a GCI smaller than 10% is
acceptable. Considering the results and the computational time needed to perform the calculations, the
mesh M2 is chosen as reference mesh, and is presented next (Fig. 4.3, 4.4 and 4.5).

45
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Figure 4.1: Mesh elements trend for M1, M2 and M3. From left to right: mesh vertices, tetrahedral
elements, pyramids elements, prisms elements, hexaedra elements, triangles, quads, edge elements and
total number of elements.

Figure 4.2: Grid convergence index for the three different meshes.
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ID Description Local Global

1 Velocity on the middle of PbLi exit surface [1, 1] X

2 Velocity on the middle of PbLi exit surface [1, 2] X

3 Velocity on the middle of PbLi exit surface [1, 3] X

4 Temperature on the middle of PbLi exit surface [1, 1] X

5 Temperature on the middle of PbLi exit surface [1, 2] X

6 Temperature on the middle of PbLi exit surface [1, 3] X

7 Average velocity on PbLi exit surface [1, 1] X

8 Average velocity on PbLi exit surface [1, 2] X

9 Average velocity on PbLi exit surface [1, 3] X

10 Average temperature on PbLi exit surface [1, 1] X

11 Average temperature on PbLi exit surface [1, 2] X

12 Average temperature on PbLi exit surface [1, 3] X

13 Average velocity on PbLi domain X

14 Average velocity on water domain X

15 Average temperature on PbLi domain X

16 Average temperature on water domain X

17 Average temperature on Eurofer domain X

18 Max temperature on PbLi domain X

19 Max temperature on water domain X

20 Max temperature on Eurofer domain X

Table 4.1: Variables selected for the GCI method.

Figure 4.3: Mesh of the full domain.
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Figure 4.4: Mesh of the tubes domain.

Figure 4.5: Particular of the mesh of the water pipes.
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4.1.2 CFD results

With reference to the Figure 4.3, the PbLi enters in the three rectangular duct on the bottom of the
module and exits from the three on the top. The boundary conditions are imposed average velocity in
the inlet and null pressure in the outlet. Water enters in the eight tubes on the left, removes the heat
from the blanket and exits from the eigth tubes on the right. BCs are equivalent to the one for the PbLi.
The other conditions are no slip in all the other boundaries. Fluid dynamics is solved using the k − ω
turbulence model in both PbLi and water domains.

Heat transfer is solved considering adiabatic conditions in all the external surface excluded the bound-
aries facing the first wall, on which a heat flux is imposed, that is a conservative assumption. The vol-
umetric heat generation in the PbLi, water and Eurofer is included, produced by the incoming particles
and function of the radial coordinate.

Two cases are considered, one without buoyancies and one considering buoyancies under the Boussinesq
hypothesis, for which density variations affects only the gravity term in Navier-Stokes equations. In the
buoyancy case, in order to deal with the high non-linearity of the system of partial differential equations,
the gravity term was included using the gravity ramping technique. The equations are solved iteratively
increasing step-by-step a coefficient k, multiplied to the gravity term, from 0 (no buoyancy case) to 1
(buoyancy case). The momentum equation becomes

ρ0 (u · ∇)u = −∇p+ µ∇2u+ k (ρ0 + ∆ρ) g (4.3)

where ρ0 is the reference density. This procedure is shown in Fig. 2.6 of Section 2.3.
Considering the no buoyancy case, in Fig. 4.6 the PbLi velocity field in the radial-poloidal plane placed

in the half of the module is presented. The arrows indicate the stream direction, and are proportional to
the velocity. In 4.7 the temperature field is shown. The peak temperature is placed near the first wall,
where the heat flux is incoming and the volumetric heat generation rate is maximum.

Now the buoyancy case results are shown. In Fig. 4.8 the velocity profile is presented. As can be seen,
there is a spot of high velocity near the exit and there is an incoming flow from the outlet. This backflow
phenomenon may be due to the low velocity of the PbLi circulating in the blanket and to the dominant
effect that buoyancy has on the flow behavior, that can be seen comparing Figures 4.6 and 4.8. It may
be also due to the boundary conditions adopted, and further investigations are needed. In Figure 4.9 the
temperature field is shown. The peak temperature is extremely smaller than in the no buoyancy case.

Comparing the two cases investigated, it is evident that buoyancy plays a major role, smoothing the
temperature field, and cannot be neglected.
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Figure 4.6: Velocity profile for the case without buoyancy.

Figure 4.7: Temperature profile for the case without buoyancy.
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Figure 4.8: Velocity profile for the buoyancy case.

Figure 4.9: Temperature profile for the buoyancy case.
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4.2 MHD and tritium transport analysis

The introduction of additional physics to the already complex CFD model requires a massive compu-
tational cost. To solve MHD and tritium transport, three simplified models are developed, using a
step-by-step approach, in order to understand the complex phenomena produced by the multiple coupled
physics. A straight rectangular duct that contains zero, one and two coolant tubes and with an Eurofer
baffle on top. They are presented in Fig. 4.10. In the case with two tubes, in the left one water flows in
the opposite direction with respect to the PbLi, while in the right tube it flows in the same direction.

Figure 4.10: The three simplified models zero, one and two tubes.

Water is solved using the turbulent model k − ω, while in the PbLi the flow is laminar. For what
regards heat transfer, the contribution of the volumetric heat generation rate is included, and the boundary
condition for tritium transport are explained in Section 2.2.

For the three geometry MHD and tritium transport for Ha = 0, 50, 100 and magnetoconvection and
tritium transport for Ha = 50 are solved following the procedure expressed in Figure 2.6. The results are
presented in the following sections.

4.2.1 MHD and tritium transport results

For the three simplified geometries, magnetohydrodynamics without buoyancy and tritium transport are
solved.

Considering the zero tube case, in Fig. 4.11a the PbLi velocity profile in the z direction at the middle
of the outlet section for different Ha numbers is shown . It is evident the M-shape profile for the MHD
cases. In Figure 4.11b the velocity profile in the toroidal-poloidal plane at the outlet for Ha = 50 is shown
. The tritium losses and inventories, defined by equations 2.113 and 2.114, are presented in Table. 4.2.
The permeation rate, defined as the surface integral of the normal total flux on the interfaces between the
PbLi and the Eurofer, can be seen in Fig. 4.12. It is interesting to see that it decrease as the Hartmann
number increases, as reported also by Zhang [43].

The same results are also reported for the one tube and two tubes cases. It is interesting to see in
Figure 4.13a and 4.15a that the M-shape profile is still present, but is deformed by the presence of the
tubes. There is also the presence of velocity spikes near the tubes, parallel to the magnetic field direction
(Fig. 4.13b and 4.15b). The permeation rate become bigger as the number of tubes increases, and this
ultimately impact the losses. This is due to the increased interface area between the PbLi and the Eurofer.

The mass balance of tritium has been carried out to verify the accuracy of the results. The tritium
generated at each time must be equal to the tritium permeated in the Eurofer domain, plus the tritium
accumulated and the tritium that escape from the boundaries. The integral mass balance error is smaller
than 10% for every case, with the exception of the one tube, Ha = 100 case (11.37%) and the two tubes,
Ha = 100 case (11.06%).
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(a) Velocity on z-direction for different Ha. (b) Velocity in a poloidal-toroidal plane.

Figure 4.11: Velocity profile at the outlet section for the MHD without buoyancy and zero tubes case.

Losses [%] Inventories [mol]

Ha PbLi Water Baffle Pipes

0 1.2844× 10−1 3.8854× 10−6 5.3827× 10−7

50 9.8332× 10−2 2.9383× 10−6 1.3991× 10−7

100 9.0681× 10−2 3.2520× 10−6 1.0522× 10−7

Table 4.2: Tritium losses and inventories for the MHD without buoyancy and zero tubes case.

Figure 4.12: Permeation rate as function of the Hartmann number for the MHD without buoyancy and
zero tubes case.
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(a) Velocity on z-direction for different Ha. (b) Velocity in a poloidal-toroidal plane.

Figure 4.13: Velocity profile at the outlet section for the MHD without buoyancy and one tube case.

Losses [%] Inventories [mol]

Ha PbLi Water Baffle Pipes

0 1.4968× 10−1 4.2464× 10−6 4.1943× 10−11 5.5190× 10−7 1.0053× 10−7

50 1.1445× 10−2 3.4970× 10−6 2.8523× 10−11 1.4045× 10−7 6.7775× 10−8

100 1.0661× 10−1 3.6811× 10−6 2.7345× 10−11 1.0614× 10−7 6.4872× 10−8

Table 4.3: Tritium losses and inventories for the MHD without buoyancy and one tube case.

Figure 4.14: Permeation rate as function of the Hartmann number for the MHD without buoyancy and
one tube case.
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(a) Velocity on z-direction for different Ha. (b) Velocity in a poloidal-toroidal plane.

Figure 4.15: Velocity profile at the outlet section for the MHD without buoyancy and two tubes case.

Losses [%] Inventories [mol]

Ha PbLi Water Baffle Pipes

0 1.6170× 10−1 4.5146× 10−6 6.2671× 10−11 5.3193× 10−7 2.0611× 10−7

50 1.2579× 10−2 3.4859× 10−6 4.1890× 10−11 1.4071× 10−7 1.2732× 10−7

100 1.1748× 10−1 3.6884× 10−6 4.0921× 10−11 1.0731× 10−7 1.2493× 10−7

Table 4.4: Tritium losses and inventories for the MHD without buoyancy and two tubes case.

Figure 4.16: Permeation rate as function of the Hartmann number for the MHD without buoyancy and
two tubes case.
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4.2.2 Magnetoconvection and trititum transport results

The effect of buoyancy is now included in the study. The results are obtained for Ha = 50. As can be
seen from Figures 4.17, 4.18 and 4.19, comparing the results to the pure MHD case, the velocity profile is
completely changed by the effect of the gravitational term. Like in the CFD analysis (Section 4.1.2), in
all the magnetoconvection cases, recirculation and backflow are present. From Table 4.5 is evident that
for the magnetoconvection case permeation rates are increased and tritium inventories are smaller. The
integral mass balance error is smaller than 10% for the zero and one tubes geometries, but is 20.94% for
the two tubes case.

(a) Velocity on z-direction for different Ha. (b) Velocity in a poloidal-toroidal plane.

Figure 4.17: Velocity profile at the outlet section for the magnetoconvection and zero tubes case.

(a) Velocity on z-direction for different Ha. (b) Velocity in a poloidal-toroidal plane.

Figure 4.18: Velocity profile at the outlet section for the magnetoconvection and one tube case.
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(a) Velocity on z-direction for different Ha. (b) Velocity in a poloidal-toroidal plane.

Figure 4.19: Velocity profile at the outlet section for the magnetoconvection and two tubes case.

Losses [%] Inventories [mol]

Geometry PbLi Water Baffle Pipes

0T 1.8309× 10−1 1.6493× 10−6 7.6442× 10−8

1T 2.4754× 10−2 1.7511× 10−6 4.2331× 10−12 6.9361× 10−8 8.2248× 10−9

2T 2.5402× 10−1 1.5398× 10−6 7.8346× 10−12 6.7336× 10−8 2.4240× 10−8

Table 4.5: Tritium losses and inventories for the magnetoconvection case.
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Conclusions

In the work, the analysis of half the WCLL module has been carried out. An extensive benchmark activity
to verify the reliability of the codes developed has been carried out. Three different flows are investigated,
2D fully developed MHD flow, 3D MHD flow in a non-uniform magnetic field and MHD with buoyancy.
The solution of the CFD model has been obtained, comparing the case without buoyancy with the
buoyancy case. The impact of buoyancy on the temperature and velocity field is considerable. Buoyancy
mitigates and smoothen the temperature field, and the presence of temperature gradients creates eddys
and recirculating patterns inside the module, causing backflow in the outlet section. This phenomenon
must be further investigated.

The breeding unit has a complex geometry, and the introduction of additional physics, MHD and
tritium transport, requires substantial computational resources. For this reason, the MHD effect has been
analyzed considering three simplified geometries of the WCLL, a rectangular duct with zero, one and two
coolant tubes. The pure MHD case was solved for different Hartmann numbers, and a decrease of the
permeation rate with the increase of Ha is evident. The case without buoyancy forces is then compared to
the buoyancy case. Magnetoconvection has again a large effect on the flow behavior, produces backflow,
and tends to reduce the concentration of tritium in all the domains, and increases the losses.

The computational errors, evaluated performing a mass balance, are acceptable, but further investi-
gation of the work is needed in order to reduce them as much as possible, particularly for the two tubes
cases. Additional advances include the analysis of the simplified models considering higher Hartmann
numbers, particularly the Ha representative for fusion applications (Ha > 1000), and the comparison of
the results with different codes.
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