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Facoltà di Ingegneria
Corso di Laurea in Ingegneria Aerospaziale

Sensitivity Analysis of Analytical
Model for the Prediction of Trailing

Edge Noise

Tutor: prof. Renzo Arina
Tutor: prof. Andrea Ferrero

Candidato: Gerardo Zampino



Abstract

Airfoil self-noise is defined as the acoustic emission by an airfoil immersed in uniform and
steady fluid flow. As in most aeroacoustic noise generation situations, it is emitted by flow
unsteadiness that interacts with the body surface and leads to broadband noise. There
are mainly two broadband noise-generating mechanisms: the turbulence-interaction noise,
involving the breakdown of oncoming vortexes on the leading edge of the airfoil, and the
boundary-layer turbulence scattering at the trailing edge, known as trailing-edge (TE)
noise.

In future, the increasing air traffic and the proximity of airport to the cities will pro-
duce several noise problems for the inhabitants. For this reason, noise prediction models
assume increasing importance. Noise emission has to be reduced in order to guarantee
an high comfort for both passengers and citizens. Another interesting application field
is related to the wind turbines. They produce typical broadband noise that has negative
effects on health, mainly psychological, for who lives around the wind farms. Reducing
broadband noise is one of the main requirement for wind turbine design. However, airfoil
self-noise is only a contribution of the acoustic pollution.

Keeping in mind the necessity of an accurate acoustic model during the design phase,
this document provides a useful approach for noise prediction. The thesis consists firstly
into a comparison of several analytical methods that allow to predict the sound pressure
level for TE noise, in far field approximation, generated by airfoils at different angle of
attack, immersed into an high Reynolds flux. Several models are studied to find an opti-
mum configuration that well approximates the experimental measurements. However, in
experiments, the different sound sources, due to the turbulence phenomena around the
body, are not completely discernible. The contribution of radiated TE noise is studied
for two geometries: NACA0012, a classical example of symmetrical airfoil used for wind
design, and DU96-W-180, asymmetrical profile applied in wind turbines. This allows to
evaluate in which geometrical configuration the acoustic prediction is more accurate.
The acoustic model is implemented in post processing data. The pressure, velocity and
wall stress distribution around the profile are obtained using a numerical simulation based
on Reynolds Averaged Navier-Stokes (RANS) equations with Spalart-Allmaras turbulent
model.

Amiet’s theory, described in reference [1], is the first model introduced in literature.
As far as concern analytical aspects, the method is based on the Power Spectrum Density
(PSD) and on the introduction of correlation length as function of the frequency, accord-
ing to Corcos hypothesis. However, the condition of high shape ratio must be satisfied.
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The pressure spectrum is obtained using empirical models such developed by Goody[2],
Rozenberg[3], Kamuruzzaman[4] or Lee [5]. A simple solution was proposed by Amiet in
his principal work but omitted in following chapters. Finally, the solutions are compared
with experimental data [6, 7].

A sensitivity analysis is carried out in order to understand how the output of each
pressure model is influenced by the boundary-layer quantities predicted with RANS simu-
lations. Monte Carlo method is combined with Saltelli’s approach which introduces global
sensitivity factors useful to quantify the weight of each input parameter and estimate how
the uncertainty propagates into the studied analytical models for the calculus of pressure
spectrum density.
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Airfoil Self-noise prediction theory
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Chapter 1

Acoustic Theory

1.1 Introduction

An Airfoil immersed in turbulent flow generates sound due to unsteady flow interactions
with a sharp-edge body. The overall sound radiated by a flap of wind turbines or a wing
is the result of different mechanisms. It is possible to distinguish between the broadband
noise and tonal noise. The first contribution is a matter of great interest in technologies
that utilize sharp shapes, while tonal emission is almost negligible. The causes of the
present distinction have to be found in two main reasons: the low pressure level and high
frequencies that escapes the human hearing frequency range. Thus, the broadband noise
is the only contribution for a structure with airfoil-like shapes in not accelerated motion.

There are mainly three noise-generating mechanisms. The turbulence-interaction noise
is defined as a broadband radiated sound by the upstream turbulence involving the break-
down of oncoming vortexes on the leading edge of the airfoil. Boundary-layer turbulence
scattering at the trailing edge is the source of trailing-edge noise (TE). Turbulent eddies
are formed within the boundary layer and the interaction with the TE generates broad-
band aerodynamic noise. In acoustic terms, the edge presents itself as a sharp impedance
discontinuity, scattering acoustic waves generated by fluid turbulence and creates an in-
tensified radiated acoustic field.

Tonal emission is a property of vortex shedding noise, more typical for bluntness trail-
ing edge. The narrow-band radiation is concentrated around a Strouhal peak value as a
function of external flow speed such demonstrated by Brooks et Al. [6] with empirical
formula. Intense turbulent eddies incoming from trailing edge are able to break coherent
vortexes and reduce the amplitude of emission. For this reason, in high turbulent flow,
vortex-shedding noise is not observed. Roger [8] developed a new model based on the
solution of a reversed Sears’ problem. It consists into an adaptation of Sears’ lift fluc-
tuations due to the stream disturbances, by introducing reverse flow velocity in order to
include the Vortex-Shedding noise in the acoustic overview.

In 1959 Powell [9] firstly studied the problem of trailing-edge noise at low Mach num-
ber. However, Powell’s model does not describe the real effect of pressure spectrum on
the generation noise and the acoustic results are not congruent with experimental data.
The author demonstrated the sound power is a function of flow velocity as U4.6

∞ but the
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Chapter 1: Acoustic Theory 3

sound directivity is not defined. Powell’s theory was a strong incentive to continue explo-
ration of the turbulent noise emission as effect of pressure spectrum on the body surface.
And it contributed to the elaboration of analytical studies that proposed alternatives for
Lighthill acoustic analogy, defined as exact but expensive solution because of the inter-
pretation of quadrupole source term. The theoretical methods, based on the linearized
hydroacoustics equations, were developed to relate the pressure fluctuations on or near
the edges of airfoil to the sound field. Crighton [10], Jones [11], Chase [12, 13] and Amiet
[1] firstly described the self-noise production using Schwartzschild solution[14]. Chase for-
mulated the problem by using Green function for zero mean flow and the noise problem
was linked to surface pressure. The theory was developed for a semi-infinite plate without
leading edge. Thus, the turbulence-interaction noise is neglected. This limitation does
not influence the trailing-edge generation mechanism.
However, corrective theories introduced a series of hypothesis that allow to extend the
Amiet’s solution in many realistic applications for a shape ratio higher than 10. Roger
and Moreau [15], proposed a back-scattering correction for Amiet’s trailing-edge model
in order to explain all effects of limited chord length. In the paper, Roger’s model shows
excellent results for low Helmhotz number, for which the chord is considered as acousti-
cally compact. Small airfoils technologies are more subjected to scattering correction.

In 1978 Howe[16] published an unified theory of trailing edge noise. Howe’s model
tried to solve the acoustic problem for an high subsonic Mach number and he released a
modified formula for Sound Pressure Level as function of Doppler factors. Moreover, the
forward flight effects are implemented.

Kutta-Joukowski condition has to be discussed. It is defined as the correction of the
circulation value of the flow around a sharp airfoil necessary to force a stagnation point
on trailing edge. Jones[11], Crighton[10] and Howe were not able to refine how Kutta
hypothesis should be applied for theoretical modeling. Howe’s model demonstrates that
using Kutta condition, Amiet’s formula predictions exceeds that predicted by implement-
ing Kutta condition of about 10 dB. Hence, in two-dimensional problems, removing a
singularity at trailing edge leads a reducing radiation noise due to the sound interference
that removes the oncoming turbulent flow contribution.

In late ’80s, the development of computational fluid dynamics (CFD) and compu-
tational aeroacoustics (CAA) solved the problem of noise radiation for a large series of
bodies immersed in turbulent flow. The computational aeroacoustics consists into solving
the Ffowcs Williams and Hall equations by introducing an opportune noise source that
generates the main pressure input on the body surface. The source type depends on the
interaction between the wall and the external flow. Hence, the signal propagates in the
entire domain discretized by a very thin mesh.
The numerical approach has an important limitation and direct simulation or hybrid
techniques are preferred to describe the tiniest details of the sound generating mecha-
nisms. For CAA methods, computational cost is not always suitable by calculators and
this aspects implies an expensive time-consuming. The domain has to be discretized by
introducing very small elements in order to correctly reproduce the acoustic propagation.
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NACA0012 airfoil

DU96-W-180

Figure 1.1: Comparison of the section geometries.

Thus, the total number of steps increases, in respect of that necessary for a classical CFD
unsteady solution. On the other hand, analytical methods, based on acoustic analogy
and wave scattering, are not devoted to reproducing the details of noise generating mech-
anisms, but rather to provide acceptable order of magnitude of the generated sound with
fast and inexpensive calculations. Hybrid methods appear to be important for industrial
applications because of reduced computational cost and good approximation of acoustical
results. They are defined as a mixed approach that comes out from a combination of
aerodynamic and acoustic equations: the fluid field, solution of the CFD simulation, is
the main disturbance that represents the source term in the acoustic equation. The aero-
dynamics provides the pressure fluctuations on body surface while the acoustic equation
provides the propagation mechanism. Examples are given by hybrid LES coupled with
Ffowcs Williams and Hall far-field propagation or simplified theoretical surface pressure
spectrum associated to a far-field propagation method.

Useful tool for noise prediction is proposed in following chapters. Firstly, the boundary
layer profile is obtained as output of Reynolds Averaged Navier-Stokes (RANS) equations
with Spalart-Allmaras turbulent model. Secondly, the Amiet’s trailing edge theory is
applied[17]. However, models like Amiet’s trailing-edge noise are applied only for simple
configurations such as flat plate or thin airfoil.
The contribution of radiated TE noise is studied for two geometries: NACA0012, a classi-
cal example of symmetrical airfoil used for wing design, and DU96-W-180, asymmetrical
profile applied in wind turbines. The theoretical results are compared with experimental
data.

NASA financed a series of experiments conducted by Brooks, Pope and Marcolini[6]
that produced a document in which are analyzed velocity and incident effects on five
different chord length NACA0012 profile. Tripped and untripped boundary layer are dis-
cussed. Furthermore, the empirical method were developed to compute intensity level
due to the different noise mechanisms. The approach proposed by the authors is known
as BPM model and it is still used in many applications. In reference [7] different analyt-
ical methods, mainly numerical, are applied on NACA0012 and DU96-W-180 profiles at
varying incident and flow speed and compared with experimental data.
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The acoustic analysis has important applications in wind turbines. The wind farms,
close to the towns, have impact on the citizens wellness. The acoustic pollution, due to
the incessant rotating blades, could cause a reduction of the attention, sleep disorder and
annoyance. During the ’90s several studies were conducted in order to define the best
airfoil configuration that combines high performances and low sound level. The classical
4 digit NACA series 44 or the 6 digit series 63, were common airfoil families used for
the design of wind turbines. However, they suffers a degradation of the performance
because of premature transition. The DU series were introduces by Delft university[19]
with different characteristics during the years. The DU96-W-180 is an example of profile
designed for wind turbine applications. In the general DU yy-W-xxx airfoil series, ’DU’
indicates the Delft University, followed by the last two digits of the year in which the
profile was designed. The letter ’W’ means that the main application is for the wind
turbines and the last three digits are the ten times the maximum thickness.

In reference [18] the hybrid approach combining LES and the FWH acoustic analogy
is used to predict the far field emissions and the authors demonstrate a good agreement
with the experimental results. Merino Martinez et Al. designed a modified DU profile to
introduce the reduction mechanism of the noise emission with flow-misaligned serrations
at a high Reynolds number[20].
In the present paper, the DU96-W-180 profile is selected in order to demonstrate the
validity of the hybrid proposed approach also for not symmetrical design. However, in
real applications for wind turbines, the Reynolds number is very low and the acoustic
emission is about 30 dB. Moreover, the experimental design in ref. [20] does not respect
the present approach hypothesis. A future development of the present work consists into
extension of the Amiet’s theory for complex three dimensional configurations with taper
and warp design.

1.2 Amiet’s analytical theory

The main problem that the hybrid methods try to solve consists into reducing the time-
consuming for the classical numerical approaches, without compromise the expected re-
sults; for this reason Amiet’s theory represents an important starting point for the future
applications because of its simple concept and good acoustic compliance with experimen-
tal data. However, it needs a series of input that are not available without a boundary
layer simulation and a pressure spectrum that is obtained according to semi-empirical
models. Amiet published in 1975 a new theory for trailing-edge noise prediction based
on Schwartzchild solution. The author observed the airfoil immersed in turbulent flow
produces acoustic noise due to gusts oncoming on the surface of the body. A typical eddy
is composed by parallel gusts related to the trailing edge and skewed components. Even
though the parallel type is the main cause of far-field sound emission and it is a simple
contribution to compute, the skewed gusts produce a deleting lift fluctuations due to ad-
jacent spanwise stations. For this reason, the pressure fluctuations in spanwise direction
need major attentions. Spanwise fluctuations are neglected in the following chapters be-
cause of the fixed observer position in the mid-span section.

The basic assumption consists into turbulent stationary flow. Hence, turbulent veloc-
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Figure 1.2: Scheme of the reference axis on the trailing edge.

ity field is not affected by the trailing-edge presence and the edge noise would exist even
without the leading-edge. The convecting pressure pattern is generated by gusts past the
trailing edge. The airfoil is assumed to have semi-infinite chord; thus, no leading edge
exists. The hypothesis is valid for an acoustic compact body and the chord is mainly
larger than the acoustic wavelength. The entire acoustic phenomena can be reproduced
by two-dimensional simulation. The two-dimensional approach allows to drastically re-
duce the computational cost. For this reason the mesh has to be improved for only the
characteristic section. This is possible to be implemented because of the high shape ratio
and no taper or warp. The airfoil has constant shape all along the spanwise direction and
the extremity vortexes are neglected. Thus, the distribution of pressure fluctuations is
constant all along the wing.

The demonstration of the Amiet’s formula takes part from the introduction of Schwartzchild
solution. It is useful to divide the solution into two parts: firstly the plate is extended in
order to obtain an infinite airfoil in both upstream and downstream directions; secondly
the convective surface pressure is extended over the imaginary downstream part and it is
added to a dipole distribution. However, a second solution is needed to delete the con-
tribution of downstream airfoil. In real configuration, the chord is limited and Amiet’s
theory is not completely adapted for the acoustic prediction. The finite chord is hidden in
the pressure spectra definition that is influenced by the RANS solution and the Amiet’s
formulation is adopted, though. The finite chord problem was solved by Roger [15] that
complicated the Amiet’s formula without a necessary improving model performances.

For the following dissertation, an airfoil of chord 2b and span 2d in a turbulent flow
with mean speed U∞ is considered. The reference coordinate system has origin at the
mid-span section of the airfoil, in correspondence with trailing-edge. The y coordinate
extends along spanwise direction, while x axis is direct in flow field direction. Finally, the
z axis is normal to wing surface. The scheme is presented in the Figure 1.2, where the
observer position is over the trailing edge along the z-axis. The angle φ and θ, define the
observer location in polar coordinates. The SPL mainly depends on the observer position
and decreases in function of the distance from the trailing edge.

The speed components are u, v and w, respectively along x, y and z axis. The turbu-
lence is assumed to be frozen and turbulent velocity can be written as function of double
spatial Fuorier transformation of w in the variables x and y. The Fourier components ŵR
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are functions of wavenumbers in chordwise and spanwise directions can be calculated as

ŵR =
1

4π2

∫ ∫ +R

−R
w(x, y)e−i(kxx+kyy)dxdy (1.1)

where kx and ky are the wavenumbers, and R is a large but finite value, necessary to solve
the integral.
Turbulent velocity is defined as

w̃(x, y, t) =

∫ ∫ ∞
−∞

ŵR(kx, ky)e
i[kx(x−Ut)+kyy]dkxdky (1.2)

The distribution of pressure jump on flat plate was described by Amiet in reference [21].
Thus,

∆P (x, y, t) = 2πρ∞Ub

∫ ∫ ∞
−∞

ŵR(kx, ky)g(x, kx, ky)e
i(kyy−kxUt), (1.3)

where the function g(x, kx, ky) is the airfoil pressure distribution for sinusoidal gust.
Fourier transformation is applied in order to introduce a frequency dependence. The
integration interval is −R/U∞ < t < R/U∞. Considering∫ R/U∞

−R/U∞
eiξtdt = 2πδ(ξ), (1.4)

the pressure distribution is obtained as

∆P̂ (x, y, ω) = 2πρ∞b

∫ ∞
−∞

ŵR(kx, ky)g(x,Kx, ky)e
ikyydky, (1.5)

where Kx = −ω/U∞ is the chordwise turbulent wavenumber. As far as concern, the
statistical definition of pressure fluctuations on the surface of the airfoil is a consequence
of turbulent stochastic phenomena.
The cross power spectral density (cross-PSD) is defined by equation:

Sqq(x1, x2, y1, y2, ω) = lim
R/U∞→∞

{π
T

Fav

[
∆P̂ ∗(x1, y1, ω)∆P̂ (x2, y2, ω)

]}
. (1.6)

From equation (1.5), the expected value Fav in (1.6) can be reduced as

Fav [ŵR(Kx, ky)ŵ
∗
R(Kx, ky)] =

R

π
δ(ky − k′y)φww(kx, k

′
y), (1.7)

where

φww(kx, ky) =

∫ ∞
−∞

φww(kx, ky, kz)dkz, (1.8)

is the energy spectrum of turbulence.

Combining (1.5) and (1.7), it can be written

Sqq(x1, x2, y2−y1, ω) = 4π2ρ2
∞b

2U

∫ ∞
−∞

g∗(x1, Kx, ky)g(x2, Kx, ky)φww(Kx, ky)e
iky(y2−y1)dky.

(1.9)
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The difference y2 − y1 is the distance between the two points in spanwise direction for
which the cross-PSD is computed. According to Curle and Kirchhoff, the far-field sound
can be modeled by a surface dipole distribution equal in strength to the total force on the
airfoil. The far-field pressure can be obtained integrating equation (1.6) over the airfoil
surface. However, it is possible to demonstrate the PSD is related to cross-PSD. Thus,

Spp(x, y, z, ω) =(
ωz

4πc0σ2

)2 ∫∫∫
Sqq(x1, x2, y2 − y1, ω)e

iω
c0

[β−2(x1−x2)(M− x
σ

)+y
y2−y1
σ ]dx1dx2dy1dy2.

(1.10)

where β2 = 1−M2 and σ2 = x2 + β2(y2 + z2). Substituting the equation (1.9) in (1.10),
the far-field acoustic PSD assume a simplified form. It allows to rewrite far-field PSD as
following:

Spp(x, y, z, ω) =(
ωzρ∞b

c0σ2

)2

U∞dπ

∫ ∞
−∞

[
sin2(dky + dωy/c0σ)

(dky + dωy/c0σ)π

]
|L(x,Kx, ky)|2 φww(Kx, ky)dky,

(1.11)

where L is the chordwise integral of the surface loading. The function L, is written as

L(x,Kx, ky) =

∫ b

−b
g(x0, Kx, ky)e

−iωx0(M−x/σ)/c0β2

dx0. (1.12)

If the frequency is small, the function L is reduced to the sectional lift. For a large aspect
ratio airfoil, the assumption of infinite span is still valid. On the other hand, for high
frequencies and small turbulent scale, large aspect assumption in not necessary.

The incident gusts are the main causes of sound generation and they are characterized
by an own wavelength. As the wavelength decreases, the load tends to be concentrated
near the leading edge; for this reason the influenced spanwise region becomes smaller and
smaller. In fact, in equation (1.11) the ratio between sine function and its argument tends
to infinitesimal value.
For an observer in mid-span section, only ky = 0 gust contributes to the sound, while the
skewed gusts have symmetrical effects that does not affect the observer’s perception. In
the general case y 6= 0 and d→∞, the argument of integral in equation (1.11) is replaced
by ωy/c0σ. Hence, the PSD is written as

Spp(x, 0, z, ω)→
(
ωzρ∞b

c0σ2

)2

πU∞d |L(x,Kx, 0)|2 φww(Kx, 0). (1.13)

In conclusion, for a large span assumption, a two-dimensional airfoil theory for a
compressible flow is enough accurate if used to compute the noise produced by oncoming
gusts on the trailing edge. In fact, when d tends to a large value, the intersection point
of a gust with the airfoil moves with subsonic velocity in the fluid direction and the
sound produced is negligible. However, the surface pressure distribution over the airfoil is
a function of both subsonic and supersonic gusts. Furthermore, the observer in far-field
hears only the sound produced by gusts with acoustic wavefront normal to the line joining
observer and airfoil.
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1.2.1 Validity conditions of Amiet’s Theory

The simple case of an observer at y = 0 plane section is considered in this work. However,
it is important to understand which requirements allow to reduce the errors induced by
approximation of infinite spanwise airfoil; therefore, the equation (1.13) carries out a valid
result.
It is possible to demonstrate that integral value∫ t

0

sin2(ξd)

ξ2
dξ (1.14)

for t = 10/d is about 90% of the result obtained for t→∞. For this reason the formula
(1.13) had a good validity for ky > 10/d. The function φww is not sensitive to ky if it
is much less than Kx. Therefore, for Kx >> 10/d, φww in equation (1.10) can be taken
outside the integral. The similarity rules were presented by Graham[22]. He showed for
MKx >> ky that the response is independent from ky.

Amiet’s theory is rigorous when MKxd tends to infinity value. According to the
present assumption, functions L and φww are not dependent on ky and the PSD can be
written as:

Spp(x, y, z, ω) =

(
ωzρ∞bM

σ

)
d |L(x,Kx, 0)|2 ly(ω)Sww(ω) (1.15)

where ly(ω) is the cross-correlation length and Sww is the Pressure Spectral Density of
velocity fluctuation in z direction. The correlation length is calculated by definition as

ly(ω) =
1

Rww(Kx, 0)

∫ ∞
0

Rww(Kx, y)dy = πφww(Kx, 0)/Rww(Kx, 0); (1.16)

in which Rww is the Fourier transformation of φww in respect of ky variable.

1.2.2 Airfoil pressure response function by Schwartzschild solu-
tion

The airfoil pressure response function can be obtained from the general Schwartzschild
solution, as described by Amiet in reference [23]. The flat plate extends from x̄ = −2 to
x̄ = 0; where the symbol ·̄ indicates not dimensional quantities divided by semichord b.
The linearized equation for velocity potential Φ is given by:[

∇2 −M2

(
b

U

∂

∂t
+

∂

∂x̄

)2
]
Φ(x̄, z, t) = 0. (1.17)

The boundary conditions have to be imposed:

Φ(x̄, 0, t) = 0 x̄ ≤ −2 (1.18)

∂Φ

∂z
(x̄, 0, t) = bw(x̄)eiωt −2 < x̄ < 0 (1.19)

DΦ

Dt
= 0 x̄ ≥ 0 (1.20)
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where D/Dt is the lagrangian derivative. A sinusoidal in time assumption is used in order
to simplify the solution as a product between a spatial function ϕ(x̄, z) and an exponential
one eiωt. Considering the coordinates transformation

x̄→ X̄ z → Z/β ωt→ T −MµX̄

the boundary formulation can be written as:

ϕxx + ϕzz + µ2ϕ = 0, (1.21)

with

ϕ(X̄, 0) = 0 X̄ ≤ −2 (1.22)

∂ϕ

∂z
(X̄, 0) =

b

β
w(X̄)e−iMµX −2 < X̄ < 0 (1.23)

(iK̄x +
∂

∂X
)ϕ(X̄, 0) = 0 X ≥ 0. (1.24)

The parameter µ is defined by Mωb/(U∞β
2).

According to Schwartzschild[14], the function ϕ satisfies both wave equation and the
boundaries conditions

ϕ(X̄, 0) = F (X̄) X̄ > 0 (1.25)

ϕz(X̄, 0) = 0 X̄ < 0 (1.26)

when it is written as

ϕ(X̄, Z) =
1

π

∫ ∞
0

G(X̄, ξ, Z)F (ξ)dξ, (1.27)

where G(X̄, ξ, 0) = (−X̄/ξ)1/2[1/(ξ− X̄)]e−iµ(ξ−X̄) for X̄ < 0 and F (X̄) is function of the
boundary conditions.

Solution for compressible gusts

Schwartzschild solution allows to satisfy only two conditions. For this reason, it is nec-
essary to implement an iterative procedure that solves Sear’s problem by introducing a
series of corrections. All solutions satisfy the no permeability condition on airfoil surface,
and one of the remaining boundary conditions of the problem.

The first solution, with only permeability condition, is found:

ϕ(0)(x̄, z̄) =
ib

2β

∫ ∞
−∞

H
(2)
0 {µ[(x̄− ξ)2 + β2z̄2]1/2}w(ξ)eiµM(x̄−ξ)dξ, (1.28)

in which H0 is defined as Hankel function. For x̄ where the airfoil is not present, the value
w(x̄) is important to solve the integral in equation (1.28). The Schwartzschild solution is
necessary to remove ϕ(0) for x̄ < −2 due to the physics boundaries. However, to compute
the correction of leading edge ψ(1), the flat plate is assumed to extend downstream to
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infinity. From equation (1.27), with changed sign for X̄, it is possible to obtain the
leading edge correction as

ψ(1)(x̄, 0) = − 1

π

∫ ∞
0

(
x̄

ξ

) 1
2

e−iµ(1−M)(x̄+ξ)ϕ(0)(−ξ, 0)
dξ

x̄+ ξ
. (1.29)

The total contribution, for upstream region is given by

ϕ(1) = ϕ(0) + ψ(1).

For the region downstream, it is valid the boundary condition Dϕ/Dt = 0. Since the
pressure is a function of the potential velocity, the downstream contribution is calculated
as:

ϕ(x̄, z̄) = − b

ρ∞U∞

∫ x̄

−∞
P (ξ, z̄)e−iKx(x−ξ)dξ. (1.30)

Since the value of p and ψ are linearly related, p is a solution of wave equation. Hence,
from (1.27) in real coordinates,

p(2)(x̄, 0) = − 1

π

∫ ∞
0

(
x

ξ

) 1
2

e−iµ(1+M)(x̄+ξ)P (1)(ξ, 0)
dξ

x̄+ ξ
. (1.31)

The correction ϕ(2) of the second step can be calculated by imposing in equation (1.30),
P (2) = P (1) + p(2). However, the new solution ϕ(2) is not zero ahead of airfoil. So, it is
used as input for the next step, to compute ϕ(3) until to reach a sufficient accuracy.

For the Sears problem, it is possible to compute a closed form for P (1), and from
equation (1.29), it is written

ϕ(1)
s (x, 0) = (1− i)E[K̄x(1−M)x̄]ϕ(0)

s . (1.32)

In conclusion, substituting the hypothesis of sinusoidal gust, for which

P = P0e
i[ω(t−x/U∞)]−kyy, (1.33)

in equation (1.31), the airfoil pressure jump, with ky = 0, at mid-span section, and
normalized by P0, is obtained as

g(x̄, Kx, ω) = p(2) =
{

(1 + i)E[−x̄(µ(1 +M) + K̄x)]− 1
}
e−iK̄xx̄ (1.34)

where the function E is a combination of Fresnel integrals. The function E is defined as:

E(x) =

∫ x

0

e−iξ√
2πξ

dξ. (1.35)
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1.3 Far-field solution

The airfoil response function is useful to compute the far-field noise from surface pressure
spectrum. Standard techniques for spectral analysis can be used. However, the surface
pressure field can be rather complex and for this reason some simplifying hypothesis are
introduced.
In general cases, the pressure spectrum is composed by several spectral component with
different wavenumber and convection velocity Uc, but the product UcKx = ω is almost
constant. This aspect is necessary to compute the sum of all contributions due to all
spectral components, in the same form of equation (1.33). The frequency is assumed to
be known, the convection velocity is fixed as a certain percentage of free stream velocity,
thus Kx is calculated. However, this assumption appears to be reasonable, due to the
direct dependence from the frequencies. With the above approximation, the far-field sound
emission is calculated from equation (1.15) for an observer in mid-span plane. Hence,

Spp(x, 0, z, ω) =

(
ωbz

2πc0σ

)2

ly(ω)d |L|2 Sww(ω), (1.36)

where c0 is the sound speed, while L is the integral of airfoil pressure distribution calcu-
lated as

L =

∫ 0

−2

g(ξ,Kx, ω)e−iµξ(M−x/σ)dξ. (1.37)

The parameters are σ2 = x2 + β2z2, β2 = 1 −M2 and µ = Mωb/(Uβ2). The integral in
equation (1.37) has a closed form given by

L =

1

Θ

{
(1 + i)

[√
1 +M + K̄x/µ

1 + x/σ
E(2µ(1 +

x

σ
))e−i2Θ − E(2µ(1 +M) + 2K̄x)

]
+ 1− e−i2Θ

}
,

(1.38)

where Θ = K̄x + µ(M − x/σ). The above results are still valid until the hypothesis
of a stationary turbulence past the edge is respected. For a turbulent boundary layer
with no mean pressure gradient, Corcos assumption is introduced. The ratio between
Sww(ω, y)/Sww(ω, 0) is a function of only dimensionless variables and the cross-correlation
length is given by

ly(ω) = 2.1
Uc
ω
. (1.39)

Amiet proposed an empirical approximated formula in order to compute the surface pres-
sure spectrum Sww that is omitted in following discussion because of its inconsistent results
in respect of the experimental data.

1.4 Surface pressure spectrum models

In general, the pressure on airfoil surface is complex to be described, due to its strong de-
pendence on not stationary phenomena, such as gusts that flow over the profile. However,
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many models was developed to answer the question about the frequency contribution of
the pressure variation at different point along the chordwise. Goody[2], firstly proposed
a solution of the problem. All following models are adaptation of Goody’s one, by intro-
ducing more complex effects and the compressibility of fluid (Rozenberg[3] model is an
example).
A general expression is here proposed, in which the constants assume a different value ac-
cording to model used. In all cases, the pressure spectrum presents a not explicit Reynolds
influence because it is hidden in the boundary layer quantities definition. Hence,

Sww
Sref

=
a(ω∗)b

[i(ω∗)c + d]e + [fRTω∗]h
(1.40)

where ω∗ is a not dimensional frequency and Sref a reference value for which the pressure
spectrum is scaled. RT represents the time ratio between the inner and outer layer.

1.4.1 Goody’s spectrum model

Goody proposed an empirical model to compute the power spectral density as function of
Reynolds number and of boundaries quantities. The frequency affects the scaling pressure
spectrum; in fact, the existence of an inner scaling or an outer scaling, define a different
approach for pressure spectrum at local distance from the surface. The measured spectra
decays as ω−0.8 for a large scale of Reynolds number. This assumption is correct only
for low frequencies, while as ω → ∞, the model describes a more rapid decreasing, with
exponent -5. In order to consider the different behavior on the entire range of frequencies,
the parameter RT is computed as

RT =
δ

Ue

u2
τ

ν
=

δ

Ue

τw
µf
, (1.41)

where δ was used as boundary layer characteristic dimension while the inner variable
u2
τ = τw/ρ, by definition. The spectrum is scaled by Sref = τ 2

wδ/Ue, while ω∗ = ωδ/Ue.
The Reynolds effect on the shape of pressure spectrum is to increase the size of the overlap
range with experimental points. The speed Ue is the external velocity of the boundary
layer.
In conclusion, Goody’s model was developed only for zero gradient flow; for this reason
it is not adapted for any airfoils.
The constants in the model are:

a=3 b=2 c=0.75 d=0.5 e=3.7
f=1.1 g=-0.57 h=7 i=1

1.4.2 Rozenberg’s spectrum model

In many applications, the turbulent boundary layer is affected by an adverse mean gradient
for example on the suction side of a profile or a blade. Rozenberg’s model was developed
to introduce the compressibility at large Mach number and inside the boundary layer.
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For this reason, Rozenberg’s model is more accurate to describe the flow field around
airfoils rather than Goody’s one. In respect of Goody’s model, the reference length is the
displacement thickness δ∗ and the scaled pressure is given by the stress near the surface
where it assumes the maximum value. Considering Zagarola-Smits’s parameter ∆ = δ/δ∗,
as index of the the effect of pressure gradient, and the Clauser’s equilibrium parameter

βc =
θ

τw

dp

dx
,

it is possible to quantify the local gradient effect. Cole’s constant Π is the wake strength
parameter, obtained by solving the equation:

2Π− ln(1 + Π) = κ
Ue
uτ
− ln

(
δ∗Ue
ν

)
− κC − lnκ, (1.42)

where κ is the von Karman constant and C = 5.2. An analytical expression was proposed
by Rozenberg in ref. [3], in which Cole’s wake parameter is defined as function of βc.
Rozenberg obtained

Π = 0.8 (βc + 0.5)3/4 . (1.43)

The constants in equation (1.40), according to Rozenberg’s model, are defined by:

a = [2.82∆2(6.13∆−0.75 + d)e][4.2(Π/∆) + 1] b=2 c=0.75
d = 4.76(1.4/∆)0.75[0.375e− 1] e = 3.7 + 1.5βc f=8.8 g=-0.57
h = min(3, 19/

√
RT ) + 7 i=4.76

1.4.3 Kamruzzaman’s spectrum model

Kamaruzzaman’s model introduces a series of correction in the Rozenberg’s formula by
considering a series of experimental data for airfoils at different angle of attack. The
previous model is modified as following described:

1. the denominator is changed in order to guarantee a decreasing trend like ω−5 as
ω →∞;

2. the exponent were modified to better agree with experimental measurement;

3. the Reynolds number dependence is better modeled;

4. the time ratio parameter RT is calculated with δ∗.

The wall pressure spectrum is scaled by τ 2
wδ
∗/Ue. The constants are summarized in fol-

lowing scheme.

a = 0.45[1.75(Π2β2
c )
m + 15] b=2 c=1.637

d=0.27 e=2.47 f = 1.15−2/7 g=-2/7
m = 0.5[δ∗/(1.31θ)]0.3 i=1 h=7
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1.4.4 Lee’s spectrum model

Lee and Villaescusa [5] suggested an extended version of Rozenberg’s model to obtain an
accurate prediction for not symmetric and high leading airfoil. At high frequencies, the
model assume a rapid decay for zero or low pressure gradient. For middle frequencies,
Rozenberg presents an higher amplitude than Lee’s model. For this reason, the constant
d is modified as function of equilibrium parameter.

a = [2.82∆2(6.13∆−0.75 + d)e][4.2(Π/∆) + 1] if βc > 50 a∗ = max(1, (0.25βc − 0.52)a)
b=2 c=0.75 f=8.8
d=0.27 if βc < 0.5 d = max(1.0, 1.5d)
h = min(5.35, 0.139 + 3.1043βc, 19/

√
RT ) + 7 if h=12.35 h = min(3, 19/

√
RT ) + 7

g=-0.57 i=4.76 e = 3.7 + 1.5βc



Chapter 2

Fluid dynamic physical models

The TE noise problem is solved starting from CFD simulation that allows to reconstruct
the velocity and pressure field around the airfoil in two dimensional hypothesis. Boundary
layer quantities for high Reynolds number and compressible flow are input of the acoustic
model. However, an hybrid approach was developed because of two main reasons:

1. The computational aeroacoustics (CAA) requires a large computing resources. It
has a series of applications only for academic cases because of expensive in time and
allocated memory. The time consuming is in contrast with the industrial require-
ments of good solution in minimum time. In fact, all methods, that are included
inside the CAA definition, are based on a simulation of noise source, acoustic prop-
agation through a complex and not uniform flow, and a sound radiation in far-field
hypothesis. Unsteady flow simulations, like Direct Numerical Simulation (DNS) or
Large Eddy Simulation (LES), allow to answer the necessity of noise generation pre-
diction; however they are not available for all types of noise sources. All mechanisms
of turbulence noise generation and propagation, in previous chapter described, can
be developed by solving Navier-Stokes equations from the body surface while the
far-field propagation is described with transport equations (for uniform and not tur-
bulent flow, Ffowcs Williams-Hawking equation is used). The length scale is too
large in order to be easily managed: the turbulent eddies that are noise sources have
small length and high energy, while acoustic waves are characterized by relatively
high wavelength but small energy. For this reason the mesh must be very thin to
obtain accurate results.

2. The noise developed by sharp airfoil-like body can be studied introducing other an-
alytical theories. The pressure field on the body surface is the results of Reynolds
Average Navier-Stokes equations. RANS simulations require less computational re-
sources rather than CAA approach. This allows to reduce the computational time
thanks to a larger mesh that must reproduce only the fluid dynamics phenomena
around the body. Turbulent models have to be discussed,too. The choice of tur-
bulent model associated to RANS equations is not simple because it affects the
acoustic results.

16
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2.1 Euler equations

Eulerian equations are a set of fluid dynamic equations governing the adiabatic and in-
viscid flow. They express the principles of mass, momentum and energy conservation.
Eulerian model describes also not linear waves like shocks, compression or expansion. In
many applications, the energy conservation equation can be substituted by the conserva-
tion of entropy. Considering a two dimensional domain, Eulerian equation can be written
as:

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0; (2.1)

∂ρuj
∂t

+ ui
∂ρuj
∂xi

= − ∂p

∂xj
; (2.2)

∂En
∂t

+ uj
∂En
∂xj

= 0; (2.3)

where ρ is the density, p the pressure and En the total energy per volume unit. The state
equation, define the relationship between energy, pressure and velocity, which generic
components are uj, according to a certain reference system. Thus,

En =
p

γ − 1
+

1

2
ρ(u1 + u2)2. (2.4)

2.2 Navier-Stokes equations

For some phenomena with diffusive effects such as heat transmission and viscous stress,
Navier-Stokes equations are introduced. Newton’s and Fourier’s laws are necessary to
close the set of equations. Hence,

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0; (2.5)

∂ρuj
∂t

+
∂ρuiuj
∂xi

= − ∂p

∂xj
+

τij
∂xj

; (2.6)

∂En
∂t

+
∂

∂xi
(ui(En + p)) =

∂

∂xj
[uiτij − qj] . (2.7)

The heat flux is obtained by Fourier law as

qj = − γ

γ − 1

µR
Pr

∂T

∂xj
(2.8)

in which Pr is the Prandtl number, µ is the dynamic viscosity, γ is the specific heat ratio
and R is the specific ideal gas constant for the air.

The component of shear stress tensor τij are obtained with Boussinesq theory as

τij = 2µ

[
Sij +

1

3

∂uj
∂xj

δij

]
. (2.9)
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The strain rate tensor is given by

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.10)

2.3 Reynolds Averaged Navier-Stokes equations

RANS equations are time-averaged equations that come out from decomposition of all
quantities as sum of the average values and the turbulent fluctuations. The main idea
is to introduce a mean average in time in Navier-Stokes equations to obtain a new set
of partial differential equations. Mean propriety of fluid are unknown variables of the
problem. The main limit of this approach consists into the description of not resolved
scales from knowing the mean flow. Hence, the velocity is defined as

U = Ū + u′;

where the term u′, is the fluctuations which mean value ū′ is zero. However, ū′
2

is not
null by definition The eddy effects of all scales are hidden in the fluctuating component.

Using the law (2.3) in Navier-Stokes equations, it can be written:

∂ρŪj
∂t

+
∂

∂xj

(
ρŪjŪi + ρ ¯u′iu

′
j

)
=

∂p̄

∂xj
+

∂

∂xj

[
µ

(
∂Ūi
∂xj

+
Ūj
∂xi

)]
. (2.11)

The term ρ ¯u′iu
′
j is the Reynold stress in which the eddies introduce the effect of viscosity.

The equation (2.11) is not closed; for this reason it is necessary to introduce a modeling
Reynold stress. An example is given by Spalart-Allmaras model.

2.4 Spalart-Allmaras model

Spalart-Allmaras[24] model (SA) allows to solve the turbulence flow field by introducing
only one transport equation of modified turbulent viscosity. However, its solution is
adapted for fully turbulent flows and applicable for both compressible and uncompressible
fluids. The model has local solution. Thus, the local prediction does not depend on the
solution computed in near points. The first proposed model had many problems with
under-resolved meshes and it shows unphysical transient configuration with wrong results.
In other cases, the modified viscosity ν̃ assumes negative values that are not physically
correct. The modified model was introduced in ref. [25] in order to solve these problems.
The compressible turbulent transport equation was obtained by combining the classical
Spalart-Allmaras model with the mass conservation law. Hence, it is proposed

∂ρν̃

∂t
+

∂

∂xj
(ρuj ν̃) =

ρ(P −D) + ρft1u
′2 +

1

σSA

∂

∂xj

[
ρ(ν + ν̃)

∂ν̃

∂xj

]
+ ρ

cb2
σSA

∂ν̃

∂xk

∂ν̃

∂xk
+

1

σSA
(ν + ν̃)

∂ρ

∂xk

∂ν̃

∂xk
;

(2.12)
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where P and D are functions of modified vorticity S̃ and modified viscosity ν̃. The
equation (2.12) has to be included in the following set of equations:

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0; (2.13)

∂

∂t
(ρuj) +

∂

∂xi
(ρujui) = − ∂p

∂xj
+

∂

∂xj
(τij + τ̄ij) (2.14)

∂En
∂t

+
∂

∂xj
[uj(En + p)] =

∂

∂xj
[ni(τij + τ̄ij)− qj] . (2.15)

Reynold stresses are evaluates according Bussinesq assumption:

νt = ν̃fv1, fv1 =
χ3

χ3 + c3
v1

, χ =
ν̃

ν
.

The turbulent stress tensor is defined as

τ̄ij = 2µt

[
Sij −

1

3

∂uk
∂xk

δij

]
, (2.16)

where the turbulent viscosity is given by µt = ρν̃fv1; while τij is the generic element
of laminar stress matrix. Production P and destruction D contributions have explicit
expression:

P = cb1(1− ft2)S̃ν̃ D = cw1fw

(
ν̃

d

)2

,

where d is the distance to the closest wall. The modified vorticity S̃ is always positive
in physical situations and more than 0.3S. However, the Spalart-Allmaras correction is
necessary to obtain a positive value of S̃ on the entire range of possible vorticity S. The
function fv2 can assume negative values in a certain range of χ. Thus

S̃ =

{
S + S̄ forS̄ ≥ −cv2S

S +
S(c2v2S+cv3S̄)

(cv3−2cv2)S−S̄ forS̄ < −cv2S,
(2.17)

where

S̄ =
ν̃

k2d2
fv2 fv2 = 1− χ

1 + χfv1

.

The function

fw = g

[
1 + c6

w3

g6 + c6
w3

]1/6

, g = r + cw2(r6 − r) r = min

(
ν̃

S̃k2d2
, rlim

)
. (2.18)

The trip and laminar suppression terms are introduced in equation (2.12) in order to force
the transition point. However, the model is not appropriate to study the transitional flow
as Spalart at Al. demonstrated. For this reason, trip and laminar suppression terms are
not present in previous description.

Finally, the constants are:

cb1 = 0.1355 σSA = 2/3 cb2 = 0.622 cv1 = 7.1 cv2 = 0.7
cv3 = 0.9 cw1 = cb1/k

2 cw2 = 0.3 cw3 = 2 ct1 = 1
ct2 = 2 ct3 = 1.2 ct4 = 0.5 rlim = 10 k=0.41
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2.5 Boundary conditions

Boundary and initial conditions have to be improved in order to regulate the calculus. The
propagation of little disturbs in the fluid is imposed with the hypothesis of characteristic
signals. For diffusive phenomena, the fluxes are forced through the surfaces that outline
the finite elements of the mesh. In many cases, empirical corrections are introduced.

Because of wave propagation effects, the eulerian model presents boundary conditions
depending on dimension and shape of computational domain. The Boundary conditions
are imposed along the propagation lines. On the surface of the body is valid the principle
of not permeation and tangent direction for the velocity.

In Navier-Stokes equations, diffusive terms are not negligible. At the wall, no-slip
condition has to be imposed while energy diffusion depends on the wall characteristics.

For the Spalart-Allmaras model, the main purpose consists into imposing a correct
boundary condition for the modified viscosity. Thus, on the solid surfaces are still valid
not permeation and no-slip hypothesis, while the turbulent fluctuations are null because
the flow speed is identically zero. As a direct consequence, the turbulent viscosity is zero,
too. In the inlet, the turbulent viscosity has to be imposed. Generally, for fully turbulent
flows, modified viscosity ν̃ is between three and five times the kinematic viscosity.



Chapter 3

Global sensitivity analysis

The sensitivity analysis aims to identify how the uncertainty in the input parameters
influences the uncertainty in the output of a numerical or empirical model. However,
the numerical description is not a perfect representation of the physical phenomena. The
introduction of several simplification assumptions is necessary to reproduce the real world
but the scientific method is subjected to errors. The mathematical approximation and
the accuracy of measurements are the main causes of error.
The sensitivity approach allows to study the model corroboration, which ensures the cor-
rectness of the model itself and it shows if the approach depends on a fragile assumption.
However, all input quantities have a different effect on the output results; thus, draft-
ing a hierarchy on quantities relevance is necessary to distinguish which parameters are
negligible and which ones must be measured with a major accuracy, especially in the
experimental tests. Sensitivity answers the question about which factor is most deserving
of further analysis.

Sensitivity analysis brings to a model simplification that consists into identify some
factors or compartments of the model can be fixed or modified in order to improve the
general performance. Moreover, critical regions in the input quantities are underlined.
This approach is important for system reliability.
In general, it is possible to note that high uncertainty in the input factors does not imply
a low quality of the resulting model. In fact, only few inputs affects the output.

A possible approach for the sensitivity analysis is a local evaluation based on deriva-
tives. The derivative ∂Yj/∂Xi describes the effects of Xi input parameter on the Yj
output. Unfortunately, many problems occurs when complex model with many equations
and non linear functions, is run. It is prohibitive to compute, in both analytical and
numerical way, the derivatives. However, the derivative-based methods are not expensive
in computational time because the model has to be executed few times in comparison
with the extrapolated methods; while they are hard to be implemented in coding.
The sensitivity analysis of the pressure spectrum models is carried out by introducing a
series of global factors that define the single contribution of the inputs on the model’s
output.

A Monte Carlo analysis is used to extrapolate random values for each input quantities.

21
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The hypothesis of normal distribution is not necessary. The variance is arbitrary, while
the mean values are fixed to the measured quantities that come from previous RANS
simulations. A new acoustic simulation in which the inputs are a pseudo-random combi-
nation of all factors is run. For N combinations of factors, it is necessary to run N times
the acoustic code.
In general, defining as α, β, γ the input quantities for which a normal distribution function
N (σ, ᾱ) is considered, a matrix of NxN terms with random combination of all quantities
is computed. Thus, 

α1 β1 γ1 . . . ζ1

α2 β2 γ2 . . . ζ2

α3 β3 γ3 . . . ζ3
...

αN βN γN ... ζN

 ,
from which it is possible to obtain the output vector

Y1

Y2

Y3
...
YN

 .

3.1 Scatterplots definition

The scatterplot is a graph in which the outputs of a single model are plotted as function
of the random input. Over the x axis is plotted the single input, while y axis contains
the model output. This method introduces only a qualitative study about the influence
of the generic input with only a visual depiction of the output. A scatterplot with a sort
of uniform cloud of points over the entire range of input values is synonymous of small
influence, rather than a factor for which the point distribution presents a stretched shape.
An example is reported in Figure 3.1, in which it is represented the first step of sensitivity
analysis for Goody’s spectrum model. It is almost evident the strong dependence of the
model from the friction coefficient cf , for which the graph in Figure 3.1(b) appears to be
elongated. On the other hand, the uncertainty on boundary thickness δ does not influ-
ences the model output. This conclusion can be obtained also using a global sensitivity
approach. The scatterplots in the example were drawn fixing the same variance for the
inputs. A normal distribution function is introduced. However, the hypothesis of normal
distribution does not influences the general behavior of the graphs.

3.2 Global sensitivity factors

3.2.1 First-order index

The global sensitivity factors are defined as the ratio of two variances calculated for the
model in two different operating conditions by fixing one or more input parameters. How-
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Figure 3.1: Scatterplot analysis for Goody model

ever, for more parameters, it is assumed they are independent. This assumption is not
always verified: in many application, in fact, inputs can be related by a correlation de-
pendence.

The choice of experimental design depends on the expected way a single parameter
uncertainty influences the output. For example, if Y is a function of several quantities Xi

that are assumed independent and with a uniform distribution in [0, 1] interval, a linear
model can be used and it consists into a linear approximation of the outputs. Hence, in
other terms

Y = b0 +
k∑
i=1

biXi (3.1)

where k is the number of input parameters. The constants bi are unknown at the beginning
of the analysis. For N simulations, where N > k + 1, the linear system to solve can be
written as: 

1 x11 . . . x1k

1 x21 . . . x2k
...

1 xN1 . . . xNk



b0

b1
...
bk

 =


y1

y2
...
yN

 (3.2)

Although the system is overdetermined, it is always possible to solve the linear problem
just considering the least square matrix. The main advantage consists into a relatively
low cost due to a small number of parameters to compute. However, the linear model
can be applied only for simple problems for which the linear dependence is a plausible
assumption. In other conditions, for example not linear systems, this method does not
bring useful information. A regression model, such as the linear model, are designed to
compute also the standardized regression coefficients like β̂i = biσi/σY , where σi is the
variance of the i-th input quantity and σY , the variance of the model output. β̂ indexes
are often used for sensitivity analysis: high β̂ value means high parameter influence. If
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the starting model is linear, it is possible to demonstrate that

k∑
i=1

β̂i
2

= 1. (3.3)

For not linear model, the formula in equation (3.3) is not more valid; for this reason it is
necessary to introduce the conditional variance.

It is assumed Xi the i-th input factor. If Xi is fixed as a constant x∗i , the resulting
variance of Y , calculated over all X except for Xi, is defined as conditional variance and
it is written as VXi(Y |Xi = x∗i ). It is reasonable to think that the conditioned variance
for a fixed input is less than the total variance V (Y ) due to the elimination of uncertainty
source. For this reason, VXi is a good approximation of the relative importance of Xi in
the entire model.

Two main difficulties are evident: the sensitivity depends on the fixed values imposed;
thus the choice of x∗i influences VXi ; on the other hand, the conditional variance could
assume, in many cases, a greater value than V (Y ) and it does not give any more infor-
mation about model behavior. The average value, calculated over all possible x∗i allows
to remove the dependence of VXi(Y |Xi = x∗i ) on x∗i . The notation EXi(VXi) indicates the
mean value of variances so calculated.
It is possible to demonstrate

EXi(VX1(Y |Xi)) + VXi(EXi(Y |Xi)) = V (Y ). (3.4)

Since (3.4), VXi(EXi(Y |Xi)) ≤ V (Y ) and the first-order sensitivity index of Xi on Y is
defined as:

Si =
VXi(EXi(Y |Xi))

V (Y )
. (3.5)

The high value of sensitivity index implies an influential input variable. For single pa-
rameter function, the global sensitivity factor S1 assume unit value.

3.2.2 Nonadditive models and second-order index

A model is defined as additive model if it is possible to separate the effects of input
variables in a variance decomposition framework[26]. In other terms, the output variance
is completely ranged and each input contributes in part to the output variance. Thus, it
is valid

k∑
i=1

Si = 1.

For non additive models, the first-order indexes are not enough to reconstruct the
all uncertainty contribution; however, they are sufficient precise to describe the single
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parameter contribution. The sum of first-order indexes is minor than one. In symbols

k∑
i=1

Si ≤ 1.

The second-order index is defined by introducing two fixed values for two different
input quantities. It is possible to compute the variance

VXij(EXij(Y |Xi, Xj)) = Vi + Vj + Vij (3.6)

where Vi, Vj and Vij define the variances for average of output values and for i-th or j-th
fixed input variables. Moreover, the term Vij is the interaction factor between Xi and Xj

and it describes the way how the response of Y depends on both Xi and Xj combined.
From equation (3.6), it is possible to write

VXij(EXij(Y |Xi, Xj))

V (Y )
= Si + Sj + Sij. (3.7)

The term Sij is the second-order sensitivity factor.

By fixing three or more input variables it is possible to compute a third-order index
and so on. The main purpose is to reconstruct the entire spectrum of the variance of Y ,
that depends not only on the single input, but also on their interaction. For k factors,
the sum of all order indexes are equal to one. In fact,

k∑
i=1

Si +
k∑

i=1,j>1

Sij +
k∑

i=1,j>1,l>j

Sijl + S123...k = 1. (3.8)

The main problem consists into the great number of elements for the series in equation
(3.8), equal to 2k−1. Consequentially, this approach is not helpful in many circumstances.

The total effect term has to be introduced. It describes the total contribution on model
behavior of the single input variable. In other terms, it is the sum of global sensitivity
factor of upper orders that were obtained by fixing Xi value:

STi =

(
1− VXi(EXi(Y |Xi))

V (Y )

)
= Si +

k∑
j=2

Sij + ...+ Sijk. (3.9)

For only three input variables, the total effect term is

ST1 = S1 + S12 + S13 + S123.

This demonstrates the total indexes are always bigger than the first order factors and the
sum of total indexes is higher than one. The values of global indexes slightly depends
on the number of points. By increasing the number of random input points, the global
factors slightly variate but the order magnitude remains constant.
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3.2.3 Pseudo-random sampling with low discrepancy sequences

The first step for sensitivity approach consists into sampling the input variables. Gen-
erally, it is possible to improve a random generation method for an uniform distribution
inside [0,1] interval. It is always possible to reconstruct the generic interval [a, b], on which
the quantity distribution is known. However, very elaborate sampling methods can be
improved in order to describe all possible combinations for the inputs. Multivariate strat-
ified sampling or Latin hypercube sampling are valid alternatives to the random point
generation. They are complex methods to improve in numerical code (see ref. [26]) but
they allow to gesture a large number of variables.

Mote Carlo method was chosen because of its simple codification and small number
of variables to be analyzed. However, a simple Monte Carlo method improves a series of
clusters and gaps that introduce areas of different statistical importance. The cluster is
defined as an area with a large number of close points and the model function is studied
in details; while, where a gap occurs, the model has no enough points for a statistical
analysis. As direct consequence, a simple random method requires a large number of
points in order to reduce the inconsistent intervals. Furthermore, discrepancies tends to
accumulate for a k-series of variables. For this reason a pseudo-random sampling, also
known as low discrepancy method, was chosen.

The pseudo-random sampling is improved through an algorithm that chooses a new
point enough away from the previous selected point. The term pseudo-random is used to
define a not uniform distribution that is predictable with an algorithm. Halton or Sobol
sequences can be used for the present purpose. The effect of Halton distribution is shown
in Figure 3.2, in which a two dimensional space is sampled against a complete random
method. It is evident the pseudo-random sampling allows to cover the entire domain
without gaps or clusters. Increasing the number of points, the two graphs coincide.

3.2.4 Saltelli’s Monte-Carlo based numerical sensitivity approach

Saltelli’s method was proposed to compute sensitivity indexes by Monte Carlo random
distribution[27, 26]. The following approach allows to improve a numerical method based
only on model function evaluations without theoretical limits on the input number.

The first step consists into creation a matrix of random (or pseudo-random) values of
Nx2k dimension, where k is the number of input quantities and N is the number of points
chosen for the simulation. From this first matrix, it is possible to introduce the matrices
A and B, by extrapolating the first and second k columns, as reported in formulas (3.10)
and (3.11). Thus,

A =


x

(1)
1 x

(1)
2 x

(1)
3 . . . x

(1)
k

x
(2)
1 x

(2)
2 x

(2)
3 . . . x

(2)
k

x
(3)
1 x

(3)
2 x

(3)
3 . . . x

(3)
k

...

x
(N)
1 x

(N)
2 x

(N)
3 . . . x

(N)
k

 ; (3.10)
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(a) Scatterplot for Halton sequence and N=100.
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(b) Scatterplot for Halton sequence and N=2000.
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(c) Scatterplot for random sequence and N=100.
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(d) Scatterplot for random sequence and N=2000.

Figure 3.2: Comparison between Halton pseudo-random sampling method and a Monte
Carlo method.

and

B =


x

(1)
k+1 x

(1)
k+2 x

(1)
k+3 . . . x

(1)
2k

x
(2)
k+1 x

(2)
k+2 x

(2)
k+3 . . . x

(2)
2k

x
(3)
k+1 x

(3)
k+2 x

(3)
k+3 . . . x

(3)
2k

...

x
(N)
k+1 x

(N)
k+2 x

(N)
k+3 . . . x

(N)
2k

 . (3.11)

The matrix Ci, is obtained from B in which the i-th column is taken from A:

Ci =


x

(1)
k+1 x

(1)
k+2 . . . x

(1)
i . . . x

(1)
2k

x
(2)
k+1 x

(2)
k+2 . . . x

(2)
i . . . x

(2)
2k

x
(3)
k+1 x

(3)
k+2 . . . x

(3)
i . . . x

(3)
2k

...

x
(N)
k+1 x

(N)
k+2 . . . x

(N)
i . . . x

(N)
2k

 . (3.12)

The model is applied by imposing as input quantities each row elements of previous
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matrices. Hence, the output vectors are:

ya = f(A) yb = f(B) yci = f(Ci)

The first order sensitivity indexes are so computed:

Si =
1/Nya · yci − f 2

0

1/Nya · ya − f 2
0

=
1/N

∑N
i=1 y

(i)
a y

(i)
ci − f 2

0

1/N
∑N

i=1 y
(i)
a y

(i)
a − f 2

0

, (3.13)

where

f 2
0 =

(
1

N

N∑
i=1

y(i)
a

)2

.

In a similar way, it is introduced the total effect index as:

STi = 1− 1/Nyb · yci − f 2
0

1/Nya · ya − f 2
0

=
1/N

∑N
i=1 y

(i)
b y

(i)
ci − f 2

0

1/N
∑N

i=1 y
(i)
a y

(i)
a − f 2

0

, (3.14)

The total number of model evaluation is N(k+ 2), that is less than N2 runs necessary
for the simple Monte Carlo method.



Part II

Numerical Setup and Results
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Chapter 4

RANS solution

In order to compute the input quantities of Amiet’s model, Reynold Averaged Navier-
Stokes (RANS) equations are solved, with a Spalart-Allmaras turbulent model[28]. The
velocity field around the airfoil is obtained by imposing the initial condition as described
in Chapter 2. The RANS equations are written in dimensionless form.
Dimensionless approach allows to adapt the solution for different body and experimental
conditions by modifying the reference quantities and imposing the upstream velocity or
the chord dimension. The main advantage of dimensionless approach consists into the
possibility to describe the fluid field around the body for a series of experimental condition
with fixed Reynolds and Mach number. However, the reference quantities are necessary
to convert the dimensionless solution into dimensional quantitie to substitute in Amiet’s
acoustic formula. The reference length is the chord, used also to scale the boundary
thickness; while the stagnation pressure and stagnation temperature are assumed constant
and set as reference values. The static quantities, sound speed and fluid reference viscosity
are calculated as following described. The gas used for all simulation is air, approximated
to ideal gas, thus the perfect gas state equation is applied. The specific heat ratio is
γ = 1.4. The code needs also the Prandtl number for both laminar and turbulent flow.
Thus,

Pr = 0.72 Prtr = 0.9,

The airfoil surface is supposed to be adiabatic in all simulations; hence the thermal ef-
fect is negligible. For the initialization, the Mach is imposed in inlet boundary, equal
to M = 0.16. The fluid is almost uncompressible. High Reynolds number is chosen to
simulate a typical airplane flying configuration. Simulations are launched at different
Reynolds and various angles of attack. However, zero incidence is mainly studied because
of the large experimental data in literature.

For Spalart-Allmaras model, was imposed the inizial value

ρν̃

ρν
= 3,

as initial condition. The governing equations are discretised according to the method of
lines: a discontinuous Galerkin finite element method is used for the spatial discretisation
while time integration is performed by the implicit first order Euler scheme. For this

30
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reason, the inviscid solution is leaded out and employed as initial condition for the Spalart-
Allmaras simulation.

4.0.1 Reference condition estimation

The Reynolds number and Mach are fixed. Knowing the airspeed U∞ and density ρ∞ in
experimental conditions that are reported in the reference papers (see ref. [6, 7]), it is
possible to define all reference quantities.

Hence,
c0 = MU∞ T∞ = c2

0/(γR)

. The pressure is calculated as p∞ = RT∞ρ∞.
Thus, it is possible to write

Tref =

(
1 +

γ − 1

2
M2

)
T∞, (4.1)

pref =

(
1 +

γ − 1

2
M2

) γ
γ−1

p∞, (4.2)

ρref =
pref
RTref

. (4.3)

The reference speed is defined as

Uref =
√
RTref . (4.4)

Finally, the viscosity is obtained from the Reynolds number definition:

µref =
U∞ρrefc

Re
. (4.5)

4.1 Mesh generation

Two dimensional mesh is generated using Gmesh software.
NACA0012 airfoil points are imported and a computational domain is created. The body
is fixed in the origin of the reference system while the angle of incidence is modified rotat-
ing the upstream flow. The inlet boundary conditions are critical to be imposed. In fact,
it is necessary to guarantee that the flow enters the domain in the inlet boundary area and
it does not exit. If the boundary conditions are not correctly implemented, disturbance
waves can propagate in the domain due to errors generated by the code. Thus, the shape
of the domain is shown in Figure 4.1. The lateral sides have 20° inclination. In this case,
it is possible to implement also high angle of incidence without modify the mesh. The
outlet boundary is univocal defined.

Unstructured mesh with quad elements is used. The elements have higher dimension
in the external area rather than near the body surface, in order to reduce the total num-
ber of mesh elements and, consequentially, the computational cost. Indeed the external
flow is not affected by the presence of the body and its behavior is assimilated to the
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(a) Entire overview of the mesh. (b) Details of the mesh around the body.

Figure 4.1: Mesh of the computational domain.

undisturbed flow. Big compact mesh does not affect the solution. The downstream the
profile is created a mesh region with small elements along the chordwise direction. The
elements are immersed in the wake region and they allow to describe the wake evolution
immediately downstream the body where high resolution is required.

The boundary layer is characterized by a structured quad mesh. It consists into a
series of rectangular elements with increasing dimension by moving away from the airfoil
surface. Close to the body surface, the rectangular mesh is necessary in order to correctly
solve the the boundary layer. The height of boundary elements is an index of the accuracy
of boundary solution and it corresponds to the minimum distance from the wall the flow
characteristics are computed. The mesh improved has minimum dimensionless height
equal to 5 10−5 and it is enough accurate to compute the inner layer. The extrapolation
of the velocity field on the body surface is obtained by modifying the RANS code that
saves the airspeed in the quadrature points closest to the extrapolation line.

In Figure 4.1 is reported the entire grid. Obviously, the dimension of the computa-
tional domain is chosen to avoid possible interaction between the airfoil and the external
domain border. The distance of twenty times chord was chosen. The shape of the exter-
nal field allows to correctly implement the inlet boundary condition also for high angle
of attack. The Figure 4.2 shows the detailed grid in proximity of the wall. Quadrature
points of the mesh are used to extrapolate the airspeed and to compute the boundary
quantities by definition.

The same steps are followed to build the computational grid for DU96-W-180 profile.
The points of the geometry are imported in Gmesh software and the external domain is
created with the same characteristic previous described.
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Figure 4.2: Details of the boundary layer mesh.

4.2 Pressure coefficient and speed profile

4.2.1 NACA0012 airfoil

The first profile analyzed is NACA0012 airfoil. In following cases, the Mach number is
fixed at 0.16 and Reynolds is 1.5 106. The pressure coefficient and the boundary layer pro-
file are compared with the theoretical trend in order to validate the RANS simulations.
For zero angle of attack the cp coefficient presents a symmetric distribution according to
the theoretical prediction for a symmetric airfoil, as shown in Figure 4.3. The same graph
is obtained with Xfoil analysis that is plotted in the same figure and it is considered as
reference in the following description. The two curves perfectly coincide almost along the
entire chord and this demonstrates the simulation has a good agreement with the expected
results. The same analysis was repeated also for different angle of attack. Obviously, the
symmetrical property is lost and the cp reaches smaller values on the suction side. The
Figure 4.4 compares the cp coefficient obtained with Xfoil simulation and the pressure
distribution of RANS solution at incident α = 6° and Re = 1.5 106. The both curves show
a maximum value equal to one in correspondence of stagnation point very close to the
leading edge. In the central part of the airfoil the pressure distribution is almost identical
for both series of data. The minimum value of cp is reached at 2% of the chord where the
airspeed assumes the maximum value. However, the Xfoil solution exhibit a smaller value
rather than RANS solution. And it implies a local higher velocity for the reference case.

The friction coefficient is plotted as function of the dimensionless chord position. It is
the main input parameter of the pressure spectra models and it is reasonable comparing
the RANS results with the Xfoils reference plot. In Figure 4.5, the friction coefficient
is plotted at various angle of attack. For zero incidence, the distribution of friction is
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Figure 4.3: Pressure coefficient distribution around NACA0012 airfoil at 0° of incidence.
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symmetric and the difference between theoretical and predicted graph is evident near the
trailing edge that is the area of interest for the present work. The Xfoil solution shows
two peaks near the leading edge that the numerical simulation does not predict. The two
curves move closer in the central zone until to almost coincide. For not zero angle of
attack, the symmetrical property is lost and the curves for the suction and the pressure
sides are perfectly discernible. However, the proposed cases for 4° ad 6° incidence, show a
predicted cf over the suction side that perfectly overlies the reference curve for the major
part of the chord, especially close the trailing edge. The main differences are visible for 6°
incidence but they are almost negligible for the acoustic purpose because they involve the
leading edge area. In conclusion, the RANS solution is accurate in the zone of interest
and the pressure spectra models can be correctly applied. The Xfoil reference shows two
peaks. For the pressure side the plot appears almost flat and the curves coincide all over
the entire chord, excepted near the leading edge.
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Figure 4.5: Comparison of friction coefficient at Re=1.5 106 and at various angle of attack.

For further information, the contour lines for Mach number are reported in Figure 4.6
for the 0° and 6° incidence. Obviously, in proximity of the body surface the airspeed comes
from zero to the external velocity due to the boundary layer. The velocity field assumes a
symmetric configuration for zero angle of attack. Increasing the incidence, the flow field
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(a) 0° incidence and Re=1.5 106.

(b) 6° incidence and Re=1.5 106.

Figure 4.6: Comparison of the Mach field around the NACA0012 profile at different angles
of attack.

around the body lost his symmetry. The stagnation point is evident near the leading edge
on the pressure side; while the gas accelerates in the red zone (Figure 4.6(b)). The wake
is evident behind the body and it theoretically propagates to the infinity downstream.
However, the simulation was stopped after reached a stationary solution for which the
derivative in time of airspeed is about 10−5. The main limit, but at the same time the
main quality of the Amiet’s theory, is the possibility to discuss the acoustic emission by
a stationary solution that provides the mean quantities for turbulent flow, without the
necessity of a LES or DNS simulations.
The boundary thickness is shown in Figure 4.6, where it is evident for the six degrees
configuration an higher value at the suction side near the trailing edge.

The quantity ρν̃ is drawn in Figure 4.7, that shows the general trend of the turbulence
viscosity in the boundary layer. It is evident the position of flow transition from laminar
to turbulent, in proximity of the leading edge. However, the flow can be considered as
completely turbulent. The transitional chord position is used to improve a forced transi-
tion solution in Xfoil software in order to calculate the reference value for displacement
thickness and momentum thickness. The transition take place at about 0.1 times the
chord but it depends on the angle of attack. The two graphs present an important dif-
ference near the trailing edge and the asymmetry of the field is almost evident. The red
zone corresponds to high turbulent area and obviously it is the central part of the wake
field. The external field is characterized by an uniform turbulence that was imposed as
initial condition.

The boundary layer speed profile is obtained by extrapolation of the two mean compo-
nents of the velocity, ū and v̄, along the normal direction on the body surface that coincide
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(a) 0° incidence and Re=1.5 106.

(b) 6° incidence and Re=1.5 106.

Figure 4.7: Comparison of the field ρν̃ around the NACA0012 profile at different angles
of attack.

to the line of the boundary mesh (see Fig. 4.2) However, increasing the distance from the
wall, the number of points that provide the flow velocity, lowers because of unstructured
mesh. In fact, the code is able to get the mesh nodes nearest a certain direction imposed
but not to get internal point of the mesh elements. For this reason, the velocity profile,
as following discussed, is almost perfectly predicted with high number of points near the
body surface. The viscous sublayer with its linear law and the logarithmic zone are well
described.

The position of boundary layer extrapolation is now discussed. The Amiet’s theory
does not specify the position in which correspondence the pressure spectrum has to be
computed. However, the sensitivity analysis helps to find how the position parameter,
hidden inside the boundary quantities, influences the acoustic phenomena and how much
the position “in proximity” of the trailing edge is important. The noise emission for dif-
ferent positions is compared for acoustic purpose. However, to capture the trailing edge
noise is important to fix the position as close as possible to the trailing edge. In RANS
simulation is quite prohibitive to get 99% of the chord because the flux is influenced by
the wake and numerical results could be affected by errors. However, x/c = 0.95 allows
to limit this problem. The boundary quantities are so calculated at 80%, 90%, 95% and
98% of the chord. In Figure 4.8 the extrapolated boundary profiles and the theoretical
one are compared for different position along the chordwise direction. It is shown the
curves have a good agreement with the theoretical formulation for all position studied.
The temperature profile is omitted because it is useless for acoustic purpose.

The velocity outside the boundary layer grows by stepping away from the surface.
Thus, it is impossible to define which velocity limits the boundary layer, like it happens
for a flat plate. For this reason, it is necessary to introduce a conventional external
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Figure 4.8: Dimensionless turbulent velocity profiles.
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velocity in order to compute the boundary quantities. According to reference [6], the
isentropic airspeed is defined as the theoretical local speed for the inviscid flow. It can
be extrapolated from the Euler numerical simulation otherwise from its definition. Thus,
the isentropic Mach number is

Mis =

√
2

γ − 1
p−

γ−1
γ
−1,

where p is the local pressure. So, the external temperature is defined as

Text = 1 +
γ − 1

2
M2

is

and

Ue = Mis

√
γ

Text
. (4.6)

The equation (4.6) is very useful to compute the convective speed in the chordwise di-
rection as described by Amiet’s theory, also with scattering correction. The convective
speed is a portion of the external velocity.

The boundary thickness δ is the distance from the airfoil surface for which the airspeed
reaches the 99 percent of external velocity. The boundary layer is built from extrapolated
points; therefore. Thus, in order to obtain a better solution, the interpolation of the
available data is used and integrated. The δ is fixed as integration limit for the calculus
of the displacement and momentum thickness. The quantities δ∗ and θ are computed
according their definitions:

δ∗ =

∫ δ

0

(
1− U

Ue

)
d
(x
c

)
θ =

∫ δ

0

U

Ue

(
1− U

Ue

)
d
(x
c

)
The method of trapezoids is used to solve the integral. The error committed is negligible
due to the high number of points.

In Table 4.1 are compared the dimensionless displacement and momentum thickness
obtained with Xfoil and RANS simulations, at different position along the chordwise and
for various angle of attack. In general case, the numeric solution tends to coincide with
the reference Xfoil quantities. However, it does not provide the boundary thickness that
is the input for the Goody’s spectrum model. Also reference [6] proposes a series of em-
pirical equations that allows to compute δ∗ and θ near the trailing edge by knowing the
incidence and Reynolds number. Brooks distinguished between stunned and unstunned
boundary. This last configuration corresponds to the RANS analysis carried out.

From the Table 4.1 it is evident the little error that is almost less then three per-
cent. The extrapolation position has important effects on the estimated error. For zero
incidence, the maximum error involves δ∗ at 95% of the chord where it assumes about
3% value. The momentum thickness θ shows little variation in the error estimation that
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Angle of attack 0° x/c 98%
Xfoil solution RANS analysis error

δ∗/c 0.005135 0.005137 -0.04%
θ/c 0.003299 0.003252 1.41%
H 1.556 1.58

x/c 95%
Xfoil solution RANS analysis error

δ∗/c 0.004431 0.0043 -2.95644%
θ/c 0.002888 0.002838 -1.7313%
H 1.534 1.515

x/c 90%
Xfoil solution RANS analysis error

δ∗/c 0.003742 0.003738 -0.10689%
θ/c 0.002518 0.002557 1.5488%
H 1.486 1.462

x/c 80%
Xfoil solution RANS analysis error

δ∗/c 0.002572 0.002306 -10.34%
θ/c 0.001763 0.001508 -14.46%
H 1.486 1.462

Table 4.1: Comparison of boundary quantities on the suction side for NACA0012 by Xfoil
and RANS solution at different position and zero incidence.

varies around 1.5%. The configuration for 4° incidence, presents the same general trend.
However, θ has not negligible error around 2.9% for 80% of the chord.
The configuration for 6° of incidence shows the main problems. At 95% of the chord δ∗

has 0.3% error, on respect to the reference value; while θ is subjected to 3.3% error. By
moving the extrapolation point towards the leading edge the absolute value of the error
for δ∗ increases until 6.3%. For 80% of the chord, θ have 4.7% error.

4.2.2 DU96-W-180 airfoil

The present approach is applied also for different geometries in order to discuss the effect
of high adverse pressure gradient. The pressure spectra models were introduced for flat
plate or thin profiles, thus, the Amiet’s results cannot be applied in any possible cases.
The first step consists into the extrapolation of the boundary quantities in proximity of
the trailing edge. Thus, the mesh is imported into the RANS code and the fluid field is
carried out. The angle of attack is always zero due to the experimental data available for
the chosen profile.

Pressure distribution, in terms of cp coefficient, is reported in Figure 4.9 where RANS
prediction perfectly overlies the Xfoil solution. The different behavior between suction
and pressure side is due to the not symmetrical configuration. However, a little difference
is evident close to the trailing edge but it is negligible for the present purpose. Obviously,
in respect of the NACA airfoil, the DU96-W-180 profile shows higher cp in absolute value
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Angle of attack 4° x/c 95%
Xfoil solution RANS analysis error

δ∗/c 0.00571 0.005757 0.823117%
θ/c 0.0036 0.003663 1.75%
H 1.58611 1.57166

x/c 90%
Xfoil solution RANS analysis error

δ∗/c 0.004717 0.004765 1.0175%
θ/c 0.003086 0.003145 1.91186%
H 1.5285 1.5151

x/c 80 %
Xfoil solution RANS analysis error

δ∗/c 0.004035 0.004139 2.58%
θ/c 0.002706 0.002816 3.95%
H 1.491 1.470

Table 4.2: Comparison of boundary quantities n the suction side for NACA0012 by Xfoil
and RANS solution at different position and 4° of incidence.

Angle of attack 6° x/c 98 %
Xfoil solution RANS analysis error

δ∗/c 0.0103 0.0108 4.85%
θ/c 0.0058 0.0062 6.89%
H 1.77 1.75

x/c 95%
Xfoil solution RANS analysis error

δ∗/c 0.00819 0.008215 0.31%
θ/c 0.005130 0.00530 3.31%
H 1.6 1.55

x/c 90%
Xfoil solution RANS analysis error

δ∗/c 0.006181 0.006048 -2.15%
θ/c 0.003922 0.003851 -1.81%
H 1.528 1.515

x/c 80%
Xfoil solution RANS analysis error

δ∗/c 0.005316 0.00507 -4.63%
θ/c 0.003477 0.003301 -5.06%
H 1.529 1.536

Table 4.3: Comparison of boundary quantities on the suction side for NACA0012 by Xfoil
and RANS solution at different position and 6° of incidence.
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Figure 4.9: Pressure coefficient distribution around DU96-W-180 airfoil at 0° of incidence.

on the top surface that means higher local velocity.

The Figure 4.10 displays the friction coefficient distribution obtained by RANS and
Xfoil solution on the entire profile. Near the leading edge, the Xfoil solution shows some
peaks on both suction and pressure sides but they disappear for the RANS solution. The
RANS solution displays a lower level than the reference one, while it links up with the
reference curve in the central chord zone. The curves on the suction side almost coincide
but the error barely increases near the trailing edge. On the pressure side the error is
lower than the value computed on top surface and it is almost zero in trailing edge zone.
Moreover, the error is around 2% over the central chord segment. Generally, the predic-
tion is accurate for both pressure and friction distribution.

For further information, the Mach field around the DU96-W-180 profiles is reported
in Figure 4.11. Obviously, the wake behind the body is not symmetric and the boundary
layer on top seems to be larger than the bottom surface due to the curvature of the
profile. Moreover, the boundary thickness is larger than the equivalent zero incidence
case for NACA profile. The turbulent viscosity ρν̃ is plotted in Figure 4.12 and it allows
to evidence the zones in the fluid field where the turbulence is more intense. The central
zone of the wake is characterized by an high turbulence level while the external fluid
appears homogeneous with a constant level imposed in the boundary conditions. The
transition from laminar to turbulent boundary layers happens close to the leading edge.
According to the present observation, forced transitional position has to be imposed in
Xfoil program for the calculus of reference thickness.

In Figure 4.13 the dimensionless velocity profile at different positions is plotted in
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Figure 4.10: Friction coefficient distribution around DU96-W-180 airfoil at 0° of incidence.

Figure 4.11: Mach field around the DU96-W-180 profile at zero angle of attack and
Re=1.5 106.

Figure 4.12: ρν̃ field on the DU96-W-180 profile at zero angle of attack and Re=1.5 106.
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Figure 4.13: Dimensionless turbulent velocity profiles for DU96-W-180 on the suction
side.

order to verify the accuracy of the RANS solution. From the Figure 4.13, the predicted
boundary layer is conformed with the theoretical description excepted for x = 0.90c
where the linear zone does not completely overlie the theoretical trend. The boundary
thickness is computed by introducing the isentropic velocity as the external airspeed. The
δ thickness coincides with the distance from the surface for which the velocity reaches the
99% of the external one. The δ∗ and θ is obtained according to the their definition by
using the numerical integration with the trapezoidal method.

However, the Table 4.4 compares the displacement and momentum thickness on both
sides of the airfoil with the reference Xfoil solution. The RANS simulation returns different
errors between the suction and pressure side. Generally, the error is lower for the bottom
surface rather than the suction side. However, the general trend is not predictable as
function of the chordwise position. In fact, for 98% of the chord and over the suction
side, θ shows the 9.55% error that decreases until 2% for x = 0.95c. Opposite trend is
displayed for δ∗, that comes from 2.98% to 4.20% error. On the pressure side, the error
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Angle of attack 0° x/c 98%
Suction side Pressure side

Xfoil RANS error Xfoil RANS error
δ∗/c 0.010206 0.01051 2.98% 0.005777 0.005378 -6.98%
θ/c 0.005307 0.005814 9.55% 0.003654 0.003498 -4.26%
H 1.9231 1.980 1.581 1.537

x/c 95%
Xfoil RANS error Xfoil RANS error

δ∗/c 0.007994 0.007655 -4.20 % 0.005679 0.005451 -4.01%
θ/c 0.004528 0.004445 -1.83% 0.003547 0.003349 -5.58%
H 1.765 1.7221 1.60 1.63

x/c 90%
Xfoil RANS error Xfoil RANS error

δ∗/c 0.006069 0.005329 -12.2% 0.005193 0.0048025 -7.5%
θ/c 0.003687 0.003267 -11.4% 0.003251 0.002899 -10.8%
H 1.640 1.631 1.5973 1.660

x/c 80%
Xfoil RANS error Xfoil RANS error

δ∗/c 0.004249 0.00403 -5.12% 0.004026 0.004503 -11.8%
θ/c 0.002721 0.002607 -4.19% 0.002564 0.003050 -18.9%
H 1.56 1.54 1.57 1.47

Table 4.4: Comparison of boundary quantities for DU96-W-180 airfoil, obtained by Xfoil
and RANS solution at different position and zero angle of attack.
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is always negative. However, for both δ∗ and θ, the error is between 4.01% and 7%. For
this reason it is not more negligible. From the Table 4.4, it is evident for x = 0.80c, the
boundary layer prediction on the pressure side is not accurate, with about 18 % error
for θ. On the suction side the error is limited. On the other hand, the case x = 0.90c
shows very low accuracy on both top and bottom surface, with a mean error of 11.1% The
error about δ∗ and θ influences the acoustic results in different ways in function of the
frequency (see chap. 8). It is evident in Figure 4.13 where the prediction is not always
over the theoretical curves. However, the ratio H is almost the same for both reference and
simulation prediction and the error in percentage is lower than 10%. The most accurate
prediction is obtained for x = 0.98c for both suction and pressure side.



Chapter 5

Acoustic simulations and results for
NACA0012

The trailing edge noise is defined as the sound emitted by the turbulent interaction
between the flow and the body surface in the proximity of the trailing edge. Firstly,
NACA0012 airfoil is studied. The Sound Pressure Level (SPL) is calculated by substi-
tuting inside the Amiet’s formula, the pressure spectrum density. However, it is very
important to specify the angle of attack, the fluid conditions and the position of the ob-
server in which the SPL is calculated. In fact, it is possible to demonstrate that the noise
perception decreases like 1/z2, where z is the observer distance from the trailing edge. In
all following cases the observer is located in the mid-span section, in order to limit the
interaction with external vortexes.

And the high shape ratio wing allows to use the two dimensional solution. Gener-
ally, Amiet’s approach is a valid alternative to the classical CAA method when the wing
shows a shape ratio d/b > 10. Zero incidence configuration is firstly studied in order
to understand how the airspeed and the airfoil dimension influence the noise emission.
In literature the experimental data are reported for different test situations that can be
correctly reproduced by imposing the right initial conditions and reference quantities.
For this reason different profiles in dimensions are considered in order to discuss how the
chord or span dimension influences the phenomena. The effect of Reynolds number is
introduced,too.

The central frequencies assume very important interest because of the human ears
sensibility. In fact, the perception of the sound is barely modified as function of the
frequency and the SPL has to be weighted with a certain weight function. Thus, the
observer hears a sound with a perceived SPL slightly different from the measured one.
Hence, the acoustic models have to reproduce, with high accuracy, the main behavior
limited at high-medium frequencies range.

The question about how the incidence influences the acoustic emission is answered.
The angle of attack for the following cases 5 and 6 is fixed at 4° and 6°, respectively, while
the chord is equal to 0.4 m. Nevertheless, the airfoil used for numerical simulation has
null thickness at the trailing edge. However, the real models used for the experiments

47
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Angle of attack 0°
CASE 1: Re = 1.5 106 U∞ = 56 m/s c = 0.4 m 2d = 1m
Velocity Uref 293.912 m/s
Pressure pref 1.0315 105 Pa
Temperature Tref 300.9389 K
Viscosity µref 1.8310 10−5 kg/(m s)
CASE 2: Re = 1.5 106 U∞ = 71.3 m/s c = 0.3048 m 2d = 0.4275 m
Velocity Uref 302.50 m/s
Pressure pref 1.1024 105 Pa
Temperature Tref 318.78 K
Viscosity µref 1.7469 10−5 kg/(m s)
CASE 3: Re = 0.85 106 U∞ = 55.5 m/s c = 0.2286 m 2d = 0.4275 m
Velocity Uref 235.50 m/s
Pressure pref 0.6679 105 Pa
Temperature Tref 193.15 K
Viscosity µref 1.4900 10−5 kg/(m s)
CASE 4: Re = 0.85 106 U∞ = 39.6 m/s c = 0.3048 m 2d = 0.4275 m
Velocity Uref 168.00 m/s
Pressure pref 0.34122 105 Pa
Temperature Tref 98.3344 K
Viscosity µref 1.75 10−5 kg/(m s)

Table 5.1: Table of reference quantities for different cases and at zero incidence angle.

conducted by Brooks in reference [6], are characterized by rounded edge that influences
the noise radiation and it generates vortex shedding noise. Some models based on Amiet’s
theory were developed to simulate the vortex shedding noise[8] but they are not imple-
mented in the present work because of their low accuracy.

5.1 Zero incidence configuration

The equation 1.36 is applied to calculate the third of band SPL. The Table 5.1 summarizes
the main reference quantities and the geometrical configuration for each cases. The case
1 differs from the case 3 because of the chord dimension and the upstream airspeed, while
Mach number and Reynolds are fixed by the numerical solution. Therefore, since the
comparison with the two cases, it is possible to describe the chord and span dimension
effects. A direct comparison is not possible because of the different U∞; nevertheless, the
analysis of the results can bring interesting conclusion. However, in the equation 1.36 the
mid-span d is explicit while the chord influence is hidden inside the pressure spectrum.
Increasing the span and the chord dimension, the noise emission grows, too.

The reference [6] does not provide any information about the Mach number, or the
initial air conditions, except for the case 2. However, it defines a Mach of about 0.2 for all
experiments without specify the details. The main parameters that define the boundary
layer is the Reynolds number. In following figures only the suction side is reported in
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order to guarantee a simpler interpretation of the graphs.

In Figure 5.1(a) the pressure spectra density, calculated at 80% of the chord is dis-
played. Rozenberg’s and Lee’s models are close for low frequencies and both curves assume
the highest values for f = 200 Hz. Nevertheless, increasing the frequencies the difference
between the two models arises and reaches more than 20 dB/Hz for f = 10000 Hz. For the
central frequency range, the two curves show an error of about 2 dB/Hz that is generally
acceptable. Lee’s model is characterized by a very rapid decreasing trend at high frequen-
cies while this behavior is less pronounced moving through the trailing edge. Goody’s
curve is almost flat around 40 dB/Hz and, for this reason, it is not adapted to reproduce
correctly the acoustic phenomena on the entire frequency range. It slightly depends on
the position along the chordwise.

Kamruzzaman proposed a model that differs from the Rozenberg’s one at very low
frequencies. For f > 5000 Hz the error between the Kamruzzaman’s and Rozenberg’s
model reduces. From Figure 5.1(b) and 5.1(c) it is evident Kamruzzaman’s spectrum
highly depends on the boundary extrapolation position rather than the other proposed
models. Goody’s curve is almost invariant while the red curve is translated upward. Lee’s
model shows higher tangent coefficient in respect to 80% chord position. In Figure 5.1(d),
the yellow curve exceeds the red one for f > 5000 Hz. It means the predicted spectrum
is little higher for the Kamruzzaman’s model, rather than the Rozenbeg’s one. Goody’s
model is invariant and the Lee’s one assumes parabolic shape.

The Figure 5.2 summarizes the PSD of the case 2 which reference values are reported
in Table 5.1. The Reynolds number is 1.5 106 and the velocity U∞ is the maximum con-
sidered in the present work. Indeed the Reynolds is the same of Case 1 the PSD is little
different. The peak values are around the 55 dB/Hz and the curves do not present any
particular trend that differs from the Case 1. The curves appear moved upward (down-
ward) as the chord, or the span, arises (decreases). Is is possible to note that for 80% of
the chord, the PSD level of Lee’s model shows a value of 15 dB/Hz at 20 kHz. Moving
forward the TE, Lee’s model shows increasing values. Moreover, the Goody’s curve dis-
plays a little peak for medium frequencies, that is more accentuated than the case 1.
Rozenberg’s model assumes the highest values on almost the entire frequency range and
it clearly differs from the Kamruzzaman’s curve. Only for 98% of the chord, the order of
curves is inverted at very high frequency.

The case 3 is described in Figure 5.3, where the effect of Reynolds number and ge-
ometry is evident. The Reynolds number is reduced to 0.85 106, as well as the chord
and the span dimension. Obviously, the sound emission is characterized by a lower SPL
rather than the first case. However, this aspect is not completely evident from the pres-
sure spectra density. In Figure 5.3(a), the Kamruzzaman model is slightly higher than
the Rozenberg’s one and it differs from the case 1. Nevertheless, the curves of the two
cases are very close. The peak value is reached by Rozenberg’s curve for all boundary
extrapolation positions considered and it is almost the same in all figures. Moreover,
Goody’s curve predicts the lowest PSD level on the entire frequency range but it assumes
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(a) PSD for Re=1.5 106 and 80% of the chord.
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(b) PSD for Re=1.5 106 and 90% of the chord.
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(c) PSD for Re=1.5 106 and 95% of the chord.

100 101

f [kHz] 

20

25

30

35

40

45

50

55

60

S
w

w
 [d

B/
H

z]

Goody
Rozenberg
Kamruzzaman
Lee

(d) PSD Re=1.5 106 and 98% of the chord.

Figure 5.1: Case 1: Power spectral density (PSD) at different boundary position.
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(a) PSD for Re=1.5 106 and 80% of the chord.
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(b) PSD for Re=1.5 106 and 90% of the chord.
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(c) PSD for Re=1.5 106 and 95% of the chord.
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(d) PSD Re=1.5 106 and 98% of the chord.

Figure 5.2: Case 2: Power spectral density (PSD) at different boundary position.
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(a) PSD for Re=0.85 106 and 80% of the chord.
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(b) PSD for Re=0.85 106 and 90% of the chord.
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(c) PSD for Re=0.85 106 and 95% of the chord.
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(d) PSD Re=0.85 106 and 98% of the chord.

Figure 5.3: Case 3: Power spectral density (PSD) at different boundary position.

a parabolic shape. Kamruzzaman’s model exceeds the red curve only at 98% of the chord
and at high frequencies.

The Case 4 shows the minimum airspeed studied. In respect of the Case 2, only the
velocity is reduced (and the Reynolds); thus, the expected sound emission is lower. In
Figure 5.4 the PSD are plotted. The Goody’s curve is almost flat around 40 dB/Hz and
gradually declines by arising the frequency. However, the other models do not present any
important difference from the previous described cases: Rozenberg’s curve has the highest
values on the entire frequency range, Kamruzzaman’s model follows the Rozenberg’s one
and Lee’s curve rapidly falls a high frequencies.

The most important difference with the case 2 is evident at high frequencies for all
chord position: all the curves show a lower PSD level that sometimes is negative and not
physical. This is the main behavior of Lee’s model for x = 0.80c and x = 0.90c. On the
contrary, at small frequencies, Kamruzzaman’s models assume higher value than the one
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predicted by case 2. The peak of the curves slightly declines.
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(a) PSD for Re=0.85 106 and 80% of the chord.
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(b) PSD for Re=0.85 106 and 90% of the chord.
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(c) PSD for Re=0.85 106 and 95% of the chord.

100 101

f [kHz] 

15

20

25

30

35

40

45

50

55

60

S
w

w
 [

d
B

/H
z
]

Goody SS

Rozenberg SS

Kamruzzaman SS

Lee SS

(d) PSD Re=0.85 106 and 98% of the chord.

Figure 5.4: Case 4: Power spectral density (PSD) at different boundary position.

Obviously, the same considerations for each case are valid for the both pressure and
suction side because of the completely symmetry of the velocity field at zero incidence.
Thus, the acoustic emission for the suction side has to be summed to 6 dB to count also
the bottom surface contribution. However, a little difference between the two sides are
inevitable due to the grid points.

The SPL is shown in the Figure 5.5, where the Amiet’s theory is applied The PSD is
calculated at 98% of the chord for all cases. It is evident the Goody’s model is not able
to describe correctly the noise emission. It introduces an error of about 9 dB for central
frequencies that is not negligible. However, for very low frequencies and for the case 3,
Goody’s prediction is higher than Kamruzzaman’s and better fix the experimental data.
In Figure 5.5(c), the blue curve is very close to the Rozenberg’s and Lee’s models while it
differs gradually by increasing the frequency. Also, the peak frequency is wrong predicted
by the model.
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In Figure 5.5(a), the case 1 sound emission is shown. Rozenberg’s model better ap-
proximates the acoustic data. For f > 2000 Hz, the two curves, the red and green ones,
with an error fo less than 1 dB. However, for low frequencies, Rozenberg’s is not adapted
for acoustic purpose, while Kamruzzaman’s model introduces an error of 2 dB. The peak
frequency is correctly predicted by Rozenberg. Lee’s model overlaps the experimental
curve for f < 100 Hz, indeed the curve rapidly plummets at high frequencies. This be-
havior makes Lee’s model not accurate for acoustic prediction. In case 2, Kamruzzaman’s
model predictions is very accurate. The yellow graph overlaps the experimental data, al-
most perfectly. Goody’s and Lee’s models are completely wrong, while Rozengerg’s tends
to the green curve only for f > 104 Hz.

The case 3 was calculated in order to evince the Reynolds and geometrical effect.
Kamruzzaman’s curve is very close to experimental data but it is subjected to an almost
constant negative error. The other models are not enough accurate. By comparison
with the cases 2 and 4, it is possible to note that the sound emission for case 4 is the
minimum studied at zero incidence. Obviously, reducing Reynolds number, the noise
radiated declines, too. In conclusion, deceasing the velocity or the chord, while the span
is constant, allows to reduce the noise emission.

In Figure 5.5(d) the Sound Pressure Level for the case 4 is displayed. It is very
interesting because the geometry is the same of case 2, but the observer position, while the
Reynolds number reduces. Generally, low speed means low sound pressure. By comparison
with the Figure 5.5(b), the experimental SPL is smaller of about 4 dB while the predicted
shape is the same in both figures. Kamruzzaman’s model is still the most accurate model
all over the frequency range. Rozenberg’s and Lee’s models are not interesting because of
their rapid decreasing trend. They are completely wrong models. Goody’s curve overlaps
the Lee’s one for very low frequencies and it slightly lowers for f > 1000 Hz. It introduce
a good approximation in the limit of 2 dB for central frequencies.

5.2 Influence of the angle of attack

The incidence influence is here discussed. To investigate the influence of the attack angle,
it is necessary to retrace the same steps for the null configuration:

1. Solve the RANS equations in order to reconstruct the velocity field around the
airfoil;

2. Extrapolate the boundary layer quantities in proximity to the trailing edge;

3. Apply the pressure spectrum model as input of the Amiet’s theory;

4. Compare the results with experimental data.

In Table 5.2 are reported the reference conditions used for the acoustic analysis at
different angle of attack only for the NACA0012 profile because of the available experi-
mental data. The chord is fixed at 0.4 m and the Re = 1.5 106. The observer is locate
in the normal direction on the trailing edge at distance of 1 m and in mid-span section.
The Mach number is 0.16 for all following simulations.
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(a) Case 1: Sound pressure level.
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(b) Case 2: Sound pressure level.
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(c) Case 3:Sound pressure level.
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(d) Case 4:Sound pressure level.

Figure 5.5: Comparison of the noise emission due to different pressure spectrum models
at zero incidence angle.

Angle of attack 4°
CASE 5: Re = 1.5 106 U∞ = 54.8 m/s c = 0.4 m 2d = 1m
Velocity Uref 279.1917 m/s
Pressure pref 0.9327 105 Pa

Temperature Tref 271.3734 K
Viscosity µref 1.7404 10−5 kg/(m s)

Angle of attack 6°
CASE 6: Re = 1.5 106 U∞ = 53 m/s c = 0.4 m 2d = 1 m
Velocity Uref 269.93 m/s
Pressure pref 0.8725 105 Pa

Temperature Tref 253.83 K
Viscosity µref 1.6834 10−5 kg/(m s)

Table 5.2: Resuming table of small angle of attack.
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The total sound emission is the result of the pressure fluctuation propagation on both
side of the airfoil. The velocity field is not symmetric and the boundary layer quantities
have to be extrapolated on the both body surfaces. In Figure 5.6 are reported the pressure
spectra curves, obtained at different chord position. Suction and pressure side curves are
compared in the two figures. Obviously, the pressure side is characterized by a thinner
boundary layer and it barely influences the acoustic emission: the PSD is lower than the
one calculated on the suction side which represents the main contribution for the acoustic
phenomena. However, the pressure side is not negligible and it contributes on the total
SPL level. In all cases, Rozenberg’s curve shows the greatest values and it is assumed as
reference. Goody’s model is still the less reliable approach in terms of pressure spectra. In
fact, it is characterized by very low level and it introduces an error of 20 dB/Hz in respect
to the Rozenberg’s model. The general trend is well predicted as well as the frequency
peak is almost the same for all models (except for the Kamruzzaman’s that reaches the
greatest value very close to 2000 Hz). The PSD on the pressure side is reported in Figure
5.6(b). For Goody’s model, the curves are very similar Thus, Goody’s model is not able
to capture the differences between the two body surfaces. However, the angle of attack is
very little and the fluid field is barely affected by incidence. A first comparison with pre-
vious studied cases proves that the curve at zero incidence has lower values. Thus, arising
the incidence implies a grow of noise. The peak slightly grows ( about 1 dB/Hz), and
the error remains almost constant all over the frequency range. The peak corresponding
frequency is lower than 1 kHz.

Rozenberg’s model has the highest level at low frequencies that are not significant
for the acoustic emission. The curve reaches the peak at mean frequencies and rapidly
decreases. The same trend is evident for Kamruzzaman’s and Lee’s approaches. Particu-
larly, Rozenberg’s curve show a peak value of 58 dB/Hz, which is higher than 56 dB/Hz
obtained for the zero incidence angle configuration. Analogous considerations can be ob-
served in PSD graph between the pressure and suction side.
In Figure 5.6(b), the corresponding curves to Rozenberg’s and Lee’s approaches have a
parabolic trend and they immediately drop. As consequences, the pressure side is charac-
terized by a lower PSD level. Its difference with the suction side grows at high frequencies.
The related effect becomes more and more important at high incidence angle when the
acoustic phenomena coincide with the main term radiated by the suction side. Kamruzza-
man’s model is an exception because the two curves are very similar on both body surfaces
and the contribution of pressure side is not negligible on the entire range of frequencies.
Hence, the error between the pressure and suction side is evident and the two results are
very similar. They differ with an error of 2 dB/Hz for f = 200Hz, until null value for
f = 20 kHz.
Lee’s model is slightly affected by the angle of attack. Hence, the main difference with
the null configuration consists into the rapid reduction of the value that reaches less than
10 dB/Hz at high frequencies.

The PSD is extrapolated at 98% of the chord,too. The main difference with the previ-
ous case consists mainly in the shape of pressure side spectrum. Goody’s model is not able
to evidence the difference between the both sides of airfoil. In fact the two blue curves
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in Figures 5.6(d) and 5.6(c) are very similar. Thus, the blue curves in the Figures 5.6(c)
and 5.6(d) overlie for a large frequency range. Lee’s and Rozenberg’s models present PSD
on the pressure side higher than the suction side curve. The difference is evident at high
frequencies and it becomes the main contribution for acoustic purpose.

In order to complete the study of the extrapolation point influence, in Figure 5.7 are
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(a) Case 5:Sww on the suction side and 95% of
the chord.
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(b) Cae 5: Sww on the pressure side and 95% of
the chord.
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(c) Case 5: Sww on the suction side and 98% of
the chord.
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(d) Case 5: Sww on the pressure side and 98%
of the chord.

Figure 5.6: Comparison of the PSD on the pressure (PS) and suction side (SS) at different
chord position for the case 5.

reported the Sww plots for 80% and 90% of the chord.

In Figure 5.8 the acoustic emission is compared with the experimental data. The
chord position is influential rather than the previous cases and this aspect is evident due
to the almost null error introduced with the acoustic data. For x = 0.80c, all consid-
ered models are not able to correctly predict the acoustic emission. Rozenberg’s and
Goody’s model are very close over the entire frequency range and they assume the max-
imum predicted SPL level. However, the two curves overlie the experimental data only
for 1000 < f < 2000 Hz; while the error rises with the frequency. Lee’s prediction un-
derestimates the noise emission for all frequencies. Moreover, Kamruzzaman’s curve il
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(a) Case 5:Sww on the suction side and 80% of
the chord.
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(b) Cae 5: Sww on the pressure side and 80% of
the chord.
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(c) Case 5: Sww on the suction side and 90% of
the chord.
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(d) Case 5: Sww on the pressure side and 90%
of the chord.

Figure 5.7: Comparison of the PSD on the pressure (PS) and suction side (SS) at different
chord position for the case 5.

lower than the green curve until 2000 Hz and it overestimates the SPL for f > 2000 Hz.
Analogous considerations can be made for x = 0.90c, where only Rozenberg’s model is
accurate over a very restrict range. Nevertheless, moving forward the TE, the predic-
tion better fits the experimental points. For x = 0.95c, Kamruzzaman’s model fits the
experimental data mainly for the central frequencies. Lee’s and Goody’s model are not
able to describe the acoustic phenomena as well as Rozenberg’s one. However, Kamruz-
zaman’s approach predicts a surplus error of 2 dB. In Figure 5.8(d) the graph shows the
best agreement with the experiments. Rozenberg’s model perfectly describes the acoustic
emission for central frequencies but it differs from the green plot for f > 3000 Hz when
Goody’s model appears to be the best solution. Kamruzzaman’s plot overestimates the
acoustic emission; thus it is a conservative approach. However, the error is very low at
1000 Hz. Lee’s model shows completely wrong trend. In conclusion, it is not possible
to define which model mainly describes the acoustic phenomena all over the frequency
range. Nevertheless, using Rozenberg’s approach appears the best solution to guarantee
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a reduction of predicted error over the medium frequencies.
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(a) Case 5: Sound pressure level at 80% of the
chord.
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(b) Case 5: Sound pressure level at 90% of the
chord.
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(c) Case 5: Sound pressure level at 95% of the
chord.
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(d) Case 5: Sound pressure level at 98% of the
chord.

Figure 5.8: Comparison of the noise emission due to different pressure spectrum models
at 4° incidence and various chord position.

The case 6 is reported in the Figure 5.9, where the suction and pressure side PSD
are compared. The angle of incidence implies a growing peak in respect to the case 5.
The boundary layer quantities are extrapolated only at 95% and 98% of the chord. As
demonstrated in the previous chapters, the sound level is well predicted while approaching
the trailing edge. Thus, the pressure spectrum is computed and plotted in Figure 5.9.

The differences between the two body sides are more evident. However, the contribu-
tion of the pressure side spectrum in not negligible; even at high frequencies where it is
the main acoustic component. The curves obtained on suction side has parabolic shape
in semi logarithmic graph, and the value decreases very rapidly for Rozenberg’s and Lee’s
models. Comparing with the previous cases, at very high frequencies the spectrum as-
sumes negative values that are not physically acceptable. This problem does not belong
to Kamruzzaman’s approach which have positive value on the entire range of frequency
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(a) Case 6:Sww on the suction side and 95% of
the chord.
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(b) Case 6: Sww on the pressure side and 95%
of the chord.
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(c) Case 6: Sww on the suction side and 98% of
the chord.
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(d) Case 6: Sww on the pressure side and 98%
of the chord.

Figure 5.9: Comparison of the PSD on the pressure (PS) and suction side (SS) at different
chord position for the case 6.

variation.

About the case x = 0.95c, the pressure spectra are close each other especially at low
frequencies. Kamruzzaman’s curve assumes the highest values while Goody’s one shows
a flat curve. It is an obviously conclusion due to the dependence of the models from
the boundary quantities. With respect to the zero incidence, on the pressure side the
boundary layer is characterized by smaller thickness, that implies also little δ∗ and θ; as
consequences the pressure spectrum exhibit a decreasing intensity.

Finally, the PSD is plotted also for 80% and 90% of the chord. In these cases, the
curves are very similar.

In Figure 5.9(c) the suction side spectrum is reported. The previous consideration are
still valid about the general behavior of the models. Only kamruzzaman’s model shows
a considerable peak of 67 dB/HZ for f = 670 Hz. Rozenberg’s and Lee’s models assume
the same behavior and they present lower level than Kamruzzaman’s one. Goody’s model
is the worst approach due to its almost constant value for a large frequency range. The
blue curve slightly depends on frequencies only for f > 2000 Hz. The pressure side
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(a) Case 6:Sww on the suction side and 80% of
the chord.
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(b) Case 6: Sww on the pressure side and 80%
of the chord.
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(c) Case 6: Sww on the suction side and 90% of
the chord.

100 101

f [kHz] 

0

10

20

30

40

50

60
S

w
w

 [
d

B
/H

z
]

Goody PS

Rozenberg PS

Kamruzzaman PS

Lee PS

(d) Case 6: Sww on the pressure side and 90%
of the chord.

Figure 5.10: Comparison of the PSD on the pressure (PS) and suction side (SS) at different
chord position for the case 6.

curves are plotted in the Figure 5.9(d) and compared with the suction side prediction.
Kamruzzaman’s model is characterized by predicted values less than the corresponding
suction side curve for the entire considered interval. In fact, the errors reduces with
the frequencies. It is about 20 dB/Hz for very low frequencies while it reaches the null
value for 8000 Hz. Goody’s prediction is always higher than the corresponding suction
side curve. Furthermore, Rozenberg’s and Lee’s curves exceed the comparable plot for
f > 1000 Hz and they become the main contribution. In refers to the previous cases, the
effect of the incidence is mainly relevant. While the zero incidence angle does not show
the problem of the two different spectra on both airfoil sides due to airfoil symmetric
configuration, the extrapolation of suction side boundary layer is enough to describe the
entire acoustic measurement. The comparison with the experimental data is necessary to
validate the models. However, it is evident from the Figures 5.11(c) and 5.11(d), there is
no complete superposition between the experimental and the predicted data. The location
over chordwise direction strong influences the model results. Lee’s model is completely not
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(a) Case 6: Sound pressure level at 80% of the
chord.
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(b) Case 6: Sound pressure level at 90% of the
chord.
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(c) Case 6: Sound pressure level at 95% of the
chord.
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(d) Case 6: Sound pressure level at 98% of the
chord.

Figure 5.11: Comparison of the noise emission due to different pressure spectrum models
at 6° incidence and various chord position.

adapted for the present purpose. The acoustic level is always lower than the experimental
measurements and the errors progress with the frequency, until 25 dB for f = 20 kHz.
For the medium frequencies, the differences introduced by the model is around -6 dB.
This aspect makes Lee’s approach completely wrong on the entire range of frequencies
for both chord positions studied. Goody’s approach is enough accurate for very high
frequencies, where the blue curve overlies the experimental data for x = 0.98c, while it
makes available an higher prediction for x = 0.95c. In Figure 5.11(d), Kamruzzaman’s
model predicts higher SPL than the experimental measurement with a constant error of
4 dB between 2000 and 5000 Hz. Around the f = 1000 Hz, the difference is reduced but
still not negligible. However, Rozenberg’s model offers the best approximation for the
medium frequencies due to a constant error of about 2 dB. In Figure 5.11(a) and 5.11(b),
the noise prediction disagrees with the experimental data. In Figure 5.11(c), the acoustic
emission is plotted for chord position x = 0.95%. Rozenberg’s and Kamruzzaman’s curves
perfectly overlie the green curve. This is the best configuration studied.



Chapter 6

Acoustic simulations and results for
DU96-W-180

The trailing edge noise is the most significant contribution also for DU96-W-180 airfoil.
The main purpose is to verify if the proposed approach in the present work is available for
non-symmetrical profiles also. Only zero incidence case is studied because of the available
experimental data. The observer is located in mid-span section, over the trailing edge, at
distance of one meter. The angle of attack and fluid reference conditions are specified in
Table 6.1. The chord is fixed at 0.4 m and the spanwise is about 1 m. For DU96-W-180,
the effect of the geometrical dimension is not described. However, since the conclusion of
the previous chapter, it is possible to deduct that the increasing chord dimension, implies
growing SPL.

In Figure 6.1(c), the suction side spectrum is plotted. Rozenberg’s model achieves the
peak level of 55 dB/Hz for 1 kHz. Increasing frequencies implies a rapid decreasing curve
which trend is more emphasized than higher chord position,especially for Lee’s model. As
the frequency increases, the curve plummet more dramatically with respect to other mod-
els, especially Lee’s model. In fact, from Figures 6.2(a) and 6.2(c), the pressure spectrum
level is about 30 dB/Hz at 20 kHz, while Lee’s curve reaches 10 dB/Hz. Furthermore, in
Figure 6.1(d), the yellow curve is the most significant case for the pressure side.

The pressure spectrum comparison on the both airfoil sides at 95% of the chord is
shown in Figure 6.2(a). Goody’s model is negligible due to low predicted pressure level.
The curve is invariant among the chord position and it is almost flat around 40 dB/Hz.
Obviously, the behavior of the pressure spectra strictly depends on the body surface where

Angle of attack 0°
CASE 7: Re = 1.5 106 U∞ = 56 m/s c = 0.4 m 2d = 1m
Velocity Uref 293.912 m/s
Pressure pref 1.0315 105 Pa

Temperature Tref 300.9389 K
Viscosity µref 1.8310 10−5 kg/(m s)

Table 6.1: Reference fluid conditions for DU96-W-180 profile.
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the boundary quantities are measured. In fact, on the suction side, Rozenberg’s model
displays higher values than the other curves on the entire frequency range. It reaches
62 dB/Hz at f = 2 kHz and slowly lowers at high frequencies where the pressure level
amounts to 42 dB/Hz. However, Kamruzzaman’s and Lee’s models perfectly overlies for
a large frequencies interval and the error is negligible in the areas where the two curves
slightly diverge. The predicted spectrum is characterized by a peak of 58 dB/Hz at about
1.5 kHz.

On the pressure side, Karmruzzaman’s prediction is higher than the remaining models
on frequency interval from 1 kHz to 20 kHz. Goody’s curve does not present important
changes while Rozenberg’s and Lee’s models plummet until negative values for high fre-
quencies. Moreover, the importance of the suction side is emphasized for f > 5 kHz.
Rozenberg’s and Lee’s show the same trend but they diverge of about 3 dB/Hz.

The pressure spectrum at 98% over the suction side of the chord is shown in Figure
6.2(c). The curves for Kamruzzaman’s and Lee’s models are very close and similar on
the entire frequency range, where the maximum error is less than 2 dB/Hz at very high
or lowest frequencies. According to Goody’s spectrum, the pressure fluctuations have
almost constant level around 40 dB/Hz. Rozenberg’s prediction displays the maximum
value of 61 dB/Hz around f = 1 kHz, while it rapidly falls until 36 dB/Hz at f = 20 kHz.
Furthermore, it introduces the highest pressure spectrum. The same trend is evident also
for the pressure side where, the particular airfoil shape is approached with a flat plate.
Except for the Goody’s model,which prediction of about 52 dB/Hz for low frequency is
the same on both sides, the other models show differences on the surface bodies. The
differences rise by growing frequencies and the spectrum level rapidly decreases. In re-
spect to the Figure 6.2(d), the main dissimilarities are evident at high frequencies where
the suction side shows more than 20 dB/Hz gap. This confirms that the pressure fluctua-
tions on the top surface assume the main acoustic contribution, while the pressure side in
completely negligible at very high frequencies. However, for the central frequency range
the spectrum level is almost the same for all models and both profile sides contributions
are important. In Figure 6.2(d), Kamruzzaman’s model assumes the highest values on
the entire frequency range, while Goody’s one returns values rounded down. For this
reason, Rozenberg’s or Kamruzzaman’s has to be preferred indeed the acoustic prediction
is rounded up as the Figure 6.3 displays.

The effect of the geometry is evident with reference to the Figures 5.5(a) and 6.3. For
the DU96-W-180 profile, at zero incidence, the measured emission peak moves at 1 kHz
and it reaches 65 dB; while the NACA0012 profile presents 60 dB peak. Hence, the sym-
metrical geometry, that is characterized also by a thinner thickness, produces a reduced
noise and it should be preferred in some applications in which aerodynamic properties,
such as the lift or drag coefficient, are not predominant requirements. On the other hand,
the asymmetrical configuration introduces high acoustic emission that is not always pre-
dictable by the pressure spectra-based theories. The choice of the geometry cannot be
reduced only on the acoustic requirement.

In Figure 6.3 the comparison of the predicted noise emission and the experimental
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(a) Case 7:Sww on the suction side at 80% of the
chord.
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(b) Case 7:Sww on the pressure side at 80% of
the chord.
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(c) Case 7:Sww on the suction side at 90% of the
chord.

100 101

f [kHz] 

10

15

20

25

30

35

40

45

50

55

60
S

w
w

 [
d

B
/H

z
]

Goody PS

Rozenberg PS

Kamruzzaman PS

Lee PS

(d) Case 7:Sww on the pressure side at 90% of
the chord.

Figure 6.1: Comparison of the PSD on the pressure (PS) and suction side (SS) at different
chord position for DU96-W-180 airfoil.

data is reported. For x = 0.98c, no pressure model is able to correctly predict the acous-
tic emission all over the considered frequency range. Moreover, the models improved do
not correctly predict the peak. For frequencies between 2 and 5 kHz, Lee’s model is the
most accurate one because it overlies the experimental points. However, by increasing the
frequencies, it is difficult to establish which model is more adapted for the phenomena
description. Rozenberg’s and Kamruzzaman’s predictions are very close on the entire
frequency interval. The two curves are higher than the experimental data. Thus, the
solutions can be used for conservative predictions. The error is about 5 dB.
The same trend is evident for the other chord positions. The graph of the acoustic emis-
sion at 95% of the chord is plotted in Figure 6.3(c). The noise peak is not correctly
predicted and no curves rounded the experimental data. Kamruzzaman’s prediction is
the most accurate in the interval 2 kHz < f < 10 kHz. Lee’s model perfectly overlies
the green curve for a limited frequency range, while it generally reproduce a lower noise
prediction.
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(a) Case 7:Sww on the suction side at 95% of the
chord.
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(b) Case 7:Sww on the pressure side at 95% of
the chord.
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(c) Case 7:Sww on the suction side at 98% of the
chord.
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(d) Case 7:Sww on the pressure side at 98% of
the chord.

Figure 6.2: Comparison of the PSD on the pressure (PS) and suction side (SS) at different
chord position for DU96-W-180 airfoil.

Similarly, the SPL plot for 90% and 80% of the chord are reported in Figure 6.3(b) and
6.3(a), respectively. Paradoxically, moving forward the boundary extrapolation point, the
proposed approach better approximates the acoustic data. In fact, from Figure 6.3(b),
it is evident both Lee’s and Kamruzzaman’s models are able to reproduce the trailing-
edge noise with a reduced error (less than 2 dB for the central frequencies). However,
the numerical solution does not predict th emission peak as well as the corresponding
frequency. The reason relies on definition of trailing edge noise as broadband noise and
the tonal emission is generally radiated by vortex shedding phenomena. Indeed the error
committed in the boundary layer quantities, in general the prediction concordances with
the experimental data.

For x = 0.80c, all models do not describe perfectly the acoustic phenomena. Rozen-
berg’s one is still the less accurate with an difference between 5 and 10 dB. The same
considerations are valid for the remaining models.
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(a) Case 7:Sww on the suction side at 80% of the
chord.
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(b) Case 7:Sww on the pressure side at 90% of
the chord.
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(c) Case 7:SPL at 95% of the chord.
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(d) Case 7:SPL at 98% of the chord.

Figure 6.3: Comparison of the PSD on the pressure (PS) and suction side (SS) at different
chord position for DU96-W-180 airfoil.



Chapter 7

Sound directivity

The noise propagates in the air around the body surface in preferential directions. This
property is defined as noise directivity and it can be calculated as ratio between the sound
intensity in some direction and the theoretical intensity for a point source with the same
sound power that radiates with a spherical wave front. However, the directivity graph,
in polar coordinates, is complex to be obtained due to the difficulties in the evaluation
of total power. For this reason it is possible to adopt a smarter approach that consists
into defining the SPL at fixed frequencies and at different angle around the trailing edge,
and introducing a reference value, like a mean intensity, as an approximation of the point
source behavior. This approach was used also in reference [7] where the directivity was
defined as ratio prms/p̄rms, where

p̄rms =
1

2π

∫ 2π

0

prms(θ)dθ,

is the mean integration value of effective pressure. However, Amiet’s theory allows to
define the directivity only for the flat plate at zero incidence. For other incidence config-
urations, the polar graph is invariant. In literature, the directivity pattern was defined in
a different way as

z

σ
|κcL|

. This solution comes from the pressure fluctuations in far field assumptions. In fact,

p(x, ω) = − iωzLb
2πc0σ2

sin
(
L
2b

(
K̄y − κ̄y

σ

))
L
2b

(
K̄y − κ̄y

σ

) ei(κ/β
2)(σ−Mx)

∫ 0

−2

f(x̄)e−iCx̄dx̄. (7.1)

Two main alternatives for the directivity description are following proposed: the first
approach consists into defining the directivity for the Amiet’s theory as described in the
previous chapters; the second approach is obtained using the Roger’s formulation with
scattering that allows to implement also the effect of limited span dimension (see Ap-
pendix B). Roger’s formula improves also the acoustic prediction for the observer not in
mid-span section and his solution collapses in the Amiet’s formulation for Ky = 0, when
the velocity is directed in chordwise direction. The main differences are evident due to
the scattering terms that is zero only if the observe is located along z axis over the trail-
ing edge. However, the directivity pattern shows a series of poles in variable number as
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function of the frequency. For the observer position outside the mid-span section, finding
valid experimental data is almost impossible and this configuration is neglected.

The directivity pattern is evaluated as function of dimensionless frequencies. The
Helmhotz number is introduced as κc, where κ is the acoustic wave number and c the
chord. As far as concern the dimensionless study, it is necessary to describe all possible
cases, in terms of different behavior at frequencies and geometrical configuration. Further-
more, it is the most general description introduced. It is possible to note the directivity
does not depends on the boundary quantities but only on Mach number,frequencies and
the section plane of the observer.

The Amiet’s solution has a directivity pattern very similar to a dipole source and
slightly reclined in opposite direction of the airspeed. The maximum of emission is ob-
tained for an angle θ more than 90, but its value strongly depends on the frequencies.
At very low frequencies (κc = 0.25), the lobes are elongated but they does not describe
correctly the acoustic phenomena because they are orientated in airstream direction. In-
creasing the frequency, the lobes are deformed and the number of small peaks increases.
Amiet’s theory is almost limited in directivity description and it is not possible to estab-
lish in which way the prediction is coherent with the real emission.

For θ close to 160°, the curves in all figures are indented due to the numerical error
introduced by the acoustic code. In fact, it is possible to demonstrate that, for both
approaches, the formula presents a term in which the denominator tends to zero by
growing the angle θ. In numerical solution, the problem was solved by introducing a better
approximation of Fresnel Integrals by increasing the number of terms in Taylor series
(see Appendix A). However, experimental measurements are not available and different
models introduces similar directivity pattern. In all cases, as reference [7] demonstrates,
the increasing frequency implies a more irregular pattern.

Roger’s directivity patterns is defined as a classical dipole for a very low frequencies.
The two curves, corresponding to the two models used, for κc = 0.25, as presented in
Figure 7.1(a), overlies for little angles. However, the two curves differs by increasing
the frequencies. In Roger’s solution many poles appear and the number or dimension
is strictly function of the frequency. The directivity pattern is almost symmetrical on
both sides of the profile. In Figure 7.1(b), κc assume unit value and the evolution of
directivity poles is evident. The maximum emission occurs along θ = 100° direction for
both approaches but Amiet’s theory curve shows a lower level. The most interesting case
is given by the figures 7.1(c) and 7.1(d), in which the shape of red curve differs from the
blue one. For 140 < θ < 180, the graph is characterized by irregularities due to numerical
approximation. The most evident phenomena consists into a large pole developed in
opposite direction of airspeed that has the major part of the energy. This aspect is visible
also for the highest value of κc, where the directivity pattern is a deformed dipole with a
preferential direction along 160 while Roger’s solution shows a series of small poles that
increase in number at high frequencies.
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(b) Directivity Patterns for κc = 1
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(c) Directivity Patterns for κc = 5
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(d) Directivity Patterns for κc = 8

Figure 7.1: Comparison of Directivity Patterns by Amiet’s Theory and Roger’s correction.
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Figure 7.2: Comparison of Directivity Patterns by Amiet’s Theory and Roger’s correction.



Chapter 8

Sensitivity analysis of the acoustic
model

Sensitivity approach allows to define which variables in the acoustic models mainly affects
the output. According to the definition given in chapter 3, the global sensitivity indexes
are computed as described by Saltelli et Al.[26] in order to establish how the single pa-
rameter and their combinations influences the results of the acoustic models. However,
some advertising are necessary about which input quantities are considered and why they
were chosen. In order to give a physical meaning of each input, RANS is not enough
accurate because it is almost impossible repeating the simulations by modifying Reynolds
or Mach number. Thus:

1. In order to introduce a variance in Reynolds and Mach, it is needed a LES (Large
Eddies Simulation), that is not available in the present acoustic code. The purpose
of sensitivity analysis is limited to a single RANS solution and the extrapolation of
the boundary quantities is mainly affected by the mesh refining.

2. On the other hand, the time cost of the entire LES simulation is very expensive.
And it contrasts with the purpose to find an alternative approach to reduce the
computational cost.

A physical description is prohibitive. Hereinafter, all input quantities are supposed
independent. It is a strong limitation and the models are released from the physical
restrictions. In general, δ∗ and θ are not independent and they both depends on the
boundary thickness δ. Moreover, δ is the result of the fluid field around the airfoil and
depends on Reynolds number. The friction coefficient cf , in proximity of the trailing edge
and the differential pressure dp/dx are also input of the pressure spectrum models. The
observer position and geometrical dimensions are supposed exact quantities; hence, they
are neglected in sensitivity analysis.

Normal distribution function is applied for each input and the same variance is sup-
posed for all quantities fixed. The global sensitivity indexes are calculated at various
frequencies to understand if it influences the order of input importance. The influence
of the angle of attack is not clearly discussed because its effect is hidden in the other
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boundary quantities and it is not a direct input of the pressure spectra models.

A one-at-time discussion is not applied because it is limited on a single parameter
effect, without considering any interactions between inputs. The first step is plotting the
scatterplots for each models in order to compare, in qualitative ways, the effects of a single
parameter. Secondly, Saletelli’s method is applied. For this reason, Halton’s sequence
is used to extract pseudo-random points in number of 5000 units for all simulations.
The same results can be obtained also with completely randomic points, with an higher
computational cost, or Sobol’s distribution.

8.1 Sensitivity analysis of Goody’s model

Goody’s model is the first introduced and the most simple pressure spectrum model to
study. It is affected only by two inputs: the boundary thickness δ and the friction co-
efficient cf . However, the pressure gradient does not participate in the model because
Goody’s formula was formulated for flat plate at zero incidence angle. In order to estab-
lish how input interviews in the sensitivity analysis, many tests are conducted at different
variances and with a fixed frequency. The reference conditions used are summarized as
case 1 in Table 5.1. In figure 8.1 are reported the scatterplots for δ and cf at 1000 Hz
and a variance of 20% of the mean value. From the figure, it is evident that the friction
coefficient mainly affects the model output because the points show a stretched form in
the plot. On the contrary, δ , which scatterplot is a cloud of points, does not affect the
output. The cf coefficient is the main parameter of the model and it has to be evaluated
with an high resolution in order to reduce the error propagation. In fact, a little error in
its calculus, improves a not negligible error in pressure spectrum analysis. The δ thick-
ness is a direct function of the mesh dimension near the body wall. Therefore, the mesh
sensitivity is very low and it is possible to obtain very similar results by using a larger
mesh but enough accurate to reconstruct the stress distribution around the wall.
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Figure 8.1: Scatterplot analysis for Goody model
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The first order global sensitivity factors are calculated and reported in the Table 8.1,
in which the conclusion that comes out from the scatterplots analysis is confirmed. More-
over, the Scf is very close to one (about 0.98 in all configuration) while Sδ is almost
null; thus, δ effect can be neglected. The model is nonadditive. In fact, the sum of first
order indexes is lower than one, while the sum of total factors is bigger than the unit,
as concerned the theory. The total indexes are always bigger than the equivalent first
order factors and this demonstrates the number of points used in Monte Carlo method
is enough to guarantee a correct sensitivity evaluation. The test is repeated for different
variances but the hierarchy of the input is invariant. However, at constant frequency,
the sensitivity factor Scf declines a little. Growing the input variances,the spectrum level
becomes negative and this is not physically possible.

Increasing the frequency has not relevant effects on sensitivity indexes and they appear
almost constant. At very low frequencies, δ acquires importance but it is always less than
1%.

The output distribution function is not more a normal distribution, as assumed to be
for the input parameters. It is shown in Figure 8.2, where the curves are obtained at
different frequencies. Even if the distribution appear similar, the scales are different. At
high frequency the curve has a very thin peak around the mean value and the variance
plummets. The output variance σy is about 0.03898, that corresponds to 39% of the mean
output value, and skewness 0.5745 for 1000 Hz that corresponds to a medium frequency;
while they assume 0.00114 and 0.5764 respectively, for f = 5000 Hz. The model is more
rigid at high frequencies for which it is possible to tolerate higher input error level.
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(c) Probability distribution function for f =
5000 Hz.

Figure 8.2: Goody’s probability distribution function at various frequencies and fixed
input variance 0.2.
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Goody’s model:global sensitivity factors Frequency 100 Hz
Var 0.1 Si STi Va 0.15 Si STi Var 0.2 Si STi

δ 0.0300 0.0430 δ 0.0332 0.0445 δ 0.0367 0.0492
cf 0.9627 0.9707 cf 0.9591 0.9678 cf 0.9534 0.9644

Sum 0.9927 1.0137 Sum 0.9923 1.0123 Sum 0.9901 1.0136
Frequency 1000 Hz

Var 0.1 Si STi Var 0.15 Si STi Var 0.2 Si STi
δ 0.0106 0.0227 δ 0.0127 0.0221 δ 0.0146 0.0236
cf 0.9830 0.9899 cf 0.9814 0.9879 cf 0.9749 0.9862

Sum 0.9936 1.0126 Sum 0.9941 1.01 Sum 0.9895 1.0098
Frequency 5000 Hz

Var 0.1 Si STi Var 0.15 Si STi Var 0.2 Si STi
δ 0.0081 0.0201 δ 0.0101 0.0192 δ 0.0118 0.0203
cf 0.9855 0.9924 cf 0.9842 0.9905 cf 0.9822 0.9890

Sum 0.9936 1.0125 Sum 0.9943 1.0108 Sum 0.994 1.0093
Frequency 10000 Hz

Var 0.1 Si STi Var 0.15 Si STi Var 0.2 Si STi
δ 0.0074 0.0194 δ 0.0094 0.0184 δ 0.0109 0.0194
cf 0.9863 0.9931 cf 0.9850 0.9913 cf 0.9831 0.9898

Sum 0.9937 1.0125 Sum 0.9944 1.0097 Sum 0.994 1.0092

Table 8.1: Table of global sensitivity factors at different frequencies and variance for
Goody’s model

8.2 Sensitivity analysis of Rozenberg’s model

Rozenberg’s model introduces the pressure gradient effect for the calculus of pressure
spectrum. For this reason, the term dp/dx is the main input that distinguish the present
model from the Goody’s one. The boundary quantities δ∗ and θ are hidden in the model
formula. The boundary thickness δ and cf coefficient complete the range of model’s input.

In order to graph the scatterplots, the frequency is fixed to 1000 Hz and variance
20% for all parameters. From the Figure 8.3(c) it is possible to affirm that δ is the
less influential input. However, the friction coefficient cf and momentum thickness θ are
the two main parameters that more influences the model output. Even if the pressure
gradient is most characteristic input of the model, its uncertainty does not propagates in
the model.

Global sensitivity factors are summarized in Table 8.2. For f = 100 Hz, the friction
coefficient is the most influential parameter, while the error for θ and dp/dx do not influ-
ences the outputs due to their little sensitivity factor about 0.02. The global sensitivity
indexes slightly change with the variance. However, the indexes for cf decreases while
the indexes for δ grows. The boundary thickness becomes the most important parameter.
Very low frequencies have only academic importance and they does not describe the real
acoustic phenomena. By increasing the frequency, the cf remains the main parameter but
the sum of the first order global sensitivity parameters falls. The pressure gradient and
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(b) Scatterplot of δ∗.
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(c) Scatterplot of θ.
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(d) Scatterplot of dp/dx.
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(e) Scatterplot of cf .

Figure 8.3: Scatterplot analysis for Rozenberg’s model
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θ acquire importance and they are the second main parameters in the input hierarchy.
However, Saltelli’s algorithm does not allows to compute the second order factors and they
are neglected in following sections. In respect of the Goody’s model, Rozenberg proposed
an algorithm that does not depend on the δ thickness(δ it is almost insignificant) but it
is mainly built on cf , dp/dx and θ.

For high frequency (5000 Hz), the model distribution function assume a decreasing ex-
ponential trend. The skewness is very high, corresponding to 6.16 and variance 5.10 10−5.
The frequency modifies the distribution function that assumes a normal shape for very
low frequencies. From lowest to the highest frequency, it gradually exhibits increasing
skewness and a gamma distribution law. In Figure 8.4 are compared the distribution
function for f = 100 Hz, f = 1000 Hz and f = 5000 Hz, with fixed variance equal to
0.2 of the mean value. The skweness comes from 3.4 for f = 100 Hz, to 6.16 for high
frequencies. Also putput variance is frequency dependent: it varies from 0.15 of mean
value for low frequencies to 0.0038469 at 1000 Hz. Rozenberg’s model is the most robust
of the present study.
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Figure 8.4: Rozenberg’s probability distribution function at various frequencies and fixed
input variance.
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8.3 Sensitivity analysis of Kamruzzaman’s model.

Kamruzzaman’s model is the most accurate model for the acoustic phenomena. However,
it depends on boundary quantities δ∗ and θ, on the friction coefficient cf and pressure
gradient. The boundary thickness does not influences the model. In Figure 8.5 are pre-
sented the scatterplots for f = 1000 Hz . The main influential input is still the friction
coefficient. It is evident from the Figure 8.5(d) where the graph shows an elongated point
distribution. However, also δ∗ is an important input, while θ and dp/dx are less significant
input. From the Table 8.3, this aspect is confirmed. Both first order or total sensitivity
factors slightly depend on the frequency while they remain almost constant by increasing
the variance. Scf assumes the maximum value at low frequencies and minimum variance
(about 0.7843), while the second major contribution is Sδ∗ with about 0.18. The parame-
ters θ and dp/dx are not significant for the model due to the little sensitivity indexes. By
increasing the frequency, the indexes Sθ and Sdp fall and they become almost zero (see
the case for f = 5000 Hz).

Then, a comparison between Rozenberg’s model and Kamruzzaman’s one is necessary.
The friction coefficient cf is the main sensible input for both models. However, the weight
of the single term is different. Indeed the inputs are the same, in Kamruzzaman’s approach
the order of importance is invariant with the frequency.
The sum of the Si is very close to one; thus the second order or more are not required
and the first order factors are able to recover almost the totality of the output variance
influence.

Kamruzzaman’s distribution function is reported in Figure 8.6. The shape is not more
a normal distribution. The variance highly depends on frequency. At f = 1000 Hz it is
about 1.17 10−6, that is 4.72 10−4 times the mean output, and skewness 1.3.

8.4 Sensitivity analysis of Lee’s model

Lee’s model is the last proposed approach that improves goody’s model for non symmetri-
cal airfoils. The input quantities are the same considered for the Kamruzzaman’s model.
Scatterplots are drawn in Figure 8.7. However, all figures present an elongated shape
similar to the figure obtained for Rozenberg’s approach. The most sensible inputs are
the friction coefficient cf and the pressure gradient, while the boundary quantities show
a more regular distribution of points.

The probability function is plotted in Figure 8.8. However, in respect of Goody’s
model or Rozenberg’s one, the figure appears more peaked around the zero value. The
output distribution function is characterized by a gamma law with very small variance and
high skweness. The distribution law slightly depends on frequency. The high frequency is
synonymous of increasing robustness of the model. At medium frequencies the variance
is about 3.32 10−5 and skewness 1.924. The variance falls with increasing frequency until
1.78 10−7 at 5000 Hz.
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(a) Scatterplot of δ∗.
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(b) Scatterplot of θ.
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(c) Scatterplot of dp/dx.
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(d) Scatterplot of cf .

Figure 8.5: Scatterplot analysis for Kamruzzaman’s model

The global sensitivity indexes are summarized in the Table 8.4. For very low fre-
quency the variance seriously affects the importance hierarchy and δ becomes the most
influencing parameter with Sδ = 0.3695 for variance 0.2, versus Scf = 0.3270. Thus, if
the uncertainty on the measured quantities raises, the order of importance changes. For
f = 1000 Hz, the influence of friction coefficient gradually decreases and the sum of first
order global index is very less than one. The total factors have inside the higher order
indexes, thus high STi value is symptomatic of high second order contribution. In present
case, indeed the cf is not always the main influencing parameter, the corresponding total
index assumes the maximum value. Hence, the combination of cf and other input has not
negligible weight. The index Scf comes from 0.4721 for low frequency and variance to 0.20
at high frequency and variance. In general, increasing the variance induces a reduction
of cf influence. In all combination of frequencies and variance, δ∗ is the less influential
parameter while θ and dp/dx have the same weight. The hierarchy does not change if
total indexes are considered. Finally, it is important to note that the sum of first order
indexes falls while the sum of total factors arises.
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Figure 8.6: Kamruzzaman’s model probability distribution function at various frequencies
and fixed input variance 0.2.

For high frequencies δ and δ∗ are not influent and their effect can be neglected in PSD
model. It eases the noise prediction because of computational cost and errors reducing
in θ or cf measurement. The weight of the single factor decreases while the total effect
increases.

8.5 Sensitivity analysis conclusion

The sensitivity study consists into three main steps: definition of a pseudo-random points
in order to cover the entire range of variability of the quantities for which the normal
distribution is supposed; elaborating of the scatterplots as a first evaluation of model sen-
sitivity and then the calculus of first order global sensitivity indexes according to Saltelli’s
proposed algorithm. All input are considered independent although the physical quan-
tities are functions of Reynolds and Mach. Reynolds and Mach are the main input for
RANS simulation.
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In conclusion, the friction coefficient cf is the most influent input for all models, par-
ticularly for the Goody’s one where it influences output variance for over 98% percent.
Furthermore, the Scf is not constant for all models and it depends on input variance and
frequency. Scf varies from about 0.14 for Rozenberg’s model at high frequencies and high
variance, until to reach 0.75 for Kamruzzaman’s approach at low frequency and variance.
The total factors allows to introduce also the effect of combination between input vari-
ables. In each cases, the index associated to friction is the highest one. This implies that
also its second or higher order index has not negligible effects on the output models.

The hierarchy of input importance in not in advance predicted. For Kamruzzaman’s
model the effects of pressure gradient and θ are negligible while δ∗ assume a greater im-
portance with a global factor around 0.22 that increases at high frequencies. Rozenberg’s
and Lee’s algorithms are not influenced by δ∗, thus the attention has to be directed to-
wards the correct extrapolation of pressure gradient and momentum thickness.

The distribution function has almost the same shape for all models and it depends
on frequency. Obviously, the mean values, output variances and skewness are different
from a model to another. In general, at high frequencies the variance decreases while the
skewness raises. Hence all models show to be more robust at high frequencies.
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Rozenberg’s model:global sensitivity factors Frequency 100 Hz
Var 0.1 Si STi Var 0.15 Si STi Var 0.2 Si STi

δ 0.2879 0.3124 δ 0.3113 0.3608 δ 0.3670 0.4492
δ∗ 0.1660 0.1805 δ∗ 0.1561 0.2007 δ∗ 0.1394 0.2180
θ 0.0188 0.0262 θ 0.0160 0.0221 θ 0.0119 0.0172

dp/dx 0.0188 0.0261 dp/dx 0.0162 0.0216 dp/dx 0.0124 0.0149
cf 0.4755 0.4969 cf 0.4309 0.4768 cf 0.3585 0.4337

Sum 0.967 1.042 Sum 0.9305 1.082 Sum 0.9901 1.0136
Frequency 1000 Hz

Var 0.1 Si STi Var 0.15 Si STi Var 0.2 Si STi
δ 0.1258 0.1802 δ 0.1398 0.2442 δ 0.2152 0.3684
δ∗ 0.0431 0.0828 δ∗ 0.0389 0.1138 δ∗ 0.0312 0.1161
θ 0.1517 0.2029 θ 0.1317 0.2140 θ 0.1005 0.1760

dp/dx 0.1529 0.1998 dp/dx 0.1325 0.2141 dp/dx 0.1012 0.1904
cf 0.4256 0.5009 cf 0.3575 0.4994 cf 0.2708 0.4351

Sum 0.8991 1.166 Sum 0.8004 1.2855 Sum 0.7189 1.286
Frequency 5000 Hz

Var 0.1 Si STi Var 0.15 Si STi Var 0.2 Si STi
δ 0.0573 0.1453 δ 0.0570 0.2205 δ 0.0847 0.3066
δ∗ 0.0161 0.890 δ∗ 0.0114 0.1495 δ∗ 0.0066 0.1826
θ 0.1922 0.3214 θ 0.1641 0.3777 θ 0.1350 0.3956

dp/dx 0.1909 0.3218 dp/dx 0.1597 0.3847 dp/dx 0.1303 0.4120
cf 0.3382 0.5099 cf 0.2491 0.5432 cf 0.1762 0.5340

Sum 0.7947 1.042 Sum 0.6413 1.6756 Sum 0.5328 1.8308
Frequency 10000 Hz

Var 0.1 Si STi Var 0.15 Si STi Var 0.2 Si STi
δ 0.0413 0.1471 δ 0.0385 0.2314 δ 0.0507 0.2978
δ∗ 0.0103 0.1016 δ∗ 0.0057 0.1783 δ∗ 0.0019 0.2211
θ 0.1974 0.3671 θ 0.1664 0.4413 θ 0.1408 0.4716

dp/dx 0.1934 0.3696 dp/dx 0.1573 0.4507 dp/dx 0.1313 0.4831
cf 0.2996 0.5210 cf 0.2046 0.5677 cf 0.1396 0.5717

Sum 0.742 1.5063 Sum 0.5727 1.6756 Sum 0.5328 1.8308

Table 8.2: Table of global sensitivity factors at different frequencies and variance for
Rozenber’s model.
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Kamruzzaman’s model:global sensitivity factors Frequency 100 Hz
Var 0.1 Si STi Var 0.15 Si STi Var 0.2 Si STi
δ∗ 0.1788 0.2203 δ∗ 0.1887 0.2298 δ∗ 0.1969 0.2469
θ 0.0065 0.0276 θ 0.0081 0.0264 θ 0.0086 0.0266

dp/dx 0.0071 0.0296 dp/dx 0.0089 0.0279 dp/dx 0.0096 0.0278
cf 0.7843 0.7849 cf 0.7691 0.7772 cf 0.7502 0.7694

Sum 0.9767 1.0624 Sum 0.9748 1.0613 Sum 0.9653 1.0707
Frequency 1000 Hz

Var 0.1 Si STi Var 0.15 Si STi Var 0.2 Si STi
δ∗ 0.2445 0.2835 δ∗ 0.2657 0.3072 δ∗ 0.2992 0.3561
θ 0.0076 0.0236 θ 0.0048 0.0237 θ 0.0043 0.0282

dp/dx 0.0082 0.0254 dp/dx 0.0060 0.0244 dp/dx 0.0055 0.0288
cf 0.7184 0.7274 cf 0.6906 0.7098 cf 0.6422 0.6809

Sum 0.9787 1.0600 Sum 0.9671 1.0651 Sum 0.9512 1.094
Frequency 5000 Hz

Var 0.1 Si STi Var 0.15 Si STi Var 0.2 Si STi
δ∗ 0.2362 0.2700 δ∗ 0.2575 0.300 δ∗ 0.2936 0.3566
θ 0.0009 0.0190 θ 0.0019 0.0189 θ 0.0016 0.0253

dp/dx 0.0016 0.0194 dp/dx 0.0026 0.0191 dp/dx 0.0022 0.0255
cf 0.7360 0.7462 cf 0.7033 0.7271 cf 0.6474 0.6949

Sum 0.9747 1.0546 Sum 0.9653 1.0651 Sum 0.9448 1.1023
Frequency 10000 Hz

Var 0.1 Si STi Var 0.15 Si STi Var 0.2 Si STi
δ∗ 0.2275 0.2719 δ∗ 0.2528 0.3217 δ∗ 0.3043 0.4059
θ 0.0023 0.0201 θ 0.0035 0.0268 θ 0.0041 0.0438

dp/dx 0.0025 0.0206 dp/dx 0.0038 0.0273 dp/dx 0.0044 0.0447
cf 0.7417 0.7539 cf 0.6905 0.7371 cf 0.6052 0.6910

Sum 0.974 1.0665 Sum 0.9506 1.1129 Sum 0.918 1.1854

Table 8.3: Table of global sensitivity factors at different frequencies and variance for
Kamruzzaman’s model.
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Lee’s model:global sensitivity factors Frequency 100 Hz
Var 0.1 Si STi Var 0.15 Si STi Var 0.2 Si STi

δ 0.2772 0.3055 δ 0.3038 0.3646 δ 0.3695 0.4814
δ∗ 0.1353 0.1955 δ∗ 0.1274 0.1808 δ∗ 0.1080 0.2285
θ 0.0345 0.0431 θ 0.0267 0.0442 θ 0.0143 0.0586

dp/dx 0.0342 0.0440 dp/dx 0.0269 0.0442 dp/dx 0.0149 0.0596
cf 0.4721 0.5068 cf 0.4210 0.4912 cf 0.3270 0.4696

Sum 0.9533 1.095 Sum 0.9058 1.125 Sum 0.8337 1.2977
Frequency 1000 Hz

Var 0.1 Si STi Var 0.15 Si STi Var 0.2 Si STi
δ 0.1053 0.1589 δ 0.1169 0.2248 δ 0.1817 0.3358
δ∗ 0.0316 0.0678 δ∗ 0.0275 0.0975 δ∗ 0.0225 0.1265
θ 0.1626 0.2226 θ 0.1420 0.2509 θ 0.1150 0.2516

dp/dx 0.1625 0.2251 dp/dx 0.1420 0.2502 dp/dx 0.1158 0.2396
cf 0.4080 0.4978 cf 0.3375 0.5002 cf 0.2574 0.4744

Sum 0.87 1.1722 Sum 0.7659 1.3236 Sum 0.6924 1.4279
Frequency 5000 Hz

Var 0.1 Si STi Var 0.15 Si STi Var 0.2 Si STi
δ 0.0443 0.1170 δ 0.0437 0.1891 δ 0.0630 0.2821
δ∗ 0.0095 0.0620 δ∗ 0.0059 0.1080 δ∗ 0.0040 0.1372
θ 0.1900 0.3299 θ 0.1609 0.3978 θ 0.1374 0.4305

dp/dx 0.1905 0.3382 dp/dx 0.1614 0.4026 dp/dx 0.1380 0.4161
cf 0.3237 0.4940 cf 0.2369 0.5172 cf 0.1720 0.5156

Sum 0.758 1.3411 Sum 0.6088 1.6067 Sum 0.5144 1.7815
Frequency 10000 Hz

Var 0.1 Si STi Var 0.15 Si STi Var 0.2 Si STi
δ 0.0325 0.1108 δ 0.0365 0.1820 δ 0.0634 0.2711
δ∗ 0.0058 0.0639 δ∗ 0.0053 0.0979 δ∗ 0.0067 0.0893
θ 0.1884 0.3573 θ 0.1505 0.4009 θ 0.1079 0.3877

dp/dx 0.1895 0.3673 dp/dx 0.1529 0.4007 dp/dx 0.1127 0.3612
cf 0.3006 0.5040 cf 0.2379 0.5471 cf 0.2057 0.5717

Sum 0.7168 1.4033 Sum 0.5831 1.6286 Sum 0.4964 1.681

Table 8.4: Table of global sensitivity factors at different frequencies and variance for Lee’s
model
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(a) Scatterplot of δ.
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(b) Scatterplot of δ∗.
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(c) Scatterplot of θ.
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(d) Scatterplot of dp/dx.
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(e) Scatterplot of cf .

Figure 8.7: Scatterplot analysis for Lee’s model
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Figure 8.8: Lee’s probability distribution function at various frequencies and fixed input
variance.



Chapter 9

Conclusions

The approach proposed in the present work is an example of hybrid method used in aeroa-
coustics to predict the noise radiated by airfoil immersed into turbulent flow. Amiet’s
formula allows to predict the trailing edge noise due to interaction of turbulent flow at
high Reynolds and low Mach number (uncompressible fluid). Although the Amiet’s the-
ory was elaborated for infinite chord flat plate, it is still an important reference for the
broadband noise prevision also for thin airfoil with finite chord.

The first step is solving the RANS equations for a certain geometry and the second one
consists into the boundary extrapolation of the boundary quantities in proximity of the
trailing edge. The isentropic velocity was introduced in order to compute the boundary
thickness from the velocity profile. The RANS solution returns δ∗/c and θ/c that were
compared with reference data. The two values shows errors that depends on geometry
and chordwise position. For NACA0012 the error is always lower than 5% and it decreases
near the trailing edge; while the DU96-W-180 profile shows many problems. The differ-
ence between computed and reference conditions often assumes 10% error and it barely
depends on the extrapolation position. Except for the x/c = 80%, in which the error is
very high, indeed the shape factor H is almost the same, the other cases studied present
acceptable error. Furthermore, some differences are evident between suction and pressure
side. The pressure side generally shows higher error. This influences the acoustic results
and it produces a growing predicted emission. Although the not perfect correspondence
with reference boundary quantities, the acoustic model produces a good approximation.
Very close the trailing edge, the errors between the reference and computed quantities
decreases.

Different semi-empirical models are introduced in order to improve the pressure spec-
trum. Thus, Goody’s model is the first described but it was developed for a flat plate. For
this reason, from the comparison with the experimental data available, Goody’s model is
not able to reproduce the acoustic phenomena despite the variability of cases analyzed.
Moreover, the boundary layer extrapolation position does not significantly influences the
Goody’s prediction as well as the angle of attack. The predicted level is always limited
around 40 dB and the curves appear almost flat on the entire frequency range. The same
trend is found for both geometries.
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Lee’s model highly depends on the airfoil shape. The model was introduced in order
to adapt the Amiet’s formula for asymmetrical geometries. In fact, it returns good re-
sults for DU96-W-180 profile, where the prediction overlies the experimental data for a
short frequency interval. The extrapolation point and the angle of incidence modify the
accuracy of the model. However, it introduces a bad prediction for NACA0012 profile for
all cases studied.
Rozenberg’s and Kamruzzaman’s models are the most accurate. However, the accuracy
mainly depends on geometry and incidence. For NACA0012 airfoil, Kamruzzaman’s pre-
diction has good agreement with the experimental data for zero incidence configuration.
The chord dimension and Reynolds number does not affect the acoustic results. The error
introduced is almost acceptable for a large range of frequencies. For zero incidence and
case 2, the yellow curve remarks the experimental points and the error is reduced till 2 dB.
For the case 5 and 6, the graph does not follow the experimental trend and the differences
are about 6 dB or more. However, the frequency peak is well predicted. Kamruzzaman’s
model is conservative in many cases and it should be very useful in preliminary project
phase. For DU96-W-180 profile,Kamruzzaman’s model is still the most accurate. At
90% of the chord, the boundary layer quantities allows to reproduce correctly the acous-
tic emission. However, the peak is not predicted because the model reproduce only the
broadband noise.
Rozenberg’s model is the most accurate for high angle of attack. For NACA0012 profile,
in case 5 and 6 it has a good agreement with experimental data with 3 dB as maximum
error for medium frequencies. The choice of boundary position influences highly the accu-
racy mainly for high frequencies where the curve decreases rapidly. However, the central
frequencies need great attention because they are the most sensitive range for human hear.
On the other hand, choosing a position of 95% of the chord allows a better approximation
on the entire frequency range. The DU96-W-180 airfoil solution shows the highest error
in respect to the experimental data. For this reason, Rozenberg’s model is not adapted
for the acoustic purpose.

The question about the most accurate pressure spectra model has not univocal answer
and it depends on many factors: geometry, angle of attack and extrapolation point. The
Mach number is little influential for not compressible flow; while the main parameter is
still the Reynolds number.

The sensitivity analysis describes which input parameters have the main influences on
the acoustic results. The distribution function of the results is plotted in order to verify
how the single parameter affects the output variance. However, the physical meaning of
each input is neglected and they are considered independent in order to reduce the com-
plexity of the analysis. On the other hand, the present definition is useful to understand
which quantities need more attentions.
Scatterplot provides a qualitative description. Global sensitivity factors allows to quantify
the single input influences. The first order and the total indexes are enough accurate to
establish the importance order for each model. The sensitivity analysis is repeated for a
range of variance and frequency.
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For each model the number of input parameters is different. Generally, the friction
coefficient is a common parameter for all models and it is the most influential input, par-
ticularly for the Goody’s one where its error influences the output variance for over 98%
percent. For Kamruzzaman and Rozenberg the height of cf is reduced until Scf assumes
about 0.3 at low frequencies. It decreases by growing input variance and it modifies the
importance order. The same trend is evident for Lee’s model. The quantities δ∗ and θ
highly influences the models, mainly at high frequencies. The pressure gradient dp/dx is
not mainly interesting as well as the δ thickness.
Although the first order allows to describe the single parameter affect, Stot provides the
combined effect with other input quantities. If Stoti is close to Si, the input combination
with other parameter is not relevant, while it became very important for high Stoti values.

The frequency effect is discussed from the analysis of output distribution function.
The input variance is fixed to 0.2 and the output is plotted in order to capture the trend
for low, medium and high frequency. The graphs show a different scale to evidence the
phenomena. At high frequency, all models present output distribution function limited to
very small variance. Thus, the model strength depends mainly on frequencies and very
high value implies a lower influence of the input even if the variance is fixed. For this
reason, for high frequency it is allowed higher error in input due to robust models. On
the contrary, low frequencies introduces high variability in output.

The proposed approach is useful in many engineering application: from the analysis
of wing acoustic emission to the noise of helicopter rotors, from the wind turbine design
to ventilation system or turbomachinery. The advantages are mainly due to the com-
putational cost and time; that has to be compared with result accuracy. The test cases
show the Amiet’s theory is suitable for thin airfoil while it has a good approximation also
for asymmetrical profiles. Trailing edge prediction is accurate only for Kamruzzaman’s
pressure spectra model but it depends on angle of attack and geometry.
The present theory has margins of improvement. For example, introducing other pressure
spectra models such as Blake TNO model and improving the back scattering. However,
the most limitation is function of geometry studied in two-dimensional simulation. The
future studies aim to extend the Amiet’s formula for three dimensional body with complex
geometry, warped and tripped, or equipped with acoustic regulators.



Acknowledgement

At the end of my thesis, that coincides with the end of an important phase of my life, I
would like to write few words to thank my tutors and friends that believed in me during
these years.

During my work I had to face with many arguments that I never studied before and I
was able to overcome a series of issues, seemed insuperable, thanks to my tutors Professor
Renzo Arina and Professor Andrea Ferrero, that answered all my questions and doubts.
They always supported me and allowed me to develop an unusual topic, like aeroacoustics,
in order to have good basis for my future project: I hope to continue my studies with a
PhD program.

A special thanks to my friends that made my life very funny also during this last
intense period. They listened to all my boring stories, even if they wanted to kill me, and
helped me to fight my stress. I would like to tell them thanks for their support because
they are now a sort of a second family: I feel a new man since I met them and I would
like to live inside my second family.

Few words are dedicated to my parents, my brother and sister. They always encour-
aged me to continue my courses even if away from home. Now, I am an adult but without
them I would never grew up as a person.

91



Appendix A

Computational method for Fresnel
integrals

Numerical approach for Fresnel integrals are used to accelerate the acoustic model. The
model was proposed by Mielenz [29] and it is based on Boersma solution. The Taylor
expansions are not used because of the large number of constant to be determined. The
analytical expression for Fresnel integrals is:

E(u) =

∫ u

0

1√
2πτ

e−iτdτ =
1− i

2
+ e−iu

√
4

u

11∑
n=0

(pn + iqn)

(
4

u

)n
; (A.1)

where pn and qn are constants []. By introducing the substitution t = πτ 2/2 and x =
πu2/2, the equation (A.1) can be written as:

E(x) =

∫ x

0

e−iπt
2/2dt = C(x)−iS(x) =

1− i
2
−e−iπx2/2

11∑
n=0

gn − ifn
x2n+1

forx ≥ 1.6; (A.2)

where

fn =

(
8

π

)n+1/2

qn, gn = −
(

8

π

)n+1/2

pn.

This method coincide with the Boersma solution and it presents an error less than 5 10−10.
In Table A.1 are reported the constant of Mielenz’s computational method.

For |x|≤ 1.6 Taylor expansions are instead used. Thus,

C(x) =
∞∑
n=0

cnx
4n+1 c0 = 1.

cn+1 =
−π2(4n+ 1)cn

4(2n+ 1)(2n+ 2)(4n+ 5)

(A.3)

S(x) =
∞∑
n=0

snx
4n+3 s0 = π/6,

sn+1 =
−π2(4n+ 3)sn

4(2n+ 2)(2n+ 3)(4n+ 7)
.

(A.4)
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n fn gn
0 0.318309844 0
1 9.34626 10−8 0.101321519
2 -0.09676631 -4.07292 10−5

3 0.000606222 -0.152068115
4 0.325539361 -0.046292605
5 0.325206461 1.622793598
6 -7.450551455 -5.199186089
7 32.20380908 7.477942354
8 -78.8035274 -0.695291507
9 118.5343352 -15.10996796
10 -102.4339798 22.28401942
11 39.06207702 -10.89968491

Table A.1: Table of constants for Mielenz’s method.

The first eleven terms give an error less than 6 10−10.

The Matlab«code is shown below.

1 f unc t i on [ y ] = E( x )
2 %Function E a l l ows to compute Fre sne l i n t e g r a l s by improving

Mielenz ’ s
3 %method .
4 f =[0.318309844 9.34626 e 8 0 . 0 9 6 7 6 6 3 1 0.000606222 0.325539361

0.325206461 7 . 450551455 32.20380908 7 8 . 8 0 3 5 2 7 4 118.5343352
102 . 4339798 3 9 . 0 6 2 0 7 7 0 2 ] ;

5 g=[0 0.101321519 4 . 0 7 2 9 2 e 5 0 . 152068115 0 . 046292605
1.622793598 5 . 199186089 7.477942354 0 . 695291507
15 . 10996796 22.28401942 1 0 . 8 9 9 6 8 4 9 1 ] ;

6

7

8 x=pi *x . ˆ 2 / 2 ;
9 y=ones (1 , l ength ( x ) ) ;

10

11

12 f o r j =1: l ength ( x )
13

14 i f abs ( x ( j ) )>1.6
15 y ( j ) =(1 1 i ) / 2 exp ( 1 i *x ( j ) .ˆ2* pi /2) *sum ( ( g 1 i * f ) . / ( x ( j )

. ˆ ( 2 * ( 0 : 1 1 ) +1) ) ) ;
16 e l s e i f abs ( x ( j ) )<1.6
17

18 C=1.*x ( j ) ;
19 S=pi /6 .* x ( j ) . ˆ 3 ;
20
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21 f o r n=1:12
22

23 C=(1 pi ˆ2*(4*n+1) /(4*(2*n+1)*(2*n+2)*(4*n+5) ) .* x ( j ) ˆ(4*
n+1) ) *C;

24 S =(1 p i ˆ2*(4*n+3) /(4*(2*n+2)*(2*n+3)*(4*n+7) ) .* x ( j ) ˆ(4*
n+3) ) *S ;

25

26 end
27 y ( j )=C 1 i *S ;
28 end
29 end
30

31 end



Appendix B

Farfield Roger’s scattering solution

Roger’s model was introduced in order to describe the directivity behavior of the sound
emission for the Amiet’s theory with back scattering correction. It is based on the hypoth-
esis of finite chord formulation that is a limit of the present approach. However, Amiet
proposed a good solution of the problem by defining the TE noise as not affected by the
turbulent interaction on the leading edge. Roger and Al.[15] demonstrated the leading
edge scattering correction allows to ddetermine the noise emission also for an observer not
in the mid-span section and introduces a directivity for the signal that is not predicted
by the original Amiet’s solution. Furthermore, the authors based their deonstration on
the Schwarzschild problem reformulated for the leading edge and summed to the previous
solution. It became very important for low frequencies. The theory is extended also for
three dimensional configuration.

The equation (1.36) is modified. The term L, given by the formula (1.38), is written
as sum of two terms that are functions of the wave numbers K̄x and K̄y, already defined
in Chapter 1. However, K̄y was fixed null because the gust was supposed to be directed
along the chordwise; assumption valid for a mid-span observer. In general, the present
assumption is not valid and contemplated in back scattering correction. Thus, the function
L(K̄x, K̄y) is obtained as:

L(K̄x, K̄y) =

∫ 0

−2

f(x̄)e−iCx̄dx̄, (B.1)

where f = f1 + f2 and x̄ the dimensionless coordinate.

Hence, the function
f1 = (1 + i)E(−Bx̄)− 1,

in which the constant B = K̄x + Mµ + κ̄ and κ̄ = µ2 − K̄2
y/β

2. The parameter β and µ
are already presented in Chapter 1.

The integral is now calculated by parts:∫ 0

−2

f1(x̄)e−ix̄dx̄ = −e
2iC

iC

{
(1 + i)e−2iC

√
B

B − C
E(2(B − C))− (1 + i)E(2B) + 1− e−2iC

}
.

(B.2)
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The parameter

C = K̄x − µ
(x
σ
−M

)
.

The equation (B.2) collapses into the Amiet’s proposed formula for K̄y = 0.

The correction is introduced by the function f2, which presents a complex formula-
tion. The constant ε =

√
1− 1/(4µ) has to be introduced. With the annotation {�}2, it

indicates that the imaginary part is multiplied by ε. Thus, the analytical expression of
integral is:

1

H

∫ 0

−2

f2e
iCx̄dx̄ = {e4iκ̄ [1− (1 + i)E(4κ̄)]}c − e2iD + i

[
D + K̄x +Mµ− κ̄

]
G; (B.3)

where

H =
(1 + i)e−4iκ̄(1−Θ2)

2
√
π(U∞/Uc − 1)K̄

√
B
.

end D = κ̄− x/σ. The function G is defined as:

G = (1 + ε)ei(2κ̄)+D sin(D − 2κ̄)

D − 2κ̄
+ (1− ε)ei(−2κ̄+D) sin(D + 2κ̄)

D + 2κ̄
+

(1 + ε)(1− i)
2(D − 2κ̄)

e4iκ̄E(4κ̄)− (1− ε)(1 + i)

2(D + 2κ̄)
e−4iκ̄E(4κ̄)

+
e2iD

2

√
2κ̄

D
E(2D)

[
(1 + i)(1− ε)

D + 2κ̄
− (1− i)(1 + ε)

D − 2κ̄

]
.

(B.4)

The present result is applied to compute the corresponding power spectral density of the
far-field sound as presented in Chapter 1.
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