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Abstract

The international energy agency (IEA) stated that global energy consumption in the industrial
sector grew by 61% in 2004 compared to the levels recorded in the 60s. The increased energy
consumption has implied a considerable increase in the levels of C02 present in the atmosphere:
the industrial activities have raised atmospheric carbon dioxide levels from 280 parts per million
to 400 parts per million in the last 150 years. This rate is unprecedented in the geological record
of the past 55 million years. In July 2016, global temperatures soared to the hottest in the 136
years of the instrumental record, 0.1◦C warmer than previous warm Julys in 2015, 2011 and 2009.
In this world context, the industrial sector is called to improve the efficiency of its production
cycles in order to reduce emissions that are harmful to humans and the environment. One way is
to exploit the energy that is dissipated in the environment, through waste heat recovery (WHR)
systems. Most of the heat produced around the world is at low temperature, i.e. under 200 C◦,
and energy recovery from a source of this type is very complicated. The Colloidal EnERgEtic
System (CERES) is an energy harvesting system aimed to the recovery of heat in this range of
temperatures: the idea was born to respond directly to the challenge of NASA ”Surviving extreme
spatial environment” and the first step was to create the prototype known as DOUGHNUT, or
rather aDatptive cOloalidal accUmulatinG / HarvestiNg UniT. This system uses an external
thermal gradient (generated for example by exhaust gases), combined with a permanent magnetic
field, to generate motion of convection and translation of the ferrofluid inside. With an appropriate
configuration of the collection coils, using Faraday’s law, it is possible to recover and store energy
from these flow motions. After having described the prototype in its essential components, and
having provided an overview of the fluid used, we move on to the description of the mathematical
model used to describe the motions inside, with a detailed overview of all the forces that play
a fundamental role in this context. Then we move on to describe the numerical method used
for the discretization of the mathematical model, thanks to which we obtain the fluid dynamic
views of what happens in the area of interest. Future developments of this prototype will provide
for the use of these results to find the configuration of the collection coils in order to maximize
energy recovery.
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Chapter 1

Introduction

Most climate scientists agree that main cause of the current global warming trend is human
expansion of the ”greenhouse effect”[1] -warming that results when the atmosphere traps heat
radiating from Earth toward space.
Some gases in the atmosphere prevent heat from dissipating; some of these that remain semi-
permanently in the atmosphere are described as ”forcing” climate change [2]. Gases that contribute
to the greenhouse effect include:

• Carbon dioxide (CO2), not only released through natural processes like volcanic eruptions
but is released into the atmosphere also by the combustion of fossil fuels. Humans have
increased the concentration of CO2 in the atmosphere by more than a third since the
industrial revolution began.

• Methane (CH4) is a hydrocarbon gas produced both through natural resources and human
activities, including the decomposition of waste in landfills for example. Methane is a
much more active greenhouse gas than carbon dioxide, but also much less abundant in the
atmosphere.

• Nitrous oxide(N2O) is a powerful greenhouse gas produced by soil cultivation practices, in
particular the use of commercial and organic fertilizers, the combustion of fossil fuels, the
production of nitric acid and the combustion of biomass[2].

• Chlorofluorocarbons (CFC). Synthetic compounds entirely of industrial origin capable of
contributing to the destruction of the ozone layer.

In its Fifth Assessment Report, the Intergovernmental Panel on Climate Change, a group of 1,300
independent scientific experts from countries all over the world, concluded there is more than
95% probability that human activities over the past 50 years have warmed our planet.
In July 2016, global temperatures soared to the hottest in the 136 years of the instrumental record,
0.1◦C warmer than previous warm Julys in 2015, 2011 and 2009. It followed a succession of rising
temperatures, moving from 0.42◦C above average in 2000, to 0.87◦C above average by 2015.[9] The
industrial activities that our modern civilization depends upon have raised atmospheric carbon
dioxide levels from 280 parts per million to 400 parts per million in the last 150 years. This rate
is unprecedented in the geological record of the past 55 million years, and is tracking towards the
stability threshold of the Antarctic ice sheet, estimated at around 450ppm atmospheric CO2.[9]
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1 – Introduction

Figure 1.1: This graph, based on the comparison of atmospheric samples contained in ice cores
and more recent direct measurements, provides evidence that atmospheric CO2 has increased
since the Industrial Revolution. [1]

The rise in greenhouse gas levels in the atmosphere and oceans is leading to an increase in extreme
weather events relative to the period 1950-60, including tropical storms such as those in Fiji,
Vanuatu and the Philippines, with lives lost and damage estimated in the billions of dollars. Ice
sheet melt rates have been increasing and the rate of sea-level rise has been accelerating, from
roughly 1.7 mm per year over the past century to 3.2 mm per year between 1993 and 2010, and
to about 3.5mm per year today. This threatens low-lying islands, deltas and lower river valleys
where billions of people live a problem that is compounded by increased variability of river flows
in terms of floods and droughts.[9]
Actually one third of the global energy consumption is employed in industrial processes and, as
reported by International Energy Agency (IEA), the industrial energy consumption had increased
by 61% in 2004 with respect to the level of 1971. [3]
In the United States for example, the CO2 emission is around 1.68× 1012kg in 2015 [7] while in
Europe a relative total CO2 emission is around 0.36× 1012kg in the same year. [8]
In this context, industries are challenged with the task of reducing greenhouse gas emissions and
improving the efficiency of their production processes. All over the world, any industrial process
presents a waste of energy or heat. It is estimated that globally, only one third of all energy
usages were utilized while the remaining is rejected as waste heat.[4]
As much as 20%- 50% of energy is lost as waste heat in metal and non-metallic mineral manufac-
turing in United States [11], while in the European Union, it is estimated that the 70% of total
energy used in industry is employed in thermal processes (furnaces, reactors, boilers and dryers)
and about a third of this energy is wasted into the environment through losses: the waste heat
potential in the EU has been estimated to be 300-350 TWh/year based on the energy consumption.
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Figure 1.2: industrial energy consumption (Eurostat data inTWh per year) in some of the EU
countries with at least moderate industrial activity. In the same graph is given the total industrial
energy consumption in the EU. [5]

In this regard, the use of waste heat recovery systems (WHR) in industrial processes is one
of the main research areas to reduce fuel consumption, reduce harmful emissions and improve
production efficiency.[10]
The term Waste Heat Recovery (WHR) refers to the process apt to recover the heat that would
otherwise be lost in the atmosphere, store it, and possibly re-use it to generate energy without
combustion and without emissions: for example it is possible to directly use the waste heat to
provide heating or cooling, or to convert the heat into electrical and mechanical power or to
combine heating, cooling and power generation.
Any industrial process that involves the transformation of raw materials into useful products -
steelworks, refineries, chemical plants, general manufacturing - generates heat that is wasted as a
by-product. This residual heat is produced whenever the operation is running, often 24 hours a
day, seven days a week, 365 days a year. If this heat is not recovered in any way, it is dispersed
in the atmosphere, thus wasting a potential zero-emission energy source.
In this context, WHR technologies help to reduce energy costs for industrial processes. Using
waste heat to generate emission-free electricity, industrial users can put the wasted energy back
into the process that created it or introduce it somewhere else into the plant. The basis of these
technologies are described in figure 1.3
To realize a technology of this type, different parameters are fundamentals, such as the amount

of heat available, its quality, the minimum allowed temperature and so on.
Every industrial sector will have a different waste heat fraction (with respect to the total energy
consumption), that is incorporated in a different thermal carrier such as gaseous streams (exhaust
and flaring gases), liquid streams (hot oil, cooling water ) and solids (commodities and products,
hot steel). The heat quantity is the amount of energy contained in a waste heat and it can be
derived by:

E = m · h(t) (1.1)
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Figure 1.3: The essential components necessary for the WHP energy recover technology [7].

where m is the waste stream mass [kg], h(t) is the enthalpy per unit mass [J/Kg] and E [J]
represent the waste heat loss. Among all these factors, the most important one is the quality of
the heat itself: the higher the temperature, the greater the potentially recoverable energy (fig.1.5).
Depending on the industrial sector and the process, also the temperature at which the heat is
available varies within a very wide range: in general the potential for residual heat above 1000 ◦C
is limited and observed only in the iron and steel industries. In the temperature range between
500-1000 ◦C, waste heat is available, mainly in the cement, iron and steel sectors. In the range
200-500 ◦C the potential increases, mainly in the pulp and paper and iron and steel industries.
Most of the residual heat is found in the temperature range of 100-200 ◦C, widespread in most
industrial sectors, while below 100 ◦C the potential is rather limited, concentrated in the food
and beverage sector, mainly from drying and preheating processes.[5]
As an example the data from the UK industry have been reported in fig.1.4
Therefore, heat loss, transferred to the atmosphere mainly through conduction, convection and

radiation, can be classified into high temperature (HT), medium temperature (MT) and low
temperature (LT) grades.

• Low quality: T < 200 ◦C

• Medium quality: 200 ◦C < T < 650 ◦C

• High quality: T > 650 ◦C

Compared to a heat at HT and MT, most of the heat produced (60%) is at LT and energy
recovery from a source of this type is very difficult; in this perspective it is placed the CERES
system concept. This device is able to produce electric potential from gradients of temperature.
In the next chapter this system will be analyzed in all its main components. The purpose of this
thesis is to simulate, through a Computational Fluid Dynamics (CFD) analysis, the operation of
this device in order to obtain the configuration that allows to maximize energy recovery starting
from the condiments previously tested in the laboratory
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Figure 1.4: Waste heat fraction per industrial sector and temperature level for UK industry for
the period 2000-2003.[5]

Figure 1.5: Percentages describing the amounts of technical potential (in MW) present in WHP,
for different temperatures [11].
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Chapter 2

The ”CERES” system

The CERES ( Colloidal EneRgEtic System) system is an energy harvesting system based on
a (ferro)fluid. This idea was created to respond directly to the challenge of NASA ”Surviving
extreme spatial environments”, which aims to identify the most efficient materials, structures and
solutions for developing an autonomous and energy-efficient system based on a fluid.
The first step was to create a prototype known as DOUGHNUT, or rather aDatptive cOloalidal
accUmulatinG / HarvestiNg UniT: this system, by means of a ferrofluid enclosed within a thin
shell is able to exchange only electromagnetic or thermal energy with the external environment
[6]. The physical principles underlying CERES were described in the thesis work of Mattiussi
[11], from now on I will describe what are the fundamental components that have been used for
the first tests in the laboratory, and that are fundamental to set up the CFD simulations, after
which I will describe the liquid medium used and its main properties. The following chapters will
describe the equations that regulate the system inside and the discretization of the latter. The
final chapter will cover the analysis of the results obtained and possible improvements

2.1 ”CERES” reactor

The first experimental tests were conducted using a torus-shaped device (fig.2.1) that was designed
using CAD design software, in our case SOLIDWORKS. The material used was PLA, with a
FDM (Fused Deposition Modeling) machine for rapid prototyping. The second prototype on
which the various cases studied in this thesis work will be tested, is made of plexiglass, and it is
transparent, to allow to visualize all the motions that are created inside it.
In table 2.1 are reported the most relevant dimensions of the structure.

Parameters Size
External radius 140 mm
Internal radius 110 mm

Height 85 mm
Width 20 mm

Wall thickness 5 mm
Bottom/lid height 20 mm

Table 2.1: Main features of CERES structure [11]
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2 – The ”CERES” system

Figure 2.1: Virtual rendering of CERES system [11].

2.1.1 Magnets

Permanent magnets constitute a fundamental component as they contribute to creating cyclic
motions inside the reactor. They are attached to both the internal and external walls and the
magnetization of each of them is parallel to the thickness.
By varying their arrangement on the walls, a magnetic field,that will have different character-
istics,is created each time inside the reactor, and it will influence the motions of the fluid in
a different way. This constitutes the center of the present thesis work: which configuration
is optimal for our purposes. These permanent magnets are made in ALNICO, a particular
alloy made by ALuminuim-NIckel-CObalt whose performance is particularly stable at high
operational temperatures; they have a parallelepiped shape whose dimensions are:

30± 0.1mm× 15± 0.1mm× 3± 0.1mm (2.1)

Figure 2.2: One of the ALNICO magnets, successively installed all around the CERES ring[11].
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2.1.2 Peltier Modules

A Peltier module is a device able to transfer heat from one side to the other one by means of an
electrical energy consumption.
These devices are positioned both on the external and internal walls and when they are turned
on they create a thermal gradient inside the fluid giving start to the convection motions inside
the CERES system

Figure 2.3: The Peltier module that is used for the CERES Project[11].

2.2 Ferrofluids

2.2.1 Introduction

The ferrofluid is the key element of the CERES system. To give a definition we can say that
Ferrofluid(FF), also known as magnetic colloid, is a colloidal suspension of single-domain magnetic
particles, with typical dimensions of about 10 nm, dispersed in a liquid carrier.[13]
A colloidal suspension is a suspension of a particle that is so small that it does not settle out
(sedimentation) of solution rapidly, even in the presence of gravity. The particles are coated with
a stabilizing dispersing agent (surfactant) which prevents particle agglomeration even when a
strong magnetic field gradient is applied to the ferrofluid. The surfactant must overcome the
attractive van der Waals and magnetic forces between the particles.[14]
The metal compounds that make up the nanoparticles are iron oxides, such as magnetite (Fe3O4),
magnetite (Fe2O3), cobalt ferrite (CoFe2O4).
The first colloids of this type were synthesized in the 1930s, but only in the 1960s, or when
industrial production became possible, there was a notable interest in their applications in the
technological field.
The appeal of this special material derives from the fact that its flow and properties can be
significantly altered by the influence of magnetic fields; in the absence of the latter, the magnetic
moments of the particles are randomly distributed and the fluid has no net magnetization. When
a magnetic field is applied to a FF, the magnetic moments of the particles orient along the field
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lines almost instantly. The magnetization of the FF responds immediately to the changes in the
applied magnetic field and when the applied field is removed, the moments randomize quickly.
In a gradient field the whole fluid responds as a homogeneous magnetic liquid which moves to
the region of highest flux. This means that FF can be precisely positioned and controlled by an
external magnetic field. The forces holding the magnetic fluid in place are proportional to the
gradient of the external field and the magnetization value of the fluid. [14]
The presence of ferromagnetic nanoparticles with magnetic moments that are 103 − 104 times
larger than those of ions of paramagnetic materials allows to obtain a FF magnetization up to
≈ 100kA/m using external magnetic fields created by ordinary permanent magnets.[15] Taking
into account the fact that the strength and direction of magnetic fields and field gradients can be
adapted to a specific need, one can imagine the variety of possibilities that arise. The interaction
of the fluid with external field is studied in a special division of hydrodynamics which is known
as ferrohydrodynamics.
The possibility of exerting an externally controllable force in a fluid obviously also opens up a
wide range of possibilities in the search for basic fluid dynamics; the magnetic force enters directly
into the Navier-Stokes equation and can therefore be used to control and guide flows in the fluid.
The main motivating factor for the rapid development of this research area is a wide range of
FF applications including: vibration damping, magnetic sealing, species separation and use in
various sensors, laser radiation actuator modulators and cancer treatment to name a few.
However, the significant discrepancy between successful applications on the one hand, the potential
and scientific activities on the other hand, emerges mainly from the complexity of fluids and the
description of their behavior in a magnetic field.

Figure 2.4: Schematic representation not in scale of the magnetic particles and of the surfactant.
[16]

2.2.2 Magnetism and Properties of ferrofluids

In the presence of a magnetic field different materials show different behaviors depending on their
atomic structure. Elementary particles, like electrons, have an intrinsic magnetic moment (spin)
that allows them to rotate around their own axis. The magnetic properties of the materials derive
above all from the movement of the orbitals and the variation of the spins of their electrons while
the other contributions, like the magnetic one of the nucleus, are negligible with respect to these
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effects.
If spins are paired, their magnetic moments are canceled; if they are not balanced, the atom
behaves like a permanent dipole.
Magnetic materials can be classified, based on their response to an external magnetic field, in:

• diamagnetic

• ferromagnetic /ferrimagnetic

• antiferromagnetic / antiferrimagnetic

• paramagnetic

Diamagnetic materials such as water, organic substances and some metals are substances that
are weakly rejected by a magnetic field.
Paramagnetic materials are formed by atoms that have unpaired electrons and have a zero
magnetization in the absence of the external field. The application of an external magnetic
field leads instead to align the elementary moments along its direction giving rise to a resulting
magnetization of concordance and intensity proportional to the field itself.
Ferromagnetic and ferrimagnetic materials, under the action of an external magnetic field, have
the ability to maintain the magnetization induced by the field, through the alignment (parallel or
antiparallel) of their magnetic moments, even when this is canceled.
The antiferromagnetic materials show an alignment of the antiparallel moments, with zero
magnetization resulting. In figure2.5, the different situations are reported.

Figure 2.5: Different types of magnetism in materials: A) In paramagnetism the magnetic
moments are randomly aligned in absence of a magnetic field (this is also the case of ferromagnets
above T C ); B) Ferromagnetism show all moments aligned and with the same intensity in absence
of a magnetic field (or is the case of paramagnets in presence of an external magnetic field);
C) Antiferromagnetism presents magnetic domains aligned in opposite direction, but with the
same intensity, so that the total resulting magnetization is null; D) Ferrimagnetism is similiar to
antiferrimagnetism, but in this case the opposite magnetic moments have different amplitudes,
and consequently the resulting magnetization is not zero. [11]
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The typical characteristic of ferromagnetic materials is that when the magnetic field H is removed,
a residual magnetization remains Mr. The figure 2.6 clarifies this concept by showing the typical
hysteresis curve for magnetization and highlighting the saturation magnetization Mmax and the
coercive field Hc.

Figure 2.6: Typical hysteresis curve of ferromagnetic materials.[16]

When a ferromagnetic material is subjected to a temperature higher than a limit, called Curie
temperature, it loses the orderly arrangement of the electrons and becomes paramagnetic (figure
2.7).

Figure 2.7: Magnetic susceptibility trend with temperature variation. [16]

A ferromagnetic sample subjected to a magnetic field retains its magnetic properties until it
reaches the Curie temperature. Beyond this limit, the sample becomes paramagnetic. The
consequence of this phenomenon is that the sample cancels its own magnetization and becomes
insensitive to a further action of the field.
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In the first laboratory tests the FF used consisted of solid magnetite particles (Tc = 948K), and
considering that the temperatures in our case are of the order of 323K − 333K, our system will
never become paramagnetic.
Following what was written in Mattiussi’s thesis work [11], we can give some information about
the ferrofluid used.
For example the FF volume subject to the thermal gradient can be considered constant since the
α thermal expansion coefficient is very small and constant for a temperature range between 100
K and 300 K.

α = (1.2± 2)× 10−4K−1 (2.2)

The speech is different for the density of the magnetite nanoparticles which decreases as the
temperature increases as shown in the table 2.2

Temperature[C] Density[kg/m3]
10 2462
20 2458
30 2453
40 2448
50 2443
60 2439
70 2434
80 2429

Table 2.2: Density values for magnetite/oleic acid aggregates for different increasing temperatures
[11]

The FF considered in this thesis work is the EMG 901 produced by Ferrotec, whose main
characteristics are summarized in the table 2.3

Properties EMG 901
Appearence Black-brown fluid

Carrier liquid light hydrocarbon oil
Nominal particle diameter 10 nm

Magnetic particle concentration 11.8% vol
Saturation magnetization 66 mT

Viscosity @ 27C 8 mPas
Initial magnetic susceptibilit y 6.79

Density 1.43× 103kg/m3

Table 2.3: Properties of EMG 901 by Ferrotec [14]
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2.3 Extraction System

Since this device is designed as a WHP, its primary objective is certainly to store energy by
exploiting the properties and flow motions that develop inside it thanks to the thermal gradient
provided by Peltier cells and thanks to the external magnetic field induced by permanent magnets.
When FF particles are introduced into the reactor, they are affected by the magnetic field,
instantaneously magnetizing; they are dragged by the convective motions that are established
and their movement produces fluctuations in the magnetic field: the latter can be exploited with
a suitable extraction system.
The device is therefore comparable to a sort of solenoid: the variation of the magnetic field will
produce an EMF (ElectroMotive Force) at the output of the system. The charge thus acquired
can be stored in electrical systems for example.

2.3.1 The Faraday’s Law

The phenomenon of electromagnetic induction was discovered in 1831 by Michael Faraday and
can be summarized as follows:

” The electromotive force around a closed path is equal to the negative of the time rate of
change of magnetic flux enclosed by the path [12]”

This law was demonstrated for the first time in that same year with a simple experiment.
Faraday built a system consisting of a toroidal iron ring with two coils wrapped around it.

Figure 2.8: The apparatus realized by Faraday. The left side wire is connected to a battery, while
the right one is plugged to a voltmeter, in order to measure the induced EMF on the right wire
[11]

When the battery is disconnected from the left coil, no phenomenon is observed, but when the
connection is activated, the current flows in the left loop, inducing a transient in the current (and
in the voltage), in the right wire. This phenomenon is generated by the variation in the magnetic
flux Φ that occurs when the battery is connected or disconnected. From a mathematical point of
view, the Faraday’s law can be expressed as follow:

ε = −dΦ
dt

(2.3)

where ε represent de EMF induced in the circuit and Φ is the magnetic flux. [11]
The magnetic flux is defined as:
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Φ =

∫ ∫
Σ

B · dΣ (2.4)

Figure 2.9: The magnetic flux Φ across a closed surface Σ. [11]

We know that B = µ0(H+M) where M si the magnetization of FF particles and H is the external
magnetic field.
The magnetic field H will not be uniform, as we will see later, therefore particles will be subject
to different magnetization depending on the area in which they pass. Fluid dynamics simulations
serve to understand exactly how these particles move dragged by the flow and therefore how
their magnetization varies inside the reactor. A variation of magnetization involves a variation of
B. If the trajectory along which the variation of B takes place, is wound with coils, according
to Faraday’s law, it will generate electromotive force induced inside them and therefore current
induced in the circuit.
The main objective of this thesis is therefore to be able to define the motion of dispersed
ferromagnetic particles. Future developments, even from an experimental point of view, will be
based on these results to obtain the best possible configuration in order to maximize the current
induced in the circuit.
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Chapter 3

Mathematical model

3.1 Classification on multiphase flow

In the previous chapter we have described the main characteristics of a ferrofluid; its composition
given by solid particles dispersed in a carrier liquid push us to consider this fluid as biphasic.
Moreover, for our simulations, not only FF is introduced into the CERES reactor, but it is diluted
with water. When we derive the mathematical model of the system, the keyword is multiphase
fluid.
A multiphase system is characterized by two or more phases that flow simultaneously in the
mixture that have phase separation above the molecular level. In fluid mechanics, multi-phase
flow is simultaneous flow of (a) materials with different states or phases (i.e. gas, liquid or
solid), or (b) materials with different chemical properties but in the same state or phase (i.e.
liquid-liquid systems such as oil droplets in water). This type of flow is an ubiquitous feature of
our environment, whether it is rain, snow, fog, avalanches, mud slides, sediment transport, debris
flows and countless other natural phenomena. Even very critical biological and medical flows are
multiphase, such as blood flow. Countless industrial processes have to do with fluids of this type
and, clearly, the ability to predict the flow behavior of these processes is fundamental for the
efficiency and effectiveness of the latter.
Two general typologies of multi-phase flow can be usefully identified at the outset:

• Disperse flows are those consisting of finite particles, drops or bubbles (the disperse phase)
distributed in a connected volume of the continuous phase

• Separeted flows consist of two or more continuous streams of different fluids separated
by interfaces.

In a disperse flow, the characteristics of the movement of the solid particles are strongly dependent
on the size of the individual elements and on the motions of the associated fluids. Very small
particles follow the fluid motions, whereas larger particles are less responsive.
Such a premise was necessary to clarify the way in which the flow within the CERES reactor
was considered: as a first approximation, the overall mixture of FF and water was considered as
biphasic; this means that the carrier liquid of ferrofluid and the water were considered as two
miscible liquids and the equations obtained in the next chapter reflect this configuration.
To know the amount of dispersed solid phase it is essential to clarify what are the proportions
that are created inside the device: in the tests conducted previously, 8 mL of FF were placed in
0.5 L of water, which means that the mixture was composed by 1.6% of FF.
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Knowing that the volumetric concentration is 11.8%, the concentration in the mixture is 0.188%.
Although this model is very simplified with respect to the great complexity of the mixture used,
future developments of the prototype involve the use of undiluted ferrofluid alone, thus finding
agreement with the equations obtained for a two-phase mixture.

Figure 3.1: Classification of gas-liquid flows. [17]

3.2 Modeling approaches

Nowadays, for the numerical calculation of multiphase flows, there are two different types of
approaches: the Euler-Lagrange approach and the Euler-Euler approach.
In the Euler-Euler approach, the different phases are treated mathematically as interpenetrating
continua. Since the volume of a phase cannot be occupied by the other phases, the concept
of phasic volume fraction is introduced. These volume fractions are assumed to be continuous
functions of space and time and their sum is equal to one. Conservation equations for each
phase are derived to obtain a set of equations, which have similar structure for all phases.
These equations are closed by providing constitutive relations that are obtained from empirical
information, or, in the case of granular flows, by application of kinetic theory[18].
In the Euler-Lagrange approach, the fluid phase is treated as a continuum by solving the time-
averaged Navier-Stokes equations, while the dispersed phase is solved by tracking a large number
of particles, bubbles, or droplets. The dispersed phase can exchange momentum, mass, and
energy with the fluid phase. A fundamental assumption made in this model is that the dispersed
second phase occupies a low volume fraction. The particle or droplet trajectories are computed
individually at specified intervals during the fluid phase calculation. The model is appropriate to
simulate spraydryers, coal and liquid fuel combustion, but it’s inappropriate to model liquid-liquid
mixtures, fluidizedbeds, or any application where the volume fraction of the second phase is not
negligible.[18]
Having in mind the main differences between the two models, we have used an Euler-Euler
approach to derive the mathematical model of our system.
Following what is written on the theoretical rules of most CFD calculation software,three different
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Euler-Euler multiphase models are implemented: the VOF model, the mixture model and the
Eulerian model.
Without going into the details of all these three models, we will focus only on the mixture
model, which is the one adopted in the present thesis work.
The mixture model uses a single-fluid approach:

• Allows the phases to be interpenetrating. The volume fractions ϕd and ϕf for a control
volume can therefore be equal to any value between 0 and 1, depending on the space
occupied by phase d(dispersed) and phase f(fluid).

• Allows the phases to move at different velocities, using the concept of slip velocities.

The mixture model solves the continuity, momentum and energy equation for the mixture, and the
volume fraction equation for the secondary phases, as well as algebraic expressions for the relative
velocities (if the phases are moving at different velocities)[17]: the equations just described are
obtained in the following chapters.

3.3 Mixture continuity equation

The mixture continuity equation, that is referred to the whole fluid system plus dispersed phase,
expresses the physical principle for which the mass within an infinitesimal and fixed control
volume, is conserved.
We can say that the net flux of mass coming out from the control volume through control surfaces
is equal to the time rate of reduction of the mass contained inside the control volume. Referring
to the fig. 3.2 we can derive, for example the net mass flux perpendicular to the x- direction.

Figure 3.2: mass flow that crosses every single face of the control volume [19]

The the mass flux across the left surface,is:

(ρu)dydz (3.1)
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whereas, for the right surface, we have:[
(ρu) +

∂(ρu)

dx
dx

]
dydz (3.2)

Since in our convention the velocity components u,v,w are positive in the x,y and z- directions,
respectively, the net flux of mass coming out from the considered surfaces will be:[

(ρu) +
∂(ρu)

dx
dx

]
dydz − (ρu)dydz =

∂(ρu)

dx
dxdydz (3.3)

following the same reasoning the net flows in the y and z -direction are easily obtained.
The global mass flux that passes through the infinitesimal control volume will be:[

∂(ρu)

dx
+
∂(ρv)

dy
+
∂(ρw)

dz

]
dxdydz (3.4)

The time-rate of reduction of the mass of fluid that is present inside the infinitesimal control
volume is:

−∂ρ
∂t
dxdydz (3.5)

Putting togheter eq.(3.4) and eq.(3.5), the continuity equation written in conservative and
differential form became:

∂ρ

∂t
+∇ · (ρv) = 0 (3.6)

Developing in terms of derivation in space and applying the definition of a Lagrangian derivative
1we obtain:

Dρ

Dt
+∇ · v = 0 (3.7)

what has been written so far is identical to the case in which we have a single phase of density ρ
inside the control volume, but now the global density of the mixture ρm must take into account
the contribution of the dispersed phase(ρd) and of the phase fluid(ρf ): we will write that:

ρm = ϕdρd + ϕfρf

where ϕd and ϕf are the volumetric concentration of particles and fluid respectively; being
dimensionless, the following law will be applied

ϕd + ϕf = 1 (3.8)

Following what is written in [20], we apply the Boussinesq approximation for which the flux

1∂(·)/∂t + v∇(·) = D(·)/Dt

26



3 – Mathematical model

density will change, if there is a variation in the temperature inside the fluid that can be caused
by a different temperature on the walls of the control volume, as in our case.
However, this density variation is neglected everywhere except in the buoyancy term as we shall
see later.
Following this approximation, we can write:

ρf = ρ0(1− α∆T ) (3.9)

where ρ0 is the fluid density at T0 and α is the thermal diffusion coefficient.
If ∆T < 10K the term α(∆T ) is much lower than 1 and it is therefore negligible; because of what
has been said, being ρf = ρ0 = cost and ρd = cost the global continuity equation becomes

∇ · v = 0 (3.10)

3.4 Mixture momentum equation

The momentum equation, based on Newton’s second law, releates the fluid mass acceleration to
the surface and volumetric forces experienced by the fluid.
Volumetric forces ”act at a distance” and they act directly on the mass that is contained in the
control volume: in our case we have gravitational and magnetic force.
Surface forces, instead, act directly on the surface of the control volume and they are: pressure
imposed by the external field and shear and normal stresses imposed by the external field through
friction. We can now consider an infinitesimal control volume that moves with the flow, we will
obtain the equation for only x-component and, after that, we will analyze the volumetric forces.
Following the fig.3.3 we can observe how the surface forces act and we can develop the balance of
forces along the x-axis as an example.

The net pressure force in the x-direction is written as:[
p−

(
p+

∂p

∂x
dx

)]
dydz (3.11)

The shear and normal stresses in a fluid are related to the time-rate-of-change of the deformation
of the fluid element.
The shear stress, denoted by τij (i /= j ) is related to the time rate-of-change of the shearing
deformation of the fluid element, whereas the normal stress, denoted by τij (i = j), is related to
the time-rate-of-change of volume of the fluid element: both shear and normal stresses depend on
velocity gradients in the flow. [21]
For our convention, τij denotes a stress in the j-direction exerted on a plane perpendicular to the
i-axis. Note the directions of the shear force on faces ”abcd” and ”efgh” for example; on the bot-
tom face,τyx is to the left (the negative x-direction), whereas on the top face, τyx + (∂τyx/∂y)dy]
is to the right (the positive x-direction).
These directions reflect the convention that positive increases in all three velocity components
occur in the positive directions of the axes.
Explaining it more clearly, referring to the figure 3.3, u increases in the positive y-direction,
therefore, concentrating on the top face , u is higher just above the face than on the face itself:
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Figure 3.3: Infinitesimally small, moving fluid element. Only the forces in the x- direction are
shown [21]

Figure 3.4: Illustration of shear and normal stresses [21]

this causes the fluid element to be pulled to the right (positive x-direction).
Concentrating on the bottom face instead, u is lower just beneath the face than on the face itself:
this causes a dragging action on the fluid element, which acts in the negative x-direction (to the
left) [21].
All other viscous stresses, including those normal to the surface, are justified in this way. Re-
membering what has just been written, for the moving fluid element, the net surface force in the
x-direction is written as:[
−τxx+

(
τxx+

∂τxx
∂x

dx

)]
dydz+

[
−τyx+

(
τyx+

∂τyx
∂y

dy

)]
dxdz+

[
−τzx+

(
τzx+

∂τzx
∂z

dz

)]
dxdy

(3.12)

The left-hand side of the dynamical equation is the rate of change of the momentum: the
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mass of the fluid element is fixed and is equal to ρdxdydz. The acceleration of the fluid ele-
ment is the time-rate-of-change of its velocity. Hence, the component of acceleration in the
x-direction, is simply the time-rate-of-change of u; since we are following a moving fluid element,
this time-rate-of-change is given by the substantial derivative. The left-hand side term is written as:

ρdxdydz
Du

Dt
(3.13)

Putting togheter (3.11) and (3.12) with the left-hand written just above, we obtain the Navier-
Stokes equation in x-direction with only the contributions of surface forces.

ρ
Du

Dt
= −∂p

∂x
+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

(3.14)

In a similar fashion, the y and z components can be obtained as:

ρ
Dv

Dt
= −∂p

∂y
+
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

(3.15)

ρ
Dw

Dt
= −∂p

∂z
+
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

(3.16)

The three equation above are the x-,y- and z-components respectively of the mixture momentum
equation.
When shear stress in a fluid is proportional to the time-rate-of-strain, i.e. velocity gradients, we
are dealing with a Newtonian fluid. (Fluids in which τ is not proportional to the velocity gradients
are non-Newtonian fluids; blood flow is one example)[21]. For such fluids, Stokes,in 1845, obtained:

τxx = λ∇ · v + 2µ

(
∂u

∂x

)
(3.17)

τyy = λ∇ · v + 2µ

(
∂v

∂y

)
(3.18)

τzz = λ∇ · v + 2µ

(
∂w

∂z

)
(3.19)

τxy = τyx = µ

(
∂v

∂x
+
∂u

∂y

)
(3.20)

τxz = τzx = µ

(
∂u

∂x
+
∂w

∂x

)
(3.21)

τyz = τzy = µ

(
∂w

∂y
+
∂v

∂z

)
(3.22)

where µ is the molecular viscosity coefficient and λ is the bulk viscosity coefficient.[22]
The stokes hypothesis says that

λ = −2

3
µ (3.23)
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However, for the continuity equation, ∇ · v = 0. If, additionally, µ is taken to be constant, the
global Navier-Stokes equation written for all three directions in compact form becomes

ρ
Dv

Dt
= −∇p+ µ∇2v + Fbuoyancy + Fmagnetic (3.24)

Let’s change the differential and non-conservative form into the conservative form; to do it, we
have to use the definition of Lagrangian derivative. Explicating in all three directions, you get
the following system:

ρ
(∂u
∂t

+∇ · (uv)
)

= −∂p
∂x

+ µ∇2u+ Fx,buoyancy + Fx,magnetic

ρ
(∂v
∂t

+∇ · (vv)
)

= −∂p
∂y

+ µ∇2v + Fy,buoyancy + Fy,magnetic

ρ
(∂w
∂t

+∇ · (wv)
)

= −∂p
∂x

+ µ∇2w + Fz,buoyancy + Fz,magnetic

(3.25)

We will focus, in the following chapters, to define which are the volumetric forces that act a
”distance” on our control volume and finally we will write the Navier-Stokes equation completely.

3.4.1 Buoyancy

There are two definitions for buoyancy:

• the tendency of a body to float or to rise when submerged in a fluid

• the power of a fluid to exert an upward force on a body placed in it.

The components that are at stake in the evaluation of this force are therefore a mass, a surrounding
fluid and the force of gravity. The density difference is fundamental to the development of this
force; for example, inside our planet, density difference, with other phenomenon, generates the
motion of magma.
When we talk about fluids, the density differences are usually small and their influence on the
inertia of a fluid can often be neglected,but in our case, the ferromagnetic particles have a much
higher density than the surrounding fluid and therefore this contribution cannot be ignored.
As we said previously, the Boussinesq approximation consists in neglecting density differences in
the equations except if they are multiplied by g which is usually much bigger than the vertical
accelerations within the fluid; in a multiphase flow we can say that:

ρm = ρf (ϕf ) + ρdϕd (3.26)

ϕf + ϕd = 1 (3.27)

where ϕ is the volume concentration of particles. The subscripts f and d differentiate the fluid
phase (f) from the dispersed and therefore solid phase (d).
The term ρd will remain constant since the density of the single particle of colloid does not vary
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with the T, while the ρf will feel a variation due to the temperature difference.
Applying the Boussinesq approximation (3.9), the mixture’s density is expressed as:

ρmix = ρT0,f (1− α(T − T0))(1− ϕd) + ρp(ϕd) (3.28)

where ρ0,f represent the density of the fluid at the reference T0 and ρp is the density of the
single particle of magnetite. Assuming that the density varies linearly with temperature and
concentration, we express it with a Taylor polynomial stopped at the first order: we can write that:

ρmix = ρ0 +
∂ρ

∂T

∣∣∣∣∣
T0

(T − T0) +
∂ρ

∂ϕ

∣∣∣∣∣
ϕ0

(ϕ− ϕ0) (3.29)

Considering the equation (3.28) let’s evaluate the two derivatives that appear in the development
of taylor

∂ρ

∂T

∣∣∣∣∣
T0

= −αρT0,f (1− ϕ0)

∂ρ

∂ϕ

∣∣∣∣∣
ϕ0

= −ρT0,f + ρp

(3.30)

at this point we can write:

ρmix − ρ0 = ∆ρ = −αρT0,f (1− ϕ0)(T − T0) + (−ρT0,f + ρp)(ϕ− ϕ0) (3.31)

considering the concentration ϕ0 << 1, the term (1 − ϕ0) is approximately equal to 1. By
rewriting it we get:

∆ρ = −α(T − T0) + (ξ − 1)(φ− φ0) (3.32)

where

ξ =
ρp
ρT0,f

(3.33)

In the equation (3.32) one can recognize the classical Boussinesq contribution plus the contribution
due to the concentration variation. Considering that gravity acceleration acts only in the vertical
direction, The buoyancy force, will only appear in the Navier-Stokes equation along x-direction
and will therefore be:

Fx,buoyancy = −(∆ρ)g (3.34)
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3.4.2 Magnetic force

Before moving to the formulation of the magnetic force acting on the mixture, we introduce some
fundamental aspects of thermomagnetic convection.
In addition to natural convection due to a variation in density following a temperature change,
magnetic fluids show a type of passive convection called thermomagnetic convection due to
changes in the magnetization of the fluid. [23]
In 1970 Lalas and Carmi [24] studied the effects of a uniform magnetic field gradient on convective
instability in magnetic fluids. Their results showed that cooler fluid is more attracted towards
higher magnetic field regions than warmer one. The behavior of magnetic fluids, with the presence
of floating and magnetic forces, was experimentally studied by Sawada et al. [25] while, from the
numerical and computational point of view, the studies were conducted by Snyder et al. [26].
To introduce the essential aspect of thermomagnetic convection we can begin to say that, in the
absence of an external magnetic field, a finite volume of magnetic material is made up of areas
with magnetic moments of different orientations. The response of a material to a magnetic field is
called magnetization M [A/m], and it is a vector quantity which corresponds to the ratio between
the net magnetic dipole moment m[Am2] and the unit volume dV:

M =

∑N
i=1mi

dV
(3.35)

where N indicates the number of magnetic moments within the finished volume. When the
external magnetic field disappears, the magnetization of the volume may disappear or remain
permanently as explained in Chapter 2.
The fundamental quantities to summarize all the characteristics of the magnetic field and its
interactions with matter are two: the magnetic induction vector B [T] and the intensity vector of
the magnetic field H [A/m].
The magnetic induction of a material immersed in a magnetic field H is the sum of the contribu-
tions of the induction in the vacuum µoH and of the magnetization of the material µ0M

B = µ0(M +H) (3.36)

where µ0 = 4π × 10−7H/m is the permeability in the vacuum. It is observed that, for most
materials, the magnetization is proportional and parallel to the magnetic field H:

M = χH (3.37)

where χ (non-dimensional) represents the magnetic susceptibility of the material and it quantifies
the degree of magnetization of the material following the application of the magnetic field (fig.2.6).
After this brief parenthesis to define the quantities involved, we now derive the magnetic volume
force acting on the control volume (Fmagnetic ).
In the presence of external field, the magnetic particles acquire magnetization M. While the
force expression acting in the external field H0 on an infinitesimal dipole is well known and given
by the Lorentz force µ0(M · ∇)H0, the macroscopic averaged expression is not easily to obtain.
Based on the thermodynamic principles, Korteweg (1880) and Helmholtz (1882) [13], obtained a
first formulation that was subsequently generalized by Cowley and Rosenweig to account for the
non linear dependence of the magnetization of ferrofluids [27]
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fm = −∇

[
µ0

∫ H

0

(∂Mv

∂v

)
H,T

dH

]
+ µ0(M · ∇)H (3.38)

and v is the specific volume. The term µ0(M · ∇)H is suggestive of the Kelvin body force [13]
[23] on an isolated body but, here, the local field H appears in place of the applied field H0.
In (3.38) the product Mv represents the magnetic moment per unit mass of the mixture. This
can be written alternatively Mv = nvm̃ because M = nm̃, where n is the density of magnetic
colloid particles and m̃ is the average magnetic moment of the solid particles per volume .
In a dilute system, m̃ depends only on the external field H0 unless compression changes the
magnetization of the solid particle. In a typical hydrocarbon-base ferrofluid, the carrier liquid is
about a hundred times as compressible as magnetite, so it will be assumed that magnetostriction
of the particle solid is negligible [13].
Accordingly, Mv is independent of v, and the integral term in (3.38) vanishes for a dilute colloid.
What remains is the Kelvin force density with H = H0:

fm = µ0(M · ∇)H (3.39)

The additional terms in (3.38) represent the influence of dipole interactions when the fluid is not
dilute.
In our case, the magnetic moment of small magnetic particles suspended in a FF adjusts to the
applied field 2 almost immediately [28]; the fluid magnetization M and the magnetic field H
remain collinear. The constitutive equation relating the magnetization and magnetic fields is
written as [13] [28]:

M = M(H,T )
H

H
(3.40)

where M = |M| and H = |H|.
Applying this replacement at eq.(3.39) we can write that M · ∇H = (M/H)H · ∇H.
Using the vector identity H·∇H = 1/2∇(H·H)−H×(∇×H) with the current-free magnetostatic
Ampere’s law ∇ ×H = 0 permits one to express M · ∇H in term of magnitudes of the field
vectors. [13]. Accordingly:

fm = µ0(M · ∇)H = µ0M∇H (3.41)

In order to close a problem, following what is written by Suslov (2008) [28], a magnetic equation
of state is required: which is assumed to be in the simplest linear form valid for small temperature
and field variations within the layer

M = M∗ + χ∆H −K∆T

∆H = H −H∗
∆T = T − T∗

(3.42)

2we have an experimental setup featuring DC magnetic field generators (permanent magnets)
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H∗ and M∗ = χ∗H∗ are the magnitude of the magnetic field and the magnetization at the location
with temperature T∗ (i.e in the mid-plane of the layer).
χ = ∂M/∂H|(H∗,T∗) is the differential magnetic susceptibility and K = −∂M/∂T |(H∗,T∗) is the
pyromagnetic coefficient.
For a magnetically saturated FF, following what is said in [29], the coefficient K is calculated by
the relationship:

K = αMs (3.43)

and, using our parameter, this term is K u 26,3[Am−1K−1].
It is convenient to redefine pressure p entering in the mixture momentum equation so that it
includes both a hydrostatic and a potential of Kelvin force [30]. In order to do this, equation
(3.39) is used to write:

µ0M∇H = µ0[M∗ + χ∆H −K∆T ]∇H = µ0∇[M∗H +
1

2
χ∆H2]− µ0K∆T∇H (3.44)

If the temperature sensitivity of the magnetization is linearised using a pyromagnetic coefficient K,
the Kelvin body force lead to a force proportional to the pyromagnetic coefficient, the temperature
change and the magnetic field gradient [23]: in fact it will demonstrated by [31] that only the
non-potential component

Fmagnetic = −µ0K∆T∇H (3.45)

of Kelvin force can lead to a destabilization of a static mechanical equilibrium: this term is the
volumetric force acting on our control volume.
The modified pressure now is:

P = p− µ0[M∗H +
1

2
χ∆H2] (3.46)

As a further confirmation of what was obtained above, the equation of the global momentum is
definitively written as:

ρ
(Dv

Dt

)
= −∇P + µ∇2v + Fbuoyancy − ϕµ0K∆T∇H (3.47)

is the same obtained in [32].

3.5 Volume fraction equation for particles

Following the mixture model, once we get the mixture continuity and momentum equation, we
get the volume fraction equations for the secondary phases. We start from the conservation of
mass of dispersed phase:

∂ρd
∂t

+∇ · (ρdvd) = 0 (3.48)
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where ρd e vd are the density and the velocity of the dispersed phase respectively. Regarding the
dispersed phase velocity, we can write:

vd = v + vslip (3.49)

where vslip is the relative velocity between fluid and disperse phase. We can also write:

ρd = ϕpρp (3.50)

where ρp is the constant density of the single solid particle, while ϕp is the volumetric concentration
of the particles.
Replacing eq.(3.49) and eq.(3.50) inside eq.(3.48):

ρp

[
∂ϕp
∂t

+∇ · (ϕp(v + vslip))

]
= 0 (3.51)

and then: [
∂ϕp
∂t

+∇ · (ϕpv)

]
= −∇ · (ϕpvslip) (3.52)

As can be seen in this case, the continuity equation for the single dispersed phase turns out to be
different from zero. The right-hand side term represents the mass flow of solid particles within
the control volume.
The main trouble in this multiphase flow problem lies precisely in determining the term Jtot
which makes the equation (3.52) different from zero. We will derive the algebraic expressions for
the relative velocities (vslip) considering the forces acting on a single particle.
Let’s start from:

mp
dvd

dt
=
∑

F (3.53)

The first mathematical formulation for the motion of particles immersed in a turbulent fluid
is due to Basset, Boussinesq and Oseen (in the literature we refer to the BBO equation). The
equation is based on the assumption that all forces acting on the particle can be considered as the
sum of five distinct contributions: volume forces, Stokes’ term,the pressure gradient, the added
mass and the Basset’s term.
The added mass is that term which takes into account the mass of fluid surrounding the solid
particle. If I have to accelerate a spherical particle, the necessary force will be slightly higher
because I have to take into account the inertia of the fluid that surrounds it. Considering the
small size of our particle, this term is absolutely negligible. Besides the additional force induced
by the added mass, when a particle accelerates, it creates additional vorticity which is another
source of drag: this effect is taken into account in Basset’s term. [33]
In the first mathematical formulation it is assumed that the particles, considered spherical, are
subjected to the action of gravity in a still fluid and furthermore, the motion field is at low
Reynolds numbers, so that the forces due to the surrounding fluid can be calculated using the
Stokes formulation for non-stationary flows. The BBO model was implemented by Tchen [34],
accounting for the effect of a non-stationary and non-uniform flow, and by Corrsin and Lumley
(1956) [35], whose contribution is mainly related to elimination of some inconsistencies of Tchen’s
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model (1947).
Starting from the studies of Corrsin and Lumley, Maxey and Riley (1983) [36] have provided
a mathematical modeling of the motion of particles in a non-stationary and non-uniform flow.
Among the hypotheses that characterize this formulation it is highlighted that the Reynolds
number of the particles must be very small.
The Maxey and Riley equation for the motion of a rigid particle therefore takes the form:

mp
dVi
dt

= (mp −mf )g +mf
DVi
Dt
− 1

2
mf

[dVi
dt

+
dui
dt

]
− 6πRµ(Vi − ui)− fbasset (3.54)

where mp is the mass of the particle, R is the radius, Vi is the i-th component of the Lagrangian
velocity of the particle, ui is the i-th component of the Eulerian velocity of the interpolated flow
on the position of the particle, mf is the mass of the volume of fluid occupied by the particle, d/dt
is the time derivative following the motion of the sphere, D/Dt is the time derivative following
the motion field, µ is the dynamic viscosity of the fluid.
The Maxey and Riley equation contains five different terms: the first is the buoyancy term; the
second represents the contribution due to the pressure gradient and due to viscosity in the case
of undisturbed fluid, i.e. it characterizes the effect of inertia inside a flow not disturbed by the
movement of the whole fluid particle which moves at the speed Vi (pressure gradient); the third
term represents the contribution of the added mass, explained above. The fourth term is the drag
force and is due to the disturbance produced by the presence of the particle in the flow (Stokes
drag). The last one is the Basset term, explained earlier.
The number that turns out to be decisive in a treatment of this type is the Stokes number.
The Stokes number (Stk), named after George Gabriel Stokes, is a dimensionless number that
characterizes the behavior of particles suspended in a fluid flow. The Stokes number is defined as
the ratio of the characteristic time of a particle (or droplet) to a characteristic time of the flow field.

Stk =
t0u0

l0
(3.55)

where t0 is the relaxation time of the particle (the time constant in the exponential decay of the
particle velocity due to drag), u0 is the fluid velocity of the flow well away from the obstacle and
l0 is the characteristic dimension of the obstacle (typically its diameter). A particle with a low
Stokes number follows fluid streamlines (perfect advection), while a particle with a large Stokes
number is dominated by its inertia and it continues along its initial trajectory. In the case of
Stokes flow, which is when the particle (or droplet) Reynolds number is low enough that the
particle drag coefficient is inversely proportional to the Reynolds number itself, the characteristic
time of the particle can be defined as:

t0 =
2ρd(Rp)

2

9µf
(3.56)

where ρd is the particle density, Rp is the particle radius and µf is the viscosity of the fluid.
In experimental fluid dynamics, the Stokes number is a measure of flow tracer fidelity. For
acceptable tracing accuracy, the particle response time should be faster than the smallest time
scale of the flow. Smaller Stokes numbers represent better tracing accuracy; for Stk >> 1,
particles will detach from a flow especially where the flow decelerates abruptly. For Stk << 1,
particles follow fluid streamlines closely. If Stk << 0.1, tracing accuracy errors are below 1 per
cent.
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Number Value
Reynolds ≈ 220

Stokes ≈ 8× 10−12

Table 3.1: Estimation of the Reynolds number and the Stokes number

In our case, we can say that the inertia of the dispersed particles is so low that it allows the latter to
accommodate the movement of the fluid almost to perfection. This assumption allows us to say that

∑
F = 0 (3.57)

Considering also that mf is proportional to R3, indeed the term of pressure gradient and added
mass can be neglected. The equation (3.54) is reduced to just the Stokes resistance and the
buoyancy terms.

(mp −mf )g − 6πRµ(Vi − ui) = 0 (3.58)

In addition to the forces just mentioned, others act on the single particle: one is due to the
temperature gradient and one is due to the magnetic field gradient. I can therefore write that:

(Vi − ui) = vslip =
1

6πRµ

[
(mp −mf )g + ftp + fmp + fbrown

]
(3.59)

where ftp is the thermophoretic force due to thermal gradient between the walls, fmp is the
magnetophoretic force due to magnetic field generated by permanent magnet outside the reactor
and fbrown is the brownian force.
The velocity vslip is the relative velocity of a single particle with respect to the flow: it is therefore
necessary to make a summation between the velocities of the individual particles and mediate them.

vslip =
1

n

n∑
i=1

vslip (3.60)

For simplicity we consider that all the solid particles n suffer exactly the same forces with the
same intensity: to make a summation on n particles and mediate is equivalent to considering the
forces on a single particle.
For simplicity of exposition, we continue with the discussion to reach the final equation by
acquiring the forces in question, even if these will be described in the following chapters.
The relative speed then becomes:

vslip =

[
(mp −mf )g

6πRµ
+

ftp
6πRµ

+
fmp

6πRµ
+

fbr
6πRµ

]
(3.61)

Once we had calculate those forces and we had obtain the relative speed vslip, we can write:
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[
∂ϕp
∂t

+∇ · (ϕpv)

]
= −∇ · (ϕpvslip) (3.62)[

∂ϕp
∂t

+∇ · (ϕpv)

]
= −∇ ·

[
ϕp

(mp −mf )g

6πRµ
+ ϕp

ftp
6πRµ

+ ϕp
fmp

6πRµ
+ ϕp

fbr
6πRµ

]
(3.63)

explaining the various forces (ftp, fmp, fbr) we finally get:[
∂ϕp
∂t

+∇ · (ϕpv)

]
=

(mp −mf )g

6πRµ
∇ϕp + StD∇ · (ϕp∇T )−Q∇ · (ϕp∇H) +D∇2ϕp (3.64)

3.5.1 Brownian motion

If the size of a particle suspended in a fluid is very small (less than a micron), its motion is
affected by the discrete nature of molecular motion, exhibiting a random motion due to collisions
of molecules with the particle as shown in figure 3.5. This is called Brownian motion which occurs
in both gases and liquids and the amplitude of the fluctuating motion being smaller in a liquid.
If the particle spatial concentration is not uniform, the particles migrate toward the region of
smaller concentration due to Brownian motion

Figure 3.5: One-dimensional diffusion from a line source [37]

In order to evaluate the mass flow due to Brownian motion, it is necessary to refer to a constitutive
relation that describes the molecular diffusion process. This relationship is known as Fick’s first
law and should be considered as a constitutive axiom.
The following axioms are formulated:

• Axiom 1: the mass flow of solute is a function of the mass concentration gradient. We can
therefore write that

fbr = f(∇ϕp) (3.65)

• Axiom 2 2: the diffusion process does not have preferential directions (isotropy)

• Axiom 3: The characteristics of the diffusion process do not explicitly depend on the position
(homogeneity)
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• Axiom 4: the link f is linear

The four previous axioms allow us to determine the structure of the bond f in a completely
deductive way; we can say that:

fbr = −D∇ϕp (3.66)

with D molecular diffusivity which, for axiom 3, does not depend on the position. As for the
negative sign, it derives from experimental observations for which the solute flow always occurs
naturally in the direction of the descending concentrations. Albert Einstein obtained a relation
between the macroscopic diffusion constant D and the atomic properties of matter. The relation is:

D =
kbT

6πµR
(3.67)

where kb is the Boltzman constant, T and µ are the temperature and the dynamic viscosity of
the fluid and finally R is the radius of the particle.

3.5.2 Thermophoresis

In presence of a temperature gradient, a colloidal particle experiences a directional motion: this
motion is knonwn as Thermophoresis.
The first to discover this phenomenon was German Ludwig [38] but,in 1879, Charles Soret
described this effect in detail, formulated equations and finally wrote a paper on the subject.[39]
In his experiment Soret observed that a salt solution contained in a tube with two ends at different
temperatures did not remain uniform in composition: the salt was more concentrated near the
cold end than near the hot one of the tube. He concluded that a flux of salt was generated by
a temperature gradient resulting, in a steady-state conditions, in a concentration gradient and
nowadays, the name ”Soret effect” is usually attributed to mass separation indiced by temperature
gradients.
Experimental evidence have shown that the thermophoretic velocity is insensitive to particle size,
opposed to dielectrophoresis or magnetophoresis, where the velocity scales with the square of the
particle radius [40]. It has also been observed that thermophoresis combined with convection can
be used as a focusing technique to achieve strong accumulation of DNA [41] indicating that in
the formation of life this process could have played a fundamental role [42].
Practical application of thermophoresis are numerous, for example, it could be a promising
technique for the fractionation [43] or accumulation[44] of biomolecules. Another less known
effect of colloidal thermophoresis is the induced fluid flow. The thermophoretic force exerted on
the colloid is not an external driving force but the results of the interaction of the colloid with
the solvent which is inhomogeneous due to the temperature gradient.
The thermal motion of the colloid is mainly driven by local hydrodynamic stresses in the sur-
rounding liquid, confined in a region close to the particle surface; in fact, numerous experiments
have shown that the amplitude of thermophoretic effect is independent by particle general bulk
or surface physical properties, such as its size, material density, thermal conductivity,or total
surface charge, but it seems to be related to the detailed microscopic nature of the particle/solvent
interface.
Because of this thermophoresis is much harder to understand than other field-driven transport
effect such as electrophoresis.
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Figure 3.6: Schematic depiction of hydrodynamic stresses caused by a temperature gradient.
The gradient in excess pressure induced a thermo-osmotic flow close to the colloidal surface(grey
lines).In response, the colloid moves in the opposite direction(big red arrow) [45]

Now let’s try to define a formula that expresses the strength of thermophoresis that acts on a
single particle.
To begin we consider the Fokker-Planck equations proposed by Von Kampen [46] to describe the
flow of particles in diluted systems.

J = ρpbf− b∇[ρpkbT ] (3.68)

where b is the colloid mobility and it is linked to the self-diffusion coefficient by the Einstein
relation.

D = kbTb (3.69)

The force f, in presence of a temperature gradient, will be the thermophoretic force ftp exerted
on the colloid by a surrounding solvent. We can rewrite the equation (3.68) by adding and
subtracting the term kbT∇b

J = ρpvd −∇[ρcD] (3.70)

The term vd is the drift velocity besides being proportional to the driving force, it has an
additional contribution due to the inhomogeneities of the mobility

vd = bf + kbT∇b (3.71)

Yang and Ripoll [47], by computer simulations, have proven the validity of this framework in the
presence of temperature gradient. In the case of dilute suspension, we can compare the equation
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(3.70) with the classical thermodiffusion phenomenological equation for the particle flux 3 and we
obtain:

vd = −Dt∇T − αTD∇T +∇D (3.72)

where αT is the thermal expansion coefficient at constant pressure of the solvent.
Following the widely believed opinion [48] [40] [49] we approximate (3.72) as

vd u −DT∇T (3.73)

and with vd = bftp we obtain the thermophoretic force

ftp = −StkbT∇T (3.74)

St is called Soret coefficient.
The experimental results have shown that the Soret coefficient depends strongly on the average
temperature of the system; moreover it was found that, for all the concentrations examined, (even
very low concentrations), the dependence of temperature remained strong [50]. This indicates
that the Soret effect exists if the average distance between the colloids is much greater than their
size or range of inter-particle interactions. For low temperatures the colloids have a negative Soret
coefficient and accumulate in the warm side of the system. By increasing the temperature the
situation is reversed and the Soret coefficient is positive, except at very high concentrations [48].
Figure 3.7 shows the temperature dependence of the Soret coefficient for dilute colloid suspension
with different particle sizes.
The first empirical formulation that establishes a relationship between the temperature and the
Soret coefficient, was proposed by [52] and it is:

St(T ) = S∞t

[
1− exp

(
T ∗ − T
T0

)]
(3.75)

Soret coefficient is negative for small temperatures and that there is a temperature T ∗ for which
the Soret coefficient changes its sign. The equation also reflects that St saturates at large
temperatures given by S∞t . T0 takes into account that, for some substances, the temperature
dependence is stronger than in others [48].
Subject of the study was also the variation of the Soret coefficient with different size of the
colloids. In this case, the experimental results obtained show both a linear dependence (Braibanti
at al [51]) and a quadratic dependence (Duhr and Braun [53]): the reason for this variation is
still subject to debate.
Nevertheless, it can be said that the Soret coefficient strongly varies with the size of the colloidal
particles (in experiments with highly diluted solutions), which is another indication of the relevance
of the single colloid properties.
Following what has been said in [54] there is no universal technique to measure the Soret coefficient
of a binary mixture. Among the measurement techniques each one has its own advantages and

3Phenomenologically thermodiffusion of a multi-component mixture is described by two opposing mass fluxes
that cancel each other in a stationary state. One flux stems from the temperature gradient and the other flux
from the resulting concentration gradient J = −D∇c− cDt∇T [48]
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Figure 3.7: Experimental results for dilute colloidal suspensions for the dependence of the Soret
coefficient on the temperature for different particle sizes. Figure from [51]

disadvantages, depending on the situations examined in the laboratory.
It is not in the interest of this thesis to describe the different techniques and for this reason we
refer to [54] but, for our present case, the choice of the value to be used for the Soret coefficient,
it is based on general considerations.
We have observed which hypotheses could be comparable to our case and we used the appropriate
coefficient.
In absolute value an order of magnitude for usual organic mixtures or aqueous solution is
|St| ≈ 10−3 − 10−2K−1.

3.5.3 Magnetophoresis

Since a magnetic ferrofluids consist of a stable colloidal dispersion of a solid ferromagnetic, it is
natural that, in addition to the Brownian diffusion and thermophoresis already mentioned above,
there will be a magnetophoresis process. Fluid motion in ferrofluid does not require gravity to
started in a non-uniformly heated fluid. It can be controlled by varying the applied external
magnetic field [56] [57] [58].
Therefore so-induced convection is considered to be an important alternative to gravitational
convection in heat exchange systems where natural convection cannot arise due to the lack of
gravity (orbital stations)[59].
The particle in a colloidal ferrofluid, each with its embedded magnetic moment, are analogous
to the molecules of a paramagnetic gas. In the absence of an applied field, the particles are
randomly oriented and the fluid has no net magnetization. In the presence of the external field
the magnetic particles acquire magnetization M.
However, for ordinary field strengths the tendency of the dipole moments to align with the applied
field is partially overcome by thermal agitation.As the field magnitude is increased, the particles
become more and more aligned with the field direction; at very high field strengths the particles
may be completely aligned and the magnetization achieves its saturation value. In our system
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the magnetization M is assumed to be co-directed with the internal magnetic field; as discussed,
for example, in Odenbach (2004)[60] and references therein this is true if the magnetic particle
size does not exceed dp ≈ 13nm.
In this case the ratio of the Brownian particle magnetization relaxation time τb = (4π(dp)

3ν)/(kbT ),
to viscous time τv = (ρ(dp)

2)/ν characterizing the macroflow development is τb/τv ≈ 10−5.Thus
it is safe to assume that the orientation of the magnetic moments of individual particles and thus
of the fluid magnetization follows the direction of a local magnetic field. When the intensity of
magnetic field is non-linearly distributed in a magnetic fluid, magnetic particles are concentrated
in those regions, where the magnetic field intensity is larger. Accordingly, the fluid magnetization
increases in these regions.
The presence of a ferromagnetic fluid can distort an external magnetic filed if magnetic interaction
(dipole-dipole) takes place, but this is negligible for small particle concentration (less than 10%)[?].
Now we proceed to point out the general expression for the magnetic force acting on a general
magnetized body.
To begin consider a small cylindrical volume of magnetically polarized substance with geometric
axis d aligned with the magnetization vector M.

Figure 3.8: Development of the gradient-field force and the magnetic torque on a small element
of magnetically polarized substance.[13]

The material is affected by an external magnetic field H0 and, at the ends of the volume, two
poles appear with density ρs = µ0M and opposite sign.
The applied field H0 may be taken to be the force on a unit pole, and hence the force esperienced
by the volume is:

−H0ρsad + (H0 + δH0)ρsad = δH0ρsad (3.76)

where δH0 is the change in H0 along the direction of d. Thus δH0 = (d · ∇)H0 and the Kelvin
force per unit volume is given by

µ0(M · ∇)H0 (3.77)
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to obtain the force acting on a particle it is necessary to consider the volume V of the particle:
thus the force becomes:

F = µ0Vp(M · ∇)H0 (3.78)

Note that for ”soft” magnetic materials M is parallel to H0; in this way the force is reduced to

fmp = µ0MdVp∇H0 (3.79)

3.6 Mixture energy equation

In addition to the equations obtained so far, a temperature equation is needed. Using the
Boussinesq approximation, we suppose that the fluid has a constant heat capacity per unit
volume,ρCp; then ρCpDT/Dt is equal to the rate of heating per unit volume of a fluid particle.
The choice of Cp, the specific heat at constant pressure, is physically sensible, since the pressure
is not free to respond directly to the heating process. This heating is brought about by transfer
of heat from neighboring fluid particles by thermal conduction. The corresponding terms in the
thermal equation are analogous respectively to the viscous term in the dynamical equation.The
conductive heat flux is:

Y = −k∇T (3.80)

where k is the thermal conductivity of the fluid. Thus

ρCp
DT

Dt
= −∇ ·Y (3.81)

Taking k to be costant, the equation above can be rewritten as:

∂T

∂t
+ v · ∇T = κ∇2T (3.82)

where κ = k/ρCp is known as the thermal diffusivity or sometimes as the termometric conductivity.
The term v · ∇T rappresent the transport of heat by the motion and is called advection term.
The equation just obtained and equation (3.10) (3.24), without considering the external magnetic
forces, constitute the basis equation of convection in the Boussinesq approximation. They are
one vector and two scalar equations for the one vector and two scalar variables v, p and ∆T .

3.7 Dimensional analysis

The estimation of the relative importance of different terms in the balance equations (3.83) can
be carried out by the dimensional analysis.
First we rewrite for completeness the system of equations that will be adimensionalized:
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∇ · v = 0

ρ
(Dv

Dt

)
= −∇P + µ∇2v + α(T − T0)g − (ξ − 1)(ϕ− ϕ0)g − ϕµ0K∆T∇H0

Dϕ

Dt
=

(mp −mf )g

6πRµ
∇ϕ+ StD∇ · (ϕ∇T )−Q∇ · (ϕ∇H) +D∇2ϕ

DT

Dt
= κ∇2T

(3.83)

The equations in this form, with the introduction of non-dimensional groups or parameters, have
a considerable importance as they facilitate both the correct experimental similarity and the
accuracy of the numerical solutions.
We define the following dimensionless sizes ()∗ , indicating with ()ref the reference values, which
will be chosen later on the basis of the physical characteristics of the problem under examination.

x∗, y∗, z∗ =
x, y, z

Lref

u∗, v∗, w∗ =
u, v, w

Uref

t∗ =
t

trif

P ∗ =
P

Prif

T ∗ = 2
T − T0

∆Tref

ϕ∗ =
ϕ− ϕref
ϕref

H∗ =
H

Href

(3.84)

Now let’s see how to choose the reference values considering the physical characteristics.
From a geometric point of view, the reference length will be half of the channel opening ie:

Lref = 0.01m (3.85)

In the absence of external force, the term that actually contributes to the change in global
momentum is buoyancy, which will be used to derive the Uref

ρ
U

t
≈ ρU

2

L
≈ ∆ρg (3.86)

from here revenue that:
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Uref =

√
∆ρ

g
ρLref =

√
α∆TrefLrefg (3.87)

and represents the velocity generated by convective motions.
Once the key terms of the adimensionalizations have been clarified, the others are easily deduced:

tref =
Lref
Uref

(3.88)

As for the prif it is better to write it as:

pref = ρU2
ref (3.89)

The table below shows the main unimensionalization factors and their values: By applying what

Parameter Value
Lref 0.01 m
Uref 0.022 m/s
Href 1× 106A/m
ϕref 1.92× 10−3

∆Tref 10 K

Table 3.2: reference quantities and associated values

has just been written and isolating for each equation the time-dependent term we get:

∇ · v∗ = 0

∂v∗

∂t∗
+∇ · (v∗v∗) = −∇P ∗ +

1√
Gr
∇2v∗ +

1

2
T ∗ − (ξ − 1)ϕ0

Θ
ϕ∗ − CM (1 + ϕ∗)T ∗∇H∗

∂ϕ∗

∂t∗
+∇ · (ϕ∗v∗) = Cgrav∇ϕ∗ +

St(ref)

Sc
√
Gr
∇ · ((1 + ϕ∗)∇T ∗)− CMphi∇ · ((1 + ϕ∗)∇H∗) +

1

Sc
√
Gr
∇2ϕ∗

∂T ∗

∂t∗
+∇ · (T ∗v∗) =

1

Pr
√
Gr
∇2T ∗

(3.90)

In the table below we write the term that are fundamental in the definition of the dimensionless
parameters
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Parameter Value
kb Boltzman’s costant 1.38× 10−23 J/K
T0 T in the middle at the start 313.15 K
α Coefficient of thermal expansion 5× 10−4 1/K
µ0 Magnetic permeability in vacuum 4π × 10−7 H/m
g gravity acceleration 9.81 m/s2

K pyromagnetic Coefficient 26.3A/mK
Ms saturation magnetization of FF 5.25× 104A/m
Mp saturation magnetization of particle 4.12× 105A/m
ρmix fluid density 1× 103kg/m3

ρp single particle density 5.2× 103kg/m3

µmix dynamic viscosity of fluid 8× 10−3kg/ms
ν cinematic viscosity of fluid 9.86× 10−7m2/s
k thermal diffusivity of fluid 1.39× 10−7m2/s
ϕ0 concentrazione media iniziale 1.92× 10−3

Table 3.3: Fundamental parameters of the flow

We can now define the characteristic number that take places in the equations above

• Gr=(gα∆TrefL
3
ref )/ν2

For a given fluid, the Grashof number is a non-dimensional parameter used in the correlation
of heat and mass transfer due to thermally induced natural convection at a solid surface
immersed in a fluid: it contains information of a mechanical nature only.
The significance of the Grashof number is that it represents the ratio between the buoyancy
force due to spatial variation in fluid density caused by temperature differences (numerator)
to the restraining force due to the viscosity of the fluid (denominator). Once the motion
is started, to understand if the motion is laminar or turbulent (in natural convection) the
Grashof number is evaluated; if Gr > 109 the motion is laminar, if instead Gr < 109 the
motion is turbulent.

• Pr= ν/k
This non-dimensional parameter, called the Prandtl number, is a property of the fluid, and
represent the ratio of two diffusivity: the diffusivity of momentum and vorticity ν and the
diffusivity of heat k.
The momentum diffusivity, or as it is normally called, kinematic viscosity, tells us the
materials resistance to shear-flows (different layers of the flow travel with different velocities
due to e.g. different speeds of adjacent walls) in relation to density.Small values of the
Prandtl number, Pr << 1, means that the thermal diffusivity dominates. Whereas with
large values, Pr >> 1, the momentum diffusivity dominates the behavior. For example, the
typical value for liquid mercury, which is about 0.025, indicates that the heat conduction is
more significant compared to convection, so thermal diffusivity is dominant. When Pr is
small, it means that the heat diffuses quickly compared to the velocity.
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• Sc=ν/D
The Schmidt number is defined as the ratio of momentum diffusivity (kinematic viscosity)
and mass diffusivity, and is used to characterize fluid flows in which there are simultaneous
momentum and mass diffusion convection processes. The Schmidt number describes the
mass momentum transfer.It physically relates the relative thickness of the hydrodynamic
layer and mass-transfer boundary layer. The Schmidt number corresponds to the Prandtl
number in heat transfer. A Schmidt number of unity indicates that momentum and mass
transfer by diffusion are comparable, and velocity and concentration boundary layers almost
coincide with each other. Mass diffusivity or diffusion coefficient is a proportionality constant
between the molar flux due to molecular diffusion and the gradient in the concentration
of the species (or the driving force for diffusion). Mass diffusion in liquids grows with
temperature, roughly inversely proportional viscosity-variation with temperature, so that
the Schmidt number, quickly decreases with temperature.

• ξ = ρp/ρT0,f

ratio between the density of the single solid particle of magnetite and the mixture in which
it is immersed.

• Θ = α∆Tref

• CM = ϕ0µ0KHref/2ραgLref

• Cgrav = Gr0.5Stk
Θ

(
1− 1

ξ

)
• St(ref) = St(∆Tref )/2

parameter that takes into account the Soret coefficient.

• Q = µ0MpVp/6πRµ

• CMphi = QHref/UrefLref

• Pe= Gr0.5Pr
The Pclet number may be interpreted as a measure of the relative importance of advection
and conduction of heat. When Pe is small, the flow is having negligible effect on the
temperature distribution. At high Pe, conduction can be important in thermal boundary
layers.

• Re=Pe/Pr
The Reynolds number is a dimensionless parameter whose physical meaning is the ratio
between the inertia forces and the viscous forces that originate within a moving fluid. Low
Reynolds numbers ( Re ≤ 1000 )are characteristic of motions in which the viscous aspect
prevails, for example in machine lubrication whereas, conversely, high Reynolds numbers
(Re ≥ 2000) characterize motions at high speed in which the viscous forces are totally
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negligible with respect to those of inertia.

• Ra=GrPr
The Rayleigh number is closely related to Grashof number and both numbers are used to
decribe natural convection (Gr) and heat transfer by natural convection (Ra).
The Rayleigh number is used to express heat transfer in natural convection. The magnitude
of the Rayleigh number is a good indication as to whether the natural convection boundary
layer is laminar or turbulent.

The table below shows the values of the coefficients derived from the standardization, in order to
make it clearer what the weight of the individual terms is.

Parameter Value
Gr 5.04× 104

Pr 7.12
Ra 3.58× 105

Sc 1.72× 105

D 5.73× 10−12

Pe 1.5983× 104

ξ 5.196
Θ 0.005
CM 0.647
Cgrav 1.09× 10−4

St(ref) 0.015
Q 3.6× 10−16

CMphi 1.62× 10−6

Table 3.4: Non-dimensional numbers that make up the coefficients of the equations

3.8 Simulation and Magnetic field

In this section we will describe how we calculated the magnetic field acting within the domain
and what are the parameters and approximations adopted for fluid dynamics simulations.
Following [28] a set of Maxwell equations describing the magnetic field in the absence of induction
current is introduced

∇×H = 0 (3.91)

∇ ·B = 0 (3.92)

From the equation above it follows that B in analogous to the velocity vector of an incompressible
fluid. The amount of the fluid entering an arbitrary volume equals the amount flowing out; also
the lines of B cannot terminate but must form closed loops or extend indefinitely far.
The vector B is known as the magentic induction and we can say that B = µ0(H + M) ' µ0H if
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the field due to ferrofluid is neglected.
From eq.(3.92) we can say that H = ∇ϕ,where ϕ is the magnetic potential: replacing in eq.(3.91)
we obtain:

∇2ϕ = 0 (3.93)

or harmonic potential. We must resolve in the domain with appropriate boundary conditions for
the magnets.The potential due to a magnet of moment M placed in the origin (solution of the
Laplace equation in three dimensions) is 4

ϕ(x̃) =
1

4π

M · x̃
|x̃|3

(3.94)

so, if we admit we have a moment density m per unit of volume inside the magnet, we have the
solution, out of the magnet

ϕ(x̃) =
1

4π

∫
Vm

m(ỹ) · (x̃− ỹ)

|x̃− ỹ|3
dỹ (3.95)

(i.e the sum of the potentials of the dipoles of intensity m(ỹ) placed in the points ỹ inside the
magnet. The integral extends on the volume Vm occupied by the magnet).
We will admit that the magnetization of the magnets is uniform in the volume inside the magnets,
for now it is sufficient that m is normal to the walls, ie in the direction y. Let us assume that the
magnets extend unlimited in the x- direction and that m is in the y- direction and uniform inside
the magnet, so we evaluate the resulting (two-dimensional) potential that will only be a function
of y and z(Am is the section of volume Vm in the plane y,z):

ϕ(x̃) =
1

4π

∫
Am

∫ ∞
−∞

m(ỹ) · (x̃− ỹ)

|x̃− ỹ|3
dỹzdỹxdỹy

=
1

4π

∫
Am

∫ ∞
−∞

my(x̃y − ỹy)

[(x̃x − ỹx)2 + (x̃y − ỹy)2 + (x̃z − ỹz)2]
3/2

dỹzdỹxdỹy

We execute the integral first with respect to ỹx: with the substitution ỹx = ξ
[
(x̃y − ỹy)2 + (x̃z − ỹz)2

]1/2
we have

∫ ∞
−∞

my(x̃y − ỹy)

[(x̃y − ỹy)2 + (x̃z − ỹz)2]
3/2

dỹz =
my(x̃y − ỹy)

(x̃y − ỹy)2 + (x̃z − ỹz)2

∫ ∞
−∞

1

[1 + ξ2]
3/2

dỹz

= 2
my(x̃y − ỹy)

(x̃y − ỹy)2 + (x̃z − ỹz)2

4If the dipole is not at the origin but at a point ỹ, then just replace x̃ with x̃− ỹ.
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Figure 3.9: Domain scheme (section in the horizontal plane (y, z) showing the position of the
magnets. In the domain extension in the direction three pairs of magnets are shown, corresponding
to the choice of N magn equal to 3. Note that all the lengths are dimensionless with the half-height
of the channel (half the distance between the two plates).

so that

ϕ(x̃) =
1

2π

∫
Am

my(x̃y − ỹy)

(x̃y − ỹy)2 + (x̃z − ỹz)2
dỹydỹz

The integral must therefore be extended to the section of the magnetic plate (a rectangle). If
we admit that the magnetic plate is very thin (compared to the other dimensions), then we can
admit that it can be approximated with a plate without thickness parallel to the walls of the
channel, or my(x̃y, x̃z) = m̃yδ(x̃y − x̃yp), where x̃yp is the position of the plate, in y direction
(normal to the walls), which will extend along z from a and b (z ∈ (a, b)); m̃y it is the mag-
netization per unit of length, supposedly uniform, of the magnet. In this case the integral becomes.

ϕ(x) =
m̃y

2π

∫ b

a

x̃y − x̃yp
(ỹy − x̃yp)2 + (ỹz − x̃z)2

dỹz (3.96)

We can then calculate the magnetic field, which has components

Hy =
∂ϕ

∂y
= −m̃2

2π

∫ b

a

(x̃z − ỹz)2 − (x̃y − x̃yp)2[
(x̃z − ỹz)2 + (x̃y − x̃2

yp

]2 dỹz (3.97)

Hz =
∂ϕ

∂z
= +

m̃2

2π

∫ b

a

2(x̃z − ỹz)(x̃y − x̃yp)[
(x̃z − ỹz)2 + (x̃y − x̃2

yp

]2 dỹz (3.98)

I can then calculate the module and the gradient of the module, H, which I need in the equations.
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Figure 3.10: Visualization of the magnetic field module, its component and of its derivatives.
Parameters: Lz = 2 (domain long 2π in the direction z, fz = 0.4 (40% domain covered by
magnets), ym = 0.4 (distance of magnetic plates from walls.) The grid has 257 unequal points in
the direction y and 128 points equally spaced in the direction z.
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We now define the settings and the simplifications adopted to simulate computationally what
happens inside the reactor.
Considering the arrangement of the magnets and the Peltier cells on the walls,we can say that a
single configuration repeat itself along the entire perimeter of the reactor. The fluid dynamic
simulations will therefore concern a single block, and the flow that will be obtained from the
CFD simulations can be considered periodic along the whole toroidal axis of the device.
Since it is difficult to simulate the effect of Peltier cells for the only area in which they are
arranged, we consider the whole wall as a warm or cold one; in this way we create the thermal
gradient that acts inside the fluid. As for the magnets, they are placed at a fixed distance from
the wall, and this is necessary to consider the real thickness of the latter.
As far as the vertical axis is concerned, the simulations neglect the upper and lower walls of the
device as the flow passing through the block is considered to be completely developed, ie not
affected by the presence of those walls. In the figure 3.11 one of the simulated configurations is
shown

Figure 3.11: 3D Visualization of computational domain with axis of reference. The red wall have
a temperature equal to T0 + ∆T/2 while blue wall represent the temperature T0 −∆T/2. The
magnets are represented by gray blocks whose magnetic field is perpendicular to the surface
attached at the walls.

53



Chapter 4

Discretization

4.1 Introduction

First of all, it is necessary to clarify what is meant by the word ”discretization”: in essence, to
discretize a closed-form mathematical expression, like a differential equation, characterized by an
infinite continuum of values throughout the domain, means approximating it to its equivalent
algebraic expression which supplies values only in a finite number of discrete points or volumes in
the domain. The set of these nodes takes the name of mesh or computational domain while the
set of nodes that are involved from time to time writing an algebraic equation that approximates
the derivatives for each node is called a stencil.
The computational code for numerical integration used to discretize the Navier-Stokes equations
rely on Passoni’s paper.
In [63] the system of nonlinear partial differential equations is discretized thanks to a mixed
method of spectral-finite difference in which two different numerical techniques are adopted to
obtain a fast and accurate computational code.
A mixed approach like the one developed in this thesis work has been used for different flow
configurations and different problems: for example in [63] such computational schemes are applied
to the case of channel flow. With respect to the channel flow problem, purely spectral techniques
were used in [64] using a Fourier-Chebyshev computational algorithm; progress over time is
guaranteed through a semi-implicit scheme. A fully spectral Fourier-Chebishev method was also
used in [65] to analyze the linear and nonlinear stability of the Poiseuille air flows and the Couette
plane. Very important is the result obtained by [66] where it was shown that, with half the grid
points in space, spectral methods reached an accuracy comparable to that of finite difference
schemes.
A spectral-finite differences scheme for the Navier-Stokes equations in the plane channel was
developed in [67]: in space, Fourier decomposition is used in homogeneous directions and finite
differences in the orthogonal direction with respect to solid walls; as regards progress over time, a
semi-implicit third-order Runge-Kutta scheme was used.
In general, there are a large number of publications in the literature that develop the theme
of solving the Navier-Stokes equations applied to the case of channel flow and based on fully
spectral, fully finished and spectral-finite hybrid algorithms.
Before discretizing the governing equations obtained in the previous chapter, we observe how a
model equation can be discretized with a spectral method: the results obtained for this equation
will then be reported in the present case.
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4.2 Spectral method

”Spectral methods” is a general name to indicate the spatial discretization methods that are
based on an expansion of the solution as coefficients for the test functions. These test functions
generally have global support on the domain and the spatial derivatives are defined in terms of
derivatives of these functions. The name of the method derives from the fact that the coefficients
related to the test functions can be seen as a spectrum of the solution.
Because of the global nature of the test functions, spectral methods are usually global methods,
that is, the value of a derivative at a given point in space depends on the solution in all other
points in space and not just on neighboring grid points.[71].
A graphical distinction between traditional approximations and spectral ones is provided in figure
4.1.

Figure 4.1: Comparison of finite difference (left) and Legendre spectral (right) differentiation.The
solid curves represent the exact solution, and the dashed curves are their numerical approximations.
The solid lines are the exact tangents at z = 0, and the dashed lines the approximate tangents.
The error in slope is noted, as is the number of intervals N. [68]
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In this figure a second-order (central) finite-difference approximation is compared with a Legendre
spectral collocation approximation.
The finite difference approximation estimates the derivative from the parabola which interpolates
the function at the point in question, and at the two adjacent grid-points: different grid points,
therefore, use different parabolas. The spectral approximation, on the other hand, uses all the
available information about the function. If there are N + 1 grid-points, then the interpolating
polynomial, from which the derivative is extracted, has degree N, and the same polynomial is
used for all the grid-points.[68]
For few numbers of grid-points, the accuracy of two methods results are comparable. However, as
N increases, the accuracy of the spectral approximation increases dramatically (its error decays
exponentially).
By virtue of the foregoing, spectral methods have a very high order of convergence, i.e the error
decreases exponentially by increasing the points of the calculation grid (α(L/N)N ) [69].
Furthermore, the dispersion and diffusion properties of the derivative operator are better than
the finite difference methods. This can be easily seen considering that the spectral methods
usually give the exact derivative of a function, the only error that is committed is due to the
truncation to a finite set of functions / test coefficients. The cons of these methods is that they
are geometrically less flexible than lower order methods and they are usually more complicated
to implement. Furthermore, the spectral representation of the solution is difficult to combine
with problems involving strong gradients, such as problems involving shock and discontinuity.
A wider application of spectral methods found difficulties due to: 1) poor resolution of discon-
tinuous solutions; 2) inefficient implementation of implicit methods; and 3) drastic geometric
constraints. All these barriers were gradually reduced in the 1980s, in particular the last two: as
a result, the applicability and appeal of spectral methods for computational fluid dynamics has
broadened considerably [68].
Considering mainly elliptic / parabolic problems with simple geometries, spectral methods are
very adequate and efficient discretization schemes: in fact, these methods were among the first to
be used in practical flow simulations.
Spectral methods may be viewed as an extreme development of the class of discretization schemes
known as the method of weighted residuals (MWR).
The basic idea is to assume that the unknown function u(x,t) can be approximated by a sum of
N + 1 ”trial” functions φk(x)

u(x, t) ≈ uN (x, t) =
N∑
k=0

ak(t)φk(x) (4.1)

This assumption leads us from a problem of infinite dimension (we need infinite information to
specify u(x, t) in every point of the domain), to one in which a finite number of information will
suffice, which are the ak(t) coefficients of the expansion truncated of our function u(x, t) .
When the series above is substituted into the equation

Lu(x, t) = f(x, t) (4.2)

we obtain the ”residual function” defined as:

R(x; a0, a1, ...aN ) = LuN − f (4.3)

The function (4.3) is equal to zero when we consider the exact solution and, to determine the
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coefficients ak, it is necessary that the residual function, multiply with N+1 test functions and
integrated over the domain, is equal to zero.

∫
D

wj(x) ·R(x, t)dx = 0 ∀j = 0, ..., N (4.4)

This means that the residual R is required to be orthogonal to all test functions (weights) wj .
This is the reason why the method is called method of weighted residual. The choice of test and
trial functions is the main discriminating factor to distinguish the various spectral methods that
can be implemented: let’s now proceed to generalize the possibilities of choice and then dwell
more in detail on the choices used for our code.

4.2.1 Test function

The choice of test functions allow us to distinguish between the three most commonly used
spectral schemes, namely, the Galerkin, collocation, and tau versions.

• Galerkin method The first serious application of spectral methods to PDE’s- that of Sil-
berman (1954) for meteorological modeling- was a Galerkin method [69]. The Galerkin
approach is perhaps the most aesthetically pleasant of the methods of weighted residuals
since the test functions are the same as the trial

wj = φj ∀j = 0, ..., N (4.5)

• Collocation method In the collocation approach a set of N+1 points is chosen in the
domain on which the residual R is required to vanish. The test functions become

wj = δ(x− xj) ∀j = 0, ..., N (4.6)

with δ being the Dirac delta function. This approach requires the differential equation to
be satisfied exactly at the collocation points.

• Tau method Spectral tau methods are similar to Galerkin methods in the way the differential
equation is enforced. It may be viewed as a special case of the so-called Petrov-Galerkin
method. However, none of the test functions need to satisfy the boundary conditions. Hence,
a supplementary set of equations is used to apply the boundary conditions [69].

For the computational code implemented in our thesis work, we have used the Galerkin method,
therefore, the focus of the discussion moves on the choice of trial function: this choice will be
explained below.

4.2.2 Trial function

The choice of trial functions is one of the characteristics that distinguishes spectral methods
from finite element ones for example. The functions adopted for spectral methods are global and
infinitely differentiable, indicating with what they are defined, and in general different from zero,
on the whole computational domain.
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In the case of finite element methods instead, the domain is divided into small elements and a
trial function is specified in each element. The trial functions are therefore of a local nature and
are optimal when it is necessary to manage complex geometries.
There are many possible choices, in particular trigonometric (Fourier) functions,Chebyshev and
Legendre polynomials, but also lower-order Lagrange polynomials with local support (finite
element method) or b-splines. However, we focus on the groups of functions adopted in this work:
the Fourier modes.

• Fourier Series

The Fourier series are particularly indicated for the discretization of the peridic functions
u(x) = u(x+L); considering a periodic domain with periodicity L, defined the fundamental
wave number α = 2π/L, the Fourier functions are:

uN (x) =
∑
|k|<K

cke
ikαx =

∑
|k|<K

ckΦk (4.7)

Note that the summation limits are sometimes denoted as |k| <= N/2 with N = 2K. Addi-
tionally, a Fourier-transformed quantity ck is often denoted by ûk. The N+1 coefficients
ck are the complex Fourier coefficients for the Fourier mode Φk(x). When we consider a
smooth function, a Fourier series based on it converges rapidly with increasing N, since the
magnitude of the coefficients |ck| decreases exponentially. This behaviour is called spectral
convergence [71]

Figure 4.2: Fourier functions Φk(x) = eiαkx fork = 0, ..,3 with α = 2π/L = 1 [71].

The transformation from the space of the discrete representation of uN (physical space)to
the space of the Fourier components ck (spectral space)is called the (forward) discrete
Fourier transform F (uN ). Correspondigly, the reverse transform is the inverse Fourier
transform F−1(ck). A practical and efficient way to compute this is via the fast Fourier
transform (FFT) (Cooley ande Tukey 1965 going back to an idea by Carl Friedrich Gauss
1805),thereby reducing the computational effort from O(N2) to O(Nlog(N)) [71].
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Considering what is stated in the description of both the test and the trial functions, the method
used in our calculation code is the Fourier-Galerkin spectral method where the imposed boundary
conditions satisfy the periodicity. As an example, it will be discretized with the Fourier-Galerkin
Spectral Method, a simple evolutionary equation in one dimension; the results will then be applied,
with corrections to the equation system obtained in Chapter 3.
Then the finite difference methods will be described, used for spatial discretization along the
non-periodic component, and an explicit fourth-order Runge-Kutta method used instead for
temporal discretion.

4.2.3 An example of Fourier-Galerkin method

Consider a non linear (partial) differential equation, e.g. the Burgers equation (Johannes Martinus
Burgers 1895-1981).

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
0 ≤ x < 2π (4.8)

with periodic boundary conditions on a domain L = 2π. Due to the periodicity, it is convenient to
use a Fourier-Galerkin scheme for the spatial discretisation. The approximation for the solution is

uN (x, t) =

N/2−1∑
k=−N/2

ûk(t)φk(x) =

N/2−1∑
k=−N/2

ûke
ikx (4.9)

Replacing uN in (4.8), we notice that the fundamental unknowns now are the coefficients ûk(t)
for k = −N/2, ...N/2− 1, and we have obtained the residual function.

∂uN

∂t
+ uN

∂uN

∂x
= ν

∂2uN

∂x2
(4.10)

To make sure that the residual function is equal to zero, it is necessary multiply it with the test
function and integrate over the domain:∫ 2π

0

(
∂uN

∂t
+ uN

∂uN

∂x
− ν ∂

2uN

∂x2

)
e−ikxdx = 0 (4.11)

Due to the orthogonality property of the test and trial functions [70], we obtain a set of ODEs
for the ûk

∂ûk
∂t

+

̂(
uN

∂uN

∂x

)
k

+ k2νûk = 0 ∀k = −N/2, ..., N/2− 1 (4.12)

where

̂(
uN

∂uN

∂x

)
k

=
1

2π

∫ 2π

0

uN
∂uN

∂x
e−ikxdx (4.13)

To complete the discretization of the eq. 4.12, the advection term, written just above, remains to
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be treated. This term is a particular case of the general quadratic nonlinear term

(̂uv)k =
1

2π

∫ 2π

0

uve−ikxdx (4.14)

where u and v denote generic trigonometric polynomials of degree ≤ N/2.[70]
Their expansion is similar to eq.4.9: when these are inserted into the equation just above, and
the orthogonality property is invoked, we obtain the expression:

(̂uv)k =
∑
p+q=k

ûpv̂q (4.15)

This is a convolution sum. Therefore, the Fourier-Galerkin approximation to the Burgers equation
is:

∂û

∂t
+

∞∑
p+q=k

p,q=−N/2,...,N/2−1

ûpiqûq = −k2νûk ∀k = −N/2, ..., N/2− 1 (4.16)

The complex summation of the second term requires O(N2) operations, which makes this evalua-
tion sum the most expensive part of the calculator. There is a simpler and more efficient way to
calculate this sum. The most important approach to do this is via Fourier transforms leading to
an order O(Nlog2N) for the same operation, which is significantly less than O(N2) for large N.
We consider a general one-dimension convolution sum of the form

∞∑
p+q=k

p,q=−N/2,...,N/2−1

ûpiqv̂q (4.17)

in order to illustrate the basic approach to calculate it.
The basic approach is to transform ûp and v̂q to physical space, to perform a pointwise multipli-
cation, and then to transform the result back to Fourier space [68].
We introduce the discrete transform

Uj =

N/2−1∑
k=−N/2

ûke
ikxj ∀j = 0,1, ..., N − 1 (4.18)

Vj =

N/2−1∑
k=−N/2

v̂ke
ikxj ∀j = 0,1, ..., N − 1 (4.19)

and we define the physical space product

Wj = UjVj (4.20)

and its discrete Fourier transform

60



4 – Discretization

Ŵk =
1

N

N−1∑
j=0

Wje
−ikxj ∀k = −N/2, ..., N/2− 1 (4.21)

Using the discrete orthogonality relation, we obtain:

Ŵk =

∞∑
p+q=k

p,q=−N/2,...,N/2−1

ûpv̂q +

∞∑
p+q=k±N

p,q=−N/2,...,N/2−1

ûpv̂q (4.22)

Such an evaluation of the spectral convolution in physical space is usually termed pseudo-spectral
evaluation of the nonlinear terms. The first term on the right-hand side is the desired result; the
second one is called aliasing error.[68]
The convolution sum in the pseudospectral method is evaluated at the cost of 3 FFT’s and N
multiplications. The total operation count is (15/2)Nlog2N multiplications.[70]
Everything that has been observed for a simple equation like that of Burgers, is used in the same
way in the case of the equations 3.25 described in the previous chapter.
When dealing with a discrete representation of continuous data, the frequency content beyond the
critical frequency (Nyquist) is generally misinterpreted. We are talking about ”aliasing” when
critical frequencies are erroneously attributed to lower frequencies within the range taken into
consideration. [73]

Figure 4.3: A sine-wave function sampled at a lower frequency than Nyquist has the same samples
of a lower-frequency sine wave (aliasing)

This example shows that high frequencies in the original signal, seen at an insufficient sampling
step, are presented as low frequencies in the reconstructed signal. If a signal, such as an image,
is sampled at an insufficient frequency, then, after reconstructing the latter from such samples,
high-frequency components of the original signal appear as low-frequency components in the
reconstructed one at starting from these inadequate samples. This is the typical example of
aliasing.
The Nyqvist theorem said that one needs more than two grid-points per wavelength in order
to represent a solution on a numerical grid: in other words, the wavenumber k must be in the range

−kx,Nyqvist < k < kx,Nyqvist (4.23)

where

kx,Nyqvist = π/∆x ∆x = Lx/Nx (4.24)
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kx,Nyqvist is the Nyqvist wavenumber, Lxis the domain size, and Nx the number of grid-points.
According to the sampling theorem, if we sample under the Nyquist frequency, the sampled
values we get for the maximum frequency component are the same as we would have obtained by
sampling the signal at a lower frequency, as shown in fig 4.3.
There are some possibilities to remove (or at least reduce) these errors. One popular variant is
the so-called 3/2-rule: the original grid in physical space is refined by a factor M = 3/2N in every
direction, and the nonlinear multiplications are then performed on this finer grid. Afterwards, the
results product in transformed to spectral space, cutting away the wavenumbers with |k| > N/2.
The operation count for this transform method, considered the necessary grid expansion, is
(45/4)Nlog2(3/2)N [70]. Another choice, computationally less expensive, is represented by the
2/3-rule: in this thesis work, following what was explained by Passoni et al [63], we opted for this
last algorithm to eliminate aliasing error.
With this rule, the aliasing effect is eliminated by keeping only frequency components corresponding
to wavenumbers less than 2/3 of the Nyqvist wavenumber, in each dimension i.e. components
corresponding to |kx|(2/3)Nx,Nyqvist, and |ky|(2/3)Ny,Nyqvist are deleted from the solution. This
is illustrated in the figure 4.4 where, wave components corresponding to |kx| > 8/3 and |ky| > 8/3
should be removed from the solution. [74]

Figure 4.4: The 2/3-rule dealiasing scheme [74]

As explained above, it is carried out in the code by the dealiasing subroutine
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4.3 Finite difference method

In the case of finite differences, we discretize our domain (usually limited) through a succession
of computational nodes. With such discretization, a generic function is ”approximated” by the
values that it assumes at the nodes themselves.
Through the use of numerical formulas deriving from the combination of appropriate developments
in Taylor’s series, it is possible to approximate the differential operators to obtain a linear system,
whose unknowns are the nodal values of the function. This finite set will approximate our
unknown function.
As explained in [63] a finite-centered differences scheme was used, to the second order of accuracy.
Most common finite-difference representation of derivatives ar based on Taylor’s series expansions.
Consider a continuous function of x, namely f(x), with all derivatives defined in x. Thanks to a
Taylor series expansion about point x, the value of f(x+ ∆x) can be found:

f(x+ ∆x) = f(x) +
∂f

∂x
∆x+

∂2f

∂x2

∆x2

2
+ ...+

∂nf

∂xn
∆xn

n!
+ ... (4.25)

Figure 4.5: Illustration of behavior of the first three terms in a taylor series [21]

The significance of eq. (4.25) is explained on the fig.4.5.
Observing the right-hand side of equation (4.25),we see that the first term, f(x), is not a good
approximation for f(x+ ∆x), unless, the function f(x) is a horizontal line between points 1 and 2.
To obtain an even better estimate of f in x+ ∆x , in addiction to the second term, the third is
necessary and it approximately accounts for the curvature between points 1 and 2. In general,
greater accuracy implies inclusion of additional higher-order terms. Indeed, to have an exact
representation of f(x+∆x), eq.(4.25) should include an infinite number of terms on the right-hand
side [21]. Solving the (4.25) for ∂f/∂x we obtain:

∂f

∂x
=
f(x+ ∆x)− f(x)

∆x
− ∂2f

∂x2

∆x

2
− ∂3f

∂x3

∆x2

6
+ ... (4.26)

The first term is a finite-difference rappresentation of the partial derivative.
The remaining terms on the right side constitute the truncation error; this term measure the
accuracy of the approximation and determine the rate at which the error decrease as the grid is
refined. In equation (4.26), the lowest-order term in the truncation error involves ∆x to the first
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power; hence, the expression (4.26) is called first order accurate. We can more formally write:

∂f

∂x
=
f(x+ ∆x)− f(x)

∆x
+O(∆x) (4.27)

Observing the equation (4.27) we can see that expression uses information only to the right of
grid point x; as a result, the finite difference in eq (4.27) is called forward difference.
Writing a Taylor series expansion for f(x−∆x), expanded about f(x), and solving for ∂f/∂x, we
obtain:

∂f

∂x
=
f(x)− f(x−∆x)

∆x
+O(∆x) (4.28)

As highlighted above the finite difference in eq (4.28) is called backward difference and also in this
case, the error involves ∆x to the first power: the expression (4.28) is called first-order backward
difference.
As said previuosly, we have a second-order finite difference scheme: the way to construct this
scheme is simple. In the case of a non-uniform grid, the second-order centered scheme is written as
the weighted average of the two backward and forward derivatives and the weight is proportional
to the inverse of the considered interval. Referring to the figure below I can write that:

Figure 4.6: example of an non-uniform grid

(
∂f

∂x

)
i

=
1

xi+1 − xi−1

(
fi+1 − fi
xi+1 − xi

(xi − xi−1) +
fi − fi−1

xi − xi−1
(xi+1 − xi)

)
(4.29)

We now write the discretization with finite differences for the second derivative that will appear
within the diffusive terms. Once you have written Taylor’s development for f(xi+1) e per f(xi−1)
we proceed adding the terms and isolating (∂2f/∂x2)i.
For non-uniform grids, we can use a backward difference to eliminate the first derivative, and
after sobstitution and some algebra, we get:(

∂2f

∂x2

)
i

=
fi+1∆xi−1 − fi(∆xi−1 + ∆xi) + fi−1∆xi

1
2∆xi−1∆xi(∆xi−1 + ∆xi)

(4.30)

64



4 – Discretization

Since the steepest gradients are located near the walls, it is necessary to use a non-uniform grid:
the streching laws for the grid points along y is introduced for completeness [63].

ystr = Py + (1− P )
(

1− tanh[Q(1− y)]

tanhQ

)
(4.31)

P and Q are two parameters characterizing the distribution (in our code P = 1.7, Q = 1.9). The
partial derivatives along y are calculated accordingly.

4.4 Runge-Kutta Method

In mathematical analysis a differential equation is an equation that links an unknown function to
its derivatives: if all derivatives are computed with respect to a single independent variable, the
equation is an ordinary differential equation (ODE). When derivatives are present with respect to
several independent variables, we will have instead a differential equation to the partial derivatives
(PDE). A differential equation will have order n, if n is the maximum order of the derivatives
that appear in it.
Most ODE problems encountered in practice cannot be solved analytically or the solution cannot
be expressed in a form that can easily be calculated; numerical techniques are therefore necessary
for the resolution of an ODE.
The first numerical resolution technique dates back to Newton, for the study of the motion of a
comet, and, although it is very simple and intuitive, is not generally used in scientific computing
for two main reasons. Firstly, the truncation error per step associated with this method is far
larger than those associated with other, more advanced, methods. Secondly, Euler’s method is too
prone to numerical instabilities; it has such a large truncation error per step because in evolving
the solution from xn to xn+1 it evaluates derivatives at the beginning of the interval: the method
is, therefore, very asymmetric with respect to the beginning and the end of the interval.

The methods most commonly employed to integrate ODE’s were first developed by the German
mathematicians C.D.T. Runge and M.W. Kutta in the latter half of the nineteenth century.
We can construct a more symmetric integration method by making an Euler-like trial step to
the midpoint of the interval, and then using the values at the midpoint to make the real step
across the interval. A method like this is generally known as a second-order Runge-Kutta method
because the symmetrization cancels out the first-order error.
Euler’s method can be thought of as a first-order Runge-Kutta method. There is no need to
stop at a second-order method. By using two trial steps per interval, it is possible to cancel out
both the first and second-order error terms, and, thereby, construct a third-order Runge-Kutta
method. Likewise, three trial steps per interval yield a fourth-order method, and so on. Note
that, in general, an nth-order Runge-Kutta method requires n evaluations of this function per
step. It can easily be appreciated that as n is increased a point is quickly reached beyond which
any benefits associated with the increased accuracy of a higher order method are more than offset
by the computational cost involved in the necessary additional evaluation of f(x, y) per step.
In the most general form an RK method can be written as a linear combination in the following way:

yn+1 = yn + ∆tF (tn, yn, h; f) (4.32)
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Figure 4.7: Representation of the point estimated by the Euler method and how it differs from
the true solution. The error committed decreases with step h

where n ≥ 0 and F is the increment function written this way:

F (tn, yn, h; f) =

s∑
i=1

biKi

Ki = f(tn + cih, yn + h

i−1∑
j=1

aikKj)

i = 1,2, ..., s

(4.33)

s indicates the number of stages of the method. The coeffcienti aij , bij and cij completely
characterize a RK method and are generally collected in the so-called Tableau of Butcher

Figure 4.8: (Tableau di Butcher)

being A = (aij) ∈ Rsxs, b = (b1, ...bs)
T ∈ Rs and c = (c1, ...cs)

T ∈ Rs. We will also assume that
the following relationship applies:

ci =

s∑
j=1

aij

i = 1, ..., s

(4.34)
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For a four-stage scheme (s = 4) like the one used in our code, the equation (4.32), can be explained
as:

yn+1 = yn + ∆t(b1K1 + b2K2 + b3K3 + b4K4) (4.35)

where
K1 = F (tn + c1∆t, yn)

K2 = F (tn + c2∆t, yn + ∆t(a21K1))

K3 = F (tn + c3∆t, yn + ∆t(a31K1 + a32K2))

K4 = F (tn + c4∆t, yn + ∆t(a41K1 + a42K2 + a43K3))

(4.36)

The choice of the parameters a, b and c is not random, but they are chosen so that the accuracy
of the scheme is of the fourth order E(∆t) ≈ O((∆t)5).
If the coefficients aij in A are null for j ≥ 0, with i = 1,2, ..., s, then every Ki can be explicitly
calculated as a function of only i− 1 coefficients Ki, ...,Ki−1 already previously calculated. For
this reason, in this case, the scheme is called explicit. Otherwise, the RK scheme is implicit and
the calculation of Ki requires the resolution of a nonlinear system of size s.
The main disadvantage of the Runge-Kutta scheme compared to that of Euler is the fact that in
the first case we need to calculate the function F (t; y) a certain number of times for each step
∆t. If F (t; y) is a complicated function this calculation leads to an obvious slowing of numerical
calculation time. The obvious advantage is an increase in calculation accuracy.
All Runge-Kutta schemes are convergent, in the sense that the error E(∆t) → 0 in the limit
∆t→ 0, however also the Runge-Kutta scheme is subject to instability if values are used too time
steps.
The coefficients assume the following values:

s = 4

a21 =
1

2

a31 = 0 a32 =
1

2
a41 = 0 a42 = 0 a43 = 1

b1 =
1

6
b2 =

1

3
b3 =

1

3
b4 =

1

6

c1 = 0 c2 =
1

2
c3 =

1

2
c4 = 1

(4.37)

Therefore, in order to evaluate the equation 4.35, our code acts in this way:

• I compute as first thing K1 using ”RHS” subroutine

• I compute y∗ = yn + 0.5∆tK1

67



4 – Discretization

• I update the output variable with the Proiezione subroutine

• I compute K2 using ”RHS” subroutine with updated values

• I compute y∗ = yn + 0.5∆tK2 and i update the output variable with the Proiezione
subroutine

• I execute the same steps for te calculation of K3 and K4

• calculate the value at the next step yn+1 = yn + ∆t(b1K1 + b2K2 + b3K3 + b4K4) and
update with the ”Proiezione” subroutine.

Figure 4.9: Geometric visualization of the behavior of a RK4 scheme

From a numerical point of view, the solution of a differential equation with partial derivatives
is affected by two types of error: the discretization error, given by the difference between the
analytical solution and the exact solution, and the rounding error, which represent the numeric
error introduced after a series of repetitive calculations in which a computer constantly rounds in
numbers.
Another property of a numerical scheme is consistency: a numerical system is said to be consistent
if its discrete operators (with finite differences) converge towards continuous operators (with
derivatives) of a PDE for ∆t,∆x→ 0.
For explicit Runge-Kutta methods the parameters must satisfy the following condition

s∑
i=1

ai = 1 (4.38)

and this condition guarantees the consistency of this methods.
There is stability if ”the noise” (given by initial conditions, rounding errors, ...) does not increase,
while there is convergence if the solution of a numerical scheme converges towards the real solution
of a PDE for ∆t,∆x→ 0.
The Lax equivalence theorem establishes the condition for convergence: given a problem that
satisfies the condition of consistency, stability is the necessary and sufficient condition for conver-
gence.
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To maintain stability, we can refer to the Courant-Friedrichs-Lewy condition (CFL condition)

C = c
∆t

∆x
≤ 1 (4.39)

Where ”C” is called the Courant number, and the constant ”c” depends on the equation to be
solved.
Keep in mind that not all ∆t values are to be considered good: how to establish for which values
of h a numerical method is stable for a given problem? To establish it, just apply the one-step
method to the test problem y′ = λy i.e. with f(t, y) = λy and we bring ourselves back to an
expression of the type

yn+1 = F (∆tλ)yn (4.40)

where, for a Runge-Kutta methods we obtain:

F (∆tλ) = 1 + ∆tλ+
1

2
(∆tλ)2 + ...+

1

s!
(∆λ)s (4.41)

The stability region is the set in the complex plane such that:

Ra = [∆tλ ∈ C : |F (∆tλ)| < 1] (4.42)

To solve the problem, it is necessary to choose ∆t small enough to ensure that ∆tλ is in the stability
region, otherwise the sequence of approximations produced in many steps will be unbounded. We
interpret this as unstable behaviour.
In our simulation we have (∆x)max = Lx/Nx = 2π/128 and ∆t = 4× 10−4.
The real part of the graphics above measures the speed to zero, the imaginary part measures the
oscillations, and the stability plot shows you how well a method can handle the combinations.
For a nonlinear problem, you will have stability if you always have that the ”instantaneous speed
and oscillations”, λ, are within the stability region [77].
When we have a very large λ, either complex or real, our problem is stiff: another way is to say
if our highest eigenvalue is ”large” and our smallest eigenvalue is ”small”, since this separation
causes many numerical problems. In that case, we can see from the stability plots that most
explicit methods will require a very small timesteps (h) in order to be stable.

4.5 Projection Method

Through the assumption of ρmix = cost the energy equation has been completely decoupled from
the analysis. The implication here is that the continuity and momentum equations are all that are
necessary to solve for the velocity and pressure fields in an incompressible flow, and that if a given
problem involves heat transfer, and hence temperature gradient exist in the flow,the temperature
field can be obtained directly from the energy equations after the velocity and pressure fields are
obtained.
In incompressible flow problems, as observed by the system (3.25), there is no equation where a
main variable appears directly linked to pressure; this leads to the affirmation that in incompress-
ible fluids, pressure is the variable that assumes the values necessary to ”force” respect for the
continuity equation. The differential pressure equation, obtained starting from the equations of
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Figure 4.10: stability regions for some Runge-Kutta methods up to order 4

motion and continuity, is called the Poisson equation for pressure.
In our code, the scheme for the solution of the incompressible Navier-Stokes equations is the
so-called projection method due to Chorin [78].
At each substep of the Runge-Kutta procedure:

• We compute an intermediate velocity field v∗.
In this first step, the contribution of pressure is neglected and does not appear in the
RHS subroutine. After this, the velocity field will not be zero divergent and therefore the
continuity equation will not be satisfied. In order to have zero divergence the contribution
of the pressure must be added to the intermediate velocity

v = v∗ −∇P (4.43)

• In a second step, we compute a correction of the intermediate velocity field via the pressure
Poisson equation which leads to a divergence free velocity field.

∇2P = ∇ · v∗ (4.44)
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4.6 Code Implementation

Summing up when written so far, the method used for the discretization of the equations 3.90, is
a spectral-finite difference scheme: in space, Fourier decomposition is used in x and z-direction,
and finite difference is used to discretize the equation along the y-axis perpendicular to the walls.
An explicit 4th order Runge-Kutta scheme was used to obtain progress over time.
For the sake of clarity we now outline the basic steps to implement the equations (3.90).
Starting from the mixture momentum equation:

∂v∗

∂t∗
+∇ · (v∗v∗) = −∇P ∗ +

1√
Gr
∇2v∗ +

1

2
T ∗ − (ξ − 1)ϕ0

Θ
ϕ∗ − CM (1 + ϕ∗)T ∗∇H∗ (4.45)

• We bring everything to a second member by isolating the term ∂v∗/∂t∗

• In the subroutine conv we calculate the convective term of the equation and the term of
magnetic force

A = −∇ · (v∗v∗) (4.46)

F = −CM (1 + ϕ∗)T ∗∇H∗ (4.47)

• In the subroutine RHS recall what was obtained above and add the diffusive term.
When the mixture momentum equation is calculated for the x-axis, the contributions of the
terms due to the buoyancy force will be also added.

A← A + F +
1√
Gr
∇2v∗ +

1

2
T ∗ − (ξ − 1)ϕ0

Θ
ϕ∗ (4.48)

• We then proceed with the time discretization and the insertion of the pressure contribution
as explained in the previous section.

For the mixture energy equation we proceed in a similar way

∂T ∗

∂t∗
+∇ · (T ∗v∗) =

1

Pr
√
Gr
∇2T ∗ (4.49)

• we isolate the term ∂T ∗/∂t∗
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• In the subroutine conv we calculate the term

AT = −∇(T ∗v∗) (4.50)

• In the subroutine RHS we add a diffusion term

AT ← AT +
1

Pr
√
Gr
∇2T ∗ (4.51)

• We proceed with the discretization in time with the method explained in the previous section

All that remains is to observe how we proceed to implement the equation of the volume fraction
of the dispersed phase

∂ϕ∗

∂t∗
+∇·(ϕ∗v∗) = Cgrav∇ϕ∗+

St(ref)

Sc
√
Gr
∇·((1+ϕ∗)∇T ∗)−CMphi∇·((1+ϕ∗)∇H∗)+

1

Sc
√
Gr
∇2ϕ∗

(4.52)

• We isolate the time-dependent term

∂ϕ∗

∂t∗
= −∇·

[
ϕ∗v∗−

St(ref)

Sc
√
Gr

((1+ϕ∗)∇T ∗)+CMphi((1+ϕ∗)∇H∗)

]
+Cgrav∇ϕ∗+

1

Sc
√
Gr
∇2ϕ∗

(4.53)

• In the subroutine conv we calculate all the terms that appear in the square bracket:

f = ϕ∗v∗ −
St(ref)

Sc
√
Gr

((1 + ϕ∗)∇T ∗) + CMphi((1 + ϕ∗)∇H∗) (4.54)

Aϕ = −∇ · f (4.55)

• In the subroutine RHS we add the diffusion term and the buoyancy term:

Aϕ ← Aϕ + Cgrav∇ϕ∗ +
1

Sc
√
Gr
∇2ϕ∗ (4.56)

• We proceed with the discretization in time with the method explained in the previous
section.
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The equation of the volumetric concentration of particles, unlike the equations for velocity and
temperature, is also solved on the walls, because we do not know the value of ϕ on the walls, but
the boundary conditions concern its derivatives, as explained in next chapter.

4.7 Boundary and initial conditions

The no-slip/no-penetration conditions require that all velocity components vanish at solid walls
and the assumption of a thermodynamic equilibrium requires that the fluid temperature at the
walls be equal to the wall temperature.
Referring to the figure, by discretizing the size of the channel along the y-axis with Ny points,
the side walls are found at nodes 1 and Ny. Therefore, imposing wall conditions means canceling
the velocities u, v, w in those points of the domain, ie:

u(: ,1, :) = u(:, Ny, :) = 0

v(: ,1, :) = v(:, Ny, :) = 0

w(: ,1, :) = w(:, Ny, :) = 0

(4.57)

Considering the adimensionalizations made previously, the conditions to be imposed on the wall
with regard to the Temperetura are easily obtained, ie:

T (: ,1, :) = −1

T (:, Ny, :) = 1
(4.58)

As written, it is clear that the wall in position 1 is the cold wall, vice versa in Ny the warm wall
is positioned.
All of this is implemented in the code by the subroutine condcont.
Regarding the boundary conditions to be considered for the particle concentration conservation
equation, the x and z directions do not cause problems because they only impose the periodicity
of ϕ. The boundary conditions in the direction y must guarantee that there is no flow of particles
across the border (For clarity of exposition, the abbreviations indicating the dimensionless
coefficients preceding each term are substituted for the real parameters in the equation).
This happens if you have on the wall

ϕv · n =

(
1

Sc
√
Gr
∇ϕ− CMphi(1 + ϕ)∇H +

St(ref)

Sc
√
Gr

(1 + ϕ)∇T
)
· n (4.59)

But velocity on the walls is zero, so one has(
1

Sc
√
Gr
∇ϕ− CMphi(1 + ϕ)∇H +

St(ref)

Sc
√
Gr

(1 + ϕ)∇T
)
· n = 0

that is

∂ϕ

∂y
= Sc

√
Gr
(
CMphi(1 + ϕ)∂yH

)
− Sc

√
Gr

(
St(ref)

Sc
√
Gr

(1 + ϕ)∂yT

)

Taking the Fourier transform in the direction x and z we have

∂ϕ̂

∂y
= CMphiSc

√
Gr ̂(1 + ϕ)∂yH − Sc

√
Gr

(
St(ref)

Sc
√
Gr

)
̂(1 + ϕ)∂yT
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We have to calculate the product transform between 1 + ϕ and ∂yH and also between 1 + ϕ and
∂yT , and this product should be made on the wall and just to apply the boundary conditions.
The Fourier transforms are only in x and z and are actually calculated plane by plane at y
constant. It is therefore sufficient to operate the anti-transform of ϕ̂ only on the two walls at
y = −1 and y = 1 (indices j = 1 and j = Ny) and run the product. Therefore two additional
subroutines have been created:

• atrasf3 parete(uT,uR1,uR2): takes a 3D field as an input in Fourier space and outputs
the anti-transforms in the physical space.

• atrasf2 parete(uR,uT): performs the transformation of a plan.

If we discretize the derivative at the points of the wall (1,...,Ny) we get

ϕ̂2 − ϕ̂0

y2 − y0
= Sc

√
Gr

[
CMphi

[
̂(1 + ϕ)∂yH

]
1
−

(
St(ref)

Sc
√
Gr

)[
̂(1 + ϕ)∂yT

]
1

]
(4.60)

ϕ̂Ny+1 − ϕ̂Ny−1

yNy+1 − yNy−1
= Sc

√
Gr

[
CMphi

[
̂(1 + ϕ)∂yH

]
Ny

−

(
St(ref)

Sc
√
Gr

)[
̂(1 + ϕ)∂yT

]
Ny

]
(4.61)

from which we find the ”extra domain” points (0, ..., Ny+1) that are useful for having the wall
derivatives (which are used to solve the equation):

ϕ̂0 = ϕ̂2 − Sc
√
Gr

[
CMphi

[
̂(1 + ϕ)∂yH

]
1
−

(
St(ref)

Sc
√
Gr

)[
̂(1 + ϕ)∂yT

]
1

]
(y2 − y0) (4.62)

ϕ̂Ny+1 = ϕ̂Ny−1 + Sc
√
Gr

[
CMphi

[
̂(1 + ϕ)∂yH

]
Ny

−

(
St(ref)

Sc
√
Gr

)[
̂(1 + ϕ)∂yT

]
Ny

]
(yNy+1 − yNy−1)

(4.63)

The subroutine, condcont are implemented as

• I call the subroutine atrasf3 parete to get the values of ϕ in the physical space on the
wall: atrasf3 parete (phi,phif1,phif2)

• I call the subroutine atrasf3canale to get the values of T in the physical space in 3D (not
only on the walls): atrasf3canale (T,Tf)

• I call the subtoutine der y to calculate the long y derivative of the 3D matrix of T in
physical space: der y (Tf,dTfy)

• I calculate the product of ϕ in the lower wall with the magnetic field and with the gradient
of T (put in the variable prod through a double for loop, to be sure to consider only the
indices corresponding to the walls also in the 3D matrix of T)
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• anti-transform the product and determine the value of ϕ̂0

• I repeat the last two points for the upper wall.
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Chapter 5

Results

We now proceed to the analysis of the results obtained from the CFD simulations: we will describe
and comment five different configurations, where the magnetic field, within the considered domain,
be the thing that will mainly vary. The different cases, therefore, consist of a different geometric
arrangement of the magnets that interface to the walls.
The configurations tested reflect some of the simplest conditions to be experimentally simulated
in the laboratory.

5.1 Basic configuration

Figure 5.1: 3D visualization of the calculation domain and reference axes in the basic configuration.
The red wall is the one at T0 + ∆T/2 while the blue wall is at T0 −∆T/2. The magnets are
represented by the gray blocks whose magnetic field, perpendicular to the walls, penetrates into
the calculation domain .
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Figure 5.2: Domain scheme seen from above (section in the horizontal plane (y, z) showing the
position of the magnets.) Parameters: Lz = 2 (domain 2π long in direction z, fz = 0.4 (40% of
the domain covered by the magnets), ym = 0.4 (distance of the magnetic plates from the walls.)
The grid has 257 unevenly spaced points in the y-direction and 128 evenly spaced points in the
z-direction.

The position of the magnets shown in fig 5.1 and in fig 5.2 creates a magnetic field shown in fig.
5.3.
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Figure 5.3: Visualization of the main figures of the magnetic field, with reference to the configu-
ration of the base case.
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Looking at the first image, we can see that the modulus of H is maximum where the edges of the
magnets are located (z ≈ 1.2 and z ≈ 5 ) and, consequently, the whole area in front of the edges,
even if the magnetic field drops in intensity, is characterized by higher values of H than the rest
of the cavity.
The area in front of the body of the magnets, instead, (0 < z < 1.2, 5 < z < 2π) is characterized
by lower values starting from the walls; moving towards the center of the domain (y = 0) the
magnetic field decreases its intensity up to H=0. These points with null values of H are due
to the field lines coming out of the magnets: they will have only vertical component, equal in
form, but opposite in sign. The other area where H is null,it is located in the exact center of the
computation domain (y = 0 and z = π). In general, the whole central part of the cavity shows
very low H values up to the point of being canceled; this could be explained by the progressive
thinning of the field lines up to their total absence at that point, in fact both Hz and Hy are zero.
With reference to the variation of the H module along the z-axis, starting from z = 0 and moving
on along z-direction, we observe how |H| increases in intensity, and, once the maximum peak
is reached, it decreases up to the center of the wall(z = π) where it settles at constant values.
This trend is showed by the graph ∂H/∂z, where the increasing-modulus zone has values of
∂H/∂z > 0. Where the peak is located, we have ∂H/∂z = 0, as well as where the module of H
remains almost constant. Where the modulus of H is decreasing, we observe a blue zone in the
graph of ∂H/∂z = 0 (1.2 ≤ z ≤ π). This behavior is repeated symmetrically starting from z = π
up to the end of the domain.
We can observe how |H| varies along the y-axis: starting from the center of the domain (y = 0),
values are gradually intensified as we move towards the walls, with peaks at the edges. Also this
trend is highlighted in the graph ∂H/∂y: the central zone for example has very low values of
∂H/∂y because |H| does not register any relevant variation.
The graphs of Hz and Hy highlight how the field lines develop within the domain: in particular,
we can see how, for what concerns Hz, both for left and right magnets, the lines are oriented
towards the center of the domain, because they need to close on themselves and this can only
happen in the center of the domain where no source is present. For what concerns Hy in the area
in front of the magnets, the vertical component of the magnetic field is always outgoing from the
latter and points towards the axis of symmetry (y = 0). Moving beyond the edges, the vertical
component changes direction and the field lines are oriented towards the walls of the calculation
domain.
We now proceed with the visualization of the results representing the configuration obtained after
the transient phase of the system, that is after approximately 10 seconds of simulation.
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Figure 5.4: Visualization of T ∗,ϕ and u∗ after 10 seconds.The plane considered is the yz plane
positioned halfway up the domain perpendicular to the magnets arranged in the basic configuration.

The figure 5.4 show how the T ∗, ϕ∗ and u∗ behave once the system transient phase has passed.
It is immediately observed that the T ∗ is transported by convection and diffusion within the
calculation domain: in particular, the areas with major T ∗ are located at the extremes of the
area under examination, or in front of the magnets placed on the warm wall. The other area that
sees an increase of T ∗, compared to the starting configuration, is placed exactly in the middle in
correspondence with to the internal edges of the magnets positioned at y = 1. In front of the
internal edges of the magnets placed on the cold wall (y = −1),there’s a zone which is developed
instead at T ∗ lower than the starting configuration.
The third image in figure 5.4 shows the velocity component u∗. The velocity in question is the
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one that develops along the vertical x-axis of the system, therefore it is subject only to buoyancy
forces, since the gradient of H along the x-axis is zero: the magnetic force does not act in this
direction. The clear similarity between the behavior described above for the T ∗ and the one
observed for the speed u∗ is immediately evident. The zones where the T ∗ turns out to be higher
are zones where the flow density is smaller, so it is there that the ascending modes of the flow
are localized (u∗ > 0). On the opposite side, zones at minor T ∗ imply a greater density and,
therefore, the flow moves in the direction of negative x (u∗ < 0). In the momentum equation that
calculates this velocity component, the concentration of particles is also at stake: where we have
a higher concentration, the flow will be heavier and, therefore, tend to sink, compared to areas of
lower concentration. In our case, however, the ϕ∗ turns out to be quite uniform and above all too
small to be able to heavily influence the flow along the x-axis. The velocity is higher than in all
other directions and this suggests that this type of motion is predominant inside the cavity, but
it is not the only one.

Figure 5.5: Visualization of v∗ on a yz plane placed a x = π, perpendicular to the walls, after the
simulation has completed the transient, or about 10 seconds later. The image refers to the base
configuration

Figure 5.6: Visualization of w∗ on a yz plane placed a x = π, perpendicular to the walls, after
the simulation has completed the transient, or about 10 seconds later.The image refers to the
base configuration
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The figures 5.5 and 5.6 show the velocity components v∗ and w∗ which act on a plane per-
pendicular to the walls.
Looking at these velocities, we note that the central area of the cavity between −0.5 < y < 0.7 is
characterized practically only by the component v∗ that moves the flow between the two walls:
the velocity in z-direction instead develops mainly close to the walls.
Analyzing what happens at the center of the examined yz plane, we observe that a blue zone is
generated where the velocities have negative values, and this indicates that the flow generated is in
the direction of the cold wall at y = −1. The values found in this point are comparable, in module,
to the velocity observed in the two adjacent red zones, where the flow has opposite direction and,
therefore, it is pushed towards the warm wall (y = 1). This trend can partially be justified by
observing the momentum equation that calculates the v∗. The terms due to buoyancy are no
longer at stake, but the magnetic force must be taken into account Fy = −CM (1 +ϕ∗)T ∗∂H∗/∂y
whose contribution is dominant in the equation.
Combining the signs of the T ∗ and of ∂H/∂y we obtain the verse where the Fy acts, and such
verse is exactly the same that is found in the velocity v∗.
The flow that moves from the central zone to the wall (y = −1) must necessarily skirt it, and, in
fact, the only component of velocity needed is in the z-direction, while the v∗ has values very close
to zero. The descending flow will, therefore, go to the right (red zone) and to the left (blue zone)
with practically identical speeds in form and opposite in sign. To decide why the red zone at w∗

positive is in localized in z = 4, rather than in z = 2, we had to calculate the magnetic force term
Fz = −CM (1 +ϕ∗)T ∗∂H∗/∂z. In both areas the T ∗ is less than zero, so the Fz changes sign due
to the fact that ∂H∗/∂z has the opposite sign. After skirting the wall, the flow meets the area
where the internal edges of the magnets are located: the values of ∂H/∂y are greater than in the
center of the domain and, combined with a negative T ∗, generate a positive Fy which pushes the
flow towards the warm wall (y = 1). Once it reaches the upper wall, as happened previously, the
incoming flow will be diverted according to the configuration assumed by the magnetic field and
will develop the flow with v∗ negative at the center of the channel and at the ends of the domain.
Overall, within the cavity, are established 4 different vortices that occupy the entire available
width. The two innermost are located for 1.5 ≤ z ≤ 3.1 and for 3.1 ≤ z ≤ 5, while the two outer
vortices are positioned for 0 ≤ z ≤ 1.5 and for 5 ≤ z ≤ 6.2.
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We proceed now with the analysis of the Φ magnetic flux calculated on different planes. A first
analysis involves the calculation of the flux Φxy on different planes perpendicular to the z -axis,
while in a second analysis the calculated flux is Φxz for planes perpendicular to the y -axis.
Following what is written in chapter 1:

Φxy =

∫
A

(1 + ϕ) ∗ w ∗Hz dxdy (5.1)

Φxz =

∫
A

(1 + ϕ) ∗ v ∗Hy dxdz (5.2)

Where A is the surface of the plane. All values are considered in the form.

Figure 5.7: Magnetic field flow trend |Φxy| calculated on different planes with time variation

Once past the transient, or after about 10 seconds of simulation, we realize how the planes placed
in z = 0.8 z = 1.6 z = 4.8 and z = 5.6 are the ones characterized by values of the average
magnetic field flux that are clearly higher than the other planes located more centrally in the
calculation domain. Referring to the figure 5.6 we note that the planes placed in correspondence
of the major velocity values w∗, are those which show a minor average flow; this happens because
regardless of the values visible from the plots, the strong symmetry means that there is as much
outgoing as it is incoming, which brings the average on the plane to be much smaller than in
other parts. The planes that see a greater flow are those placed in very asymmetrical areas in
relation to the y-axis, where the velocity w∗ in one direction is not balanced by an equal speed in
the opposite direction, which is clearly visible for z = 0.8 z = 5.6.
Also contributing to the flow calculation is the component in z-direction of the magnetic field, or
Hz. From the figure 5.3 it is also possible to observe this aspect: the planes that show a greater
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average flow pass through areas where the magnetic field has higher values than the remaining
floors taken in the central area of the domain.
We proceed now with the analysis of the magnetic field flow perpendicular to the different xz
planes considered.

Figure 5.8: Magnetic field flow trend |Φxz| calculated on different planes with time variation

With the planes placed perpendicular to the y-axis, we can observe two positions that show an
higher average magnetic field flow than all those considered: this happens for y = 0.4 and y = 0.7.
The principle is the same as what is written for the xy plans. A greater flow is observed where it
is positioned at the turn of an imbalance between the directions of the velocities v∗ perpendicular
to the planes.
From fig. 5.5 we notice in fact how the plane placed at y = 0.7 manages to incorporate the upper
part of the red zone at a speed of v∗ positive, without being traversed by velocities v∗ that are
too negative (the zones blue are not touched by the plane). Although the plane is surely crossed
by negative speeds, these have values too low to be able to balance positive speeds. Also it is
important to keep in mind the configuration of the magnetic field component Hy.
Any plan considered for y < −0.7 is characterized by very small rates v∗ and, consequently, sees
a similarly small magnetic field flow, although the component Hy has considerable value in that
area.
The behavior of the plane at y = 0.4 is interesting. This plan crosses all the areas of the domain
characterized by high positive and negative velocities v∗ and we would expect that such velocities,
counterbalancing each other, would cancel the medium magnetic field flow: this does not happen
because the velocity directions, combining with Hy, generate a flow |Φxz| which turns out to be
positive for most of the considered plane; that’s why z=0.4 turns out to be an area to be taken
into account. In this analysis, a plan with y = 0 was not inserted because Hy is zero.
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5.2 Configuration 1

Figure 5.9: 3D visualization of the calculation domain and reference axes in the first configuration.
The red wall is the one at T0 + ∆T/2 while the blue wall is at T0 −∆T/2. The magnets are
represented by the gray blocks whose magnetic field, perpendicular to the walls, penetrates into
the calculation domain.

Figure 5.10: Domain scheme seen from above (section in the horizontal plane (y, z) showing the
position of the magnets.) Parameters: Lz = 2 (domain 2π long in direction z, fz = 0.4 (40% of
the domain covered by the magnets), ym = 0.4 (distance of the magnetic plates from the walls.)
The grid has 257 unevenly spaced points in the y-direction and 128 evenly spaced points in the
z-direction.

Placing the magnets with the geometry highlighted in figure 5.9 and figure 5.10, generates a

85



5 – Results

magnetic field inside the channel shown in figure 5.11.
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Figure 5.11: Visualization of the main figures of the magnetic field, with reference to the
configuration of the first case.
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As already observed for the previous case, |H| is at its maximum on the part of the wall where
the edges of the magnets interface, while this value is slightly lower in those areas that interface
with the magnets’ body. The regions where H = 0 are on the central axis of the domain (y = 0),
where a magnet ends and the next one begins. The area placed in front of the magnets, on the
other hand, does not show any points with null values, but H is maintained with a decreasing
trend as one moves away from them. Observing the variation of the H along the z-axis, in
correspondence of the walls and starting from z = 0, there is an increasing trend (∂H/∂z > 0)
up to the maximum of H where it is recorded the minimum of ∂H/∂z. After that, we observe a
decrease of the magnetic field value correspondent to a negative z-direction gradient (blue). Once
in the middle of the domain, we have an area where H remains constant and in fact ∂H/∂z is
approximately equal to zero. The situation is mirrored considering the second part of the domain
(π < z < 2π). No longer concentrated on the walls, but in the central area of the cavity, starting
from the left, H first decreases until it reaches zero, and then grows again to settle at a constant
value up to half of the domain: for π < z < 2π the behavior is symmetrical to what just described.
The graph of ∂H/∂z precisely mirrors this trend: the first blue zone starting from the left is the
first zone with decreasing magnetic field, the null value point is indicated at the point where the
blue and red zone meet a (y = 0), after that the growth of H in the z-direction is highlighted by
the red zone followed by a central part with null values (H=cost).
Focusing, instead, on the variation of H in the y-direction, starting from y = 0, we observe a
general growth of his the value as we approach the walls: this reflects what is visible in the graph
of ∂H/∂y with higher values of gradients at the edges of the magnets.
By looking at the individual components it is possible to deduce how the field lines behave: for
example, the alternation in the direction of Hz that is found in the lower magnet (y = -1) is
caused by the necessity of the field lines to close on themselves and this can happen only if they
are outside the magnet. Talking about the component Hy, the area that corresponds to the
central magnet positioned in y = −1, shows values that are greater than zero; this is because
the vertical component of the field lines, coming out of the magnet, and finding no obstacle
in front of them, develop along the entire width of the channel up to the opposite wall. Near
the edges of the upper magnets, the vertical field lines of the latter are added to those coming
from below, leading to higher values than the ones in the central zone of the channel. The same
as what has been explained so far occurs for the vertical field lines coming out of the upper magnets.
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We now proceed with the display of the results representing the configuration obtained after the
system transient phase, that is after approximately 10 seconds of simulation.

Figure 5.12: Visualization of T ∗,ϕ and u∗ after 10 seconds.The plane considered is the yz plane
positioned halfway up the domain perpendicular to the magnets arranged in the first configuration.

The figure 5.12 shows how the T ∗, ϕ∗ and u∗ behave once that the system transient phase is over.
Looking at the convection and diffusion transport of the T ∗, we can observe two main zones
where there is an increase of the T ∗ respect to the initial condition, and these zones propagate
within the corresponding calculation domain of the inner edges of the magnets placed on the hot
wall (y = 1). Instead, there is a decrease of T ∗ from the starting configuration near to the body
of the single magnet placed on the cold wall and at the sides of the domain.
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The third image of figure 5.12 shows indeed how the velocity component u∗ behave. The velocity
in question is the one which develops along the vertical x- axis of the system, therefore it is
subject only to buoyancy forces: the magnetic force does not act in this direction. Also in this
case it is clearly, as in the previous one, the correlation that exists between the trend ofT ∗ and of
u∗. In the presence of higher T ∗, the flow density tends to decrease and therefore is transported
upwards with speed u∗ positive (red zones). Conversely, a lower T ∗ implies a higher mixture
density which causes the moving of the flow in the direction of negative x (blue zones). Combining
these two trends, the convective motion that sets up parallel to the magnets is evident: in front
of the central magnet, positioned on the cold wall, an entire flow descent area will be observed,
as will be seen in front of the upper magnets. The areas where the flow passed by the cavity in
the x-positive direction are instead positioned where the edges of the magnets interface. Bearing
in mind the qdm equation calculated for u∗, even the ϕ∗ would contribute to generating vertical
convective motions: where the particle concentration is higher, the flow tends to be heavier and,
therefore, to sink more easily than in other parts of the domain. In all cases in analysis, including
this one, the concentration of particles is still too small to let that the T ∗ can influence alone the
motion in the x-direction.

Figure 5.13: Visualization of v∗ on a yz plane placed a x = π, perpendicular to the walls, after
the simulation has completed the transient, or about 10 seconds later. The image refers to the
first configuration.

The figures 5.13 and 5.14 show the velocity components v∗ and w∗ acting on a plane perpendicular
to the walls. Combining the v∗ and w∗ components, we can see a series of convective motion
along the entire width of the cavity. Starting to analyze the only component of v∗ of the velocity,
we immediately notice how the motions along the direction y occupy almost all the thickness of
the cavity extending for −0.6 ≤ y ≤ 0.7. In front of the central magnet, at around z ≈ 3, the flow
is pushed towards the warm wall with a positive speed v∗, to then be transported again towards
the cold wall at the two blue areas at v∗ negative located in z ≈ 1.5 and z ≈ 4.8. The reason
why the velocity between the walls has this trend has to be found in the momentum equation
that calculates the v∗. The terms, due to floating,are no longer at stake, but the magnetic force
must be taken into account Fy = −CM (1 + ϕ∗)T ∗∂H∗/∂y whose contribution is dominant in the
equation. Where a positive Fy works, We will have a positive v∗ rate and vice versa: by combining
the T ∗ and ∂H/∂y signs, the sign characterizing the magnetic force will indicate the direction in
which the fluid motion is expected. Once the flow reaches the walls, the v∗ is reduced and we
mainly observe the action of the component w∗ which will make the flow deviate respectively
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Figure 5.14: Visualization of w∗ on a yz plane placed a x = π, perpendicular to the walls, after
the simulation has completed the transient, or about 10 seconds later. The image refers to the
first configuration.

towards the positive z (red zone) and towards the negative z (blue zone). The reason why the flow
moves towards in a positive z-direction rather than in a negative one, is also justified in this case
by the magnetic force Fz calculated as Fz = −CM (1 +ϕ∗)T ∗∂H∗/∂z and acting in this direction.
If you look at any point in the domain, taking the sign of T ∗ and ∂H∗/∂z we will immediately
notice that a positive Fz will match a red zone to w∗ major of zero and vice versa. Combining
the speeds just described, 4 different convective vortices that occupy the calculation domain can
be found. The two most external vortices are localized for 0 ≤ z ≤ 1.6 and for 4.8 ≤ z ≤ 2π and
considering the values of the speeds in play, they are surely the two strongest motions detectable
in the plan. The other two vortices, slightly weaker in intensity, are positioned more centrally
and are placed for 1.6 ≤ z ≤ π and for π ≤ z ≤ 4.8.
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We proceed now with the analysis of the Φ magnetic flux calculated on different planes. A first
analysis involves the calculation of the flux Φxy on different planes perpendicular to the z -axis,
while in a second analysis the calculated flux is Φxz for planes perpendicular to the y -axis.
Following what is written in chapter 1:

Φxy =

∫
A

(1 + ϕ) ∗ w ∗Hz dxdy (5.3)

Φxz =

∫
A

(1 + ϕ) ∗ v ∗Hy dxdz (5.4)

Where A is the surface of the plane. All values are considered in the form.

Figure 5.15: Magnetic field flow trend |Φxy| calculated on different planes with time.

Analyzing different planes perpendicular to the z- axis, only those located in z = 0.8 and z = 5.6
show values of the average magnetic field flux that are clearly higher than the others.
Referring to the figure 5.14 we notice how the planes crossed by a greater medium magnetic field
flow are placed at points where the perpendicular velocity component, incoming or outgoing, is
not counterbalanced by an equally strong speed, but of opposite sign. Furthermore, we must also
consider the component in the z- direction of the magnetic field H: positioning a plane where Hz

is large can offset a not very high w∗ and vice versa. The best of the selected plans combine both
solutions as they cross both w∗ and Hz relevant zones. On the other hand, the plane at z = 3.2
not only traverses a zone where velocity w∗ is almost nothing, but where the component Hz is
also zero.
In general, having in mind how the magnetic field is combined, the planes where the speed is
mostly incoming or outgoing are those to consider optimal regardless of the value assumed by the
latter.
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We proceed now with the analysis of the magnetic field flow perpendicular to the different xz
planes considered.

Figure 5.16: Magnetic field flow trend |Φxz| calculated on different planes with time.

Once the transient has elapsed, we observe how the plans to show a medium magnetic field flux
are greater than those placed at y = 0, y = 0.4 and y = 0.7. The basic principle is the same
as written for the xy plans. A greater flow is observed where it is positioned at the turn of an
imbalance between the directions of the velocities v∗ perpendicular to the planes.
From figure 5.13 we note, in fact, how the plane placed at y = 0.7 succeeds in capturing the
two outer zones at positive speed v∗, but passes over the blue zones at negative speeds without
considering them. The v∗ that passes through this plane is therefore all positive. The factor that
prevents us from having an even higher flow is unfortunately the component Hy of the magnetic
field that presents a different sign moving on the plane under examination. As for y = 0 and
y = 0.4, although the speeds are both incoming and outgoing along the whole domain, such a
high flow can only be explained by observing the values of these perpendicular speeds: the v∗

negative are so much higher than the positive ones and this can cause that the average flow in
modulus is high.
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5.3 Configuration 2- whole magnet

Figure 5.17: 3D visualization of the calculation domain and reference axes in the second configu-
ration (whole magnet). The red wall is the one at T0 + ∆T/2 while the blue wall is at T0−∆T/2.
The magnets are represented by the gray blocks whose magnetic field, perpendicular to the walls,
penetrates into the calculation domain .

Figure 5.18: Domain scheme seen from above (section in the horizontal plane (y, z) showing the
position of the magnets.) Parameters: Lz = 2 (domain 2π long in the direction z), fz = 0.4 (
40% of the domain covered by the magnets for y = −1), fz = 0.8 (80% of the domain covered by
the magnets for y = 1), ym = 0.4 (distance of the plates magnetic from the walls). The grid has
257 unevenly spaced points in the y-direction and 128 evenly spaced points in the z-direction.
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Figure 5.19: Visualization of the main figures of the magnetic field, with reference to the
configuration of the second case with whole magnet.
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An arrangement such as this one means that the space between the magnets facing the upper
wall is very small, and therefore the field leaving the edges necessarily suffers the presence of the
field lines generated by the adjacent magnet. This means that the peak of H is located slightly
off-center to the empty space left. For the lower magnet, however, the peaks are located exactly
on the edges, with a progressive decline of intensity as it converges towards the center of the
latter. There are 3 different zones where H = 0 and in general all these points are located beyond
the centerline of the domain: this is probably due to the fact that the upper magnets, being so
close, generate field lines that contrast with each other and therefore their strength decreases, to
the advantage of the lower magnet whose magnetic field is free to develop without interference.
Let’s comment the trend of H along the z -axis: starting from the left, while at the center we
observe a progressive decrease up to the first point with zero value, on the walls there is a
progressive increase in H which will then lead to the peaks described above. In the central part,
after having reached the first point with zero value, there is a growth again, followed by another
decrease of H which will lead to the second point with zero value. This decrease in H also involves
the walls of the domain as we move from the peaks to areas with lower values.
The description is symmetrical starting from z = π until the end of the domain and is displayed
in the graph of ∂H/∂z. The first decrease, which leads to the first minimum point of H is found
in the first blue zone on the left; after which the consecutive increase and decrease of H are
highlighted by the red zone (positive gradient) and the blue zone (negative gradient). In general,
few points are found where H remains constant, in fact zero gradient areas are only at the ends
of the domain mainly.
The graph of ∂H/∂y shows how H varies by moving along the y-axis: starting from the areas
where the null values are located, the magnetic field increases by moving towards the walls, with
intensity peaks located in the edges. In this case, most of the cavity is affected by gradients
directed towards the lower wall (blue).
Let’s now look at the graph of Hz: on the upper wall we can count 4 different changes of direction
of the horizontal component and each peak corresponds to a corner of a magnet. The first one
encountered from the left highlights the end of the first magnet, whose outgoing field lines, having
to close in the adjacent empty space, are directed towards the positive z (red). The second peak
indicates the beginning of the upper central magnet, whose outgoing field lines, are oriented in
the negative direction of the z (blue) given their need to close again through the only available
gap. Proceeding to the right, the horizontal component decays, since mainly central lines with
vertical components start from the central part of the magnet. The above is reflected exactly
for the other part of the domain. Inside the cavity a horizontal component of H is observed
practically very close to zero where there are no magnets (lower left), whereas, the blue zone
located at zat2 is due to the two central magnets, whose field lines coming out of those edges
have a concordant sign and therefore create this area with values slightly above zero. The central
part has zero Hz because the field lines are mostly vertical. The same reasoning applies to the
next part of the domain.
The vertical component of the magnetic field is easier to read: as it exits from the external
magnets, the component is directed downwards and without encountering obstacles it occupies
the entire cavity (blue); in the corners the sign inversion is localized where from negative becomes
positive going to increase the value of Hy located in the gaps between the magnets. As for the
central magnets we can say that from the lower one, the field lines are outgoing and directed
upwards (red) until they meet the outgoing lines from the opposite magnet (blue), cancelling
each other.
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We now proceed with the display of the results representing the configuration obtained after the
transient phase of the system, ie after about 10 seconds of simulation.

Figure 5.20: Visualization of T ∗,ϕ and u∗ after 10 seconds.The plane considered is the yz
plane positioned halfway up the domain perpendicular to the magnets arranged in the second
configuration whit the whole magnet.

The figure 5.20 shows the behavior of T ∗, ϕ∗ and u∗ after about 10 seconds from the starting of
the simulation. In particular, the first image shows how the T ∗ is transported by convection and
diffusion within the calculation domain. Higher temperature zones are developed starting from
the innermost edges of the upper magnets and from the whole central magnet which extends to
the center of the cavity. In opposition to this movement, in front of the edges of the single magnet
placed in y = −1 and at the edges of the domain, areas will be generated where the T ∗ is lower
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than the initial condition. Let us now analyze the component u∗ of the velocity which develops
along the axis x parallel to the walls and is visible in the third image of figure 5.20. In the
momentum equation that calculates this component, buoyancy terms are the dominant ones, and
these terms involve both the T ∗ and the concentration ϕ∗. The term that involves concentration
does not play a fundamental role, since the particles dispersed in these first simulations are
very few and tend to concentrate on the cold wall: in this area I therefore expect a heavier
and descending fluid with a negative velocity u∗. As was for the other two cases previously
described, there is a clear similarity between the temperature and u∗ configurations since, where
the temperature is higher, the density of the mixture is lower and therefore the flow will tend
to be pushed upward inside the cavity. Most of the y-positive domain is therefore affected by a
movement in the direction of positive x that is established in three specific areas: frontally to the
smaller magnet and in correspondence with the internal edges of the magnets. By contrast, most
of the y < 0 reactor area will see the flow move in the negative x-direction since the lower T ∗ makes
the flow density higher and the higher particle concentration contributes to establish a downward
flow of the flow. Combining the two effects we can say that the flow will be characterized by a
rising motion in an area in front of the central magnet and the inner edges of the side magnets.
The flow will complete its convection motion by descending into the two areas located between
the upper magnets and above all at the ends of the domain.

Figure 5.21: Visualization of v∗ on a yz plane placed a x = π, perpendicular to the walls, after
the simulation has completed the transient, or about 10 seconds later. The image refers to the
second configuration with whole magnet.

Figures 5.21 and 5.22 show the velocity components v∗ and w∗ that develop on a plane per-
pendicular to the walls of the cavity. The convective motions that develop on the plane seem
to be attracted to the wall that has more magnets (y = 1), thus bringing the lower half of the
cavity practically without any significant motion. To understand the flow movements that are
established in the cavity, we first observe the component v∗ of speed, responsible for the movement
of the flow between one wall and the other. Where the central magnets are located, that is, in
z ≈ 3, the v∗ negative (blue zone), move in flow towards the cold wall as it happens in other two
areas that are identified for z ≈ 1 and for z ≈ 5.2 and these areas coincide with the inner edges
of the larger magnets placed on the warm wall. The two areas with positive velocities v∗, where
the flow is transported to the warm wall, are observed for z ≈ 2 and for z ≈ 4 and are areas
adjacent to the magnets placed centrally. This trend is explained by observing the momentum
equation that calculates the component under examination: the contribution that determines a
positive rather than a negative speed is the magnetic volume force acting in the y- direction, i.e.
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Figure 5.22: Visualization of w∗ on a yz plane placed a x = π, perpendicular to the walls, after
the simulation has completed the transient, or about 10 seconds later. The image refers to the
second configuration with the whole magnet.

Fy = −CM (1 + ϕ∗)T ∗∂H∗/∂y. Looking at any point in the plane, and combining the signs of
the T ∗ and of ∂H/∂y at that point, we get the sign of the magnetic force, which directly affects
the v∗: where there is a positive Fy, the flow will be pushed towards the hot wall and vice versa.
Looking at the component w∗ of the velocity we can have a clearer idea of the overall motion
that takes place on the plane: the most intense translational motions in the z- direction are
established mainly close to the warm wall. Throughout the remainder of the domain, velocities in
the z- direction are much smaller but equally fundamental in generating the different convection
motions that appear. The sign of these speeds is also in this case attributable to the magnetic
force acting in the z- direction, ie Fz = −CM (1 +ϕ∗)T ∗∂H∗/∂z. For example, looking at fig 5.22,
and considering the red zone in z ≈ 5 we notice that the T ∗ at that point is positive, but the
value of ∂H/∂z is negative. This combination leads to a positive Fz which pushes the flow to the
right, and in fact the speed w∗ at that point is directed to the right. This example can be traced
back to the entire range of motion found on the plane.
At this point the motions that develop perpendicularly to the magnets are clearer. Starting
from the center of the domain the first two vortices that are observed go from 2 ≤ z ≤ π and
from π ≤ z ≤ 4.3, while adjacent to these first two, they develop as many for 1.2 ≤ z ≤ 2 and
4.3 ≤ z ≤ 5.5 . All 4 vortices are mainly confined to the half of a cavity that interfaces with the
warm wall.

99



5 – Results

We proceed now with the analysis of the Φ magnetic flux calculated on different planes. A first
analysis involves the calculation of the flux Φxy on different planes perpendicular to the z- axis,
while in a second analysis the calculated flux is Φxz for planes perpendicular to the y -axis.
Following what is written in chapter 1:

Φxy =

∫
A

(1 + ϕ) ∗ w ∗Hz dxdy (5.5)

Φxz =

∫
A

(1 + ϕ) ∗ v ∗Hy dxdz (5.6)

Where A is the surface of the plane. All values are considered in the form.

Figure 5.23: Magnetic field flow trend |Φxy| calculated on different planes with time.

Let us now analyze how much the magnetic field flux is valid on different xy planes taken at
different positions along the z- axis. As they have been calculated, we must pay attention to the
velocity component perpendicular to the plane itself, ie the w∗ but we must also consider the z-
direction component of the magnetic field: the right compromise between these two quantities
defines the optimal plane through which we observe the greatest flow Φxy. For example, among
the plans examined, those placed at z = 1.6, z = 2.4, z = 4 z = 4.8 are certainly a good choice.
Looking at the figure 5.22 it is possible to observe how the velocities w∗ that cross them are
practically the most important ones inside the domain, and to this we add that the magnetic
field in the z- direction assumes values close to the maximum ones found. Furthermore, as noted
above, not only are the planes crossing zones at w∗ high, but the incoming or outgoing speed is
not counterbalanced at any other point crossed by these planes.
All the other planes are located in areas of the domain where, due to the low perpendicular speed
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value, they are not very suitable for obtaining an important magnetic field flow.

Figure 5.24: Magnetic field flow trend |Φxz| calculated on different planes with time.

Exactly as done before, let’s now analyze how much the magnetic field flux is valid on different
planes xz taken in different positions along the y- axis. The optimal plan for observing a flow
Phixz considerable is the one that combines, in the best possible way, both the values of the
magnetic field and of the velocity component, perpendicular to it, ie Hy and v∗. Consequently,
placing oneself in a plane where I have strong perpendicular velocities can be unproductive if
Hy is very low and vice versa. Moreover, as already stated above, it is necessary that the speed
perpendicular to the plane, however strong it may be, must not be counterbalanced by a velocity
of similar intensity but of opposite sign. For an xz plan this is the main difficulty, to be able
to consider only an incoming or outgoing part of the speeds without incorporating the entire
convective motion. With the exception of only one clearly worse plan, y = −0.9, all the others,
register a flow of magnetic field in the same order of magnitude; among these, the plans at y = 0.7
and at y = 0.4 are slightly better. Looking at figure 5.21, the aforementioned foreground laps
exclusively the upper zone of the v∗ positive flow, and sees speeds entering perpendicular to it
whose value is not completely counterbalanced by as many speeds. As for the plane at y = 0.4 it
is true that it crosses an area where positive and negative speeds are counterbalanced, but this
does not happen for the central zone at v∗ < 0, this can explain the value of the maximum of the
magnetic field flow detected.
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5.4 Configuration 2- half magnet

Figure 5.25: 3D visualization of the calculation domain and reference axes in the second configu-
ration (half magnet). The red wall is the one at T0 + ∆T/2 while the blue wall is at T0 −∆T/2.
The magnets are represented by the gray blocks whose magnetic field, perpendicular to the walls,
penetrates into the calculation domain.

Figure 5.26: Domain scheme (section in the horizontal plane (y, z) showing the position of the
magnets.) Parameters: Lz = 2 (domain 2π long in the direction z), fz = 0.4 ( 40% of the domain
covered by the magnets for y = −1), fz = 0.6 (60% of the domain covered by the magnets for
y = 1), ym = 0.4 (distance of the plates magnetic from the walls). The grid has 257 unevenly
spaced points in the y-direction and 128 evenly spaced points in the z-direction.
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Figure 5.27: Visualization of the main figures of the magnetic field, with reference to the
configuration of the case 2 with a half magnet.

Placing the magnets with the geometry highlighted in fig. 5.25 and fig. 5.26, the magnetic field
that is created inside the channel is shown in fig. 5.27.
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We now analyze a variation of previous configuration (figure 5.26),where the central magnet,
placed on the upper wall, is half that the one used previously; the resulting magnetic field and its
components are shown in fig.5.27.
We immediately observe how the free space between a magnet and the other is doubled compared
to the last configuration, and this allows us to observe more clearly the H’s peaks which do not
contrast as previously. This means that the upper wall has a larger area with values of H that
tend to be higher if compared with the previous case. The stop points are always 3, but this time
the central one is slightly lowered towards the centerline of the channel.
Let’s observe the H’s trend along the z-axis: starting from the left, while at the center we observe
a progressive decrease up to the first point with zero value, on the walls there is a progressive
increase of of H which will then lead to the peaks described before. In the central part, after
having reached the first point with zero value, it’s visible a growth again, but this will be followed
by an another decrease of H which will lead to the second point with zero value. This decrease
in H will also involve the walls of the domain as we move from the peaks to areas with lower
values. The description is symmetrical starting from z = π until the end of the domain and is
well displayed in the graph of ∂H/∂z. The first decrease, which leads to the first minimum point
of H, is found in the first blue zone on the left; after which the consecutive increase and decrease
of H are highlighted by the red zone (positive gradient) and the blue zone (negative gradient).
The graph of ∂H/∂y shows how the H varies by moving along the y-axis: starting from the
areas where the null values are located, the magnetic field is increasing by moving towards the
walls, with localized intensity peaks in the corners. In this case, most of the cavity is affected by
gradients directed towards the lower wall (blue). The upper left and right zones instead of having
∂H/∂y ≈ 0 because of the field lines coming out of the side magnets will have an intensity that
varies a little compared to what happens in the rest of the domain.
Let’s now look at the graph of Hz: on the upper wall we can distinguish 4 different changes
of direction of the horizontal component and each peak corresponds to a corner of a magnet.
The first one encountered from the left highlights the end of the first magnet, whose outgoing
field lines, having to close in the adjacent empty space, are directed towards the positive z
(red). The second peak indicates the beginning of the upper central magnet, whose outgoing
field lines, this time will be oriented in the negative direction of the z (blue) given their need
to close again through the only gap available. Moving to the right, the horizontal component
is decayed, since mainly central lines with vertical components start from the central part of
the magnet. The above is reflected exactly in the other part of the domain. Inside the cavity
a horizontal component of H is observed practically very close to zero where there are no mag-
nets (lower left), whereas, the blue zone located at z ≈ 2 is due to the two central magnets,
whose field lines coming out of those edges have a concordant sign and therefore create this
area with values slightly above zero. The central part has Hz null because the field lines are
mostly vertical. The same reasoning applies to the next part of the domain. The vertical
component of the magnetic field is easier to read: as it exits from the external magnets, the
component is directed downwards and without encountering obstacles it occupies the entire
cavity (blue); in the corners the sign inversion is localized which from negative passes to positive
going to increase the value of Hy located in the gaps between the magnets. As for the central
magnets we can say that from the lower one the field lines are outgoing and directed upwards
(red) until they meet the outgoing lines from the opposite magnet (blue) going to cancel each other.

104



5 – Results

We now proceed with the display of the results representing the configuration obtained after the
system’s transient phase, that is after about 10 seconds of simulation.

Figure 5.28: Visualization of T ∗,ϕ and u∗ after 10 seconds.The plane considered is the yz
plane positioned halfway up the domain perpendicular to the magnets arranged in the second
configuration with half magnet.
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The figure 5.28 shows the behavior of T ∗, ϕ∗ and u∗ after about 10 seconds from the start of
the simulation. In particular, the first image shows how the T ∗ is transported by convection and
diffusion within the calculation domain. From the innermost edges of the upper magnets and
from the whole central magnet there are areas of higher temperature that reach over half of the
cavity. By virtue of this movement, in front of the single magnet’s edge and at the ends of the
domain, there will be generated areas where T ∗ is lower than the initial condition.
Let’s now analyze the component u∗ of the velocity which develops along the axis x parallel to
the walls and is visible in the third image of figure ??. In the momentum equation that calculates
this component, in fact, the buoyancy terms are the absolutely dominant ones, and these terms
involve both T ∗ and concentration ϕ∗. The term that involves ϕ∗, however, will influence in a
less decisive way, since the particles dispersed in these first simulations are very few and tend to
concentrate on the cold wall: in this area we expect an heavier and therefore descending fluid with
negative velocity u∗. There is a clear similarity between the configurations of temperature and
of u∗ since, where the temperature is higher, the density of the mixture is lower and, therefore,
the flow will tend to be pushed towards the high inside the cavity. Most of the domain at y > 0
is, therefore, affected by a motion in direction of positive x that is established in three very
specific areas: in front of the smallest magnet and in correspondence with the internal edges of
the placed magnets. By contrast, most of the y < 0 reactor area will see the flow moving in the
negative x-qdirection since the lower T ∗ makes the flow density higher and the higher particle
concentration contributes to establish a downward flow of the flow. Combining the two effects we
can say that the flow will be characterized by a rising motion in an area in front of the central
magnet and the inner edges of the side magnets. The flow will complete its convection movement
by descending into the two areas located between the upper magnets and above all at the ends of
the domain.

Figure 5.29: Visualization of v∗ on a yz plane placed a x = π, perpendicular to the walls, after
the simulation has completed the transient, or about 10 seconds later. The image refers to the
second configuration with half magnet.
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Figure 5.30: Visualization of v∗ on a yz plane placed a x = π, perpendicular to the walls, after
the simulation has completed the transient, or about 10 seconds later. The image refers to the
second configuration with half magnet.

The figures 5.29 and 5.30 show the velocity’s components v∗ and w∗ that develop on a plane
perpendicular to the walls of the reactor. The first thing that we notice is that, as happened in
the previous case, the wall that has the most magnets (y = 1) seems to attract towards itself
the convective motions developed on the plane, leaving the lower half of the domain practically
without any significant motion. To understand well the motions that are established in the cavity,
we start by observing the velocity’s component v∗, responsible for the flow’s movement between
one wall and the another. Where the smaller magnet has its center, that is, in (z ≈ 3), the v∗

negative (blue zone) move in flow towards the cold wall as it happens in two other areas that are
identified for z ≈ 1.4 and for z ≈ 5 and these zones coincide with the inner edges of the larger
magnets placed in y = 1. The two zones with positive velocities, where the flow is transported
towards the warm wall, are observed for z ≈ 2.3 and for z ≈ 4 and they are adjacent to the
small magnet placed centrally. On the domain’s side, there are also two other areas characterized
by v∗ positive but having lower values than the other described motions. This configuration is
explained by looking at the qdm equation that calculates the component under examination:
the contribution that determines a positive velocity rather than a negative one is the magnetic
volume force acting in the y-direction, ie Fy = −CM (1 + ϕ∗)T ∗∂H∗/∂y. Looking at any point
in the plane and combining the signs of the T ∗ and of ∂H/∂y at that point, we get the sign of
the magnetic force, which directly affects the v∗: where there is a positive Fy, the flow will be
pushed towards the warm wall and vice versa.
To get a complete overview of what is happening it is also necessary to observe the velocity’s
component w∗: the most intense translational motions in the z-direction are established mainly
close to the warm wall, while weaker motions, always in the z-direction are found in the lower
half of the cavity. The sign of these velocities is also attributable to the magnetic force acting
in the z- direction, ie Fz = −CM (1 + ϕ∗)T ∗∂H∗/∂z. For example, looking at figure 5.30, and
considering the blue zone in z ≈ 1.8 we see that the T ∗ at that point is positive as well as the
value of ∂H/∂z. This combination leads to a negative Fz that pushes the flow to the left and, in
fact, the speed w∗ at that point, is direct poured left. This example can be traced back to the
entire range of motion found on the plane.
At this point the motions that develop perpendicularly to the magnets are clearer. Starting
from the center of the domain the first two vortices that are observed go from 2.3 ≤ z ≤ π and
from π ≤ z ≤ 4.1 and develop for 0.8 ≤ y ≤ 0. Laterally to these first two, the same number is
developed for 1.2 ≤ z ≤ 2.3 and for 4.1 ≤ z ≤ 5, but they occupy a space in direction y slightly
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larger. The last two vortices are visible at the sides of the domain for z ≈ 0 and z ≈ 6.2. These
last two, although weaker, occupy a portion of a higher cavity than the others described before,
in fact they are both located for −0.5 < y < −0.7.
We proceed now with the analysis of the Φ magnetic field flow calculated on different planes. A
first analysis involves the calculation of the flow Φxy on different planes perpendicular to the z-
axis, while in a second analysis the calculated flow is Φxz for planes perpendicular to the y- axis.
Following what is written in chapter 1:

Φxy =

∫
A

(1 + ϕ) ∗ w ∗Hz (5.7)

Φxz =

∫
A

(1 + ϕ) ∗ v ∗Hy (5.8)

Where A is the surface of the plane. All values are considered in the form.

Figure 5.31: Magnetic field flow trend |Φxy| calculated on different planes with time.

Let’s now analyze how much the magnetic field flux is valid on different xy planes taken at
different positions along the z- axis. As they have been calculated, both the velocity component
perpendicular to the plane itself, or the w∗, is fundamental, but also the z- direction component
of the magnetic field has to be considered: the right compromise between these two quantities
defines the optimal plane through which we observe the greatest flow Φxy. For example, among
the plans examined, the one placed at z = 3.2 is certainly not a good choice, not for the speeds
that cross it, but because Hz is practically zero. Another factor to keep in mind is the following:
it is not enough just to consider a plane where the perpendicular speeds are maximum, but it is
necessary that the incoming or outgoing w∗ are not counterbalanced by an equally strong speed ,
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but of opposite sign. By virtue of what has been written, once the transition is over, the highest
values are found for the planes placed z = 1.6 and z = 4.8.

Figure 5.32: Magnetic field flow trend |Φxz| calculated on different planes with time.

Exactly as done before, let’s now analyze how much the magnetic field flux is valid on different
planes xz taken in different positions along the y-axis. The optimal plan for observing a
considerable flow Φxz is the one that combines, in the best possible way, both the values of the
magnetic field and of the velocity component, perpendicular to it, ie Hy and v∗. Consequently,
placing oneself in a plane where I have strong perpendicular speeds can be unproductive if
Hy is very low and vice versa. Moreover, as mentioned above, it is necessary that the speed
perpendicular to the plane, however strong it may be, must not be counterbalanced by a velocity
of similar intensity of opposite sign. For an xz plan the main difficulty is to being able to consider
only an incoming or outgoing part of the speeds without incorporating the entire convective
motion. Looking at the graph what said becomes much clearer: a plane placed at y = 0.4 cuts all
the convective motions described in fig 5.29, balancing incoming and outgoing velocities from it.
The plan placed at y = 0.7, always bearing in mind the figure 5.29, manages to touch only the
upper part of the zones to v∗ positive, so the speeds are not counterbalanced: in addition of that,
the component Hy has values very close to the maximum ones found, which leads that position
to be the best for the calculation of Φxz.
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5.5 Configuration 3

Figure 5.33: 3D visualization of the calculation domain and reference axes in the third configuration.
The red wall is the one at T0 + ∆T/2 while the blue wall is at T0 −∆T/2. The magnets are
represented by the gray blocks whose magnetic field, perpendicular to the walls, penetrates into
the calculation domain.

Figure 5.34: Domain scheme seen from above (section in the horizontal plane (y, z) showing the
position of the magnets.) Parameters: Lz = 2 (domain 2π long in direction z, fz = 0.4 (40% of
the domain covered by the magnets), ym = 0.4 (distance of the magnetic plates from the walls).
The grid has 257 unevenly spaced points in the y-direction and 128 evenly spaced points in the
z-direction.
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Figure 5.35: Visualization of the main figures of the magnetic field, with reference to the
configuration of the third case.
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With this configuration, 4 different stopping points are observed: the two central units are
localized by y = 0 for z corresponding to the internal edges of the magnets, while stopping points
in the ends of the domain are higher than the central ones and they are where there is no presence
of magnets either in the upper or lower wall. The form of H is higher in the area immediately in
front of the magnets, but in this case, since these are smaller than in the previous ones, the H’s
peak is not only on the edges but seems to extend over their entire length. It is also noted that
the central area in front of the lower magnet has slightly higher H values than the rest of the
domain.
Observing Hz, the edges of the magnets are immediately captured; from their left end the
horizontal field lines have a negative component (blue): this is because they need to close but
this cannot happen to their right due to the presence of the magnet body. Opposite speech for
the field lines coming out of the corners to the right. The components are always maximum at
the ends of the magnets. For Hy, in the area in front of the lower magnet there is a positive
component (red) because the field lines coming out of the magnet do not find any obstacle due to
the other field lines and, therefore, cover the entire cavity up to the opposite wall. The same
behavior applies to the area in front of the upper magnets, where the vertical component of the
field lines occupies the entire region in question, up to the lower wall: the direction, however, is
negative in this case (blue). The two areas at the top left and top right corresponds, instead, to
the part of the domain not covered by magnets: in this case, we observe a positive component of
Hy because in that area the closing of the field lines coming out from the magnets occurs which
will necessarily be facing upwards.
Observing the trend of H we can deduce the behavior of ∂H/∂z. Starting from the left, although
in z = 0 very different values are found depending on the position y, moving towards the center
of the cavity, shows an increase in the values of H or we have a first zone at ∂H/∂z > 0 (red).
Continuing to the right, to reach the second point with a null value of H it is necessary that
the values of the magnetic field start to decrease, and this is highlighted by the blue zone at
∂H/∂z < 0. In the middle of the channel, that is in z = π, we observe a zone with constant and
higher H values than before, this means that the gradient of H, in z-direction, is positive again
(red zone). The central area at H = cost translates to a ∂H/∂z = 0 (white zone) at the center of
the cavity.
Dwelling on the walls located at y ± 1, each alternation of positive (red) and negative (blue)
gradients correspond to the edge of a magnet: starting from the outside there is an increase of H
up to the first edge to the left (gradient positive ie red) after which decrease along the body of
the magnet (negative gradient ie blue) and again an increase (positive gradient) leading to the
second peak, located on the right edge. This behavior is repeated for all the magnets in question
and, in general, the trend of H and its gradient along z is repeated symmetrically for the part of
domain between π and 2π.
The last graph shows ∂H/∂y and, as in the previous cases, the principle that the vertical
component is greater near the magnets is valid: therefore the gradients, starting from y = 0 will
intensify as you move towards the upper and lower walls with the peaks located on the edges of
magnets.
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We now proceed with the display of the results representing the configuration obtained after the
transient phase of the system, ie after about 10 seconds of simulation.

Figure 5.36: Visualization of T ∗,ϕ and u∗ after 10 seconds.The plane considered is the yz
plane positioned halfway up the domain perpendicular to the magnets arranged in the third
configuration.

Figure 5.36 shows the behavior of T ∗, ϕ∗ and u∗ after about 10 seconds from the start of
simulation. The first image represents how the T ∗ is transported within the calculation domain
by convection and by diffusion. The highest T ∗ zones are established at all the edges of the
magnets placed on the warm wall and occupy about half of the domain. This development, on
the other hand, leads to zones where the T ∗ becomes lower than the initial condition, and this
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happens at the single magnet positioned on the cold wall. Analyzing, instead, the third image
of figure 5.36, we observe how the component behaves in the x-direction of speed. From the
momentum equation for u∗, we deduce that the buoyancy terms are the main responsible of this
motion: in these terms are involved both the T ∗ and the concentration ϕ∗ each with a different
weight in the equation. Between the two, the ϕ provides the smallest contribution since the
concentration of particles is still minimal in our simulations. The second image, however, shows
how the particles tend to accumulate on the cold wall: this implies that surely that area will be
affected by this presence and will be characterized by an average heavier flow than the rest of the
cavity, therefore, this will tend to be pushed downwards into negative x-direction. So, considering
the reduced effect of concentration, the speed component u∗ will be mainly influenced by the T ∗,
in fact, its behavior reflects what happens to the T ∗. Where higher temperatures are observed,
are created areas in which the flow, being warmer and therefore of lower density, will tend to rise
in the positive x-direction (u∗ > 0). Where the temperature is lower, the flow will be denser and
therefore, a downward motion will be generated. At this point the convective motions developed
along the x-axis and above all it, interact with each other as no one is isolated from the others,
but each speed column feeds the counterpart adjacent to it.

Figure 5.37: Visualization of v∗ on a yz plane placed a x = π, perpendicular to the walls, after
the simulation has completed the transient, or about 10 seconds later. The image refers to the
third configuration.

Figures 5.37 and 5.38 show the velocity components v∗ and w∗ on a plane yz perpendicular to
the magnets.
Considering the figure 5.37, we immediately observe how in correspondence of the central magnet
positioned at y = −1 a very large zone is created at v∗ positive, which carries the flow towards
the warm wall. The areas where the flow is transported towards the hot wall are also located at
the upper magnets, but they occupy a smaller portion of the domain compared to the central area.
Interspersed with these areas of v∗ positive, there are different areas where, instead, the negative
speed carries the flow towards the cold wall. This trend is justified observing the momentum
equation that calculates the component under examination: the contribution that determines a
positive speed rather than a negative one is the magnetic volume force acting in the y- direction,
ie Fy = −CM (1 + ϕ∗)T ∗∂H∗/∂y. Looking at any point in the plane and combining the signs of
the T ∗ and ∂H/∂y at that point, we get the sign of the magnetic force, which directly affects the
v∗: where there is a positive Fy, the flow will be pushed towards the warm wall and vice versa.
To get a complete overview of what is happening it is also necessary to observe the velocity’s
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Figure 5.38: Visualization of w∗ on a yz plane placed a x = π, perpendicular to the walls, after
the simulation has completed the transient, or about 10 seconds later. The image refers to the
third configuration.

component w∗ shown in the figure 5.38: the most intense translational motions in the z-direction
are established mainly close to the warm wall and in correspondence of the edges of the single
magnet set at y = −1. Weaker motions but always in the z- direction are found in the lower half
of the cavity for 0 < z ≤ 1.5 and for 5 ≤ z ≤ 2π. The sign of these speeds is, also in this case,
attributable to the magnetic force acting in the z-direction, ie Fz = −CM (1 + ϕ∗)T ∗∂H∗/∂z.
For example, looking at figure 5.38, and considering the blue zone placed in z ≈ 4, we observe
how the T ∗ at that point is negative as well as the value of ∂H/∂z. This combination leads to a
negative Fz which pushes the flow to the left and, in fact, the speed w∗ at that point is directed
to the left. This example can be traced back to the entire range of motion found on the plane.
At this point, the motions that develop perpendicularly to the magnets are clearer. Starting
from the center of the domain, the first two vortices observed go from 1.8 ≤ z ≤ π and from
π ≤ z ≤ 4.5 and develop over the entire width of the cavity. Laterally to these first two, the same
number is developed for each side, that is, for 0 ≤ z ≤ 1, for 1 ≤ z ≤ 2, and symmetrically to
these, but occupy a space in the smaller y-direction, in fact they are mainly in the part at y > 0.
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We proceed now with the analysis of the Φ magnetic field flow calculated on different planes. A
first analysis involves the calculation of the flow Φxy on different planes perpendicular to the
z-axis, while in a second analysis, the calculated flow is Φxz for planes perpendicular to the y-axis.
Following what is written in chapter 1:

Φxy =

∫
A

(1 + ϕ) ∗ w ∗Hz (5.9)

Φxz =

∫
A

(1 + ϕ) ∗ v ∗Hy (5.10)

Where A is the surface of the plane. All values are considered in the form.

Figure 5.39: Magnetic field flow trend |Φxy| calculated on different planes with time.

Let’s now analyze how much the magnetic field flux is valid on different xy planes taken at
different positions along the z-axis. As they have been calculated, we must pay attention to the
velocity component perpendicular to the plane itself, ie the w∗, but we must also consider the
z-direction component of the magnetic field: the right compromise between these two quantities
defines the optimal plane where we observe the greatest flow Φxy. For example, among the
plans examined, that placed at z = 3.2 is certainly not a good choice. In fact, looking at the
figure 5.38 we can see that the velocities w∗ that run through it are practically null, just as Hz

that results about zero. Choosing the optimal plane it is not enough to consider one where the
perpendicular speeds are maximum, but it is necessary that the incoming or outgoing w∗ are not
counterbalanced by an equally strong speed, but of opposite sign. This is what has been found in
all the cases before this, but now something slightly different happens. Once the transient has
elapsed, the highest values are found for planes placed at z = 4 and z = 2.4, but if we look at fig.
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5.38, both cut exactly two areas where the positive and negative speeds seem to counterbalance
each other but, nevertheless, provide the maximum value. This happens because where the v∗ are
positive are multiplied by a positive Hz and then give a Φxy > 0, but where they are negative,
being multiplied by a negative Hz, provide a flow Φxy positive which is added to the previous
one.

Figure 5.40: Magnetic field flow trend |Φxz| calculated on different planes with time.

Exactly as done before, let’s now analyze how much the magnetic field flux is valid on different
planes xz taken along the y-axis. The optimal plan for observing a flow Φxz considerable is the
one that combines, in the best possible way, magnetic field and the velocity component’s value,
perpendicular to it, ie Hy and v∗. Consequently, placing oneself in a plane where I have strong
perpendicular speeds can be unproductive if Hy is very low and vice versa. Moreover, as already
stated above, it is necessary that the speed perpendicular to the plane, however strong it may
be, must not be counterbalanced by a velocity of similar intensity but of opposite sign. For an
xz plan the main difficulty is to be able to consider only an incoming or outgoing part of the
speeds without incorporating the entire convective motion. With this configuration it is possible
to obtain different planes whose magnetic field flux in module is considerable; in particular the
plane at y = −0.4, observing figure 5.5, laps exclusively the central zone of the flow at v∗ positive,
and sees velocity entering perpendicular to it whose value is not counterbalanced by as many
ones. What said above is valid both for the plane placed at y = −0.7 and for the plane at y = 0.7
even though the latter has lower values than the previous ones. Unlike the previous cases, none
of the plans considered possess values that are clearly lower than the others, indeed, although
with smaller values, they all settle on the same order of magnitude.
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Conclusion

The problem of global warming requires innovative solutions to be stemmed and industries are
challenged to improve their production processes and reduce emissions into the atmosphere. In
this context, a possible solution provides the use of waste heat recovery system (WHR). Among
all WHR systems, the ”CERES” is an energy harvesting system based on a FF and his prototype,
the DOUGHNUT, was the subject of study in this thesis work. This system, by means of a
FF enclosed within a thin shell, is able to exchange only electromagnetic or thermal energy
with the external environment. After having written a mathematical model that takes into
account all the forces acting on the mixture inside the reactor, the equations have been discretized
using a spectral-finite difference method; as regards progress over time, an explicit fourth-order
Runge-Kutta scheme was used. Once the simulations have shown how the speeds develop within
the computational domain, it is possible to draw conclusions about which arrangement of the
magnets, among those selected, leads to a better result. To obtain considerable speeds on a plane
perpendicular to the walls, the magnetic force acting in the system must be as high as possible:
the gradient of the magnetic field, combined with Temperature values, provide the direction in
which the flow is pushed to the inner part of the cavity. The more I can get high speeds, the
higher the magnetic field flux values I will record on an arbitrary considered plane. Once this
aspect has been optimized, knowing the flow behavior is fundamental for choosing the plans to
consider. Analyzing the various cases under examination, all have several points in common:

• Velocity asymmetry: the best plane is the one where the velocity component perpendicular
to it is not counterbalanced by an other speed in the opposite direction. A first improvement
hypothesis could therefore involve this aspect. Ideally we would consider a reduced portion
of the plan in such a way as to collect only the component in one verse rather than another;
since this hypothesis is difficult to implement, a further development could be to consider
a plane that sees both positive and negative speeds, but to ensure that one of the two is
clearly higher than the other.

• Magnetic field: the magnetic field perpendicular to the considered plane is included in the
flow calculation and we can deduce that higher values would significantly contribute to
obtain higher flows.

Extrapolating the best plans from those chosen and comparing all the cases analyzed, we obtain
the trends shown in the figures 6.1 and 6.2.
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Figure 6.1: Best magnetic field flow trend |Φxz| evaluated for the different cases.

Figure 6.2: Best magnetic field flow trend |Φxz| evaluated for the different cases.
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Among the various configurations under consideration they all present merits and defects, but in
all of them it is observed that the planes perpendicular to the z -axis provide higher flow values
than a plane perpendicular to the y- axis.
The optimal xy planes for the third configuration provide absolutely the highest values of |Φxy|
among those studied, followed by the second configuration with the half magnet, followed by the
first configuration, to provide the planes with |Φxy| high. The second configuration with the entire
magnet instead stands out as it provides as many as four possible positions to obtain the magnetic
field flow, but the maximum value reached is lower than that obtained in the previous cases.
The basic configuration, considering the xy plans does not lead to optimal results. Considering
instead the xz planes, perpendicular to the y- axis, we immediately realize how we have to deal
with flow values that are in any case lower than the xy planes. The optimal plane for the first
configuration is the one that returns the highest magnetic field flux value. The other cases all see
a very similar value of |Φxz|, with particular attention to the third configuration, where there
are 4 different positions to record values of |Φxz| modestly high. Also for this analysis, the basic
configuration does not seem to be a good choice.
In conclusion both the third and the first configuration can be considered the best, and both have
one thing in common: the magnets are staggered and this can be an indication of any future
development of the prototype.

Figure 6.3: CERES reactor 2.0
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