
POLITECNICO DI TORINO

Department of Mechanical and Aerospace Engineering
Master Degree in Aerospace Engineering

Master Degree Thesis

Methods for the analysis of
aeronautical gearbox experimental

data

Supervisors
Prof. Daniele Botto
Ing. Luca Ronchiato

Candidate
Lorenzo Capra

July 2019

ii

Ringraziamenti

Desidero ringraziare i miei genitori, e la mia famiglia, per tutti i sacrifici che hanno fatto
per permettermi di portare avanti gli studi, e per avermi sempre sostenuto ed incoraggiato
durante il periodo universitario. Un ringraziamento va ai miei compagni di corso, con i
quali ho condiviso gioie e sofferenze tra i banchi universitari. In particolare ad Alberto,
per gli innumerevoli caffé e passaggi offerti a Rivalta. Un ringraziamento speciale va
anche ai miei amici di Aosta: Jacopo, Riccardo, Pietro, e Simone, che la nostra amicizia
sopravviva al tempo e alle distanze. Volevo, inoltre, ringraziare la mia fidanzata Adriana
per aver tollerato la mia compagnia da quasi tre anni a questa parte.
Un ringraziamento va anche ai colleghi tesisti e borsisti di Avio che hanno contribuito
ad alleggerire le giornate al GreatLab, e all’ingegnere Luca Ronchiato, che ha sempre
dimostrato disponibilitá e riconoscimento nei confronti del lavoro da me svolto.

iii

iv

Summary

The aim of this work is to illustrate the tools for signal analysis concerning the processing
of experimental data of aeronautical gearboxes. A code has been developed as part of
this work with the purpose of allowing even an inexperienced user to obtain an acceptable
post processing. This is possible thanks to dedicated functions that cover the role of
determining the appropriate analysis parameters for the specific experimental data and
from the requested output. The code has been validated and tested on some GE Avio
s.r.l. gearboxes.
In chapter 1 an overview of the mechanism generating noise and vibrations in gears is
given, along with some basics of gears dynamics. In the same chapter, some information
about maintenance philosophies and sensors are illustrated.
In chapter 2 the basics of signal processing are given. The various kinds of signals are
illustrated, particular focus has been given to non-stationary signals since they represent
gearbox experimental data category. An overlook of the Fourier transform is given, with
particular interest on the practical applications of the Discrete Fourier Transform (DFT).
Sampling, truncation, and windowing, which are the steps required toward applying a
DFT, are explained, along with the choice of the analysis parameters (i.e. windowing
period, windowing function, sampling frequency, etc.), and their effects on the resulting
frequency spectrum.
Chapter 3 explains how the post processing code performs the frequency analysis. In
particular, by means of the automatic parameters selection feature, the user can leave
almost every analysis settings to be determined by the code itself. The most influential
and difficult parameter to determine is the windowing period. To obtain this value the
code takes into account the closest orders to be separated and the steepness of the speed
ramp (i.e. the acceleration), thus it is equipped with a dedicated function which maps
the speed profile and finds the accelerations of the reference shaft. The task of such
function is particularly difficult to complete due to the extremely unpredictable nature
of experimental data, and the required tailored filtering that comes along to eliminate
random noise. The output produced, typically a Campbell diagram, can be referred to
either speed or time, both these configurations are discussed. In particular concerning
the most common configuration of a speed x-axis frequency spectrum the issue concerning
the representation of unevenly spaced colormap is discussed.
Chapter 4 deals with the code function entitled to generating the order analysis Campbell
diagram. The first step is to convert the tachometer voltage signal into the speed data, this
requires maximum precision in order to avoid resampling errors. Afterwards the signal
gets resampled synchronously to the reference shaft, and then its frequency spectrum
is extracted. Even for this analysis most of the parameters can be set automatically
by the code, in this case though, due to the signal being resampled synchronously with
the reference shaft, there is no need to find the shaft accelerations. The windowing
period is set only considering the closest orders to separate. The chapter ends with some
considerations about the order colormap issue of bins duplication.
Depending on the experimental data the frequency spectrum might not be required, in

v

chapter 5 the resampling function and the averaging function are illustrated. The first
one usually is useful whenever the signal comes from a sensor rotating with the reference
shaft. An example is illustrated of a strain gauge measuring the strain at the tooth root
while meshing with another gear tooth. It is also shown the kind of errors that might
arise while resampling due to erroneous conversion of the tachometer signal. The last
section concerns the averaging function and the output produced by it.

vi

vii

Contents

Ringraziamenti iii

Summary vi

List of Figures x

List of Tables xii

1 Introduction to gear vibration 1
1.1 Vibration and noise origins in gearboxes 1

1.1.1 Fundamentals of gear dynamics . 3
1.2 Maintenance philosophies . 6
1.3 Vibration analysis role in maintenance . 7
1.4 Data acquisition . 8

2 Introduction to signal analysis 11
2.1 Signal classification . 11

2.1.1 Fourier transform . 12
2.2 Signal preprocessing . 15

2.2.1 Sampling . 15
2.2.2 Truncation and windowing . 17
2.2.3 Frequency discretization . 22

3 Frequency Analysis 26
3.1 Frequency analysis code implementation 26

3.1.1 Code architecture . 26
3.1.2 Code output . 27
3.1.3 Automatic parameters selection . 32
3.1.4 Autoslice function . 42

4 Order Analysis 48
4.1 Synchronous resampling . 49
4.2 Order analysis code implementation . 53

4.2.1 Code architecture . 54
4.2.2 Code output . 54
4.2.3 Automatic parameter selection . 57

5 Other functions 62
5.1 Resampling code implementation . 62

5.1.1 Code architecture . 62
5.1.2 Code output . 62
5.1.3 Resampling of a meshing tooth . 63

viii

5.1.4 Synchornous averaging . 66
5.2 Averaging code implementation . 68

5.2.1 Code architecture . 70
5.2.2 Code output . 71

ix

List of Figures

1.1 Mesh stiffness . 2
1.2 Forces acting on meshing gears . 3
1.3 Scheme of a 2 degrees of freedom system 3
1.4 Gear 1D axial mode shape . 5
1.5 Gear 3D axial mode shape . 5
1.6 Fixed reference frame Campbell diagram showing forward and backward

frequencies . 6
1.7 Visual representation of forward and backward frequencies 6
1.8 Maintenance philosophy in modern history 8
1.9 Velocity pickup mechanisms . 9
1.10 Acceleration transducer mechanisms . 10
1.11 Eddy current transducer mechanisms . 10

2.1 Examples of random and deterministic signals 11
2.2 Graphical representation of frequency and time domains 12
2.3 Sine waves composing the signal with frequencies of 20 and 60 Hz 13
2.4 Sine wave composing the signal with frequency of 85 Hz and overall signal 13
2.5 Signal with added random noise . 14
2.6 Spectrum of the signal S(t) . 14
2.7 Generic signal with a limited bandwidth 16
2.8 Pulse train in time domain . 16
2.9 Pulse train in frequency domain . 17
2.10 Sampled signal in time domain . 17
2.11 Signal spectrum failing to respect Nyquist condition 18
2.12 Sampling frequency impulses . 18
2.13 Antialising filter . 19
2.14 Visual representation of aliasing . 19
2.15 Windowing functions time domains . 20
2.16 Windowed 5 Hz sine signal and its spectrum with ∆f = 2/3 Hz 21
2.17 Windowed 4 Hz sine signal and its spectrum with ∆f = 2/3 Hz 22
2.18 Overlapped signal . 22
2.19 Visual representation of the picket fence effect 23
2.20 Picket fence effect errors of different windows 24
2.21 Picket fence effect errors of different windows 24

3.1 Frequency analysis workflow . 27
3.2 Typical ascending and descending run test speed profile 29
3.3 Time x-axis colormap . 30
3.4 Speed profile with time x-axis . 30
3.5 In green the original unevenly spaced x-axis vector, in blue the new evenly

spaced one. In red the error introduced by this procedure 31

x

3.6 Code output with speed x-axis . 33
3.7 Frequency response of hanning window (blue) and FlatTop (orange). The

normalized frequency being defined as f/Fs 34
3.8 Graphical explanation of ∆f . 36
3.9 Colormap with Tw = 1.6 s, zoomed from 0 s to 10 s, signal with dΩ/dt =

1Hz/s . 37
3.10 Colormap with Tw = 1.6 s, zoomed from 0 s to 10 s, signal with dΩ/dt =

6Hz/s . 37
3.11 Colormap with Tw = 0.4 s, zoomed from 0 s to 10 s, signal with dΩ/dt =

6Hz/s . 38
3.12 Wl and Wr at different ∆Orders . 39
3.13 Effect of downsampling on speed data, blue is the original data, orange is

the downsampled version . 40
3.14 Test run acceleration profile filtered and original 41
3.15 Focus on a short time interval of the first 5 filtering iterations and final result 41
3.16 Example of acceleration vector being analyzed by the ramp finding func-

tion. Red samples are the ones limiting the ramp, green ones are the ones
limiting the samples taken into consideration while performing the average
to fill the output vector. The green dashed line is the constant tolerance . 43

3.17 Peakhold (continuous line) with threshold (dotted line) 44

4.1 Phonic wheel . 50
4.2 Chirp with samples equally spaced in the time domain 52
4.3 Chirp resampled with samples equally spaced in the angle domain 52
4.4 Different upsampling values and interpolation methods effects 52
4.5 Example of tachometer signal . 53
4.6 Upsampling operations . 53
4.7 Order analysis workflow . 54
4.8 Order analysis colormap with speed x-axis 56
4.9 Nrev = 50 colormap zoom . 56
4.10 Nrev = 20 colormap zoom . 56
4.11 Order analysis colormap with default MATLAB colormap function 58
4.12 Order analysis colormap with stretched matrix evenly spacing method . . . 58
4.13 Order analysis colormap . 59

5.1 Resampling function work flow . 63
5.2 Raw strain gauge signal . 64
5.3 Tachometer analog data converted into digital with Schmitt trigger with

threshold set to 2000 . 65
5.4 Tachometer analog data converted into digital with Schmitt trigger with

threshold set to 1. The circles indicate the beginning of the digital signal
regions converted to 1 by the Schmitt trigger 65

5.5 Tachometer analog data converted into digital zoomed at time interval
20.085 s to 20.087 . 67

5.6 Different speed plots resulting from various threshold values 67
5.7 Resampled data at two different revolutions 69
5.8 Resampled data at two different revolutions, averaged over 500 revolutions 69
5.9 Signal average workflow . 70
5.10 Average function output example . 71

xi

List of Tables

3.2 Windowing period interval definition . 35
3.1 Complete list of parameters handled by the automatic parameter selection

function . 46
3.3 Ramp finding thresholds, the values are in rpm/s 47

4.1 Order analysis parameters correspondence with frequency analysis 48
4.2 Schmitt trigger applied to the n sample of a time dependent x(t) signal . . 50
4.3 Complete list of parameters handled by the automatic parameter selection

function for the order analysis . 61

xii

Chapter 1

Introduction to gear vibration

Vibration analysis is a key tool for condition monitoring of rotating machinery (such as
fans, motors, pumps and gearboxes). In particular it allows to identify what causes vibra-
tions, whether it is a machine fault, such as misalignment, unbalances, etc. or resonances
due to excitation forces acting within the machine resonance frequency range.
Vibration analysis can be split into two main phases: data gathering and data post pro-
cessing. The first one typically consists of a test run of the machine at various operational
rotational speeds. During that time period sensors, which are placed in crucial positions,
measure displacements, speeds, or accelerations, and their readings are saved in the so-
called raw data file. Each sensor type is particularly suited for measuring signals at
different frequencies, therefore their choice criterion is something not be neglected. For
example velocity sensors are better suited at measuring low to mid frequencies (10 Hz to
1500 Hz), while displacement sensors tend to measure with higher accuracy low frequen-
cies [2].
In the second part the acquired data is processed to produce the preferred output. Ac-
cording to the aim of the analysis there are two main types of analysis that can be carried
out within signal analysis:

1. frequency analysis

2. order analysis

both analysis cover a specific role which will be explained throughout this work, along
with other tools to post process experimental data.

1.1 Vibration and noise origins in gearboxes
Before analyzing different vibration analysis techniques a brief overview on the origins of
gears vibration is given.
Gearboxes are machines made up of several gears whose aim is to transfer angular velocity
and torque from the input shaft to the output according to the gear ratio, which is
determined by the number of teeth of the meshing gears. In aviation, gearboxes are
typically used to transfer power from the engine to the accessories such as the hydraulic
system and the air conditioning unit. Other aviation gearboxes are employed in turboprop
engines to reduce the propeller shaft speed which otherwise would result in low propeller
efficiency.
To describe the mechanisms that generate vibrations the assumption of loaded gears
has to be made. In such condition, gears transfer both torque and rotational speed.
If this condition is not satisfied the gears teeth move within their backlash range and

1

1 – Introduction to gear vibration

produce rattling noise, this is not a common operating condition in aviation gearboxes and
therefore it is not within the focus of this work. Once this assumption is considered to be
valid, it is possible to explain one of the causes of vibrations which is the small mechanical
shock occurring whenever two teeth mesh. The impact generated by the contact between
them transmits vibrations to the gearbox structure which are not naturally damped. The
frequency at which these shocks occur depends on the number of teeth of the gears and the
rotational speed of the gear, such frequency is generally referred to as the mesh frequency,
which is defined as follows:

fGMF = nf0 (1.1)
where f0 is the rotating frequency of a gear and n is the number of teeth. The fGMF is
one of the most prevalent sources of excitation in any gearbox.
Whenever two gears mesh they exchange angular velocity and torque through teeth con-
tact. During that period of time the contact stiffness of the two bodies (also known as
mesh stiffness) varies mainly due to two phenomena: the contact point moving towards
the teeth flanks and the number of meshing teeth changing. These two effects combined
generate mechanical vibrations. In figure 1.1 for example, the variation of mesh stiffness
is shown as function of εα defined as profile contact ratio, which indicates the number
of meshing teeth at any given angular position of the gear. Just by looking at the two
plots it is clear that two gears whose εα is constant, such as the one in the left of figure
1.1, are subject to less vibrations. As the gears transfer mechanical power a force acting
along the action line Ft represents the force exchanged between the two gears. Such force
has to be compensated by another force acting on the gear shaft to keep the gears from
separating, called Fs. These two forces together generate a torque on both gears as shown
in figure 1.2, the oscillation of the mesh stiffness value causes the force Ft to change over
time, forcing the equilibrating force Fs to change as well, transmitting vibrations to the
gearbox casing.
Generally speaking there could be some other source of excitation not originating from
teeth contact such as bearings imperfections, input torque not being constant, shafts
imbalances, and so on. It is important to know how to recognize vibrations induced
by regular gearboxes features, such as teeth meshing, from vibrations originating from
anomalies, such as teeth flanks imperfections.

Figure 1.1: Mesh stiffness

2

1 – Introduction to gear vibration

Figure 1.2: Forces acting on meshing gears

1.1.1 Fundamentals of gear dynamics
In order to better understand every function of the code a brief introduction to gear
dynamics is required.
Every mechanical system can be described as a set of elements with a finite number of
degrees of freedom (d.o.f). In reality the d.o.f is infinite, hence the analytic solution of
the equation of motion yields an approximation, rather than an exact representation of
reality. However, usually the two solutions are not too distant, therefore, the model with
a discrete amount of d.o.f. can be employed, and its results can be trusted to be an
accurate enough representation of the real case.
In figure 1.3 the scheme of a two d.o.f. system is depicted. In this particular case there is
no damping between the two masses since the only link between them is a spring, which
represents an elastic force, this kind of system is called conservative.

Figure 1.3: Scheme of a 2 degrees of freedom system

This assumption is generally valid for systems representing gears.
The two masses equations of motion are:®

m1ü1 + k1u1 − k2(u2 − u1) = F1

m2ü2 + k1u2 − k2(u2 − u1) = F2
(1.2)

which can be written in matrix form as:

Mü + Ku = F (1.3)

3

1 – Introduction to gear vibration

In case damping is to be considered the previous equation becomes:

Mü + Bu̇ + Ku = F (1.4)

where M is the symmetric mass matrix:

M =
ï
m1 0
0 m2

ò
while K is the symmetric stiffness matrix:

K =
ï
k1 + k2 −k2
−k2 k1 + k2

ò
F is the force matrix:

F =
ï
F1
F2

ò
and, if needed, B is the damping matrix, having the same form of the stiffness matrix.
Considering equation 1.3, in case F = 0, the solution obtained solving the equation would
represent finding the free response of the system, which identifies the frequencies at which
the system naturally tends to vibrate. The solution in term of displacement u(t) can be
written in the following form:

u = A cos(ωt+ φ) (1.5)
where A is a non null constant vector, ω is the frequency of the vibration, and φ is the
phase. By substituting equation 1.5 into equation 1.3, the following eigenproblem results:

(K− ω2M)A = 0 (1.6)
in order for the vector A to be different from the trivial solution (which would be the null
vector), the following relation has to hold:

det(K− ω2M) = 0 (1.7)

in the simple example of a system with two d.o.f. taken into consideration, the number
of ω solving equation 1.7 is two, in general for systems with n d.o.f. the number of ω is n.
The frequencies obtained through this relation are the natural frequencies of the system.
Additional information on this subject can be found in literature, for example [1].
Knowing the natural frequencies of a system is pivotal for any dynamic analysis. As a
matter of fact thanks to this information it is possible to derive the deformation shapes,
also known as mode shapes, and subsequently to calculate the dynamic response of the
system to a time variable excitation force. In particular, if the excitation forces act on
the system at frequencies close to a natural frequency, the system undergoes a resonance.
A resonance is a dangerous phenomenon which causes the amplitude of the vibration to
grow in an unstable fashion over time. Generally speaking it is always a good practice to
avoid a system to have its operative range within the range of a resonance frequency.
As mentioned previously, the knowledge of the natural frequencies allows for definition
of the mode shapes of the body being excited by external forces. Considering two gears
meshing with each other, as they begin to vibrate, not every region is deformed in every
time instant, in general there can be some regions being not deformed at any given time.
Since gears are symmetric bodies, the deformation has the same feature. Due to the
symmetry of the deformation, regions with zero displacement usually lay on the same
line, which is referred to as nodal diameter. Nodal diameters thus are symmetry planes
of the deformation.

4

1 – Introduction to gear vibration

Figure 1.4: Gear 1D axial mode shape Figure 1.5: Gear 3D axial mode shape

Mode shapes are defined through the number of nodal diameters. From figures 1.4 and
1.5, the regions in blue have zero displacement, it is evident that the first one is a mode
shape with one nodal diameter (1D), while the latter shows three nodal diameters and is
therefore called a 3D mode shape.
As mentioned in the previous section, gears vibrate due to variation of teeth contact
conditions. Despite not being the only existing source of excitation, meshing teeth is
usually the most relevant for gearboxes. The frequency at which teeth mesh with each
other is described by the gear mesh frequency (1.1), which is dependent on gears angular
speed. Whenever the gear mesh frequency reaches a natural frequency a resonance might
occur. In reality, due to gears deformation, the natural frequency shows a dependency
with rotational speed, if observed from an inertial reference frame. In particular, the
effects of two harmonics is especially noticeable, depending on the signs of these two
harmonics the natural frequencies are influenced. The relation describing the natural
frequencies is the following:

f = f0 ±NdΩ (1.8)

which is valid for modes displaying axial displacement. In equation 1.8, f0 is the original
natural frequency value, Nd is the nodal diameter of the mode shape of the natural
frequency, and Ω is the rotational speed. A graphical representation of equation 1.8 is
shown in figure 1.6. The two harmonics can have the same sign, and therefore add up
to form the so called forward resonance frequency (simply called forward), in which the
mode shape rotates in the same direction as the gear generating the highest frequency of
the mode.
Alternatively, the two harmonics can have different signs, thus subtracting, and form the
backward resonance frequency (bwd), in which the mode shape and the gear rotate in
opposite directions giving birth to the lowest frequency of the mode.
Campbell diagrams are a useful tool for allowing to picture at which speeds potential
resonances occur, and how to avoid them. The most important output of the code that
will be described is definitely the frequency versus speed Campbell diagram, alongside the
Autoslice function which is particularly useful for detecting modes and orders crossings.
In case the displacements are radial, the slopes of the forward and backward are not
simply equal to the nodal diameter of the mode shape and a correction has to modify the
slope to consider that effect. The correction is particularly useful to evaluate radial mode

5

1 – Introduction to gear vibration

f0

Ω

f fgmf

ffwd

fbwd

Figure 1.6: Fixed reference frame Campbell diagram showing forward and backward
frequencies

shapes, while for axial mode shapes equation 1.8 holds.

Figure 1.7: Visual representation of forward and backward frequencies

1.2 Maintenance philosophies

From [2] it is given an overview of maintenance philosophies employed at different times
in history concerning plants and machinery.
At the beginning of the industrial age vibration knowledge was rudimentary, hence fre-
quency analysis was never applied. Machines simply were set to run until a fatal break-
down occurred, at which point a diagnosis was executed and the machine was repaired.
During that time interval the plant might have been on shutdown depending on the rel-
evance of the broken machine. Such a philosophy, known as run to failure maintenance,
has many evident drawbacks.
First of all, if spare pieces are needed they have to be acquired only after the breakdown
has occurred, causing a delay in the maintenance operations which produces a relevant
money loss. Besides, maintenance personnel will likely be overworked, due to working
without any planning and to the pressure of avoiding any money wasting time delays.
This is without a doubt an inefficient way of planning maintenance, it can work only if
applied to machines which shutdown does not effect production.

6

1 – Introduction to gear vibration

Maintenance can also be scheduled and performed following a calendar based on the work
hours of the machines. This approach is called preventive or time-based maintenance. It
works well on machinery that operates only at times and not continuously. With respect
to the run to failure philosophy it offers the advantage of avoiding unplanned shutdowns,
which depending on the machine relevance to the production processes can save a money
loss to the plant. The main disadvantage of preventive maintenance is that repairs or
pieces replacements might occur too early or too late. It is in fact impossible to predict
exactly when a component will wear out due to fatigue. This leads to either perfectly
working components being replaced and discarded or to shutdowns due to an unplanned
failure. There also is the occurrence of degraded machine performance caused by a com-
ponent damaged before its scheduled maintenance. Another risk is posed by an incorrect
maintenance operation scheduled to a well working machine. While preventive mainte-
nance seems to offer better efficiency with respect to run to failure maintenance, it can
be improved with more sophisticated failure prediction methods.
Similar to preventive maintenance, condition-based maintenance consists in scheduling
repairs only if a degradation in performance is detected. Machines will undergo testing to
reveal their performance (usually some kind of efficiency test) periodically and shut down
at the most convenient time for the plant to allow for maintenance operations to be per-
formed. This philosophy also allows the purchasing of necessary repair pieces with large
time advances. Since condition-based maintenance relies heavily upon machine monitor-
ing if such an operation is carried out improperly, or by unskilled personnel, unnecessary
maintenance operations would be performed, with possibly perfectly working components
being replaced. It is therefore required to train maintenance personnel adequately in or-
der to adopt this philosophy minimizing its potential drawbacks.
The last and most advanced maintenance philosophy is called proactive or reliability cen-
tered maintenance. It is identical to condition-based maintenance with the addition of
the identification and fixing of the source of the problem in order to avoid its repetition
over time. For example in case a shaft unbalance has caused a failure in a machine, the
maintenance personnel should work on the balancing of the shaft properly to avoid the
defect from causing more failures in the future. The philosophy emphasizes the need to
improve machines reliability once a failure is detected, in some cases there can be the
need to redesign equipment to avoid recurrence of the problem. Again, similarly to pre-
dictive maintenance, proactive maintenance allows for purchase of spare parts with time
advantage and maintenance scheduling. If carried out properly it offers the most reliable
maintenance of all the various philosophies; its only drawback lies on the highly trained
personnel required in order to perform the different operation.

1.3 Vibration analysis role in maintenance

Vibration analysis is a key tool to perform condition-based maintenance [2]. Condition-
based maintenance revolves around controlling certain mechanical parameters in order to
determine approximately the work time before failure of a machine. Besides vibration
analysis, there are several ways to monitor a machine such as thermography, ultrasounds,
oil and wear debris analysis, etc. Each one of them is particularly effective on some ma-
chines more than the others. Among the various diagnosis techniques it can be said that
vibration analysis is without a doubt the most effective technique for rotating machinery.
At times also acoustic detection can be relevant for gearboxes because they are cyclic ma-
chines producing a tonal noise, which means that the noise frequency spectrum consists of
sinusoidal components with low-level background noises. Concerning bearings and gears,

7

1 – Introduction to gear vibration

Industral revolution

Second World War

Mid ’60s

Mid ’80s

Breakdown Maintenance

Preventive or Change-out
Maintenance

Predictive or Condition Based
Maintenance

Reliability Centered
Maintenance

Figure 1.8: Maintenance philosophy in modern history

they are generally diagnosed through oil or lubricant analysis which if scanned through
a microscope can reveal information about the condition of such pieces. Sometimes worn
machines release debris while functioning, particle analysis can be a useful tool for such
machines. Lastly, thermography is generally performed on running machines to spot me-
chanical or electrical defects in generators, overhead lines, and boilers. It can also detect
damaged carbon fiber in composite aircraft structures.
Similarly to the human body, machines exhibits symptoms whenever they are not work-
ing properly. However not every symptom can be easily detected, this is where predictive
maintenance come into help to perform the proper diagnosis.
The vast majority of machines failure derives from either unbalance or misalignment. Vi-
brations amplitude measurement not only can detect such faults, but it can also identify
poor maintenance practices, such as improper bearing installations, which will eventually
lead to such failures.
In general it can be said that vibration analysis covers a multitude of roles throughout the
maintenance life cycle of a machine. It is useful as the machine is installed in the plant
to reveal improper deployment; it is a relevant tool in failure prevention and performance
monitoring; and, finally, it is a fundamental diagnosis tool once a failure or a performance
degradation occurs.

1.4 Data acquisition

In order to acquire a vibration data, sensors are mounted on the machine. There exist
many kinds of sensors, the most commonly used are velocity, acceleration and proximity
sensors, each one of them is more suitable to different machines and frequencies. There is
not a universally appropriate sensor, the most convenient choice depends on the situation.
A brief introduction about the most commonly employed sensors is now given.
Despite measuring different machine characteristics, sensors all work in a similar way con-
verting the vibration mechanical energy in to some sort of electric signal.
Velocity sensors are the oldest sensors employed to measure vibrations on rotating ma-
chinery, and they are still considered to be sensors of very wide application. The most

8

1 – Introduction to gear vibration

common configurations of a velocity transducer are the ones displayed in figure 1.9. The
configuration on the right is known as coil-in-magnet, as the coil (which is free to move
upwards and downwards) moves, the magnetic flux changes generating a tension at the
ends of the coil which describes the coil motion. The configuration on the left, called
magnet-in-coil, is composed of a permanent magnet which is free to move, a spring, which
supports the magnet, and some oil, which fills the sensor and serves as damper. Similarly
to the coil-in-magnet configuration, the motion of the magnet varies the magnetic flux
through the coil generating a tension describing the magnet motion. Both the sensor

Figure 1.9: Velocity pickup mechanisms

architectures are sensitive to gravity action on to the magnet and to external electrical
and magnetic fields. It is, therefore, important to consider such aspects while mounting
the pickup.
Velocity pickups have the highest sensitivity out of every vibration sensor, which results
in large output values. This is especially useful in case the external noise is present. The
sensitivity is constant over a frequency range which depends on the specific sensor. For
velocity pickups such interval is usually 10 Hz to 1 kHz. At low frequencies the relative
motion between coil and magnet is practically null, as the two parts move at the same
speed. This means that speed readings below 10 Hz tend to be very inaccurate.
Acceleration transducers are the most common vibration sensor for rotating machinery
application. They are small, compact, and do not have moving parts which could wear
over time and require a sensor recalibration from time to time. A typical acceleration
sensor works measuring the inertial force exchanged by a seismic mass thanks to a piezo-
electric material. The output signal is proportional to the vibration acceleration. When
the mass is subjected to an acceleration it exerts a pressure on to the piezoelectric crystal
which produces a tension proportional to its deformation, and hence to the pressure. As
shown in figure 1.10 the transducer requires an amplifier to work. Because of this com-
ponent, acceleration sensors need an external power input, unlike velocity pickups. The
range of frequencies over which this kind of sensors are effective typically is from 1-2 Hz
to 8-10 kHz.
Proximity probes see most of their usage on high-speed turbomachinery. Their typical
architecture is depicted in figure 1.11 and consists of a probe, an extension cable and
an oscillator/demodulator. A high frequency signal is generated by the movement of the
target then going through the extension cable and is emitted by the probe. The oscilla-
tor/demodulator receives the signal and demodulates it, the DC portion of it is directly
proportional to the distance and the AC to the vibration.

9

1 – Introduction to gear vibration

Figure 1.10: Acceleration transducer mechanisms

Figure 1.11: Eddy current transducer mechanisms

10

Chapter 2

Introduction to signal analysis

2.1 Signal classification
There are several kinds of signal that can be analyzed, each type requires a different set
of analysis parameters. For instance every signal can be classified as either stationary or
non-stationary. The first group is generated whenever a test run is conducted at constant
speed, hence the frequency content is stationary over time, while the latter is often the
result of a system which is going through acceleration or deceleration. It can also be said
that a signal, in order to be defined as stationary (or time invariant), has to maintain its
average value constant over time, and not dependent on sampling time.
Among stationary signals there are deterministic signals, which output depends solely on
the input received, and random signals, which output cannot be exactly predicted based
on the input, but whose average, variance and other statistical properties do not change
over time. Non-stationary signals can be divided in transient signals, which begin and

Figure 2.1: Examples of random and deterministic signals

end at zero, and continuous signals in which this does not happen.
A typical gearbox vibration data is a non-stationary, deterministic, continuous signal.
As a matter of fact usually the gearbox input shaft undergoes cycles of acceleration
and deceleration since the machine has to be tested at the various operative conditions.
This kind of speed profile makes the resulting signal inherently non-stationary. Besides,
the signal is strictly dependent on the speed and the torque at which the machine is

11

2 – Introduction to signal analysis

operating, hence the deterministic feature. According to the speed profile of the test the
signal could be both continuous, if the data do not begin and end at stationary condition,
and transient, the latter being a more common feature.

2.1.1 Fourier transform
According to Fourier theorem, every periodic signal can be represented as a Fourier series,
which is a sum of sine and cosine functions with variable amplitude, phase and period.
The Fourier series is defined as follows:

x(t) = a0 +
∞Ø
n=1

ï
an cos

Å
n

2π
T
t

ã
+ bn sin

Å
n

2π
T
t

ãò
(2.1)

representing a signal through the Fourier series means determining the weight of each
n term, where n is the harmonic. The amplitude of the nth harmonic is defined by the
coefficients an and bn, which are called the Fourier coefficients, and are defined as follows:

an = 2
T

Ú +T/2

−T/2
x(t) cos

Å
n

2π
T
t

ã
dt (2.2)

bn = 2
T

Ú +T/2

−T/2
x(t) sin

Å
n

2π
T
t

ã
dt (2.3)

where T is the interval in which the signal is defined.
Signal analysis aim is to identify every frequencies composing the signal and its contribu-
tion to the overall amplitude. To obtain the frequency spectrum of a signal the Fourier
transform operator is employed. Its job is to convert a signal domain from temporal to
frequency based. For example, in figure 2.2 a signal originated from the sum of the first
three harmonics of the Fourier series of a square wave which is described by the following
equation:

f(x) = 4
π

∞Ø
n=1,3,5,···

1
n

sin
Å
nπx

L

ã
(2.4)

where 2L is the length of the square wave, and n is the index identifying the harmonics.
The leftmost plot shows the sum of the three components in the time domain. The
frequency domain representation highlights the amplitude of the periodic components of
the signal and is the result of applying the Fourier transform to the time domain signal.
Thanks to this representation it is possible to understand which harmonics contribute the
most to the overall amplitude of the signal.

Figure 2.2: Graphical representation of frequency and time domains

12

2 – Introduction to signal analysis

Another basic example of the use of the Fourier transform is the one that follows: let us
consider a signal S(t) sampled at a sampling frequency Fs = 1000Hz composed of the
sum of three other sine signals of frequencies 20Hz, 60Hz and 85Hz

S(t) = 0.7 sin(2π · 20 · t) + sin(2π · 60 · t) + sin(2π · 85 · t) (2.5)

as figure 2.4 shows, the three sine waves frequencies are conceived when added to each
other. In a real case though, there generally is a random noise added to the signal, which
results in an even less clear time dependent signal shown in picture 2.5. It is evident
that after adding the random noise to the three sine waves it is impossible to understand
which frequencies compose the signal S(t). In order to obtain the frequency spectrum of
the signal it is required to perform its Fourier transform, which reveals the frequencies of
the periodic waves composing the signal (if any).

Figure 2.3: Sine waves composing the signal with frequencies of 20 and 60 Hz

Figure 2.4: Sine wave composing the signal with frequency of 85 Hz and overall signal

In figure 2.6 the spectrum of the signal S(t) is shown. It is obtained with a Fast Fourier

13

2 – Introduction to signal analysis

Figure 2.5: Signal with added random noise

Transform (FFT) which is a particular algorithm, usually employed by calculators, execut-
ing the Fourier transform. In general a signal has both a positive and negative frequency
spectrum which are symmetrical with respect to the zero frequency value. Displaying
both sides is redundant, hence usually only the positive side is displayed. In a two sided
spectrum though half the energy is displayed in the positive side and half in the nega-
tive. Therefore to generate a single sided spectrum the negative side has to be discarded,
while the positive side values have to be multiplied by two (except for the zero frequency
element), for more information on this matter see [3].
Thanks to the signal spectrum it is evident that there are three frequencies which mostly
contribute to the signal amplitude. These frequencies are, as expected, 20, 60, and 85 Hz.
It is interesting to note that the spectrum identifies the correct amplitudes of the first
two sine waves (0.7 and 1 from equation 2.5), but not of the one at 85 Hz. This error
is due to the so-called spectral leakage, which will be explained later on. The Fourier

Figure 2.6: Spectrum of the signal S(t)

transform varies according to the signal type, in general, given a time dependent signal

14

2 – Introduction to signal analysis

x(t), its frequency spectrum is X(f) and is defined as:

X(f) =
Ú +∞

−∞
x(t)e−j2πftdt (2.6)

in which the exponential represents the frequency f contribution to the signal S(t). This
formulation is valid for continuous signals which extend for an infinite time period.
The inverse operation is the inverse transform:

x(t) =
Ú +∞

−∞
X(f)ej2πftdf (2.7)

which allows to represent a continuous signal as the sum of an infinite number of periodic
exponential weighted by X(f)df . Since X(f) is usually complex, it is described by an
amplitude and a phase spectrum.
Whenever it is required to perform a signal analysis with a calculator, it is impossible to
maintain the continuity hypothesis of the signal because this would result in an integration
over an infinite time interval. Thus, the signal has to be discretized into a finite number of
values both in the time and frequency domain. In order to achieve such a task the signal
generally gets truncated into small time intervals, this operation transforms the integral
of equation 2.6 into a summation of finite terms. It is evident that the discretization
will introduce an error in the signal. Once the signal is not continuous it is possible
for a calculator to apply the Discrete Fourier Transform (DFT) which usually grants a
sufficiently accurate approximation of the Fourier transform:

X(kf0) = 1
N

N−1Ø
n=0

x(nT0)e−
j2πkn
N (2.8)

while the inverse transform is:

x(nT0) =
N−1Ø
n=0

X(kf0)e−
j2πkn
N (2.9)

2.2 Signal preprocessing
Before applying the DFT the analog signal has to undergo the following operations:

1. sampling

2. truncation

3. frequency discretization

2.2.1 Sampling
Sampling a continuous analog signal x(t) means measuring its values x(iTs) at given
time instants (iTs), with a time interval between two measurements being defined by the
sampling frequency Fs, which specifies how many samples of signal are measured each
recording second. To study how sampling works, and its fundamental properties, it is
useful to refer to the ideal case in which sampling is carried out by an impulse train.
In figure 2.7 a generic continuous signal x(t) is represented with frequency spectrum X(f)
limited up to frequency fm. That signal is ideally sampled multiplying it by an impulse
train s(t) shown in figure 2.8, whose frequency spectrum is shown in figure 2.9, the single

15

2 – Introduction to signal analysis

pulses are separated by Fs frequencies. The impulse train in the time domain is defined
as:

s(t) =
+∞Ø
i=−∞

δ(t− iTs) (2.10)

while in the frequency domain:

S(f) = fs
+∞Ø

k=−∞
δ(f − kfs) (2.11)

the sampling is obtained by multiplication of the signal by the temporal train impulse in

Figure 2.7: Generic signal with a limited bandwidth

Figure 2.8: Pulse train in time domain

the time domain.

xs(t) = x(t) · s(t) = x(t)
+∞Ø
i=−∞

x(iTs)δ(t− iTs) (2.12)

xs is shown in figure 2.10 while in the frequency domain a convolution between X(f) and
S(f) is required.

Xs = X(f) ∗ S(f) = X(f) ∗ fs
+∞Ø

k=−∞
δ(f − kfs) = fs

+∞Ø
k=−∞

X(f − kfs) (2.13)

The result is shown in figure 2.10 and 2.12. The sampled signal frequency spectrum is
composed of repetitions of the original signal spectrum X(f), offset to multiple of the
sampling frequency FS. In order to avoid intersections between the spectrum repetitions
it is clear that the time separating them has to be equal or bigger than 2fm. In other
words that condition requires the sampling frequency Fs to be greater than, or equal, to
twice the highest frequency for signal with limited bandwidth, this condition is known
as the Nyquist condition. When such condition is violated, frequency components above

16

2 – Introduction to signal analysis

Figure 2.9: Pulse train in frequency domain

Figure 2.10: Sampled signal in time domain

half the sampling frequency appear as frequency components below half the sampling
frequency, resulting in an erroneous representation of the signal.

fs = 1
Ts

> 2fm (2.14)

Usually, in order to avoid aliasing, the analogue signal is filtered by means of an antialias-
ing filter with a cutoff frequency equal to Fs/2 before passing to the analogue-to-digital
converter, as shown in figure 2.13. The filter is a lowpass whose purpose is to remove any
possible frequency beyond Nyquist. Due to the fact that it is impossible to design a filter
whose frequency response does not include a transient band of frequencies not properly
filtered, the practical maximum frequency is considered to be:

fm = Fs
2.56 (2.15)

to include the effect of the transient band [6]. In other words this means that a sinusoidal
signal requires at least 2.56 samples not to be affected by aliasing.
Whenever the analogue data are not filtered by means of an antialiasing filter, Nyquist
condition assumes a slightly different meaning: instead of posing a limit value for the Fs,
it defines the highest frequency not affected by aliasing.
Whenever Nyquist condition is not valid aliasing occurs which might lead to erroneous
frequency spectrum representation similar to figure 2.14.

2.2.2 Truncation and windowing
Referring to a real sampling process, the samples sequence both is discrete and has a
beginning and an end, thus there will be a finite number of samples composing the signal.
Despite the signal being finite, for both stationary and non stationary signals, DFT algo-
rithms require the input signal to be divided into a discrete number of portions, in order

17

2 – Introduction to signal analysis

Figure 2.11: Signal spectrum failing to respect Nyquist condition

Figure 2.12: Sampling frequency impulses

to do so the signal is truncated at fixed time instants. The time between two truncation
instants is constant and is called windowing period, one of the most influential analysis
parameters.
Dividing the signal into several segments prior to the frequency spectrum extraction intro-
duces an error known as spectral leakage. This phenomenon is the result of the assumption
in the DFT algorithm that the signal record is periodic over a period equal to the window-
ing period. If the signal segment has a non-integral number of cycles within its windowing
period, this assumption is violated and spectral leakage occurs. The phenomenon causes
energy to be assigned not just to the right frequency, but even to the adjacent ones. Gen-
erally speaking every frequency spectrum is affected by spectral leakage to some extent.
There are only two cases that completely avoid spectral leakage. The first one is if the
user is sampling synchronously with respect to the signal, in which case it would be feasi-
ble to include an integral number of cycles within a time segment. The other case consist
in capturing a transient signal that fits entirely in the time interval. In most real life
cases, however, the signal to be analyzed is unknown and can be considered stationary
with respect to the time segment, which means that the signal is present before and after
the sampling, and cannot be defined as transient with respect to the windowing period.
Hence avoiding spectral leakage entirely is impossible.
Despite the impossibility of avoiding spectral leakage, there is a way to effectively reduce
its influence, which is applying a windowing function to the truncated signal.
A generic windowing function w(t) is a time dependent function which multiplies the time
dependent signal segment.

xw(t) = x(t) · w(t) (2.16)

While in the frequency domain applying a windowing function means performing a con-
volution between the signal transform X(f) and the windowing function transformW (f).

Xw(f) = X(f) ∗W (f) (2.17)

18

2 – Introduction to signal analysis

Figure 2.13: Antialising filter

Figure 2.14: Visual representation of aliasing

Applying no windowing function means applying the rectangular window defined as:

w(t) =

1 for − T

2 6 t 6
T

2
0 elsewhere

(2.18)

The rectangular window does not alleviate spectral leakage, hence usually other win-
dowing functions are used such as Hanning, Hamming, Blackman and FlatTop shown in
figure 2.15, which minimize the error by canceling the signal at the time instants near the
beginning and the end of the segment. So for every segment the central part gives more
contribution to the signal. It is important to remember that windowing functions tend to
to improve significantly either amplitude or frequency precision, not both, some functions
(like Hanning) compromise between the two and allow for a decent improvement of both.
The continuous windowing function w(t) must be discretized to apply it to the signal
which is usually done considering the same time interval T = 1/Fs between two signal
values defined by the sampling frequency Fs. Hence the function becomes dependent only
on the N points required to discretize the window.
The signal segment must also be multiplied by a coherent gain (different for each win-
dowing function) after being windowed in order to depict the correct frequency spectrum
amplitude, every windowing function has a different coherent gain.

w(n) = w∗(n)
CoherentGain

(2.19)

To better understand how applying a windowing function to the truncated signal can
improve spectrum precision, let us introduce an example. In figure 2.16 an example is
shown about windowing a 5 Hz sine signal with amplitude of 2, sampling frequency of

19

2 – Introduction to signal analysis

Figure 2.15: Windowing functions time domains

1000 Hz, and windowing period of 1.5 seconds, in the middle figure in red the Hanning
window is graphed and in blue the result of x(t) · w(t), on the right plot it is possible
to see that the blue spectrum (representing the windowed signal spectrum), which has a
∆f = 1/Tw = 2/3 = 0.66 Hz, is narrower, meaning that its spectrum distributes energy
to fewer frequency bins as it should be considering that the only frequency present in the
spectrum is 5 Hz. Also its amplitude of about 1.7 is closer to the actual value of 2 than
the rectangular window case. It is important to notice that in this case the 5 Hz signal
does not show an integer amount of cycles within the windowing period, since 5 ·1.5 = 7.5.
To highlight the influence of having a signal periodic over the windowing period, let us
now consider a sine signal at 4 Hz. This time the signal is periodic over the windowing
period since 4 · 1.5 = 6, thus truncation does not introduce spectral leakage. Observing
figure 2.17, the right most plot shows that the most accurate spectrum is the one obtained
by the rectangular window. As a matter of fact, despite the amplitude error being null,
the rectangular window cuts off unwanted frequencies more steeply than Hanning window,
which results in a narrower rectangular window spectrum.
This difference is due to the nature of the windowing process. As a matter of fact, by
reducing the amplitude of the signal at time instants close to the edge of the windowing
period, the frequency content of the signal segment changes slightly from the original
segment. This operation introduces a small spectral leakage itself, and, as a result, in
case truncation does not introduce its own spectral leakage, such as for the 4 Hz signal
case, the Hanning function yields a worse spectrum than the rectangular function. The
difference between the two spectra is, however, negligible since they both capture the
exact amplitude and the one obtained with the Hanning window is only slightly broader
than the one obtained with rectangular window.
The difference is not negligible in case the truncation introduces spectral leakage, such as
the case of figure 2.16, in which the spectrum of the Hanning windowed signal is far more
precise than the one resulting from a rectangular windowing (or no windowing). For this
reason it is usually a good practice to apply a windowing function to truncated signals.

20

2 – Introduction to signal analysis

It is important to remember that in case truncation introduces a spectral leakage, win-
dowing the signal only reduces the precision loss, the error due to truncation will always
be present no matter the windowing function. As previously mentioned, several window-
ing functions exist, they all have different features, but the main trade off between them
concerns having a steeper neighboring frequencies attenuation (such as the rectangular
window, Hanning and Hamming) or preserving the amplitude value of the original signal
(such as the FlatTop). The first kind of functions allow for a more accurate frequency
representation, while the second one results in minimal amplitude error. Hence, window-
ing function choice is strongly dependent on the analysis aim, and no ’right’ windowing
function exists. More information concerning the windowing functions can be found in
literature, such as [4], and [3].

Figure 2.16: Windowed 5 Hz sine signal and its spectrum with ∆f = 2/3 Hz

As previously mentioned, windowing a signal inherently cancels the contribution of the
side portions of the segment to the signal, therefore it is required to overlap segments in
order not to lose pieces of signal segments. As a matter of fact analyzing a non-stationary
signal, meaning that its frequency contribution changes over time, requires the signal sep-
aration into small segments so that a stationary approximation can be valid. The smaller
the segment the smaller the frequency variation the closer to reality the approximation
will be.
As shown in figure 2.18 no segment contribution is neglected through the process. The
amount of overlapping required depends on the windowing function applied, for example
relatively large windows in the time domain (such as Hanning) require overlap of about
50 %, while for narrow windows (like FlatTop) higher overlap values are required.
When choosing the most appropriate overlap it is important to balance the contribution
of two factor to the signal analysis: computational cost and the frequency content rate
of change over time. Having high overlap on one hand grants an almost stationary sig-
nal segment, on the other it strongly raises the computational cost of the analysis. For
every windowing function an optimum overlap value exists that keeps into account the
computational weight of the process, and the need to avoid signal losses. Those values
are usually selected.

21

2 – Introduction to signal analysis

Figure 2.17: Windowed 4 Hz sine signal and its spectrum with ∆f = 2/3 Hz

Figure 2.18: Overlapped signal

2.2.3 Frequency discretization

The result of the FFT is a discrete frequency spectrum which by its nature cannot show
every possible frequency value between the minimum and the maximum frequency con-
sidered. The discrete frequency values are called bins. The discretization of the frequency
domain generates the so called picket fence effect, the name is due to the fact that the
frequency spectrum (which should be continuous) is represented through the pickets of
a fence, as shown in figure 2.19. The dots represent the plotted spectrum values, while
the line draws the real signal spectrum amplitudes. The figure highlights the fact that by
discretizing the frequency domain some peaks are not properly captured. It is therefore
clear that transforming the spectrum from continuous to discrete introduces an error. For
example in the right plot of figure 2.16 part of the reason why the spectrum amplitude
does not reach the correct value of 2 is that the frequency 5 Hz lies exactly in the middle of
two frequency bins. As previously stated, this error represents a form of spectral leakage
introduced by the discretization of the frequency domain.
The values of the frequency spectrum are multiples of the frequency resolution ∆f , if the

22

2 – Introduction to signal analysis

Figure 2.19: Visual representation of the picket fence effect

signal spectrum contains frequencies which are not integer multiples of ∆f their represen-
tation will be affected by an error concerning both frequency and amplitude. The picket
fence effect error is heavily dependent on the windowing functions, applying no window-
ing (or applying a rectangle windowing function) results in the biggest error among the
various functions. Another factor greatly influencing the picket fence effect error is the
distance between the frequency to represent and the two closest frequencies bins.
In order to quantify the error 4 parameters shown in figure 2.20 are introduced:

• ∆dB is the amplitude difference between the two highest peaks adjacent to the
maximum, this represents the distance between the real frequency and the two
closest bins. As a matter of fact a ∆dB = 0 means that two neighboring bins have
the same amplitude, which happens whenever the true frequency lies exactly in the
middle of the two bins and its energy is equally shared between the two closest bins.
If the true frequency was to be closer to one of the two bins, it would share more
energy to the closest one, allowing for a ∆dB /= 0. The more the ∆dB is high, the
less likely is that a true frequency is sharing energy among several bins

• ∆L represents the amplitude difference between the real maximum and the maxi-
mum obtained with the FFT

• ∆f represents the difference from the real frequency and the closest bin

• f0 is the FFT frequency resolution

In figure 2.21 are plotted the various windows errors caused by picket fence effect con-
cerning frequency (∆f/f0) and amplitude (∆L). The errors are graphed as function of
∆dB, a null value of such parameter indicates that the frequency depicted is exactly in
the middle of two bins, such condition represents the worst case since it results in the
highest possible picket fence error for every kind of window. In particular it is easily noted
that the rectangle window shows the worst behavior among the other windows given the
same ∆dB for both frequency and amplitude. Concerning the FlatTop window, it seems
to display a very low ∆L and ∆f/f0 for nearly any value of ∆dB, in particular the ∆L
always is nearly null this allows to clearly display frequency content, but also means that
adjacent frequencies will have similar amplitudes. These features make the FlatTop win-
dow less suitable to distinguish the contribution of frequencies near the one of interest.
As stated in [4], to perform a successful analysis some parameters have to be set which
are directly related to each other.

• windows frequency f0 = 1
T

23

2 – Introduction to signal analysis

Figure 2.20: Picket fence effect errors of different windows

Figure 2.21: Picket fence effect errors of different windows

• sampling frequency Fs = Nf0

• windowing period T = NT0

• sampling period, time between two sampling T0 = 1
Fs

24

2 – Introduction to signal analysis

• number of samples in a window N = T

T0

As shown in the relations above the various parameters are not independent, as a matter
of fact only two have to be set, the other are derived. In general the sampling frequency
cannot be changed and depends on the test run. Which leaves for only one parameter
to be set which is the windowing period T . It is important to remember that there are
more parameters to set than the ones listed above (e.g: overlap, windowing function),
whose values do not directly influence other parameters. The choice of an appropriate
value for T revolves around whether the user wants to achieve a low frequency resolution
or a low amplitude error. As a matter of fact, having a short windowing period allows
for the signal segments to be considered almost stationary, resulting in a low amplitude
error. On the other hand, considering that the frequency resolution is defined as follows:

∆f = 1
T

= 1
NT0

= Fs
N

(2.20)

a small windowing period value will cause a big ∆f , resulting in a higher picket fence
error.
There is not a correct choice to be made concerning the windowing period, the parameters
all depend on the features of the signal to be analyzed, and on the aim of the user.

25

Chapter 3

Frequency Analysis

Frequency analysis is usually applied to rotating machinery (gearboxes, compressors, tur-
bines, pumps, etc.) in order to detect possible manufacturing defects, such as misalign-
ments, surface imperfections, mass imbalances and many others. Another usage for fre-
quency analysis is to check the presence of resonance peaks due to the crossings between
frequency modes and orders. This allows to understand the fatigue cycles of the machine
and to predict its lifetime.

3.1 Frequency analysis code implementation
The aim of this work has been to write a MATLAB code able to perform both frequency
and order analysis, although in this section only the code concerning frequency analysis
will be considered.
Before launching an analysis, the user has to specify inputs such as:

• the directories concerning the raw data, and the position where output figures will
be saved

• speed and order table. The first holds information about ratios between the various
useful machine speeds (i.e.: the various gearbox shafts speeds). At least one of
which must be read from the tachometer channel of the raw data file. The order
table indicates which orders are to be extracted

• autoslice table. It specifies the settings for the autoslice function

• output settings. It defines which figures to save and their format

The expected output in the case of frequency analysis is a colormap displaying the fre-
quency spectrum of the signal with respect to time or rotational speed.
In the previous sections the basis of frequency analysis have been explained. Particular
focus has been placed on the choice of certain parameters, such as windowing period,
windowing functions, overlap, and so on. It is important to add that before performing
the frequency analysis, the code automatically sets some analysis parameters, according
to the raw data characteristics and the user requests.

3.1.1 Code architecture
The code architecture concerning the processes required to perform the frequency analysis
is shown in figure 3.1. The right branch of the the diagram concerns the automatic
choice of parameters which will be explained in the next paragraph. The block describing

26

3 – Frequency Analysis

the frequency analysis consists in the various steps described in the previous paragraphs
which include signal truncation, signal windowing, and performing the actual Fast Fourier
Transform.

Read input

Missing input?

Perform
frequency analysis

AutoSlice required?

Plot output

Auto Settings

PeakHold peaks check

Find Ramp

Find closest orders

Find windowing
interval

Wr<Wl?X-axis slicing

Check peaks on slices

Find modes proximity
with peaks

Calculates stresses
from peaks amplitude

Plot slices,
print stresses

No

No

Yes

No
YesYes

Figure 3.1: Frequency analysis workflow

3.1.2 Code output
In figure 3.1 the last block of the work flow diagram describes the production of the
output plot, which is usually called Campbell diagram (i.e. a diagram with speed x-axis
and frequency y-axis). Each analysis code function has a different kind of output, in this
section the frequency analysis output will be briefly illustrated.
As previously explained the frequency analysis yields the frequency spectrum of the signal,
which represents the contribution each frequency gives to the overall signal amplitude. Up
to Nyquist frequency, which is equal to Fs/2.56, the frequency spectrum will be accurate,
while above Nyquist frequency results are affected by aliasing.
Typically the signals to be analyzed are generated by sensors (strain gauges, proximity,
accelerometers, etc.) on various parts of the gearbox, which during the test run is driven at
different speeds. It is therefore of interest to display the frequency spectrum as a function
of speed or time. To sum up, the frequency spectrum, which is already a frequency versus
amplitude plot, has to be represented also as a function of either speed or time. To achieve

27

3 – Frequency Analysis

this kind of representation a 3D visualization is required. The code forces the user to a
frequency y-axis, and an amplitude z-axis, while the x-axis can be set to either speed
or time. The 3D plot is called colormap as the z-axis is represented by means of colors
rather than being geometrical dimension, and is shown in figure 3.6, with a speed x-axis.
To represent the amplitude the code generates a NxM matrix, where N is the number of
elements in which the frequency y-axis is discretized, and M is the number of elements
in which the x-axis is discretized, while the actual values of the matrix elements are the
spectrum amplitudes.
Right of the colormap the so-called peakhold is plotted, a graph whose points are the
maximum amplitude values for every frequency represented. Below the colormap the
amplitude of the requested orders is shown. In order to extract the amplitude value of
each order, the dedicated function first calculates the speed of every order at each time
instants or each reference speed value according to the x-axis setting, which simply is the
reference speed times the order value. Then it converts such speed values from rpm to
Hz. This allows to look for the amplitude of specific frequencies in the spectrum. Once
those values are found, they are plotted in the diagram below the colormap. The closer
two orders are the lower the frequency resolution of the spectrum has to be to allow for a
proper extraction. This limitation will be better explained in the following section. The
code also produces an overall of the signal, which can be either the RMS or the maximum
value among the window elements, where the RMS (root mean square) is defined as:

xrms =

s
1
n

i=nØ
i=1

x2
i (3.1)

where n is the total number of samples. In figure 3.6 with a yellow line an order is
highlighted, while the signal overall is black. From this plot is easy to see peaks due to
crossings between modes and gearbox orders, in particular comparing the orders ampli-
tudes with the overall value it is possible to understand whether the plotted order make
up for most of the signal amplitude or whether a significant part of the amplitude is held
by other orders. In figure 3.6, order highlighted has nearly the same amplitude of the
overall, especially near the order peaks, which means that for such speeds that order is
the most important amplitude contributor. The overall obviously has many other peaks
which are not followed by the highlighted order plot, those peaks are caused by orders
not shown in the plot. The figure produced by the code has, however, a callback function
triggered by clicking on a legend item which toggles the visibility of every orders plot,
allowing the user to cycle through them to associate each order to every peak. There are
other callbacks active on the figure, one plots the modes over the colormap using numbers
to identify the mode. Also the callbacks associated to zooming, panning and datatip have
been modified. The first two have been associated to the same callback which updates
the color scale according the the interval of amplitudes shown after zooming or panning,
allowing the user to visualize also the smaller peaks, which would not be easily detectable
with a logarithmic scale based on the maximum value of the entire colormap. The datatip
has been modified to show the amplitude of the selected point, along with the frequency,
x-value, and order. Besides, the callback also updates the peakhold to show the peaks
of the x-axis zoomed zone, along with the peaks of the whole frequency dominion. By
default MATLAB datatip would show x and y axis values and the color value as z, which
does not match the actual amplitude value, since the amplitude values are converted into
color values by the MATLAB function dedicated to producing colormaps. Besides for the
x and y values selected the callback respectively performs a vertical and an horizontal
slice and plots them in the peakhold and order plot.
As previously mentioned in this section, the frequency analysis can yield a colormap with

28

3 – Frequency Analysis

speed x-axis. As shown in figure 3.2, representing a typical speed profile, the same speed
Ω1 is reached by the reference shaft in two different time instants t1 and t2. Conse-

t

Ω

Ω1

t1 t2

Figure 3.2: Typical ascending and descending run test speed profile

quently, in order to display data with a speed x-axis the code has to rearrange the matrix
storing the amplitude values. As a mater of fact the matrix initially has a time referenced
x-axis, regardless of the user x-axis request, which means that in the shown example, the
amplitude matrix would be referred to the speed profile of figure 3.4. Subsequently, if the
x-axis is required to be in the speed format, the code sorts the speed values to which the
columns of the amplitude matrix are associated. Due to MATLAB function for plotting
the colormap limitations, both x and y axis have to be evenly spaced. Concerning the
y-axis this is not a problem since the frequency axis is always evenly spaced with pace
equal to 1/Tw.
The same cannot be said for the speed x-axis. As a matter of fact the speed x-axis values
depend on the acceleration at the time span of the windowing period of each window.
For example for a window of span 0.5 seconds considering a linear speed ramp of 1 rpm/s
the two windows speed values will be spaced by 0.5 rpm (starting from a null speed, the
average speed of the first window will be 0.25 rpm, while the second 0.75 rpm); while
for the same window if the ramp is 2 rpm/s the first window will have an average speed
of 0.5 rpm while the second one will be 1.5 rpm, resulting in a spacing of 1 rpm. That
is without overlapping the two windows, which would partially mitigate this difference
in spacing. Nevertheless in case of multiple speed ramps having different steepness the
uneven spacing will always be present. The main issue with MATLAB default colormap
function forcing an evenly spaced x-axis representation is that the amplitude matrix is
referred to an unevenly spaced x-axis. Therefore the colormap resulting will depict the
amplitude matrix referred to wrong x-values. A possible solution to address this problem
is to modify the amplitude matrix, along with the x-axis to be both evenly spaced before
generating the colormap.
There are two ways to achieve evenly spacing. The first one is to define a resolution (the
parameter x axis resolution). The code then generates an evenly spaced vector starting
from the minimum x-axis speed value and with last element being the maximum speed
value with pace equal to x axis resolution. To obtain the amplitude values referred to the
new x-axis, the code cycles through every new x-axis value, finds the interval of columns
in the amplitude matrix within xint − x axis resolution/2 and xint + x axis resolution/2.
Among them it finds the maximum value of every row (representing the maximum value
of every frequency contribution at the specified speed interval) and it associates it to the

29

3 – Frequency Analysis

Figure 3.3: Time x-axis colormap

Figure 3.4: Speed profile with time x-axis

30

3 – Frequency Analysis

new amplitude matrix. Selecting the maximum of every row is just a conservative choice,
rather than the maximum the mean value could be chosen, as well as the RMS.
To better visualize this process let’s suppose to have the following amplitude matrix,
whose columns have already been sorted:

A =

a11 a12 . . . a1M
a21 a22 . . . a2M
...
aN1 aN2 . . . aNM

the vector xref , whose length is M , associates to every column the relative speed, while
the vector xint is the new speed x-axis. Its dimension is different than xref since it only
depends on the minimum and maximum speed values, and the resolution imposed by
the user. For every value of xint the code finds the last value of xref for which xref ≤
xint,i − x axis resolution, and the first value for which xref ≥ xint,i + x axis resolution.
After this values are found, the code crops the amplitude matrix considering only the
columns corresponding to the indexes of the values of xref satisfying the relations just
mentioned. Then it finds the maximum value of every row. The result is a column vector
ofM elements, which is stored and becomes a column of the new amplitude matrix, which
can be plotted as function of speed.
The second way to evenly space the amplitude matrix is called matrix stretching and
consists in considering the smallest spacing between the x-axis vector and generating a
new x-axis vector with that spacing. Subsequently the code cycles through every element
of the newly generated x-axis vector and checks its position relatively to the original one,
and assigns the value of the closest bigger element of the original vector to the element
of the new vector. From the perspective of the amplitude matrix, this means that the
columns are duplicated to allow the representation of a variable resolution plot. This
operation is shown in figure 4.12, in particular it is possible to see that a new error might
be introduced due to this practice dependent on the relative position of the elements
of the two vectors and on the dx. In particular some x-axis elements can have wrong
amplitudes. The maximum positioning error is dx, which is the smallest difference among
the values of the unevenly spaced vector. This value is the speed difference between the
two window at the lowest acceleration. This error though is generally negligible.

dx
x

Amplitude

Figure 3.5: In green the original unevenly spaced x-axis vector, in blue the new evenly
spaced one. In red the error introduced by this procedure

31

3 – Frequency Analysis

In case the x-axis is set to be time, the vector representing it is already evenly spaced
with spacing equal to 1/Fs, so no further operations are required before plotting. The
colormap having time x-axis is shown in figure 3.3, along with the associated speed profile
of the reference shaft in figure 3.4. In the colormap with time x-axis orders are quite
evident, since they all follow the same ascending and descending ramps. Even though
they are not showed in the figures, the output has the same format as the one for speed
x-axis shown in figure 3.6.

3.1.3 Automatic parameters selection
As previously mentioned it is not mandatory to manually define the frequency analysis
parameters. The user can either specify some or every parameter or let the code set
them according to the specific data to be analyzed. Nevertheless, for some user defined
settings the code verifies whether the specified values are compatible with the analysis.
The complete list of parameters the code can automatically set is in table 3.1. Selecting
the appropriate parameters to obtain a meaningful frequency analysis is not a simple task
since it heavily influences the quality of the output. Many parameters depend on each
other or on the data being analyzed, and they all depend on the focus of the analysis,
which can be either keeping the lowest amplitude error or granting the highest frequency
resolution. The focus of the analysis is the first parameter to be set since most of the
remaining ones either directly or indirectly depend on it. In case no specification is given
for this parameter the code considers the focus to be amplitude precision.
The choice of the following parameters is particularly important:

• windowing function

• overlap

• windowing period

• frequency range

while many of the parameters listed in table 3.1 do not require many operations to be
determined, the ones listed above require some computing in order to be set appropri-
ately. Due to their significant influence on the analysis result, it is worth spending some
computing time to define them appropriately.
The windowing function is easily set as from Geninatti [5] it is clear that the FlatTop win-
dowing functions allows for better amplitude precision, while Hanning better performs in
case the user requires a lower frequency resolution. The code will follow that logic choos-
ing the windowing function. At the moment only these two windows are present in the
code as they serve well their purpose, many more could be added in the future in case
the need of less biased windowing functions will present. With the choice of the window-
ing function comes the number of bins, which cannot be picked autonomously since it
depends on the windowing function, and represents the window side lobes steepness in
the frequency response diagram. In particular the steeper their side lobes attenuation is
the fewer bins the window requires to separate two orders. For example, considering the
Hanning window frequency response in figure 3.7, the diagram has a fairly narrow main
lobe and requires just 3 bins in order to decade from 1 to −6 dB. On the other hand the
FlatTop function requires more bins (exactly 5) to perform the same attenuation. The
number of bins indicates the minimum number of segments in which a window frequency
interval can be discretized, each bin being a discrete value of said interval. Therefore,
it also indicates how well a windowing function prevents adjacent frequency components

32

3 – Frequency Analysis

Fi
gu

re
3.
6:

C
od

e
ou

tp
ut

w
ith

sp
ee
d
x-
ax

is

33

3 – Frequency Analysis

from leaking into the nearby frequency bins, its value is directly affected by the behavior
of the frequency response side lobes of the function. This aspect is extremely relevant
as windows with a low number of bins are better suited to separate orders having close
frequencies than windows with high number of bins.
Another window parameter showing a great influence on the window behavior is the width
of the main lobe, which mainly affects the frequency resolution. As a matter of fact the
closer the frequencies to be separated are, the narrower the main lobe has to be to achieve
such separation. On the other hand, as the main lobe becomes narrower, spectral leakage
increases, thus lowering amplitude precision, and increasing window energy spreading to
the neighboring frequencies. This explains why the FlatTop window, which has a wide
main lobe if compared to others windowing functions, yields better amplitude precision;
while Hanning with its narrow main lobe, allows for better separation of close frequency,
hence better spectral resolution. The difference between the two windows main and side
lobes are shown in figure 3.7. The leftmost lobe is obviously the main lobe while the
narrower ones following on the right are the side lobes.

Figure 3.7: Frequency response of hanning window (blue) and FlatTop (orange). The
normalized frequency being defined as f/Fs

Once the windowing function is being chosen the interval of frequencies which will com-
pose the colormap frequency spectrum has to be defined. From equation 2.15 defining the
Nyquist criterion it is clear that the highest frequency not affected by aliasing will be:

fmax = Fs
2.56 (3.2)

the frequency interval depicted in the colormap resulting from the analysis thus will start
from zero and end at Fs/2.56. It has to be stated that, while verifying an user defined
frequency interval, the code allows for the narrower interval defined from zero to Fs/2,
but emits a warning stating that the highest displayed frequencies might be affected by
aliasing. As explained in section 2.2.1, the coefficient 2.56 is in place to take into account
the transient of the frequency response of the lowpass filter composing the antialiasing
filter, which starts cutting off frequencies higher than Fs/2. Hence, to be sure to omit
frequencies affected by aliasing, it is a safe practice to consider Nyquist frequency to be
Fs/2.56.

34

3 – Frequency Analysis

Defining the previous parameters is a fairly simple task both from an algorithm than from
a computational weight stand point, the same cannot be stated about the definition of
the windowing period Tw. To select it the code finds the two closest orders to separate
and defines an range of potential windowing periods spanning from Wl to Wr. The two
windows assume the following meanings:

Wl Wr

• smallest period granting order separa-
tion

• largest window before df/dt makes or-
ders blend

• best amplitude precision • worst amplitude precision
• worst frequency precision • best frequency precision
• worst frequency resolution • best frequency resolution
• best time resolution • worst time resolution

Table 3.2: Windowing period interval definition

The code will have to pick a windowing period so that the following relation is true.

Wl ≤ W ≤ Wr (3.3)

Wl being defined as
Wl = 2 ·Bins

∆f (3.4)

and represents the smallest of the admissible windowing period. In particular it defines
the highest frequency resolution the colormap can have (see equation 2.20), while still
being able to distinguish the orders. It, therefore, represents the best fit for an analysis
where amplitude error has to be minimized.
In table 3.2, the equation defining theWl the term ∆f represents the minimum frequency
difference that the analysis will consider. In other words, orders having frequencies closer
than ∆f will not be separated properly. Since an order is a multiple of a reference speed
the ∆f can be written as

∆f = Ωmin · (O2 −O1) (3.5)

where Ωmin is the rotational speed defining the two closest frequencies still distinguishable,
a parameter arbitrarily chosen. A graphical illustration is given in figure 3.8. For speeds
greater than Ωmin the two orders frequencies will be separated by a larger value than ∆f ,
hence extraction of the two orders will be successful. The equation defining Wl can also
be written as:

Wl = 2Bins
∆Orders · Ωmin

(3.6)

where in the specific case ∆Orders represents the two closest orders among the ones to
be extracted. The window called Wr represents the upper limit of the possible windowing
periods. It represent the largest window before the df/dt makes the two orders blend
together. Its value is heavily influenced by the orders absolute value since they represent
the variation of frequency over time. To better understand the limitation posed by the
ramp steepness let us consider an example.
Let us imagine the user wants to perform a frequency analysis of a signal sampled at
Fs = 3250Hz composed of two sine waves with constant amplitude equal to 1 and variable
frequencies over time such that:

f(t) = f0 + βt (3.7)

35

3 – Frequency Analysis

Ω [rpm]

f [Hz]

O1

O2

f2

f1

Ωmin

Figure 3.8: Graphical explanation of ∆f

where β = df/dt,
df

dt
= O · dΩ

dt
(3.8)

where dΩ/dt is the angular acceleration of the test run. At first let us suppose dΩ/dt =
1Hz/s, and the two orders to be analyzed to be equal to O1 = 20 and O2 = 30. Thus

β1 = df1

dt
= O1 ·

dΩ
dt

= 20Hz/s (3.9)

and
β2 = df2

dt
= O2 ·

dΩ
dt

= 30Hz/s (3.10)

the frequency spectrum of the signal should show the two orders having amplitude equal
to 1 during the whole run, besides showing two lines indicating the two orders frequencies
increasing linearly over time. Setting the Ωmin to 10 rpm, from which the ∆f can be
calculated.

∆f = Ωmin(O2 −O1) = 100Hz (3.11)
From equation 3.6 the Wl is defined as 0.0167 s, using a FlatTop windowing function.
The Wl defines the lower limit of the plausible Tw, any value greater than Wl results in a
successful order separation. To obtain a low frequency resolution the Tw is picked to be
1.6 s. The result should show a colormap having good frequency resolution while being
affected by some amplitude error. From figure 3.9 it is clearly visible that, despite the
windowing period being relatively high, the frequency resolution does not seem to be low
(remembering that the frequency resolution should be 1/1.6 = 0.6250Hz). The bins seem
to be too large to depict accurately the two orders frequency lines. That is due to Tw
being relatively large, as a matter of fact the frequency content cannot change within the
windowing period, hence the frequency lines resemble more a stairway than actual lines.
In particular, in a windowing period the two orders see their frequencies change of a ∆f
defined as:

∆f = df

dt
· Tw (3.12)

(not to be confused with the ∆f of equation 3.6) which for O1 is 32 Hz and for O2 is 48 Hz.
For low values of time, when the two orders frequencies are close, this means that they
blend together, preventing a precise extraction. This effect, which later on will be referred

36

3 – Frequency Analysis

Figure 3.9: Colormap with Tw = 1.6 s, zoomed from 0 s to 10 s, signal with dΩ/dt =
1Hz/s

to as stairway effect, can be reduced with a lower Tw, which would allow the frequency
spectrum to be updated more frequently over time. Despite this issue, the colormap is
readable and achieves a sufficient degree of clarity.
Now suppose to repeat the test run with a greater angular acceleration. Setting
dΩ/dt = 6Hz/s, keeping the same value of Tw of 1.6 seconds, same windowing func-
tions and same signal, the resulting colormap is shown in figure 3.10. From the colormap

Figure 3.10: Colormap with Tw = 1.6 s, zoomed from 0 s to 10 s, signal with dΩ/dt =
6Hz/s

it is possible to see that due to the increase of dΩ/dt the stairway effect is even more

37

3 – Frequency Analysis

present. As a matter of fact now the ∆f of a window is six times greater (192 Hz for O1
and 288 Hz for O2), so the two orders are separable only after longer times, where the
frequency difference between the two orders is greater. The effect is so relevant that the
colormap is hardly even readable.
Now the same signal is analyzed with a smaller windowing period of 0.4 seconds. The re-

Figure 3.11: Colormap with Tw = 0.4 s, zoomed from 0 s to 10 s, signal with dΩ/dt =
6Hz/s

sulting colormap is shown in figure 3.11. Decreasing the windowing period has alleviated
much of the stairway effect, now the ∆f are respectively for O1 and O2 48 Hz and 72
Hz. The colormap is readable, but probably the frequency resolution is slightly too high,
being now equal to 2.5 Hz.
From these example it is clear that dΩ/dt is a parameter to be taken into account when-
ever performing a frequency analysis. In particular, while theoretically increasing the
windowing period should result in a lower frequency resolution, and therefore a clearer
colormap, the angular acceleration poses a limit on the highest Tw allowable before the
two orders merge together due to the ramp steepness. In general, test runs having high
dΩ/dt are more troublesome to be analyzed, since they pose more strict requirements
from the windowing period point of view.
In some unfortunate cases Wr > Wl, which means that there is no windowing period
satisfying both conditions imposed by Wr and Wl. This happens when the ∆f in the two
windows definition in table 3.2 is a small value. From the definition of ∆f in equation 3.5
it is clear that as the two orders to be separated tend to the same value ∆f → 0, hence
Wl tends to increase, while Wr decreases. This poses a limit on the closest orders to be
separated which cannot be crossed. As a matter of fact, before selecting the windowing
period, the code verifies whether Wl ≤ Wr is true. If it is false, rather than considering
the ∆Orders of the two lowest values among the orders to be extracted, it sets the pa-
rameter to the second closest orders, and checks again the condition on the two windows.
The code keeps changing ∆Orders until it finds a value satisfying both conditions. After
every change in ∆Orders the code warns the user of which orders are too close to be
separated. In figure 3.12, an example of the two windows, as the ∆Orders diminishes, is
shown. From figure 3.12 it is possible to see that as the ∆Orders decreases, the values of

38

3 – Frequency Analysis

Figure 3.12: Wl and Wr at different ∆Orders

the interval of possible windows becomes narrower, and at a certain value Wl = Wr. For
smaller ∆Orders the window condition will not be satisfied and the code will not be able
to select an adequate windowing period.
Once this process is finished the code selects either Wl or Wr as windowing period for
the frequency analysis according to the specified analysis focus. Obviously if the focus
is on minimizing amplitude error, then the chosen window would be the shortest of the
interval (i.e. Wl), while for better frequency resolution the picked window would be the
longest (i.e. Wr). Every window between Wl and Wr would yield a successful frequency
analysis, though to pick any of the intermediate periods with a motivation would require
more calculations and knowledge of the actual shapes of the peaks that are to be investi-
gated through the analysis [5]. Such procedure requires the knowledge of the signal as a
function of time free from errors which is an available information only for custom made
signals, but not for real case scenarios in which very little is known of the signal before
being processed through a post processing of any kind.
In equation 3.8 it is shown that orders value influences the df/dt of the test. In particular
the value df/dt is known once the dΩ/dt is known. To calculate the value of the Wr

thus, the code has to recognize and measure angular accelerations. Usually the test run
speed profiles have constant acceleration, sometimes one single ascending or descending
ramp is present, other times several ramps are performed within the same test. Consid-
ering how different experimental data can be, simply performing a finite difference of the
speed data, followed by an average of every acceleration obtained that way would not
be a precise enough method to know the acceleration of the reference shaft. For data
containing several ramps that method would give results very far from reality, hence a
more sophisticated algorithm is to be employed.
Such task is not easily performed since the speed signal is often affected by some noise.
The first step of the acceleration finding function is to downsample the speed.
This is done for two reasons:

1. it reduces the memory occupied by the speed variable, improving computing times

2. it acts as a lowpass filter, removing some of the signal noise

39

3 – Frequency Analysis

signal downsampling must be applied with caution as lowering the Fs means that aliasing
occurs for lower frequencies, besides a smaller amount of data means that the resolution
of the speed data as a function of time will be larger. Both these problems do not
concern speed data: aliasing is not an issue since the signal frequency spectrum will not be
extracted as it is not meaningful; and speed run test profile is always linear, hence it could
be precisely represented even by very few points (as a matter of fact an accurate reading
of the slopes could be done with only two points per ramp). In figure 3.13 an example of

Figure 3.13: Effect of downsampling on speed data, blue is the original data, orange is
the downsampled version

downsampling is shown as the speed reaches a zone with null acceleration. The blue line
being the original signal at sampling frequency of Fs gets downsampled to a frequency of
Fs/104. The high frequency noise has disappeared while the mid to low frequency noise
is still present. Besides, the picture supports the fact that the downsampling does not
depict a misleading trend with respect to the original signal.
Once the signal is downsampled, knowing the time interval between consecutive samples
acceleration is calculated by means of finite differences of the speed vector.

ai = vi+1 − vi−1

2∆T (3.13)

In this case noise affects the signal to an extent that the acceleration signal is hardly
meaningful. In particular, the signal has a succession of peaks above and below the mean
value which is the value it should depict ideally. Some kind of smoothing is required to
figure out the speed ramp slopes. Conventional filters (such as IIR or FIR) are not suitable
in this case for various reasons. First of all they either cause an overshoot of the signal,
which would alter significantly the windowing period determination. Besides, they are
quite heavy computationally since the designing of the filter requires the knowledge of the
frequencies to be damped, which can only be obtained through an FFT. In addition, they
usually introduce a phase delay which can significantly alter the original signal. To allow
for the required smoothing the code employs a filter based on peaks. In particular, it first
looks for both peaks above and below the mean value. Subsequently, for every peak, it
checks whether the following one is not of the same kind, if such condition is satisfied the

40

3 – Frequency Analysis

peaks value becomes the mean value between itself and the following peak. After every
peak is analyzed this way, this procedure is repeated until the code finds no more peaks,
which usually occurs between 1000 and 2000 iterations depending on the signal. It must
be said that while this filtering process is not computationally heavy (it generally takes
about 5 seconds) it is not able to level the acceleration even with an infinite number of
iterations. This is due to the fact that the code defines a peak an element of a vector
which value is higher than the ones of both its neighboring elements. There is a threshold
value above which the peak has to be with respect to its neighbor to be considered as
such, generally the threshold is 1−8. Setting it to lower values will increase significantly
the computing time, but yields results comparable to the ones at the original threshold.
In figure 3.14 the acceleration profile of an entire test run is shown. The smoothing

Figure 3.14: Test run acceleration profile filtered and original

Figure 3.15: Focus on a short time interval of the first 5 filtering iterations and final result

applied by the code is evident, and allows for easy determination of speed ramps.

41

3 – Frequency Analysis

This filtering method is not flawless however, like previously mentioned there can be some
particularly noisy speed data which would require some extra filtering, which could be
easily achieved by a moving average filtering of the speed data. The problem is that the
process should be automatized and the code should be aware of when this is a required
operation to be performed. In such cases the ramp finding function might fail to recognize
the correct ramps and stop its execution, the code would then warn the user then abort
the research of a Wr and assign to the windowing period a default value equal to 0.25 s.
The output required from the ramp finding function is a vector containing every accel-
eration value measured within the test run speed profile. To produce this data from the
filtered acceleration vector, the first step is defining where the ramps begin and end. To
perform this the user has to set the ramp tolerance parameter to either ’low’, ’medium’,
or ’high’. This parameter includes every tolerance required to define the ramps from the
filtered acceleration signal. In case the user does not have any information allowing him
to choose the appropriate tolerance setting, the parameter can be left blank, the function
will automatically set it to ’high’. The function checks where the difference between two
consecutive values is higher than the trigger tolerance value, and marks it as a ramp
beginning, in figure 3.16 those points are marked in red. Subsequently performs the same
operation to find the index at which ramps end, again checking two consecutive acceler-
ation values against trigger tolerance. At this point the function loops for every ramp
beginning and checks for two consecutive values being closer than the constant tolerance
to mark the beginning of the constant acceleration zone. From this value checks for the
first couple of consecutive values whose difference is higher than constant tolerance to
define the end of the constant acceleration zone. To compose the output vector, the func-
tion calculates the mean value of the acceleration vector elements included in the constant
acceleration zone. The last operation is the cleaning up of the output vector from accel-
eration values lower than the minimum acceleration value, or higher than the maximum
acceleration. This whole ramp finding process is inserted in an error handling sequence,
hence, in case an error stops the function from reaching the end, the sequence restarts
with a lower setting threshold, until the setting is ’low’, at that point the windowing
period is set to the default value.

3.1.4 Autoslice function
As shown in figure 3.1 depicting the frequency analysis work flow, the final sequence is
optional and is useful if the analysis is focused on finding crossings between modes and
orders, and evaluating their amplitude. The left branch of figure 3.1 shows the main
sequences composing the Autoslice algorithm, which role is to identify peaks crossing a
set threshold and assigning to each of them a mode and an order. Besides, the user can
insert additional inputs concerning the stiffness of every mode, thanks to which the code
is able to calculate the stress caused by the peaks highlighted.
Before looking for peaks the function applies the correction to the modes natural frequen-
cies f0 according to the temperature indicated. The user has to input two temperatures,
one is the reference temperature at which the given f0 are calculated, the second is the
temperature at which the test run is performed. Often times lubricant oil in aeronautical
gearboxes is also used in heat exchangers to cool down some components, therefore it
is not unusual to see oil temperatures of around 100◦C, which can significantly modify
the mechanical properties of the gears. As a matter of fact increasing the gears oper-
ational temperature causes a reduction in material stiffness which cannot be neglected.
To consider this effect, the code firstly calculates the young modulus at the reference
temperature, then applies the effect of the test run temperatures. To calculate the young
modulus the code simply performs a linear interpolation between the value at 20◦C, the

42

3 – Frequency Analysis

Samples

a

(a) Acceleration vector

Samples

∆a

(b) Difference between acceleration vector elements

Figure 3.16: Example of acceleration vector being analyzed by the ramp finding function.
Red samples are the ones limiting the ramp, green ones are the ones limiting the samples
taken into consideration while performing the average to fill the output vector. The green
dashed line is the constant tolerance

value at 150◦C and the query point, hardly ever temperatures outside this interval are
required, nevertheless they would not be cause code failures. Once the young modulus at
the reference and test run temperatures are calculated the following relation is used to
determine the new natural frequencies.

f0,corr = f0 ·

E(Ttest)
E(Tref)

(3.14)

Sometimes the test run or the reference temperature might not be known. As shown
in table 3.1, in case some temperature data is missing the code automatically avoid any
temperature correction, warning the user that the modes frequency considered by the
code might be slightly off the ones visible in the colormap.

43

3 – Frequency Analysis

After applying the temperature correction (if needed), the code takes into account an-
other effect that can modify modes frequency: gyroscopic effects. In case some of the
modes to be analyzed are radial, their slopes is not simply the nodal diameter value, but,
as mentioned in chapter 1, there is a correction to be applied to the slopes. The user
can select a number from zero to one indicating the entity of the radial correction to be
applied, one being full radial correction, zero being full axial correction. For every number
in between the code would make a weighted average between the two slopes and apply
the result to calculate the slopes of the mode. The correction applies both to the forward
and the backward frequencies.
Once the corrections are applied, the first task performed by the Autoslice function is look-
ing for peaks in the peakhold that cross the given thresholds, in figure 3.17 an example of
this operation is shown. The threshold is typically variable with respect to frequency. To
allow for detection of peaks at high frequencies, which typically have lower amplitudes if
compared to the ones at low frequencies, it is a good practice to specify lower amplitude
thresholds at those frequencies. Performing this operation is equivalent to checking for

Figure 3.17: Peakhold (continuous line) with threshold (dotted line)

every x-axis value (i.e. every amplitude matrix column) if the maximum value crosses
the given threshold, with the sole difference being that the peakhold does not give any
information of the x-axis value of each peak. For this reason, once the relevant peaks are
found, the function locates the peaks in the colormap by looking for the maximum ampli-
tude value at every peak frequency. Once the x-value of the peaks is found the function
slices vertically the colormap, thus extracting the amplitude value of every frequency at
the peaks x-axis values, and checks that data against a lowered version of the threshold.
The magnitude of the threshold reduction is specified by the user. In figure 3.17 the black
dotted line is the threshold, while the red dotted line is the lowered threshold, which is a
half of the original value. The red circled dots are the peaks crossing the regular threshold
while the points marked with an asterisk only cross the lowered threshold.
Once the peaks are correctly identified, the function checks for each one of them whether
their location in the colormap is close to any mode. To do so the user has to input
two tolerances, one relative and one absolute. The relative one is used in the following

44

3 – Frequency Analysis

equation:
|fpk − fmode|

f0
< tol1 (3.15)

where fpk is the peak frequency, f0 is the natural frequency of the mode, and fmode is the
vector of the mode frequency as function of the x-axis. The absolute tolerance is used in
the following equation:

fpk − fmode < tol2 (3.16)
the function checks every peak with respect to every mode both forward and backward
specified by the user. For every peak found to be the result of a crossing between a mode
and an order, the function calculates the stress caused by it. This is meaningful only
for data concerning displacement, and is simply done by multiplying the peak amplitude
and a stiffness coefficient (Sc), related to young modulus, which gives the ratio between
displacement and stress deriving from it (equation 3.17).

Sc = σ

u

ï
MPa

µmm

ò
(3.17)

Every mode has its own stiffness coefficient, which typically increases exponentially in-
creasing the mode number of nodal diameters.
After the stresses are computed, the contribution of forward and backward peaks gets
summed to yield the total stress of the mode since the two frequencies coexist. While
forward and backward are two separate harmonics, they still belong to the same mode,
hence in case both of them produce a peak crossing even with different orders, their stress
contribution has to be summed up.
Once every computing operation is performed the function passes every relevant data to
a dedicated output function, whose role is to print text file summarizing the peaks data,
and showing the stresses caused by the crossings between orders and modes. The output
produced changes slightly depending on the kind of x-axis of the analysis.
In particular the text file contains the following fields for each peak:

• Amplitude, which shows the peak amplitude

• N, which indicates at what speed the peak occurred. Alternatively, in case the x-axis
is temporal, this field gets renamed and shows the time at which the peak occurred

• Frequency, which shows at which frequency the peak belongs to, it is its y-axis
position

• Order, knowing the frequency and the speed at which the peak occurred, it is a
quick task to calculate the order at which the peak belongs. It simply is f/(N/60);
where f is the frequency of the peak, and N is the speed, which is divided by 60 if
the unit is rpm (which is usually the case)

• Stress, which shows the sum of the stresses caused by the peak to every mode

Below the table with the peaks data, the text file displays two matrices, concerning the
stress data for forward and backwards harmonics. The matrices a NxM with N rows
equal to the number of peaks, and M number of modes. To obtain the stress data for
the previous table, the output function sums the stresses concerning the peak of interest
(it sums every value on the same row) of the forward and backward stress matrices, and
then sums the two stresses to yield the total stress caused by the peak.
Besides the text file, the function produces another output, produced by another dedicated
function, which is a plot showing the vertical slices alongside the peakhold. It is shown in
figure 3.17, thanks to a callback it is possible to toggle the visibility of the various slices.

45

3 – Frequency Analysis

P
ar
am

et
er

P
ar
am

et
er

m
ea
ni
ng

A
ut
o
va
lu
e

C
on

di
ti
on

to
be

sa
ti
sfi
ed

A
na

ly
sis

fo
cu
s

Sp
ec
ifi
es

w
he
th
er

th
e

fo
llo

w
in
g

au
to
m
at
ic

ch
oi
ce
s
w
ill

fa
vo
r
am

-
pl
itu

de
pr
ec
isi
on

or
fre

qu
en
cy

re
s-

ol
ut
io
n

A
m
pl
itu

de
N
A

W
in
do

w
in
g
fu
nc
tio

n
Ei
th
er

H
an

ni
ng

or
Fl
at
To

p
w
in
-

do
w
in
g,

de
pe

nd
s
on

th
e
an

al
ys
is

fo
cu
s

D
ep

en
ds

on
th
e
an

al
ys
is

fo
cu
s

N
A

O
ve
rla

p
W

ha
tp

er
ce
nt
ag
eo

ft
ru
nc
at
ed

sig
-

na
l
ge
ts

ov
er
la
pp

ed
w
hi
le

pe
r-

fo
rm

in
g
th
e
FF

T

D
ep

en
ds

on
th
e
w
in
do

w
in
g
fu
nc
-

tio
n

N
A

W
in
do

w
in
g
pe

rio
d

Te
m
po

ra
ll
en
gt
h
of

th
e
se
gm

en
ts

in
w
hi
ch

th
e
sig

na
lg

et
st

ru
nc
at
ed

D
ef
au

lt
va
lu
e
is

0.
25
s

W
l
≤
W
≤
W
r

X
-a
xi
s

C
ol
or
m
ap

x-
ax

is,
ei
th
er

sp
ee
d
or

tim
e

T
im

e
N
A

f m
a
x

M
ax

im
um

fre
qu

en
cy

w
ho

se
am

-
pl
itu

de
w
ill

be
di
sp
la
ye
d

in
th
e

co
lo
rm

ap

F
s

2.
56

f m
a
x
<

F
s

2.
56

x-
ax

is
re
so
lu
tio

n
R
es
ol
ut
io
n

of
th
e
x-
ax

is,
on

ly
if

sp
ee
d
is

se
le
ct
ed
,
fo
r
tim

e
x-
ax

is
th
is

is
1/
F
s

1
[R

PM
]

Li
m
ite

d
ac
co
rd
in
g

to
fre

qu
en
cy

ra
ng

e
to

pr
ev
en
t
co
lo
rm

ap
be

in
g

to
o
he
av

y
Te

m
pe

ra
tu
re

co
rr
ec
tio

n
To

gg
le
s

te
m
pe

ra
tu
re

co
rr
ec
tio

n
fo
r
m
od

es
f 0

N
o
co
rr
ec
tio

n
N
A

A
m
pl
itu

de
re
du

ct
io
n

C
oe
ffi
ci
en
to

fr
ed
uc
tio

n
fo
ra

m
pl
i-

tu
de

th
re
sh
ol
d
in

A
ut
os
lic
e

1
N
A

A
bs
ol
ut
e
to
le
ra
nc
e

To
le
ra
nc
e
us
ed

to
de
te
ct

cr
os
sin

g
be

tw
ee
n
m
od

es
an

d
or
de
rs

10
0[
H
z]

N
A

R
el
at
iv
e
to
le
ra
nc
e

To
le
ra
nc
e
us
ed

to
de
te
ct

cr
os
sin

g
be

tw
ee
n
m
od

es
an

d
or
de
rs

0.
03

N
A

R
ef
er
en
ce

sp
ee
d

Sp
ee
d
us
ed

to
ca
lc
ul
at
et

he
m
od

es
fre

qu
en
cy

In
pu

t
sp
ee
d

N
A

O
rd
er
s
to
le
ra
nc
e

To
le
ra
nc
e
us
ed

to
ex
tr
ac
t
or
de
rs

fro
m

co
lo
rm

ap
to
l

=
O

2
−
O

1

O
2

+
O

1
·1

00
to
l
≤
O

2
−
O

1

O
2

+
O

1
·1

00

Ta
bl
e
3.
1:

C
om

pl
et
e
lis
t
of

pa
ra
m
et
er
s
ha

nd
le
d
by

th
e
au

to
m
at
ic

pa
ra
m
et
er

se
le
ct
io
n
fu
nc
tio

n

46

3 – Frequency Analysis

Tolerance ’high’ ’medium’ ’low’ meaning

Trigger tolerance 0.01 0.4 0.6 Minimum difference between
two consecutive accelerations
values required to consider them
the beginning of a ramp

Constant tolerance 0.05 0.07 0.1 Minimum/maximum difference
between two consecutive accel-
erations values to define the
start/end of a constant acceler-
ation zone

Minimum acceleration 0.005 1 1.5 Ramps having lower accelera-
tion values than this threshold
will be deleted

Maximum acceleration 10 20 35 Ramps having higher accelera-
tion values than this threshold
will be deleted

Table 3.3: Ramp finding thresholds, the values are in rpm/s

47

Chapter 4

Order Analysis

As mentioned in chapter 3, frequency analysis allows to highlight phenomena that are
periodic over time. In fact in the frequency spectrum the amplitudes relative to such
phenomena will stand out from the random aperiodic noise. In some cases, though, the
phenomenon to be analyzed is related to the machine cycle, hence rather than repeating
itself after a given time interval, it repeats itself after a regular number of revolutions.
For example let’s consider for instance a vibration analysis performed on an internal com-
bustion engine operating at variable speed. If the test run is divided into different time
segments of equal length, which is the operation performed while windowing the signal,
every segment will include a different amount of strokes since the engine shaft speed is
not constant over time. Therefore, due to the phenomenon not being periodic over time,
it would not be clearly represented through a frequency analysis.
The most effective tool to analyze internal combustion engine strokes, and every other
phenomena periodic over the reference shaft revolutions, is the so-called order analysis.
An order is simply defined as a pure number representing the multiple of a reference ro-
tational frequency, in the case of the combustion engine a typical reference speed could
be the rotational frequency of the shaft.
From a computational standpoint, order analysis performs exactly the same passages of
the frequency analysis, the only difference is that the signal analyzed has to be sam-
pled at constant angle intervals. Once the resampling procedure is completed, the signal
undergoes the same preprocessing described in section 2.2. In table 4.1 the parallelism
between frequency and order analysis parameters is shown. From table 4.1 it is impor-

Frequency analysis Order analysis

Time Angle
Frequency Order

Sampling frequency Points per revolution
Nyquist condition Nyquist condition
FS > 2.56fmax ppr > 5.12Ordmax

Sampling period dt = T0 = 1
Fs

Sampling angle dθ = 1
ppr

Windowing period T Windowing revolutions Nrev

Frequency resolution df = 1
T

Order resolution dOrd = 1
Nrev

Table 4.1: Order analysis parameters correspondence with frequency analysis

tant to notice that, similarly to frequency analysis, also for order analysis there is a
Nyquist theorem which limits the frequency domain not affected by aliasing, the Bruel
Kjaer signal analyzers company has discovered that in order to have a precise resampling
2 · 2.56 = 5.12. samples per period of the highest frequency of the range are required [6].

48

4 – Order Analysis

There is, however, an important practical difference: in the case of frequency analysis
the sampling frequency Fs is not a parameter that can be freely set, like the windowing
period for example. It is rather a hardware feature, which solely depends on the settings
of the hardware employed during the test run. For order analysis, though, the points
per revolution (ppr), the parameter equivalent to the sampling frequency, can be chosen
freely since the signal undergoes resampling. The only downside to selecting a big ppr is
that the computational cost of the analysis will increase exponentially. Extremely high
values of ppr are not usually needed, for example a value of 4 · 360 = 1440, which would
generate a signal with 4 samples between each degree, yields a sufficiently accurate data
for most purposes. Considering that sampling frequencies usually are of the order of at
least 104 Hz, which means that 104 samples are being taken each second of the test run,
and that the maximum reference shaft speed generally is around 2000 rpm (∼ 209 rad/s),
the original data contains about 104 · 2π/209 ∼ 300 samples each revolution, which is two
orders of magnitude higher than the density of resampled data at ppr = 1440. From this
estimate it is clear how the time sampled data is dense enough to allow the ppr to be
raised significantly above 1440 points per revolutions if need be. This also means that
resampled data are almost always lighter than their time sampled version, which mitigates
the extra computational time required for the actual resampling of the signal.
Concerning the other parameters, they are analogous to their frequency analysis counter-
parts. There is a windowing number of revolutions to be picked which is determined from
the two closest orders, and the windowing function, which reduces the spectral leaking of
the analysis.
The advantages order analysis offers over frequency analysis are twofold.

1. as shown in the following sections, resampling the signal synchronously to the ref-
erence shaft allows to have a signal with null df/dt. Thus orders are represented as
horizontal lines, negating the speed ramp steepness effects described in section 3.1.3

2. in case some noise not synchronous with the reference shaft is present in the signal,
it can be easily filtered by averaging the frequency spectrum of different revolutions
altogether

4.1 Synchronous resampling
As mentioned in the previous section, order analysis requires the resampling of the raw
input signal, in this section an overview of said operation is given.
The steps toward resampling a time sampled signal into an angle sampled one are the
following:

1. obtain a valid speed reading of the reference shaft

2. upsampling the signal

3. low pass filtering

4. cubic or linear interpolation

while upsampling and the subsequent low pass filtration are not strictly necessary, but
rather can be used to increase the precision of the resampling, steps 1 and 4 cannot be
skipped.
In order to obtain the speed data of the reference shaft, an optic sensor is mounted on it.
In case the reference shaft is not accessible, or equipping it with the sensor would result

49

4 – Order Analysis

Figure 4.1: Phonic wheel

unpractical, it can be mounted on another shaft, and, knowing the transmission ratio
between the two, the speed of the reference shaft can be determined. The voltage data
produced by the sensor is then converted into speed data by some dedicated functions in
the code, which produce the speed vector as a function of time and the vector specifying
the beginning time of each revolution the reference shaft performs during the test run.
The optical sensor usually employed for this task is composed of an emitting and a receiv-
ing part. The emitting end generates a light beam which is pointed toward the receiving
end. The sensor generates a voltage signal representing the intensity of the light beam
perceived by the receiving end. Between the two parts a phonic wheel is positioned,
which is shown in figure 4.1, the wheel rotates with the shaft whose speed is to be mea-
sured. By revolving, the wheel alternatively blocks or clears the passage to the light beam
generated by the emitting part of the optical sensor. The optical sensor then measures
pulses representing the time periods in which the teeth do not block the beam. With this
data, generally referred to as tachometer signal, knowing the angular distance between
the phonic wheel teeth, and the time passing between two pulses, it is possible to calculate
the rotational speed of the shaft rotating with the phonic wheel. As a matter of fact, a
revolution is performed once z pulses are measured, where z is the number of teeth of
the phonic wheel. The time between z pulses is known since the signal being analyzed is
sampled at constant time instants defined by 1/Fs.
In order to efficiently count the pulses from the tachometer data string, the signal has
to become digital, which means that rather than assuming continuous values it can only
contain either zeros (representing the light beam being blocked) or ones (representing the
light beam being able to light the receiving part of the sensor). To perform the conversion
the tachometer data string is passed through a Schmitt trigger, which operates by defin-
ing two thresholds, one upper and one lower. The samples whose amplitude is inferior
to the lower threshold become zeros, the ones above the upper become ones. Whenever
a sample is located in between the two thresholds it maintains the value of the previous
sample. In table 4.1 the functioning of the device is summarized. In case the tachometer

Analog sample value Digital sample value

x(n · Ts) ≤ thl x(n · Ts) = 0
x(n · Ts) ≥ thu x(n · Ts) = 1

x(n · Ts) > thu ∧ x(n · Ts) < thu x(n · Ts) = x((n− 1) · Ts)

Table 4.2: Schmitt trigger applied to the n sample of a time dependent x(t) signal

50

4 – Order Analysis

signal passed to the Schmitt trigger is not as regular as the one showed in figure 4.5,
some problems might arise, requiring some more operations to be performed in order to
obtain a correct reading of the phonic wheel crossings. An example of such a case, and
the consequences resulting from it, is described in section 5.1.3.
Rather than the speed data, to perform the resampling a synchronozing pulse vector is
required. This vector contains the time at which every revolution starts, it is of paramount
importance for the resampling procedure, and is generated from the process just described.
As a matter of fact, it already has been pointed out that one revolution is defined by count-
ing an amount of pulses equal to the wheel teeth. Any possible error during the conversion
would strongly affect the outcome of the resampling.
Once the synchronizing pulse vector is obtained, it is possible to generate the synchro-
nized data vector since the ppr defines how many points are required within the samples
of a single revolution which start and end times are known. To perform that operation
an interpolation is needed to generate the new sample points at the times specified by
the synchronizing pulse. The interpolation can be either linear or cubic, other kinds of
interpolations are rarely used as they would result heavier to perform and they would not
provide an equivalent increase in precision. It is clear that cubic interpolation is to be
preferred over linear whenever precision is the most important aspect of the analysis, at
the cost of heavier computational loads, especially for upsampled signals. Interpolations
always introduce an error, in order to reduce it an upsampling might be required.
Upsampling consists of artificially adding new samples of null value between already ex-
isting ones. After the interpolation, the signal which underwent upsampling has a higher
precision due to the artificial increase of sampling frequency. This, though, comes with
two main downsides: performing operations on an upsampled signal is computationally
heavier with respect to the original signal, due to the increased amount of data to be pro-
cessed. Besides, the process introduces high frequencies in the oversampled signal which
have no physical meaning and have to be removed, the whole procedure is pictured in
figure 4.6.
Once the signal is upsampled to remove the high frequencies a low pass filtering occurs.
The filter is usually a digital one and can either be a FIR (finite impulse response) or
an IIR (infinite impulse response), it has to be designed having a flat passband and null
ripple or the signal will be either amplified or reduced. This poses a limit on the steep-
ness of the transient band and favors FIR over IIR. Requiring the resampling function to
perform some filtering over an upsampled signal can be a daunting task, and significantly
increase the computational time.
From Geninatti master thesis [5], it is demonstrated that in order to have a sufficiently
accurate resampling, a cubic interpolation without upsampling is usually sufficient, as
shown in figure 4.4. As a matter of fact, in the examples shown in [5], upsampling raises
computational cost more than increasing the precision of the operation. In general this
is true only for signals with sufficiently high Fs, where for each revolution thousands of
samples are present. If the Fs is not so high with respect to the rotational frequency,
upsampling might be an effective tool to increase precision. Upsampling might be needed
also in cases where the ppr is extremely high, to the point where the interpolation is
requesting about the same amount of samples each revolution as the ones present in the
time sampled signal. In figure 4.2 and 4.3, taken from [7] the resampling of a signal
whose frequency is varying linearly over time is shown. It is clearly shown that samples
equally spaced in the angle domain are not equally spaced in the time domain. In the
example of the figures the df/dt is positive therefore frequency is increasing over time.
For rotating machinery this occurs whenever the test run is performed at an increasing
rotational speed. As a matter of fact in the colormap in figure 3.3 in chapter 3 it is clear

51

4 – Order Analysis

Figure 4.2: Chirp with samples equally
spaced in the time domain

Figure 4.3: Chirp resampled with samples
equally spaced in the angle domain

Figure 4.4: Different upsampling values and interpolation methods effects

that the order lines follow the same outline as the speed with respect to time. Looking at
figure 4.3, it is clear that a signal sampled at a constant angular interval ensures the df/dt
to be null, as the speed variation of the reference shaft have no effect on the amount of
samples each revolution. This means, though, that for lower rotational speeds the samples
are separated by long time intervals, since the reference rotor might take some seconds to
perform a revolution. This can result in variable x-axis resolution for Campbell diagrams.
This usually is not a concern since the colormap resulting from the order analysis, showed
in the following section, pictures horizontal lines, which is coherent with a null df/dt, and
is well readable even with a variable x-axis resolution.
In order to have the same amount of samples, at each revolution the sampling has to
occur at an increasing frequency over time, as shown in figures 4.2 and 4.3.
Within a time interval from figure 4.3, frequency and thus rotational speed varies, this
effect is not considered by the resampling algorithm which considers the frequency con-
stant between the begin and end of a revolution, this introduces an error which is usually
negligible, since the time interval in which speed is considered constant is generally very
small with respect to the acceleration.

52

4 – Order Analysis

Figure 4.5: Example of tachometer signal

Figure 4.6: Upsampling operations

4.2 Order analysis code implementation

A dedicated function performing order analysis has been written in the code. Similarly
to the one described in chapter 3 for frequency analysis, the function requires some input,
which can either be inserted by the user or automatically determined by the code. In both
cases for certain parameters the code carries out a control to verify whether the input is
compatible with the user requests. The input that are mandatory to be inserted by the
user are:

• directories concerning the location of the raw data, and the location where output
files are saved

• speed and order table. Already described in chapter 3

• output settings, specifying the format and what output to save

53

4 – Order Analysis

in the case of an order analysis no input is requested by the Autoslice function since it
can only be employed in case of a frequency analysis. The expected output is, also in this
case, a colormap representing on the z-axis the amplitude of the spectrum, on the y-axis
the order, and on the x-axis either speed or time, according to the user preference.

4.2.1 Code architecture
The code architecture concerning the order analysis function is represented in figure 4.7.
Similarly to the frequency analysis there is a sequence dedicated to the automatic selection
of certain input, the code actually calls the same function which is able to determine
and verify both frequency and order analysis parameters. The block concerning the
synchronous resampling performs the operations described in section 4.1.

Read input

Missing input?

Resample sinchronously
the signal

Perform
order analysis

Auto Settings

Find closest orders

Find Wl

Plot output

No

Yes

Figure 4.7: Order analysis workflow

4.2.2 Code output
After the frequency spectrum is generated, the function passes the relevant data to a
dedicated function which produces a colormap and saves it in the specified format (.fig or
.png) in the output folder. As mentioned in the previous sections, order analysis highlights
phenomena periodic over a constant number of revolutions. In the output colormap this
is visible as the lines representing specific orders have higher or lower values of amplitude.
Considering a typical colormap produced by the output function, the y-axis always rep-
resents the orders. There is a limit posed by Nyquist theorem which limits the highest
order not affected by aliasing which is ppr/5.12. The x-axis, similarly to the frequency
analysis function, can either be time or the reference speed. In case of a speed x-axis, if
the test run speed profile is not monotone, and the reference shaft reaches the same speed
at more than one time instant, the interpolation described in chapter 3 is required in
order to correctly rearrange the frequency spectrum data with respect to a monotonically
increasing speed x-axis. From figure 4.8, it is possible to see that the resolution of the
x-axis seems to vary with respect to the speed value, in particular bins at lower speeds
seem to be repeating themselves.
It is important to remember that the resampled signal has ppr number of samples per

54

4 – Order Analysis

revolutions, while performing the frequency analysis, windows composed of several revo-
lutions are processed each time. At the same time the x-axis is generated by averaging the
x-axis reference values (angle for order analysis, and time for frequency) of the relative
window elements. Obviously the windowing revolutions are constant and do not vary
their length with respect to speed, therefore at lower speeds the windowing revolutions
span over a longer time than at higher speeds. Since the speed is assumed to be varying
linearly over time, this means that at lower speeds between the first and the last elements
of the windowing revolutions there is a higher speed difference than from the same two
elements belonging to a window positioned at higher speeds. After the average value is
calculated, two windows at lower speeds are represented by average values significantly
apart from each other, while two windows at high speeds have x-axis values averages fairly
close to each other. If this difference is higher than the x-axis resolution, multiple x-axis
elements pick their value from the same spectrum values resulting in bins duplication.
For example the colormap in figure 4.8 spans from a null speed to 1800 rpm, it is possible
to see that for speeds lower than 600 rpm several bins are duplicated. In particular, due
to this effect the speed range from 0 to 400 rpm is represented by only 5 bins yielding a
resolution of 80 rpm, while the user defined x-axis resolution is 1 rpm. The user must be
aware of the fact that bins duplication prevents the x-axis resolution setting to influence
the colormap at lower speeds, while the same parameter functions properly for higher
speeds.
The only way the user can act to prevent bins duplication is to reduce the number of win-
dowing revolutions, hence allowing for a smaller speed difference between the two windows
x values. The effect is visible in figures 4.9 and 4.10. The first one shows the zoom on
the region between 0 and 400 rpm of the colormap in figure 4.8, which is obtained with a
Nrev = 50; while the second one shows the same region of the colormap of the same raw
data but obtained with Nrev = 20. Reducing the windowing revolutions parameter results
in a higher order resolution, which is defined as 1/Nrev, with the consequent risk of failing
to separate the closest orders, so this is not always a practical choice. Another way to
reduce the bins duplication is to increase the x-axis resolution, although this inherently
reduces the precision of the colormap at high speeds, where bins duplication is absent. In
general the only way of preventing bins duplication without any side effects is to have a
test run performed at low accelerations.
In case of a time x-axis a different problem arises. The resampled signal is evenly spaced
with respect to the angle domain, as described in section 4.1, hence for any given time
interval ∆t there is a different amount of data depending on the speed of the reference
shaft. At high speeds the reference shaft is completing more revolutions than at lower
speeds in a given ∆t, thus at lower speeds the data density with respect to time is lower
than at higher speeds. Differently from the speed x-axis, in the case of a time x-axis
the spectrum data do not have to be rearranged according to their speed, so the user is
not required to select the x-axis resolution, and the code does not go through the section
which evenly spaces the amplitude matrix. This poses the same problem discussed in
section 3.1.2 concerning the MATLAB default function for generating the colormap not
being able to do so with an unevenly spaced input. For colormaps having time x-axis to
achieve a proper representation the only way is to employ the amplitude matrix stretch-
ing described in section 3.1.2. In case of a speed x-axis both interpolation and matrix
stretching are available options. In figure 4.11 a colormap obtained with the MATLAB
default function for plotting colormaps. It is evident how the region between 150 and 200
seconds in the order plot, which has a relatively high amplitude value, is not depicted at
the correct time in the colormap above, but it results shifted of about 50 seconds. While
the colormap cannot be plotted with uneven spacing, the same can be done in a regular

55

4 – Order Analysis

Figure 4.8: Order analysis colormap with speed x-axis

Figure 4.9: Nrev = 50 colormap zoom Figure 4.10: Nrev = 20 colormap zoom

56

4 – Order Analysis

2D plot, thus the data shown in the ordermap is correct, and consequently the error lies
in the colormap representation of the spectrum. In figure 4.12, the same colormap has
been plotted after going through the matrix stretching procedure. From that plot it is
possible to see that while the resolution is lower at the beginning and the end of the test
run (referring to the speed profile of figure 3.4 those are times at which the speed of the
reference shaft is the lowest), the order plot and the colormap are consistent with each
other, so every amplitude matrix value is assigned to the correct x-axis value.
The z-axis is a chromatic scale rather than a geometric one, for clarity purposes. Similarly
to the frequency analysis colormap the z-axis represents the amplitude of the vibration.
An example of the colormaps produced by the function can be seen in 4.13. In particular
there are the same side plots described for the frequency analysis colormap (peakhold
and order), with the same callbacks associated to the figure. The same considerations
regarding the overall and the orders value made for the frequency analysis colormap still
hold for the order analysis one.

4.2.3 Automatic parameter selection
The code allows for some analysis parameters to be left blank and a dedicated function
has the task to fill in the missing input. In case the user has defined every parameter,
the code verifies whether they are coherent with each other or not, and if they can yield a
sufficiently accurate analysis. For example the maximum order requested to be displayed
is always checked to be within Nyquist limit. Some parameters are immediately set by
the function as it just sets a default value considered to be sufficient for a preliminary
analysis, others require some more complicated operations. As for the frequency analysis
particular care must be taken while setting the signal analysis parameters (windowing
function, overlap, windowing period, etc.), since the precision of the results strongly
depends on the appropriate choice of them. A complete list of parameters handled by the
automatic setting sequence is in table 4.3.
The process is similar to the one described in chapter 3, but there are some significant
differences. The most noticeable concerns the windowing period, which, as stated in
table 4.1, becomes the windowing revolutions. In particular, concerning the choice of this
parameter there is no Wr to find, as shown in figure 4.7. As a matter of fact, while the
code has to pick the windowing revolutions it only considers the Wl, which is derived
considering the two closest orders. Recalling that Wr is dependent on the df/dt of the
test run, considering that a resampled signal has a null df/dt, the acceleration of the
reference shaft has no influence on the colormap clarity. This means that increasing the
windowing period of an order analysis will always result in a lower frequency resolution
and a greater amplitude error. No other effects due to the dΩ/dt influence the colormap.
This is a positive feature of order analysis, because to choose an appropriate windowing
period, the function can skip the ramp finding function, saving some significantly heavy
computations. The only condition that the windowing period should satisfy is being
bigger than Wl, which is defined as:

Wl = 2 ·Bins
∆O (4.1)

Wl in this case is dimensionless (representing revolutions), while in the frequency analysis
case it has ∆f = ∆O · Ωmin as denominator, resulting in Wl having the time dimension.
Not having a Wr, the windowing revolutions solely depends on the value of ∆Orders.
The value of Wl defines the y-axis resolution as seen from table 4.1, the closer two orders
are the lower the resolution has to be to allow the graphical separation of the two. In
particular the higher the windowing revolutions are the lower the order resolution.

57

4 – Order Analysis

Figure 4.11: Order analysis colormap with default MATLAB colormap function

Figure 4.12: Order analysis colormap with stretched matrix evenly spacing method

58

4 – Order Analysis

Fi
gu

re
4.
13
:
O
rd
er

an
al
ys
is

co
lo
rm

ap

59

4 – Order Analysis

Despite the advantages of not having aWr to calculate, this presents another problem. In
chapter 3 it is explained that in case the orders to separate are too close, there can be no
available windowing revolutions. If that is the case the function automatically looks for
the second smallest ∆Order and repeats the sequence for that value. This is performed
within a loop so that while the condition Wr < Wl holds the function keeps switching
∆Orders until it finds a ∆Orders breaking the condition. Thanks to this procedure,
which inherently requires some computations, the windowing revolutions parameter is
always a reasonable value yielding both amplitude precision and frequency resolution.
This is not the case for the order analysis. As a matter of fact, in case the ∆Orders is
made up of two really close orders the resulting windowing revolution can be extremely
high since the upward limit previously posed by the Wr does not exist in this case, and
this can strongly affect the amplitude precision of the resulting colormap. As a matter of
fact in chapter 1 it is explained how the longer the windowing revolution is the lower the
amplitude precision is.

60

4 – Order Analysis

P
ar
am

et
er

P
ar
am

et
er

m
ea
ni
ng

A
ut
o
va
lu
e

C
on

di
ti
on

to
be

sa
ti
sfi
ed

A
na

ly
sis

fo
cu
s

Sp
ec
ifi
es

w
he
th
er

th
e

fo
llo

w
in
g

au
to
m
at
ic

ch
oi
ce
s
w
ill

fa
vo
r
am

-
pl
itu

de
pr
ec
isi
on

or
fre

qu
en
cy

re
s-

ol
ut
io
n

A
m
pl
itu

de
N
A

W
in
do

w
in
g
fu
nc
tio

n
Ei
th
er

H
an

ni
ng

or
Fl
at
To

p
w
in
-

do
w
in
g,

de
pe

nd
s
on

th
e
an

al
ys
is

fo
cu
s

D
ep

en
ds

on
th
e
an

al
ys
is

fo
cu
s

N
A

O
ve
rla

p
W

ha
tp

er
ce
nt
ag
eo

ft
ru
nc
at
ed

sig
-

na
l
ge
ts

ov
er
la
pp

ed
w
hi
le

pe
r-

fo
rm

in
g
th
e
FF

T

D
ep

en
ds

on
th
e
w
in
do

w
in
g
fu
nc
-

tio
n

N
A

W
in
do

w
in
g
pe

rio
d

Te
m
po

ra
ll
en
gt
h
of

th
e
se
gm

en
ts

in
w
hi
ch

th
e
sig

na
lg

et
st

ru
nc
at
ed

D
ef
au

lt
va
lu
e
is

0.
25
s

W
l
≤
W

X
-a
xi
s

C
ol
or
m
ap

x-
ax

is,
ei
th
er

sp
ee
d
or

tim
e

T
im

e
N
A

pp
r

Po
in
ts

pe
r
re
vo
lu
tio

n
of

th
e
re
-

sa
m
pl
ed

sig
na

l
4
·3

60
N
A

O
m
a
x

M
ax

im
um

or
de
rw

ho
se

am
pl
itu

de
w
ill

be
di
sp
la
ye
d
in

th
e
co
lo
rm

ap
p
p
r

2.
56

O
m
a
x
<

p
p
r

2.
56

x-
ax

is
re
so
lu
tio

n
R
es
ol
ut
io
n

of
th
e
x-
ax

is,
on

ly
if

sp
ee
d
is

se
le
ct
ed
,
fo
r
tim

e
x-
ax

is
th
is

is
1/
T
w

,/
[r
pm

]
Li
m
ite

d
ac
co
rd
in
g
to

or
de
r
ra
ng

e
to

pr
ev
en
t

co
lo
rm

ap
be

in
g

to
o

he
av

y
R
ef
er
en
ce

sp
ee
d

Sp
ee
d
us
ed

as
re
fe
re
nc
ef

or
re
sa
m
-

pl
in
g

In
pu

t
sp
ee
d

N
A

O
rd
er
s
to
le
ra
nc
e

To
le
ra
nc
e
us
ed

to
ex
tr
ac
t
or
de
rs

fro
m

co
lo
rm

ap
to
l

=
O

2
−
O

1

O
2

+
O

1
·1

00
to
l
≤
O

2
−
O

1

O
2

+
O

1
·1

00

Ta
bl
e
4.
3:

C
om

pl
et
e
lis
t
of

pa
ra
m
et
er
s
ha

nd
le
d
by

th
e
au

to
m
at
ic

pa
ra
m
et
er

se
le
ct
io
n
fu
nc
tio

n
fo
r
th
e
or
de
r
an

al
ys
is

61

Chapter 5

Other functions

5.1 Resampling code implementation
The order analysis function described in chapter 4 calls several other subfunctions. Some
of them only perform the resampling, others generate the frequency spectrum, and some
are in charge of the output production. According to the nature of the raw data to be
analyzed, the resampling could be useful even outside of an order analysis procedure. For
example, in the following section, the signal coming from a strain gauge mounted on a
gear tooth is resampled to visualize the strain peak resulting from meshing with another
tooth.
To perform this task the same functions which resample the signal before the order analysis
takes place are employed. This time they are not followed by the frequency analysis
steps, but they pass the resampled data to a new dedicated function which has the role of
rearranging the data and plot it. In particular the user has to specify the following input:

• directories concerning the raw data, and the position where outputs are saved

• in case averaging is required, the amount of revolutions to perform it

• speed and order table

• output specifications, which include the specification of which revolutions to plot as
output

while on chapter 4 it is explained how upsampling the signal, and low pass filtering it
prior to the actual resampling, can reduce the error of the whole process, it is also shown
that the increase in computing time is more relevant than the reduction of the error [5].
Hence, the resampling function does not offer the possibility for those operations.

5.1.1 Code architecture
The code architecture is fairly simple if compared to the order or frequency analysis one,
and is shown in the work flow in figure 5.1. The synchronous resampling box is composed
of the passages indicated in chapter 4, and is performed by the same function used in the
order analysis function.

5.1.2 Code output
The output produced by the function is a plot showing the raw data resampled concerning
specific revolutions. The user cannot directly request for a specific revolution to be plotted

62

5 – Other functions

Read input

Missing input? Auto Settings

Convert input
into revolution

Synchronous
resampling

Averaging
required?

Synchronous
averaging

Plot output

No

No

Yes

Yes

Figure 5.1: Resampling function work flow

though, since it would be not practical as the data are usually shown as function of time
or speed. Rather, the input of this function is either time or speed. The code then
finds the closest revolution to either the time instant or speed requested, and plots the
data. In case the user inputs a time instant, the associated revolution is easily found,
since the resampling function generates a vector called synchronizing pulse associating
the time at which every revolution begins. Instead, if the user inputs a rotational speed,
depending on the run test speed profile, the reference shaft can achieve the indicated value
for several times. In that case the function warns the user that for such speed more than
one revolutions are found, and plots the first one in a time order.
The user can require several revolutions to be plotted, this can be done both in the same
plot or in separate plots, according to the user preference. The function also applies
synchronous averaging if requested, which will be discussed in the following section in
relation to the test case. The x-axis resolution of such plots is controlled by the points per
revolutions (ppr), which is not bound to any other parameter. The only concern deriving
from extremely high ppr resides in the increase of computational time and weight of the
figure file.
In case of multiple revolutions being plotted in the same figure, the code associates the
visibility toggling callback to the figure, to allow for an easier interpretation of the figure.
An example of the output produced by the function is shown for the test case in figure
5.7.

5.1.3 Resampling of a meshing tooth
As an example of the application for the resampling function, let us consider a strain
gauge mounted on the base of a gear tooth which meshes once per revolution with an-
other gear tooth. The signal registered by the strain gauge is the one in figure 5.2. For
instance, at the beginning of the test run it is possible to see a time period in which the
strain gauge measures extremely high average strain levels which, if they were true, would
certainly result in the failure of the tooth. Such data are obviously the result of some kind

63

5 – Other functions

of measuring error. It is not unusual to find measurement errors in data obtained through
operative testing, handling of such cases is troublesome, since it is difficult to instruct a
code to recognize whether data are just out of ordinary, but still plausible, or an obvious
error. In order to handle such cases, the code has a cut function, which simply removes
the data outside of a specified time interval. Obviously this requires the user to be aware
of such portions to be removed, but generally it is quite easy even for an inexperienced
user to identify those regions.
Whenever a test run is conducted at a variable angular speed the only way of visualizing
the cyclic deformation of such tooth is to resample the signal with respect to the gear
shaft rotational speed, and sometimes, according to the phenomenon to visualize, perform
some averaging over a number of revolutions to filter non-synchronous noise affecting the
signal. To perform a resampling, it is required to have the speed data since from such

Figure 5.2: Raw strain gauge signal

data the synchronizing pulse, the vector indicating the start of every revolution of the
test run, is obtained. As stated in section 4.1 there can be some errors affecting the
conversion from voltage data to speed data (or tacho), in this section the effect and the
nature of one of those possible errors is discussed.
Despite the velocity data not being generated by a dedicated key-phasor, the signal re-
sulting has a fairly low noise level, and can be analyzed in order to yield the needed
information about the angular speed. In figure 5.3 a zoom of the instant between 20 and
20.1 seconds, the uppermost plot displays the raw tachometer data, which is not regularly
shaped, like the signal in figure 4.5. In particular, neither the shape of the signal nor the
actual amplitude are related. In this test case the signal probably is not coming from an
optical device since the amplitude oscillates between both positive and negative values.
In order to extract the speed information from the raw velocity data the latter has to be
converted from analogical to digital, therefore the final signal only portrays an amplitude
of either 1 or 0. In order to perform a correct resampling, the tacho signal goes through a
Schmitt trigger which has been illustrated in section 4.1. The correct selection of the two
thresholds of the filter are of paramount importance for a successful digitalization of the
signal. In figure 5.3 the upper threshold is set to a value of 2000, and the lower is simply
thl = 0.8 · thh. The reason behind the choice of the threshold value resides in finding
the cleanest crossing between signal and threshold lines. To better explain this concept
let us suppose to set the threshold for the same signal to a much lower value such as 1.
The resulting tachometer signal with relative digital signal are shown in figure 5.4 (the
two threshold lines have merged together because of the scale of the ordinate axes). At
first glace it is clear that, despite depicting the same time interval, the two plots for the
digital signal are visually different, for instance the signal in figure 5.4 spends more time

64

5 – Other functions

Figure 5.3: Tachometer analog data converted into digital with Schmitt trigger with
threshold set to 2000

being null than the one in figure 5.3, that is due to the difference in threshold value. In
particular, since the analogue signal becomes a digital 1 only if its amplitude is bigger
than the upper threshold thh, raising the threshold restricts the interval of samples for
which said relation is true, hence the smaller size of the time region where the digital
signal is 1. Besides, in the interval of time between 20.08 and 20.09 of figure 5.4 the signal

Figure 5.4: Tachometer analog data converted into digital with Schmitt trigger with
threshold set to 1. The circles indicate the beginning of the digital signal regions converted
to 1 by the Schmitt trigger

seems to quickly raise to one, descend to zero, and climb back up to one. Upon closer

65

5 – Other functions

inspection (figure 5.5) it is possible to see that the low difference value of upper and lower
threshold allows for random signal oscillations to cross both of them resulting in a wrong
conversion by the Schmitt trigger which registers a crossing as if a phonic wheel tooth
crossed the optical sensor. Considering that this was found in an interval of 0.1 s in a
test run of several minutes this error can prevent the resampling from being successful by
producing a synchonizing pulse vector not representative of the true times at which the
revolutions begin. In this particular case of a strain data of a meshing tooth, this kind
of error causes the output plot to show several peaks, corresponding to the meshing, for
every revolution.
The higher threshold value displayed in figure 5.3 allows for the crossing to happen in
a region where the signal is steeper and therefore has less of a chance of behaving simi-
larly to figure 5.4. Moreover the higher threshold value increases the difference between
the upper and the lower threshold (with an upper threshold of 2000 the lower becomes
0.8 ·2000 = 1600), forcing the noise to cause an amplitude difference of 400 instead of 0.2.
Despite this fact there still is some chance of having some conversion error since the nature
of the noise cannot be predicted. For this reason, in addition to selecting the appropriate
threshold, some filtering could be done in order to detect and delete faulty crossings. For
example the filter could eliminate crossings closer than a given time, or equivalently it
could delete crossings with too few samples in between them. This should be performed
carefully enough not to delete also valid crossings. It is generally a good idea to at least
have a look at the tachometer data before setting any threshold or crossing filters. As
a matter of fact signals like the one in figure 4.5 do not need any crossing control since
they are clean enough to yield a correct speed reading, which could actually be ruined by
applying a crossing filter.
This kind of measures helps in conjunction with an appropriate threshold selection, but
they are not enough by themselves. It might also be useful to perform a moving average
on the tachometer data, being careful not to pick an averaging window too large which
would result in an excessive modification of the tachometer signal. In figure 5.6 the
difference between the two speed plots obtained with the two different threshold values.
The two plots are very different at the beginning of the test run, that is because before
the 10 s mark the tachometer signal is very noisy and a threshold equal to 1 picks up all
the noise and converts it in erroneous teeth passages. As stated before in section 4.1 a
revolution is defined by z crossings where z is the number of teeth of the phonic wheel
(ppr), hence marking a crossing where there should not be one causes wrong speed read-
ings.
Once the strain data are synchronized with respect to the revolution of the gear, it should
depict a peak always at the same angle representing the meshing of the tooth with the
corresponding one from the other gear, while the actual magnitude of the peak can vary
due to variations in input torque and rotational speed. The only variation of the peak
position is the one caused by torsional deformation on the shaft, but should be of very low
entity. This is true even if the speed varies in the test run as the synchronous resampling
removes the df/dt of the signal on which it is performed.

5.1.4 Synchornous averaging
Once the speed data are correctly analyzed and the strain signal is resampled synchronous
with the revolutions of the gear, it might be useful to perform a synchronous averaging,
especially if the user is trying to visualize a phenomenon masked by noise.
Synchronous averaging consists in performing the average of the acquired samples of data
over a window representing the cyclic nature of the phenomenon that is being investigated.
For example in the case taken into consideration, the phenomenon is cyclic with respect

66

5 – Other functions

Figure 5.5: Tachometer analog data converted into digital zoomed at time interval 20.085
s to 20.087

Figure 5.6: Different speed plots resulting from various threshold values

67

5 – Other functions

to a single gear revolution, hence the window would be a number of samples representing
any integer number of revolutions. Obviously this operation produces significant results
only when the signal is resampled so that within the time interval of each revolution there
is a constant amount of samples, and if the noise is not synchronous with the phenomenon
being investigated.
Averaging yields a smoothing of the final signal, it can be considered a form of lowpass
filtering, as a matter of fact, about the filtering properties of synchronous averaging it
can be stated that the standard deviation of any non synchronous signals is proportional
to the inverse of the square root of the number of averages performed [8]. So increas-
ing the amount of windows used in the averaging increases the smoothing of the signal.
To better understand this point let us consider the example so far discussed. Since the
sensor is mounted on a gear tooth, the expected plot of its strain as a function of the an-
gular position of the tooth over a revolution should depict one single peak per revolution,
corresponding to the meshing as shown in figure 5.7. In the figure the two peaks show
significantly different amplitudes due to the fact that the test run was not conducted at
constant torque, while the slight difference in angular position is probably due to some
error in the tachometer signal digitalisation and also to different angular deformation due
to different torques transferred by the two teeth. Because of the synchronous resampling
the number of samples plotted remains constant varying the revolution, also the peak
angular location remains constant as the relative position of the two meshing gears does
not change over time. This means that averaging a number of samples relative to dif-
ferent revolutions will still display a single peak at the same angular position. On the
other hand, any random noise or non synchronous signals in general are filtered as they do
not show the same amplitude and angular position in every revolution considered while
averaging. In figure 5.8, it is shown the strain data of the same revolution than the ones
in figure 5.7 averaged over 500 revolutions, which corresponds to a time interval of about
10 seconds. The noise of the orange plot has a noticeably lower amplitude, moreover
the averaged plot seems to show another peak of smaller amplitude compared to the one
caused by the meshing at around 200 deg. This smaller peak is masked by noise in figure
5.7 and has been made visible thanks to the synchronous averaging filtering. In addition,
while the orange plot in figure 5.7 shows some irregularities, after the filtering the peak
becomes regular, meaning that the source of that irregularity was not synchornous with
the teeth meshing, thus was likely some sort of noise.
Performing this operation on code is fairly simple once it is defined the vector of syn-
chronously resampled data. As a matter of fact, once the point per revolution (ppr) is
defined, the code performs a moving mean with a window consisting of ppr samples and
repeats the operation for as many windows as they are requested by the user.
This was just one example of the resampling applications. Many more exist, for exam-
ple by measuring an acceleration data of a meshing gear shaft, and resampling it, it is
possible to see meshing irregularities due to teeth defects by averaging over a number of
revolutions equal to the lowest common denominator of the two gears number of teeth.
Example of this procedures can be found in literature [8].

5.2 Averaging code implementation
In some cases looking at the average signal of the raw input can be beneficial. For instance
from no other code function the average value of the raw signal is generated. In both the
functions dedicated to frequency and order analysis, the overall is produced, representing
the energy content of the signal, but in both cases, before generating the overall, the
raw signal gets its mean value removed. This operation is required to remove the zero

68

5 – Other functions

Figure 5.7: Resampled data at two different revolutions

Figure 5.8: Resampled data at two different revolutions, averaged over 500 revolutions

69

5 – Other functions

frequency components from the signal, which are not interesting from a frequency analysis
standpoint, and, due to its typically high amplitude, could mask some other frequencies
amplitudes. Thus, a function dedicated to implementing the raw signal average has been
written.
The function performs the moving average of the input signal with a window which can
be specified or left black to be automatically set by the dedicated function. The input
requested by the function are:

• directories concerning position of input data, and position where output plot is
saved

• averaging parameters

• output specifications, such as x-axis unit

The averaging parameters mentioned in the list are the same parameters required to
window the signal (windowing period and overlap), extraction, interpolation methods (in
case of a speed x-axis), and averaging window size. To perform the averaging the function
divides the raw signal into many segments of time length equal to Tw, performs the average
of the segment elements, and saves the number obtained into a newly defined output
vector. If needed the segments can be overlapped by the specified value. This passages
are the same passages performed to obtain the x-axis vector of the colormap produced by
the frequency analysis function described in chapter 3. Instead of performing the average
of the signal segments elements, the function can perform the root mean square of the
signal.

5.2.1 Code architecture
In figure 5.9 the work flow of the averaging function is shown. The function is fairly
simple, however, with the wrong settings it can result quite time consuming, since both
MATLAB average and interpolation function are not particularly efficient.

Read input

Missing input?

Perform signal
averaging

Speed x-axis? Sort and interpolate
averaged signal

Auto Settings

Set missing
parameters to

default

Plot output

No

Yes

No

Yes

Figure 5.9: Signal average workflow

70

5 – Other functions

5.2.2 Code output
Once the output vector has been generated, it is passed to the dedicated output function.
The output function creates a figure depicting the output vector as function of either
time or speed, according to the user request. In particular, in case of a speed x-axis, the
interpolation described in chapter 3 is not required. As a matter of fact, since MATLAB
2D plot function supports vector unevenly spaced, only the sorting by speed is required.
This inherently is a positive aspect, which makes the averaging function really fast and
light from a computational standpoint.

Figure 5.10: Average function output example

71

Conclusions

In this work the main tools to analyze vibration experimental data are exposed, such as
frequency and order analysis. Particular emphasis has been given to explaining how such
analysis can be carried from a practical standpoint by means of a MATLAB code. Such
code has been written following two guidelines:

1. time optimization

2. ease of use

Concerning the first point, the code has achieved an almost full time optimization. It is
able to recognize when different jobs require the same data and sorts them correctly in
order to save memory and time while executing. The most time consuming instructions
are by far the data reading from the files and the output saving, hence from a time
optimization point of view not much more can be done. To give some examples of the
time duration of the analysis, a single frequency analysis can take from a few seconds
for raw data lighter than 1 GB, to around 20 minutes for files weighting several GB.
Regardless of the file size, data reading is always the longest operation to perform in the
analysis.
As stated in the second point, the code has been written for an experienced user to be
able to obtain the Campbell diagram of the raw data. The code is able to set the main
analysis parameters such as windowing period, windowing function, overlap, points per
revolution and many others required to perform the analysis. In particular to choose the
windowing period the code must gain knowledge of the reference shaft acceleration, which
is not a simple task to be carried out automatically by an algorithm. As a matter of fact,
future works should address the stability of such procedure with the focus of finding a
more robust algorithm for filtering the speed data.
Despite the code has been developed for inexperienced users, it also allows for expert users
to set manually every parameter. The code however still verifies that such values are in
compatible with a successful analysis (e.g. it checks whether the colormap will include
frequencies beyond Nyquist).
Future developments should include the creation of a GUI (graphical user interface) able
to speed up the input generation part, which is currently fairly lengthy since it includes
both analysis parameters and colormap options.

72

5 – Other functions

73

Bibliography

[1] S. Marchesiello and A. Fasana. Meccanica delle vibrazioni. Ed. by Clut. Clut, 1992.
[2] Paresh Girdhar. Practical Machinery Vibration Analysis and Predictive Maintenance.

Ed. by Cornelius Sheffer. Elsevier, 2004.
[3] Audrey F. Harvey and Michael Cerna. “The Fundamentals of FFT-Based Signal

Analysis and Measurement”. In: 1993.
[4] Letizia Lo Presti. L’analisi dei segnali. Ed. by Clut. Clut, 1992.
[5] Enrico Geninatti. “Analisi di segnali sperimentali in scatole ingranaggi per motori

aeronautici”. MA thesis. Politecnico di Torino.
[6] S. Gade et al. Order Tracking Analysis. Tech. rep. BrÃĳel Kjaer, 1995.
[7] Jason R. Blough. “Adaptive Resampling - Transforming From the Time to the Angle

Domain”. In: Michigan Technological University (2006).
[8] Jiri Tuma. Vehicle Gearbox Noise and Vibration. Willey, 2014.

74

	Ringraziamenti
	Summary
	List of Figures
	List of Tables
	Introduction to gear vibration
	Vibration and noise origins in gearboxes
	Fundamentals of gear dynamics

	Maintenance philosophies
	Vibration analysis role in maintenance
	Data acquisition

	Introduction to signal analysis
	Signal classification
	Fourier transform

	Signal preprocessing
	Sampling
	Truncation and windowing
	Frequency discretization

	Frequency Analysis
	Frequency analysis code implementation
	Code architecture
	Code output
	Automatic parameters selection
	Autoslice function

	Order Analysis
	Synchronous resampling
	Order analysis code implementation
	Code architecture
	Code output
	Automatic parameter selection

	Other functions
	Resampling code implementation
	Code architecture
	Code output
	Resampling of a meshing tooth
	Synchornous averaging

	Averaging code implementation
	Code architecture
	Code output

