
Politecnico di Torino

DIPARTIMENTO DI ELETTRONICA E TELECOMUNICAZIONI

Corso di Laurea Magistrale in Electronic Micro and Nanosystems

Tesi di Laurea Magistrale

DMA Support for the Sancus Architecture

Relatore:

Prof. Guido Masera

Correlatori:

Prof. Jan Tobias Mühlberg
Dr. Jo Van Bulck
Dr. Pieter Maene

Candidato:

Sergio Seminara

Anno Accademico 2018/2019

Abstract

Computing devices have a predominant role in our lives, changing most of our
daily activities. With the advent of the IoT, more and more embedded devices are
expected to be connected, with expected numbers around 20 billion of units for
the 2020. Nevertheless, the increase in connectivity does not imply an enhance-
ment of security. Programmable devices, especially connected ones, are at risk
of being tampered with: recent history has shown many examples of malicious
software attacks compromising their security. Considering that embedded device
are required to be cheap in terms of resources they are implemented on low-end
microcontrollers, which lack of any memory protection technique, making them
unsuitable to implement solutions from the high-end world.
Hence, researchers have been recently focusing on strategies to provide them

with security guarantees that hold even in case of an attacker with full control on
the system, including the Operating System (OS). A promising solution is found
in Protected (software) Module Architectures (PMAs): security architectures that
can execute protected code in an isolated area of the memory, inaccessible to other
software. PMAs can support secure execution of small portion of code, the soft-
ware modules (SMs), even on devices that are, e.g., malware infected.

The target architecture of this thesis is Sancus, an open-source, hardware-only
PMA, designed for lightweight embedded devices. The objective of the work is
to extend the architecture with Direct Memory Access (DMA) support, a feature
that provides peripherals with a secondary channel to access the memory without
involving the CPU, and to explore what does it entail from a security prospective.
Usually lightweight PMAs do not support DMA, as the benefits coming from its
inclusion on the system do not comply with security properties of these architec-
tures: protected memory isolation and confidentiality are no longer guaranteed
if a secondary channel, that directly access the memory independently from the
CPU, is provided. Main achievements of the thesis are to extend the Sancus 2.0
architecture with DMA support, showing how this affects its security properties
and providing a secure way to implement DMA. From the discussion of the upcom-
ing chapters, two solutions stood out: the first one is currently implemented on
Sancus, and it consists in entirely excluding DMA from accessing protected mem-
ory, preserving SMs security guarantees. The second theoretical solution aims to
provide the software modules with DMA functionalities, by allowing some security
guarantees for a confined regions inside protected memory. The latter solution is
discussed in details and some design options are provided, whereas its implemen-
tation is deferred as future work.

Sammanfattning
Datorer har en dominerande roll i våra liv och förändrar de flesta av våra dag-
liga aktiviteter. Med tillkomsten av IoT förväntas fler och fler inbyggda enheter
anslutas, med förväntat antal cirka 20 miljarder enheter för 2020. Ändå innebär
ökningen av anslutning inte en ökning av säkerheten. Programmerbara enheter,
särskilt anslutna, riskerar att bli manipulerade med: den senaste historiken har
visat många exempel på skadliga programattacker som äventyrar deras säkerhet.
Med tanke på att inbäddad enhet krävs för att vara billig när det gäller resurser,
de implementeras på low-end mikrokontroller, vilket saknar någon virtualisering
av minnesstöd, detta gör dem olämpliga att genomföra lösningar från high-end-
världen.
Därför har forskare nyligen fokuserat på strategier för att ge dem säkerhetsga-

rantier som håller fast vid en angripare med full kontroll på systemet, inklusive
operativsystemet (OS). En lovande lösning finns i Protected (Software) Module
Architectures (PMA): säkerhetsarkitekturer som kan utföra skyddad kod i ett iso-
lerat område i minnet, otillgängligt för annan programvara. PMA kan stödja säker
utförande av liten del av kod, mjukvarumoduler (SM), även på enheter som är t
ex skadlig programvara.

Målarkitekturen för den här avhandlingen är Sancus, en öppen källkod, maskin-
vara endast PMA, avsedd för lätt inbyggda enheter. Syftet med arbetet är att
utöka arkitekturen med DMA-stöd (Direct Memory Access), en funktion som ger
kringutrustning till en sekundär kanal för att komma åt minnet utan att involvera
CPU, och att undersöka vad det medför från en säkerhetsperspektiv. Vanligtvis är
lätta PMA: er inte stöd för DMA, eftersom fördelarna som följer av att den ingår i
systemet inte överensstämmer med säkerhetsegenskaperna hos dessa arkitekturer:
skyddad minnesisolering och konfidentialitet garanteras inte längre om en sekundär
kanal, som direkt åtkomst till minnet oberoende av CPU, tillhandahålls. Huvud-
dragen i avhandlingen är att utöka Sancus 2.0-arkitekturen med DMA-support,
vilket visar hur det påverkar sina säkerhetsegenskaper och ger ett säkert sätt att
implementera DMA. Från diskussionen av de kommande kapitlen stod två lösning-
ar: den första är för närvarande implementerad på Sancus och består helt och hållet
av att DMA inte ska få tillgång till skyddat minne och bevarar säkerhetsgarantier
från SM. Den andra teoretiska lösningen syftar till att tillhandahålla mjukvaru-
moduler med DMA-funktioner, genom att tillåta vissa säkerhetsgarantier för en
begränsad region inom skyddat minne. Den senare lösningen diskuteras i detalj
och vissa designalternativ ges, medan dess genomförande skjuts upp som framtida
arbete.

Contents

Contents i

List of Figures v

List of Tables ix

List of Abbreviations xi

1 Introduction 1
1.1 History . 1
1.2 Problem Statement and Goal of the Thesis 3

2 Background 7
2.1 Protected Module Architectures . 8
2.2 Program-Counter Based Memory Access Control 9
2.3 Sancus 2.0 . 10

2.3.1 Overview . 10
2.3.2 Security Properties . 12
2.3.3 Attacker Model . 16
2.3.4 Implementation . 17

2.3.4.1 Hardware Implementation 17
2.3.4.2 The Compiler . 17
2.3.4.3 Software Stack for Deployment 19

2.4 Direct Memory Access (DMA) . 20
2.4.1 Overview . 20
2.4.2 DMA Interface for OpenMSP430 21

2.4.2.1 DMA Interface - Signals 22
2.4.2.2 DMA Interface - Protocol 24

3 Problem Statement 27
3.1 DMA on Protected Module Architectures 27
3.2 Exploitation of Naive DMA Support 28

i

3.2.1 Leak Secret Data . 29
3.2.2 Inject Malicious Data or Code 32

4 Design and Discussion 35
4.1 Security Objectives . 35
4.2 Attacker Model . 36
4.3 Overview . 38
4.4 Impact of the DMA on Sancus Security Properties 39
4.5 Protection of System Memory from DMA Attacks 41

4.5.1 No DMA in the System . 42
4.5.2 Enforce MAL on DMA Accesses 42
4.5.3 Exclude DMA from Protected Memory 44
4.5.4 Allow Access to Specific Locations inside SMs Data Sections 45

4.5.4.1 Reduce the Register Overhead 48
4.6 Summary of Memory Access Rights 50
4.7 Open Problems . 50

5 DMA Interface Implementation 53
5.1 Secured DMA Interface for Sancus on OpenMSP430 53

5.1.1 Memory Backbone Modification 55
5.1.2 Frontend Modification . 56
5.1.3 Execution Unit Modification 57

6 DMA Controller Implementation 59
6.1 Overview of the DMA Controller 59
6.2 Mode of Operation of the DMA Controller 61
6.3 Implementation of the DMA Controller 61

6.3.1 DMA Protocol - Read Operation 62
6.3.2 DMA Protocol - Write Operation 63
6.3.3 DMA Controller ASM Chart 65
6.3.4 DMA Controller Data Path 67

6.3.4.1 Internal Registers 67
6.3.4.2 Data Buffer . 70

6.4 DMA Controller Driver . 71
6.5 Device with DMA Capabilities . 73

6.5.1 Overview of DMA Read and Write Operations 74
6.6 DMA Tesbenches . 75

6.6.1 DMA Controller Read Branch 75
6.6.1.1 Read from System Memory 75
6.6.1.2 Write to a DMA Device 77

6.6.2 DMA Controller Write Branch 79

6.6.2.1 Read from a DMA Device 79
6.6.2.2 Write into System Memory 81

6.6.3 Emptying the Controller Data Buffer 81
6.6.3.1 Emptying the Buffer - Output to External Device . 83
6.6.3.2 Emptying the Buffer - Output to System Memory . 83

6.7 Attack Scenario on DMA-Secure Sancus Implementation 84

Conclusions 89
Future Work . 90

Bibliography 93

A Source Code and Installation 99
A.1 Latest Version Information . 99
A.2 Installation Instructions . 100

List of Figures

2.1 Representation of a Sancus node with a software module SM1 loaded. 13
2.2 Overview of the hardware block constituting a Sancus core. Lightly

shaded blocks are part of the original openMSP core, whereas darker
shaded ones were specifically added for Sancus. 18

2.3 Schematic of the Memory Access Logic (MAL), the hardware used
to enforce the memory access rules for each protected module [39]. . 18

2.4 Overview of the openMSP430 core internals, with DMA support
[18]. Memory can be accessed both through the normal system bus,
along with DMA interface. 22

2.5 Organisation of the memory in the openMSP430 core [18]. Mem-
ory is seen as a single memory block, with program memory, data
memory and peripheral space arranged sequentially. 23

2.6 Timing diagram of a read operation with wait state on the open-
MSP430 DMA interface. 25

2.7 Timing diagram of a write operation with wait state on the open-
MSP430 DMA interface. 25

3.1 Detail of Processor Reserved Memory (PRM), together with Enclave
Page Cache (EPC) in Intel SGX. The PRM is a contiguous range of
DRAM that cannot be accessed by system software or peripherals [13]. 28

4.1 Overview of the system architecture, showing the DMA controller
and a peripheral with DMA capabilities, connected to it. Every-
thing related to the DMA or peripherals is outside the TCB. 37

4.2 Representation of the Memory Access Logic (MAL), enforcing pro-
gram counter-based access control rule. 38

4.3 A recapitulatory tree diagram of the explored ideas to include DMA
on PMAs. Among these, only the last leaves, numbers 3 and 4,
propose an actual solution to the problem. 42

4.4 Modifications of the Memory Access Logic (MAL) to enforce PC-
based access control on the DMA address. 43

v

4.5 Representation of Memory Access Logic (MAL) that prevents any
DMA access to protected memory. 44

4.6 Representation of the Memory Access Logic (MAL) that allows
DMA access to specific protected memory locations. DMA_PS and
DMA_PE are the DMA Protected Start and DMA Protected End
addresses. 46

4.7 Representation of a node with a software module loaded, in the new
framework of allowing DMA access to specific locations inside the
data section. 47

5.1 Detailed overview of the system architecture, showing the DMA
controller and a peripheral with DMA capabilities, connected to it.
Constituent blocks of the core are here shown. Everything related
to the DMA or peripherals is outside the TCB. 54

5.2 Single instantiation of the Memory Access Logic (MAL) circuit, used
to enforce the memory access rules in the nodes. The highlighted
box shows the hardware that realises the protection mechanism of
that prevents DMA to access to SMs protected sections. 56

6.1 Overview of the arbitration circuitry that solves multiple DMA re-
quests from the peripherals. 60

6.2 Timing diagram of a read operation when interfacing with the DMA
interface in use on the openMSP430 (details on the protocol at
subsubsection 2.4.2.2) . 63

6.3 Timing diagram of a write operation when interfacing with the
DMA interface in use on the openMSP430 (details on the proto-
col at subsubsection 2.4.2.2) . 64

6.4 DMA controller FSM. Yellow blocks refer to the interface between
the DMA controller and the openMSP430, whereas pink ones to the
interface between DMA controller and device. 65

6.5 ASM chart of the DMA FSM: detail of FIFO_FULL branches, and
view of default values for the signals of the FSM. 66

6.6 DMA controller data path: an overview of the controller fundamen-
tal components as well as of the signals ruling its FSM behaviour is
here provided. 69

6.7 openMSP430 - DMA protocol: violation when synchronous registers
are used, at markers C and D. 70

6.8 openMSP430 - DMA protocol: no violation when asynchronous reg-
isters are used. 71

6.9 Configuration register used by the DMA device. The function of
each single bit composing the register is here shown. 74

6.10 General overview of a read operation. After having set the start
address and the number of words to be read, the request signal is
raised (marker A) and the operation is started. Its end is flagged
by the controller, at marker B. 76

6.11 Reading data from the openMSP430 memory. 78
6.12 Sending data to a device directly connected to the controller. The

communication protocol between the two implies a 2-phase hand-
shake: the device requests data by raising its acknowledge signal
(marker A); the controller drives the output data and flags the send-
ing through its own acknowledge signal (marker B). 78

6.13 General overview of a write operation. After having set the start
address and the number of words to be read, the request signal is
raised (marker A) and the operation is started. Its end is flagged
by the controller, at marker B. 79

6.14 Receiving data from a device directly connected to the controller.
The communication protocol between the two implies a 2-phase
handshake: the device flags the availability of new data by raising
its acknowledge signal (marker A); the controller stores them flags
correctness of the operation through its own acknowledge signal
(marker B). 80

6.15 Writing data to the openMSP430 memory. 80
6.16 Emptying the controller data buffer by outputting data to an ex-

ternal device. 82
6.17 Emptying the controller data buffer by outputting data to system

memory. 82
6.18 Detail of the DMA violation signal when an illegal access to pro-

tected memory occurs. 84

List of Tables

2.1 Access control rules to the memory in PC based memory access
control. Access rights are shown in a Unix notation, indicating how
code executing in the ’from’ may access the ’to’ section [39]. 9

2.2 Overview of the keys used in Sancus, how they are created, stored,
and who can access them [39]. 11

2.3 List of all the signals compoding the DMA interface. 23

4.2 Memory access rights in program counter-based memory access con-
trol on Sancus. Access rights are shown for CPU memory accesses . 51

4.3 Memory access rights in program-counter based memory access con-
trol. Access rights are also shown for DMA accesses, for all the
proposed solutions from section 4.5. 51

ix

List of Abbreviations

ALU Arithmetic Logic Unit
ASM Algorithmic State Machine
CPU Central Processing Unit
CU Control Unit
DE Data section End
DMA Direct Memory Access
DMA_PE DMA Protected End address
DMA_PS DMA Protected Start address
DMAC Direct Memory Access Controller
DS Data section Start
ELF Executable and Linkable Format
FIFO First In First Out
FSM Finite State Machine
IoT Internet of Things
IP Infrastructure Provider
IRQ Interrupt Request
ISR Interrupt Service Routine
MAB Memory Access Bus
MAC Memory Authentication Code
MAL Memory Authentication Logic
MMIO Memory-Mapped Input/Output
MMU Memory Management Unit
PMA Protected Module Architecture
PSA Protected Storage Area
SM Software Module
SP Software Provider
TCB Trusted Computing Base
TE Text section End
TS Text section Start

xi

xii

Chapter 1

Introduction

1.1 History

Nowadays, computing devices have a predominant role in our lives, unveiling us
new services that irreversibly changed most of our daily activities. All of this is
possible since we rely on the providers of those services to securely process our
data on our devices. However programmable devices are at risk of being tampered
with, especially connected ones: recent history has shown that these devices are
subject to malware infections and, in general, software attacks that compromise
integrity and data confidentiality: in one word, the devices security [15]. Rele-
vant experience has been gained for securing established high-end systems, such
as desktops and servers, which have been on the market for a long time. In order
to protect them from malicious exploits, some solutions arose, trying to fix the
flaws as they are exploited by attackers.
With the advent of IoT future isn’t brighter. Promoted by the enhancement of the
technology, more and more embedded devices are expected to be connected, wit
expected numbers around 20 billion of units for the 2020 [2, 3, 16]. Nevertheless,
the increase in connectivity and the impact of devices on our society do not entail
an enhncement of security. Critical software vulnerabilities have been disconed in
home appliances [31], cars [38] and even industrial sites [47], each implying differ-
ent level of threats: an hacked fridge could leak some personal data, at worst, but
when it comes to cars, industries or medical devices, the threat becomes far more
worrying [30].

Therefore, on the past years, researchers have tried to answer the open question
of how to secure networked programmable devices, and to allow a stakeholder to
assess the trustworthiness of a computing device. Important solutions are virtual-
ization of the memory in combination with processor privilege levels, and the im-

1

CHAPTER 1. INTRODUCTION

plementation of a memory-safe virtual machine. Both relying on a secured software
layer, either the operating system (OS) or the virtual machine implementation, the
two solutions provide isolation of the software running on the processor. The first
technique takes advantages of hardware support, generally a Memory Management
Unit (MMU), to provide an abstraction of the storage resource so that the main
memory appears to be larger than it really is. The operating system, which also
relies on protection rings, assigns separate memory space to running processes and
guards the interaction among them. The second technique involves the uses of
a memory-safe virtual machine, where software is deployed in memory-safe byte-
codes and a security architecture, usually an hypervisor, guards the interaction of
different software modules [45]. However, with classical solutions it is non-trivial to
provide an attestation mechanism, which a remote stakeholder can rely on to check
that a specific software module is running untampered with on a remote device.
Finally, while software-based solutions have the advantage of compatibility, they
also negatively impact on performances and, most important, they cannot protect
from system-level attacks: once the relying software layer - OS or hypervisor - has
been compromised [49], security of the system can no longer be guaranteed: a ma-
licious operating system can, in fact, allow manipulation of the software, breaking
the root of trust. To ensure resilience even in these cases, hardware-based solutions
have to be used.
Embedded device are required to be cheap in terms of resources such as chip

area, chip complexity, power consumption and performance, thus they are im-
plemented on low-end, resource-constrained microcontrollers. This makes them
unsuitable to implement established solutions from high-end devices world, which
require a more complex, thus expensive, architecture to be integrated.
A promising solution is found in Protected (software) Module Architectures (PMAs):
security architectures running independently from a classic operating system, that
can execute code in an isolated area of the memory. The isolation is not built on
the operating system, thus improving the security [45]. The idea of PMAs origi-
nally arose from the need to split complex software into smaller protected modules,
isolated between them, whose correctness would have been easier to verify [34].
The use of PMAs also provides a secure way to support remote attestation where
classical solutions could not. Remote attestation is the capability of a stakeholder
to remotely check that a specific software module is running untampered with on
a remote device. In general, a device is said to be trusted if it behaves as expected
even when tampered with at the software level [33], i.e. even when an attacker
gains control on the operating system [30].
Currently different PMAs are available, each coming with a different cost in terms
of hardware onhead and performance. Some provide isolation of application on
high-end devices, for example the Intel SGX [13] which extends x86 architectures

2

1.2. PROBLEM STATEMENT AND GOAL OF THE THESIS

and whose cost is not considered lightweight at all. Others leverage Memory
Encryption Engines to encrypt/decrypt sensitive code and data when leaving/en-
tering the main memory, like for example Atlas [29], or make use of lightweigth
Memory Protection Units to enforce an execution-aware memory access control, as
done in TrustLite [26]. Finally, architecture like SMART [14] aim to provide only
some security guarantees with the minimal set of hardware changes. Program-
counter based memory is a memory protection technique whose aim is to provide
isolation between software modules running on the same node, but that do not
necessarily trust each other [45]. PC based memory access proposes memory ac-
cess control based on the current value of the program counter, resulting in being
a low-cost alternative to the virtualization of the memory or the use of a memory-
safe virtual machine.

1.2 Problem Statement and Goal of the Thesis
The combination of PMAs and hardware implementations of the program-counter
based memory access control is one way to extend protected module idea to the
low-end microcontroller world, achieving hardware-based trusted computing. An
architecture of this kind enhances security guarantees of the system by having the
root of trust buried in the hardware, which is considered to be immutable from
attackers [30]. For this reasons it is preferable to develop on hardware-based archi-
tectures rather than software-based, although some software-based architectures
with interesting results have been proposed [4, 24, 32, 43, 46].

The target architecture of this thesis is Sancus1, an open-source,2 hardware-
only PMA designed for lightweight embedded devices. By leveraging an hardware
implementation of the PC based memory access control, Sancus guarantees the
secure execution of protected applications. The root of trust is, thus, buried into
hardware, enhancing the security guarantees of the architecture. It allows external
peripherals connection but it natively does not support Direct Memory Access.
Direct Memory Access (DMA) is a feature of CPUs that allows hardware sub-

systems to directly access the memory, without the participation of the Control
Unit (CU). First proofs of DMA integration on computing systems date back to

1Designed in 2013 by Noorman et al., Sancus is an ongoing project of imec-DistriNet and
COSIC research groups of KU Leuven, that reached its second version.
Sancus 2.0 guarantees a set of security properties, such as software isolation as well as with local
and remote attestation. Moreon, it supports secure linking and secure communication . For
more details you can visit https://distrinet.cs.kuleuven.be/software/sancus/index.php

2More details about Sancus source code are provided in section A.1

3

CHAPTER 1. INTRODUCTION

the Intel 8085 (1976) Intel 8 bit microprocessor, or the IBM Personal Computer
(1981), both provided with the DMA Controller (DMAC) chip known as Intel
8237 [22]. By means of DMA, devices can transparently access the main memory
unburdening the CPU from I/O loads. This latter is then free to handle other
operations, while the data transfer is happening. In this sense, DMA speeds up
the system.

Generally PMAs do not support DMA. The reason is that an attacker with
DMA capabilities can tamper with any location of the system memory at run-
time, as DMA bypasses any MMU-like control. Program-counter based memory
access control is, in fact, enforced on the memory access bus (MAB) alone, i.e.
on every access to the memory going through the CPU. What if the untrusted
element resides outside CPU domain? What if there was a way to directly access
the memory, bypassing any CPU control, so that no violation is raised on illegal
accesses? Hence, a protection mechanism has to be provided if DMA is going to
be implemented on a PMA, in order to prevent disastrous outcomes.
Some attacks have successfully shown that it is possbile to exploit DMA capabili-
ties of ad-hoc compromised devices [44, 11, 41, 12, 37, 6] to tamper with the host
system, as reported in [42].

The goal of this thesis is, first, to extend Sancus 2.0 architecture with DMA ca-
pabilities, then, to show that such a functionality breaches security guarantees of
the system. Lastly some ideas to secure Sancus SMs from DMA attacks have been
explored; the aim it to extend the same memory hierarchy that rules the internal
memory accesses to DMA peripherals, and to keep the hardware onhead as small
as possible. Section 3.2, "Exploitation of Naive DMA Support", guides the reader
through a simple attack targetting the Sancus architecture. It leverages the dis-
ruptive capabilities of a naive DMA implementation, in which no memory access
control is enforced on the DMA bus, to leak secret data from a Sancus software
module and to inject malicious content in the data section. section 6.7 reports the
outcomes of a similar attack when carried on two different Sancus implementa-
tions: one equipped with a direct implementation of the DMA interface, and the
other supporting secure DMA. The provided results underline the importance of
providing a secure DMA channel on Protected Modules Architectures.
Hence, the main contributions of the thesis can be summarised in:

1. Show that the inclusion of DMA support on Sancus 2.0 breaks isolation and
confidentiality guarantees for the architecture (section 4.4), and underline the
need to validate DMA accesses independently from the PC (subsection 4.5.2).

2. Implement a simple solution to preserve Sancus security guarantees, by pre-
venting DMA to access any protected memory location (subsection 4.5.3).

4

1.2. PROBLEM STATEMENT AND GOAL OF THE THESIS

3. Propose a further conceptual solution to extend software modules capabilities
with DMA functionalities, at the expense of relaxing isolation and confiden-
tiality guarantees for a confined region inside modules protected memory
(subsection 4.5.4).

5

CHAPTER 1. INTRODUCTION

6

Chapter 2

Background

Computing devices play a predominant role in our lives and daily activities. Bas-
ing on the enormous number of data available, they can provide us with an entire
new level of personalised services. With the advent of Internet of Things (IoT)
the phenomenon is only going to increase, with embedded devices becoming om-
nipresent and interconnected, handling safety-critical and privacy-sensitive data.
Yet, the increase in connectivity does not entail an enhancement of the security
these devices guarantees. To minimize production costs and power consumption
they are usually implemented on lightweight architectures, which lack of hardware
support for classical solutions from high-end devices world, such as the virtualiza-
tion of the memory, in conjunction with processor privilege levels, or the use of a
virtual machine to run critical code in a safe environment.
The increasing trend of connecting computing devices opened to malware in-

fections and, in general, software attacks that compromise systems security [15].
Computer security is a growing field of the broader information security, that aims
to protect computing systems and the data that they store or access to. During
last decades, a rich body of experience has been acquired in securing high-end
computing devices, such as desktops and servers, through the classical solutions
aforementioned. Unfortunately, these solutions do not comply with the resource-
constrained, low-end devices world, characterised by a very simple memory hierar-
chy in which the use of Memory Management Units (MMUs) is not contemplated.

A recent line of research focused on Protected Module Architectures (PMAs) as
alternative to tackle the problem of security by means of a fine-grained memory
access control. PMAs can give user security guarantees about the behaviour of
software running on them, achieving the main goal of trusted computing, which
is to protect applications and users from malicious exploitation. When a system
keeps behaving as expected even when tampered with, i.e. even when an attacker
gains control on it, it is said to be trusted [30]. An important part of trusted

7

CHAPTER 2. BACKGROUND

computing is to provide security guarantees even in case the OS is tampered with.
Unfortunately, software-based solutions are inadequate in achieving this goal, as
an attacker can always manipulate software if the OS is not trusted. In order to
provide strong guarantees even in this eventuality, hardware-only based architec-
tures have to be considered. For these systems the root of trust is said to be buried
in the hardware and is more resilient to malicious attacks than software solutions,
to the extent that hardware is considered to be immutable.
Finally, the minimization of the Trusting Computing Base (TCB) has been a
paramount goal of computer security, since the start of the field, and many hardware-
only PMAs manage to provide security guarantees with a small TCB.
The TCB is defined as "the set of the hardware and software components which

are considered critical for the security of the whole system. The TCB is designed
so that, even in case of tampering with other parts of the system, the device cannot
misbehave" [30].
A more detailed explanation of the PMAs together with the protection techniques
used to provide modules isolation is outlined in the following section 2.1.

2.1 Protected Module Architectures
Protected architectures run independently of the Operating System (OS) and allow
the secure and isolated execution of software modules [30]. The idea of PMAs origi-
nally addressed the need to split complex software into smaller protected modules,
isolated between them, whose correctness would have been easier to verify [34].
Several prototypes have been developed both for embedded systems – such as
Sancus [39], TrustLite [26], TyTAN [8] or Soteria [21] – as well as for high-end
systems – such as Intel Software Guards eXtensions (SGX) [35] or Iso-X [17] –
ensuring modules isolation.
A countermeasure to software complexity is to use a divide-and-conquer ap-

proach, where big bunches of code are divided in smaller, and more maintainable,
software modules (SMs). A SM essentially consists of two separated text and data
sections. The former contains the module protected code and can be entered only
via few predefined addresses of memory locations, called entry points. Each soft-
ware module should maintain its own private call stack, for example by saving it
in its private data section. The latter contains private data of the module and can
be accessed (read or written) only when the program counter is pointing within
the code section of the corresponding module. The access rules are enforced by
the PMA on which the SM is running.
By combining the PMAs idea with the program-counter based memory access con-
trol it is possible to extend memory protection mechanism to low-end embedded
devices.

8

2.2. PROGRAM-COUNTER BASED MEMORY ACCESS CONTROL

from \ to Protected Unprotected
Entry point Code Data

Protected r x r x r w r w x
Unprotected x r w x

Table 2.1: Access control rules to the memory in PC based memory access control.
Access rights are shown in a Unix notation, indicating how code executing in the
’from’ may access the ’to’ section [39].

2.2 Program-Counter Based Memory Access Con-
trol

Program-counter based memory access control is a memory protection technique
based on the current value of the program counter: depending on where the code
is being executed, different access rights to the memory are enforced. Code execut-
ing from unprotected memory regions has no access rights to protected memory,
except for execution rights on the entry point of a software module. Accesses from
protected to unprotected memory are granted with full access permissions. Notice
that only code executing from within a software module can access to its text
and data sections. In this way, module isolation is guaranteed, as only SMs have
direct access to their own text and data sections. When more than one software
module are loaded on the same PMA, the rules for accessing its private sections
treat all other modules as unprotected memory regions [45]. Table 2.1 shows the
access rights enforced for code executing in protected and unprotected memory
locations.
Notice that PC based memory access control is sufficiently strong to preserve all

the isolation guarantees that modern programming languages can provide, such as
information hiding and encapsulation - which is basically what is ensured when
declaring a private variable in high level programming languages, as C++ or Java,
for example. However, all these guarantees are typically lost when the program is
compiled, as an attacker operating at machine code level can always break isolation
and confidentiality of the compiled code by directly tampering with it in the system
memory. Interestingly, it has been shown [1, 40] that source code securely compiled
to a PMA maintains the source code level abstractions even against machine code
level attacks. For hardware-only PMAs these guarantees even hold in case of a
compromised OS.

9

CHAPTER 2. BACKGROUND

2.3 Sancus 2.0

2.3.1 Overview
Program-counter based memory access can be implemented in different ways; the
target architecture of this thesis is Sancus, a hardware-level implementation that
provides strong isolation, remote attestation, as well as a series of security prop-
erties as secure communication, secure linking, confidential software deployment
and hardware breach confinement.

System model The architecture addresses the problem of securing an infras-
tructure made up of a set of interconnected low-end microprocessor-based systems,
which are referred as nodes Ni. The infrastructure provider IP, owner of the net-
work, allows some software providers, with public IDs SPi, the access to the nodes,
giving them the possibility to deploy software module SM onto them. The TCB
on the networked devices is hardware-only, specifically each node does not trust
any software, including the operating system running on it.

Attacker model The attacker is consider to have two critical capabilities. First
it can manipulate all the software on the node, including tamper with the OS, and
it can act as a software provider by deploying malicious software modules on the
nodes. Second, it can control the communication network used by the software
provider and the nodes to communicate with each other; attacker can sniff the
network, modify traffic and mount man-in-the-middle attacks.
However, it cannot break cryptographic primitives and does not have physical
access to the hardware: it cannot modify it, nor connect probes, nor disconnect
components, and so forth.

Cryptographic primitives and node keys The architecture design relies on
three cryptographic primitives:

• a classical cryptographic hash function to compute digest of data [36];

• a key derivation function [36], used to derive a key from a master key ans
some diversification data:

KMaster,Data = kdf(KMaster, Data)

• a pair of authenticated encryption and authenticated decryption with associ-
ated data. The encryption function takes as input a key K, a plaintext P and
associated data D, and produces in output a ciphertext C of the plaintext,

10

2.3. SANCUS 2.0

Key Creation Accessible by Saved1
KN Random IP, N

√

KN,SP kdf(KN , SP) SP
KN,SP,SM kdf(KN,SP , SM) SM (indirectly)

√

Table 2.2: Overview of the keys used in Sancus, how they are created, stored, and
who can access them [39].

plus a Message Authentication Code (MAC) T on both the plaintext and
the associated data [36].

C, T = aead-encrypt(K, P, A)
P = aead-decrypt(K, C, A, T)

(2.1)

The cryptographic keys are handled by the many parties of the network: the IP
shares a symmetric key with each of its nodes, the node master key KN . This is
saved in an internal register of the CPU, accessible only indirectly through spe-
cific processor instructions. The software providers allowed to deploy modules
on a specific node are provided with the intended software provider key KN,SP ,
computed by the IP with through the key derivation function kdf(KN , SP). No-
tice that Sancus nodes host an hardware implementation of the kdf, hence they
can compute KN,SP by themself. The key derivation function used in the cur-
rent Sancus implementation is the SpongeWrap. Finally, nodes can compute the
symmetric key KN,SP,SM relative to the software module SM. The key is stored in
a protected area of the processor, inaccessible from the software. Consider that
software providers can compute keys relative to their own modules, as it received
the KN,SP from the IP, and it knows the identities of the modules it is loading on N.

Software modules Software modules, SMi are binary files composed of a text
section and a data section. The former contains code and constants of the software
module and can only be accessed by jumping to one of its fixed entry points; the
content of text section is enforced to be read only, after memory protection is
enabled. The latter contains runtime data of a module, such as the call stack
which is included in the data section to avoid leaks. The Sancus architecture
comes with a specific compiler that automatically handles the inclusion of every
runtime metadata in the data section.
When a software module SM is loaded in the main memory, the processor saves
the layout of the module in a protected storage area inside the CPU: the Protected

1Saved in the Protected Storage Area of the node CPU.

11

CHAPTER 2. BACKGROUND

Storage Area (PSA). The layout consists of the start and end addresses of both
text and data sections. The identity of the module is obtained, by computing the
hash of the layout and the content of the text section of a module, and it’s stored
in the PSA.
Finally, the symmetric module key KN,SP,SM = kdf(KN,SP , SM) is computed and
stored in the protected area, to be used with cryptographic functions as assurance
of module integrity. In this regard, notice that the software provider SP can also
compute KN,SP,SM , since it received KN,SP from IP and knows the identity of the
deployed module SM. Therefore KN,SP,SM is to encrypt data before sending it on
the untrusted communication network, and decrypt them once received, securing
the communication. Data decryption only works if both the players computes the
same key KN,SP,SM = kdf(KN,SP , SM): in other words, the mechanism works as
long as the software module SM is not compromised before the key is computed
– i.e. before the protection is enabled. After that moment modules isolation
assures that the content of modules private sections is inaccessible from the outside
the modules (here it is implicitly assumed that software provider has not been
tampered with, as well as KN,SP has been correctly computed by IP and received
by SP).

2.3.2 Security Properties
Here follows a summary of the security guarantees that the Sancus architecture
achieves, as presented in [39]

Software module isolation The isolation property can be considered the fun-
damental property of the system: software modules run isolated on a node if their
protected section cannot be accessed from outside the module themself. In San-
cus this is achieved through a program-counter based memory access control [46],
which implies that control flow enters into a module text section only by calling
the entry point of that specific module. Moreover, the module data section is only
accessed from code executing in the text section of the intended module. Notice
that the protection is enabled only after the execution of the protect instruction:

protect(layout, SP)

until that moment, the content of a SM can be modified, by an attacker with full
software capabilities. Any modification to the text section, occurring before the
protect instruction is called, alters the module identity. This causes a mismatch
between the key computed and stored into the node K Í

N,SP,SM and the the key
computed by the software provider KN,SP,SM (Table 2.2), with consequent failure
of successive attestations. On the contrary, modifications to the data section

12

2.3. SANCUS 2.0

are not a concern since the protect instruction zero initialize the content of the
section, when called. The processor protect instruction does:

• check that the layout of the new module does not overlap with any existing
modules and, if this is the case, continue with the deployment by storing its
layout in the PSA of the processor;

• enable the memory access control on the loaded module;

• compute the module key KN,SP,SM basing of the layout informations, and
store it in the PSA of the node;

The only way to lift the memory protection is through the processor instruction
unprotect(continuation) from the inside of the module to be deactivated. To
prevent any leakage, the instruction also clears module’s code and data sections.
Since the unprotect instruction is itself part of module’s text section, a pointer to
the code where the execution is to be resumed must be provided as continuation
argument [39].

Unprotected

En
tr
y
po

in
t

Code & constants Unprotected

SM1 text section

Protected data

SM1 data section

Unprotected

M
em

or
y

TS1 TE1 DS1 DE1 KN,SP,SM1 IDSM1

TSn TEn DSn DEn KN,SP,SMn IDSMn

Next ID
Caller ID

KN

SM1 metadata

SMn metadata

Layout Key ID

Protected
storage
area

Node

Figure 2.1: Representation of a Sancus node with a software module SM1 loaded.
The content of the processor Protected Storage Area (PSA) is shown: it’s impor-
tant to underline that node key KN , together with all SMs keys KN,SP,SMi

, are
stored in the PSA, which is not mapped into the system memory, and indirectly
accessed by the software through specific processor instructions. Thus, they can-
not be leaked. This is a peculiarity of the Sancus architecture in contrast to other
solutions which leak the key, as it happens, for example, with Intel SGX in the
Foreshadow attack [9].

13

CHAPTER 2. BACKGROUND

Remote attestation Remote attestation is a crucial property for a networked
infrastructure as the one Sancus has been thought for. Being able to remotely
attest the identity of software modules executing on a remote node is a fundamental
requirement for a software provider, since it guarantees that the intended module is
correctly executing. In order to achieve it, two cryptographic primitives - encrypt
and decrypt - are used (Equation 2.1). Due to the use of a freshness guarantee,
they are resilient to replay attacks. The process of remotely attesting a SM running
on a node N starts with the software provider SP sending a fresh nonce No to
the node. The nonce is passed by the untrusted software running on N to the
module, as argument of the encryption function to be called. Then, the module
SM encrypts the received nonce N0 using its module key KN,SP,SM , as shown in
Equation 2.2. By discarding the output cyphertext C a Message Authentication
Code T is obtained, which solely refers to the data N0.

C, T = aead-encrypt(K, {}, D) (2.2)

The computed MAC is then sent to the SP, which will compute a copy by means
of its own copy of the module key KN,SP,SM . If the two tags coincide, it is a proof
that the software module SM is running untampered on the node N at this point
of time. Notice that this property deeply leverages on the assumption that, after
protection is enabled, SMs protected sections cannot be modified.

Secure communication By relying on the same mechanism used for remote
attestation, it is possible to set a secure communication between software modules
and software providers. Whenever a software provider SP wants to receive some
data from a module SM, running on a node N, it sends a nonce No and, possibly,
input data I to the intended module. The request is received by the untrusted soft-
ware on the node and passed to the software module, which executes the code and
produces an output O. The SM encrypts the output through the encrypt function
C, T = aead − encrypt(KN,SM,SP , O, No||I), and sends the resulting cyphertext
C and the tag T to the SP, on the unsecure network. Since SP knows the key
KN,SM,SP (remember the key management of Table 2.2) it can verify the tag and
decrypt the output. In this way the software provider has strong assurance that
the output O has been produced by SM on node N, given nonce No and input I.

Secure linking High assurance of calling the intended module must be provided
when a software module tries to link with another module, on the same node. In
order to do so, the module SM1 that wants to connect to module SM2, needs to
include SM2’s identity in its text section2. In order to allow secure linking, the

2Note that if SM2 wants to connect to SM1 too, this method creates a circular dependency
between their identities. A solution is that the software provider does not include the identity

14

2.3. SANCUS 2.0

processor is provided with two special instructions:

attest(address, expected hash)

The attest instruction proceeds by:

• verifying that a module, with protection enabled, is loaded at the provided
address;

• computing the identity of that module, by using the cryptographic primitive
hash function of page 10 on that module’s text section and layout;

• comparing the result with the expected hash parameter of the instruction;

• returning module’s ID in case the hashes were equal, zero otherwise;

Since the authentication process includes the computation of an hash, it is rather
time consuming and expensive. Therefore the processor assigns sequential IDs to
the loaded modules; the IDs are ensured to be used just once within one boot
cycle3.
Hence, the IDs of verified modules are used to speed up subsequent attestations:
it suffices to check that the same module with the same ID is still loaded at that
address. The processor function

get-id(address)

checks that a protected module is loaded at address and returns the ID of that
module. For caller authentication the node keeps track of the previously executing
module by recording its ID in a register "Caller ID" of the PSA. The register
is updated every time the execution flow enters in a different module. Modules
can attest the caller identity though two instructions attest-caller and get-
caller-id, whose usage is analogous to, respectively, the attest and get-id
instructions, except that they implicitly use the caller ID.

Confidential loading Module’s content is indeed protected, but only after pro-
tect instruction has been enabled; up to that moment an attacker can easily read
the text section, without being noticed4. A software provider can deploy encrypted
of one of the two module in the text section, but it securely sends it after deployment has been
done, storing in the data section [39].

3This can be easily done by having the ID to be used for the next module stored in a register
"Next ID" in the PSA. The value of the register is automatically incremented every time a new
module is enabled, and it generates an error when it overflows.

4Remember from page 12 that if the attacker modifies the text section, it causes a change in
the module’s key, which is detected in subsequent attestation; data section is not worrying since
its content is zero initialized after protection has been enabled.

15

CHAPTER 2. BACKGROUND

modules that will be decrypted in place before loading. In this way the content of
a module is inaccessible for an attacker. Therefore a second way of using protect
instruction is provided:

protect(layout,SP,MAC)

The MAC is the authentication encryption tag provided by the SP which encrypted
the text section of the module, with the key KN,SP .
The instruction behaves exactly the same as before, except that it decrypts the
module before calculating the module key. If the integrity check using the given
MAC fails, the text section is cleared and the protection disabled.

Hardware breach confinement In the possibility that an attacker manages
to breach the hardware protection of a node, the breach should be confined to the
node in question and not affect the rest of the infrastructure. Since every node
possesses its own private key, a compromised node does not provide to the attacker
any further information regarding the other nodes. Therefore, an attacker could
impersonate software modules form the compromised node, but it cannot extend
the breach to other nodes.

Memory access violation When a memory access violation is detected the
architecture simply resets the processor, clearing the memory to prevent any leak.
This has the advantage of being a secure mechanism, as no information can leak,
and simple at the same time. A big disadvantage is that it can have a bad impact
on availability of the node: a bug or a malicious software may cause the node to
keep resetting and clearing its memory.

2.3.3 Attacker Model
The attackers considered in Sancus are assumed with the following capabilities:

• Attackers can manipulate all the software on the node. Specifically they
can act as a software providers and deploy malicious modules on the node,
tamper with the operating system or even install a completely new one.

• Attackers can control the communication network that is used by the soft-
ware providers and nodes to communicate between each other. Indepen-
dently of the security of the communication channel, which is out of scope,
they can sniff the network, modify traffic, or mount man-in-the-middle at-
tacks.

16

2.3. SANCUS 2.0

• Attackers cannot break cryptographic primitives, but they can perform protocol-
level attacks.5

• Attackers cannot have physical access to the hardware, thus they cannot
probe the memory bus nor disconnect components, and so forth.

2.3.4 Implementation
2.3.4.1 Hardware Implementation

Sancus nodes are based on the open source implementation of the TI MSP430
corefrom the Open Core project [18]. In order to provide nodes with secure func-
tionalities some modifications are carried out: first of all, modules layout infor-
mations as well as the modules keys KN,SP,SM and identities are saved in internal
CPU registers, thus only a finite set of modules can be deployed. Second, several
instantiations of the Memory Access Logic (MAL) circuit are created, one for each
module that can be instantiated in the system NSM . Each circuitry implements
the program-counter based memory access control. It has five inputs: current and
previous program counters (PC), current address of the memory access bus (MAB)
as well as memory access bus enable and write flags. It compares the PC and the
MAB with the start and end addresses of text and data sections of a SM, when the
protection EN bit is asserted. In case of illegal access to the memory a violation
signal sm_violation is raised. The MAL circuit is instantiated NSM times, with
NSM being the maximum number of software modules that can be deployed on
the node. You can find a representation of MAL circuit in Figure 2.3.

OpenMSP430 version in use in Sancus it is not natively provided with a DMA
interface. The first tasks of this thesis is to upgrade Sancus by extending it with
DMA interface functionalities as provided in the last version of openMSP4306. In
order to do so, substantial modifications to the memory backbone carried out,
as the DMA interface signals have to correctly interact with memory accesses of
fetch, decode and execute CPU phases. Further details can be found in chapter 5.

2.3.4.2 The Compiler

Although software developers can rely on Sancus security functions to create pro-
tected modules. However doing this correctly still requires doing this correctly
still requires carefulness to not introduce software bugs that may invalidate the
system security. Firstly a module must have only one entry point. Secondly each

5Protocol-level attack is defined as the exploitation of specific feature or implementation bug
of some protocol installed at the victim for consuming huge amount of its resources.

6At the time of writing, the openMSP430 core is realeased with version r211.

17

CHAPTER 2. BACKGROUND

Register file

ALU

Execution unit

MAL

Layout

Key

SM1

SM control

MAL

Layout

Key

SM2

CPU core

M
em

o
ry

 b
ac

k
b
o
n
e

Spongent

SpongeWrap

Crypto unit

N
o
d
e

k
ey

RAM

or

ROM

RAM

Peripherals

Frontend

P
C

Program memory interface

Data memory interface

Peripheral bus

M
A
B

M
A
B

Violation

K
ey

 &

la
y
o
u
t

d
a
ta

R
eg

is
te
rs

Registers

V
io
la
ti
o
n

Figure 2.2: Overview of the hardware block constituting a Sancus core. Lightly
shaded blocks are part of the original openMSP core, whereas darker shaded ones
are specifically added for Sancus. Remember that the number of SMs NSM is set
when synthesizing the core. Notice how the SM control unit takes the program
counter (PC) and the memory access bus (MAB) as inputs for memory access logic
(MAL) circuits [39].

Inputs Registers Output
pc RT ≥ RT

TS < Ó=

prev_pc ≥

TE <

mab ≥ violation

mb_en EN <

mb_wr DS ≥

RT DE < RT

Figure 2.3: Schematic of the Memory Access Logic (MAL), the hardware used to
enforce the memory access rules for each protected module [39].

18

2.3. SANCUS 2.0

module need to implement its own call stack to avoid leakage of sensitive data to
unprotected code. Thirdly, exiting from a module, or calls to another one, requires
specific instructions to be carried out in the right order. The compiler assures that
everything is correctly handled, with no further burden on the programmer side.
To deals with these low level details, Sancus authors implemented a compiler ex-
tension based on LLVM [19], together with support library that offers API to per-
form some commonly used function like calculate a MAC of data. "The compiler
compiles C standard files, and it uses Clang [19] as compiler frontend. To benefit
from Sancus, developers only need to indicate which functions should be part of
protected module, which should be the entry points and what data should be in
the protected section. This is done by means of compiler attributes -SM_FUNC,
SM_ENTRY and SM_DATA- respectively used to annotate functions, entry points and
modules private data." [39].

Entry points The compiler implements multiple logic entry points on top of the
single physical entry point of a software module, by means of a jump table. The
compiler assigns a unique ID to every logical entry point; when code tries to jump
to one of these entries, its ID is stored in a register and the jump is redirected
to the correct physical entry point of the module. The code, then, jumps to the
correct called function based on the ID passed in the register.

Stack handling The compiler also takes care of reserving a space in the pro-
tected section of the module for the stack. The first time a module is entered the
stack pointer is loaded with the address of this start location of the module stack.
Stack pointer of the module is saved on exits, for further usage.

Exiting Modules and Secure Linking When exiting from a module any reg-
ister that is not holding a parameter to be returned is cleared, to avoid leakages.
Calls to protected modules automatically verify the caller ID: in order to do so a
software provider needs provide its key to the compiler.

2.3.4.3 Software Stack for Deployment

Deploying a module is a sensitive operation: module’s identity, thus its key, de-
pends on module’s load address on the node. These SP must be aware of those
addresses in order to correctly compute KN,SP,SM . Enforcing static loading is not
a scalable solution given that the target system supports module loading from
different software providers. Hence the need to implement a software stack to
dynamically deploy modules on a node. The process starts with the SP creating
an Executable and Linkable Format (ELF) file of the SM and sending it to the

19

CHAPTER 2. BACKGROUND

node N. The host software on the node receives the files, finds a free memory area
to load the SM and relocates it using a dynamic ELF loader. Then hardware
protection is enabled and a symbol table is sent back to the SP. The symbol table
contains the addresses of any global functions along with the load addresses of all
protected modules on the node N. By using the symbol table the software provider
can reconstruct the exact same image of SM as loaded on the N, which can be use
for the computation of the module key.
Loading of encrypted modules requires an extra step, since the dynamic loader
need to inspect and update parts of the text section, which is inaccessible in case
of encrypted modules. First the SP sends a request to the N specifying the size of
the encrypted module it wants to load. Then the host software allocates memory
for the module’s sections and answers back with an handle identifying the memory
allocated location, and the symbol table. SP links locally the SM and sends the
resulting image back to N, together with the memory handle. The host software on
the node loads it in the pre-allocated memory sections and enables the protection.
After the SM has been deployed, the software on the node provides an interface
to be able to call its entry point. From this moment the module is fully operative
on the node, thus the SP can use the provided interface to start operations on
the module, such attesting its status or performing I/O accesses to its data. The
interface is used to provide the SM with the identities of the other modules, it
can securely link to. To this end, the SP computes the identity hashes from the
symbol table, which contains the image of the loaded modules or, if the module
to be loaded belongs to a different software provider, it receives them from the
respective providers. Finally the hashes are encrypted with the KN,SP,SM and sent
to the node.

2.4 Direct Memory Access (DMA)

2.4.1 Overview
Direct Memory Access (DMA) is a feature of CPUs that allows hardware sub-
systems to directly access the memory, without the participation of the Control
Unit (CU). Without DMA mechanism, CPU would be fully occupied during I/O
operations, thus unavailable to perform other tasks. In this sense, DMA speeds
up the system, unburdening the CPU from I/O loads. In general DMA traffic is
supervised by a DMA Controller (DMAC): the device that wants to start a DMA
operation has to configure the DMAC internal registers, specifying the starting
address of the memory location where the operation should occur and the number
of words to be handled. Depending on the architecture on which it will be released,
DMAC may possess further features such as interrupt capabilities, different modes

20

2.4. DIRECT MEMORY ACCESS (DMA)

of operation, and so forth.

Operation Modes DMA transfers can occur in three different modalities:

• Burst mode In burst mode DMA accesses are performed atomically: once
the CPU grants DMA the access to the memory bus, a data transfer starts;
it lasts until an entire block of data is sequentially transferred, then DMAC
releases the control of the system bus back to the CPU. This is the fastest
transfer mode, but it also prevents CPU to access the memory for long
periods of time.

• Cycle stealing mode The cycle stealing mode is a good compromise be-
tween transfer speed and CPU memory access time. This transfer mode
should be used in those cases where the CPU cannot be inactive for the
whole length of a burst mode transfer. The difference with respect to the
latter is that CPU gains back control of the bus after one byte of data
has been transferred. Hence block transfer proceeds byte-per-byte, with the
DMAC having to request the access to the system bus each time.

• Transparent mode Transparent mode is the slowest operation mode, yet
the most efficient mode in terms of overall system performance. In transpar-
ent mode DMAC transfers data only when the CPU is not using the system
bus; the primary advantage of this mode is that CPU never stops waiting
for the system bus. The disadvantage is that DMA transfers takes longer
times to complete, besides the hardware needs to determine when CPU is
not using the system bus; in some cases this can be complex.

2.4.2 DMA Interface for OpenMSP430
The openMSP430 microprocessor offers a DMA interface that acts as gateway to
the whole memory of the system.

Memory in the openMSP430 architecture In openMSP430 architecture the
memory is seen as a single block, composed by program memory, data memory
and peripheral space arranged sequentially as shown in Figure 2.5. Each physical
memory location is a 16 bits word, whereas logical memory words are 8 bits long;
hence logical memory is perceived as double the dimension of the physical memory.
When accessing a logical memory location through a logical address, physical
address needs first to be retrieved: this operation is automatically done in the
memory backbone of the system, where the logical address is compared with the
starting and ending points of logical memory regions (program, data or peripheral

21

CHAPTER 2. BACKGROUND

Register File

ALU

Execution Unit

OpenMSP430 Core

M
em

o
ry

 B
a
ck

b
o
n
e

RAM

or

ROM

RAM

Peripherals

BCM
Basic clock module

16x16
Multiplier

SFRs Watchdog

Peripheral Bus

SDI
(Serial debug interface)

HW Break Unit

UART or I2C

Frontend

D
M

A

In
te

rf
a
c
e

Figure 2.4: Overview of the openMSP430 core internals, with DMA support [18].
Memory can be accessed both through the normal system bus, along with DMA
interface.

space), in order to find the correct one to access to. After that, the starting
address of the resulting region is subtracted from the logical address LOGICALÍ

= LOGICAL - START_POINT. Finally, the physical address is obtained with a
simple bitwise right shift PHYSICAL = LOGICALÍ/2.

2.4.2.1 DMA Interface - Signals

Here a list of all the signals of the DMA interface is presented in Table 2.3; each
of these signals takes part in a DMA transfer and it’s driven either by the core
or by the DMAC. Description of the signal is also given. Notice that the DMA
interface of the core is meant to be connected to a general DMA arbiter, as DMA
controllers, bootloaders, and so forth. For this reason in this section the term
DMA Master will be use, to keep the discussion as generic as possible; keep in
mind that the DMA Master of the Sancus architecture is a DMA Controller.

22

2.4. DIRECT MEMORY ACCESS (DMA)

Program Memory

Unused

Data Memory

Peripheral Space

Basic System Configuration
(standard MSP430 memory mapping)

0x10000

0x10000-PMEM_SIZE

0x0200+DMEM_SIZE

0x0200

0x0000

PMEM_SIZE

DMEM_SIZE

512B

Program Memory

Unused

Data Memory

Peripheral Space

Advanced System Configuration
(modified MSP430 memory mapping,
customised linker script required)

0x10000

0x10000-PMEM_SIZE

PER_SIZE+DMEM_SIZE

PER_SIZE

0x0000

PMEM_SIZE

DMEM_SIZE

PER_SIZE

Figure 2.5: Organisation of the memory in the openMSP430 core [18]. Memory is
seen as a single memory block, with program memory, data memory and peripheral
space arranged sequentially. Each physical memory location is of 16 bits, whereas
logical memory words are 8 bits long, hence the logical memory is perceived as
twice as the physical memory. A more advanced system configuration is available,
allowing to further extend the peripheral space; this would result in a shift of the
start and end points of data memory (image on the right).

Table 2.3: List of all the signals of the DMA interface. A brief description of the
signals composing the DMA interface, along with their I/O direction, is reported.
Notice that the DMA Master can be any device capable of correctly driving the
DMA interface signals such as bootloaders, DMA controllers, Memory-BIST or
any other hardware unit requiring direct read/write access to the CPU memory
space. Source [18].

Signal Name Description I/0 Direction

MCLK It’s the system clock that times all DMA
transfers.

openMSP430 →
DMA Master

PUC_RST
It’s the system reset signal and it is active
HIGH. This signal is used to reset the
system, including the DMA master.

openMSP430 →
DMA Master

23

CHAPTER 2. BACKGROUND

DMA_DOUT[15:0]

The read data bus is used to transfer
data from the openMSP430 memory to
the DMA master. It needs to stay valid
until transfer is complete, as signalled by
DMA_READY.

openMSP430 →
DMA Master

DMA_READY This signal flags a transfer complete when
HIGH.

openMSP430 →
DMA Master

DMA_RESP The response signal it’s driven HIGH on
transfer errors.

openMSP430 →
DMA Master

DMA_ADDR[15:1] Logical address of the 16-bit word cur-
rently accessed by the interface.

DMA Master →
openMSP430

DMA_DIN[15:0]

It’s the write data bus used to transfer
data from the DMA master to the sys-
tem memory. It needs to stay valid un-
til transfer is complete, as signalled by
DMA_READY.

DMA Master →
openMSP430

DMA_EN

The enable signals indicates that the cur-
rent DMA transfer is active. It needs to
be driven HIGH until completion of the
transfer, as signalled by DMA_READY.

DMA Master →
openMSP430

DMA_WE[1:0]
Each of the two bits indicate a transfer
on the selected byte, when HIGH, and a
read transfer when LOW.

DMA Master →
openMSP430

DMA_PRIORITY

When this signal is HIGH the DMA mas-
ter gains high priority on the CPU, thus
unlocking burst mode accesses. When
LOW the DMA Master accesses the sys-
tem memory in transparent mode of op-
eration.

DMA Master →
openMSP430

2.4.2.2 DMA Interface - Protocol

A DMA transfer starts when enable signals goes HIGH. At that moment the
DMA_ADDR and the control signals for the required operation, read or write,
need to be asserted and to stay valid until the end of the transfer is flagged by the
DMA_READY signal. When this latter is HIGH it means that the core has suc-
cessfully handled the required operations; however when DMA_READY is LOW
it inserts wait states into the transfer. The DMA Master needs to acknowledge the
wait state and to keep the signal unchanged until DMA_READY is driven HIGH

24

2.4. DIRECT MEMORY ACCESS (DMA)

Figure 2.6: Timing diagram of a read operation with wait state on the openMSP430
DMA interface. The read data DMA_DOUT are available on the next clock cycle
after the DMA_READY signal has been asserted by the core internal logic. If the
signal is LOW, a wait state is inserted in the transfer, as it happens for the case
of the datum B: in this case, the DMA master keeps the DMA address, as well as
with the control signals, unchanged until the ready signals is asserted again [18].

again, signalling the completion of the transfer. Transfer errors are signalled by
having DMA_RESP driven HIGH; errors are generated if the transfer address lays
between the program and data memories, where nothing is mapped (for example
between Program and Data memory, as shown in Figure 2.5). Notice that ERROR
warnings have never wait states. A separate description is required for both the
read and write operations, as they are differently handled in the protocol.
A low value of DMA_WE together with an active DMA_EN triggers a read

operation on the selected byte: DMA_WE[0] activates a read on the lower byte,
DMA_WE[1] on the upper byte. The DMA Master drives the address and the
control signals, and waits for openMSP430 to sampled them. When the system

Figure 2.7: Timing diagram of a write operation with wait state on the open-
MSP430 DMA interface. DMA_READY signal is asserted on successfull sampling
of the incoming data, as it happens for data A and C. In case of wait states, the
DMA_READY signal is driven low and the DMA master waits until the trasnfer
is completed. This is shown for data B, as one wait state is insterted before the
data is finally sampled [18].

25

CHAPTER 2. BACKGROUND

core does so, it raises DMA_READY high. Data will be available on the next
clock cycle after DMA_READY has been risen, as shown in Figure 2.6.
An high value of DMA_WE together with an active DMA_EN triggers a write

operation on the selected byte: DMA_WE[0] activates a write on the lower byte,
DMA_WE[1] on the upper byte. During a write operation the data on the write
bus DMA_DIN is stored into the system memory, at the address specified by the
DMA Master. This latter keeps those signals valid until the openMSP430 asserts
DMA_READY, signal that the transfer is completed. The timing diagram of the
write transfer can be found in Figure 2.7.

26

Chapter 3

Problem Statement

3.1 DMA on Protected Module Architectures

DMA is generally not supported in PMAs. The reason is that PC based memory
access control enforced on PMAs (section 2.2) can only check and validate mem-
ory accesses coming from the CPU memory bus. However, if a DMA interface is
provided to PMAs, a secondary direct channel to the memory is opened. In this
way, a peripheral with full DMA capabilities can access every mapped memory
location, including private SMs code and data sections, thus completely breaking
isolation and confidentiality guarantees for the system. Lightweight PMAs, such
as Sancus or TrustLite, as well as high-end solution, such as SecureBlue++ [7] do
not include DMA on their systems at all. Whether this may seem a trivial solu-
tion, it has the advantage of being simple and not adding any complexity to the
architecture. This can be crucial, especially on low-end embedded PMAs were the
resource constraint is the main limiting design parameter. A discussion on possible
solutions to support DMA on PMAs without affecting their security guarantees is
deferred to chapter 4 "Design and Discussion".
Others, like Iso-X [17] or Intel SGX [13] explicitly prevent any access to the pro-
tected memory. In these architectures, the equivalent of modules protected sections
are stored in a specific range of the memory space. Thus, the protection mecha-
nism consists in denying every DMA accesses to those specific regions.
In Intel SGX, for example, the Enclave Page Cache (EPC) provides the protected
memory region for enclaves in the machine. The Enclave Page Cache Map (EPCM)
is the security meta-data attached to each EPC page, and contains the information
needed by the hardware to protect the enclave memory accesses. All these entries
are stored in the Processor Reserved Memory, which is a a contiguous range of
DRAM that cannot be accessed by system software or peripherals. An image of
the memory hierarchy in use on Intel SGX is provided in Figure 3.1.

27

CHAPTER 3. PROBLEM STATEMENT

DRAM

PRM

PRM

EPC

EPC

4kb page
4kb page
4kb page

4kb page

Entry
Entry
Entry

Entry

EPCM

Figure 3.1: Detail of Processor Reserved Memory (PRM), together with Enclave
Page Cache (EPC) in Intel SGX. The PRM is a contiguous range of DRAM that
cannot be accessed by system software or peripherals [13].

3.2 Exploitation of Naive DMA Support
A simple example of how security guarantees are invalidated when DMA support
is naively implemented on Sancus 2.0. If no memory access control is enforced
on the DMA bus, it can access to the whole system memory, including protected
sections. An attacker can exploit this vulnerability to leak secret data or inject
malicious code into the module.
Listing 3.1 shows a simple Sancus software module "Hello": the macros SM_EN-
TRY(name), SM_FUNC(name) and SM_DATA(name) are respectively used to annotate
modules entry points, functions or data. In brief, they take as input the name of
the intended module, and attach some attributes1 to the entity they are associ-
ated with (data, function or entry point), so that the Sancus compiler can include
those in the module protected sections. DECLARE_SM(name, vendor_id), instead,
is used to declare a Sancus module.

Listing 3.1: Code snippet showing a SM named "Hello". Macros are used to
annotate the code so that the Sancus compiler can correctly enclose SM functions
and data respectively in the SM text and data sections.

/* ======== HELLO WORLD SM ======== */
DECLARE_SM (hello , 0x1234);
define HELLO_SECRET_CST 0xC1A0

int SM_DATA (hello) * hello_secret ;
int const SM_DATA (hello) hello_const = HELLO_SECRET_CST ;

1The attribute mechanism allows a developer to attach extra information (metadata) to lan-
guage entities with a generalized syntax, instead of introducing new syntactic constructs or
keywords for each feature. This information is intended to be used by the compiler, improv-
ing the quality of diagnostics produced by an implementation or specifying platform-specific
behaviour [5].

28

3.2. EXPLOITATION OF NAIVE DMA SUPPORT

void SM_FUNC (hello) hello_init (void)
{

/* Confidential loading guarantees secrecy of constant in
text section . */

hello_secret = (int *)(hello. data_section_start + OFFSET);
* hello_secret = hello_const ;
ASSERT (* hello_secret == HELLO_SECRET_CST);

}

void SM_ENTRY (hello) hello_greet (void)
{

hello_init ();
pr_info2 ("Hi from SM with ID %d, called by %d\n",

sancus_get_self_id (), sancus_get_caller_id ());
pr_info2 (" Internally accessing to my secret : %.4x at addr .:

0x%.4x \n" ,* hello_secret , hello_secret);
}

void SM_ENTRY (hello) hello_disable (void)
{

sancus_disable (exit_success);
}

3.2.1 Leak Secret Data
In the example provided the value of a secret constant is stored in the data sec-
tion, at a known offset, for the sake of simplicity: in this way the DMA attack is
carried in one shot. Though in a real-case scenario it’s unlikely for the attacker
to know the exactly location of the secret data, it is reasonable to assume that
some analysis are carried on on the module to be broken, thus the example it’s
still valid. Finally, it is to be noticed that the values of start and end addresses of
SMs text and data sections can be read from unprotected code.

int main ()
{

uint16_t start_dma ;
uint16_t disclosed_secret ;

msp430_io_init ();
sancus_enable (& hello); // Enable memory protection

hello_greet (); // Module ’s function , automatically accessed
from the unprotected code through the entry point

/* ============== USING DMA ================ */

29

CHAPTER 3. PROBLEM STATEMENT

start_dma = (uint16_t)(hello. data_section_start + OFFSET);
pr_info ("DMA illegal access to the secret data from

unprotected code \n");

// void dma_read (start_addr , num_of_words , * save_data)
dma_read (start_dma , 1, & disclosed_secret);
pr_info2 ("Hello secret is: 0x%.4x at address : 0x%.4x \n",

disclosed_secret , start_dma);
/* === */

}

Listing 3.2: Main.c function. SM "Hello" secret is leaked through a DMA read
after the memory protection has been enabled.

Listing 3.3: Output of the terminal in which the attack example was launched.
After the DMA read operation is called from the main.c, the secret data "C1A0"
is read and stored in disclosed_secret (Listing 3.2). Then, its value is printed
from the unprotected main.c, meaning that the DMA successfully leaked the secret.
None of these operation raised an exception.

New SM config : 7130 7304 029c 03a6 , 1
Vendor key: 4078 d505d82099ba
...

SM key: b0c4cc0fb9ce3806
SM hello with ID 1 enabled : 0x7130 0x7304 0x029c 0x03a6
[main.c] Hi from SM with ID 1, called by 0
[main.c] Internally accessing to my secret : 0xC1A0 at address : 0

x02a3
[main.c] DMA illegal access to "Hello" secret from unprotected

code

[main.c] Hello secret is: 0xC1A0 at address : 0x02a3
SM disabled
[main.c] SM disabled ; all done!

===
| SIMULATION PASSED |

===

After entering the main function (Listing 3.2), the memory protection for the
"Hello" module is enabled. Then, the SM hello_greet() is called, which initialises
the secret data and sends a greeting to the reader.
The execution continues by configuring a DMA read operation from the main.c.
The DMA read function inputs are: (1) the starting address, which is set with
the start of data section shifted of the know offset, so that it directly points to

30

3.2. EXPLOITATION OF NAIVE DMA SUPPORT

the desired secret data; (2) the number of words to be read, set equal to one in
this case; (3) the address of an unprotected memory location where to store the
read data. Once the DMA operation has completed, the secret value 0xC1A0 is
leaked and stored and printed from code in the unprotected memory. The output
produced by the main.c is shown in (Listing 3.3).
As a final remark, Listing 3.4 shows what happens when the same code from List-
ing 3.1 and Listing 3.2 is run on Sancus with memory access control enforced on
DMA accesses: a violation is internally raised and the content of the secret data
is not leaked. An interrupt request can be set so that more specific countermea-
sure can be taken when a DMA violation is detected; an example of DMA ISR is
provided in Listing 3.5.

New SM config : 7130 7304 029c 03a6 , 1
Vendor key: 4078 d505d82099ba
...

SM key: b0c4cc0fb9ce3806
SM hello with ID 1 enabled : 0x7130 0x7304 0x029c 0x03a6
[main.c] Hi from SM with ID 1, called by 0
[main.c] Internally accessing to my secret : 0xC1A0 at address : 0

x02a3
[main.c] DMA illegal access to "Hello" secret from unprotected

code

[main.c] Hello secret is: 0x0000 at address : 0x02a3
SM disabled
[main.c] SM disabled ; all done!

===
| SIMULATION PASSED |

===

Listing 3.4: Output of the terminal for the same example of Listing 3.1 and
Listing 3.2, running on Sancus with memory access control enforced on DMA
accesses.

31

CHAPTER 3. PROBLEM STATEMENT

Listing 3.5: Detail of ISR to handle DMA violations. The attribute "interrupt"
identifies the function as ISR.

__attribute__ ((interrupt (DMA_IRQ)))
void dma_violation_isr (void)
{

puts("\t--> DMA VIOLATION IRQ; exiting ...\n");
EXIT ();

pr_info (" should never reach here ..");
while (1);

}

3.2.2 Inject Malicious Data or Code
Another possible attack implies the injection of malicious code or data into SMs
protected sections. The SM considered is still the "Hello" module from the previous
example (Listing 3.1). The only difference is that the SM hello_init() function
is now explicitly called only once right after the protection mechanism has been
enabled, and not every time the hello_greet() is entered. To this extent, its
attribute is modified from SM_FUNC to SM_ENTRY. This is necessary, in order
to prevent that the injected malicious message is simply overwritten before being
printed by the greeting function. Listing 3.6 shows the main.c, as framework for
the attack.

Listing 3.6: Main.c function for the write attack. A malicious data is written into
the SM "Hello" data section, through a DMA operation.

int main ()
{

uint16_t start_dma ;
uint16_t data_to_send ;

msp430_io_init ();
sancus_enable (& hello); // Enable memory protection

hello_init (); // Now defined as: void SM_ENTRY (hello)
hello_init (void)

hello_greet (); // Module ’s function , automatically accessed
from the unprotected code through the entry point
/* ============== USING DMA ================ */

start_dma = (uint16_t)(hello. data_section_start + OFFSET);
data_to_send = 0xBEEF;

32

3.2. EXPLOITATION OF NAIVE DMA SUPPORT

puts("DMA injecting external data into SM data section \
n");

// void dma_write (start_addr , num_of_words , * data_to_send
);

dma_write (start_dma , 1, & data_to_send);
/* === */

hello_greet ();
}

After the greeting message has printed, to show that initialization has correctly
occurred, the real attack can start, by configuring the DMA write function. It
takes three inputs: (1) a starting address pointing to the initial memory location
where the external data are going to be written; (2) the number of words involved
in the operation; (3) the first memory location where data resides. As for the pre-
vious example, the writing address is still set to a known offset in the data section.
Then, the malicious greeting message 0xBEEF is injected and the execution of the
main function proceeds by calling the SM hello_greet() again, to show that a
tempering occurred (Listing 3.7).

New SM config : 7124 72ea 029c 03a6 , 1
Vendor key: 4078 d505d82099ba
...

SM key: ed151c6be5efda74
SM hello with ID 1 enabled : 0x7124 0x72ea 0x029c 0x03a6
[main.c] Hi from SM with ID 1, called by 0
[main.c] Internally accessing to my secret : 0xC1A0 at address : 0

x02a3
[main.c] DMA injecting external data into SM data section

[main.c] Hi from SM with ID 1, called by 0
[Hello.c] Internally accessing to my secret : 0xBEEF at address : 0

x02a3
SM disabled
[main.c] SM disabled ; all done!

===
| SIMULATION PASSED |

===

Listing 3.7: Output of the terminal for the write attack.

33

CHAPTER 3. PROBLEM STATEMENT

34

Chapter 4

Design and Discussion

The aim of this chapter is to present the design steps for extending Direct Memory
Access (DMA) support to Sancus. The security objectives, pursued throughout
the whole design process, start the discussion in section 4.1. Then, the attacker
model is presented (section 4.2), and an general overview of the system is provided
(section 4.3). Afterwards, the threats of direct DMA integration on Sancus are
analysed (section 4.4), and possible solutions outlined, each presented with its pros
and cons (section 4.5).

4.1 Security Objectives
The main design challenge of the thesis is to provide the Sancus architecture with
DMA support, without affecting its security guarantees. In particular software
modules protected sections have to remain inaccessible from code executing outside
the module itself. This means that accesses through the DMA interface should
not affect the integrity of the software modules (from now on SMs).
Direct implementation of the DMA support does not comply with the security

objective just stated: if DMA is provided, every memory mapped location can be
access, thus invalidating SMs isolation property.1 Therefore, a more sophisticated
approach has to be pursued. First idea is to enforce a program counter-based
memory access control on DMA accesses, as explained in subsection 4.5.2; however,
this opens to memory right escalation attacks. The failure of this solution is mainly
due to the flawed idea of using CPU-related entity - the program counter (PC) -
to validate DMA accesses, which are, by definition, happening independently of
the CPU.
A different approach is the key to fulfil the security guarantees stated in the

start of the section: DMA is entirely excluded from protected memory regions, in
1A detailed review of software modules security guarantees can be found in subsection 2.3.2.

35

CHAPTER 4. DESIGN AND DISCUSSION

order to keep modules integrity and confidentiality untouched. Subsection 4.5.3
describes it, together with its pros and cons.

The solutions presented so far aim to keep security guarantees unaltered. Nev-
ertheless it is possible to relax some constraints on integrity and confidentiality,
and trade security for SMs functionalities, in a controlled way. This is proposed
in subsection 4.5.4, in which each module is allowed to define a specific memory
subset inside its data section to be disclosed to DMA peripherals with DMA ca-
pabilities, if needed.

A final mention is for side channels attacks as threat for the overall security
of the system. By extending the relying architecture with Direct Memory Access
support, the side channel attack base is extended, too. The discussion about this
topic is deferred to section 4.7.

4.2 Attacker Model
Throughout the design of the DMA support and of the strategies to prevent its
malicious exploitation, attackers are generally considered to possess the same capa-
bilities as in Sancus 2.0 attacker model [39], unless differently stated. Specifically,
the followings are assumed:

• Attackers can manipulate all the software on the nodes. In particular, they can
act as a software providers and deploy malicious modules on the node, tamper
with the operating system, or even install a completely new one.

• Attackers can control the communication network that is used by the software
providers and nodes to communicate between each other. Independently of the
security of the communication channel, which is out of scope, they can sniff the
network, modify traffic, or mount man-in-the-middle attacks.

• Attackers cannot break cryptographic primitives, but they can perform protocol-
level attacks.2

• Attackers do not have physical access to the hardware of the system, which
means they cannot place probes on the memory bus nor disconnect components,
at anytime. However, attackers are allowed to plug-in their own peripherals or
to substitute the DMA controller provided by default with their own version of
it. These modifications need to be carried out before the system is started, as
any further alteration at runtime is not considered in this model. Notice that
2Protocol-level attack is defined as the exploitation of specific feature or implementation bug

of some protocol installed at the victim for consuming huge amount of its resources.

36

4.2. ATTACKER MODEL

security guarantees from section 4.1 must still hold even in this eventuality.
This is a new property with respect to. the attacker model of Sancus 2.0 [39].
Figure 4.1 shows an overview of the architecture. Here the Trusted Comput-
ing Base (TCB) is highlighted, too: it is defined as the set of the hardware
components3 which are considered critical for the security of the whole system.
The TCB is designed so that, even in case of tampering with other parts of
the system, the device cannot misbehave [30]. The attacker model considers the
TCB inaccessible for the attackers, at anytime. Otherwise, security objectives of
section 4.1 are not guaranteed. On the contrary, no assumption is made for the
components outside the TCB, including the DMA controller and the peripherals.

M
em

o
ry

 B
a
ck

b
o
n
e

Program Memory

(RAM or ROM)

Data Memory

(RAM)

Peripherals

Address registers

DMA Controller

Number of words

FSM

MMIO DMA Device

Configuration

Register

Start Address

Read Data

Write Data

CPU

Peripheral Bus

Figure 4.1: Overview of the system architecture, showing the DMA controller and
a peripheral with DMA capabilities, connected to it. Everything related to the
DMA or peripherals is outside the TCB, whose boundaries extends to the CPU,
memory backbone and the system memories. In fact, no assumption is needed on
DMA controller nor devices trustability.

3Generally speaking, the Trusted Computing Bases can include both hardware and software
components that guarantees the security of a system. In Sancus, the TCB is hardware-only, as
the software is vulnerable to manipulations of the attacker, hence cannot be trusted.

37

CHAPTER 4. DESIGN AND DISCUSSION

4.3 Overview
Sancus 2.0 [39] is a secure architecture which relies on strong security guarantees,
listed in subsection 2.3.2. In summary, SMs are binary files composed of a text-
and data- sections: after modules are deployed and memory protection is enabled,
the contents of the two sections are guaranteed to be inaccessible from code ex-
ecuting outside the SMs, fulfilling the so called isolation property. Furthermore,
secure communication among modules or with a remote party is achieved through
specific instructions which verify that the intended module SM, running on node
N on behalf of software provider SP, has been called (see section 2.3 for a deeper
explanation).

PC != TS
TS ≤ PC < TE
!(TS ≤ PREV_PC < TE)

(1)

!(TS ≤ PC < TE)
DS ≤ MAB < DE(2)

violation

!(TS ≤ PC < TE)
DS ≤ MAB < DE(3)

WRITE_MEM == 1
TS ≤ MAB < TE(4)

Figure 4.2: Representation of the Memory Access Logic (MAL), enforcing program
counter-based access control rule. In this high level representation, the MAB is
validated on the current and previous value of the program counter. TS and TE
stand for Text section Start and End addresses, whereas DS and DE are the Data
section Start and End addresses.

Sancus does not natively support a DMA interface, hence all the memory ac-
cesses pass through the CPU, on the memory access bus (MAB). Thus, it is suf-
ficient to enforce a program counter-based memory access control on the MAB in
order to guarantee SMs’ integrity and confidentiality. This is achieved by the mem-
ory access logic (MAL), whose high-level representation is shown in Figure 4.2. A
violation is raised every time one of the four conditions is satisfied: (1) if the pro-
gram counter is addressing to the text section of a module without using its the
entry point; (2) if the MAB is pointing to the data section of a module, while the
PC resides outside that module; (3) if the MAB is pointing to the text section of
a module, while the PC resides outside that module; (4) if a write operation is
being carried on into the text section of a module.

38

4.4. IMPACT OF THE DMA ON SANCUS SECURITY PROPERTIES

4.4 Impact of the DMA on Sancus Security Prop-
erties

By providing Sancus with a DMA interface, a secondary channel to the mem-
ory is opened. In this way, a peripheral with full DMA capabilities can access
every mapped memory location, completely breaking isolation and confidential-
ity guarantees for software modules. In fact, PC-based memory access control is
not enforced on DMA accesses, which directly address the system memory. This
opens new breaches in the system, as the content of a software module, both text-
and data- sections, becomes fully accessible to an attacker with DMA capabilities,
without even raising an exception in the MAL.
Here follows a description of how DMA affects Sancus security guarantees: the
focus is on module isolation property, as all the other security guarantees base on
that. In fact, if module content is going to be illegally accessed, then any effort
to secure modules communication within and outside the core becomes secondary,
as the attacker will always be able to retrieve secrets by directly reading into the
protected memory regions of the implicated modules.

• Software module isolation: An attacker with DMA capabilities can read or
write every memory location, including the protected section of a module. Thus,
module isolation entirely reneges. Any illegal read operation leaves no trace on
the module, as it does not modify any part of the two sections; thus it cannot be
detected neither with subsequent remote attestations by the SP. On the other
hand, any modification due to an illegal write operation can be detected by the
SP with successive remoter attestations, as they affect the module identity SM.

• Remote attestation: Remote attestation strongly relies on SM’s isolation.
The attestation mechanism, as described in subsection 2.3.2, leverages on the
assumption that a module cannot be modified after the protection has been en-
abled. This is true if Sancus does not support DMA, since in such architecture
a module can solely be tampered with before the protection instruction is exe-
cuted. After that moment, the memory access control enforced on SM assures
that no further modifications take place, hence that the SM’s key KN,SP,SM is
uniquely associated with the untampered module SM, deployed from the soft-
ware provider SP, running on the node N.
Therefore the module key KN,SP,SM , which is saved in the Protected Storage
Area (PSA) of the processor, can be used to generate a MAC of a nonce sent by
the SP. This latter computes its own version of the MAC, and compares with the
once received from the SM: if the two coincide, then the attestation succeeded.
If Sancus is provided with a DMA interface, modules content can be accessed
(both read or written) at anytime during the execution, thus invalidating the

39

CHAPTER 4. DESIGN AND DISCUSSION

isolation property. Recalling that the module key KN,SP,SM is computed only
once when the protect instruction is called,4 it can no longer be consider a
sufficient assurance of module integrity. An attacker, in fact, could tamper
with the SM after the protection is enabled, without causing any change in the
module key, hence tricking the attestation mechanism.

Finally, a Sancus feature has to mentioned: by having node and modules keys
saved in the PSA of the processor, they are never leaked. A malicious DMA op-
erations cannot access them, as the PSA it is not mapped into the system mem-
ory, nor a malicious SM ad-hoc programmed, since the keys are only indirectly
accessed by software through processor instructions: node key KN is involved
in the creation of KN,SP,SM by the protect instruction, whereas KN,SP,SM is
used in encrypt or decrypt functions. This is a peculiarity of the Sancus ar-
chitecture in contrast to other solutions which leak the key, as it happens, for
example, with Intel SGX in Foreshadow attack [9].

• Secure communication: The secure communication between a software provider
SP and a module SM also leverages on SM isolation property and on the
KN,SP,SM key, as a proof of integrity for an intended module.
When a SP wants to establish a secure communication with a SM, it sends a
nonce N0 and possibly some data I to the node N ; those are passed to the SM
function to be called, by untrusted code. Then, SM output O is encrypted by
the C,T = encrypt(KN,SP,SM,O, N0||I) instruction, and the resulting cipher-
text and tag are sent to the SP on the untrusted network. By comparing its
own version of the tag with the one received from the SM it can be sure that
the incoming data have been produced by SM, running on node N, on the given
input I.
As for the remote attestation of above, the module key KN,SP,SM can no longer
be consider a sufficient assurance of module integrity, as it is computed only
once after protection is enabled, thus an attacker could always tamper with the
SM from that moment on.

• Secure linking: DMA capabilities invalidates this property, too. In fact, mod-
ules are attested only once in secure linking; if the attestation succeeds, ID of the
module is stored, to be used in place of subsequent attestations. Therefore any
modification of the module carried out after the first attestation is not detected,
and module ID it is not revoked. The extent of this vulnerability is relevant, as
an attacker can exploit a modified module to interact with all the modules it
has access to.
4 A detailed explanation of protect instruction can be found in section 2.3.2 "Software module

isolation".

40

4.5. PROTECTION OF SYSTEM MEMORY FROM DMA ATTACKS

• Confidential loading: When a module is deployed on Sancus, its text sec-
tion can be accessed until the the protection has been enabled. In the non
DMA-supporting Sancus, this is the only way the text section could be illegally
accessed, as long as module isolation holds. In order to gain confidentiality
guarantees for SMs, a SP can send an encrypted version of the text section of
the module, which is then decrypted in place using the KN,SP .

DMA capabilities completely break this property. In fact, even if confidential
deployment is correctly completed, it is not possible to keep module content
secret anymore, as an attacker can access it through a DMA operation anytime.

• Hardware breach confinement: This property is not affected by the presence
of DMA interface. In fact, all the keys used in Sancus are securely stored in
the PSA of the core (Figure 2.1), which cannot be accessed neither by hardware
nor software. Therefore, keys are never leaked neither in case of illegal DMA
operations, as the PSA it is not mapped into the system memory, nor in case
of a malicious software module ad-hoc re-programmed, since the keys are only
indirectly accessed by software through processor instructions. Hence, in the
event a node is compromised, an attacker cannot retrieve any information about
other nodes and the breach stays confined.
Even if the key is never leaked, an attacker has still the possibility of entirely
rewriting the text section of a module, de facto gaining full control on the
compromised module and making it a Trojan horse [27]. Some may object that
this scenario is equivalent to the disclosure of KN,SP,SM , as the attacker can now
impersonate that module. However an important difference still exists: even by
gaining control on a SM, attacker computational capabilities are always confined
to node where the SM is running. On the contrary, if the key leaked, it would
be possible to run Sancus cryptographic functions on any external processor
provided with the KN,SP,SM .

4.5 Protection of System Memory from DMA
Attacks

The disastrous outcomes of allowing DMA peripherals to have full memory access
strengthen the need to introduce memory protection strategies to prevent malicious
DMA operations. This section goes through some solutions to this problematic;
some of them are from real case systems as TrustLite [26], SMART [14] or Intel
SGX [13], whereas others have been designed specifically for Sancus. A pros and
cons analysis is provided for each of them.

41

CHAPTER 4. DESIGN AND DISCUSSION

DMA on PMAs?

1) No DMA in the system Allow DMA in the system

3) Exclude DMA from
protected memory

2) Enforce PC-based
memory access control

2bis) Save the PC when
a DMA operation starts

4) Allow access to specific lo-
cations in SMs data sections

Figure 4.3: A recapitulatory tree diagram of the explored ideas to include DMA
on PMAs. Among these, only the last leaves, numbers 3 and 4, propose an actual
solution to the problem.

4.5.1 No DMA in the System
Even if it may seem a trivial solution, this is the best trade-off for lightweight
systems. Usually these architectures are developed on low-end microcontrollers
where the cost in terms of resources, such as chip surface, chip complexity, power
and performance, is the main limiting design parameter. In such systems it can be
a reasonable choice to sacrifice DMA capabilities in order to keep security guaran-
tees, without adding any complexity to the architecture. This strategy is pursued
in some known PMAs like, for example, SMART and TrustLite.

Pros Cons
• Very simple and cheap choice • Does not provide any DMA capa-

bility

4.5.2 Enforce MAL on DMA Accesses
An initial idea is to extend PC-based memory access control to the DMA in order to
prevent any illegal access to protected memory regions. In this scenario hardware
modifications need to be carried out: the DMA bus, which usually is directly
connected to the memory, now has to be rerouted in the memory access control
circuitry that validates the execution unit MAB; the previous MAL of Figure 4.2
is then updated into a DMA-including version, shown in Figure 4.4, where the
memory access control is enforced either on the MAB or on the DMA_ADDR,
depending on whether or not the DMA is enabled.
Unfortunately, this opens a breach for memory escalation exploitation, as the

42

4.5. PROTECTION OF SYSTEM MEMORY FROM DMA ATTACKS

PC != TS
TS ≤ PC < TE
!(TS ≤ PREV_PC < TE)

(1)

!(TS ≤ PC < TE)

DS ≤ MAB or
DMA_ADDR < DE(2)

violation

!(TS ≤ PC < TE)

TS ≤ MAB or
DMA_ADDR < TE(3)

WRITE_MEM == 1
TS ≤ MAB or

DMA_ADDR < TE(4)

Figure 4.4: Modifications to the Memory Access Logic (MAL) are here shown.
The circuitry now enforces PC-based access control on the DMA address: both
the MAB and the DMA_ADDR are validated on the current and previous value
of the program counter; the selection between the two depends on whether or not
the DMA is enabled. TS and TE stand for text section start and end addresses,
whereas DS and DE are the data section ones.

program counter is free to vary during a DMA operation. A possible attack sce-
nario has been theorised, with a malicious DMA operation that starts while the PC
is accessing to unprotected memory; when the PC enters in a protected memory
space, any further DMA access is authorised to access protected data. Hence, an
adversary with DMA capabilities could both read and write into modules sections,
without even raising a violation exception.
An idea to fix this vulnerability is to keep validating DMA accesses with the same
memory permissions of when the operation started. In order to do so, it’s necessary
to store the value of the PC at the start of an operation, and keep it until its end.
Whereas this prevents right memory escalation while an operation is happening,
it does not entirely secure the system. Actually, an attacker can still start a DMA
operation right when the PC is in protected memory; by allowing the saving of the
PC, it is provided with the possibility of keeping accessing the protected region
even when the current PC is outside of it. This opens to an even more danger-
ous scenario, endangering modules integrity and confidentiality until the operation
ends.

Both of these solutions try to enhance the security guarantees on DMA accesses,
but inevitably lead to vulnerabilities in the system. As said in section 4.1, their
failure is mainly due to the use of a CPU-related entity - the program counter (PC)
- to validate DMA accesses, which are, by definition, happening independently of
the CPU.

43

CHAPTER 4. DESIGN AND DISCUSSION

PC != TS
TS ≤ PC < TE
!(TS ≤ PREV_PC < TE)

(1)

!(TS ≤ PC < TE)
DS ≤ MAB < DE(2)

!(TS ≤ PC < TE)
TS ≤ MAB < TE(3)

violation

WRITE_MEM == 1
TS ≤ MAB < TE(4)

DMA_EN == 1
TS ≤ DMA_ADDR < TE(5)

DMA_EN == 1
DS ≤ DMA_ADDR < DE(6)

Figure 4.5: Representation of Memory Access Logic (MAL) that prevents any
DMA access to protected memory. Every time the DMA address poits to a pro-
tected memory location, while the DMA is enabled, a violation is raised. TS and
TE stand for text section start and end addresses, whereas DS and DE are the
data section ones.

Pros Cons
• Allows DMA in the system • Fails in protecting the system
• Expands the already instantiated
MAL circuitry with minimal hard-
ware additions

4.5.3 Exclude DMA from Protected Memory
A different approach is to totally prevent DMA accesses to protected memory
regions. Even if it may seems too drastic, its effectiveness is undeniable. Intel
SGX pursues this approach in protecting PRM memory, as explained in [48, 13],
in which the contents of enclaves5 and the associated data are stored. In Intel
SGX the reserved memory is a continuous subset of DRAM;6 hence, the protection
mechanism simply consists in denying access to that specific range to software or
peripherals, including DMA.
On Sancus, instead, software modules are instantiated across the whole memory.

The only way to prevent DMA accesses to SMs text and data section is to modify
5Intel SGX enclaves can be considered equivalent to Sancus software modules.
6A representation of Intel SGX memory structure can be found in Figure 3.1 from section 3.1.

44

4.5. PROTECTION OF SYSTEM MEMORY FROM DMA ATTACKS

the MAL circuitry so that, every time the DMA address points to a protected
memory location while the DMA is enabled, a violation signal rises and the oper-
ation stops. An high-level view of the resulting MAL is reported in Figure 4.5.
Such solution trades modules DMA capabilities for an enhancement in integrity
and confidentiality of protected memory regions.

Pros Cons
• Allows DMA in the system, pre-
venting accesses to protected mem-
ory (SMs integrity and confidential-
ity preserved)

• Allows DMA operations only in-
volving unprotected memory. Does
not really extend SMs functionalities

• Reuse of the already instantiated
MAL registers TS, TE, DS and DE
• No software overhead or SMs direct
intervention required

4.5.4 Allow Access to Specific Locations inside SMs Data
Sections

Although it prevents illegal memory accesses, Intel SGX approach might be con-
sidered unpractical, as it entirely prevents DMA to the SMs contents. It would
be interesting, instead, to provide SMs a way to selectively allow DMA operations
on their data sections. On the other hand, it would be also advisable to limit the
addressable space for a DMA operation, considering that sensitive data reside in
modules data sections, like for example modules runtime stacks.
An idea to extend this functionality is to provide the MAL with two addresses,
which identify the DMA Protected Start (DMA_PS) and DMA Protected End
(DMA_PE) of a reserved memory block inside the data section of a module. This
data section subset can be used, then, to provide DMA access to all the peripher-
als, in a secure way. In fact, in case of illegal DMA accesses, the outcomes would
be confined to that specific memory block. However, it is software developers re-
sponsibility to keep that memory region free from sensitive data.
Hence, the proposed solution enhances SMs functionalities, as it provides them a
way to rely on DMA capabilities, by relaxing integrity and confidentiality guar-
antees for a specific subset of the data section. In other words, it proposes to
trade security for functionalities, in a controlled way. The value of DMA_PS and
DMA_PE addresses must be stored in the PSA, together with the text and data
sections start and end addresses (TS - TE and DS - DE), therefore it is to be
noticed that the proposed solution comes with an overhead of two register for each
software module in the node. Furthermore, the value of DMA_PS and DMA_PE

45

CHAPTER 4. DESIGN AND DISCUSSION

PC != TS
TS ≤ PC < TE
!(TS ≤ PREV_PC < TE)

(1)

!(TS ≤ PC < TE)
DS ≤ MAB < DE(2)

!(TS ≤ PC < TE)
TS ≤ MAB < TE(3)

violation

WRITE_MEM == 1
TS ≤ MAB < TE(4)

DMA_EN == 1
DS ≤ DMA_ADDR < DE
!(DMA_PS ≤ DMA_ADDR
< DMA_PE)

(5)

DMA_EN == 1
TS ≤ DMA_ADDR < TE(6)

Figure 4.6: Representation of the Memory Access Logic (MAL) that allows DMA
access to specific protected memory locations. A violation is raised whether the
DMA address lies outside the allowed boundaries, inside modules data section. TS
and TE stand for text section start and end addresses, whereas DS and DE are
the data section ones; DMA_PS and DMA_PE are the DMA Protected Start and
DMA Protected End addresses, and define the data section subset boundaries.

have to be zero set every time a new module is deployed, in order to guarantee its
freshness. If not, a threat to the data section integrity and confidentiality appears.
In fact, a module not willing to cut out a DMA-allowed space from its own data
section, never overwrites the content of DMA_PS and DMA_PE. If those values
haven’t been set to zero on deployment, the new module would inherit the values
of an old one, disclosing a subset of its data section to DMA devices.
Thus, a modification to the processor protect instruction of section 2.3.2 is re-
quired. Specifically, the new version of the instruction should:

• check that the layout of the new module does not overlap with any existing
modules and, if so, continue with the deployment by storing its layout in the
PSA of the processor;
• zero set the content of DMA_PS and DMA_PE;
• enable the memory access control on that module;
• create the module key KN,SP,SM basing of the layout informations, and store

it in the PSA of the node;

Figure 4.7 shows a schematic of a node implementing the DMA-allowed memory

46

4.5. PROTECTION OF SYSTEM MEMORY FROM DMA ATTACKS

Unprotected
En

tr
y
po

in
t

Code & constants Unprotected

SM1 text section

Pr
ot
ec
te
d

D
at
a

D
M
A
-a
llo

we
d

ra
ng

e

Pr
ot
ec
te
d

D
at
a

Unprotected

SM1 data section

M
em

or
y

TS1 TE1 DS1 DMA_P S1 DMA_P E1 DE1 KN,SP,SM1 IDSM1

TSn TEn DSn DMA_P Sn DMA_P En DEn KN,SP,SMn IDSMn

Next ID
Caller ID

KN

SM1 metadata

SMn metadata

Layout Key ID

Protected
storage
area

Node

Figure 4.7: Representation of a node with a software module loaded, in the new
framework of allowing DMA access to specific locations inside the data section.
The content of the processor Protected Storage Area (PSA) is extended with Pro-
tected Start (PS) and Protected End (PE) addresses, which identify the DMA-
allowed subset inside the data section.

subset. Notice that, in the image DMA_PS and DMA_PE are included in the
layout of the module just for the ease of drawing. However, their value is zero set
right before the module key KN,SP,SM is created, thus their value would actually
have no influence on the layout of the module.
Finally, each module should be able to specify its own DMA-allowed protected

space by setting the values of DMA_PS and DMA_PE. Hence, the processor in-
struction must be expanded with a new instruction set_dma, whose task is to
check that DMA_PS and DMA_PE are pointing to memory locations inside the
data section of the intended modules and, only then, proceed with the saving of
those values into the PSA. If it wasn’t so, a malicious module could arbitrarily
set the size of the protected space of another, thus invalidating software module
isolation, again.
The memory access logic circuitry that allows DMA access to specific protected
memory locations is here presented in Figure 4.6.

47

CHAPTER 4. DESIGN AND DISCUSSION

Pros Cons
• Allows DMA in the system, pre-
venting accesses to protected mem-
ory (SMs integrity and confidential-
ity preserved)

• Register overhead: two extra regis-
ters for each SM

• Full configurability of the system:
SMs can decide whether or not to
provide DMA access to a specific por-
tion of their data sections

• Implicit trustworthiness of all the
DMA peripherals as the current sys-
tem does not provide a way to se-
lectively grant access to a module
DMA-region

• Reuse of the already instantiated
MAL registers TS, TE, DS and DE

• Extension of the ISA, as modules
needs to set the boundaries of their
data section subsets through a new
processor instruction

4.5.4.1 Reduce the Register Overhead

A different design choice is to set one of the two ends and let the other one vary:
for example, DMA_PE can be fixed to the data section end, while DMA_PS let
free to vary, in order to set the size of the reserved block. In this way the overhead
is halved, since only one value has to be stored, at the cost of flexibility, as the
reserved block would be always in a fixed position (the end of the data section, in
the provided example).

A further design choice is to store only one pair of start and end addresses,
outside the MAL circuit. In this way the register usage is dramatically decreased,
as only one pair of registers is instantiated, at cost of system flexibility. With this
choice, in fact, only a single DMA-allowed subset can be set per time. Hence,
it becomes impossible, for example, to have a DMA data transfers between SMs,
as it would require the setting of two memory subsets in the data sections of the
involved modules. The only way to do it, is to move data from the first module
to unprotected memory, an then having the second module configuring a DMA
operation to read them.
Another drawback is an increased rigidity in the handling of the content of start
and end addresses. Every time a software module wants to start a DMA operation,
it needs to set the content of those register to be sure of allowing the DMA accesses
into the intended memory subset. On the contrary, previous approaches do not
require this precaution, as the ends of each memory subset were separately stored
for each SM, thus never overwritten unless the proprietary SM wanted to modify
its memory subset. This guaranteed that after a module set it own DMA-allowed
space, it would have been available until the module disabled it. SMs were, thus,

48

4.5. PROTECTION OF SYSTEM MEMORY FROM DMA ATTACKS

provided with the possibility of allowing external devices to indefinitely write in
their data section without any further CPU intervention. This capability is useful
in those situation when data arrival is not deterministically predictable. To make
the discussion more concrete, a small example is provided: imagine that a soft-
ware module wants to allow data transfers from a device, with DMA capabilities,
connected to a sensor. In order to do so, it first sets the boundaries of the DMA-
allowed region in its data section. Then, it provides them to the device so that,
when data are available, this latter can write them into the reserved space. Since
the sensor can output data at any time, it is fundamental to always guarantee
DMA access to that specific confined memory region inside the SM. This is possi-
ble only if each module stored its own boundaries for the DMA-allowed subsets.

Pros and cons with respect to the ones from previous solution, when:
1) The start or the end addresses of the DMA-allowed subset is fixed

Pros Cons

• Register overhead is halved, since
only the loose boundary has to be
stored

• Reduced system flexibility in po-
sitioning the subset inside the data
section

2) Only one pair of start and end addresses are allowed per time

Pros Cons

• Register overhead is dramati-
cally reduced, since only one pair
of start and end addresses has to
be stored

• Reduced system functionalities:
– impossible to use DMA to di-
rectly transfer data between two
SMs
– impossible to indefinitely set a
DMA-allowed memory region in-
side modules data sections, in or-
der to allow background incom-
ing of data
– software overhead, as each SM
needs to load the start and end
addresses of its DMA-allowed
memory subset before starting
any DMA operation

49

CHAPTER 4. DESIGN AND DISCUSSION

4.6 Summary of Memory Access Rights
Memory access control rules enforced on Sancus are here summarised in Table 4.2,
directly following what done in Table 2.1, from section 2.2 in referring to a generic
PMA. Depending on the current value of the program counter (first column of the
Table 4.2), different memory rights are granted on the text or data sections, or
unprotected memory. Notice that accesses carried from others SMs are considered
as same as originated from unprotected memory.
A similar table is provided also for the DMA accesses (Table 4.3). Every row in this
table shows the memory permissions for each of the different branches of the MAL
circuitry, as presented in section 4.5. Notice that only read and write permissions
are shown, as DMA is not related with code execution. Except from the second
row, memory access rights solely depends on the memory location currently pointed
by the DMA address. In case no memory access control is enforced (first row), no
rules are enforced and Direct Memory Access is provided to every location of the
system memory. When MAL circuity is enforced, access to protected memory is
fully denied (third row), or allowed only for a specific subset defined by the SM
(fourth row). On the contrary, when PC-based memory access control is enforced,
DMA memory permissions depends on whether the PC is inside the text section
of a module, or not.

4.7 Open Problems
Section 4.5 extensively dealt with possible security solutions to prevent malicious
exploitation of DMA capabilities. However, by considering that DMA extends I/O
capabilities of the system, it is reasonable to assume that it increases flaws, too.

Rowhammer The possibility of exploiting an ad-hoc channel to repeatedly ac-
cess specific memory locations without any CPU intervention widens the threats
of Rowhammer attacks. Since the root cause of the vulnerability to these attacks
is due to the increase in density and decrease in sizes of DRAM cells [20], main
countermeasures to this problem are not directly related with DMA, but imply
hardware or software fix as described in [23, 20].

Side Channel Attacks The world of side channel attacks is various and flour-
ishing: from measuring the power consumption to time execution duration, these
kind of attacks can break down security properties on modern processors. Spectre
[25], Meltdown [28] and Foreshadow [9] are just some of the most recent attacks
that showed their disruptive capabilities on high-end processors. Sancus architec-
ture suffers from side channel attacks, too. In the Nemesis paper [10], researchers

50

4.7. OPEN PROBLEMS

Memory access rights

CPU

from \ to Protected Unprotected
Entry point Text Data

Entry point r x r x r w r w x
Text section r x r x r w r w x
Unprotected \
Other SMs

x r w x

Table 4.2: Memory access rights in program counter-based memory access control
on Sancus. Access rights are shown for CPU memory accesses

DMA with: Memory access rights

No memory
access control

enforced

Protected Unprotected
Text Data

DMA address
poinitng to r w r w r w

PC-based
memory access
control enforced

PC in \ DMA to Protected Unprotected
Text Data

Text section r - r w r w
Unprotected \
Other SM

- - - - r w

No access to
protected
memory

Protected Unprotected
Text Data

DMA address
poinitng to - - - - r w

Access to
specific memory

locations

Protected Unprotected
Text

DMA_PS –
DMA_PE

DMA address
pointing to - - r w r w

Table 4.3: Memory access rights in program-counter based memory access control.
Access rights are also shown for DMA accesses, for all the proposed solutions from
section 4.5. Among these, only the second one makes use of the PC to validate
DMA accesses (second row of the table).

51

CHAPTER 4. DESIGN AND DISCUSSION

leveraged flaws at microarchitectural level to leak secrets from a software mod-
ule. The main consideration is that each instruction take a specific number of
CPU cycles to execute. Therefore a conditional path, with different instruction on
the two branches, takes different time to execute, depending on which of the two
branches is taken. In brief, by carefully timing the execution time, an attacker
can understand which branch was taken, thus retrieve the content of the secret
test condition. More specifically, this is achieved by firing an IRQ right after the
conditional jump took place. Since IRQ s on Sancus are served only on comple-
tion of the current instruction, the IRQ latency depends on which instruction was
executing, thus on which branch was taken.
By adding Direct Memory Access to the architecture, the side channel attack

base is extended. Considering that the memory interface is shared between the
DMA controller and the CPU, and that the DMA controller only operates in
transparent mode7, DMA requests are not served until the CPU stops accessing
the same resource the DMA wants to access - may it be the program or the data
memory. An attacker could exploit this to understand when memory is being
accessed, by measuring the time required to perform a specific DMA operation.
Notice that there is no difference in accessing a specific memory location or a
random one in terms of delay in starting the operation, as the memory interface
is shared. Thus, there is no chance to disclose the address of a specific memory
location by only using this side channel vulnerability.

7 A summary of operation modes for DMA arbiters can be found in section 2.4 "Direct Memory
Access (DMA)"

52

Chapter 5

DMA Interface Implementation

The content of this chapter goes through the implementation steps required to
provide the Sancus architecture with the features described in the Design and
Discussion chapter. First, an explanation of the DMA interface integration on
Sancus is provided; then the focus is moved on securing DMA accesses on Sancus
(section 5.1).

5.1 Secured DMA Interface for Sancus on Open-
MSP430

Sancus architecture is originally implemented on the openMSP430, a synthesizable
16bit microcontroller core written in Verilog. The core is compatible with Texas
Instruments’ MSP430 microcontroller family and can execute the code generated
by any MSP430 toolchain [18].
At the moment of writing, the openMSP430 core is released at its version r211,
fully integrating a DMA interface. However Sancus architecture was developed
in 2013, thus it relies on an older version of the core which does not include any
DMA interface. In order to extend DMA capabilities to the architecture in use,
two choices are possible: to properly transfer Sancus on the current openMSP430,
or to modify the already existing architecture to provide it with DMA interface.
While it may seem to worsen future maintainability of the project, the selected
approach is to extend the DMA interface on the already existent Sancus, rather
than porting Sancus on the most recent core release. In this way portability is
facilitated and the design process speeds up; furthermore, the choice is justified
by the lack of relevant updates of the core after Sancus was developed. In fact, by

53

CHAPTER 5. DMA INTERFACE IMPLEMENTATION

Register File

ALU

Execution Unit

MAL

Layout

Key

SM1

SM control

MAL

Layout

Key

SM2

CPU Core

M
em

o
ry

 B
a
ck

b
o
n
e

Spongent

SpongeWrap

Crypto Unit

N
o
d
e

k
ey

RAM

or

ROM

RAM

Peripherals

Frontend

P
C

M
A
B

M
A
B

Violation

K
ey

 &

L
a
y
o
u
t

D
a
ta

R
eg

is
te
rs

Registers

V
io
la
ti
o
n

Address registers

DMA Controller

Number of words

FSM

MMIO DMA Device

Configuration

Register

Start Address

Read Data

Write Data

Acknowledges

Control Signals
Data to Write

Control Signals
Read Data

C
o
n
tr
o
l
S
ig
n
a
ls

D
M
A
 A

d
d
re
ss

D
a
ta
 O

u
t

Peripheral Bus

Figure 5.1: Detailed overview of the system architecture, showing the DMA con-
troller and a peripheral with DMA capabilities, connected to it. Constituent blocks
of the core are here shown. Everything related to the DMA or peripherals is out-
side the TCB, whose boundaries extends to the CPU, memory backbone and the
system memories. In fact, no assumption is needed on DMA controller nor devices
trustability.

looking into the core’s changelog1, it is possible to notice that the updates dated
later than 2013 concern improvements for the compiler and simulation toolchain,
fixes of the core’s code for ASIC implementation, the addition of the DMA support
and the extension of the number of supported interrupt requests. Considering that
the latter is not a relevant concern for the developing of Sancus, it appears clear
that the only major hardware change is the extension of the DMA interface support
on the already existing architecture. In order to do so main modifications need to
be carried out on fundamental blocks, like the core frontend, execution unit and
memory backbone.

1openMSP430 core’s changelog is available at https://opencores.org/websvn/
filedetails?repname=openmsp430&path=%2Fopenmsp430%2Ftrunk%2FChangeLog_core.txt

54

https://opencores.org/websvn/filedetails?repname=openmsp430&path=%2Fopenmsp430%2Ftrunk%2FChangeLog_core.txt
https://opencores.org/websvn/filedetails?repname=openmsp430&path=%2Fopenmsp430%2Ftrunk%2FChangeLog_core.txt
https://opencores.org/websvn/filedetails?repname=openmsp430&path=%2Fopenmsp430%2Ftrunk%2FChangeLog_core.txt

5.1. SECURED DMA INTERFACE FOR SANCUS ON OPENMSP430

5.1.1 Memory Backbone Modification

In openMSP430 architecture the memory is seen as a single block, composed by
program memory, data memory and peripheral space, sequentially arranged. Each
physical memory location is a 16 bits word, whereas logical memory words are 8
bits long, as explained in section 2.4.2 "Memory in the openMSP430 architecture".
Every time a logical memory location is accessed, physical address has to be ob-
tained first. The memory backbone handles the translation logical addresses into
physical ones, and it takes care of driving the control signals for the DRAM blocks
implementing data and program memory. It is clear, then, that the memory
backbone plays a major role for in extending the DMA interface on the relying
architecture.
First modification consists in renaming part of the signals in the core Verilog

code in order to keep continuity with the latest release of the openMSP430, for
future maintainability. Then, the DMA interface is moved into the memory back-
bone: DMA and debug interface signals are multiplexed in the external memory
signals: ext_enable, ext_write, ext_address and ext_dout are used for the usual
translation of logical addresses into physical ones. Notice that the memory back-
bone hierarchy always considers external memory accesses with the lowest priority
w.r.t. frontend and execution units. The overhead due to the extension of DMA
interface in the memory backbone only consists in the multiplexing of two sig-
nals (ext_enable and ext_write) ans two buses (ext_address and ext_data_in),
together with the addition of dma_data_out bus for read data as well as of the
DMA response signals. In this sense, the choice of extending the DMA interface on
Sancus, rather than to move Sancus on the newest openMSP430, is more portable.
A final difference is to be noticed: in the original openMSP430 core the execu-
tion unit cannot write into the program memory, which can be modified by the
external; however, in Sancus, the execution unit needs to be able to write in pro-
gram memory to correctly deploy a SMs. As final remark, the memory backbone
receives in input all the control signals of the DMA interface described in subsub-
section 2.4.2.1 "DMA Interface - Signals", and outputs the transfer complete and
transfer response signals, together with the output data.
Finally, in order to not affect Sancus availability, the DMA operation must be
always carried out in transparent mode7. This can be assured by setting the DMA
priority to the LOW value; considering that this signal is driven by the DMA
controller connected to the core, which lies outside the TCB (Figure 5.1), it can-
not be trusted. The only way to assure the transparent mode for all the DMA
operations, without further extending the TCB, is to hardwire the priority signal
to LOW directly in the memory backbone.

55

CHAPTER 5. DMA INTERFACE IMPLEMENTATION

Inputs Registers Output
pc RT ≥ RT

TS < Ó=

prev_pc ≥

TE <

mab ≥ violation

mb_en EN <

mb_wr DS ≥

RT DE < RT

≥ RT

dma_addr < dma_violation

≥

≤

dma_en RT RT

Figure 5.2: Single instantiation of the Memory Access Logic (MAL) circuit, used
to enforce the memory access rules in the nodes. In the upper part of the image
PC-based memory access control is enforced on the MAB. The highlighted box
shows the hardware that realises the protection mechanism of subsection 4.5.3:
when the DMA is enabled and its address is included between the text section
start and end addresses (TS and TE), or between the data section start and end
addresses (DS and DE), a violation is raised.

5.1.2 Frontend Modification

The frontend is that part of the control unit in charge of fetching and decoding
the instruction; through its state machines it orchestrates the fetch-decode-execute
cycle, providing the decoded instructions to the execution unit; it also handles
interrupts. The implementation of the DMA interface caused one single relevant
change in this block: the ability of generating an IRQ on DMA violations. The IRQ
has the second highest priority of the system, after the software module interrupt
request, in order to promptly intervene on unauthorized memory accesses. In doing
so, the frontend is provided with the DMA violation signal, as new input from the
memory backbone.

56

5.1. SECURED DMA INTERFACE FOR SANCUS ON OPENMSP430

5.1.3 Execution Unit Modification
In combination with the frontend, the execution unit constitutes the CU. This
fundamental block includes the interrupt logic, the register file, decoding hard-
ware for instructions execution, the ALU as well as with the memory interface.
Furthermore, it hosts the crypto unit and the Sancus’ modules control. Inside this
latter the memory access logic (MAL) is instantiated. The MAL circuit - already
discussed in subsubsection 2.3.4.1, and whose image is here reported in Figure 5.2
for reader’s ease - validates memory accesses by comparing its input with the start
and end addresses of text (TS and TE) and data (DS and DE) sections of a SM,
when the protection EN bit is asserted. A copy of the circuit is instantiated for
each SM in the system, and a violation is raised in case of illegal accesses. By OR-
ing together the violations signals coming from all the MAL circuits it is possible
to check that no access to protected memory is performed.
Every time a SM is added or updated, its start and end addresses of text and data
sections need to be stored in the MAL circuit; when this happens, the new values
are taken from the the register file, as shown in Table 5.1, which is part of the
execution unit, too.

TS ← r12
TE ← r13
DS ← r14
DE ← r15

Table 5.1
From the analysis of section 4.5 "Protection of System Memory from DMA

Attacks", some solutions are proposed in order to prevent the malicious exploita-
tion of the DMA interface. The solution adopted in Sancus is to prevent DMA any
access to the memory (the solution is described in subsection 4.5.3). This implies
that the address of the memory location to be accessed by DMA must undergo
the same MAL circuitry that validates the execution unit MAB. The challenge
in doing so is to keep a low utilization of resources, as Sancus components are
sufficiently register-consuming. The adopted solution aims to reuse the already
instantiated MAL, extending it so that it could validate the memory address when
a DMA operation is executing; in this way no additional register is instantiated.

57

CHAPTER 5. DMA INTERFACE IMPLEMENTATION

58

Chapter 6

DMA Controller Implementation

The content of this chapter focuses on the implementation of the DMA controller:
the component is first introduced (section 6.1), together with the pros and cons
of adding it to the system. Then, the description of its internal blocks is provided
(section 6.3), as well as with testbenches that show its functionalities and opera-
tion modes (section 6.6).
Finally, two devices related with the controller are analysed: (1) the controller
driver, whose main task is to interface the controller with the higher level software
executing on the core (section 6.4); (2) a device with DMA capabilities, that sim-
ulates a directly connected peripheral for in the simulation of a real-case scenario
(section 6.5).

6.1 Overview of the DMA Controller
Substantial work of the thesis implies the design of a DMA controller to direct
DMA operations. Its role is to act as an arbiter between the CPU and the external
peripheral that requests memory access.
The main advantage of using a DMA controller, instead of directly connecting a
peripheral to the DMA interface, is in multiplexing different devices. In order to
allow this, an arbitration circuitry (Figure 6.1) collects the multiple peripherals
DMA requests and resolves which one is to be served first, basing on a positional
priority level, in which devices connected to the highest line are served first. Its
output is stored in a register managed by the controller FSM, which is reset only on
completion of the current operation. The encoded signal drives a multiplexer that
connects the DMA acknowledge with the correct device which won the arbitration.
Further benefit of including the DMA controller in the system is that it incor-

porates all the complexity of the DMA protocol in use by the core. In this way,
memory accesses can be provided even to those devices that lacks of a complex

59

CHAPTER 6. DMA CONTROLLER IMPLEMENTATION

PRIORITY

ENCODER

DMA

CONTROLLER

FSM

NRQST

0RQST

N-1RQST

1RQST

DMA Output Bus

DEVN-1DEV1
DEVN

DMA Input Bus

Register
EN
RST

0

log(N+1)
2

DEV0

0DMA_ACK
1DMA_ACK

NDMA_ACK
N-1DMA_ACK

RQST

DMA_ACK

0

log(N+1)
2

Figure 6.1: Overview of the arbitration circuitry that solves multiple DMA requests
from the peripherals. The priority encoder decides which device is to be served fist,
by following a positional priority level in which devices connected to the highest
line are served first. Its output is stored in a register, managed by the the DMA
controller FSM. The encoded signal drives a multiplexer that connects the DMA
acknowledge with the correct device which won the arbitration.

logic, such as a FSM, thus incapable of driving the interface on their own.
With this approach, a DMA peripheral just needs to program the controller with
the type of operation to be performed (read or write), the number of words and
the starting address of the memory location to be accessed. Then, it rises a DMA
request signal and waits until its request has been taken into account, and com-
pleted, by the controller.
The priority encoder collects the DMA request lines from all the connected pe-
ripherals, and resolves which device is to be served first. Then, it propagates the
request to the controller, which flags its correct reception by raising the DMA
acknowledge signal. The arbitration circuitry (Figure 6.1) takes care of routing
this latter to the correct device, which gained access to the bus. At this point, the
controller starts serving the required operation until its completion (section 6.3).

The controller can interface with MMIO peripherals as well as with devices di-
rectly connected to it. After a memory mapped operation has been set by software
(section 6.4), data transfers between the controller and MMIO peripherals are car-
ried out solely through direct read and write operations, not burdening the CPU.
On the other hand, communication between the controller and a device directly
connected to it happens through a simple protocol based on two acknowledge sig-
nals, which are employed in a 2-phase handshake between the two parties.

60

6.2. MODE OF OPERATION OF THE DMA CONTROLLER

With such a system model, DMA capabilities are extended to Sancus, while sup-
porting a wide range of devices, from simple to more complex ones.

6.2 Mode of Operation of the DMA Controller
The DMA controller is the bridge between peripherals and the system memory:
it permits to move data from one domain to the other with a first-in first-out
approach. The start of the operation is always initiated by a device with DMA
capabilities, which also has to provide the data necessary to perform a memory
access, such as the starting location and the number of words to be handled. Then
the device switches in slave mode and the control passes to the DMA controller,
which coordinates the required operation until its end. Because of an internal
data buffer, the DMA controller manages to mask any wait state between the two
domains. In fact, both the device and the core perceive the controller as a resource
always available to receive data, whereas it’s controller responsibility to move the
received data from one domain to another by following the right communication
protocol, whether it’s interfacing with the core or a device. The controller is de-
signed to always operate in transparent mode,7 to not reduce Sancus availability.
If an high priority DMA operation is started, it triggers an halt request which
stops the CPU from fetching further instructions or receiving any interrupt. An
attacker could exploit this feature to endanger the architecture availability, by
repeatedly starting DMA operations to monopolise the resource. This eventual-
ity is not acceptable for critical applications, as the one adopted for industry or
automotive, where the usage of a non-responsive architecture could cause serious
damages; thus the choice to not implement burst or cycle stealing modes in the
DMA controller for Sancus.
Notice that the interface between the controller and the core flags any attempt of
accessing outside of memory mapped areas through the response signal. If this is
the case, the DMA controller immediately stops the current operation, flags the
error to the device and resets its internal registers so that any data can’t leak or
influence future operations.
A more detailed description of the DMA controller functionalities and implemen-
tation is found in section 6.3.

6.3 Implementation of the DMA Controller
The analysis from the previous section introduces the DMA controller in a top-
down approach, starting from the required functionalities, to the architecture that
realises them. Thus, a sketch of the DMA controller emerged, presenting the

61

CHAPTER 6. DMA CONTROLLER IMPLEMENTATION

design challenges. In this section the focus is more on the implementation of
those features and the strategies used in doing so. The internals of the DMA
controller are here presented, organized in different subsections, each for a different
component of the controller. The approach is bottom-up, with each component
separately designed and tested by ah-hoc testbenches, whose purpose is to solely
imitate the openMSP430. A full system test is carried out after the design of
all the fundamental blocks has been completed, and can be found in section 6.7
"Attack Scenario on DMA-Secure Sancus Implementation". Here, the controller
is connected to the DMA interface of the real openMSP430 core, and it handles
the operations required by a single device, whose implementation is discussed in
section 6.5.
From the discussion of chapter 4, DMA controller’s main properties emerged; those
can be summarised as follows:

1. it must be able to be minimally programmed by a requesting device to per-
form single or multiple read or write operations;

2. in case of multiple DMA accesses, the controller must transparently transfer
data between the openMSP430 and the requesting device;

3. the handling of the DMA interface must totally rely on the controller, unbur-
dening both the requesting device and the CPU from doing so. This includes
the need for the controller to operate in transparent mode, thus to support
wait states flagged from the openMSP430 (see section 2.4 for more detail on
DMA operation modes).

A more detailed overview of the system is provided in Figure 5.1. In the image,
the constituent blocks of the Sancus architecture are shown, together with the
TCB boundaries.
Before proceeding with a description of the controller’s internals, it’s advised to

briefly review how read and write operations are carried out in the DMA protocol
in use between the openMSP430 core and the DMA controller, already introduced
in subsubsection 2.4.2.2 "DMA Interface - Protocol".

6.3.1 DMA Protocol - Read Operation
During a read operation the DMA_ADDR and the control signals need to remain
stable until the end of the transfer is flagged by an HIGH value on DMA_READY
signal; this holds even in case of wait states inserted by the openMSP430. In Fig-
ure 6.2 correct multiple read operations are shown: considering that the designed
controller is a synchronous machine, a transfer complete is only ’sensed’ on the

62

6.3. IMPLEMENTATION OF THE DMA CONTROLLER

Figure 6.2: Timing diagram of a read operation. The image underlines the timing
constraint to be respected when interfacing with the DMA protocol in use on the
openMSP430 (detail of the protocol can be found in subsubsection 2.4.2.2). During
a read operation, data are outputted on the clock cycle after the DMA_READY
was asserted (first ellipse in the image). Thus, the controller can only sample the
DMA_DOUT bus on the successive clock cycle (second ellipse in the image).

next clock cycle after the DMA_READY was raised HIGH ; until that moment,
the address and the control signals cannot change, as the read operation is not
finished yet.
It’s important to underline that data are outputted on the next clock cycle

after the transfer complete signal was asserted; this means that the controller can
sample the DMA_DOUT bus only during the second clock cycle after the transfer
completed. This is clearly shown in Figure 6.2: by focusing, for example, on datum
B it is possible to see that the DMA data out bus is driven with the data on the
first front edge of the clock after the DMA_READY signal was raised high, i.e.
after the wait state ended (first ellipse in Figure 6.2). Thus, a device connected
to the DMA interface can only sample the data on the successive front edge of
the clock, i.e. two clock cycle after the transfer complete signal was risen (second
ellipse in the Figure 6.2).

6.3.2 DMA Protocol - Write Operation
As for read operations from previous section, the end of a write transfer is flagged
by a rise of the DMA_READY signal; until that moment, the DMA_ADDR, the
control signals and the output data bus need to remain stable, and this holds even
in case of wait states. In Figure 6.3 correct multiple write operations are shown:
again, a transfer complete is sensed only on the next clock cycle after the DMA_-
READY was raised HIGH.

An asymmetry between read and write operations can be noticed. From the

63

CHAPTER 6. DMA CONTROLLER IMPLEMENTATION

Figure 6.3: Timing diagram of a write operation. The image underlines the timing
constraint to be respected when interfacing with the DMA protocol in use on the
openMSP430 (detail of the protocol can be found in subsubsection 2.4.2.2). During
a write operation, data are stored on the clock cycle after the DMA_READY was
asserted (green ellipse in the image). Thus, from the controller prospective, a write
operation lasts only one clock cycle, if no wait states are inserted.

controller’s point of view, a read operation, with no wait state, ends two clock cycle
after the DMA_READY was asserted. On the contrary, during a write operation,
the assertion of the DMA_READY signals that data have been stored in the main
system memory; thus a write operation, with no wait states, ends in only one clock
cycle. It’s important to underline this asymmetry as it causes a different handling
of the read and write branches of the ASM charts of Figure 6.4. Even if the number
of states used for both the operations is the same (four states for each), a difference
is present: in the write branch the SEND_TO_MEM0 state is only used once as
configuration state, whereas its read-branch counterpart LOAD_DMA_ADD is
actively involved in the read transfer, as revealed by presence of an active DMA_-
EN signal. This means that a read operation indeed requires two states of the
FSM to be executed.

64

6.3. IMPLEMENTATION OF THE DMA CONTROLLER

6.3.3 DMA Controller
ASM ChartRESET

addr0_rst =1,
count_rst = 1,
dev_count_rst = 1,
fifo_rst = 1,
msp_count_rst = 1,
old_addr_rst = 1,
reset_rqst_reg = 1,
words_rst = 1

IDLE
addr0_rst = 1,
count_rst = 1,
dev_count_rst = 1,
fifo_rst = 1,
get_rsqt = 1,
msp_count_rst = 1,
words_rst = 1

RQST

GET_REGS
addr0_reg_en = 1,
mmio_add_en = 1,
word_reg_en = 1

MMIO_OP

RD_WR

LOAD_DMA_ADD
dma_en = 1,
count_en = 1 & dma_ready,
drive_dma_addr = 1,
fifo_wr_rd = 1

DMA_
READY

READ_MEM
count_en = 1,
dma_en = 1,
drive_dma_addr = 1,
fifo_en = 1,
fifo_wr_rd = 1,
old_add_reg_en = 1

DMA_RESP

FIFO_FULLFIFO_FULL
_READ

FLAG_CNT_
WORDS_RD

ERROR
error_flag = 1
drive_dma_addr = 1
fifo_rst = 1

IDLE

DMA_READY

OLD_ADDR_RD
dma_en = 1,
drive_dma_addr = 1,
fifo_old_add_flag = 1,
fifo_wr_rd = 1,
mux = 1

MMIO_OP SEND_TO_MEM0SEND_TO_DEV0
count_rst = 1,

DEV_ACK WAIT_READ

SEND_TO_DEV1
dma_ack = 1,
count_en = 1,
fifo_en = 1

FLAG_CNT_
WORDS

END_READ
end_flag = 1

DEV_ACK

NOP

IDLE

READ_DEV0
fifo_wr_rd = 1,
out_to_msp = 1

DEV_ACK

READ_DEV1
dma_ack = 1,
count_en = 1,
fifo_wr_rd = 1,
fifo_en = 1,
out_to_msp= 1

FLAG_CNT_
WORDS

SEND_TO_MEM0
count_en = 1,
count_load = 1,
mmio_ff_en =1,
out_to_msp= 1,
dma_we = "11"

DEV_ACK

WAIT_WRITE
fifo_wr_rd = 1,
out_to_msp= 1

FIFO_FULL

SEND_TO_MEM1
count_en = 1,
dma_en = 1,
dma_we = "11",
drive_dma_addr = 1,
fifo_en = 1,
old_addr_reg_en = 1,
out_to_msp = 1

DMA_RESPERROR

DMA_READY

OLD_ADDR_WR
dma_en = 1,
dma_we = "11",
drive_dma_addr = 1,
fifo_en = 1,
fifo_old_addr_flag = 1,
mux = 1,
out_to_msp = 1

FLAG_CNT_
WORDS

END_WRITE
dma_drive_addr =
1,
end_flag = 1,
out_to_msp= 1

IDLE

FIFO_FULL_WR

0

0

1

1 0

1

0

1

0

1

0 1

1

1

0 0

10

1

0

0

0

1

1

0

1

0

0

1

01

1

0

1

1

0

0

Figure 6.4: DMA controller FSM. Yellow blocks refer to the interface between the
DMA controller and the openMSP430, whereas pink ones to the interface between
DMA controller and device.

65

CHAPTER 6. DMA CONTROLLER IMPLEMENTATION

FIFO_FULL_READ

MMIO_OP

FIFO_FULL_RD
count_en = 1,
count_load = 1,
load_dev_or_msp = 1

WAIT_DEV

DEV_ACK

EMPTY_FIFO_READ
dma_ack = 1,
fifo_en = 1

FIFO_EMPTY_
PARTIAL

RESTORE_MSP_COUNT
count_en = 1,
count_load = 1,
dev_count_reg_en_f = 1

READ_MEM

FIFO_FULL_WR
count_load = 1,
dma_we = "11",
drive_dma_addr = 1,
out_to_msp= 1

EMPTY_FIFO_WRITE
count_en = 1,
dma_en = 1,
dma_we = "11",
drive_dma_addr = 1,
fifo_en = 1,
old_addr_reg_en = 1,
out_to_msp = 1

DMA_RESP ERROR

DMA_READY

FIFO_EMPTY_
PARTIAL

MMIO_OPRESTORE_MSP_COUNT

RESTORE_DEV_COUNT
count_en = 1,
count_load = 1,
msp_count_reg_en = 1,
restore_dev_or_msp = 1

READ_DEV1

OLD_ADDR_EMP_FIFO_WR
dma_en = 1,
dma_we = "11",
drive_dma_addr = 1,
fifo_en = 1,
fifo_old_addr_flag = 1,
mux_old_addr = 1,
out_to_msp = 1

DEFAULT SIGNALS
addr_reg_en = 0,
addr0_rst = 0,
count_en = 0,
count_rst = 0,
dev_count_reg_en_f = 0,
dev_count_rst = 0,
dma_ack = 0,
dma_en = 0,
dma_priority = 0,
dma_we = "00",
drive_dma_addr = 0,
end_flag = 0,
error_flag = 0,
fifo_en = 0,
fifo_old_add_flag = 1,
fifo_rst = 0,
fifo_wr_rd = 0,
get_rsqt = 0,
load_dev_or_msp = 0,
mmio_add_en = 0,
mmio_add_rst = 0,
mmio_ff_en = 0,
mmio_ff_rst = 0,
msp_count_reg_en_f = 0,
msp_count_rst = 0,
mux_old_addr = 0,
old_add_reg_en = 0,
old_addr_rst = 0,
out_to_msp = 0,
reset_rqst_reg = 0,
words_reg_en = 0,
words_rst = 0

1

0

1

0

0 1

1

0

0

1

1

0

1

0

Figure 6.5: ASM chart of the DMA FSM: detail of FIFO_FULL branches, and
view of default values for the signals of the FSM. When controller’s internal mem-
ory gets full, the executing operation is temporarily paused and FIFO is emptied;
the already stored data are sent to the receiving party, until the memory has been
emptied. Then, the operation can resume to its previous state.

66

6.3. IMPLEMENTATION OF THE DMA CONTROLLER

6.3.4 DMA Controller Data Path

6.3.4.1 Internal Registers

A first mention is for the two registers, START_ADDRESS and NUM_WORDS,
shown in the upper part of the data path. These registers respectively stores the
starting address for the DMA operation and the number of consecutive words in
case of multiple accesses; consider that consecutive accesses are all of the same
type, i.e. once a read operation has started, it cannot be switched into a write
one, or vice versa. Programmability of the controller is thus achieved: a device,
in fact, only needs to write into those register the desired values, before rising
a DMA start request. From there on, it’s controller’s responsibility to complete
the required operation. The value of the starting address is never modified by
the controller, and it’s only updated when a new operation is requested from an
external device starts. Thus, in order to sequentially access memory location, a
counter is synchronously incremented and the count value is added to the starting
address as an offset.
In case of wait states from the core, the controller must be able to recover

from where it stopped. When a wait state occurs, the transfer complete signal
DMA_READY is asynchronously driven LOW from the memory backbone
internal logic. However, the controller is a synchronous machine, thus it ’senses’
the wait state only on the next clock edge, at the same moment as the counter
increments its value. It’s only at this point that the controller enters a different
state, disables the count enable, and starts waiting for the openMSP430 to be
ready again to resume the transfer (find the ASM chart for the controller’s FSM
in Figure 6.4). However, when the wait state ends and operation resumes, the
counter incremented and the accessing address is pointing to a different memory
location. A shrewdness to bypassing this problem is to store a delayed version of
the address in the OLD_ADDR register: in this way, it’s always possible to know
which memory location was previously being accessed. A mux, controlled by the
controller’s FSM, selects one of the two addresses to be outputted as the DMA
address.

The internal memory of the controller is set to be far smaller than the system
memory: it would make no sense, in fact, to instantiate many registers just to
allow a one-shot data transfer (find internal memory implementation in subsub-
section 6.3.4.2). Furthermore, considering that the target architecture is a low-
end microcontroller, it results necessary to keep resource utilisation at minimum.
Hence, the need to provide the DMA controller with the ability of temporarily
interrupt the receiving of further incoming data when its memory gets full, so that
it can empty it by starting sending the already stored data to the receiving party.

67

CHAPTER 6. DMA CONTROLLER IMPLEMENTATION

All of this is supervised by the DMA controller: specifically this functionality is
implemented in the two branches of the FSM reported in Figure 6.5.
Once the memory has been emptied, the operation must resume to its previous
state. In order to achieve so, two register are instantiated: DEV_COUNT and
MSP_COUNT. When the data transfer between the controller and the device, or
between the controller and the core is paused, the value of the counter is store into
the corresponding register, before the data buffer starts getting emptied. In this
way, the transfer can be resumed from where it stopped, by simply loading the
stored value into the counter itself.

68

6.3. IMPLEMENTATION OF THE DMA CONTROLLER

OL
D_

AD
DR

ES
S

IN E
N

R
S
T

O
U

T

+

DM
A_

AD
DR

ES
S

M
U
X
_C
T
R
L

=

FL
AG

_C
NT

_W
OR

DS

0 1

IN E
N

R
S
T

O
U
T

D
M
A
_O

R
_D

E
V

0 1

0 1

MM
IO

_O
P_

AD
DR

ES
S

IN E
N

R
S
T

O
U

T
IN E
N

R
S
T

O
U

T
M
M
IO
_F
L
A
G

0

#
A

D
D

-1
0

#
A

D
D

-1

0

#
A
D
D
-1

0#
A

D
D

-1

NU
M_

W
OR

DS
IN E
N

R
S
T

O
U
T

CO
UN

TE
R

IN C
O

U
N

T
_E

N
LO

A
D

R
S

T
O

U
T

E
N
D
_C
O
U
N
T

DE
V_

CO
UN

T
IN E
N

R
S
T

O
U
T

MS
P_

CO
UN

T

0

#
A

D
D

-2

ST
AR

T_
AD

DR
ES

S
IN E
N

R
S
T

O
U

T
0

#
A

D
D

-1

B
it

 #
A

D
D

-1
B

it
 #

A
D

D
-2

B
it

 #
0

B
it

 #
1

B
it

 #
2
0

#
A

D
D

-1

Bit #ADD-1
Bit #ADD-2

Bit #0
Bit #1
Bit #2

B
it

 #
A

D
D

-1
B

it
 #

A
D

D
-2

B
it

 #
0

B
it

 #
1

B
it

 #
2

0

#
A

D
D

-1

'0
'

'0
'

'0'

0

#
A

D
D

-1

0

#
A

D
D

-1

MS
P_

RE
G_

EN
DE

V_
RE

G_
EN

0#
A

D
D

-1

LO
A
D
_D

E
V
_O

R
_M

S
P

1 0

0

#
A

D
D

-2

0

#
A

D
D

-2

0

#
A

D
D

-2

M
M
IO
_F
F_
E
N

M
M
IO
_F
F_
R
S
T

DA
TA

 B
UF

FE
R

IN E
N

R
S
T

O
U

T
0

#
D

A
TA

-1

R
D

_W
R

E
M
P
T
Y
_P
A
R
T
IA
L

E
M
P
T
Y

FU
LL

D
M
A
_O

R
_D

E
V

0 1 0 1

D
E
V
_O

U
T

D
M
A
_O

U
T

'h
Z

'h
Z

0

#
D

A
TA

-1

DM
A_

IN

DE
V_

IN

0

#
A
D
D
-1

#0
#1
#2

#2 -1
DEPTH

0

#
D

A
TA

-1

0

#
D

A
TA

-1

ST
AR

T_
AD

D

MM
IO

_A
DD

NU
M_

W
OR

DS
0

#
A

D
D

-1

Figure 6.6: The fundamental components composing the DMA controller, together
with the signals ruling its FSM behaviour are here shown. Inputs and outputs are
labelled in bold, whereas all the control signals and the flags from the state machine
are in italic. All the clocked devices are connected to the system clock, and all the
enable and reset signals are directly driven by the controller FSM. Wires for these
latter are not drawn for the sake of simplicity.

69

CHAPTER 6. DMA CONTROLLER IMPLEMENTATION

6.3.4.2 Data Buffer

The controller memory is implemented as a data buffer, whose depth is config-
urable during instantiation. The use of the buffer improves controller responsivity,
since both the device and the core would consider it as a resource always available
to receive data, until the memory fills. When this occurs, an internal flag drives
the controller FSM into one of two branches of Figure 6.5, depending on whether
the event happened during a read or write operation; data are sent, in a first-in
first-out order, to the receiving party, either the device or the core, and the
memory gets freed. Once a certain percentage of the buffer - set by the user at
the instantiation - has been emptied, the controller resumes to its previous state
as described at the end of subsection 6.3.4.
A first remark about the data buffer concerns the choice of its depth, as it requires
an appropriate calibration basing on the expected average data exchange rate
on the DMA bus. In fact, an oversized data buffer would be empty for most
of the time, resulting in a waste of registers. On the other side, an undersized
buffer would fill too quickly, forcing the controller to often stop collecting new
data to empty its memory. The default choice is to have the BUFF_SIZE
= DMEM_SIZE / 512, so that when a 16-kB the data memory is used, the
controller internal buffer would be 32-byte deep. The empty percentage is set by
default to one eighth of the buffer size.

A second remark concerns a peculiar design choice about the buffer registers,
caused by the need to comply with the DMA protocol for write operations (Fig-
ure 6.3). During a wait state, the openMSP430 drives the DMA_READY high

437800 ns 437900 ns 438 us

SEND_TO_MEM1 OLD_ADDR_WR SEND_TO_MEM1 OLD_ADDR

0116 0117 0118 0119

0010 0011 0012 0013 0014

10012 00012

10013 00013

10014 00014

10015

10016

A B C DTime
clk=1

DMA_STATE=OLD_ADDR_WR

DMA_ADDR=0119

dma_resp=0

dma_en=1

DATA_BUFFER_ER=1

DATA_BUFFER_OUT=0014

Internal Registers [0-17]

reg_18[16:0]=00012

reg_19[16:0]=00013

reg_20[16:0]=00014

reg_21[16:0]=10015

reg_22[16:0]=10016

Internal Registers [23-31]

Figure 6.7: openMSP430 - DMA protocol: violation when synchronous registers
are used, at markers C and D.

70

6.4. DMA CONTROLLER DRIVER

437900 ns 438 us 438100 ns

SEND_TO_MEM1 OLD_ADDR_WR SEND_TO_MEM1 OLD_ADDR_WR SEND_TO_MEM1

0117 0118 0119 011A

0012 0013 0014 0015

10012 00012

10013 00013

10014 00014

10015

10016

A B C DTime
clk

DMA_STATE

DMA_ADDR

dma_resp

dma_en

DATA_BUFFER_ER

DATA_BUFFER_OUT

Internal Registers [0-17]

reg_18[16:0]

reg_19[16:0]

reg_20[16:0]

reg_21[16:0]

reg_22[16:0]

Internal Registers [23-31]

Figure 6.8: openMSP430 - DMA protocol: no violation when asynchronous regis-
ters are used.

to flag to the controller the correct sampling of the data (marker B of Figure 6.7).
However, the controller is a synchronous machine: it senses the change of the ready
signal only on next positive edge of the clock, and resumes from the wait state, re-
activating its internal components. Simultaneously, the openMSP430 core samples
the data on the DMA_DIN bus (marker C of Figure 6.7). The problem appears
at this moment, as the sampled data is not the correct one. What happens is that
the data is still the previous one (number 13), since the data buffer synchronously
updates its output only on the next clock edge (marker D of Figure 6.7). The so-
lution to this subtle timing problem is to provide the data buffer internal registers
with an asynchronous output. In this way, the output correctly switches, to value
14, in correspondence of the first clock cycle after exiting the wait state (marker
C of Figure 6.8).

6.4 DMA Controller Driver
In Figure 5.1 an overview of the system is provided. It is possible to notice that the
DMA controller inputs are not connected to the openMSP430, but directly coming
from the peripheral in use at the moment. However, in case of DMA operation
involving a MMIO device, it is necessary to set the starting address, the number
of words and the type of the operation (read or write) from the high level software.
Therefore, the controller is provided with a driver, which handles the configuration
of the controller internal registers with values from the software. Specifically, the
initialization of a DMA operation implies that:

• the higher level software stores the starting address and the number of words

71

CHAPTER 6. DMA CONTROLLER IMPLEMENTATION

into the the memory-mapped registers of the driver. Then it informs the
driver with the type of the operation to be carried out (read or write).

• After that, the driver is triggered and a DMA start request is performed on
the controller input bus.

In this way, the controller is provided with the two stating addresses of the
memory locations, where the data transfer will occur. It automatically handles all
the steps required to complete the operation, without burdening the CPU.
Here are shown the two C functions used to configure the controller, through the
driver. Respectively, Listing 6.1 is used when the requesting device is directly
connected to the DMA controller, whereas Listing 6.2 is used for MMIO devices
operations.

void asm_config_op (uint16_t num_of_words , uint16_t address ,
uint16_t op_code)

{

asm(" ; Define memory addresses \n\t"
".equ START_ADDR_REG , 0x0100 \n\t"
".equ N_WORDS_REG , 0x0102 \n\t"
".equ CONFIG_REG , 0x0104 \n\t"

" ; Start operation \n\t"
" mov %0 , & START_ADDR_REG \n\t"
" mov %1 , & N_WORDS_REG \n\t"
" mov %2 , & CONFIG_REG \n\t"
: //no outputs
: "m"(address), // inputs

"m"(num_of_words),
"m"(op_code));

}

Listing 6.1: Code snippet showing the C function used to configure the DMA
controller, through the driver, in case of operations requested by a directly
connected device.

72

6.5. DEVICE WITH DMA CAPABILITIES

void asm_config_mmio_op (uint16_t num_of_words , uint16_t
stat_addr , uint16_t mmio_addr , uint16_t op_code)

{
asm(" ; Define memory addresses \n\t"

".equ START_ADDR_REG , 0x0100 \n\t"
".equ N_WORDS_REG , 0x0102 \n\t"
".equ CONFIG_REG , 0x0104 \n\t"
".equ MMIO_START_ADD , 0x010A \n\t"

" ; Start operation \n\t"
" mov %0 , & START_ADDR_REG \n\t"
" mov %3 , & MMIO_START_ADD \n\t"
" mov %1 , & N_WORDS_REG \n\t"
" mov %2 , & CONFIG_REG \n\t"

: //no outputs
: "m"(address), // inputs

"m"(num_of_words),
"m"(op_code),
"m"(mmio_addr));

}

Listing 6.2: Code snippet showing the C function used to configure the DMA
controller, through the driver, in case of memory mapped operations.

6.5 Device with DMA Capabilities
Due to the need of verifying DMA controller functionalities and of simulating
a real-world scenario for the testbenches, a simple device has been designed to
perform memory accesses on software requests.
It is a memory-mapped I/O device controlled by higher level software executing
on the machine, thought as an extension of the driver from section 6.4.
It consists of few registers devoted to memory access requests; a configuration
register which stores the device state so that it can be accessed by the higher
level software controlling the device; two one-bit acknowledge signals, one as input
coming from the DMA controller, and the other as output from the device to the
controller.
The start_address register contains the memory location where the memory

access starts; num_words register stores the number of words to be read/written.
Both these registers are sent to the DMA controller at the start of the operation,
since it’s the controller that handles the whole memory transfer, once device re-
quest to access memory has been acquired.
Write and read registers store, respectively, the data to be written into- and the

73

CHAPTER 6. DMA CONTROLLER IMPLEMENTATION

END_OP
15

-
14

!DEV_ACK
13

-
12

WRITE_OK
11

-
10

ERROR_FLAG
9

-
8

-
7

-
6

RESET_REGS
5

ACK_SET
4

NON_ATOMIC
3

RD_WR
2

-
1

START
0

CONFIGURATION_REGISTER [15:0]
IN

RESET

OUT

Figure 6.9: Configuration register used by the DMA device. The function of each
single bit composing the register is here shown. Due to register the higher level
software is capable of transparently exchange data with the DMA controller. The
start of operation can be programmed by only writing into the memory mapped
STRAT_ADDRESS, NUM_WORDSs and CONFIG_REG registers. By reading
the content of the configuration register software becomes aware of the progress
of the ongoing operation. Be aware that the content of the register is internally
updated by the device; in this way it can keep track of the operation and correctly
handle the communication with the DMA controller through a 2-phase handshake
protocol (section 6.1), without direct intervention of the software layer in driving
the signals.

data read from- memory. They are used to provide a communication channel
between the device and the higher level program.
The configuration register (Figure 6.9) is accessed both by the software and the

device itself, and stores the state of the device. When the higher level software
wants to start an operation, it programs this register with the proper opcode. The
device itself will update the content of the register according to its internal state;
this is entirely done by the hardware, so that it is transparent to the software
layer. Finally, by reading back the register content, the software can learn infor-
mation about the progresses of the current operation and, thus, interact with the
device: error and end-of-operation flags, read or write select bit, as well as with
detailed information on the current operation are contained in this 16 bits register.

6.5.1 Overview of DMA Read and Write Operations
Data transfers between the device and the controller follow a 2-phase handshake
protocol on two acknowledge signals: device acknowledge is automatically con-
trolled from the ACK_SET bit of the configuration register, without software
intervention.
During a write operation into the system memory, the device plays an active role, as
it has to provide the controller with the data to be written (subsubsection 6.6.2.1).
Once all the data have been written into the controller buffer, device stops being

74

6.6. DMA TESBENCHES

an active party, and the control is deferred to the controller, which writes the data
into the system memory (subsubsection 6.6.2.2).
On the contrary, once a read operation has been correctly required (which

includes the sending of the start address, the number of words and the read request
to the controller), the device plays a passive role, as it waits for the controller to
retrieve the data from openMSP430 memory (subsubsection 6.6.1.1). Only once
data have been collected, the device interfaces itself with the controllers to receive
them (subsubsection 6.6.1.2): on data arrival, a change in the configuration
register informs the higher level software controlling the device. Data are, thus,
saved in the read register, and it is software care to save them in the new assigned
memory location.

6.6 DMA Tesbenches
In this section results of the testbenches, carried out for both read and write opera-
tions, are shown. For each of the two type of operation, a general view of the main
signals involved is given. Before the start of an operation, the controller is always
provided with the number of words to be handled and the starting address of the
memory locations to be accessed. Then, depending on the type of the request, it
moves along one of the two branches of Figure 6.4.
Finally, notice that all the DMA accesses are considered to only address unpro-
tected memory locations. A test showing memory access rules violation is shown
in section 6.7.

6.6.1 DMA Controller Read Branch
A general view of the operation is shown in Figure 6.10, from its start until the
end. It corresponds to the left branch of the device FSM shown in Figure 6.4 and
it consists of:

1. The DMA controller interfaces with the openMSP430 DMA interface to read
the requested data from the system memory (subsubsection 6.6.1.1).

2. The DMA controller interfaces with the device which started the operation
and sends the data to it (subsubsection 6.6.1.2).

6.6.1.1 Read from System Memory

When reading from the system memory, the controller follows the DMA interface
protocol in use on the openMSP430 (Figure 6.2): first, it requests read access to

75

CHAPTER 6. DMA CONTROLLER IMPLEMENTATION

7511 us 7512 us

0200 7568

7 5

IDLE + + + + + OLD_ADD+ + OLD+ + OLD+ + + SEND_TO_DE+ + IDLE

+ 3AB5 3AB6 3AB7 3AB8 +

0000

+ + + + +

0000 + + + 0000 + 0000 + 0000 + + 0000

00000 1C232 0C232 00000

00000 14182 04182 00000

00000 103B0 003B0 00000

00000 140B2 040+ 00000

00000 103AC + 00000

A BTime
DMA_RQST

END_OPERATION

RD_WR

DMA_START_ADDR

N_WORDS

clk

DMA Controller

Controller_State

DMA_ADDR

DMA_EN

DMA_ACK

DEV_ACK

Data Busses

IN_from_dev[15:0]

OUT_to_dev[15:0]

IN_from_msp[15:0]

OUT_to_msp[15:0]

Data_Buffer

fifo_register[16:0]

fifo_register[16:0]

fifo_register[16:0]

fifo_register[16:0]

fifo_register[16:0]

Figure 6.10: General overview of a read operation. After having set the start
address and the number of words to be read, the request signal is raised (marker
A) and the operation is started. Its end is flagged by the controller, at marker B.

a memory location by driving the DMA_ADDR and setting the DMA_WE="00"
(at marker A of Figure 6.11). If the addressed location is not part of protected
memory, no violation is raised in the the MAL of Figure 5.2. If the memory is
available at moment, the DMA_READY signal is kept high and no wait state is
inserted. Hence, the memory backbone maps the logical address from the controller
into a physical one, and drives the openMSP430 output bus with the content of
that memory location (marker B of Figure 6.11).
Finally, the values is sampled and stored into the controller data buffer on the next
clock cycle (marker C of Figure 6.11). Notice that a read operation, with no wait
states, takes two clock cycles to be executed. This delay is necessarily inserted as
the openMSP430 requires time to sample the DMA address and to drive the correct
data on the output bus. Therefore, the controller can only store the incoming data
on the successive clock edge. However, while waiting for the data, the controller

76

6.6. DMA TESBENCHES

can already drive a further read request (marker B of Figure 6.11) in order to
speed up in case of multiple read operations. The new request, in fact, would be
sensed by the openMSP430 interface on the same clock edge when the controller
stores the previous data (marker C of Figure 6.11).
When a wait state is entered, the DMA address and the control signals driving the
DMA interface are kept stable at their current value. In this way, when the system
memory become available, it can provide the requested data. The openMSP430
flags it by rising the DMA_READY signal, and the controller samples the data
on the next front edge (marker D of Figure 6.11). In the eventuality the controller
data buffer completely fills, the operation is temporarily paused to start emptying
the controller internal memory, as described in subsection 6.6.3.
A final remark about the data buffer concerns the way data are stored: a ’1’ is
written in the first bit of the register that saves an incoming data. In this way the
data buffer can keep trace of the filling state of its memory and, when full, flag it
to the controller

6.6.1.2 Write to a DMA Device

The controller follows a 2-phase handshake when interfacing with devices directly
connected to itself. Figure 6.12 shows the data transfer from the controller to the
device. The operation only starts when the device acknowledge signal is raised
high, meaning that the device is ready to store data. At this point, the controller
becomes active and drives the output bus with the data to be sent; in doing so,
it asserts its acknowledge signal to inform the device that a data has been sent
(marker A of Figure 6.12). As soon as the device acknowledge signal is driven
low, the controller enters in wait state (marker B of Figure 6.12). Notice that
the data buffer is emptied on the clock cycle after the data has been sent to the
device(marker B).
The controller keeps waiting until the DEV_ACK is raised again (marker C of
Figure 6.12). Notice that the output data bus is in high impedance for all the
wait, since more than the current device is connected to it (Figure 6.1). There-
fore it makes sense to have the controller driving the output only when requested
from the receiving device. This latter is informed of data arrival by the controller
acknowledge signal which, unlike the bus, is routed exclusively to the active receiv-
ing party. In this way the data, which are meant to be sent to the active device,
remains for a single clock cycle on the bus. Although this cannot be considered a
’safe’ mechanism, it’s a rudimental attempt of confidentiality.

77

7529100 ns 7529200 ns 7529300 ns 7529400 ns

00

LOAD_DMA_ADD READ_MEM OLD_ADDR_RD READ_MEM

3AC4 3AC5 3AC6 3AC7

0000 C232 0000 4182 03B0

0000

00000 1C232

00000 14182

00000

00000

A B C D ETime
clk

DMA Interface

DMA_RQST

DMA_WE

DMA_PRIORITY

DMA_EN

DMA Controller

Controller_State

DMA_ADDR

DMA_READY

DMA_RESP

END_OPERATION

DMA Data Busses

IN_from_msp[15:0]

OUT_to_msp[15:0]

IN_from_dev[15:0]

OUT_to_dev[15:0]

Data Buffer

Full

EMPTY_PARTIAL

Data_Buffer[0-15]

fifo_register[16:0]

fifo_register[16:0]

fifo_register[16:0]

fifo_register[16:0]

Figure 6.11: Reading data from the openMSP430 memory. The controller requests
the data (marker A). If the DMA address is not pointing to a protected memory
location, the openMSP430 outputs the requested data on its bus (marker B).
Finally, data are stored into the controller data buffer (marker C).

7515 us 7516 us

3A+ 3AC5 + 3AC7 + +

LO+ + OLD+ REA+ OLD_ADD+ REA+ + + NOP

READ_OP_ACK WAIT_READ_ACK

0000

+

00+ + 0000 + + 0000 + + 0000

00000 1C232 0C232

00000 14182

00000 103B0

00000 140B2

00000 103AC

A BTime
clk

DMA Interface

DMA Ctrl Signals

DMA_ADDR

DMA_EN

Controller-DEV Interface

Controller_State

DMA_ACK

DEV Config Reg

DEV_ACK

Data Busses

IN_from_dev[15:0]

OUT_to_dev[15:0]

IN_from_msp[15:0]

OUT_to_msp[15:0]

Data Buffer

Full

EMPTY_PARTIAL

Data_Buffer

fifo_register[16:0]

fifo_register[16:0]

fifo_register[16:0]

fifo_register[16:0]

fifo_register[16:0]

7515 us 7516 us

3A+ 3AC5 + 3AC7 + +

LO+ + OLD+ REA+ OLD_ADD+ REA+ + + NOP + NOP

READ_OP_ACK WAIT_READ_ACK + WAIT_READ_ACK

0000

+ +

00+ + 0000 + + 0000 + + 0000

00000 1C232 0C232

00000 14182 04182

00000 103B0

00000 140B2

00000 103AC

A B C D

nterface

0]

0]

0]

0]

0]

Figure 6.12: Sending data to a device directly connected to the controller. The
communication protocol between the two implies a 2-phase handshake: the device
requests data by raising its acknowledge signal (marker A); the controller drives
the output data and flags the sending through its own acknowledge signal (marker
B).

6.6. DMA TESBENCHES

10669 us 10670 us

7568 0000 7568

5 0

READ_DEV0 READ_DEV1 + + OLD_A+ SEN+ OLD_A+ SEN+ + IDLE

+ 3AB4 + 3AB6 + + +

0000

0000

0000

00000 10000 00000

00000 10000 00000

00000 10000 00000

00000 10000 00000

00000 10000 00000

BTime
DMA_RQST

END_OPERATION

RD_WR

DMA_START_ADDR

N_WORDS

clk

DMA Controller

Controller_State

DMA_ADDR

DMA_EN

DMA_ACK

DEV_ACK

Data Busses

IN_from_dev[15:0]

OUT_to_dev[15:0]

IN_from_msp[15:0]

OUT_to_msp[15:0]

Data_Buffer

fifo_register[16:0]

fifo_register[16:0]

fifo_register[16:0]

fifo_register[16:0]

fifo_register[16:0]

us 10234 us 10235 us

+ READ_DEV0

A
10669 us 10670 us

7568 0000 7568

5 0 5

READ_DEV0 READ_DEV1 + + OLD_A+ SEN+ OLD_A+ SEN+ + IDLE

+ 3AB4 + 3AB6 + + +

0000

0000

0000

00000 10000 00000

00000 10000 00000

00000 10000 00000

00000 10000 00000

00000 10000 00000

BTime
DMA_RQST

END_OPERATION

RD_WR

DMA_START_ADDR

N_WORDS

clk

DMA Controller

Controller_State

DMA_ADDR

DMA_EN

DMA_ACK

DEV_ACK

Data Busses

IN_from_dev[15:0]

OUT_to_dev[15:0]

IN_from_msp[15:0]

OUT_to_msp[15:0]

Data_Buffer

fifo_register[16:0]

fifo_register[16:0]

fifo_register[16:0]

fifo_register[16:0]

fifo_register[16:0]

Figure 6.13: General overview of a write operation. After having set the start
address and the number of words to be read, the request signal is raised (marker
A) and the operation is started. Its end is flagged by the controller, at marker B.

6.6.2 DMA Controller Write Branch
A general view of the operation is shown in Figure 6.13, from its start until the
end. It corresponds to the right branch of the device FSM shown in Figure 6.4
and it consists of:

1. The DMA controller interfaces with the device which started the operation
and retrieves the data to be written into the system memory (subsubsec-
tion 6.6.2.1).

2. The DMA controller interfaces with the openMSP430 DMA interface to write
into the system memory (subsubsection 6.6.2.2).

6.6.2.1 Read from a DMA Device

The controller follows a 2-phase handshake when interfacing with devices directly
connected to itself. Figure 6.14 shows the data transfer from the controller to the
device. The operation starts only start when the device acknowledges the avail-
ability of new data (marker A of Figure 6.14), which are driven on the controller

79

10477500 ns 10477600 ns 10477700 ns

WAIT_WRITE READ_DEV1

WRITE_OK WRITE_OP WRITE_OK

0000 0001

0000

10000

00000

00000

00000

00000

D ETime
clk

DMA Interface

DMA Ctrl Signals

DMA_ADDR

DMA_EN

Controller-DEV Interface

Controller_State

DMA_ACK

DEV Config Reg

DEV_ACK

Data Busses

IN_from_dev[15:0]

OUT_to_dev[15:0]

IN_from_msp[15:0]

OUT_to_msp[15:0]

Data Buffer

Full

EMPTY_PARTIAL

Data_Buffer

fifo_register[16:0]

fifo_register[16:0]

fifo_register[16:0]

fifo_register[16:0]

fifo_register[16:0]

10475600 ns 10475700 ns

READ_DEV0 READ_DEV1 WAIT_WRITE

WRITE_OK WRITE_OP WRITE_OK

0000

0000

00000 10000

00000

00000

00000

00000

A B CTime
clk

DMA Interface

DMA Ctrl Signals

DMA_ADDR

DMA_EN

Controller-DEV Interface

Controller_State

DMA_ACK

DEV Config Reg

DEV_ACK

Data Busses

IN_from_dev[15:0]

OUT_to_dev[15:0]

IN_from_msp[15:0]

OUT_to_msp[15:0]

Data Buffer

Full

EMPTY_PARTIAL

Data_Buffer

fifo_register[16:0]

fifo_register[16:0]

fifo_register[16:0]

fifo_register[16:0]

fifo_register[16:0]

10475600 ns 10475700 ns 10475800 ns

READ_DEV0 READ_DEV1 WAIT_WRITE

WRITE_OK WRITE_OP WRITE_OK

0000

0000

00000 10000

00000

00000

00000

00000

A B C

Figure 6.14: Receiving data from a device directly connected to the controller.
The communication protocol between the two implies a 2-phase handshake: the
device flags the availability of new data by raising its acknowledge signal (marker
A); the controller stores them flags correctness of the operation through its own
acknowledge signal (marker B).

26695100 ns 26695200 ns 26695300 ns

11

OLD_ADDR_WR SEND_TO_MEM1 OLD_ADDR_WR SEND_TO_MEM1

3AD2 3AD3 3AD4 3AD5

000E 000F 0010 0011

1000F 0000F

10010 00010

10011

A B C DTime
clk=1

DMA Interface

DMA_RQST=0

DMA_WE=11

DMA_PRIORITY=0

DMA_EN=1

DMA Controller

Controller_State=OLD_ADDR_WR

DMA_ADDR=3AD2

DMA_READY=0

DMA_RESP=0

END_OPERATION=0

DMA Data Busses

IN_from_msp[15:0]

OUT_to_msp[15:0]=000E

IN_from_dev[15:0]

OUT_to_dev[15:0]=zzzz

Data Buffer

Full=0

EMPTY_PARTIAL=0

Data_Buffer[0-15]

fifo_register[16:0]=1000F

Data_Buffer[17-31]

fifo_register[16:0]=10010

fifo_register[16:0]=10011

Figure 6.15: Writing data to the openMSP430 memory. The controller drives the
data output bus and requests a write operation (marker A). If the DMA address
is not pointing to protected memory, the openMSP430 saves the incoming data
(marker C). When DMA_READY is driven low, a wait state is inserted (marker
B). Markers C and D show two successive writings, with no wait state inserted.

6.6. DMA TESBENCHES

input data bus. At this point, the controller becomes active, activates the data
buffer and rises its acknowledge signal to flag the correctness of the operation
(marker B of Figure 6.14). Notice that data are actually stored into the controller
internal memory only on the successive clock cycle, as expected from registers with
synchronous input (marker C of Figure 6.14). In the provided example, the device
is implemented to keep driving the data on the input bus until the next operation;
this choice depends on how the device is internally designed, and does not concerns
nor affect the controller.

6.6.2.2 Write into System Memory

When writing into the system memory, the controller follows the DMA interface
protocol in use on the openMSP430 (Figure 6.3): first, it requests the access to
a memory location by driving the DMA_ADDR, together with the data bus to
the memory (at marker A of Figure 6.15). If the addressed location is not part
of protected memory, no violation is raised in the the MAL of Figure 5.2. Hence,
the memory backbone decodes the logical address received from the controller
into a physical one and stores the received data into at the desired location (at
marker C of Figure 6.15). In case the ready signal is driven low (at marker B of
Figure 6.15), a wait state is inserted. When this happens, the controller keeps
driving the address and the data bus until the core samples them and flags it by
raising the DMA_READY high again (at marker C of Figure 6.15).
Notice that, when a data is read, the first bit of the corresponding register is set to
’0’. In this way the data buffer can keep track of the emptying state of its memory.
This capability is fundamental to correctly flag the partial or full emptying of the
memory.
Finally, when no wait state are inserted, wait operations are handled one per clock
cycle. At marker C a write operation to the specified address, is requested; on
the next clock edge the ready signal is high, meanign that data has been correctly
sampled (at marker D of Figure 6.15); therefore, the successive write request is
carried on by driving the address of the new destination to be written.

6.6.3 Emptying the Controller Data Buffer
Figure 6.16 and Figure 6.17 show the details of the controller internal behaviours
when emptying the data buffer, corresponding to the two branches of the controller
FSM, as shown in Figure 6.5.
Respectively, Figure 6.16 shows the timing diagram of emptying operation in which
data are outputted to external device. On the contrary, in Figure 6.17 data are
removed from the internal data buffer and stored into the system memory.

81

7536 us 7537 us

_MEM OLD_ADDR_RD READ_MEM FIF+ WAI+ EMP+ WAIT_DEV

3AE3 3AE4 3AE5

4030 0000 767C 9036 0000

C232

001F 0020 0021 0022 0000 0001

0021

A
7538 us

00

WAIT_DEV EMP+ WAIT_DEV

0000

0000

4182

0001 0002

0021

0000

Time
clk

DMA Interface

DMA_RQST

DMA_WE

DMA_PRIORITY

DMA_EN

DMA Controller

Controller_State

DMA_ADDR

DMA_READY

DMA_ACK

DEV_ACK

DMA Data Busses

IN_from_msp[15:0]

OUT_to_msp[15:0]

IN_from_dev[15:0]

OUT_to_dev[15:0]

Data Buffer

Full

EMPTY_PARTIAL

Data_Buffer

COUNTER

MSP_COUNT

DEV_COUNT

7565 us

00

WAIT_DEV EMP+ RES+ OLD+ READ_MEM OLD_ADD+ REA

3AE4 3AE5 3AE6 3AE

0000 9036 0001 0000 2C2

0000

9301

0008 0009 0021 0022 0023

0021

0000 0009

B CTime
clk

DMA Interface

DMA_RQST

DMA_WE

DMA_PRIORITY

DMA_EN

DMA Controller

Controller_State

DMA_ADDR

DMA_READY

DMA_ACK

DEV_ACK

DMA Data Busses

IN_from_msp[15:0]

OUT_to_msp[15:0]

IN_from_dev[15:0]

OUT_to_dev[15:0]

Data Buffer

Full

EMPTY_PARTIAL

Data_Buffer

COUNTER

MSP_COUNT

DEV_COUNT

7536 us

00

O+ READ_MEM OLD_ADDR_RD READ_MEM FIF+ WAI+ EMP+ WAIT_DEV

3+ 3AE2 3AE3 3AE4 3AE5

0+ 2002 4030 0000 767C 9036 0000

0000

C232

001E 001F 0020 0021 0022 0000 0001

0000 0021

0000

ATime
clk

DMA Interface

DMA_RQST

DMA_WE

DMA_PRIORITY

DMA_EN

DMA Controller

Controller_State

DMA_ADDR

DMA_READY

DMA_ACK

DEV_ACK

DMA Data Busses

IN_from_msp[15:0]

OUT_to_msp[15:0]

IN_from_dev[15:0]

OUT_to_dev[15:0]

Data Buffer

Full

EMPTY_PARTIAL

Data_Buffer

COUNTER

MSP_COUNT

DEV_COUNT

Figure 6.16: Emptying the controller data buffer by outputting data to an external
device.

26689300 ns 26689400 ns 26689500 ns

11 00

OLD_ADDR_EMP_FIFO_W EMPTY_FIFO_WRITE RESTORE_DEV_COUNT

3ACA 3ACB 3ACC

0000 0006 0007 0008

0006 0007 0008

0020

0007 0008 0009

0000

0020

DTime
clk

DMA Interface - Ctrl. Signals

DMA_RQST

DMA_WE

DMA_PRIORITY

DMA_EN

DMA Controller

Controller_State

DMA_ADDR

DMA_READY

DMA_RESP

END_OPERATION

DMA Data Busses

IN_from_msp[15:0]

OUT_to_msp[15:0]

IN_from_dev[15:0]

OUT_to_dev[15:0]

Data Buffer

Full

EMPTY_PARTIAL

Data_Buffer

COUNTER

MSP_COUNT

DEV_COUNT

26688100 ns 26688200 ns 26688300 ns 26688400 ns

00 11

WAIT_WRITE FIFO_FULL_WR EMPTY_FIFO_WRITE OLD_ADDR_EMP_FIFO_W

3AE4 3AC4 3AC5

0000

0000 0001

001F 0020

0020 0000 0001 0002

0000

0020

A B C

e - Ctrl. Signals

er

tate

N

ses

15:0]

5:0]

15:0]

5:0]

L

26688100 ns 26688200 ns 26688300 ns 26688400 ns

00 11

WAIT_WRITE FIFO_FULL_WR EMPTY_FIFO_WRITE OLD_ADDR_EMP_FIFO_W

3AE4 3AC4 3AC5

0000

0000 0001

001F 0020

0020 0000 0001 0002

0000

0020

A B CTime
clk

DMA Interface - Ctrl. Signals

DMA_RQST

DMA_WE

DMA_PRIORITY

DMA_EN

DMA Controller

Controller_State

DMA_ADDR

DMA_READY

DMA_RESP

END_OPERATION

DMA Data Busses

IN_from_msp[15:0]

OUT_to_msp[15:0]

IN_from_dev[15:0]

OUT_to_dev[15:0]

Data Buffer

Full

EMPTY_PARTIAL

Data_Buffer

COUNTER

MSP_COUNT

DEV_COUNT

Figure 6.17: Emptying the controller data buffer by outputting data to system
memory.

6.7. ATTACK SCENARIO ON DMA-SECURE SANCUS IMPLEMENTATION

6.6.3.1 Emptying the Buffer - Output to External Device

On the first clock cycle after the data buffer full signals has been asserted, the
controller temporarily stops the current operation to empty the internal memory
and enters the left branch FSM emptying procedure, as shown in Figure 6.5. Here,
the data transfer is handled as a normal write operation to an external device, by
following the 2-phase handshake between the device and the controller: this latter
proceeds by outputting the data only when required from the device (marker A of
Figure 6.16). This information is carried by the device acknowledge signal: when
it’s value is high it means that the controller can send data; when driven low, wait
states are inserted and the controller waits until the next dare are requested by
the device.
When the the empty flag, the controller exits the emptying procedure. In doing so,
the value of the DEV_COUNT register is loaded with the number of data written
during the operation. In this way, next accesses to the device memory will start
from that value (9, in this example). Simultaneously, the value of MSP_COUNT
is loaded, and the previous operation resumes.

6.6.3.2 Emptying the Buffer - Output to System Memory

At the first available clock front edge on which the data buffer full flag is sensed, the
controller temporarily stops the current operation to empty the internal memory
and enters the right branch of FSM emptying procedure, as shown in Figure 6.5.
Here, the data transfer is handled as a normal write operation to the system
memory, by following the DMA interface protocol in use on the openMSP430 core
(subsubsection 6.6.2.2). The controller first drives the data output bus and the
DMA address (at marker A Figure 6.17). If no memory violation is raised, the core
would sample the data on the next clock cycle (at marker B in Figure 6.17). Wait
states are handled as usual: when the DMA_READY is driven low (at marker
C Figure 6.17), the controller starts waiting until the memory becomes available
again; then the operation continues.
Finally, on the rising of the empty flag, the controller exits the emptying procedure.
In doing so, the value of the MSP_COUNT register is loaded with the number
of data written during the operation. In this way, next accesses to the system
memory will start from that value (9, in this example). Simultaneously, the value
of DEV_COUNT is loaded, and the previous operation resumes.

83

CHAPTER 6. DMA CONTROLLER IMPLEMENTATION

6.7 Attack Scenario on DMA-Secure Sancus Im-
plementation

When Sancus is provided with a secure DMA support, for example by implement-
ing the solution from subsection 4.5.3 ("Exclude DMA from Protected Memory"),
every illegal access to protected memory is detected and prevented. A DMA viola-
tion signal is rised from the MAL circuitry and the core DMA bus is automatically
zero-driven, to prevent any leak of data. In Listing 6.3 a possible attack scenario
is depicted: it proceeds by configuring a DMA read from a SM text section and,
then, injects malicious code into it. The results of the attack, displayed on a ter-
minal, are shown for both the Sancus versions with or without the secure DMA
implementation. Specifically, the left column of Listing 6.4 shows the outcomes of
the attack, when carried on a secure DMA architecture. The right column depicts
the results of same attack when carried on Sancus with a direct DMA implementa-
tion (the same of section 3.2). Finally, Figure 6.18 highlights what happens from
an architectural point of view: when the DMA tries to access a protected memory

7514600 ns 7514700 ns 7514800 ns 7514900 ns 7515 us 7515100 ns 7515200 ns 7515300 ns

00

IDLE GET_REGS LOAD_DM+ READ_MEM ERROR END_READ IDLE

3AC4 3AC5 3AC6

0000

0000

00000

00000

00000

A B CTime
clk

DMA Interface

DMA_RQST

DMA_WE

DMA_PRIORITY

DMA_EN

DMA_VIOLATION

DMA Controller

Controller_State

DMA_ADDR

DMA_READY

DMA_RESP

END_OPERATION

DMA Data Busses

IN_from_msp[15:0]

OUT_to_msp[15:0]

IN_from_dev[15:0]

OUT_to_dev[15:0]

Data Buffer

Full

EMPTY_PARTIAL

Data_Buffer

fifo_register[16:0]

fifo_register[16:0]

fifo_register[16:0]

Figure 6.18: Detail of the DMA violation signal when an illegal access to protected
memory occurs. On DMA illegal accesses to the memory, the core DMA output
bus is driven to zero, and the DMA controller exits the current operation, reporting
an the error.

84

6.7. ATTACK SCENARIO ON DMA-SECURE SANCUS IMPLEMENTATION

location, the MAL asserts a DMA violation signal (marker A of Figure 6.18). The
DMA output bus of the openMSP430 core is automatically driven to zero. Fur-
thermore, the controller does not sample any data, and proceeds by exiting the
operation going through the ERROR state. Notice that it’s possible to write an
ISR to be started on DMA violations, if necessary. To this end, it is sufficient to
follow the same procedure explained in Listing 3.5, from subsection 3.2.1.

85

CHAPTER 6. DMA CONTROLLER IMPLEMENTATION

// ================================
// INITIALIZATION
// ===============================
msp430_io_init ();

// ALLOCATE MEMORY TO STORE THE
DATA

Save_data_location = (uint16_t *)
malloc (N_DATA * sizeof (uint16_t)
);

if (save_data_location == NULL) {
printf ("[main.c] impossible to

allocate enough memory
for saving the data !\n");

EXIT ();
}
// ================================
// ENABLE THE SMs
// ================================
pr_info (" enabling sensor / reader

SMs ..");
sancus_enable (& sensor);
pr_sm_info (& sensor);
sancus_enable (& reader);
pr_sm_info (& reader);

.

.

.

// GET SM IDENTITY
get_struct_val (& reader , &ts , &te ,

&ds , &de , &id , &vendor_id ,
name);

printf ("SM ID: %d \n TS: 0x%.4x -
TE: 0x%.4x \n DS: 0x%.4x - DE
0x%.4x \n", id , ts , te , ds , de
);

// ================================
// START THE ATTACK
// ================================

pr_info (" starting dma illegal
access ...");

pr_info1 ("start reading into SM%d’
s text section ...\n",id);

dma_read (ts , N_DATA ,
save_data_location);

// PRINT THE LEAKED SECRET DATA
for (i = 0; i< N_DATA ; i++)

printf ("Data%d at addr. 0x%.4x
\t 0x%.4x \n",i, print_add

, *(data_saved +i));

// WRITE INTO SM TEXT SECTION
pr_info1 ("[main.c] start writing

into SM%d’s text section ...\n",
id);

dma_write (ts , N_DATA , data_to_send
);

printf ("[main.c] start reading
into SM%d’s text section after
having written ...\n",id);

dma_read (ts , N_DATA , data_saved);

for (i = 0; i< N_DATA ; i++)
printf ("Data%d at addr. 0x%.4x

\t 0x%.4x \n",i, print_add
, *(data_saved +i));

Listing 6.3: Code snippet of ’main.c’ functions. On the left, the initialization procedure
of the attacks it’s shown. Variables are here allocated and the SMs protection is enabled.
On the right, the code that implements the attack is shown. It first proceeds by reading
multiple data from the SM text section and, then, it injects malicious code in it.

86

// ================================
// ENABLE THE SMs
// ================================
[main.c] enabling sensor / reader SMs
....................................

SM key: d3d41bc0a099864a
SM sensor with ID 1 enabled : 0

x78c4 0x7902 0x0190 0x0198
....................................

SM key: 0 d7b5bc961d7696a
SM reader with ID 2 enabled : 0

x7588 0x78c2 0x02aa 0x03b4
// GET SM IDENTITY
SM ID: 2

TS: 0x7588 - TE: 0x78c2
DS: 0x02aa - DE 0x03b4

// ================================
// START THE ATTACK
// ================================
[main.c] DMA illegal access ...
[attacker] Reading into SM2 text

section ...
[attacker] Num. of Words: 7
Data0 at addr. 0x7588: 0xc232
Data1 at addr. 0x758a: 0x4182
Data2 at addr. 0x758c: 0x03b0
Data3 at addr. 0x758e: 0x40b2
Data4 at addr. 0x7590: 0x03ac
Data5 at addr. 0x7592: 0x03b2
Data6 at addr. 0x7594: 0x4211
[attacker] Writing into SM2 text

section ...
[attacker] Num. of Words: 7
...

[attacker] Reading into SM2 text
section after having written ...

[attacker] Num. of Words: 7
Data0 at addr. 0x7588: 0x0000
Data1 at addr. 0x758a: 0x0001
Data2 at addr. 0x758c: 0x0002
Data3 at addr. 0x758e: 0x0003
Data4 at addr. 0x7590: 0x0004
Data5 at addr. 0x7592: 0x0005
Data6 at addr. 0x7594: 0x0006
// ============================
// SIMULATION PASSED |
// ============================

// ================================
// ENABLE THE SMs
// ================================
[main.c] enabling sensor / reader SMs
....................................

SM key: d3d41bc0a099864a
SM sensor with ID 1 enabled : 0

x78c4 0x7902 0x0190 0x0198
....................................

SM key: 0 d7b5bc961d7696a
SM reader with ID 2 enabled : 0

x7588 0x78c2 0x02aa 0x03b4
// GET SM IDENTITY
SM ID: 2

TS: 0x7588 - TE: 0x78c2
DS: 0x02aa - DE 0x03b4

// ================================
// START THE ATTACK
// ================================
[main.c] DMA illegal access ...
[attacker] Reading into SM2 text

section ...
[attacker] Num. of Words: 7
Data0 at addr. 0x7588: 0x0000
Data1 at addr. 0x758a: 0x0000
Data2 at addr. 0x758c: 0x0000
Data3 at addr. 0x758e: 0x0000
Data4 at addr. 0x7590: 0x0000
Data5 at addr. 0x7592: 0x0000
Data6 at addr. 0x7594: 0x0000
[attacker] Writing into SM2 text

section ...
[attacker] Num. of Words: 7
...

[attacker] Reading into SM2 text
section after having written ...

[attacker] Num. of Words: 7
Data0 at addr. 0x7588: 0x0000
Data1 at addr. 0x758a: 0x0000
Data2 at addr. 0x758c: 0x0000
Data3 at addr. 0x758e: 0x0000
Data4 at addr. 0x7590: 0x0000
Data5 at addr. 0x7592: 0x0000
Data6 at addr. 0x7594: 0x0000

// ============================
// SIMULATION PASSED |
// ============================

Listing 6.4: The output of the terminal in which the attack was launched is here reported.
On the left, the results are shown for a naive implementation of the DMA with full access
to system memory. Hence, the attacker manges to fully leak text section secrets and, then,
to inject external code into it. Finally, it proceeds to read through the text section again,
to make sure the data were correctly injected. On the contrary, the right column shows
the results for a secure DMA implementation. Every DMA access is, thus, prevented from
the MAL circuitry. The read data are all zeros, both before and after writing. This means
that every DMA access has been successfully prevented.

CHAPTER 6. DMA CONTROLLER IMPLEMENTATION

88

Conclusions

The increased connectivity of computing devices, and the even greater percentage
of lightweight embedded devices networked in the IoT, fostered researched to look
for solutions to prevent malicious exploitation of those. Protected Module Archi-
tectures (PMAs) arose as a promising line of research that prevents any illegal
access to the memory regions labelled as private. Their combination with the PC
based memory access control mechanism extended the offered protection to low-
end devices. However, a limitation of these kind of architectures is the absence of
Direct Memory Access (DMA) support. This latter unburdens the CPU from han-
dling accesses to the memory for those peripherals supporting it. To this extent,
DMA is useful to improve system performance and responsiveness when operating
peripherals that perform input or output operations on big data objects, such as
storage controllers, graphics cards or cameras.

The work of this thesis focuses on the analysis and discussion of solutions to
include DMA support in Sancus, a lightweight security architecture for networked
devices. The proposed approaches range from not including DMA in the system at
all, through granting DMA accesses to unprotected memory only, or to relax some
security guarantees and allow a confined DMA access to modules data sections.
A brief summary of the explored ideas, which are fully discussed and presented in
chapter 4, is here provided:

1. Enforce Memory Access Logic (MAL) control by validating DMA accesses on
the current value of the Program Counter (PC). However this way of proceeding
revealed to be flawed, since it permits memory rights escalation attacks. By
definition, the CPU is not aware of DMA accesses. Therefore, the value of the
PC is free to vary during DMA operations, which is the reason why DMA is
considered an improvement in the first place. However, in the framework of
PMAs, this allows situation in which DMA grants access to protected mem-
ory just because PC entered a SM, fully breaking isolation and confidentiality
guarantees offered by Sancus. Although this approach is excluded from possible
solutions, it is still meaningful to underline the need to validate DMA accesses
independently from the PC.

89

CHAPTER 6. DMA CONTROLLER IMPLEMENTATION

2. By following the approach pursued in well known high-end architectures, such as
Intel SGX or Iso-X, a suitable solution is to totally exclude DMA from protected
memory. In this way, modules isolation and confidentiality are restored, as no
attacker can exploit the DMA bus to tamper with the software memory without
rising a violation.

3. Although the solution from above allows to successfully extend DMA capabil-
ities on Sancus architecture, without directly affecting its security properties,
it might be too restrictive. SMs could benefit from using DMA to exchange
data without burdening the CPU. At the same time, this must not invalidate
the security guarantees of the intended modules. Thus, a possible approach is
to allow SMs to voluntarily relax isolation and confidentiality properties for a
confined memory subset inside the data sections, where peripherals with DMA
capabilities - both memory mapped and external ones - are allowed to access.

Even if the proposed solutions differ from each other, a common ground ap-
peared, i.e. the inclusion of DMA interface on PMAs comes with the risk of pro-
viding full access to the system memory, without any CPU control. Thus, the need
to enforce a memory protection mechanism on the DMA bus urgently emerged,
to prevent the system exposure to severe vulnerabilities which would eventually
invalidate SMs isolation and confidentiality.
Specifically, the last proposed solution from subsection 4.5.4 broadened the pos-

sibilities to new ways of including the DMA on PMAs, differing from what proposed
by the counterparts from both the embedded and the high-end world, where the
trend respectively is to not provide PMAs with any DMA support, or to entirely
prevent DMA accesses to protected memory.

A final important remark concerns the Trusted Computing Base (TCB) consid-
ered in each design step. A general goal of the computer security is to keep the
TCB as small as possible. This same approach has been followed in this work, by
trusting only on fundamental components for the fulfilment of Sancus, and leav-
ing outside of the TCB everything concerning the DMA interface, including the
peripherals with DMA capabilities as well as the DMA controller.

Future Work
Future work would primarily focus on the implementation of the solution from
subsection 4.5.4, and on further developments that could possibly originate from it.
To this extent, for example, it would be interesting to investigate the possibility of
allowing SMs to selectively grant access to DMA peripherals to their own "DMA-
allowed" subsets. Most likely, this is unfeasible with the current system model,

90

6.7. ATTACK SCENARIO ON DMA-SECURE SANCUS IMPLEMENTATION

considering that selectivity on peripherals can be achieved only if the arbiter that
rules on them is trusted. In this case, in fact, it could receive and store private
informations, like the identity or the ID, of the module that started - or allowed
- a specific DMA operation; then, it could run it with the same context, i.e. with
the same memory access permissions, of that specific module.
In the system model discussed in this thesis, the arbiter is the DMA controller.

Therefore, the consequences of including the DMA controller into the TCB would
be paramount for the future growth of the architecture, and definitely worthy to
analyse. If the DMA controller can be trusted, then a new scenario opens for
the previously discarded solution, vulnerable to memory access rights escalation
attacks. A trusted DMA controller, capable of storing the ID of the SM module
that requested the operation, could operate memory accesses with the same access
rights of the module itself. Furthermore, if peripherals are provided with IDs, the
controller would be able to selectively grant DMA capabilities to specific devices.

91

CHAPTER 6. DMA CONTROLLER IMPLEMENTATION

92

Bibliography

[1] Pieter Agten, Raoul Strackx, Bart Jacobs, and Frank Piessens. Secure com-
pilation to modern processors, 2012.

[2] G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz. A survey
on 5g networks for the internet of things: Communication technologies and
challenges. IEEE Access, 6:3619–3647, 2018.

[3] Godfrey Akpakwu, Bruno Silva, Gerhard P. Hancke, and Adnan Abu-
Mahfouz. A survey on 5g networks for the internet of things: Communication
technologies and challenges. IEEE Access, 5:3619 – 3647, 12 2017.

[4] Niels Avonds, Raoul Strackx, Pieter Agten, and Frank Piessens. Salus: Non-
hierarchical memory access rights to enforce the principle of least privilege. In
Tanveer Zia, Albert Zomaya, Vijay Varadharajan, and Morley Mao, editors,
Security and Privacy in Communication Networks, pages 252–269, Cham,
2013. Springer International Publishing.

[5] Aaron Ballman. Attributes in c. Open PDF, June 2016. Available at http:
//www.open-std.org/jtc1/sc22/wg14/www/docs/n2049.pdf.

[6] Adam Boileau. Hit by a bus: Physical access attacks with firewire. Online
resource, 2006. Available at https://security-assessment.com/files/
presentations/ab_firewire_rux2k6-final.pdf.

[7] Rick Boivie. Secureblue++: Cpu support for secure execu-
tion. Technical report, IBM Research Report, 2012. Available at
https://domino.research.ibm.com/library/cyberdig.nsf/papers/
E605BDC5439097F085257A13004D25CA/$File/rc25287.pdf.

[8] Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza Sadeghi, Christian
Wachsmann, and Patrick Koeberl. Tytan: Tiny trust anchor for tiny de-
vices. In Proceedings of the 52Nd Annual Design Automation Conference,
DAC ’15, pages 34:1–34:6, New York, NY, USA, 2015. ACM.

93

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2049.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2049.pdf
https://security-assessment.com/files/presentations/ab_firewire_rux2k6-final.pdf
https://security-assessment.com/files/presentations/ab_firewire_rux2k6-final.pdf
https://domino.research.ibm.com/library/cyberdig.nsf/papers/E605BDC5439097F085257A13004D25CA/$File/rc25287.pdf
https://domino.research.ibm.com/library/cyberdig.nsf/papers/E605BDC5439097F085257A13004D25CA/$File/rc25287.pdf

BIBLIOGRAPHY

[9] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and
Raoul Strackx. Foreshadow: Extracting the keys to the intel SGX kingdom
with transient out-of-order execution. In 27th USENIX: Security Symposium
(USENIX Security 18), page 991 –1008, Baltimore, MD, 2018. USENIX As-
sociation.

[10] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Studying mi-
croarchitectural timing leaks in rudimentary cpu interrupt logic. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages
178–195, 2018.

[11] Brian D. Carrier and Joe Grand. A hardware-based memory acquisition pro-
cedure for digital investigations. Digit. Investig., 1(1):50–60, February 2004.

[12] Guillaume Vissian Christophe Devine. Compromission physique par le bus
pci. In Proceedings of SSTIC ’09. Thales Security Systems, June 2009.

[13] Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology ePrint
Archive, Report 2016/086, 2016.

[14] Karim El Defrawy, Daniele Perito, Gene Tsudik, and et al. Smart: Secure
and minimal architecture for (establishing a dynamic) root of trust. In In:
Proceedings of the 19th annual network and distributed system security sym-
posium, pages 5–8, 2012.

[15] Kaspersky Lab Encyclopedia. History of malicious programs. Online re-
source. Available at https://encyclopedia.kaspersky.com/knowledge/
history-of-malicious-programs/.

[16] AB Ericsson. Cellular networks for massive iot: Enabling low power wide
area applications. Ericsson White Paper, 2016. Available at https://www.
ericsson.com/assets/local/publications/white-papers/wp_iot.pdf.

[17] Dmitry Evtyushkin, Jesse Elwell, Meltem Ozsoy, Dmitry Ponomarev,
Nael Abu Ghazaleh, and Ryan Riley. Iso-x: A flexible architecture for
hardware-managed isolated execution. In Proceedings of the 47th An-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO-47,
pages 190–202, Washington, DC, USA, 2014. IEEE Computer Society.

[18] Oliver Girard. openmsp430. Online resource, 2016. Available at http://
opencores.org/project/openmsp430.

94

https://encyclopedia.kaspersky.com/knowledge/history-of-malicious-programs/
https://encyclopedia.kaspersky.com/knowledge/history-of-malicious-programs/
https://www.ericsson.com/assets/local/publications/white-papers/wp_iot.pdf
https://www.ericsson.com/assets/local/publications/white-papers/wp_iot.pdf
http://opencores.org/project/openmsp430
http://opencores.org/project/openmsp430

BIBLIOGRAPHY

[19] LLVM Developer Group. Clang. Online resource, 2016. Available at http:
//clang.llvm.org.

[20] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom. Another flip in the wall of rowhammer de-
fenses. In 2018 IEEE Symposium on Security and Privacy (SP), volume 00,
pages 245–261, May 2018.

[21] Johannes Götzfried, Tilo Müller, Ruan de Clercq, Pieter Maene, Felix
Freiling, and Ingrid Verbauwhede. Soteria: Offline Software Protection
within Low-cost Embedded Devices. In Proceedings of the 31th Annual
Computer Security Applications Conference, 2015. UnivIS-Import:2015-10-
26:Pub.2015.tech.IMMD.lehrst.soteri.

[22] Intel. 8237a high performance programmable dma controller (8237a-5). Online
resource, 1993. Available at https://pdos.csail.mit.edu/6.828/2012/
readings/hardware/8237A.pdf.

[23] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. Sgx-bomb: Lock-
ing down the processor via rowhammer attack. In Proceedings of the 2Nd
Workshop on System Software for Trusted Execution, SysTEX’17, pages 5:1–
5:6, New York, NY, USA, 2017. ACM.

[24] Ramya Jayaram Masti, Claudio Marforio, and Srdjan Capkun. An architec-
ture for concurrent execution of secure environments in clouds. In Proceedings
of the 2013 ACM Workshop on Cloud Computing Security Workshop, CCSW
’13, pages 11–22, New York, NY, USA, 2013. ACM.

[25] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,
Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yu-
val Yarom. Spectre attacks: Exploiting speculative execution. CoRR,
abs/1801.01203, 2018.

[26] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varadhara-
jan. Trustlite: A security architecture for tiny embedded devices. In Proceed-
ings of the Ninth European Conference on Computer Systems, EuroSys ’14,
pages 10:1–10:14, New York, NY, USA, 2014. ACM.

[27] Kaspersky Lab. What is a trojan virus? Online resource. Available at
https://www.kaspersky.com/resource-center/threats/trojans.

[28] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. Meltdown: Reading kernel memory from user

95

http://clang.llvm.org
http://clang.llvm.org
https://pdos.csail.mit.edu/6.828/2012/readings/hardware/8237A.pdf
https://pdos.csail.mit.edu/6.828/2012/readings/hardware/8237A.pdf
https://www.kaspersky.com/resource-center/threats/trojans

BIBLIOGRAPHY

space. In 27th USENIX Security Symposium (USENIX Security 18), pages
973–990, Baltimore, MD, 2018. USENIX Association.

[29] P. Maene, J. Gotzfried, T. Muller, R. de Clercq, F. Freiling, and I. Ver-
bauwhede. Atlas: Application confidentiality in compromised embedded sys-
tems. IEEE Transactions on Dependable and Secure Computing, page 1, 2018.

[30] Pieter Maene, Johannes Götzfried, Ruan de Clercq, Tilo Müller, Felix C.
Freiling, and Ingrid Verbauwhede. Hardware-based trusted computing ar-
chitectures for isolation and attestation. IEEE Transactions on Computers,
67:361–374, 2018.

[31] MarketWatch. Proofpoint uncovers internet of things
(iot) cyberattack. Online article, January 2014. Avail-
able at https://www.marketwatch.com/press-release/
proofpoint-uncovers-internet-of-things-iot-cyberattack-2014-01-16.

[32] Lorenzo Martignoni, Roberto Paleari, and Danilo Bruschi. Conqueror:
Tamper-proof code execution on legacy systems. In Christian Kreibich and
Marko Jahnke, editors, Detection of Intrusions and Malware, and Vulner-
ability Assessment, pages 21–40, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[33] Andrew Martin. The ten-page introduction to trusted computing, 2008.

[34] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter, and
Hiroshi Isozaki. Flicker: An execution infrastructure for tcb minimization.
In Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2008, Eurosys ’08, pages 315–328, New York, NY, USA,
2008. ACM.

[35] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham
Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innovative instruc-
tions and software model for isolated execution. In Proceedings of the 2Nd
International Workshop on Hardware and Architectural Support for Security
and Privacy, HASP ’13, pages 10:1–10:1, New York, NY, USA, 2013. ACM.

[36] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook
of Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1st edition,
1996.

[37] Christian N. Klein Michael Becher, Maximillian Dornseif. Firewire: all your
memory are belong to us. Online resource, 2005. Available at https://
cansecwest.com/core05/2005-firewire-cansecwest.pdf.

96

https://www.marketwatch.com/press-release/proofpoint-uncovers-internet-of-things-iot-cyberattack-2014-01-16
https://www.marketwatch.com/press-release/proofpoint-uncovers-internet-of-things-iot-cyberattack-2014-01-16
https://cansecwest.com/core05/2005-firewire-cansecwest.pdf
https://cansecwest.com/core05/2005-firewire-cansecwest.pdf

BIBLIOGRAPHY

[38] Charlie Miller and Chris Valasek. Remote Exploitation of an Unaltered Pas-
senger Vehicle, 2015.

[39] Job Noorman, Jo Van Bulck, Jan Tobias Mühlberg, Frank Piessens, Pieter
Maene, Bart Preneel, Ingrid Verbauwhede, Johannes Götzfried, Tilo Müller,
and Felix Freiling. Sancus 2.0: A low-cost security architecture for iot de-
vices. ACM Transactions on Privacy and Security (TOPS), 20(3):7:1–7:33,
September 2017.

[40] Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave Clarke,
and Frank Piessens. Secure compilation to protected module architectures.
ACM Trans. Program. Lang. Syst., 37(2):6:1–6:50, April 2015.

[41] Nick L. Petroni, Jr., Timothy Fraser, Jesus Molina, and William A. Arbaugh.
Copilot - a coprocessor-based kernel runtime integrity monitor. In Proceed-
ings of the 13th Conference on USENIX Security Symposium - Volume 13,
SSYM’04, pages 13–13, Berkeley, CA, USA, 2004. USENIX Association.

[42] Dries Schellekens. Design and analysis of trusted computing platforms. Mas-
ter’s thesis, COSIC Research Group at Department of Electrical Engineering,
KU Leuven, Kasteelpark Arenberg 10, B-3001 Heverlee (Belgium), 12 2012.
Section 3.1.2, page 37.

[43] Arvind Seshadri, Adrian Perrig, Leendert van Doorn, and Pradeep Khosla.
Swatt: Software-based attestation for embedded devices. IEEE Security and
Privacy Magazine, 2004:272– 282, 06 2004.

[44] Patrick Stewin and Iurii Bystrov. Understanding dma malware. In Proceedings
of the 9th International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, DIMVA’12, pages 21–41, Berlin, Heidelberg,
2013. Springer-Verlag.

[45] Raoul Strackx, Job Noorman, Ingrid Verbauwhede, Bart Preneel, and Frank
Piessens. Protected software module architectures. In Securing Electronic
Business Processes (ISSE’13), pages 241–251. Springer, 2013.

[46] Raoul Strackx and Frank Piessens. Fides: Selectively hardening software
application components against kernel-level or process-level malware. In Pro-
ceedings of the 2012 ACM Conference on Computer and Communications
Security, CCS ’12, pages 2–13, New York, NY, USA, 2012. ACM.

[47] Symantec. W32.stuxnet dossier. Security Response, February 2011. Avail-
able at https://www.symantec.com/content/en/us/enterprise/media/
security_response/whitepapers/w32_stuxnet_dossier.pdf.

97

https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf

BIBLIOGRAPHY

[48] Seehwan Yoo, Hyunik Kim, and Joongheon Kim. Secure compute-vm: Secure
big data processing with sgx and compute accelerators. In Proceedings of the
3rd Workshop on System Software for Trusted Execution, SysTEX ’18, pages
34–36, New York, NY, USA, 2018. ACM.

[49] Yves Younan, Wouter Joosen, and Frank Piessens. Runtime countermeasures
for code injection attacks against c and c++ programs. ACM Comput. Surv.,
44(3):17:1–17:28, June 2012.

98

Appendix A

Source Code and Installation

A.1 Latest Version Information
Please notice that Sancus is free software. The latest source code of the project is
being actively maintained on GitHub. Specifically:

• The Sancus version provided with secure DMA support can be found at
https://github.com/S3rg7o/sancus-core.

• Some examples written in C, leveraging SMs security guarantees can be found
at https://github.com/S3rg7o/sancus-core. Here, the code for of some
DMA attack examples is reported, too.

• Finally, installation directives, together with the source code and bi-
nary packages for the official Sancus release are respectively maintained
at https://github.com/S3rg7o/sancus-main and https://github.com/
S3rg7o/sancus-support. The software toolchain includes the simulator,
compiler and runtime support libraries. All the provided binary packages
have been tested on Ubuntu 18.04 LTS, but should work on any Debian-
based GNU/Linux distribution.

99

https://github.com/S3rg7o/sancus-core
https://github.com/S3rg7o/sancus-core
https://github.com/S3rg7o/sancus-main
https://github.com/S3rg7o/sancus-support
https://github.com/S3rg7o/sancus-support

APPENDIX A. SOURCE CODE AND INSTALLATION

A.2 Installation Instructions

Listing A.1: Installation instruction for the latest Sancus release. The version
supports a secure DMA interface, in the sense that every Direct Memory Access
to protected memory is detected and prevented by the MAL inside the core.

0. Pull the latest repository from the GitHub page
git clone https :// github .com/ S3rg7o /sancus -main.git
cd sancus -main

1. Install prerequisites
sudo make install_deps # default installation directory for

Clang and msp430 -elf -gcc is /usr/
local

2. Clone relevant Sancus project git repositories
make

3. Build and install Sancus toolchain
sudo make install # Override default security level

(64 bits), use SANCUS_SECURITY =128
SANCUS_KEY = deadbeefcafebabec0defeeddefec8ed
Default installation directory : /usr/local
Set with: SANCUS_INSTALL_PREFIX =dir

4. To remove temporary files , after the installation type:
make clean
make distclean

5. To uninstall Sancus from the system launch the following from
the sancus -main folder

sudo make uninstall

100

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	History
	Problem Statement and Goal of the Thesis

	Background
	Protected Module Architectures
	Program-Counter Based Memory Access Control
	Sancus 2.0
	Overview
	Security Properties
	Attacker Model
	Implementation
	Hardware Implementation
	The Compiler
	Software Stack for Deployment

	Direct Memory Access (DMA)
	Overview
	DMA Interface for OpenMSP430
	DMA Interface - Signals
	DMA Interface - Protocol

	Problem Statement
	DMA on Protected Module Architectures
	Exploitation of Naive DMA Support
	Leak Secret Data
	Inject Malicious Data or Code

	Design and Discussion
	Security Objectives
	Attacker Model
	Overview
	Impact of the DMA on Sancus Security Properties
	Protection of System Memory from DMA Attacks
	No DMA in the System
	Enforce MAL on DMA Accesses
	Exclude DMA from Protected Memory
	Allow Access to Specific Locations inside SMs Data Sections
	Reduce the Register Overhead

	Summary of Memory Access Rights
	Open Problems

	DMA Interface Implementation
	Secured DMA Interface for Sancus on OpenMSP430
	Memory Backbone Modification
	Frontend Modification
	Execution Unit Modification

	DMA Controller Implementation
	Overview of the DMA Controller
	Mode of Operation of the DMA Controller
	Implementation of the DMA Controller
	DMA Protocol - Read Operation
	DMA Protocol - Write Operation
	DMA Controller ASM Chart
	DMA Controller Data Path
	Internal Registers
	Data Buffer

	DMA Controller Driver
	Device with DMA Capabilities
	Overview of DMA Read and Write Operations

	DMA Tesbenches
	DMA Controller Read Branch
	Read from System Memory
	Write to a DMA Device

	DMA Controller Write Branch
	Read from a DMA Device
	Write into System Memory

	Emptying the Controller Data Buffer
	Emptying the Buffer - Output to External Device
	Emptying the Buffer - Output to System Memory

	Attack Scenario on DMA-Secure Sancus Implementation

	Conclusions
	Future Work

	Bibliography
	Source Code and Installation
	Latest Version Information
	Installation Instructions

