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SUMMARY

This work brings together several technology concepts that are rising exponentially in the

plethora of applications that computing has today. Context-awareness is the parent concept

that guides the applications we will discuss here. It relates to all those applications of tech-

nology that enhances whatever provided service with the knowledge that is strictly related

to the user, the surrounding environment, and their properties and situations. Context-aware

technologies are based on the principles that the technology adapts as needed, so that inter-

action with it varies depending on what is more suitable in a particular context. This concept

is tightly related with ubiquitous computing, a term that encloses all those technologies that

have pervasively made their way in countless aspects of our everyday life.

The main goal of this work is to be incorporated into a well-being oriented project, that

wants to enhance the existing technologies related to air quality information, with person-

alized personal exposure to air pollutants. This detail is strictly related to the environment

the user is in, and to the activities they are involved in. What we want from this work is to

find a way to approach the problem of Semantic Location detection and Activity Recognition,

addressing two of the main factors in pollutants exposure: involved activity and microenvi-

ronment.

We focus this work on exploiting the possibilities that mobile device can offer today,

motivated by their pervasive presence in our daily life, their always increasing technological

xi



SUMMARY (continued)

capabilities and their diffusion: more than seventy-five billion devices will be connected to

the internet by the year 2025—this is ten times the Earth population today.

We use onboard sensors on common smartphones to collect motion data for activity recog-

nition, and other sensors and similar information to determine indoor or outdoor positioning.

We exploit the following smartphone sensors and components: motion sensors (accelerome-

ter and gyroscope), microphone, magnetic sensor, radio signal details, light, and proximity

sensors. This approach is supported and inspired by plenty of research literature and tai-

lored to our specific needs. We work with Android devices and aim to build a prototype for

a mobile application that can collect this data from the device and run a machine learning

based model to run inference locally.

For this quite complex machine learning task, we study the possibilities that today’s ad-

vancement in Neural Network and Deep Learning technologies have reached to attempt at a

model that is able to carry out the job. We introduce a less known version of neural networks

called Long Short-Term Memories that are uniquely intended to work with temporal data,

and that today is employed by most of the major technology companies out there for their

top tier products involving machine learning.

Finally, we rely on a solid machine learning programming framework called TensorFlow

and intended from its creator Google itself to help scientist work with machine learning. This

will allow us to quiet easily port the result of this work in a mobile environment.

xii



CHAPTER 1

INTRODUCTION

There was a clear moment in the evolution of Information and Communication Technol-

ogy (ICT) when we started referring to our mobile phones as smartphones. Mobile devices

do more things that just serve as telephones, mostly because the firmware that runs on them

today can be compared to the Operating System (OS) of a computer, thus being able to run

user-developed applications for the most various tasks.

Along with this changes, mobile phones and the applications that run on it, have gained

the property of being context-aware. For long, special-purpose devices have been called

location-aware, as for them to provide functionalities, they were—usually continuously—

aware of the device location; examples of such devices are navigational systems, like the

Global Positioning System (GPS). But today’s devices are more than just location-aware.

Context awareness is a more wide term, that refers to a device, or application, that is

in any mean aware of the context that surrounds the user, and is particularly appropriate for

smartphones, being one of the most important keywords under the big umbrella to which we

refer as Pervasive and Ubiquitous Computing (Section 1.1).

The behavior of a context-aware system is not static; instead, it adapts accordingly to var-

ious pieces of information that constitute the context—location, actions, time, and countless

more.

Dey [18] defines context as follows.

1
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Definition 1.1 (Context). “[. . . ] any information that can be used to characterize the situation of

[. . . ] a person, place, or object that is considered relevant to the interaction between a user and an

application, including the user and applications themselves.”

The most simple form of context-dependent behavior, although very basic, is probably

the adapting of the content of the screen based on the orientation of the device—portrait or

landscape; but the applications are countless: from a navigation application to a game, a key-

baord (spell checking and prediction) to a personal assistant (generating content, recognizing

the user who is asking, getting the right thing done). The scopes context awareness applies

to are various and usually more complex—to cite some of them, we can think of:

• adapting the application’s interface;

• limiting, or choosing, the data the user interacts with to what is relevant in the current

context;

• propose new services, target advertising, adapt the way services are offered, and count-

less more applications.

In this work we study and build a framework for Semantic Location and Activity Recog-

nition (SLAR) to help create a context-aware system for mobile devices. We will have an

overview of the work we want to conduct in Section 1.7, after briefly going through some

background in Sections 1.1 to 1.6 to support our intents.
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1.1 Pervasive and Obiquitous Computing

Ubiquitous Computing—also called Pervasive Computing or Ambient Intelligence—is a

critical concept in Computer Science that refers to the phenomenon of having computation,

in its widest meaning, appear in several different places at any time, in a way that it becomes

extensively "intrusive" in the user experience of everyday life.

Computation is no more limited within computers, smartphones or tablets; instead, it

is embedded in wearables (e.g. smartwatches, glasses), domestic appliances—refrigerators,

thermostats, sensors—and even cars, urban decor, and many other countless entities equipped

with the smallest microprocessor. Those objects are then almost always connected to a net-

work, usually the Internet; this is why we usually refer to all of those with the term Internet

of Things (IoT). In 2015, the number of IoT devices connected to the internet was 15.4 billions;

in 2025, it is expected to be more than 75 billions—that is, almost ten times the current Earth

population.1

Ubiquitous computing and all its various names we just listed, along with several more,

cannot be correctly defined or narrowed down to a precise concept; nevertheless, it is strictly

related with other concepts in Computer Science, like distributed computing, Human-Computer

Interaction (HCI) and Artificial Intelligence (AI). All these concepts—Ambient Intelligence,

1From: www.statista.com/statistics/471264/iot-number-of-connected-devices-

worldwide, visited June 2018.

www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide
www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide
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IoT, and AI are considered among the most promising emerging technologies of the moment

(June 2018) in ICT.2

Pervasive Computing inevitably arises many privacy concerns, the more that the "com-

mon" user, the one who did not major in CS, is in most cases completely unaware of how

much pervasive this computing actually is, and of all the concequences of the case, especially

the ones arising from the pairing of pervasive computing with AI and Machine Learning

(ML); worth mentioning is also the fact that legislation, as complex as it is within all Com-

puter Science, is usually steps behind in regulating user privacy, not being able to stay abreast

with the pace at which technology evolves.

1.2 Activity Recognition

While Activity Recognition (AR) seems a quite straightforward term, its formal definition

is hard to express for it is a more generic concept than it seems. One definition can be as

follows:

Definition 1.2 (Activity Recognition). The science that aims at recognizing the actions of an agent

through the observation of the agents’ actions and environment.3,4

2From: en.wikipedia.org/wiki/List_of_emerging_technologies#IT_and_communications,

visited June 2018.

3From: en.wikipedia.org/wiki/Activity_recognition, visited June 2018.

4In Computer Science, we usually define an agent as anyone, or anything, that has an active role within a

process.

en.wikipedia.org/wiki/List_of_emerging_technologies#IT_and_communications
en.wikipedia.org/wiki/Activity_recognition
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This definition is vague as AR applies to many different fields, and a more strict definition

would not catch its many-faceted nature. Its applications are indeed countless: surveillance,

HCI, healthcare. In all these examples, AR strictly refers to human beings’ activities; having

this in mind we can formulate a more precise definition for Human Activity Recognition

(HAR) given by Yang et al. [64]:

Definition 1.3 (Human Activity Recognition). The ability to interpret human body gesture or

motion via sensors and determine human activity or action.

This sure tells us more of what we actually aim to with HAR, and how we do it. Def-

inition 1.3 introduces a key concept: how does one detect gestures and motion to interpret.

Indeed, the means we dispose of to capture human activities define different approaches.

Widely speaking, there are sensors that record human activities generating various types

of data to be interpreted, and are the sensors and the data they produce that discriminate

different branches of HAR.

Video-based This type of HAR is based on one or more cameras recording the environ-

ment in which the agent moves, generating a sequence of images that are then processed

by the recognition algorithm. While it is simple to deploy as hardware, it is particularly

more complex to work with the collected data, as it requires many steps of processing,

interpretation and feature extraction.5

5Feature extraction: to be distinguished from -selection, the process of deriving new, additional data and values

from the original set of collected data, usually aiming at reducing the dimensionality (i.e. the number of features,
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Depth-based sensors With depth sensor here we refer to infrared sensors or cameras [32].

Depth sensors are deployed around the environment and emit an infrared signal to

detect, through variation in measured depth, agents and their movements.

Wearable-based sensors This last technique uses one or more sensors attached to the

human body in either generic or specific positions. Most commonly used sensors are

motion detectors like accelerometers, gyroscopes, and magnetic sensors [5]. We will

see in Section 2.1 that these sensors can either be special-purpose circuitry or general

purpose devices like smartphones [26], the latter providing an even wider choice of

sensors like ambient information and GPS modules.

All these methods have, like always, their pros and cons; the [5] survey on HAR shows that

the last two methods, with depth and wearable sensors, are gaining a larger share in the HAR

research fiels (as of November 2014). Video-based methods indeed do have particular draw-

backs, like not being fully capable of capturing motions in a three-dimensional environment,

and have more complex and resource-needing requirements to process imagery data [47].

Both RGB cameras and depth sensors have limitations on what the device can actually per-

ceive; the most common issue is occlusion, like backgrounds, shadows, and light conditions

that add noise to the motion detection [63].

also called variables, covariates, or predictors) and the redundancy in the dataset, or to better express an aspect of the

data that carries the same or more information at a less cost, e.g. data variation or other statistical transformations.

Common examples of feature extraction algorithms are PCA, PLS Regression, and LSA.
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Wearable sensors overcome not only the complexity of the processing of camera foot-

prints, but provide cheaper and less intrusive recording mechanisms with higher data variability—

measure different phenomena at the same time—and accuracy, with higher sampling rates

and location-independent—we will come back at this concept in Section 2.1.1.

As true as it is that video-based HAR raises higher privacy concerns, wearable sensors

are not exempt from the matter, or at least more concerning than one might think—we

overviewed this aspect in Section 1.1. On the other hand, the troubling problem of covering

the human body with several, special-purpose measuring sensors, is now being overcome by

using devices with embedded sensors that we already wear everyday without expressing too

many concerns: smartphones, smartwatches, and sports equipement.

1.3 Semantic Location

Location is another key concept in Pervasive Computing, as it determines a crucial aspect

of context-aware systems. Humans have always been concerned with expressing and rep-

resenting location for centuries using maps, coordinates systems, and addresses. But what

semantic location is more concerned about is defining a location not—or not only—by its

georeference; instead, it focuses on classifying locations based on their “meaning”. We might

want, for instance, to classify places under categories like home, restaurant, grocery store, uni-

versity, and similar, to give the location a deeper meaning than just its geographical position

[39, 48].
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Location-aware applications are a precise category within context-aware systems that, in

the same way as other various aspects of Ubiquitous Computing, have made their way into

everyday life, giving birth to what we call Location-Based Services (LBS) [13].

Having an insight of what type of a location the user is at, rather than just its position,

is essential to provide both targeted and quality services. The difference between position-

ing and the semantic location is crucial both from humans and machines. To the extent of

LBS, identifying a location as “40.411692 N, 16.689446 E” or “320 N Morgan Street, Suite 600,

Chicago, IL 60607” has way less meaning than “home”, “workplace”, the restaurant we are

at, or the hotel where we are staying. We will see in Sections 1.7 and 2.2 that here we are

actually less concerned about giving a name to a location like “home” but rather distinguish

between indoor and outdoor environments.

There are plenty of applications for LBS: emergency intervention, healthcare, recommen-

dation systems, navigation, advertising, and a lot more. Just like we said applications and

services vary depending on the user’s context (Section 1.1), they vary depending on their

semantic location, providing service differentiation, quick access, and information and action

filtering.

1.4 Mobile Devices and Limitations

Of course by mobile devices we are talking smartphones: they fit in a pocket and can

be operated with—usually—just one hand; they board a touchscreen display, virtual and

physical keys, speakers, ports, and all needed for basic (and not) functionalities: antennae,
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microphone, sensors, battery, and an always more powerful computing unit: today’s smart-

phones are not much less powerful in computation than mid-level laptops.

Smartphones run an Operating System, in charge of providing telephone functionalities

and executing native and third-party applications, usually referred to as “apps”. This modular

structure has allowed, through the parallel developing of both the OS and the applications,

the growth of the services and functionalities that a common smartphone is capable of pro-

viding: starting from calls and texts, to digital cameras and navigation, to browsing, access

to any kind of online content, to the integration of virtual assistants.

The market-reaching speed with smartphones has been tremendously fast: in 2007, there

were slightly more than 109 million devices that could be called smartphones; in 2016, it was

20 times more, over 2.1 billion. For 2020, it is expected more than 2.8 billion units sold.6

Mobile computing is crucial today, and relies on four fundamental principles:

Portability devices must have an easy mobility, users must be able to carry them around

with no effort; at the same time, they must have sufficient computing capability, mem-

ory, and battery time.

Connectivity is crucial that devices keep their connections—telephone network, internet—

alive as much as possible, despite their fast mobility between network nodes and an-

6From: www.statista.com/statistics/330695/number-of-smartphone-users-worldwide, vis-

ited June 2018.

www.statista.com/statistics/330695/number-of-smartphone-users-worldwide
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tennas; a device moving along with a car or train can change its network Access Point

(AP) every few minutes.

Interactivity devices must be able to interact with one another to provide functionalities,

collaborating and transferring data.

Individuality they adapt to the individual use of its user.

But like most technologies, the growth of mobile computing on smartphones is limited by

issues that the IT world is struggling to overcome:

(i) Bandwidth for Internet access is usually limited on mobile; in the last few years, old

mobile networks like GPRS and EDGE have been replaced with faster technologies like

HSPA, 3G, 4G, and shortly 5G, which is currently being tested worldwide.

(ii) Security is a big issue, enhanced on mobile as smartphones are very often connected to

public Internet APs that do not guarantee an high level of security.

(iii) Power usage is definitely one of the most issues in mobile computing. The goal is to

be able to keep the device going on battery as long as possible. This concern must be

addressed not only by manufacturers but also, and especially, by OS and applications

developers. The most consuming operations for a smartphone are wireless network

connectivity (e.g. calls, browsing, and navigation), screen-on time, and high power

computation (e.g. gaming).

This is not all, other issues arise like accessibility, health and safety, and have been for long

discussed by the research community and the corporate world.
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1.5 Long Short-Term Memories

Long Short-Term Memory (LSTM) are a—possible—building unit of a Recurrent Neu-

ral Network (RNN) (see Chapter 5); RNNs made of LSTM cells are usually called LSTM

Networks or just LSTMs. This particular type of cells was introduced by Hochreiter and

Schmidhuber [28] in 1997 and their work was followed and refined by plenty of literature

work (see Section 2.4). LSTMs are currently largely used as they particularly suit a large

variety of problems in classification and in processing and predicting time series.

What LSTMs do well is to overcome a recurrent problem in RNNs, called the long-term

dependency problem. Put in few words, RNNs struggle to learn long-term dependency

among data, i.e. they hardly keep and use a past information in a future time that is some-

what distant. LSTMs easly remember both short- and long-term dependencies among data

for an arbitrary interval, with a extraordinary, “built-in” functionality that enables them to

decide which pieces of information to keep and for how long, learning the impact on both

near and far points in time—with time, we refer to the succession of data records which have

a temporal nature. LSTMs were also designed to deal with the vanishing gradient problem

giving them an advantage with respect to RNNs and other methods like Hidden Markov

Models (HMMs).

LSTMs are today fundamental pieces of top-notch products and services from major com-

panies like Google, Apple, and Amazon. We will see in Chapter 5 how LSTMs will suit our

problem of Semantic Location and Activity Recognition, the benefits they apport and how

they actually work in better detail (Section 5.4).
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1.6 TensorFlow

TensorFlow™ (TF) is an open source library for High Performance Computing (HPC)

developed by the Google Brain team at Google.7,8 TensorFlow’s paradigm is called dataflow

programming: a program is a directed graph representing (mathematical) operations through

which data flows, similar to the paradigm of functional programming.9,10 TensorFlow runs

both on single devices and on multiple CPUs or GPU and is multi-platform. The name

derives from the term tensor with which the developers identify the data arrays involved in

the computations.

In May 2017, Google announced its second-generation Tensor Processing Unit (TPU),

an Application-Specific Integrated Circuit (ASIC) designed specific for ML with TensorFlow.

TPUs have an high throughput of low-precision arithmetic that deliver up to 180 teraflops,

organized into clusters of 64 TPUs each called TPU pods, for a total of 11.5 petaflops per

7ai.google/research/teams/brain.

8From: www.tensorflow.org, visited June 2018.

9From: en.wikipedia.org/wiki/Dataflow_programming, visited June 2018.

10Directed graph: a set of points called vertices interconnected by links called edges s.t. edges can be traversed along

a specific direction only, and are usually represented as arrows.

ai.google/research/teams/brain
www.tensorflow.org
en.wikipedia.org/wiki/Dataflow_programming
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TABLE I: TENSORFLOW SPECIFICATIONS.

Developers Google Brain Team

Initial release November 9, 2015

Latest stable release 1.10.0, August 8, 2018

Repository github.com/tensorflow/tensorflow

Languages Python, C++, and CUDA

Platforms Linux, macOS, Microsoft Windows, Android, and
website

Licence Apache 2.0 Open Source Licence

Website tensorflow.org

pod [29].11 In February 2018, TensorFlow became part of the Google Cloud Platform suite [30].12

Today, TF is used by more than 40 major companies other than Google itself, including AMD,

NVIDIA, Uber, Qualcomm, ARM and more.13

1.6.1 TensorFlow for Mobile

TF was designed to integrate perfectly with mobile OSs like Android and iOS, helping

developers with complex tasks like speech and image recognition, Optical Character Recog-

nition (OCR), translation and voice synthesis. In May 2017, in occasion of Google’s annual

11Petaflop: a unit of computing speed equal to a million million (1012) of FLOating-point OPerations per Second

(FLOPS).

12cloud.google.com.

13From: www.tensorflow.org, visited June 2018.

github.com/tensorflow/tensorflow
tensorflow.org
cloud.google.com
www.tensorflow.org
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keynote Google I/O, the company presented TensorFlow Lite [60], a more lightweight solution

for mobile devices providing fast inference and small binary size.14

TensorFlow Lite comes with three pre-trained models but only a subset of all the opera-

tors available in TensorFlow; this is the reason why this lightweight version does not meet

the needs of this work, for our ML model needs operators available only in the regular mo-

bile version. We will see throughout this document that this will not lead to performance

degradation.

1.7 Motivations and overview

Now that we have given some background knowledge on some concepts, we can go

through an overview of what this work is about. In order to motivate the objectives, we need

to introduce a larger project that this work aims at supporting.

The goal is to monitor one’s Personalized Exposure to air pollutants combining the latest

technologies in Earth observation and smartphones. The project is carried out by the De-

partment of Mathematics, Statistics, and Computer Science and the Department of Civil and

Materials Engineering of the University of Illinois at Chicago (UIC), partnered by the AirNow

Program of the United States Environmental Protection Agency (U.S. E.P.A.).

According to the World Health Organization (WHO), about 7 million people died in 2012

only for air pollution-related diseases [3], one of which only in China [4]. By mandate of the

Clean Air Act (CAA), the U.S. E.P.A. is in charge of defining National Ambient Air Quality

14From: www.tensorflow.org/mobile/tflite, visited June 2018.

www.tensorflow.org/mobile/tflite
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Standards (NAAQS) for pollutants. The NAAQS define six pollutant measurements: Carbon

Monoxide (CO), Lead (Pb), Nitrogen Dioxide (NO2), Ozone (o3), Particulate Matter (PM10

and PM2.5), and Sulfur Dioxide (SO2).

In 1998, the U.S. E.P.A. initiated the AirNow program, providing real-time information

on localized air quality data, with forecasts and an Air Quality Index (AQI).15 The aim is to

let the public adjust their living habits accordingly to potentially harmful air conditions to

reduce their personal exposure—one might not want to go running in downtown Manhattan

in a week with high levels of PM10, or camp near a field subject to high concentrations of

lead.

The AQI ranges from Good (0–50), when “air quality is considered satisfactory, and air pollution

poses little or no risk”, to Hazardous (301–500), with “health warnings of emergency conditions, the

entire population is more likely to be affected.”.

Pollutants concentration estimates have been continuously improved with high-resolution

satellite imagery, but we are not close already to a personal exposure index. Personal pol-

lutant intake is not only about the AQI in the area people live in, but strongly depends on

other major factors:

(i) The person’s microenvironment, e.g. indoor, outdoor, or in vehicle;

(ii) The activity they are involved in, e.g. running, walking, standing or biking;

(iii) The individual physiology, i.e. age, gender, and health conditions.

15See: www.airnow.gov.

www.airnow.gov
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With this intent, the MY-AIR (Monitor Your Air-pollution Intake and Risk) project aims at

providing users with a personalized exposure index leveraging satellite data with Semantic

Location and Activity Recognition (SLAR) models running on people’s smartphones.

In this very part of the work we aim at designing Semantic Location and Activity Recog-

nition (SLAR) module for a mobile application, which is able to classify user activities and

environment, meeting the limitations of mobile devices in terms of computational capabil-

ities, power consumption and data protection. Combining Semantic Location and Activity

Recognition we will be able to identify these nine categories:

(i) indoor biking

(ii) indoor running

(iii) indoor stationary

(iv) indoor walking

(v) in vehicle

(vi) outdoor biking

(vii) outdoor running

(viii) outdoor stationary

(ix) outdoor walking

1.8 Environment Setup and Tools

This is an overview of the most important tools for the major parts of this work. More

details will be given in each dedicated section.

Android application Android Studio and Android Software Development Kit (SDK) with

API level 26, and smartphone with Android 8.0 “Oreo”

Data preprocessing Python with SciKitLearn, Pandas, and Numpy



17

Model training Keras framework with TensorFlow backend and CUDA, running on a

GPU NVIDIA GeForce GTX 1060M



CHAPTER 2

RELATED WORK AND STATE-OF-THE-ART

In Section 1.7 we have gone through an overview of what this work is about. Before

starting with the details of this implementation, we want to take a look of what the research

community has reached so far in similar work, along with commercial products with similar

purposes.

As the work embraces many aspects that are not necessarly always addressed together,

we will go through the related literature per different sectors, addressing the following main

aspects separately and, whenever possible, together as well:

(i) Human Activity Recognition

(a) special-purpose wearable sensors

(b) location-oriented, special-purpose wearables

(c) Human Activity Recognition on mobile devices

(ii) Semantic Location

• indoor/outdoor detection

(iii) combined Semantic Location and Activity Recognition

(iv) Long Short-Term Memories

18
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2.1 Human Activity Recognition

Activity Recognition (AR), in its most wide and general meaning, has been extensively

approached by the research community, due to the width of contexts it can be applied to.

How we briefly addressed in Section 1.2, AR is a name with a broader meaning that the

one we will refer to, as it also embraces the video-based task in another area of pervasive

computing called Computer Vision.

The specific setting we will be referring to here on—unless explicitly specified—is a

sensor-based AR, where the word sensor identifies a sensing device. These sensors are usually

either embedded in the environment (e.g. IoT, smart houses or, more widely, Ambient Intelli-

gence) or in other devices with a different main purpose; those usually would be devices that

we usually carry on ourselves most of the times: this would be the case for smartphones,

smartwatches, and any other kind of “intelligent” carry-on or wearable appliance [26].

Simple Activity Recognition has been out there for more than a while now, yet accurate

classification of human activities remains a non trivial task and is still a challenging research

area [33]. The task of recognizing human activities strongly depends on the goals of the

classification. The different types of targets for the classification can be as much as we can

think of: we perform a variety of activities during the day, from driving to watching a movie,

from typing to cooking and countless more. If one wanted to carefully classify each action we

take during a day, it would be quite an hard task, so one usually decides on a set of actions

is really interested in and tries to detect them.
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From the selection of the set of activities we intent to infer, arise different problems,

harder in some settings more than in others. For instance, one might want to detect when the

user is watching television, something we commonly do while performing other activities,

like cooking, or having a conversation with someone else in the room [33], which is also a

good example of multi-agent activity, i.e. an activity to whom more than one agent take

part—remember that we defined the agent in the context of Definition 1.2, Section 1.2. In the

work we carry out we will be dealing with mutually exclusive activities (see Section 1.7), thus

concurrent activities will not be a issue we shall take care of.

The largest majority of research work in Activity Recognition prformed during the late

1990s and early 2000s was mostly under the category of video- or image-based AR [68].

Video-based classification suffers of high costs if deployed outside the scope of scientific

research, as it requires the equipment with multiple, good resolution cameras and an unor-

dinary need of computational capacity.

Sensor-based AR has firstly relied on special-purpose, weared sensors to collect motion

data in specific positions on the human body. With special-purpose sensor we indicate any

type of sensor which only serves that particular function or was appositely designed, ad hoc,

for a specific task; special-purpose sensors are usually not integrate within more complex

devices (like a smartphone sensor), instead it usually is an independent unit that most of the

times is bigger than an equivalent, embedded sensor.

A lot of work has been carried out on this type of AR, especially in health care; yet,

wearable, large sized sensors to be strapped, fasten to an arm or chest are not something
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one would desire to live with all day long. Since the exponential spreading of Micro-Electro-

Mechanical Systems (MEMS), research efforts in AR with wearable sensors have largely in-

creased [68], given the ease of data collection from miniature-sized inertial sensors. Then,

since the advent of MEMS–equipped smartphones, many have invested in mining the data

that these sensors continuously produce, firstly for pure functionality purposes, then by app

developers and data analytics companies with the goal of improving context-aware services

and applications with the collected data.

2.1.1 Special-purpose wearable sensors

Plenty of work has focused on AR from motion data generated by special-purpose sensors

fastened to the subject’s body. This type of Activity Recognition relies on the use of wired

or wireless motion sensors applied in a specific position of the body. Most of the work

conducted with this settings is less recent and, for these sensors not being practical to wear

in everyday life, these approaches have an application scope which is mostly academic or

medical, aiming at the monitoring and well-being of patients [35] and elderly [14, 16, 52].

Yang et al. [64] set up a distributed sensor network over the human body for monitor-

ing and recognition; a large number of sensors simultaneously recording data from different

positions introduces a significant complexity overhead in feature extraction, data process-

ing, and classification algorithms: a well-known problem in computational learning usually

referred to as the Curse of Dimensionality [31]. Here, data is highly processed with Fast

Fourier Transform (FFT) and after feature selection, the work showed how the number of

sensors could be easily reduced from 8 to 2 while still achieving a precision of 94 %, reducing
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the cost of both implementation and computation. Yet, the results of the work are strictly

dependent on the position of the sensors on the body.

Najafi et al. [45] in 2003 presented one of the first AR works in medical assistance for el-

derly with non-invasive technology, using one single special-purpose motion sensor strapped

to the chest. Their work consisted in detecting the patient walk time and posture transitions,

i.e. from sitting to standing or lying. Data analysis was performed with signal processing and

transform techniques, of high power computation requirements, that led to accurate results

in activities and posture transition classification.

2.1.2 Location-oriented, sensor-based Activity Recognition

Zhu and Sheng [66] proposes a new approach to recognize indoor human activities with

wearable motion sensor data combined with location data in indoor environments. The

experimental setup involves a motion sensor strapped to the subject’s body and an optical

capture system to detect the subject’s location within a room or a more generic indoor space.

The location data is then used to help the inference of the human activities with a two-step

algorithm that exploits two, differently grained classifications with Neural Networks to infer

basic activities; lastly, the activity is fed to a Hidden Markov Model (HMM) to model activity

sequentiality constraints.

2.1.3 Human Activity Recognition on Mobile Devices

We anticipated in Sections 1.1 and 1.4 how mobile devices are a great tool for AR as they

provide many onboard motion sensors providing various type of data. Since the rise of more

sophisticated smartphones with good precision embedded sensors, the research community
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has begun to exploit these devices. Onboard orientation-aware sensors (e.g. gyroscope and

accelerometer) are shown to improve classification performances of more than 10 % with

respect to special-purpose circuitry [16].

One of the most interesting studies conducted by Dernbach et al. [16] in 2012 shows

how smartphone’s motion sensors are a great alternative to on-body sensors. In this study,

the researchers exploit tri-axial accelerometer and gyroscope—we will describe these sensors

better in Chapter 3. This work points out that smartphone motion sensors provide a great

advantage with respect to on-body sensors in terms of orientation-aware data; this means

we are able to obtain motion data independently of the sensor’s orientation and relative

movement, albeit we must carefully correct the data in order to always meet a fixed coordinate

system; Section 3.2 shows how accelerometer data is corrected for mobile devices and what

the Android APIs provide to perform this task.

Dernbach et al. [16] also show how the classification is improved by implementing a

sliding window classification. An activity is composed of a sequence of movements that

vary over time, therefore to observe a time window of motion data provides a lot more

information than just a simple record at a precise time. Not only sliding windows of data are

shown to be optimal for sensor data, but it is empirically proven that classification accuracy

is stable across different window lengths [8]. They then perform some feature extraction

on the classification window (e.g. mean, variance, minimum, and maximum values) to help

simple classifiers like Naïve Bayes (NB), Bayesian Network (BN), and Decision Tree (DT).
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As pointed out before, one of the most common applications for HAR is healthcare and

well-begin. An example of early work with smartphone sensors was conducted by Lane

et al. [35] in 2011. The work consisted in developing a smartphone application that tracks

sleep patterns, social interactions and activities. For the AR task they made use of combined

values from GPS, accelerometer and microphone, processed with frequency analysis, and

with classifiers like NB and HMM. The Android application disposed of an ad hoc library to

run inference.

Not only research is interested in Activity Recognition but of course big companies that

provide products and services. We are going to take a look to the most common frameworks

for mobile OSs in the market.

Apple iOS Core Motion

Apple’s Core Motion1 is an Activity Recognition framework that provides the means to

access already processed motion-oriented sensor data from onboard sensors. The framework

also provides higher-level data from virtual sensors like steps and other environment-related

events.

Google Android AR APIs

Google’s Activity Recognition APIs for Android2 use short bursts of sensor data collected

periodically to infer user activities through pre-trained ML algorithms. The framework pro-

1developer.apple.com/documentation/coremotion.

2developers.google.com/location-context/activity-recognition.

developer.apple.com/documentation/coremotion
developers.google.com/location-context/activity-recognition
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vides both on-demand activity information and event-triggered notifications called intents

for specifically registered requests.

It is obvious that Google’s AR APIs make an easy-to-use, effortless framework for user

activity, but it might actually not fit everywhere; let us take a look to some key advantages

and drawbacks.

• It is an “out-of-the-box” tool, with all the cons of the case: there are no implementation

details explicitly documented; most of the times are covered by corporate secrecy for

highly valued commercial products.

• Its performances too are not explicitly stated and are hardly guessable, as they strongly

depend on the target activities the developer wants to infer. Nevertheless, differences

in functionality and performances across different API levels3are also unknown and

might be significant, since the developer would not have much control over them. As of

May 2018, only the 4.6 % of Android devices received the latest OS version (Android 8+

“Oreo”), and almost 40 % of the devices had a version less recent than the latest five API

levels (Android 6+ “Marshmellow”), which are the ones that provide means to control

application and service permissions.4

3Each version of the Android OS has a specific API level (or version). Methods may vary across different API

levels, and some might not be available in more—or less—recent levels.

4Data as of May 2018; now second-to-last, as a new version has been released in August 2018; see Table IV.
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• There is no control from the developer’s perspective on the sensors and data used for

the inference, and on whether the data “leaves” the device; some experiments helped

deduct that the framework does make use of GPS and location data, along with other

usage information.

• The framework requires that the end user grants location information to the entire

OS and its depending services, that in Android fall under the name of Google Play

Services; these authorizations allow a pervasive “intrusion” in the smartphone data that

concerned users might not want to share, not only for privacy concerns, but also for the

sake of power consumtion. We will talk again about Android permissions in Chapter 3.

As we said, Google’s AR APIs performances are not of public domain. Zhong et al. [65]

and us tried to infer them for common tasks, and we reached the same conclusions they

did—some information is reported in Table II:

(i) Activity Recognition is characterized by a particular delay: correct recognition takes

from 3 up to 30 seconds, with an average of 18 seconds.

(ii) The stationary class is way less precise than one might think of: it actually is particularly

subject to short jerks that lead to wrong predictions even if the devices remains still. The

inaccuracy is also due to the fact that the prediction is often wrong when the device is

held in hand while being used, and perturbations from typing and swiping induce to

misclassification when the actual class should be stationary. We will see in Chapter 7

that we will be able to build a model that keeps on the stationary class with higher
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TABLE II: CONFUSION MATRIX OF MEASURED PERFORMANCE FOR GOOGLE
ACTIVITY RECOGNITION API.

Class: Actual (down) v.
Predicted (across)

Stationary On Foot Biking Vehicle Unknown

Stationary 52 % 20 % 0 10 % 18 %

Walking 0 85 % 0 0 15 %

Running 0 80 % 10 % 0 10 %

Biking 0 0 68 % 0 32 %

Vehicle 5 % 2 % 4 % 64.5 % 24.5 %

confidence while the phone is being used, with a confidence grater than 90 % threshold

more for than the 80 % of the times.

(iii) The APIs provide the class on foot as the most confident class for both walking and

running; the actual walking or running class is listed as second-most probable activity,

with much lower confidence levels. Tests performed by Zhong et al. [65] report that

walking and running are actually discerned correctly about 66 % and 53 % of the times,

respectively.

(iv) The vehicle accuracy is also low because the recognition results produced while the

vehicle is stopped—e.g. bus stop, traffic light—are often incorrect; the unknown class is

usually given in its stead. This also happens fot biking for the same reasons, where the

class unknown in Table II also includes results that were labeled as tilting.
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2.2 Semantic Location Recognition

The research community has delivered plenty of results in Semantic Location (SL) to

provide diverse and targeted functionality to the user. The main objective of SL recognition

are Location-Based Services (LBS): in the era of data mining, all top firms providing online

services have continuously improved their products using user-generated data about location:

Facebook, Google, Apple, as any app on our devices, or website we visit—the reader can

name it—can, and usually does track our exact location at any time, hopefully after being

granted, with more or less user awareness, the proper permissions, and possibly to the extent

allowed by the law (e.g. Privacy of customer infromation – 47 U.S. Code § 222 [2]).

Semantic Location has been extensively studied in relation to navigation; several efforts

have been made, for example, in indoor navigation [36, 37, 9], which is a challenging task

as GPS technologies are barely usable in indoor environments. Semantic Location tasks also

aim at recognizing the context of the user location: context-aware systems infer the type of

location to provide differentiated services (cf. Section 1.3), e.g. home, workplace, or stores

[39, 48]. These works strongly rely on external data on urban environments like maps, bus

routes and stops, corporate addresses, and more. This is the reason why the most omniscient

and pervasive ubiquitous system now is very likely owned by the Maps division of Google, as

it detains all kind of information on routes, public transportation (including, but not limited

to, routes, stops and time schedules), shops, institutions, and much, much more.
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The reader can now easly imagine in how many way one can define Semantic Locations,

somewhat like what we said for Activity Recognition in Section 2.1. But what we really seek

here is a precise semantic distinction between indoor and outdoor.5

2.2.1 Indoor/Outdoor Detection

Not many works focus on bare indoor/outdoor detection, where with bare we mean that

we seek for a model that is not (necessarily) tied to a location description: we do not have

particular interest on which type of indoor environment the user is in, rather, we are only

interested in whether they are currently performing an activity inside a building or outside

on the street. The research community presents two worth citing contributions to indoor

detection.

The first, from Ravindranath et al. [51] and Wang et al. [61] is strictly dependent on

GPS availability and signal strength. GPS availability is much less reliable in an indoor

environment (cf. Section 3.3) and this inaccuracy of the system can be leveraged to infer

indoor or outdoor positioning. This methods not only suffers from the various number

of situations in which indoor signal might be not particularly shielded, as well as outdoor

GPS precision be lower than usual in some areas; GPS is also the most power-consuming

sensor in mobile devices, making it not suitable for tasks that might run all day long [42].

Furthermore, GPS availability on mobile devices strongly depends on the user enabling the

location services and granting the relative permission to the application (recall Section 2.1.2).

5We are not considering here in-vehicle detection, as we will defer this task to the AR process.
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We will see how we can infer indoor/outdoor positioning with way less power-consuming

onboard smartphone sensors. These sensores are already constantly operating inside the

device, so there is no extra cost in adoperating them. They also are not on the user to control.

The first approach to lightweight I/O detection comes from Li et al. [38] in 2014, a work

called IODetector exploits only low-power sensors available on mobile devices to detect

indoor-to-outdoor transitions and vice-versa. They make use of the data coming from light

sensor, Radio Signal Strength (RSS) and magnetic field sensor (see Chapter 3 for more

details on mobile sensors). This work gives us an insight on what are the possibilities in

terms of mobile sensors that can be leveraged for this task, and how they commonly behave

in indoor and outdoor environments—knowledge that we will embrace almost in full in our

setup.

Yet, this first work approaches the location detection by analyzing the sensors behavior

during transitions, and achieve not extremely high accuracies introducing a stateful algorithm,

which implicates the dependency of a result from previous classifications.

The IODetector weakness due to its hard-coded thresholds for sensor values has been then

overcome by Radu et al. [49] in 2014 with the Poster project. What they did was changing

the type of problem from triggering to classification. They also extended the sensometry of

IODetector with surrounding sound amplitude, battery temperature values, and proximity

sensor.

Radu et al. [49] built up an articulate model combining supervised and semi-supervised

learning techniques enhanced with co-training to achieve a performance of 92 %. We will
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leverage the knowledge on the potential of these additional indicators to build our integrated

SLAR model that will lead to a more accurate result and higher noise resistance with easier

training.

2.3 Combined Semantic Location and Activity Recognition

Although exploiting ad hoc wearable sensors, Raj et al. [50] in 2008 present the first—and

potentially unique—other work in simultaneously detecting both the human activity and the

corresponding semantic location. This work focused on both wearable sensors and GPS data

to infer motion types and semantic location—indoor, outdoor, and in a vehicle, trying to keep

the number of sensors contained. Working with special types of installed sensors implies that

they are worn all day, all over the body, with a sufficient power supply that needs too to be

carried by the user. This work runs a well-contextualized inference that includes usage of

satellite images to define buildings contours for indoor and outdoor detection. The joint

inference of activity, location, and trajectory is achieved with a Dynamic Bayesian Network.

2.4 Long Short-Term Memories

In the last years, a lot of work has been carried out on Long Short-Term Memories

(LSTMs), a particular implementation of Recurrent Neural Network (RNN) showing unique

results in time series data prediction and classification. We went through a brief overview on

LSTMs in Section 1.5, and we will explain later in better detail how they work, motivated by

the work of researchers in AR.

Zhu et al. [67], Liu et al. [40], Wang et al. [62], and Veeriah et al. [59] all propose literature

that shows the benefits of LSTMs in time series data, for Activity Recognition as well. Zhu
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et al. [67] and Liu et al. [40] have studied LSTMs applications to human skeleton visual data

for action recognition, reaching a 90 % accuracy with Deep LSTM models with Dropout for

co-occurrences of movements of joints in skeleton data.6,7

Liu et al. [40] set up a spatiotemporal implementation of LSTMs for 3D skeleton data,

defining a new type of gates for combined spatial and temporal aspects, reaching accuracies

from 93 % to 97 % on different datasets.8

Convolutional Neural Networks (CNNs) have demonstrated an elevated potential in pre-

diction and classification tasks, but they do incur in some limitations, especially when applied

to datasets that lead to gradient vanish, and/or when the problem setting involves time se-

ries, sequential data. In such cases, like a video processing task, common NNs do not catch

the features evolution over sequential time steps; Baccouche et al. [7] in 2011 comments on

how NNs ignore this evolution even when temporal variations are embedded in the data

through features extraction techniques like segmentation or delta records.

In their previous work in 2010, Baccouche et al. [6] show how on a video-based action

recognition task, LSTMs are exploited to overcome the problem of exponential error decay

6Deep model: commonly refers to a Neural Network (NN) with multiple hidden layer; see Section 5.3.

7Dropout: a layer in NNs that “drops” some data in a controlled way, to control bias and variance in the model; see

Section 5.4.

8Gate: a building block of the LSTM cell; see Section 5.4.
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of standard RNNs, and their particular appropriateness for time series data for their ability

to maintain and evaluate the context for more than just one single record.

These works mark a track for our, leading us towards the choise of applying LSTMs

for sensor-generated, time-series data to conjunctively infer Semantic Location and Human

Activities.



CHAPTER 3

MOBILE SENSORS OVERVIEW

In some way, today’s smartphones are way beyond computers. When we introduced the

concept of context-awareness in Section 1.1, we saw that mobile devices sense the environment

around them with more senses than we do: light, radio waves, temperature, sound, vision,

movement, orientation; at this point, they also understand human speech and conversations.

The choice of the word senses is not random: smartphones achieve these goals by means

of sensors, Micro-Electro-Mechanical Systems (MEMS) of very small sizes inside the device.

Sensors are fundamental to allow a comfortable user experience, and to give applications

the opportunity of providing insightful services. Some of these sensors have more hidden

functionalities, like the magnetic field sensor; others, we interact more directly with, like a

camera or a microphone [43]. For all the notions in this Chapter, except where otherwise

cited, please refer to the Android Developer Guides.1

Android sensors provide high-precision measurements at an high rate and with aver-

agely low power consumption. High-precision sensors allow developer to write applications

of various levels of complexity, including high quality games that make use of the device

movements instantly. Table III reports a list of the sensor types currently supported by the

1Android Developer Guide Sensor Overview available at: developer.android.com/guide/topics/

sensors/sensors_overview.

34

developer.android.com/guide/topics/sensors/sensors_overview
developer.android.com/guide/topics/sensors/sensors_overview


35

Android platform (as of June 2017)—supported does not imply that all Android devices

board them, see below.

Android sensors are virtual devices providing the raw data from the actual physical sensors

that the device boards, and are divided in three main categories:

motion capture movements, mainly acceleration and rotation;

environment capture information about the surrounding environment, like light, pres-

sure, and temperature;

position describe the physical position of the devices; includes orientation and magnetic

field.

As for the implementation, we also have two distinct types of sensors:

hardware-based are physical components of the device that directly measure physical

quantities, e.g. acceleration;

software-based also called virtual or synthetic sensors, are not actual components but

they are an abstract representation of a sensors that in truth provide an elaboration of

the data coming from hardware-based sensors; e.g. gravity, which is deduced from

acceleration.

Not all devices share the same set of sensors, and not all smartphone manufacturers

mount the same sensor make and build on their devices. The Android Sensor Framework

(see Chapter 4) allows an application to dynamically query for all available sensor on a device,

their manufacturer, values range, resolution and power requirements.
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We will begin now an overview of the sensors that are more of interest for this work. We

will see in better detail how they work, for what task they can be useful, the use they have

had in related literature, and whether we are going to make use of them with the proper

motivations.

3.1 Introduction to motion sensors

Orientation and motion sensors, also called inertial sensors, are strictly related to the

concept of coordinate system. To understand the value readings of these sensors, we need

to relate them with the correct coordinate system. There are indeed two different coordinate

systems, both represented by three axes x, y, and z, defined as follows.

Global coordinate system Is the coordinate system of the Earth, the one we are more

familiar with. The x axis points towards East, normal to the true North, and tangent to

the Earth’s surface; the y axis points towards the magnetic North, that is approximately

the true North; the z axis points towards the atmosphere, normal to the Earth’s surface.

Device orientation system Is the non-inertial coordinate system of the device.2 Smart-

phones’ orientation system is defined with the smartphone laying on a table, in portrait

(i.e. vertical) mode, with the screen pointing upwards. The x axis is pointing to the

2Non-inertial coordinate system: or non-inertial frame of reference, is a coordinate system whose physics vary

depending on a force (i.e. acceleration) with respect to an inertial one. An inertial frame of reference is either stationary

or moves of a constant speed along a straight line with respect to another inertial one, and has no fictitious forces (e.g.

centrifugal effect).
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right of the device horizontally; the y axis is pointing out horizontally upwards from

the top of the device; the z axis is pointing out the screen towards the sky.

3.2 Accelerometer and Gyroscope

An accelerometer is a devices that measures the proper acceleration of a body in its co-

ordinate system—in this case, the device’s—which is not a fixed coordinate system, instead

the body’s frame of reference defined by its instantaneous rest position. This means that

an accelerometer resting on the Earth’s surface would only measure the force of gravity

g ≈ 9.81 m/s2, along a vertical axis pointing towards the center of the Earth (as in Fig-

ure 4 (a)), and 0 along all axes when in free fall towards the center of the Earth. Ideally,

an accelerometer is composed of a mass connected to springs. When the mass is subject of

acceleration it moves from its rest position, and the distance from the original point along the

three axes gives the acceleration.

A gyroscope is a device that measures orientation and angular velocity. A common gyro-

scope looks like a disk free of rotating along any axis, but MEMS gyroscopes are usually im-

plemented with other technologies, sometimes similar to the accelerometer explained above.

The gyroscope mass is usually vibrating along one axis and, when the device is rotated, it

moves along a different trajectory, based on the theory behind the Foucault pendulum, un-

der the action of the Coriolis effect. The variation is sensed by capacitors producing different

electrical intensities. The angular velocity increases positively when rotating along an axis,

according to the right-hand rule. When the device is steady, the gyroscope should measure

approximately 0 along all dimensions, like in Figure 4 (b). This type of gyroscope is called
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vibrating structure gyroscope, and standardized for consumer electronics by the IEEE under the

name of Coriolis Vibratory Gyroscope (CVG).

Modern accelerometers and gyroscopes embedded in small devices are MEMS and are

basically always present in smartphones and tablets. Their main function is to detect portrait

and landscape mode, but their applications are countless, including complex tasks like games

and camera image stabilization. Higher level chips or applications can process accelerometer

data to provide enhanced information like steps or tilting.

Accelerometers and gyroscopes are exploited in basically any sensor-based Activity Recog-

nition setup. As anticipated in Section 2.1, literature presents mostly works with ad-hoc sen-

sors strapped to the human body [14, 52, 64, 45, 66], but some work uses mobile devices’

accelerometer sensors as well [16, 35]. They are an obvious choice for AR on mobile, consti-

tute trivial detectors of still and motion, and produce distinct intensity values and patterns

for different activities. MEMS accelerometer and gyroscope are both lightweight sensors,

with low power consumption, and produce data continuously.

Figures 1 to 5 report an example plot of accelerometer and gyroscope time series collected

during the five different activities. Accelerometer and gyroscope respectively have always the

same axis scale for sake of ease of comparison. All plots show clear distinct patterns for each

activity. As one can expect, stationary condition is the most straight of all others (Figure 4),

but it is not difficult to spot significant differences in values oscillations in both frequency and

amplitude among the different activities: running (Figure 3 (a)) shows a more chaotic pattern
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and larger values in amplitude than walking (Figure 5 (a)), while the chart for in vehicle shows

smoother transitions (Figure 2 (a)).

Correction of accelerometer coordinate system

The main concern about accelerometers is that the acceleration values are in the device’s

coordinate system (Section 3.1), thus values are tight to the device orientation, biasing the

classification. The AR training process can be "fooled" by the device orientation during data

collection, a problem that has been pointed out by previous work in AR on mobile devices

[57].

Android Sensor APIs provide means to correct the coordinate system. The developer

has to compute a rotation matrix R derived from instantaneous accelerometer and magnetic

sensor data—magnetic field data carry information on the device’s orientation with respect

to the Earth coordinates; see Section 3.4. Once we have the rotation matrix, we can compute

the true acceleration as:

ai
true = Ri × ai

device , (3.1)

where ai
true will be the acceleration in Earth’s inertial frame of reference at time instant i, Ri is

the rotation matrix derived at time i, and ai
device is the acceleration sensed at time i. Both the

accelerations a are arrays of three elements containing the three-axial values of acceleration,

in the form [ax, ay, az], thus R is a 3× 3 matrix.

Ideally, once the accelerometer values have been corrected according to the Earth’s frame

of reference, the acceleration by the gravity g acts mostly on the z axis; in fact, we can observe
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in Figures 1 (a) to 5 (a) that z axis values usually unfold around the value of g. This can be

perceived precisely from Figure 4 (a).

3.3 Positioning Systems

While still in the aspect of motion, the other smartphone module that is natural to think

about is the GPS. As seen in Section 2.2, previous indoor/outdoor detection and activity

recognition systems were GPS-based, as it is a state-of-the-art, extensively developed and

perfected technology in positioning.

The Global Positioning System was born as a project of the U.S. Army and is currently

under control of the United States Government, although similar technologies exist world-

wide; as of December 2016, there are other two Global Navigation Satellite Systems (GNSSs),

the Russian GLONASS and the European Union’s “Galileo”.

For its original military purposes, GPS has been developed with high precision standards

and liability, and has today accuracies to the order of microseconds and millimeters.3 Civilian

accessible technologies are declared to be accurate to 4 meters RMS by the U.S. Government.4

Today’s smartphones are equipped with GPS technologies for navigation features. This

module not only provides the device position in the world, but also its speed. To obtain

the device speed and location, Android Location Services offer two location providers with

different granularity.

3From: www.gps.gov, visited June 2018.

4RMS: Root Mean Square, a measure of the magnitude of the variation of a quantity, a.k.a. quadratic mean.

www.gps.gov
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(a) Accelerometer data for activity biking.

(b) Gyroscope data for activity biking.

Figure 1: Motion sensor data for activity biking.
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(a) Accelerometer data in vehicle.

(b) Gyroscope data in vehicle.

Figure 2: Motion sensor data in vehicle.
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(a) Accelerometer data for activity running.

(b) Gyroscope data for activity running.

Figure 3: Motion sensor data for activity running.
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(a) Accelerometer data for activity stationary.

(b) Gyroscope data for activity stationary.

Figure 4: Motion sensor data for activity stationary.
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(a) Accelerometer data for activity walking.

(b) Gyroscope data for activity walking.

Figure 5: Motion sensor data for activity walking.
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The coarse one is the Network, that provides positioning and speed based on the time

spent on moving from one operator cellular tower to another, based on the information from

the network service provider. This kind of information is rarely used because is extremely

low accurate: it is indeed meaningful only when the device moves among the radius of

operation of different tower cells, i.e. for tens to hundreds of meters, otherwise the reported

speed is always zero, as sustained by collected data.

More accurate, or fine-grained location is provided by the GPS. Speed is inferred by the

rate of change of position, which is derived from satellite triangulation, at the bases of the

GPS technology. We have said before that GPS is highly accurate, but this is an half truth.

Although there probably is no better positioning system outdoors, GPS suffers a lot indoors,

when the satellites are not in a “line-of-sight” with the device: buildings’ concrete and elec-

tronic appliances shield and interfere with the GPS signal. From the data collected for this

work, GPS-generated information is available for less than the 50 % of the time spent indoors,

and even when the GPS signal is available, the reported speed is almost always zero even

when the device is moving significantly. Thus, the Location Services provided speed does

not make a reliable indicator for our model.

We have seen previously in Section 2.2.1 that works like the one by Radu et al. [49] have

exploited the uncertainty from GPS data to infer indoor or outdoor location. The other side

of the medal is that using the phone’s GPS with no insightful information is not always worth

in terms of efficiency.



48

The GPS is an extremely power consuming module—with good confidence, we can say

it is the most power consuming component in the device, let alone the screen. This power

inefficiency is due to the fact that the satellite communication channel has high latency, and

this slow communication costs energy, especially because for the position to be determined

the phone has to "talk" to three different satellites. On Android, the GPS also has the draw-

back of preventing the phone to go in idle state when not in use [42]. The GPS running all

day long on a device would very likely be draining the battery of a common smartphone in

a bunch of hours. These notions are usually known to the average user that suffers from its

smartphone’s short battery life. We will not make use of the speed our model as this will lift

us from graving on the phone’s battery, whilst the model will suffer from less than a 0.5 % in

accuracy overall.

3.4 Geomagnetic Sensor

We pointed out in Section 2.2.1 that we would be taking most of our predictors for in-

door/outdoor detection from the works conducted by Li et al. [38] first and Radu et al. [49]

later. The first indicator we analyze is the geomagnetic field.

A MEMS magnetic field sensor is small magnetometer. They ideally operate measuring a

physical phenomenon called Lorentz force, a combination of both the magnetic and electric

field that affect a charge. When a charge moves at non-null speed in the presence of both

a magnetic and an electric field, it is subject to said force, proportional to its speed and the

intensities of both fields.
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Figure 6: Value distribution for geomagnetic field magnitude.

MEMS magnetic field sensors are present on mobile devices to implement a compass and

support navigation. They measure the ambient magnetic field intensity due to the perceived

Earth’s magnetic field plus disturbances, along three axes, in microTeslas (µT).

Measuring the intensity of the surrounding magnetic field can make a good indicator for

indoor/outdoor detection. It is in fact the disturbances that the device senses that can help us

understand if the device is indoors. When we are surrounded by steel and concrete building

skeletons, and electrical appliances, the Earth’s magnetic field that the sensor measure vary.

This disturbance in indoor environments can be as intense as to be enough, in some proper

setting, to define an actual “fingerprint” of the place [15].
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Magnetic field is not a constant, not even among “undistorted” outdoor environments

around the globe—e.g., magnetic field at the equator and at the poles differ, but the distor-

tion introduced by proximity to electric appliances inside our buildings can be as strong as

more than one order of magnitude [38]. Since we are not interested in the direction of these

disturbances, and for sake of dimensionality, we take in as a descriptor only its magnitude,

or L2-norm, as follows:

|B| =
√

B2
x + B2

y + B2
z . (3.2)

The boxplots in Figure 6 show how the magnetic field magnitude in indoor environments

has a wider range of values with respect to outdoor.

3.5 Cellular Radio

Li et al. [38] suggest that the phone’s cellular Radio Signal Strength (RSS) is an interesting

indicator to exploit for indoor/outdoor detection. Although this is not properly a sensor,

the cellular radio module provides costless information, as it is inevitably always running.

The signal strength information comes indeed from the cellular antenna that provides the

basic connectivity functionalities: calls, texts and internet access. It actually is not an ex-

tremely power-efficient module, as long-range radio connectivity requires some amount of

power to provide a good service, yet reading its related information does not affect the power

consumption it would have either way.

The RSS can be exploited in a similar way as for geomagnetic field; it is in fact leveraging

its limitations that we can infer indoor and outdoor positioning. When we switch context

entering a building, the RSS drops, for the same reasons for which the magnetic field gets
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Figure 7: Radio Signal Strength (RSS) indoor attenuation in decibel.

disturbed: concrete, steel and windows of the building shield the signal, and electronic ap-

pliances interfere with it—e.g. television and other radio transmissions, cordless landline

phones.

The boxplots in Figure 7 show the values of RSS in indoor and outdoor. The signal

attenuation median value, in decibel (dB), is higher (in magnitude) of around 20 dB when

indoors.

Of course the RSS attenuation is not a perfect indicator only by itself; as shown by Chung

et al. [15] and Radu et al. [49], it suffers from outliers generated by different “anomalous”

conditions: the cell tower availability depends on the location; rural areas as well as highly

crowded urban areas suffer a less strong signal even outdoors. Weather condition too influ-
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ences the signal strength. A device can also have good connectivity when inside but near an

open window; finally, connectivity also somehow depends on the device’s antenna technol-

ogy.

3.6 Light and Proximity Sensors

An ambient light sensor is an always present component of smartphones and some other

type of display-equipped technology; it is indeed mainly exploited to adjust the screen bright-

ness level according to the ambient light. Light sensors are implemented with photodiodes or

phototransistors, and are extremely power efficient. An ambient light sensors reading is the

light intensity perceived in luminance (lx).

A proximity sensor can detect the presence of an object in accordance to its proximity. The

distance is usually measured with the emission of an electromagnetic field or infrared rays.

The perturbation of the field, or the difference in time for the mirrored radiation to return

back at the sensor, is translated into distance. Proximity sensors have many applications,

from parking sensors to automatic gates. On smartphones, the proximity sensor is usually

in charge of detecting whether the phone is in a pocket, or held to the ear during a phone

call, thus to prevent unwanted taps on the screen. A common smartphone proximity sensor

reading can either be a distance (in millimeters or centimeters) or one of a range of values

(with a maximum and a minimum value, and at least two—“far” and “near”), depending on

the manufacturer.

Ambient light and proximity sensors provide very straightforward examples of context-

related information. Li et al. [38] suggest that ambient light is a very strong descriptor for
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indoor/outdoor detection. The ambient light reading is crucial because indoor environments

are very differently lit with respect to outdoors—this is, after we discriminate according to

the time of day.

Figure 8: Ambient light indoor and outdoor during daytime and night.

In daytime, indoor ambients have way less luminance than outdoor; this is true even if the

room seems more lit than outside, because the light intensity is different: sunlight frequencies

generate higher luminance than light bulbs [38], thus a cloudy sky will still produce an higher

luminance than a well-lit room, usually hundreds of times higher. Moreover, the sensed

ambient luminance level is almost independent on whether the sensor is pointed at the light
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source [38]. On the left hand side of Figure 8, the two boxlopts show how outdoor light

in daytime is of several orders of magnitude brighter than indoor—note that the luminance

scale is logarithmic.

At night, everything is reversed: outside the darkness produces light intensity values

inferior to the unit, while the house is usually lit. This of course arises one of the concerns

about ambient light as an indicator: for the most part of the time in which we are asleep,

with the lights shut, indoor ambient light is usually the same than outdoors—sometimes it

can even be lower, e.g. when the room has blinds while outdoors there is significant light

pollution. We can see from Figure 8 how night ambient light values outdoors drop below the

values from indoor at night.

The other concern arises from our tendency of keeping the phone in a pocket or bag.

There the light intensity is of course null independently of ambient light. Here is where

the proximity sensor comes at hand. The approach is to detect if the light sensor is covered

through the proximity sensor—they are one next to the other on smartphones. When the

proximity sensor tells that the device is being covered, the last value of ambient light is held

without being updated, until a new value is produced with the device front uncovered.

3.7 Microphone

The last descriptor we introduce is once again suggested by Radu et al. [49] and is again

not properly a sensor. The microphone is a fundamental component in each telecommu-

nication device, as it is necessary to record audio during phone calls. It is today used to

provide also more complex functionalities, the most notable being voice input for commands
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(for both accessibility and hands-free usage) and personal assistant interaction. This makes

the microphone a de facto environment sensor, as it provides insightful information about the

surrounding; it is basically the phone’s ear.

Figure 9: Ambient noise levels for indoor and outdoor.

The reason why the microphone is a useful descriptor for us is because we can exploit the

ambient noise level to distinguish between indoor and outdoor. Outside the ambient noise

is, on average, much higher: there is traffic, wind, construction works, chattering. Indoor

environments do have noise, but is usually less intense and less constant [49]. Figure 9 shows

the distribution of noise levels captured indoors and outdoors.
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Alas, the microphone per se is not a particularly low-power sensor, nor it is always

enabled—although newer smartphones do have always-running microphone-enabled speech

recognition, used to “wake up” the personal assistant; this feature is usually supported by

a low-power co-processor to minimize the power consumption. Nevertheless, we do not

need to be worried about the microphone power usage, as we do not need to record audio

segments. What we need instead is just an instantaneous burst of microphone feedback to

capture the maximum amplitude, and we do not need to process nor save the audio file.



CHAPTER 4

DATA COLLECTION

Before moving on creating the SLAR model we need some data. We have gone through

all the indicators we intend to use in Chapter 3. As we have mentioned, smartphones are

equiped with all the sensors we need, but each manufacturer mounts on their devices sensors

of different make and models, but this is not all. Different OSs provide different means of

reading sensor values, resulting in very heterogeneous data.

Since our target are Android devices, we need data produed by smartphones running

such system. For a wider application, one might also want to analyze the diversity of sensor

data among different Android devices as well. The first step then is to collect “first-hand”

sensor readings in all the scenarios we listed in Section 1.7.

The data collection process requires the development of an Android application, as we

want to read these values in the same way the final application will when running the in-

ference. We need then to start building the “scheleton” of this application in the first place.

Before going into the details of how all data is collected, we might want to go through some

basic knowledge of the Android system and development first.

4.1 Introduction to Android

Android is a mobile Operating System (OS) ideated by the former Android Inc., a company

born in Palo Alto, CA in October 2003 and acquired by Google Inc. in 2005, that is now con-
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Figure 10: Android Open Source Project stack.

tinuing the development. The system is on top of the Linux kernel (see Figure 10), and was

born with the expectation of being flexible and upgradeable [11].1 It is primarly designed

for touchscreen-equipped devices like smartphones and tablets. Today, this category extends,

but is not limited, to televisions (Android TV), cars (Android Auto), and wearable technolo-

gies like smartwatches (Wear OS by Google, formerly Android Wear). In September 2008,

HTC delivers the first Android smartphone as we know them today.

1Figure 10 data from: source.android.com, visited July 2018.

source.android.com
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The promise of a fully upgradeable system as been held, through several major distribu-

tion upgrades; today Android’s latest stable release is 9.0 “Pie”, freshly released on August 5,

2018 for Google’s “homemade” devices Pixels, and new major upgrades are usually delivered

in the third quarter of each year.

Table IV reports an overview of all delivered Android major releases, codenamed, with

their API level and market share among all Android devices.2 This information is precious

for developers; as we will explain shortly, it is fundamental for developers to set a target API

level when developing an application, in order to reach the desired share of devices.

The shares reported in Table IV may not be much significant without talking real numbers.

In its annual keynote held in May 2017, Google announced that the number of monthly

active Android devices—including, but not limited to, smartphones, tablets, TVs, cars and

watches—went over 2 billion units [46], outselling all competitors every year since 2012.

As of 2015, Android was the most installed of all operating systems, including desktops,

outselling all Windows, Mac OS X (desktop) and iOS (mobile) combined, and in 2017 took

away from Microsoft Windows the title of most used OS for internet browsing.

2Table IV data from: developers.android.com/about/dashboards, visited July 2018.

developers.android.com/about/dashboards
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TABLE IV: LIST OF ANDROID MAJOR RELEASES.

Version Code name Release date API level Market share

2.3 Gingerbread Q1/2011 10 0.3 %

4.0 Ice Cream Sandwich Q4/2011 15 0.4 %

4.1 Jelly Bean Q2/2012 16 1.5 %

4.2 Q4/2012 17 2.2 %

4.3 Q3/2013 18 0.6 %

4.4 KitKat Q4/2015 19 10.3 %

5.0 Lollipop Q3/2014 21 4.8 %

5.1 Q1/2015 22 17.6 %

6.0 Marshmellow Q4/2015 23 25.5 %

7.0 Nougat Q3/2016 24 22.9 %

7.1 Q4/2016 25 8.2 %

8.0 Oreo Q3/2017 26 4.9 %

8.1 Q4/2017 27 0.8 %

9.0 Pie Q3/2018 28 N/A
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4.2 Android application development

Like most of the competing mobile OSs, Android is based on running applications (or

more commonly apps for short) available through an official repository called Google Play

Store. In February 2017, the Play Store contained more than 2.7 million applications, for a

total number of downloads of more than 65 billion already in May 2016.

Applications are intended to extend the basic functionalities of the device. Mobile tele-

phones, old models that did basically only provide radio telephone and text functionalities,

were no more than special-purpose devices; now, with the infinite scopes that apps can have,

we can definitely affirm that a smartphone is no less a general-purpose device than comput-

ers.

Application development tools are delivered by the Android developers team through

the Android Software Development Kit (SDK), intended to extend the Java programming

language—sometimes with C/C++ support—so it can be used to develop application that

Android systems can run. The basic native Java and Android libraries, together with more

particular runtime libraries, form the third level in the stack in Figure 10. Android pro-

gramming language support has been recently extended from Java and C++ to Kotlin, a

programming language developed by JetBrains. In 2015, Google and IntelliJ delivered Android

Studio, an Integrated Development Environment (IDE) exclusively for Android development.

New SDK releases usually comes with a new API level, as shown in Table IV. We said ear-

lier that this is relevant to the development: old features are improved or replaced with new
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ones, usually perfectioned in performances and security, and new features are introduced,

even in the aspect of sensor support, as shown in Table III, Chapter 3.

4.3 Reading sensor data

Chapter 3 provides a thorough overview on Android sensors, specifically all the ones

that we intend to exploit to generate our feature set. We have seen how android sensors are

divided into three main categories: motion, environment, and position; we also saw that some

of them are hardware-based and others are software-based.

The Android sensor framework provides different means of accessing sensor values. The

framework is based on the android.hardware package that provides the APIs to manage

each sensor. A SensorManager class is used to extract instances of Sensor objects repre-

senting different sensors available on the device. The Sensor class provides not only the

sensor readings, but all type of information related to the sensor—e.g. make, model, type,

values range. The following sample code is an example of how to create an instance of the

accelerometer sensor.

private SensorManager sensorManager;

sensorManager = getSystemService(Context.SENSOR_SERVICE);

private Sensor sensor;

sensor = sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

if(sensor == null)

System.err.println("Accelerometer not present on this device");
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For most of the sensors, the data collection methodology is the following. The developer

creates an instance of the SensorEventListener interface; this object allows to register a

new sensor listener for a specific sensor instance. Once a listener is registered for a sensor,

two methods are invoked on an event basis: onAccuracyChanged and onSensorChanged,

when the sensor accuracy and values change, respectively. The following code snap shows a

common implementation of the SensorEventListener interface.

public class SensorActivity

extends Activity

implements SensorEventListener {

private SensorManager sensorManager;

private Sensor sensor;

public final void onCreate(Bundle savedInstance) {

super.onCreate(savedInstance);

sensorManager = getSystemService(Context.SENSOR_SERVICE);

sensor = sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

sensorManager.registerListener(this, sensor);

}

public static void onAccuracyChanged(Sensor sensor, int accuracy) {}

public static void onSensorChanged(SensorEvent event) {

float accelX = event.values[0];

float accelY = event.values[1];

float accelZ = event.values[2];

}

}
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This approach applies to all sensors whose values can only be accessed by event-woken

methods; from our set, we have: accelerometer, gyroscope, geomagnetic sensor, light sensor,

and proximity sensor.

An Android application should declare all the hardware feature it is using, to be compli-

ant with the most recent Google Play Store security policies. Hardware features are declared

in a AndroidManifest.xml file as follows.

<uses-feature android:name = "android.hardware.sensor.accelerometer"

android:required = "true" />

The data from a SensorEventListener class cannot be retrieved on demand, instead the

values must be collected and, if required, stored whenever it is “produced” by the framework.

Since we want to take a snap of all sensor values at once at a given point in time—e.g. every

250 ms—we want to produce a record with the most recent sensor readings at that time.

To achieve this, we set up a thread synchronization scheme. A system Task thread starts

periodically at a given interval, acquiring one or more locks protecting the variables holding

sensor values. The thread then builds up a record with all data, a timestamp and some other

details; it then writes the record on a file in system storage—and in case on the screen too.

Finally, the thread releases the locks.

When a SensorEvent is triggered by a sensor, the onSensorChanged() method is invoked

and passed the SensorEvent object. The method checks for which sensor has triggered the

event with the event.sensor.getType() method, acquires the lock protecting the related
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variable(s), and stores the newly produced value(s) for such sensor; then releases the lock.

The following code is a real example on how this is achieved.

Recall from Section 3.6 how we intend to update the ambient light value only when the

phone is not in a pocket or bag through the information from the proximity sensor; we use

the following code to show how this other goal is achieved as well.

Note that event.values is a float[] array of at least three values. One-valued sensor

data are stored in event.values[0], three-axial sensor data are stored in the first three

element as shown in the previous code snap.

private ReentrantLock lightLock = new ReentrantLock(true);

private ReentrantLock proximityLock = new ReentrantLock(true);

private float lightValue;

private boolean inPocketMode;

/* ... */

public void onSensorChanged(SensorEvent event) {

synchronized (this) {

if (event.sensor.getType == Sensor.TYPE_LIGHT) {

if (lightLock.tryLock()) {

/* only update if out or pocket and not on call */

if (proximityLock.tryLock()) {

if (!inPocketMode)

lightValue = event.values[0];

proximityLock.unlock();

}

lightLock.unlock();

}

}

/* manage other sensors ... */
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}

}

Other data instead can simply be accessed on demand. To retrieve the Radio Signal Strength

in decibel, the Android framework provides a TelephonyManager class to access details

about the cell phone radio. The class provides the method getAllCellInfo() to retrieve

a List<CellInfo> of all the supported cell types—GSM, LTE, CDMA, and WCDMA. Under

normal circumstances, the phone is connected to one single cell of a precise type, that can be

identified with the isRegistered() method. The CellInfo.getCellSignalStrength().

getDbm() provides the RSS value in decibel. The following is an example of how to read this

value.

import android.telephony.*;

private float rssValue;

private TelephonyManager telephonyManager =

getSystemService(TELEPHONY_SERVICE);

try {

for (CellInfo cellInfo : telephonyManager.getAllCellInfo())

if (cellInfo.isRegistered())

rssValue = cellInfo.getCellSignalStrength().getDbm();

} catch (SecurityException se) {}

We still need to be able to get the ambient noise amplitude level. We can access the de-

vice’s default microphone—this means either the built-in microphone or an headset/speaker—

at any moment through the MediaRecorder class. As we anticipated from Section 3.7, we

really do not need to save nor process an audio file; we can infact discard any recording
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as long as we catch the current noise level. We will not either leave the microphone run-

ning at all times. The MediaRecorder class is then instantiated, selecting the default audio

source and redirect the output on /dev/null.3 A MediaRecorder class has the start() and

pause() methods to access the microphone and the getMaxAmplitude() method to get the

maximum amplitude in decibel of the current burst of audio being recorded. The following

snap of code is a sample usage.

import android.media.MediaRecorder;

private MediaRecorder mediaRecorder;

private float micAmplitude;

try {

mediaRecorder = new MediaRecorder();

mediaRecorder.setAudioSource(MediaRecorder.AudioSource.DEFAULT);

mediaRecorder.setOutputFile("/dev/null");

mediaRecorder.prepare();

mediaRecorder.start();

micAmplitude = mediaRecorder.getMaxAmplitude();

mediaRecorder.pause();

} catch (IOException ioe) {

} catch (IllegalStateException ise) {

} catch (SecurityException se) {}

3Null device: is a device file discarding all data written on it as a successful write operation. It corresponds to /dev/

null in Linux distributions.
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Of course when we collect training data we want to label it at the moment. We will have

to tell the application which of the nine actions listed in Section 1.7. The application’s graphic

user interface will display radio boxes for activity selection and a checkbox for indoor/out-

door labeling.

4.4 Android permissions

Some of the code snaps in Section 4.3 are surrounded by try-catch blocks handling a

SecurityException. This is a direct consequence of the Android permissions management

framework, introduced with Android 6.0 “Marshmellow” (API level 23). Some sensitive

operations within the OS are protected by permissions—e.g. access to camera, microphone,

file system, and position. An application must declare all the permissions it will ever need in

the AndroidManifest.xml file, as follows:

<uses-permission android:name="android.permission.RECORD_AUDIO" />

The application must then explicitly require each necessary permission to the user at

least the first the permission in used. The user is prompted with a pop-up request like in

Figure 11, where they can either grant it or deny. This allows the user to have full control

over what the application has the ability to access. Permissions can be revoked at any time

by the user, and some Android distribution show statistics on when the application accesses

a permission-protected feature.

The following sample code proceeds with the request of all the permissions listed with

the previous declaration example. The onRequestPermissionResult method is invoked
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Figure 11: An Android application requesting a permission.

each time the user takes an action on a group of requested permissions like in Figure 11. Per-

missions must be checked each time the application starts, as they could have been revoked

by the user after the previous usage, or the application data holding the permission results

could have been erased. Table V lists all the permissions used by this application.

private void requestAllPermission() {

try {

requestPermissions(Arrays.stream(getPackageManager()

.getPackageInfo(getPackageName(), PackageManager.

GET_PERMISSIONS)

.requestPermissions)

.filter(p -> checkSelfPermission(p) != PackageManager.

PERMISSION_GRANTED)

.collect(Collectors.joining(",")).split(","), REQUEST_CODE);

} catch (PackageManager.NameNotFoundException e) {}
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}

@Override

private void onRequestPermissionResult(int requestCode, @NonNull String

[] permission, @NonNull int[] grantResult) {

for (int i = 0; i < grantResult.length; i ++)

if (grantResult[i] == PackageManager.PERMISSION_GRANTED)

Log.d("PERMISSIONS", "Permission " + permission[i] + " granted.")

;

}

TABLE V: LIST OF PERMISSIONS USED BY THE APPLICATION.

Permission Motivation

ACCESS_COARSE_LOCATION Access the TelephoneManager to collect the RSS. This
permission is required as this class provides means of
accessing network-provided, coarse-grained location, as
explained in Section 3.3.

READ_EXTERNAL_STORAGE Read previous data and setting storage files from file
system.

RECORD_AUDIO Required to access the device’s default microphone.

WRITE_EXTERNAL_STORAGE Write sensor data and classification result on file system.



CHAPTER 5

CHOOSING THE CLASSIFICATION MODEL

Once we have implemented our data collection application, what is left before the clas-

sification task is to generate a dataset with sufficient samples for all the classes of interest.

Running the application described in Chapter 4, we are left with a collection of records with

the following format:

timestamp The date and time at which the record was generated; this information is

not only important to reconstruct sequences, but the hour of day is used as feature to

support the light predictor (cf. Section 3.6).

activity The label for the activity assigned to this record during data collection.

acc_x, acc_y, acc_z The values of the three-axial accelerometer.

gyro_x, gyro_y, gyro_z The values of the three-axial gyroscope.

indoor The label for indoor or outdoor assigned to this record during data collection.

lux The luminance value from the light sensor.

mag_x, mag_y, mag_z The values of the three-axial geomagnetic sensor.

cellStrenght The value of the Radio Signal Strength (RSS).

mic The maximum amplitude recorded by the microphone.

71
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We are now ready to go on and find a suitable model. The classification is the problem of

assigning each instance of data (also called records or points) in the dataset (called population)

to one in a set of classes or categories. For sake of clearity, this is the set of classes we already

introduced in Section 1.7:

(i) indoor biking

(ii) indoor running

(iii) indoor stationary

(iv) indoor walking

(v) in vehicle

(vi) outdoor biking

(vii) outdoor running

(viii) outdoor stationary

(ix) outdoor walking

5.1 Introduction to Machine Learning

Back in 1959, the computer scientist Arthur L. Samuel coined the term Machine Learning

(ML) to indicate the “automated detection of meaning in data” [55] during its pioneering studies

in computer game theory [1]. Since then, ML has shown a continuous evolution in every

field of computation, addressing more and more different problems of various complexity,

but at the ending the goal is the same: automated learning from data. Machine Learning is the

fundation of Artificial Intelligence (AI). An agent is said to be intelligent if it has the ability to

learn. What learning refers to is the ability to progressively improve the performance of a

task execution from the data.
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Definition 5.1 (Learning, machine-, Mitchell [44]). A computer program is said to learn from an

experience E with respect to a task T with performance measure P if, its performance at task T, as

measured by P, improves with the experience E.

Machine Learning is used in both supervised- and unsupervised learning tasks, and has

today countless applications: search engines, spam filtering, human language understand-

ing, self-driving cars, fraud detection, decision support, and more. ML is today the answer

to all those computational problems that are too difficult, if not impossible, to define in a

conventional way by a human programmer or designer [55].

One common and relevant problem where ML fits is learning a classification model,

which is what we need to do for our SLAR task. Exactly as we humans experience the

learning process, in the same way a machine needs to be thought, and the way to do this is

through labeled data. Let X = Rd be the set of data, called instance space, where d is the

dimensionality, i.e. the number of features or descriptors. Then, as we said, the algorithm

will need a set of training data S ⊂ X with their correct classes. What is left to do now is to

find the right learning algorithm for our needs.

There are different ways to classify elements. Most of them are based on discerning the

data points based on the values that their features (or descriptors, variables, or attributes)

assume in a specific instance. Other methods, assign points to a category based on the

similarity between the point and the ones already in the category. A model that achieve

the task of classification is called classifier. Finally, before going through some of the most

common classifiers and their positive and negative aspects (riassumed in Table VI), we need to
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keep in mind that there is not a best ML model, because as stated by Definition 5.1, we always

have to define a performance in relation to a specific task, i.e. all models are not absolutely

better than all the others. This concept is expressed by the “No Free Lunch Theorem”.

Theorem 5.1 (No Free Lunch, Wolpert, 1996). Every classification algorithm has the same error

rate in classifying unseen data, averaged over all possible data generation distributions.

5.2 Common classification models overview and limitations

Classification algorithms have been around for a lot of time and there are several well-

known of them; the first work on classification goes back to the late 1930s with Fisher [19,

20]. All models have their strengths and weaknesses, which usually strongly depend on the

dataset more than on the model itself. An algorithm might be a bad choice for a particular

problem with one dataset, and at the same time the best fit for another dataset. This is

why, even if we will now go through a brief exploration of what is “good and bad” in

some classifier, it sometimes really is a matter of trial and error. Table VI provides a short

introduction on the most common classification models, while we move slightly more in

depth on how they work.
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TABLE VI: OVERVIEW OF CLASSIFICATION MODELS.

Model Advantages Drawbacks

Decision
Tree (DT)

Tree based models, are easy to in-
terpret if trees are not too deep.
Good fit for categorical features
with linear decision boundaries.
Bagging and boosting can reduce
overfit and variance. Provides im-
portance measure for features (e.g.
Gini index, entropy)

Very easy to overfit, performs
poorly with non-linearly divisible
feature space. Variance is not
reduced when features are corre-
lated. Large boosted trees lead eas-
ily to overfitting.

Logistic Re-
gression (LR)

Logistic Regression (LR) is the ex-
tension of Linear Regression with
a qualitative response, is a basic
model that works well on linear de-
cision boundaries and provides a
probability value for the outcome.
Model usually have low variance.

Usually suffers from high bias, not
suitable for data with high variance
and outliers, is highly dependent
on the training data.

Naïve Bayes
(NB)

Is probably the easiest model avail-
able. Extremely easy and fast to
build and can fairly handle high di-
mensionality.

Is based on the assumption of inde-
pendence of the features and gets
worse as the dependency among
features gets stronger. Suffers from
multicollinearity.

Neural Net-
work (NN)
and Deep
Learning
(DL)

Are quite always the best choice
when dealing with non-linear deci-
sion boundaries and a large feature
set (high dimensionality). Due to
their not-so-easy implementation,
there are a lot of open source li-
brary to help implementation.

Requires features to be reduced to
numerical and cannot handle miss-
ing data. Require more time and
computation to learn the model
and the result is non meant to be
human readible, becomes a black
box. Not easy to train for the high
number of parameters to tune.

Continues on next page
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Continues from previous page

Model Advantages Drawbacks

Random For-
est (RF)

Random Forest (RF) is an ensam-
ble method with multiple DTs. Im-
proves bagging when features are
correlated and reduces variance in
DTs.

Same as DTs, plus less easy to in-
terpret visually.

Support Vec-
tor Machine
(SVM)

Performs similarly to LR, bet-
ter with non linear boundaries
through a careful choice of the
kernel. Handles high-dimensional
data.

Can be subject to overfit and distur-
bance from outliers depending on
the kernel and margin chosed.

Ends from previous page

5.2.1 Decision Trees

Decision Trees (DTs) are probably the most easy model to understand, because they

can be drawn and visualized so easily that, given a graphic representation of a grown tree,

we could easily classify a new instance just looking at the tree without any computational

support. Decision Trees are created discriminating data points based on their features in a

simple way: at each level of the tree, a split—the path from a parent node towards one of its

child nodes—represents a choice among a value (categorical features) or a range of values

(numerical features) for one specific feature, or combination of them. The split attribute is

chosen on a “best fit” basis, where best is defined according to different policies (e.g. entropy,

Gini index).

DTs suffer from high bias. To reduce overfitting, the most two important methods are early

stopping, i.e. halting the tree growth after a predetermined number of maximum levels, or
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TABLE VII: OVERVIEW OF CLASSIFIERS PERFORMANCES

Classification Model
Dataset and approach

SL only AR only SLAR
post-combined

SLAR
pre-combined

Decision Tree (DT) 97 % 86 % 83 % 77 %

Deep Learning (DL) 97 % 89 % 86 % 94 %

Logistic Regression (LR) 92 % 72 % 66 % 80 %

Naïve Bayes (NB) 84 % 80 % 68 % 83 %

Random Forest (RF) 91 % 75 % 68 % 74 %

when the split gain reaches a certain threshold, and pruning—as in cutting of branches—the

tree after a full growth. We usually look for a short tree with possibly not too many branches

at each level.

Decision Trees are a perfect fit when the data can be separated according to splits parallel

to the axis. Imagine a dataset with two numerical features x and y. If the data is separable

according to multiple splits like x 6 x0, then a DT will perform just fine, but things get

tougher when the separation boundary assumes forms like x 6 x3 − x2 or worse.

5.2.1.1 Random Forest (RF)

To overcome some of the limitations of Decision Trees, statistical learning proposes an

ensemble method called Random Forest (RF). Ensemble methods are combinations of simpler

algorithm, and a Random Forests are, like the name suggests, collection of Decision Trees.

The single DTs are trained with different parameters one from the other, and the result of the
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classification of an instance with a Random Forest is usually the mode of the classes output

by each single tree in it. The learning process differs from the bagging algorithm—random se-

lection of a subset of points—because the random subset is defined on the features set at each

split of the tree growth. This method can lead to an increase in variance keeping bounded the

bias that DTs have due to their tendency to overfit on the training data, but this improvement

is not strictly guaranteed and introduce a complexity in the model understanding that was

typical of DTs.

5.2.2 Logistic Regression (LR)

The Logistic Regression (LR) is a model that derives the odds of the probabilities of an

event from a function that is a linear combination of—assumed—independent predictors.

LR is by definition a binary decision method, but its multinomial extension can be used for

categorical predictions instead. Logistic Regression has multiple common application fields,

most notable are medical and social scences, where it is used to evaluate risks for medical or

financial conditions given some parameters for individuals [12].

At the basis of multinomial LR, stands the following equation:

f (k, i) = β0,k + β1,kx1,i + · · ·+ βM,kxM,i

= β0,k +
M

∑
j=1

β j,kxj,i

(5.1)

describing the probability of the category k for the i-th record, where the values βm,k are

called regression coefficients, each associated with the m-th predictor xm,i.
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Logistic Regression is not a particularly complex model, and allows some degree of un-

derstanding of the problem by reading the learned regression coefficients for each predictor

from Equation (5.1) as weights of such variable in the final outcome. But it does not always

fit the problem. In the first place, LR makes some assumptions; the most important one

is the case-specificity of the data—each independent predictor assumes a specific value for

each case. Like most of the classification models, the independence expressed in the previous

statement is not to be read as statistical independence of the predictor (differently from, for

example, the Naïve Bayes classifier), yet collinearity should be significantly low among the

predictors. Logistic Regression usually suffers from an high bias, and thus does not perform

well on data with high variance and with a significant presence of outliers.

5.2.3 Support Vector Machines (SVMs)

A Support Vector Machine (SVM) is a classification model based on separation bound-

aries; it is commonly adopted for several tasks like text and image classification, hand writing

recognition, outliers detection and biology applications. When learning an Support Vector

Machine (SVM), we usually map data points into a space in which they are likely to be

separable; then the SVM tries to figure out a separation boundary able to keep samples of

different classes apart with a certain gap.

If we have an n-dimensional dataset, than this task corresponds to finding an (n − 1)-

dimensional hyperplane; if a separating hyperplane exists, then there probably exist more

than one. In such a case, we might want to find the one such that the separation margin
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between the two or more classes is as wide as possible; we call this the maximum-margin

hyperplane.

If a separating hyperplane cannot be found for a specific set of data, than the common

procedure is to define a kernel function ker(x, y) that remaps the feature space into a (usu-

ally much) higher dimension space, in the hope of “spacing” the points enough to find an

hyperplane through them. Another technique, can consist in define a soft margin that al-

lows certain data points to cross the decision boundary set by the hyperplane, falling into a

category different than the one they belong to.

In many cases, if the data is hardly separable, finding such hyperplane can become com-

putationally hard, and the model becomes less and less understandable and scalable, while

also reaching overfit. Depending on the data, the kernel function and the type of margin

(hard or soft), the SVM can particularly suffer from outliers and noise.

5.3 Introduction to Deep Learning

Back in Section 5.1, we introduced the concepts of Artificial Intelligence (AI) and Machine

Learning (ML), and what we refer to with the words intelligence and learning in comput-

ing. Scientists began to wonder whether machines would ever come to think long before we

ever built one. Not extremely surprisingly, the most successful path towards what we call

today Machine Learning, was born from a mathematical attempt of emulating the human

brain—more specifically, the biological network of neurons: we call them Artificial Neural

Networks, or more shortly just Neural Networks (NNs). Since then, progresses in biological
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Figure 12: Representation of a simple Neural Network.

neural networks have helped the progress in artificial ones and, surprisingly, the other way

around as well.

A Neural Network is an interconnection of nodes named neurons through which input

data flows up to terminal nodes, and can be represented in a network like the one in Figure 12.

In one way or another, depending on the learning process, the algorithm assigns a value to each

neuron representing a weight. Neurons are organized in sequential levels called layers, each

level performs a certain function on data coming from the previous level, which is combined

of matricial products between data and weights and summed up across all units. The first
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Figure 13: Anatomy of a simple neuron.

layer of a NN is called input layer and usually assumes the form of a vector x ∈ X ⊂ Rd

(recall the symbols introduced in Section 5.1); the last layer is called output layer and usually

assumes the form of a vector y ∈ Rc, where c is the number of categories in a classification

task. All the other intermediate layers are called hidden layers, and are vectors of the form

hi ∈ Rdim(hi).

Each neuron is actually made up of different component. We will see in Section 5.4 how

complicate a neuron can get, but for now let us see the basic and inevitable pieces of a simple

cell. As we see from Figure 13, the neuron receives a vector i ∈ Rn of inputs values from

the previous layer of dimension n, with each one of these values associated with a weight

w. The first operation within the neuron is this the summation of the products of each value

and its weight or, in other words, the dot product i ·w. Then, the next step is to apply to

the result of the previous computation, the function proper of this layer. We call this function
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activation function f , which is usually associated with an activation threshold. The result

of this function oj is the either fed to the next layer, or is one output value of the network if

this is the output layer. The neurons can also receive as an additional input a bias value that

takes part in the first summation.

Neural Networks have continuously evolved over time becoming more and more com-

plex as computation hardware got faster and faster. Soon Graphics Processing Units (GPUs)

became a requirement for high standard computation, allowing NNs to grow in size and

complexity so to achieve better results. For size growth we do not only refer to the layers’

dimension, but also to the number of hidden layers. We started to refer to NNs with more

hidden layers as Deep Learning (DL).

Many common ML algorithms suffer from what in statistics is referred to as the Curse

of Dimensionality [31], a well known problematic condition arising when the data has an

high number of dimensions. Increasing number of variables and their dimensions leads to an

exponential increase in data size and complexity, and this complexity is not only due to large

processing tasks. One of the most important consequences of high dimensionality is that the

number of possible combinations for the input x increases while the size of the training data

set does not necessarily do so. This leads to a set X much bigger in size than the knowledge

base set of labeled data S , making it harder to be accurate on an enormous variety of possible

future unseen cases learning on an infinitesimal portion of it.

Different layers of a Neural Network implement different functions to achieve the ex-

pected result, and a multi-layer deep network with large layers allows to build up more com-
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plex functions. This layered architecture is referred to as feature hierarchy, building up levels

of different complexity and abstraction. Deep Learning performs an automatic feature ex-

traction, meaning that relevant information is extracted by the algorithm without the need of

human intervention.

5.3.1 Feedforward learning

Feedforward NNs are a fundamental concept in Deep Learnings. We said before that lay-

ers of a NN implement a function, so overall a classifier is a model that implements something

like y = f ∗(x), as a map of the input to a category. A Feedforward network, more precisely,

implements a function of the form y = f ∗(x; θ), where θ are the optimal parameters defining

the best approximation, that have to be learned.

The term feedforward recalls the concept of the flow of information from the input layer

x through the inner layers hi and out from the output layer y. More importantly, forward

emphasizes the fact that the information “travels” exclusively in such direction, and never

backwards.

We have introduced before the weights that we see in Figure 13. These are the very values

that the algorithm has to learn in order to achieve a more and more precise result. The first

step is to initialize these weights; then, data is run through the network several time, and

each time the model produces a guess for the result, compares it with the expected one, and

based on the achieved error, the weights are updated so to get as close as possible to the

expected result. Every iteration, then, is a different state of the network and is a new model

drawn from the previous ones. Let us imagine to overview the network at the most abstract
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level possible. If we would try to summarize the steps for training it, it would be something

like this:

(i) the network is initialized;

(ii) data flows into the input layer;

(iii) produce a guess: guess = input * weights;

(iv) see what big an error the network has done: error = guess - ground_truth;

(v) compute the needed adjustment based on the weight’s contribution to the error:

adjustment = (weight’s contribution to error)* error;

(vi) apply adjustment and repeat from Item iii.

As shown by Figures 12 and 13, all network nodes receive the output of all the nodes in

the previous layer. This mean that the features are continuously combined with each other,

with different coefficients, combining them together in different proportions. The deeper the

network, the more this phenomenon is accentuated. Combinations that are more relevant,

then, will have higher importance than the less useful ones, producing the effect of automatic

feature extraction that we mentioned earlier.

5.3.2 Gradient descent

The progressive adjustment of weights to meet the desired output that we mentioned in

Section 5.3.1 is an optimization problem. Optimization problem is a set of tasks that aim

at optimizing a certain “goal function” so to reach an optimal result. One of the approaches
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to optimization problems is called gradient descent and is extremely recurrent not only in

Neural Networks.

The term gradient has a meaning strictly related to the slope of a function. If we think of a

function that somehow describes the error we make in the network, then we want to find the

lower point of this function and work with it. This means, we want to find a minimum of the

error. The descent basically means that we “walk” on our function’s plot going downwards,

trying to go as down as possible to reach such minimum. Calculus teach us that to find

minimum points of a function we introduce derivatives, and thus said gradient, which is a

derivative representation of multi-variable functions.

Let us go back a moment to Figure 13. Each time data flows from on layer to another, it

is repeatedly mapped, or transformed, by a new function. The network then is nothing more

than a big chain of nested functions, something in the form of

fn( fn−1(. . . f2( f1(x)))). (5.2)

Recalling the chain rule of calculus,

dz
dx

=
dz
dy
· dy

dx
, (5.3)
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we can express the relation between the error e made by the network and each weight w, by

mean of the activation function a, as

de
dw

=
de
da
· da

dw
(5.4)

so that we are able to determining how changes in the weights affect changes in the activation

function and, thus, the error.

We said in Section 5.3.1 that in feedforward network the information flows only from the

input layer towards the output layer. During the training, this forward propagation produces

a cost J. The back-propagation algorithm makes this cost flow back through the network

layers allowing the gradient computation based on the chain rule in Equation (5.3),1 that we

should generalize Equation (5.3) to the non-scalar case, where x ∈ Rm, y ∈ Rn, g : Rm → Rn,

f : Rn → R, y = g(x), and z = f (y) = g( f (x)); then

∂z
∂xi

= ∑
j

∂z
∂yj

∂yj

∂xi
. (5.5)

Or, to use the proper gradient notation

∇xz =

(
∂x
∂y

)>
∇yz , (5.6)

1Back-propagation is only used to compute this gradient, but the gradient is not used to learn the model.

Instead, another learning algorithm does so, called stochastic gradient descent.
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(a) (b)

Figure 14: A simple Recurrent Neural Network cell represented with a feedback loop (a) and
unfolded (b).

with ∂x/∂y being the Jacobian of g. Going deeper in details on the calculus and performance

of these computation is beyond the scope of this work.

5.3.3 Recurrent Neural Networks

We talked previously about how Neural Networks try to emulate the human brain be-

haviors, even for difficult tasks. But one strong characteristic of the human mind is that its

understanding of what is going on strongly depends on past experience, sometimes from

a very recent past, sometimes longer. Being able to use previous information for future

situation is what makes our thinking process so articulate. For example, while reading a doc-

ument, our understanding of its parts is based on our understanding of previous parts; more

strongly, the understanding of a sentence is based, work by word, by all those who came

before. If scrambling the words in a sentence ends up making no sense for us, so should be

for a NN, whenever it matters. This means that as our thoughts are persistent in our minds,

some pieces of information should sometimes persist in within the model as well.
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Recurrent Neural Networks (RNNs) were introduced in 1985 by Rumelhart et al. [53] for

a better fit in processing sequential data. The concept of having information persist inside

the network is reflected in “loops” as shown in Figure 14 (a). The information does not only

flow through the cell from one layer to another, but also loops back in. A time-division

visualization is shown in Figure 14 (b): each result goes into the same cell at the next time

iteration t + 1.

This chained architecture in Figure 14 (b) suggests their particular fit to sequential data.

Today, RNNs are widely used for applications that enclose a notion of time and sequentiality,

like speech recognition and translation.

5.4 Long–Short Term Memories for time series data

This loop architecture of RNN cells is not always enough to recreate the process of keeping

past information to understand new one. Specifically, the problem is in the word past. Let us

think about these two sentences, where we want to predict the last word:

(i) «I lived in France and can speak good. . . French.»

(ii) «I lived in France before moving to Spain, so I can speak good. . . French.»

In both cases we expect to come up with French, and in the first sentence it is pretty clear,

something a RNN could achieve by looking at the context. But, in the second sentence, the

relevant contextual information is farther away, and is interleaved with similar and confusing

pieces of other information. This abstract exampe makes us think that what we have to

recall in order to understand something in the present, could be in different pasts. There are
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things we need to keep in mind for a longer time than others, and here most RNN models fail.

This problem goes under the name of Long-Term Dependency Problem, and has been first

pointed out by Hochreiter [27] and Bengio et al. [10], and RNNs struggle from it.

We saw already in Section 2.4 that the literature proposes us a good solution to this

problem, called LSTM. A Long Short-Term Memory (LSTM) Network is a “gated” variant of

a RNN, where the term gate replaces the term node or cell for its increased complexity. This

variety of RNNs is particularly suited for time series data, as supported by various research

literature and related work (Zhu et al. [67], Liu et al. [40], Wang et al. [62], Veeriah et al. [59]).

Long Short-Term Memories (LSTMs) were introduced around 1997 by Hochreiter and

Schmidhuber [28] and then extensively studied and refined by a large number of members of

the research community, expecially studying LSTM performances on tasks that were before

not suitable for common RNNs.2

LSTMs were appositely studied to overcome the long-term dependency problem, embed-

ding the ability of holding on a piece of information for a much longer time as a standard

behavior. We saw in Section 5.3.3 and Figures 13 and 14 (a) that a common RNN cell applies

a single function f to its input values, with a feedback loop and an output value. The LSTM

architecture still follows the chain model from Figure 14 (b), but the internal stracture of a

single node gets more complicated, and the node gets the name of gate.

2A non-comprehensive list of research work exploring applications of LSTMs to tasks where RNNs did not

perform well: Baccouche et al. [6, 7], Bengio et al. [10], Graves et al. [25], Schmidhuber et al. [54], Gers et al.

[22, 23], Liwicki et al. [41]. See Section 2.4 for more details.
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Figure 15: Basic architecture of a LSTM gate.

Figure 15 describes the architecture of a LSTM cell. Arrows represent flows of vectors,

from the output of one node to the input of other nodes; the loopback structure from Fig-

ure 14 (a) is obtained by connecting the Ct output to the Ct−1 input of the next step, same

for ht. gray rounded nodes are point-wise operations (sum, product, and point-wise applied

functions); yellow rectangular shapes are NN layers performing a mapping function as those

describes in Section 5.3 and shown in Figure 13; xt and ht are the cell input from the previous

layer and input to the next one, respectively.

Let us get deeper in the LSTM gate anatomy to understand what all the different “pieces”

in Figure 16 are for.



92

(a) Cell state. (b) Sigmoid layers.

(c) Forget gate. (d) Input and tanh gates.

(e) Status update. (f) Output gate.

Figure 16: Different components of a simple LSTM gate.
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• The uppermost flow highlighted in Figure 16 (a), running from Ct−1 to Ct is called

the cell state, or sometimes just cell. The cell state goes through some point-wise

operations—sums and products—that are the means by weach its modifications are

regulated, adding to and removing information from it. The other gates will regulate

which information to add to the state and which to no longer carry along.

• The layers in charge of letting the information through or not are called sigmoid layers,

represented in Figure 16 (b) as yellow rectangles with the σ symbol. They are sigmoid

NN layers followed by products. A sigmoid layer implements a function g : R → [0, 1]

indicating the portion of information to let through, from 0 (none) to 1 (all). There are

three of these gates in the cell, that are in charge of different operations.

• We said the LSTM cell has to decide whether and what information to retain or discard.

The decision of what to discard is made by the first sigmoid layer in Figure 16 (c) that

we call forget gate. It collects the information from the previous output of the cell ht−1

and the current input xt and outputs a number in [0, 1] related to each component of

Ct−1. Each of these 0 to 1 values will be multiplied point-wise to the values in Ct−1, so

values of 0 will get rid of the corresponding value in Ct−1, while a 1 will keep it. In

this way, the previous cell state is preprocessed so whatever information is not relevant

anymore is discarded before proceeding with this iteration.

• After we “forget” what we no longer need, we take care of what new to add to the cell

state. This operation is carried out by the two different gates in Figure 16 (d).
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◦ First, another sigmoid layer implements the input gate. This decides which value

will be updated with the new values from the input.

◦ Then, the tanh layer generates a vector C̃t of candidates for the new values. These

values will be part of the status update. To multiply together these two values

means scaling the new candidates by how much we intend to update each value.

• We need to proceed with updating the previous cell state Ct−1 into Ct. We proceed by

applying the forget step ft to Ct−1, then add the new input generated in Figure 16 (d).

This is done by the connections in Figure 16 (e), implementing the formula

Ct = ft ∗ Ct−1 + it ∗ C̃t . (5.7)

• Finally, we process the output with the blocks in Figure 16 (f). The cell state is scaled

between −1 and 1 by the tanh operator—this is not the tanh layer from Figure 16 (d),

but just a point-wise operation. Then, it is multiplied by the output of the sigmoid gate

ot, as in the formula

ht = ot ∗ tanh(Ct) . (5.8)

Long Short-Term Memories have been proven to be particularly suited for complex tasks

with sequential data. Their most important and widespread applications are:

• speech recognition;

• grammar learning;
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• handwriting recognition;

• human action recognition;

• anomaly detection;

• business model management.

State-of-the-Art LSTMs are currently underneath most high-end products from top-notch

companies. Google uses them for speech recognition, smart assistant and translation; Apple

and Amazon use them for their relative smart assistant too; Microsoft uses them in their AI

products.

5.4.1 Dropout

There are several bagging methods for training Machine Learning algorithms—we men-

tioned it in Table VI for Decision Trees, but this procedure gets computationally expensive

for more complex models like Deep Learning, due to the time requirements to run the model

training multiple times [24].

Srivastava et al. [56] in 2004 introduced a regularization method called dropout that with

basically no computational overhead, provides a similar effect to bagging for complex and

ensemble methods. The idea under dropout is to remove some of the (non-output) units from

a network—this is done as easily as multiplying a unit’s output by zero.

What happens at training time is that each time an example is input to the network,

each input unit is either included or not, with probability pxi , and each hidden unit is either

included or not, with probability phi , where pxi and phi are hyperparameters defined before-
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hand and not correlated with neither the current value of the unit, the current input, nor the

outcome for the other units. Usual values are pxi = 0.8 and phi = 0.5.

5.4.2 Sliding window classification

With a model built to be learning from data evolution over time like Long Short-Term

Memories, it is a natural response to classify batches of sequential records, so that an input

vector to the model represents a short burst of motion data.

As shown in Chapter 2, the research literature suggests that a sliding window classification

can improve performances [8, 58, 17]. By sliding window we mean that, given a longer series

of motion data of length t, we feed the model with a window of w < t records at a time.

Then, we slide the window forward in time of s < w records, so each windows overlaps with

the previous one for w− s records. This helps preserve the time evolution of the data among

multiple classification instances.

Classification on a window of records can bring to more stable classification results: the

impact of slow perturbations. For example, a slow and small movement like moving the

phone on a desk or typing on it, does not induce an error on the classification that should

remain as stationary. In the same way, hitting a pothole while biking or driving should not

impact the classification.

Studies have shown that classification accuracy is stable across different window lengths;

yet, a sufficiently long window is required to capture a possibly complete cycle for different

activity [8]; for example, it take us up to around one to two seconds to take a complete step,

so this is the minimum window length we might want to use.



CHAPTER 6

LEARNING THE CLASSIFICATION MODEL

We introduced the concept of learning in Section 5.1, and following the Definition 5.1 we

know that we need to take the necessary step of letting the model chosen in Section 5.4 learn

from the data collected as in Chapter 4. Each model has its way of learning; that means that

as an instance of the input is fed to the algorithm, it executes different operations proper of

the model to get the information it needs.

We saw in Sections 5.3.1 and 5.3.2 how learning works for Neural Networks and Deep

Learning, and now its time to actually implement this process on a machine. In the follow-

ing sectons we will go through some of the necessary steps for training the model and the

technologies that we dispose of to accomplish this task.

6.1 Environment setup

In the last years, the Python programming language has became a must in data science

tasks. Python is an interpreted language firstly released in 1991 with the aim of emphasize

readability. Most of the things the programmer shall care about with compiled programming

languages, like data types and memory management, are hidden or abstracted in Python, so

that the user focuses more on the problem solving than on the programming itself.

97
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Around Python, developers have created a great system of integrations that allows easy

access to functional tools. For data science settings, Python comes with a variety of packages

to simplify operations. In this work, we adopt mostly four fundamental packages:1

NumPy provides a solid ground for scientific computing. Sometimes strongly-typed con-

struct are necessary in computation, and this package provides a C-based implementa-

tion of data types and operations.

Pandas provides high-performance data structures and analytics tools, incuding time

series data.

MatPlotLib a useful library for plotting quality figures from data, used throughout this

work for most of the figures.

SciKit-Learn a powerful Machine Learning library for Python with support for a lot of

ML algorithms, data preprocessing, and full interoperability with NumPy.

6.1.1 The TensorFlow framework

A great advantage with Python is that it has been enriched with its TensorFlow framework

that we introduced in Section 1.6. TensorFlow™ is an open source library intended for High

Performance Computing (HPC).2 TensorFlow is a complex library that handles distributed

1Numpy: numpy.org; Pandas: pandas.pydata.org; MatPlotLib: matplotlib.org; SciKit-Learn:

scikit-learn.org.

2TensorFlow is an open source project powered by Google and publicly available at tensorflow.org and

github.com/tensorflow. See Section 1.6 and Table I for a wider overview.

numpy.org
pandas.pydata.org
matplotlib.org
scikit-learn.org
tensorflow.org
github.com/tensorflow
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numerical computations [21]. Its paradigm is based on a workflow graph, which makes it a

functional programming language.

TensorFlow is able to exploit multi-Graphics Processing Unit (GPU) enabled servers and

workstations with up to thousands of computational units, making it possible to perform

training and inference with large Machine Learning and Deep Learning models [21]. From

an abstract point of view, TensorFlow gets the computation flow defined in Python, and runs it

in an efficient way, since its underlying code is written in C++. TensorFlow allows automated

and controlable parallelization across different, single- or multi-core Central Processing Units

(CPUs) GPUs, even distributed across several servers. TensorFlow has basically no complexity

limits; it can train models with millions of parameters with billion of records with millions

of features; its so empowered natures comes from its developends as the very underlying

structure of some of the most powerful Google products like Google Cloud Speech and Google

Search itself [21].

TensorFlow is available for all major desktop and mobile platforms. For Python, it comes

with the TF.Learn API tensorflow.contrib.learn that has full compatibility with the

SciKit-Learn library introduced before, allowing an easy data manipulation. Sometimes writ-

ing a TensorFlow model from scratch might not be a very easy task. Here, some powerful,

higher-level libraries come at hand. The most commonly used is Keras , that provides Tensor-

Flow as one of its backend engines.
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TABLE VIII: KERAS SPECIFICATIONS.

Developers François Chollet (founder) and various devel-
opers

Initial release March 27, 2015

Latest stable release 2.2.0, June 7, 2018

Repository github.com/keras-team/keras

Languages Python

Platforms Cross-platform

Licence MIT

Website keras.io

6.1.2 The Keras API

Keras is a set of APIs for Python that allow to handle Neural Networks models from a

very high level.3

Keras can adopt different backends to actually run mathematical operations on top of the

defined models; at the moment it supports TensorFlow, CNTK and Theano. Keras provides easy

modeling of Convolutional Neural Networks and Recurrent Neural Networks and supports

both CPU and GPU computation.

3keras.io.

github.com/keras-team/keras
keras.io
keras.io
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6.2 Data preprocessing and feature scaling

One of the fundamental steps in data mining is data preprocessing. This steps is meant

not only to allow the training process in the first place, but also to significantly improve the

model performances that are affected by improper data.

Raw data indeed usually suffers from some problems that worsen learning and prediction,

e.g. conceptually wrong data records or forbidden values, and sometimes even make these

operations impossible, like missing values. Data preprocessing is a collection of tools that

allows to take control over the data quality and thus is a must-take step before moving on with

the actual data processing. Data preprocessing operations are grouped in five families: data

cleansing, data selection, feature normalization, feature transformation, and feature selection

and extraction.

Data cleansing This is the process of identifying “bad” records that might have been

collected by mistake or happen to contain improper values, for example for a sensor

misreading. In our case, the data cleansing process consists in removing sensor mis-

readings for the accelerometer and gyroscope—recall the dataset structure from the

beginning of Chapter 5. When the magnitude of the acceleration ‖A‖2
2 = A2

x + A2
y + A2

z

is extremely small compared to the gravitational force, say < g2/100, than the value

becomes unreal as it gets closer to free fall, or to values we would only experience near

the pole. We then get rid of these vales as they can affect the classification accuracy.

Feature selection This consists in the step of selecting those features, from those already

in the dataset, that are actually relevant to the classification, leaving out does that do
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not bring any advantage. Less features can lead to a significant reduction in the model

complexity and thus the training time requirement as well. Feature selection in also

the base approach to deal with what we already introduced as curse of dimensionality.

Different methods allow generating some indeces about features relevance, including

Logistic Regression itself (see Section 5.2). All the features collected turn out to be

somewhat significant to the model, both from a mathematical and a conceptual point

of view, for all the reasons explained in Chapters 2 and 3 sustained by the related

literature. Nevertheless, as explained earlier in Section 3.3, we were able to safely

remove the speed component from our records without any significant loss in accuracy

(less than 0.5 % overall); this allows us to still get an accurate model while getting rid

of a dimension that, while still not having a relevant weight in the computation, would

have a significant impact on battery life for the reasons explained in Section 3.3.

Feature extraction Not to be confused with feature selection, feature extraction is the

process of deriving new features from the ones already available in the dataset. Some-

times the input data is unnecessary large, and less dimensions can be derived by feature

extraction by reducing the amount of variable neccessary to explain the data. We per-

formed feature extraction by transforming the three-axial geomagnetic field values into

its magnitude, as we are interested in the perturbation of its magnitude instead of its

repartition along the axis. This transformation is explained in Section 3.4 and Equa-

tion (3.2).
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One necessary step in most Machine Learning problem is that many models require some

data transformation to work. Categorical classification methods need encoding for the classes;

this means we transform the categories to be coded no longer with a name or tag, but as a

binary vector as large as the number of categories; each binary value turns to 1 when that in-

stance belongs to the correspondent class. Python module sklearn provides a LabelEncoder

class for this task.

from sklearn.preprocessing import LabelEncoder

labelEncoder = LabelEncoder()

labelEncoder.fit(y)

y = labelEncoder.transform(y)

Expecially when working with NN, one fundamental step is feature scaling. Having the

network working with big values is not preferable, as it takes away meaning from smaller

values. If different features have a significant difference in value range, features with a shorter

range lose their importance. There are different ways to scale values; the most common one

are standardization—or Z-score normalization, and min-max scaling. Z-scre standardization

rescales all features so that they will all follow a standard normal distribution, i.e. with

mean value µ = 0 and standard variation σ = 1. The standardized value for each instance,

called z-score, is computed as

z =
x− µ

σ
. (6.1)

Recentering all values around 0 is not only useful for the reasons just explained, but are

usually also a conceptual requirement of many ML models.
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6.2.1 Training

Although it might seems we are dealing with two different problems—Semantic Loca-

tion detection and Activity Recognition, we discussed how they can be successfully merged

together in Section 2.3, sustained by works like Raj et al. [50].

In the previous overview on different classification models, in Section 5.2, we presented

results for Deep Learning and other common classifiers in Table VII. The table reports four

results for each model: SL only, AR only, and SLAR, both pre-combined and post-combined.

Post-combined classification means that, after performing the classification on SL only and

AR only, we combine the two subclasses to obtain those of interest. Not too much surpris-

ingly, even if the results for the two separate classifications are the highest, the performances

of all classifiers drop significantly after merging them. The reason is that type-I and type-II

errors accumulate to produce an higher uncertainty.

On the other hand, running the classification on the entire dataset to solve the nine-

category problem as a whole (pre-combined) produces much better results, sometimes as

accurately as the two classifications by itself, expecially for Deep Learning. One of the reasons

for this has its roots in what explained in Section 5.3: Neural Networks, and Deep Learning

(DL) in particular, are unprecedentedly able to decide on the importance of not only each

feature by itself, but on many, complex combination of them. The final concept is that both

SL and AR benefit from each other’s features.

Finally comes the moment for the actual training. As explained in Sections 5.4 and 5.4.2,

we are going to exploit the benefit of batched classification for time series data [8, 58, 17].
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For this goal, we need to reshape the data in segments. We already discussed how Dernbach

et al. [16] shows that classification accuracy is stable across different window size; thus the

values are basically almost arbitrary, but we discussed some considerations to keep in mind in

Section 5.4.2, i.e. that we want a window wide enough to capture the characteristic. repeating

cycle of some activities like walking pr biking.

For this process of reshaping then we choose a number of time steps for each window,

i.e. the window length, and a sliding step, the number of records to shift the window of,

i.e. the number of record going out, and in, each time the window slides. The following

few lines of ython code build up the final dataset after the preprocessing in Section 6.2.4 The

stats.mode()[0][0] in the last line assigns to each window the majority class (mode) of

the classes of all the records belonging to such window.

TIME_STEPS = 16

STEPS = 4

segments = []

labels = []

for i in xrange(0, len(x[:, 0]) - TIME_STEPS, STEPS):

segments.append(x[i : i + TIME_STEPS, :])

labels.append(stats.mode(y[i : i + TIME_STEPS])[0][0])

4The variables x and y in the listing are two numpy 2-D arrays containing the records and the labels,

respectively. The x[a:b, c:d] syntax is a rectangular indexing, i.e. selects the rows from a to b, and columns

from c to d—right end is exclusive. A semicolon ’:’ by itself acts as a wildcard.
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import tensorflow as tf

Listing 6.1: Example of a Keras model definition.

1 import keras

from keras import regularizers

from keras.models import Sequential

4 from keras.layers import *

from keras.initializers import RandomNormal

from keras.utils import np_utils

7

sess = tf.Session(config)

keras.backend.clear_session()

10

models = Sequential()

model.add(

13 LSTM(64, input_shape = (window_length, 11)\caption{},

bias_initializer = RandomNormal(),

kernel_regularizer = regularizers.l2(),

16 kernel_initializer = ’uniform’,

activation = ’relu’)

)

19 model.add(Dropout(0.2))

model.add(

LSTM(64,

22 bias_initializer = RandomNormal(),

kernel_regularizer = regularizers.l2(),

kernel_initializer = ’uniform’,

25 activation = ’relu’)

)

model.add(Dropout(0.5))

28 model.add(Dense(units = 9, activation = ’softmax’))

Listing 6.1: Example of a Keras model definition.
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Now that we have the dataset ready for training, we need to define the model. Keras pro-

vides an easy add method to add layers to the model, as shown in Listing 6.1. The code

creates a model with as first layer an LSTM layer of 64 units and 11 inputs (as the number of

features), and a second one again of 64 units. These two layers have a relu activation function.

Relu stands for Rectified Linear Units. Back in Section 5.3 we introduced activation function,

and referred as them as sigmoids in Section 5.4. The sigmoid is the most commonly used in

ML, but is not the only choice. A sigmoid has a shape of:

f (x) = sigmoid(x) =
1

1 + e−x (6.2)

f ′(x) = f (x)(1− f (x)) (6.3)

Given the sigmoid expression and its derivative in Equations (6.2) and (6.3), the result is that

the maximum value in the sigmoid’s derivative is one fourth of the maximum value of the

function itself; this means that errors are reduced by a factor of four at each layer, that can

result in loss of data. Rectified Linear Units have recently replaced sigmoids in DL, replacing

Equation (6.2) with

f (x) = max(x, 0) (6.4)

rectifying the negative part of the output, in a way that seems to be more similar to the actual

human neurons way of operation. Research has shown that training with relu activation
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functions results in much faster training time [34]. These two layers are interleaved with two

dropout layers, explained in Section 5.4.1.

The last layers instead has a softmax activation function. This is a very common choice

in multinomial classification. A sigmoid provides one result in the [0, 1] interval and thus

can work as an activation function for two classes. The softmax function (or normalized

exponential function) instead divides the result across the different classes, so that each of

their results is in (0, 1] and they together sum to 1. This gives a mathematically correct notion

of class probability, which is the scope of the classification problem. With this function, we

can obtain the output in the best form we can expect:

• once defined a confidence threshold, if there is a majority class that overs it, then we can

take it as the predicted class;

• if not even the majority class has a confidence higher than the threshold, then the result

is considered as the set of all classes with their respective confidence.

This is because the softmax function is compliant to the definition of a categorical probability

distribution:

σ(z)j =
ezj

K

∑
k=1

ezk

j = 1, . . . , K (6.5)

where z is the input from the previous layer, and j references the single output units—in our

case K = 9 since we have nine categories.

Now that the model has been described and the dataset is in the final form, we can

proceed with the training. Is common practice in model training to use validation method for
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parameter tuning and performance evaluation. The most commonly used validation method

is k-fold Cross Validation. The dataset is split in k folds, and the training is repeated k time.

Each time, a different combination of k − 1 folds is used for training, and the left-out k-th

fold is used as unseen data to test the performances. Repeating the process k times results in

using each fold at least once for training and exactly once for validation. This helps reduce

overfitting the model on the training data, that could result in excellent training accuracy

and low test accuracy. Overfitting can also be limited introducing a simple regularization

techniques called early stopping. The training of a NN is an operation repeated several

times, and each time the weights are updated and adjusted to reach a configuration that

provides the desired result. Each iteration is called epoch, and for complex models and

data the training usually involves an high numbers of epochs, in the order of hundreds.

Yet, many times the model reaches a stable state after lesser epochs; after this point, more

training epochs not only incur in westing a large amount of time in keeping on training, but

also leads the model into learning too much from the data we use for training that it gets

overfitted. Early stopping allows the training to be halted when the classification accuracy

remains steady for a certain amount of epochs, assuming that no more benefit would come

out of keeping on training further.



CHAPTER 7

PERFORMANCE EVALUATION

We have seen throughout Chapters 5 and 6 which are the different motivations that led us

to the final model, detailed in ??. Related work and similar research, discussed in Chapter 2,

has firstly led us towards Deep Learning. We saw back in Section 2.3 how different Machine

Learning approach on both the model and the features set affect performances significantly.

In Section 5.2 we saw summarized in Table VII which are the differences in terms of

accuracy for different methods and approach; this data is represented in Figure 17. Since we

choose to run the classification of both Semantic Location and Activity Recognition, for the

reasons discussed in Chapter 5 and supported by the work in Section 2.3, we can see how

Deep Learning is not only the best performing model overall—along with Decision Trees, but

that it is the one that best responds to the combined classification, for the reasons explained

in Section 5.3.

Figure 17 showes how Decision Trees are the ones who suffer the most when classifying

over the entire dataset. When we overviewed classification models in Section 5.2, we saw that

DTs suffer significantly when the dimensionality is high. Also, a linear model like Logistic

Regression has an hard time trying to give sense to complicated data like time series sensor

data: its accuracy in Activity Recognition is significantly lower than in Semantic Location

detection. Overall, all the models, except DTs, perform better when the dataset is combined

110



111

Decision
Tree

Deep
Learning

Logistic
Regression

Naïve
Bayes

Random
Forest

0

20

40

60

80

100

Classification model

C
la

ss
ifi

ca
ti

on
ac

cu
ra

cy
(%

)

SL only AR only SLAR post-combined SLAR pre-combined

Figure 17: Overview of different classification models performances in different settings.

before the classification, while combining the results after makes the overlap of type-I and

type-II errors induce in significantly lower accuracy.

7.1 Model accuracy

The main goal now is to determine how well the model performs. This is a necessary step

to understand if the model we have been training really responds to the problem and how.

The performance of a model are usually tested both on training data and unseen data. The

reason why we firstly look at training data alone, is one important point in model training

and evaluation. The purpose of having well separated training and test data is that we want
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TABLE IX: CONFUSION MATRIX FOR COMBINED SEMANTIC LOCATION AND
ACTIVITY RECOGNITION ON TRAINING DATA.

Class: Actual (down) v.
Predicted (across) In
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Indoor biking 99 % 0 1 % 0 0 0 0 0 0

Indoor running 1 % 97 % 0 2 % 0 0 0 0 0

Indoor stationary 0 0 97 % 2 % 0 0 0 0 0

Indoor walking 0 0 4 % 94 % 0 0 0 1 % 1 %

In vehicle 0 0 1 % 0 99 % 0 0 0 0

Outdoor biking 0 0 0 0 0 99 % 0 1 % 0

Outdoor running 0 0 0 0 0 0 98 % 0 2 %

Outdoor stationary 0 0 1 % 2 % 0 2 % 0 95 % 1 %

Outdoor walking 0 0 0 2 % 0 0 0 1 % 97 %

Confusion matrix reports the percentage of classified samples per class and not the absolute count;
values in bold along the diagonal are the precision of each class. Evaluated over 10-fold CV.

to leave out test data so that we can consider them as unseen, as will very likely be most of

the future data that we will come across after deployment.

The reason is trivial, yet is a very common error in Machine Learning tasks. Training and

testing the model on the entire data available leaves us without a real clue of how the model

will actually behave in the future, and will significantly bias the classifier towards the training
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TABLE X: CUMULATIVE CONFUSION MATRIX FOR
INDOOR/OUTDOOR ON TRAINING DATA.

Class: Actual (down) v.
Predicted (across)

Indoor Outdoor

Indoor 99 % 1 %

Outdoor 2 % 98 %

Confusion matrix reports the percentage of classified samples per
class and not the absolute count; values in bold along the diagonal
are the precision of each class. Evaluated over 10-fold CV.

data. This is the same reason why we introduced Cross Validation in the first place; other

validation methods, like the validation set approach, continuously test the model against the

validation data, allowing information from it to “leak” in the model training each time the

training process is reproduced.

As a first step, then, we evaluate the model during the training phase through 10-fold

Cross Validation as explained in ??. Most common performance measures in classification

are derived from four values, defined for each category of the classification problem:

true positives is the count of instances of the class Ai correctly classified;

true negatives is the count of instances not of the class Ai correctly classified not in the

class Ai;

false positives is the count of instances not of the class Ai misclassified in the class Ai;
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false negatives is the count of instances of the class Ai misclassified as not of the class

Ai.

From this measures, the accuracy is defined as

Accuracy =
# correct predictions

# total predictions

=
TP + TN

TP + TN + FP + TN

(7.1)

It is particularly worth mentioning that this measure is more than often misleading. If we

were to build a model to diagnose rare diseases, an high accuracy is not enough as the model

could be extremely good at telling healthy conditions but just not useful in diagnosing those

rare cases of diseases. This is why accuracy is not a good measures for classification when

the real-world distribution of the data is highly class-imbalanced.

Another simple, yet often more indicative measure is the precision. The precision is

defined for each class of the problem, as

Precision =
# actual positive

# classified positive

=
TP

TP + FP

(7.2)

From the definition in Equation (7.2), follows that the values along the diagonals in the

confusion matrices, marked in bold in Tables IX to XIV, are the precision scores of the relative

class.
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TABLE XI: CUMULATIVE CONFUSION MATRIX FOR
ACTIVITY RECOGNITION ON TRAINING DATA.

Class: Actual (down) v.
Predicted (across) B
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Biking 99 % 0 1 % 0 0

Running 1 % 97 % 0 2 % 0

Stationary 0 0 98 % 2 % 0

Walking 0 0 2 % 98 % 0

In vehicle 0 0 1 % 0 99 %

Confusion matrix reports the percentage of classified samples per
class and not the absolute count; values in bold along the diagonal
are the precision of each class. Evaluated over 10-fold CV.

Let us now take a look at the results tabulated in Tables IX to XIV. The first three confusion

matrices report training performances; the last three are derived from testing the model

on unseen data. The first obvious observation is that precision values on unseen data in

Tables XII to XIV are averagely lower than their relative values on training in Tables IX to XI.

We expect this: the high dimensionality of the dataset, and the high variation range of each

predictor, along with the extremely random nature of the variables, thus so that unseen data

can be significantly different from the training data. We will address more this problem in

Chapter 8. What is important is that classification on unseen data is overall not extremely
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TABLE XII: CONFUSION MATRIX FOR COMBINED SEMANTIC LOCATION AND
ACTIVITY RECOGNITION ON UNSEEN DATA.

Class: Actual (down) v.
Predicted (across) In
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Indoor biking 97 % 0 2 % 1 % 0 0 0 0 0

Indoor running 0 93 % 2 % 1 % 0 0 0 0 3 %

Indoor stationary 0 2 % 87 % 9 % 0 1 % 0 0 0

Indoor walking 2 % 0 11 % 79 % 2 % 0 0 0 2 %

In vehicle 0 2 % 3 % 1 % 94 % 0 0 0 0

Outdoor biking 0 0 0 0 0 72 % 2 % 2 % 24 %

Outdoor running 0 0 0 0 0 9 % 90 % 0 1 %

Outdoor stationary 0 0 4 % 14 % 0 0 0 81 % 1 %

Outdoor walking 0 0 0 2 % 0 2 % 0 3 % 93 %

Confusion matrix reports the percentage of classified samples per class and not the absolute count;
values in bold along the diagonal are the precision of each class.
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TABLE XIII: CUMULATIVE CONFUSION MATRIX FOR
INDOOR/OUTDOOR ON UNSEEN DATA.

Class: Actual (down) v.
Predicted (across)

Indoor Outdoor

Indoor 99 % 1 %

Outdoor 5 % 95 %

Confusion matrix reports the percentage of classified samples per
class and not the absolute count; values in bold along the diagonal
are the precision of each class.

worse than the one on training, letting us think that the model should not have an high level

of overfit.

Overall, classification accuracy reaches good values with this algorithm, but it is worth to

take a look at particular cases that can help us understand potential problems, not only in

the model but in the overall approach to the work. Although training accuracy in Tables IX

to XI is quite stable across all classes, we can spot some faults on unseen data.

For instance, the class outdoor biking in Table XII has a significantly lower precision than

the others, as low as 72 %, and the largest majority of misclassified instances mistakenly falls

in the category outdoor walking. This behavior can also be seen from the cumulative confusion

matrix for AR, in Table XIV: the biking class reports the lowest precision, with a high share of

instances misclassified as walking.
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TABLE XIV: CUMULATIVE CONFUSION MATRIX FOR
ACTIVITY RECOGNITION ON UNSEEN DATA.

Class: Actual (down) v.
Predicted (across) B
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Biking 86 % 1 % 2 % 11 % 0

Running 3 % 97 % 0 1 % 0

Stationary 0 2 % 90 % 8 % 0

Walking 2 % 0 8 % 89 % 1 %

In vehicle 0 2 % 3 % 1 % 94 %

Confusion matrix reports the percentage of classified samples per
class and not the absolute count; values in bold along the diagonal
are the precision of each class.

It is not particularly easy neither to understand where and why a ML algorithm fails, nor

which might be the problem in the data. After all, ML moved towards complex models like

Deep Learning to achieve tasks that we do not necessarily understand: most of the times,

complex DL models are nothing more than a black box to us, as is the human brain. What

we can hypothesize based on our human knowledge of the problem reality, is that even if

biking as a different motion “fingerprint” than walking—see Figures 3 (a) and 5 (a)—their paces,

that we can think of as “frequencies”, are actually quite similar, when we bike and walk at

a regular pace. This is significantly different than running instead. We do not have at the



119

moment any significant research literature to support this hypothesis, as target classes vary

from work to work.

It is hard to tell why this low precision for the biking class occurs only for outdoor—

cfr. Table XII; the only clue coming from real word knowledge is that indoor biking does

not suffer much noise in motion data as an indoor bike is steady—outdoor biking, instead,

suffers from bike and road condition. Also, the two activities are more different than what

it might seem: in indoor biking, unlike other activities, the user is not subject to an actual

acceleration, except for the one whom the device only is subject to; in other words, the subject

is moving on the bike, but the bike is not.

All these and other potential instability of the work not only can relate to the real world

scenario, but also on a vast number of other factors, as data quality, quantity and variability.

Any further assumption to be made would require a more precise analysis of the data with

a significantly larger quantity of diverse data as to assert the extents to which this model is

applicable to and any eventually derivable improvement.

Another observation worth mentioning, is that the overall outdoor classification precision

drops from 98 % during training (Table X) to 95 % on unseen data (Table XIII). Although

the problem of Semantic Location recognition seems the easier one, given its higher overall

performances in Table VII and Figure 17, it gets slightly more tricky on unseen data for

the outdoor class; this might be due to the fact that outdoor environments vary much more

from one another than indoor ones; the high number of variables—ambient noise, ambient
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light, geomagnetic disturbance, and cellular signal strength—seem to have more variability

outdoor than indoor.

7.2 Model deployment on mobile

We have introduced TensorFlow back in Sections 1.6 and 6.1.1, motivating its choice by

its ability to be deployed on mobile Android application through the Android TensorFlow

Mobile framework. We know from Section 1.6.1 that the TensorFlow team also developed Ten-

sorFlow Lite, a very lightweight yet efficient version of TensorFlow for mobile applications that

has smaller binary size and supposedly better performances. Yet, as of September 2018, Ten-

sorFlow Mobile is still a developer preview, and only supports a smaller subset of operators.1

This means that not all models are yet portable to the Lite framework, as our is not, and we

will have to use the regular Mobile version for the time being. We will see that fortunately

this does not make a great impact as the inference in the application will have extremely low

power consumption.

Figure 18 shows the abstraction of the application structure. The raw sensor data collec-

tion at the lower level works exactly like we saw it for collecting the data for the dataset itself,

back in Chapter 3—except now we can avoid collecting positioning data that we discovered

counterproductive in Section 3.3.

The data preprocessing step follows what we saw in Section 6.2. Every time a new record

is generated, it wrapped with a timestamp and is pushed in a queue:

1From: tensorflow.org/mobile, visited September 2018.

tensorflow.org/mobile
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Figure 18: Application Structure.

private void pushRecord(

@NonNull float[] record,

@NonNull RobustScaler robustScaler);

Inside this method the record gets preprocessed to make the data compliant to the prepro-

cessing explained in Section 6.2—note that the accelerometer values correction explained

in Section 3.2 is performed in the same way as soon as the record is generated. The fea-

ture scaling described in Section 6.2 is performed by a Scaler class. Then, inside a critical

section, whenever the queue of generated records reaches the defined window width (see

Section 5.4.2), a new window instance is built and the records that are no longer needed are

removed:
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drainSemaphore.acquireIninteruptibly();

if (generatedRecords.size() >= CLASSIFICATION_WINDOW_LENGTH) {

ArrayList<FloatArrayWrapper> topK = generatedRecords

.stream()

.limit(CLASSIFICATION_WINDOW_LENGTH)

.collect(Collectors.toCollection(ArrayList::new));

}

for (int i = 0;

i < (SLIDE_CLASSIFICATION_WINDOW ? CLASSIFICATION_WINDOW_SLIDING :

CLASSIFICATION_WINDOW_LENGTH);

generatedRecords.poll(), i ++);

A SlarClassifier class performs the classification on the generated window; the result is

displayed.

SlarClassifier.PredictionResult predictionResult = slarClassifier

.predictWindow(topK.stream()

.map(FloatArrayWrapper::asArray)

.collect(Collectors.toList()));

if (predictionResult != null)

runOnUiThread(() -> textView.setText(predictionResult.toString()));

drainSemaphore.release();

Of course now the relevant part is how the SlarClassifier is implemented to run the

model generated in Section 6.2.1. Once we have trained the TensorFlow model, we need to

obtain a frozen version. The application must be instructed to load the TensorFlow libraries

in the gradle file, and importing them into the class:

import org.tensorflow.Tensor;

import org.tensorflow.TensorFlow;

import org.tensorflow.contrib.android.TensorFlowInferenceInterface;
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Then we can use the libraries inside the SlarClassifier class. The model will be loaded

into an TensorFlowInferenceInterface object:

private TensorFlowInferenceInterface inferenceInterface;

private String[] labels;

SlarClassifier(@NonNull final Context context) {

inferenceInterface = new TensorFlowInferenceInterface(

context.getAssets(), MODEL_NAME

);

labels = loadLabels(context);

}

Once the classifier is instantiated, the inference on a classification window is run as follows:

public PredictionResult predictWindow(

@NonNull final float[] flatWindow) {

long startTime = System.nanoTime();

float[] confidences = new float[OUTPUT_SIZE];

inferenceInterface.feed(INPUT_NODES, flatWindow, INPUT_SIZE);

inferenceInterface.run(OUTPUT_NODES);

inferenceInterface.fetch(OUTPUT_NODE, confidences);

return new PredictionResult(confidences, System.nanoTime() -

startTime);

}

where PredictionResult is a declared inner class to represent the result of a classification,

along with its run time, providing methods to access it. Table XV summarizes the two classes

supporting the inference task, SlarClassifier and PredictionResult.
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TABLE XV: DOCUMENTATION FOR THE SLAR CLASSIFIER CLASS.

Type Field/Method and Description

class SlarClassifier

float CONFIDENCE_THRESHOLD

int FEATURE_SIZE

The dimensionality (number of features) of the records to be clas-
sified; must match the output Tensor dimension.

inferenceInterface

String INPUT_NODES

The name of the input Tensor of the model.

long[] INPUT_SIZE

An array representing the input dimension of a classification in-
stance, nominally: 1, WINDOW_SIZE, FEATURE_SIZE.

String LABEL_FILE_NAME

The name of the asset containing the list of labels in the order
they are output from the model.

String[] labels

The names of the different classes.

String MODEL_NAME

The name of the frozen graph .pb file representing a Tensor-
Flow model.

String OUTPUT_NODE

The suffix of the nodes in the output Tensor.

String[] OUTPUT_NODES

A list of the suffices of the nodes in the output Tensor.

int OUTPUT_SIZE

Continues on next page
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Continues from previous page

Type Field/Method and Description

The dimension of the output Tensor, corresponding to the num-
ber of classes.

class PredictionResult

int WINDOW_SIZE

The width, or length, of the classification window, if wider, or
longer, than a single record, 1 otherwise.

String[] loadLabels(Context context)

PredictionResult predictWindow(Collection<float[]> collection)

Feeds the given record to the inference model and produces a
classification result.

PredictionResult predictWindow(float[] flatWindow)

Runs the inference on the provided flat window with a
TensorFlowInferenceInterface and produces a classification
result.

float[] toFlatArray(Collection<float[]> collection, int...

dimensions)

Returns a flattened array of the given Collection, reshaping ac-
cording to the given dimensions.

class SlarClassifier.PredictionResult

float[] confidences

Vector of the confidences for each class from this classification
result.

Optional<String> inferenceTime

float[] getConfidences()

String getInferenceTime()

Continues on next page
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Continues from previous page

Type Field/Method and Description

int getMostConfidentActivity()

boolean hasMajorityClass()

boolean hasMajorityClass(float threshold)

boolean hasClassificationResult()

String toString()

String toStringInspect()

Ends from previous page
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7.3 Time, memory and power efficiency

Since the application runs on a mobile device and possibly all day long, for the purposes

explained in Section 1.7, it is important to analyze its computational performances and energy

consumption requirements.2 The inference time of a TensorFlow Mobile module is extremely

optimized by the TensorFlow library. Execution time on mobile is important not only because

of its repercussions of the non-idle time of the application resulting in more power consump-

tion, but also because most average category smartphones have lower execution power than

computers’ CPUs; a longer inference time may slow down the application itself and the other

device’s services and applications. The application performs the following main tasks:

(i) reads sensor values;

(ii) runs inference;

(iii) shows/saves inference results.

The first and last tasks are very fast and low power operations executed all the times; more-

over, all the sensors whose values are used for the classification, are continuously produced

independently from the application requests—except for the ambient sound amplitude dis-

cussed in Section 3.7. With the TensorFlow Mobile optimizations, the inference of the model

produced in Chapter 6 is on average around 11.2 ms, with a minimum of 4.8 ms and a max-

2All hardware-dependent values in this Section refer to measurements performed on a OnePlus 6 device

running Android 8.1 Oreo with API level 27. All measurements might vary on other devices or different OS

versions.



128

imum of 17.9 ms, over a sample of 400 records. Of course the computation time depends

on how often the inference is run; in our case, the test application run the inference each

second, that with a sampling frequency of 25 Hz totals 4 samples per second. The chosen

classification window is 12 samples wide (3 s).

In terms of memory, the application size is extremely contained. The TensorFlow Mobile

optimized model is a file of less than 300 kB; the overall applications with all its assets (model

file, a file containing the list of labels, and a file containing values for the data normalization—

the last two pieces of information could be hard-coded into the application source) is 50 MB

and uses a little overhead of less than 200 kB to save the current state (activity and location

labels) to reload when starting, which is only necessary when labeling data is necessary, so

not in deployment mode. Of course the application produces data records. At a production

rate of one record per second, the record storage file grows by 8.8 kB/h.

As for power consumption, the application is extremely power-efficient due to the low

power consumptions of the sensors explained throughout Chapter 3. It is difficult to define

a long-term average battery consumption of the application, as the Android OS battery man-

agement module reports a power consumption of less than 5% during a complete battery

cycle (from fully charged to power-off).



CHAPTER 8

FUTURE WORK

Ubiquitous and Pervasive Computing are not newborn concepts nor are they anywhere

close to the full of their possibilities. Internet connection is making its way into every physical

component of our everyday life, as we said back in Section 1.1. All branches of Ubiquitous

Computing still have a long way to go and no work can be said complete nor comprehensive

as new technologies, techniques, and concepts arise on a daily basis.

What we have achieved so far is a skeleton that carries out a non trivial task in a quite trivial

way—even if the model itself might be complicated, the workflow is quite straightforward

and focused on what we could define the most obvious aspects.

On the other end, there are several techniques that can be incorporated to achieve even

better results, both changing or extending the knowledge base of the Machine Learning mod-

ule. Also, not only this module can be further improved and adapted, it can also gain perfor-

mance and reach a larger number of applications when scaled for multiple platforms.

Least, but not last, the module can be adapted to the user needs in terms of quality and

performances. Let us take a closer look to some of the most straightforward continuations of

this work.

(i) First and foremost, it is crucial that the model gets extended to all devices. This might

turn out to be less trivial then what we might think lacking access to a large variety
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of devices. As we explained in Chapter 3 and mentioned other times throughout this

work, different makes and models of devices, and sometime even different units of the

same model, mount different make and models of sensors. This is a huge deal, just

remember from Section 4.1 that Android is actively used by over two billion devices, as

of May 2017, leading to a potentially very large variety in sensor data.

For a model like this to be robust and reliable platform-wise, one has to analyze mas-

sive quantities of data coming from a variety of devices and engineer a solution based

on how much this data actually varies among different devices. At that point, one sim-

ple solution might be to just toughen the model training on as much data as possible

coming from different sources; another solution would be to engineer a mapping that

brings “outcast” sensor readings similar to the others. Less feasible would be to have a

different model for different platforms, but this could really be a necessity in the case

some devices fail in being able to produce a dataset close enough to the chosen one.

(ii) Even if the model performs quite well on this specific test case, its production perfor-

mances can be unpredictably different. To enhance the classification accuracy there are

different techniques that can be adopted, either separately or in conjunction.

(a) Common place detection: starting with the basics, the algorithm can be supported

by a module that recognizes frequently visited places, either user-annotated (e.g.

home, work, gym) or statistically inferred from either the user or a crowd of users

(e.g. grocery store, park, beach). The knowledge about the environment is part of

the Semantic Location and will very likely support the indoor/outdoor detection,
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but we saw back in Chapter 7 that the two tasks very likely also support each other.

It is important to notice that this common place detection would require the use of

positioning data that we excluded from our data, with possible repercussions on

power consumption—see Section 3.3.

(b) The environment is not necessarily a place, and does not necessarily need tradi-

tional positioning systems to be recognized. One example is the easy detection

of the “in vehicle” mode when the device is connected to a car whose on board

infotainment is equipped with the Android Auto firmware.1 The OS provides easy

means to discover if the device is connected to a supporting car environment. An-

other example is detecting when the device is casting its display content to the

home TV. This last example needs further investigation on wether any application

would be allow to access this information.

(c) One other step to improve accuracy is to progressively train the model further with

user-annotated data. This is a technique that already exists in some commercial

application. For example, Google Maps uses it to improve Semantic Location and

Activity Recognition allowing the user to confirm or correcting places and activ-

ity in their personal timeline—a Google Maps tool that tracks user activities and

positioning throughout the day. Also, this tool that the user can enable in their

Google Maps application, can be directly exploited to support this model; again, a

1Infotainment is a portmanteau word indicating a device, usually equipped with a display, that provides both

information and entertainment, commonly used to indicate car decks.
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deeper investigation is needed to understand to what extent this information can

be accessed outside Google’s map application.

(iii) Another option for further development is multi-platform integration. As said multiple

times, Ubiquitous Computing has made its way into a lot of devices and many of them

now run an Android-based distribution. These device provide further insightful data;

beside Android Auto mentioned before, we have available an Android Wear distribution

for smartwatches that not only produce more motion data, but also new type of infor-

mation like heartbeat rate or body temperature, depending on the device. This data can

be extremely insightful for Activity Recognition tasks.

Besides wearable devices, there is a variety of other devices with potentially useful

information like Google Home, a home personal assistant that, among the plethora of

information that collects from the user interaction with it, can easily tell if the user is

inside is house or workplace wherever one of these devices is installed.

Further research headed in this direction should consider not only data variability as

mentioned before, but also to engineer a solution that can work independently on

wether this data is available or not at every different moment. The actual type of data

produced by wearable and home devices has to be further investigated.

(iv) As most commercial products, it would be a possible improvement to give the user

the possibility to customize the behavior of the application choosing a custom trade-off

between accuracy, privacy, and power efficiency, which as discussed is a major issue
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for mobile devices. The user could be allowed to choose wether to enable location

services, or if to allow the microphone to capture noise level for privacy concerns. On

most Android devices the user already has some degree of control, for example on the

accuracy to power efficiency trade-off for location services.



CHAPTER 9

CONCLUSION

The most important achievement of this work is to have proven that there is a solid

way of implementing a complex task on mobile devices, exploiting their possibilities in data

collection and more-than-sufficient computation power. We follow a less commonly chosen

path in research in both activity recognition and microenvironment detection that gets rid of

ad-hoc, invasive, sometimes expensive sensor in favor of low-power, easily accessible on-board

sensors.

We exploite most of the sensors available on common Android devices and some other

non-properly sensors that can provide insightful information. We collect labeled data for

various activities and environment and set up a machine learning model that can handle

it. We chose a less common variation of Artificial Neural Networks called Long Short-Term

Memories that were specifically thought to better handle timeseries data.

We use motion sensors (accelerometer and gyroscope) to address activity recognition, and

several other data to infer indoor and outdoor: light and proximity, magnetic field sensor,

cellular radio signal strength, and microphone. We then perform some feature extraction

and selection to address dimensionality. We perform data cleaning and preprocessing and

proceed to learn and test the model with both k-fold cross validation.

Deep Learning technologies like the TensorFlow framework help us build a model and

modify it easily to respond well enough to the task. It provides the possibility to easily
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train and modify the model on the fly on a workstation or cloud, with both CPU and GPU

support. Once the definitive model is ready, it allows to export it into a representation that

can be deployed on mobile. On the Android device, a TensorFlow Mobile library handles the

inference run task on the data fed to it.

We achieved significantly high result on test data, easiliy comparable to the most high

result obtained in more pervasive and expensive ways in the related research literature. On

the mobile side, we achive an extremely lightweight application with extremely low power

and memory consumption. The module can be easily incorporated as a model in a larger

application.

Privacy issues have been limited as much as possible; the ability of running the inference

directly on mobile allows the data to never leave the device, without even the need of stor-

ing, not even momentarily, the sensors reading on the device, limiting both data leaks and

memory usage.
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