
POLITECNICO DI TORINO

Facoltà di Ingegneria
Laurea Magistrale in Ingegneria Informatica

Tesi di Laurea Magistrale

Middleware development for IoT
networks

Relatori:
Prof. Ing. Marina Mondin
Prof. Ing. Roberto Garello

Candidato:
Marco Luciano Forestello

Anno accademico 2017-2018

Acknowledgements

I would like to express my sincere gratitude to my supervisors in CSULA, Marina

Mondin and Fred Daneshgaran for their hospitality and their continuous support

even across the ocean. The same goes for Roberto Garello, who was always available

to give me a hand since my return to Turin. They offered me a possibility to nourish

my passion for IoT.

I owe special thanks to my friends, whether in Italy in Argentina or in the USA,

they have always been present during my university days making it an unforgettable

experience. Lastly, I would like to thank my family, for their unwavering support

through the years, even in the darkest hours and until the last seconds.

ii

Contents

Acknowledgements ii

1 Introduction 1
1.1 The project . 2

2 The Internet of Things 3
2.1 Internet of Things . 3
2.2 IoT Architecture . 3

2.2.1 Level 1: Devices and Controllers 4
2.2.2 Level 2: Connectivity . 4
2.2.3 Level 3: Edge (Fog) Computing 4
2.2.4 Level 4: Data Accumulation 5
2.2.5 Level 5: Data Abstraction . 5
2.2.6 Level 6: Application . 5
2.2.7 Level 7: Collaboration and Processes 5

2.3 Technologies of the IoT . 5
2.3.1 Radio frequency identification (RFID) 6
2.3.2 Wireless Sensor Networks(WSN) 6
2.3.3 Middleware . 6
2.3.4 Cloud computing . 6

2.4 IoT applications . 7
2.4.1 Automotive . 8
2.4.2 Home automation . 9
2.4.3 HealthCare . 9
2.4.4 Sensor Network monitoring 9
2.4.5 Industrial IoT . 9
2.4.6 Agriculture . 9

2.5 IoT challenges . 10
2.6 Summary . 11

iii

3 Selected Hardware 12
3.1 The motes . 12
3.2 TelosbB . 12

3.2.1 TelosB Components . 13
3.2.2 Sensors . 15

3.3 Raspberry Pi . 17
3.3.1 Communication . 18
3.3.2 OS and deployment . 18
3.3.3 Local and remote access . 18

4 Stack Protocol 20
4.0.1 IEEE 802.15.4 . 20
4.0.2 6LowPAN . 22

4.1 REST architecture . 24
4.2 CoAP . 25

4.2.1 Architecture . 25
4.2.2 Messages . 26
4.2.3 Requests . 27
4.2.4 Responses . 27
4.2.5 Resource Discovery . 28
4.2.6 Observe, subscription and notifications 28
4.2.7 Security : DTLS . 28
4.2.8 CoAP/HTTP proxying . 29

4.3 A Publish/Subscribe protocol : MQTT 30
4.3.1 Message format . 31
4.3.2 Topics and topic matching . 33
4.3.3 QoS . 34

4.4 Gateway Framework . 35
4.4.1 Gateway tasks . 35
4.4.2 Gateway challenges . 36
4.4.3 Eclipse Kura . 37

5 Selected Software 39
5.1 SW for the motes . 39
5.2 Operative Systems for the motes . 39

5.2.1 TinyOS . 40
5.2.2 Contiki . 41
5.2.3 TinyOS and Contiki . 43
5.2.4 Motivation . 44

5.3 Contiki stack configuration . 44
5.3.1 Contiki directory structure . 44

iv

5.3.2 Contiki MAC layer . 45
5.3.3 Network routing : RPL . 47

5.4 CoAP implementation: Californium 48
5.5 MQTT implementation: Paho . 49

6 Implementation 51
6.1 WSN . 51

6.1.1 Cooja simulator . 54
6.2 Kura bundles . 55

6.2.1 SensorInterfaces . 56
6.2.2 GatewayPublisher . 56
6.2.3 CoAPGateway . 59

6.3 AWS IoT . 67

7 Simulation and deployment results 68
7.1 Simulation . 69

7.1.1 Simulation results . 71
7.2 Physical deployment . 73
7.3 Integration with AWS . 76

7.3.1 Data analysis on AWS . 77

8 Conclusions 80
8.0.1 Future work . 81

A Appendix: SW codes and guides 82
A.1 Contiki . 82

A.1.1 Contiki and Cooja installation 82
A.1.2 Mote programs installation . 83
A.1.3 Run Cooja . 83

A.2 RPL border router . 84
A.2.1 Tunslip configuration for Cooja 84

A.3 Raspberry Pi . 84
A.3.1 Raspbian installation . 84

A.4 Kura . 85
A.4.1 Installation . 85
A.4.2 Development . 86
A.4.3 Californium . 87

A.5 AWS . 87

Bibliography 88

v

List of Tables

3.1 TelosB, Mica2 and MicaZ power consumption [8] 13
4.1 ZigBee and 6LoWPAN comparison 24
4.2 CoAP protocol Stack . 25
4.3 CoAP message format . 26
7.1 CoAPGateway configuration parameters and values 69
7.2 Average throughput and average delay for the simulations 72
7.3 My caption . 72
7.4 My caption . 74
7.5 Real deployment results . 74

vi

List of Figures

2.1 IoT World Forum IoT Reference Model 4
2.2 Fog computing architecture . 8
2.3 Autonomous car sensors . 8
3.1 TelosB architecture . 13
3.2 TelosB front view . 14
3.3 TelosB back view . 14
3.4 Sensirion SHT11 . 15
3.5 Hamamatsu S1087 . 15
3.6 Maximal RH-tolerance at 25°C . 16
3.7 Maximal Temperature tolerance . 16
3.8 Raspberry Pi 3 Model B Specs . 18
4.1 IEEE 802.15.4 MAC superframe structure 21
4.2 6LoWPAN stack example . 22
4.3 6LoWPAN headers [10] . 23
4.4 CoAP observe example . 29
4.5 MQTT publisher/subscriber model 30
4.6 Kura architecture . 38
5.1 Contiki MAC layers . 45
5.2 An example of a 6LoWPAN connected to another IP network 47
5.3 RPL: collect, distribute and P2P routing 48
5.4 Californium Architecture Implementation [24] 50
6.1 Project implementation design . 52
6.2 RPL border router web page . 54
6.3 Cooja RPL network simulation . 55
7.1 CoAP packets length . 70
7.2 Final simulation structure . 71
7.3 Deployed TelosB sensors . 73
7.4 Gateway and RPL border router . 73
7.5 MQTTClient interface showing the topic /neighborhood 76
7.6 MQTT Client GET example . 77
7.7 AWS IoT, Kinesis data analysis . 78

vii

A.1 Kura Web Console . 86

viii

Chapter 1

Introduction

Society is continuously evolving. In the last two hundred years, humankind had
experienced major waves of innovation. It all began with the industrial revolution
and the development of factories, railways, air travel and more. Then, the time of
electricity arrived, a time of empowerment of the pre-existing industries that allowed
mass production and expansion. More recently, the Digital Revolution shook the way
people used to live but it was not until the Internet revolution that the world became
connected. Personal computers, data networks, unprecedented access to information
and communication consolidated a no-return point. Of course, that could not be the
end of it, the current generation is experiencing another metamorphic change, the
Industrial Internet. Millions of interconnected tiny devices able to act and sense.
This new reality brings together intelligent machines, advanced data analysis and
human creativity. Sensors are not precisely a new topic, but a decrease in their cost
and the major development in cloud platforms and data storage access have allowed
the creation of a new Internet, the Internet of Things. A reality in which these so
called things allow machines to be self-aware, predictive, reactive and social.

This phenomenon is getting everywhere, such is the case of Industrial machines
which are being equipped with a growing number of electronic sensors that allow
them to gather information to operate in entitled new and more efficient ways.
Analysing information they perceive from the environment, creating a huge amount
of data, easily interpretable for specialists, allowing to save time and pushing forward
for innovation and improvement.

The environmental monitoring will be more sensitive, which will help to detect
and prevent environmental disasters before they can occur, saving lives and reducing
the loose of properties. Home automation, intelligent farming and smart cities are
now realities. It can also be applied to medicine and construction. Certainly, the
word "disconnected" will fade, giving space to a new kind of normality: smart and
connected.

In this context, multiple companies and governments have dedicated time and

1

1 – Introduction

money in the development of a new digital software platform for the IoT. A struc-
ture able to connect the things to actions; able to retrieve enormous masses of data,
to storage and to manage in short time. A system able to provide significant an-
alytics through data mining and machine learning in order to improve actions and
decisions. Data that could be consumed by web or mobile applications. The hole
thing considering data security and privacy, aspects that are a hot topic in a world
in which everything is connected.

1.1 The project
This project was started in CSULA(California State University of Los Angeles).
The university was interested in developing solutions for their new set of TelosB
sensors, both for didactic and experimental purposes. There are infinite possibilities
regarding wireless sensor networks applications but one of the most troubling aspects
remains the same, the connectivity with other networks. That would enable the
possibility of consuming sensor data, that can be located in isolated and remote
locations, from everywhere and possibly at any time. Moreover, data is meaningless
without a proper analysis and sensors are not powerful enough to perform such
tasks.

The objective of this thesis is to develop a stack to connect a WSN to the IoT.
More specifically, it aims to transform each sensor in a group of web resources, a
part of the Web of Things. The cloud offers a natural solution to IoT, a set of
distributed services to process and make available sensor data as well as a storage
system capable of gathering big amounts of data. So, the final solution will include
a local data server to reach each node and cloud connectivity in order to make such
data accessible across the Internet.

The final solution will be a gateway that will enable communication to and
from the wireless sensor network. As such, the thesis is focused on connectivity and
delivery performance rather than battery saving or security, topics that are partially
covered but that are out of the scope for this project.

2

Chapter 2

The Internet of Things

2.1 Internet of Things

Kevin Ashton was probably the first man to use the term "Internet of Things" during
a presentation in 1999 [1]. He exposed his concerns about how almost all data on the
internet was being uploaded by people. According to Kevin, we needed to change
the way internet was working by enabling machines to sense and to communicate
without any kind of human interaction. That, he believed, would be a new and better
way to collect data about things and use it to develop a better world, reducing waste
and costs and improving the way we live. Almost a decade later, around 2008, the
number of connected devices surpassed the number of connected people and gave
birth to the Internet of Things (IoT), a new technology paradigm which promised
a global network of machines and devices.

A thing can be a smart watch in a man wrist, a microchip implanted on an
animal, a product in a shelf of a supermarket. All those objects, that are present
in our environment and which leads our society and our economy, can become a
thing in the IoT. In order to accomplish so, they need an unique identifier, to be self
aware of its environment and capable of communicating with other objects. We can
connect with everyday things and learn about them, we can monitor things, search
for things, manage things and even control things and make them act.

2.2 IoT Architecture

A paper [2] presented in the IoTWorld Forum in 2014 proposed a 7-layer architecture
illustrated in Fig 2.1. Starting from the edge:

3

2 – The Internet of Things

Figure 2.1: IoT World Forum IoT Reference Model

2.2.1 Level 1: Devices and Controllers
Physical devices and controllers,that might control multiple devices,are the things
of the IoT in charge of sensing and transforming data into digital information. It
includes bar codes, RFID tags and reader/writers, sensors, terminals, etc.

2.2.2 Level 2: Connectivity
Its task is to transmit the information obtained by the first level in a reliable manner.
This includes device-network, across networks and between the network transmis-
sions.

2.2.3 Level 3: Edge (Fog) Computing
It is responsible of converting network data flows into information that is appropriate
for storage and higher level processing in Level 4. It is not session or transaction
aware, it analyses packet units, which limits the processing at this level. Some of
its functions are:

• Data filtering, cleanup, aggregation

• Packet content inspection

• Combination of network and data level analytics

4

2 – The Internet of Things

• Thresholding

• Event generation

2.2.4 Level 4: Data Accumulation
From level 1 to 3 data is "in motion". Data is moving across the network at the rate
determined by the devices that generate it. Most applications do not need to process
data at network wire speed, they usually assume data is "at rest" in memory or on
disk. Level 4 converts data in motion to data at rest. It has to filter useful data
for higher levels, determine if such data should be persistent and how it should be
saved. Level 4 transforms event-based data to query-based processing, connecting
real-time and non-real-time applications.

2.2.5 Level 5: Data Abstraction
Level 5 is focused on rendering data and its storage in a simpler way for devel-
opment, even in a global scale. It has to ensure data consolidation, consistency,
authentication and authorization.

2.2.6 Level 6: Application
Software in Level 6 interacts with Level 5 and data at rest from Level 4. Application
vary according to business needs. Some examples include mobile applications, an-
alytic applications for business decisions, specialized industry solutions and system
management/control.

2.2.7 Level 7: Collaboration and Processes
All the information created and processed by the IoT is of little value by itself.
Applications and its data empowers people to do a better job by analysing and
using it. People must be able to communicate and collaborate using the results
given by Level 6.

2.3 Technologies of the IoT
[3] identifies at least four widely used IoT technologies for the deployment of suc-
cessful IoT-based products and services: 1) Radio frequency identification (RFID)
2) wireless sensor networks (WSN) 3) middleware 4) cloud computing

5

2 – The Internet of Things

2.3.1 Radio frequency identification (RFID)
A technology used for automatic identification and data memorization of tags using
electro-magnetic fields. It is used to detect presence and location of objects.

2.3.2 Wireless Sensor Networks(WSN)
A Wireless Sensor Network (WSN) is made of distributed autonomous devices, also
known as motes, capable of sensing and monitoring their environment and commu-
nicate captured data to a central or semi-central node over radio waves. Due to
its great potential, efficient design and implementation of WSN has become a hot
area of research. Recent advances in power saving and wireless communication have
allowed to deploy low-cost and low-power networks of wireless sensors, in a vast
variety of IoT applications.

2.3.3 Middleware
Middleware is a layer situated between software applications.It is typically used in
distributed systems to:

• Hide the intricacies of distributed applications

• Hide the heterogeneity of hardware, operating systems and protocols

• Provide uniform and high-level interfaces for applications

• Provide a set of common services that reduce code duplicity and boost collab-
oration between applications

It is easy to understand how a middleware is fundamental in IoT, considering the
widely range of devices, protocols and applications that can be involved.

2.3.4 Cloud computing
One of the most important features of IoT is collecting massive amounts of data
generated from the things connected to the internet. Furthermore technologies as
wireless sensor networks have to handle numerous sensor streams and process data
in low-power and low-constraint devices. Cloud computing promotes the delivery of
hardware and software resources over the internet using an on-demand utility-based
model by meanings of Software as a service (SaaS), Storage as a service (STaaS)
and so on. It promises reliability, security, high availability and improved QoS. It
becomes the perfect infrastructure of IoT applications that need to store their data
on the internet, to perform complex data process subject to QoS constraints or to
deliver a service everywhere, at any time.

6

2 – The Internet of Things

Fog-computing

As the number of sensors and the data they generate increase, it becomes more
difficult to support all the storage and processing functions of an IoT solution in
the cloud. Real-time applications may need faster and more local answers and Edge
devices, such as routers, switches and smartphones are able to provide it. The Edge
layer is closer to end users than application servers. A new concept of cloud, called
Edge Cloud, is enable by processing and using edge devices. The Edge Cloud may
help to decrease latency, reduce processing and storage cost and maintain sensible
data inside a local context. Fog Computing is an extension of cloud computing
that provides processing, storage, and networking services between end devices and
traditional Cloud Computing Data Centers, typically located at the edge of network.
[4] individuates the key features of Fog Computing as:

• Edge location, location awareness and low latency It aims to support
applications with low latency requirements (e.g. gaming, streaming).

• Geographical distribution: the services and applications targeted by the
Fog demand distributed computing and storage resources.

• Very large number of nodes

• Support for mobility to communicate directly with end devices

• Real-time interactions rather than batch processing

• Heterogeneity of nodes and environments

• Interoperability and federation: Fog components must be able to inter-
operate and services must be federated across domains.

• Support for on-line analytics and interplay with the Cloud
2.2 shows a possible integration between Edge layer, Fog computing and Cloud
Computing.

2.4 IoT applications
IoT promises a network of uniquely identified interconnected devices and not only
machine-to-machine but also human-to-machine and human-with-environment in-
teractions. Such a context offers a wide variety of possible applications in differ-
ent sectors. Gascon and Asin [5] classified 54 different IoT applications under the
following categories: smart environment, smart cities, smart metering, smart wa-
ter, security and emergencies, retail, logistics, industrial control, smart agriculture,
smart animal farming, domestic and home automation, and eHealth.

7

2 – The Internet of Things

Figure 2.2: Fog computing architecture

Figure 2.3: Autonomous car sensors

2.4.1 Automotive

The autonomous car, one of the most important topics of nowadays, requires an
impressive array of interconnected sensors that continuously monitor the vehicle en-
vironment and process data locally, in order to take rapid decisions.Fig 2.3 illustrates
some of the sensors we could find in a self-driving car.

8

2 – The Internet of Things

2.4.2 Home automation

Almost every object in a house could be aggregated to a network of interconnected
devices under the control of monitoring frameworks that can adjust desired pa-
rameters and change configurations based on user’s preferences. From security and
alarm systems to user movement behaviour, temperature and air monitoring for
power saving purposes.

2.4.3 HealthCare

Thanks to the enormous amounts of data transmitted from IoT devices to analytics
tools it is possible to capture detailed individual health data. IoT enables the
personalization of patient care, capturing patients behaviour, hearth rate, blood
pressure, glucose level and more. IoT aims not only to collect more data but also
to facilitate the way doctors and patients can share it over remote platforms.

2.4.4 Sensor Network monitoring

WSNs can be organized over vast areas in order to monitor the environment aiming
for greener solutions and trying to prevent or at least rapidly alert cases of natural
disasters. Many IoT-based approach systems have been implemented in oceans
to control water pollution, providing real-time data over large geographical areas.
Similarly, large groups of interconnected sensors monitoring smart cities allow to
reduce cost and waste of power, to regulate traffic, to facilitate retailing, etc.

2.4.5 Industrial IoT

Also know as Industrial IoT (IIoT) is another form of IoT applications characterized
by Machine to machine (M2M) communication, Big Data analysis, and machine
learning techniques. These data allow companies to track and manage the supply
chain, perform quality control and lower the total energy consumption.

2.4.6 Agriculture

IoT enable real-time crops and soil monitoring. It makes easy to adjust the quantity
of given fertilizers, water and other products to the soil and the crops according to
each sensor network parameters. Thus it reduces impact on nature and plantation
cost.

9

2 – The Internet of Things

2.5 IoT challenges
The IoT is expected to change the Internet and the world but there are many
challenges to face before. Some of them are described below.

• Identification
The IoT will connect billions of objects uniquely identified to provide innova-
tive services. Thus, an efficient naming and identity management system is
required.

• Data management
The current architecture of the data center is not prepared to deal with the
heterogeneity and the amounts of data IoT devices generate.

• Data mining
The development and use of data mining tools become fundamental consider-
ing the increase of data provided by the IoT. Besides, more analysts experts
are needed to make business decision based on the study of big data.

• Interoperability and Standardization
The IoT counts with a large variety of devices using different sensor protocols,
processors, operative systems, programming languages, network protocols and
communication protocols. Many manufacturers provide devices using their
own technologies and services that may not be accessible by others. The
standardization of IoT is very important to provide better interoperability for
all objects and sensor devices.

• Privacy
In many IoT applications collects personal data such as users’ location, health
conditions and personal preferences. One key factor of the IoT is collecting
great amounts of data to reduce costs and improve services. At the same time,
privacy protection is a main concern to the public. Privacy violation or poor
access control to personal data, may lead to a lack of trust in IoT.

• Data security
The attack surface for hackers increase with the number of devices connected
to the IoT. A great number of commonly used devices present serious security
flaws due to lack of encryption and authorization, insecure Web interfaces and
inadequate software protection.

• Network robustness and security
Sensor devices data is sent over wired or wireless transmission network. The
transmission system should be able to handle data from large number of sensor

10

2 – The Internet of Things

devices without causing any data loss due to network congestion and prevent
external interference or monitoring.

• Spectrum
The sensor devices will require dedicated spectrum to transmit data over the
wireless medium. Due to limited spectrum availability, an efficient dynamic
cognitive spectrum allocation mechanism is required to allow billions of sensors
to communicate over the wireless medium.

• Energy consumption
The future IoT will cause significant increase in the network energy consump-
tion. Thus, green technologies need to be adopted to make the network devices
as energy efficient as possible.

2.6 Summary
As Adam Dunkels, founder of ThingsQuare and Contiki, commented in [6], building
applications for the IoT is no easy task. There are a multitude of options at every
single step of the way: which kind of device should be used? Which operative system
should be installed on it? The same can be said for the network, routing and com-
munications protocols. Another crucial point is the interconnection of devices with
the network with SLIP motes, border routers and so on. Even in data processing,
Cloud or Fog computing? The options are endless and there is no such thing as a
bad or an incorrect solution.

11

Chapter 3

Selected Hardware

3.1 The motes
The most popular motes, among the devices used for research and experimentation,
are TelosB and MicaZ due to their adaptability to different scenarios, ease of oper-
ation and great availability of open source software for them. They are the motes
most frequently employed in the implementation of testbeds and are usually the
typical platforms used for the validation and assessment of new protocols.

Both motes present a very similar architecture based on a microcontroller, a
wireless transceiver and some sensors for measuring physical variables. TelosB in-
cludes those sensors on-board while MicaZ allows to add them through expansion
connectors and expansion boards.

Both sensors include the same transceiver but they differ on the microcontroller.
According to [7] MicaZ motes appeared to be the most performing mote for sending,
receiving, and thus relaying operations. In the other hand TelosB has lower power
consumption [3.1] and lower wakeup time (6 µs against 4.1ms).

TelosB was chosen for this thesis due to its low power consumption features, its
contained price, the high availability of documentation and open source software
and for its variety of on-board sensors which allows to deploy multiple services and
data on the web.

3.2 TelosbB
TelosB is a wireless sensor module developed by the University of California, Berke-
ley for research and experimentation purposes. It aims for low power consumption,
standardization, easy to use and robustness [8]. It is based on a low duty cycle
principle that allows the mote to be asleep for the majority of time, until a certain
event is triggered. Then, the mote awakes, process and turns to sleep.

12

3 – Selected Hardware

Table 3.1: TelosB, Mica2 and MicaZ power consumption [8]

3.2.1 TelosB Components

TelosB mote is used for wireless communication. It can measure temperature, rela-
tive humidity, and light.

It has a larger chip RAM, which provides robustness in consecution of operation.
It is compact in size and has two AA batteries slot, so it can be used anywhere to
perform experimentation and research.

It allows external hardware incorporation through its 6-pin and 10-pin expansion
connectors.

Figure 3.1: TelosB architecture

13

3 – Selected Hardware

Figure 3.2: TelosB front view

Figure 3.3: TelosB back view

IEEE 802.15.4 standard radio

TelosB mote has IEEE 802.15.4 standard radio, allowing TelosB to communicate
with any other device using the same physical layer. It has a Chipcon CC2420 radio
which operates in the 2.4GHz band, with the O-QPSK modulation scheme and with
DSSS at 250kbps. It also provides some hardware accelerators to allow encryption
and authentication, packet handling support, auto acknowledgments, and address
decoding.

TI MSP430F1611 Microcontroller

TelosB is installed with 8MHz TI MSP430 microcontroller with largest on-chip 10kb
RAM. MSP430 has the lowest power consumption, operates down to 1.8V. The
microcontroller has the fastest wake-up time, it does not take more than (6 µ seconds
in transition from standby(1 µ A) to active mode (8 MHz). It also has a DMA
controller which reduces the load on the MCU core and an on-chip RAM buffer of
10kB, useful for signal processing.

14

3 – Selected Hardware

3.2.2 Sensors
TelosB has three sensors:

• Visible Light Sensor: Hamamatsu S1087, Range: 320nm to 730 nm

• Visible to IR sensor: Hamamatsu S1087-01, Range: 320nm to 1100 nm

• Humidity and Temperature Sensor: Sensirion SHT11

– Humidity sensor range: 0-100% RH
– Temperature sensor range: -40°C to 123.8 °C

Visible Light Sensor and Visible to IR sensor: Hamamatsu S1087, Hama-
matsu S1087-01

It is ceramic package photodiodes which give optical measurements i.e. in the visible
to near-infrared range. Its measurement can be read in lux, that is the SI unit of
luminance, according to the equation:

lux = 2.5 ∗ (sensorvalue/4096) ∗ 6250 (3.1)

Humidity and Temperature Sensor: Sensirion SHT11

SHT11 has two sensors. A capacitive sensor element which measures relative humid-
ity and a sensor which measures temperature. These sensors are coupled to a 14bit
A/D converter and a serial interface circuit which gives a fully calibrated digital
output.

The relative humidity sensor provides data with a typical 3 ±% accuracy and
the temperature sensor has an accuracy of ± 0.5°C.

Figure 3.4: Sensirion SHT11 Figure 3.5: Hamamatsu S1087

15

3 – Selected Hardware

The following conversion factors are used to read the sensor values :

Temperature = −39.6 + 0.01 ∗ sensordata (3.2)

Relativehumidity = −4+(0.0405∗sensordata)+(−0.0000028∗sensordata2) (3.3)

Figure 3.6: Maximal RH-tolerance at
25°C

Figure 3.7: Maximal Temperature toler-
ance

USB Interface

TelosB can be plugged into USB for programming, decreasing development time,
and for power supply. Having on-board USB makes it highly flexible as it can be
used on the lab bench, as a gateway to a PC, or as a node in WSNs.

TelosB includes hardware write-protection for external storage which is disabled
only when plugged into a USB port. Hardware write protection is essential for
systems that may be reprogrammed wirelessly since a known good program image
may be stored in the write protected flash.

Internal connected Antenna

To reduce the cost of expensive external antenna TelosB has internal 2.4GHz Planar
Inverted Folded Antenna, directly build into printed circuit board.

6-pin and 10-pin expansion connector

Expansion connectors enable users to connect TelosB with additional instruments
like LCD displays, digital peripherals, antennas, etc. It offers the possibility to
self-configure and boosts the mote for specific tasks or large-scale sensor networks.

16

3 – Selected Hardware

3.3 Raspberry Pi
The Raspberry Pi is a cheap, flexible, fully customizable and programmable small
computer board. It brings the advantages of a PC to the domain of sensor network,
what makes it the perfect platform for interfacing with wide variety of external
peripherals.

It was created by Eben Upton, Rob Mullins, Jack Lang and Alan Mycroft at
University of Cambridge for educational purposes. The Raspberry 3 costs around
35$ and includes [9]

• 1.2GHz 64-bit quad-core ARMv8 CPU, 50% faster than Raspberry 2

• 802.11n Wireless LAN

• Bluetooth 4.1

• Bluetooth Low Energy (BLE)

• 40 GPIO pins: they are the principal way of connecting with other elec-
tronic boards. Some GPIO pins can be used as digital inputs/outputs and as
interfaces for embedded protocols such as I2C (Inter Integrated Circuit), a low-
speed serial bus interface and SPI (Serial Peripheral Interface) for synchronous
full-duplex connections

• Full HDMI port

• Ethernet port

• Combined 3.5mm audio jack and composite video

• Camera interface (CSI)

• Display interface (DSI)

• Micro SD card slot

• VideoCore IV 3D graphics core

• 4 USB 2.0 ports allows connecting peripherals and storage devices

• Micro USB for power

17

3 – Selected Hardware

Figure 3.8: Raspberry Pi 3 Model B Specs

3.3.1 Communication
A key evaluation metric for any WSN is its communication rate, power consumption,
and range. Raspberry possesses multiple ways to connect to a network according to
the project needs. It is also compatible with low energy consumption requirements
by enabling Low Energy Bluetooth.

3.3.2 OS and deployment
Raspberry Pi is extremely easy to use. An OS image and an SD card are all
you need to have it running with a Linux distribution,specifically developed for
it, called Raspbian. Raspbian includes over 35,000 packages and pre-compiled
software easily installable on the Raspberry. Raspbian installation is described in
subsection A.3.1.

3.3.3 Local and remote access
Raspberry Pi can be connected to a screen through the HDMI port, although some-
times is more convenient to access it remotely. There are different ways to do so, the

18

3 – Selected Hardware

most common one is through SSH, also known as "secure shell", an encrypted net-
working technology that enables users to control computers from the command line.
It is even possible to remote control the desktop interface of Raspberry, using VNC
(Virtual Network Computing), a graphical desktop sharing system. SSH and VNC
installation are described in subsection A.3.1. Such flexibility makes Raspberry a
good asset for monitoring IoT networks and devices.

In conclusion, Raspberry is a very cheap, very complete and very powerful
board able to communicate with other wireless devices, to interact with servers
and databases and to act as a webserver, an access point or a gateway/middleware
in an IoT application.

19

Chapter 4

Stack Protocol

A main function of every network is to provide some sort of communication among
the nodes. When WSNs started to emerge, Internet Protocol (IP) was considered
by many inappropriate as it would represent a computational load too high for the
sensors, mainly because of header overhead. However, the Internet Engineering
Task Force (IETF) created a group in charge of developing an IP based solution on
top of IEEE 802.15.4 called 6LoWPAN, acronym for IPv6 over Low power Wireless
Personal Area Networks.

4.0.1 IEEE 802.15.4

The IEEE 802.15.4 standard defines the physical layer and media access control
for Low-Rate Wireless Personal Area Networks (LR-WPANs). It focuses on low
complexity, small header overhead and very low power consumption without loosing
flexibility. It has been optimized for timing-critical applications with low times
regarding access to the network, to the channel and the transient from sleep to
active state.

There are two different types of nodes. A full function device (FFD) can be
used as a coordinator of a PAN or as a common node in the network. It can
forward messages acting as a router. A reduced function device (RFD) may only
communicate with a FFD, it has limited memory and less complexity respect a FFD
and its limited to star topology only.

At least one FFD must be the coordinator of the network and is in charge of
initializing the network, managing the nodes and memorizing information regarding
the network topology that can be a star or a mesh.

20

4 – Stack Protocol

Physical Layer (PHY)

The PHY layer provides the data transmission service and an interface to the phys-
ical layer management entity. It defines the bands of frequency, the modulation and
spreding methods. It operates the RF transceiver, detects a channel availability and
executes energy saving and signal power management functions.

IEEE 802.15.4 operates on unlicensed frequency bands:

• 2.4GHz (worldwide), data rate : 250 kbps, 16 channels

• 868 MHz (Europe), data rate : 20 kbps, 1 channel

• 915 MHz (North America), data rate : 40 kbps, 10 channels

Media Access Control Layer (MAC)

Each device has an unique 64-bit extended address or a local 16-bit reduced address.
The MAC layer defines the method of addressing. The MAC relies on Carrier Sense
Multiple Access Collision Avoidance(CSMA-CA) as channel access method. It can
be a slotted CSMA-CA or an unslotted CSMA-CA, depending on the use of the
beaconing signal. Either way, it is possible (and optional) to send an ACK message
to confirm data reception. Other functions of the MAC includes frame validation,
association to a network and disassociation from it, Granted Time Slots (GTS)
management and beacon management.

When the beaconing method is enabled, the coordinator of the network sends
periodically beacon signals that the devices must use to synchronize. Between 2
beacon signals a superframe 4.1 is defined, formed by an active part of 16 timeslots
and an inactive part. During the CAP (Contention Access Period) devices use
slotted CSMA-CA. During CFP (Contention Free Period) devices may ask for GTS
(Guaranteed Time Slots).

Figure 4.1: IEEE 802.15.4 MAC superframe structure

21

4 – Stack Protocol

4.0.2 6LowPAN
The 6LoWPAN project was originated on the idea that even the smallest devices
should be addressable and thus, able to communicate in the IoT. Unlike the limited
address space of IPv4, IPv6, which uses 128-bit addresses, offers 3.4∗1038 unique ad-
dresses. More than enough to cover IoT expectations of almost 50 billion connected
devices by 2020.

Given the multiple constraints of the motes they cannot apply IPv6 directly. An
adaptation layer is needed. 6LoWPAN provides encapsulation and header compres-
sion (from 40 bytes of IPv6 to just 2 bytes) in order to allow IPv6 packets to be
transmitted over IEEE 802.15.4 radio link.

The 6LoWPAN is connected to the IPv6 network through an edge router which
is in charge of handling the data exchange inside and outside the LoWPAN net-
work and the generation and maintenance of the radio network. Since its uses IP, a
6LoWPAN network only needs IP routers to connect to other networks. Other net-
work architectures such as ZigBee or Bluetooth need complex application gateways
to communicate to IP networks.

Figure 4.2: 6LoWPAN stack example

Headers

6LoWPAN has four different types of headers, individuated by the first 2 bits of the
headers:

• 00 - Non-6LoWPAN Frame : specifies that the following bits should be
discarded by a LoWPAN node since they are not LoWPAN encapsulation
content.

22

4 – Stack Protocol

• 01 - Dispatch Header : contains a 6 bit selector that indicates the type of
the next header :

– 000001 - uncompressed IPv6 header;
– 000010 - HC1 header, in other words, a compressed IPv6 header;
– 111111 - indicates that the following header will be another Dispatch

header allowing another 256 types of headers;

• 10 - Mesh Header : used to send packets in multi-hop networks. It includes
a hop limit, source and destination IEEE 802.15.4 addresses. Its length varies
between 5 and 17 bytes, depending on the type of addressing used for the
communication (short or extended).

• 11 - Fragmentation Header : in order to allow IPv6 packets to be sent
over IEEE 802.15.4, IPv6 frames are divided in smaller segments. Fragmenta-
tion headers are generated to reassemble such segments in the correct order.
However, fragmentation should be avoided as it has a great impact in devices’
battery life.

Figure 4.3: 6LoWPAN headers [10]

Advantages of 6LoWPAN network

An IP based solution is a guarantee of more than 30 years of IP technology devel-
opment, open standards and applicability of a world wide recognized stack. Fur-
thermore, IPv6 provides a massive address space allowing the creation of large-scale
and high-density WSNs. Each node connected to the WSN becomes accessible to
any other IP network trough an IP router. Thus, it enables the integration with

23

4 – Stack Protocol

standard web service infrastructures such as Representational State Transfer(REST)
architecture.

6LoWPAN not only reduce header overhead but also reduce code size and mem-
ory requirements. Table 4.1 shows a comparison between 6LoWPAN and one of its
major competitors, ZigBee, another protocol built on top of IEEE 802.15.4.

Table 4.1: ZigBee and 6LoWPAN comparison

Considerations about 6LoWPAN

6LoWPAN presents some limitations that impact on WSN full integration with the
Internet. It only supports IPv6 communication, therefore tunneling and address
translation mechanisms should be considered in order to wire the communications
to an IPv4 based addressing space. Furthermore, 6LoWPAN does not work properly
when firewalls or NATs are involved. Unavailability of static IP addresses, blocked
ports and port forwarding may be considered. However, it is possible to handle
these issues by using border routers and gateways.

4.1 REST architecture
REpresentational State Transfer (REST) architecture defines a set of principles and
constraints, design guidelines, to expose web resources. A web resource is an abstrac-
tion of every thing or entity that can be addressed, identified by an URI (Universal
Resource Identifier). Web resources are managed by the server that allows clients to
access and manipulate textual representations of the resources by using a predefined
set of stateless operations on the URI.

24

4 – Stack Protocol

REST architecture aims for fast performance, reliability, and scalability. Its
components can be managed and modified without involving the system as a whole.

REST is usually associated with HTTP. HTTP-based RESTful APIs are defined
by a base URL to identify the resourse. Resources are manipulated by means of
standard HTTP methods (GET, PUT, POST, DELETE, OPTIONS, etc) and gen-
erates representations expressed as internet media types for state transition data
elements such as json or XML.

REST allows IoT applications to be developed on top of web services. The sen-
sors become abstract web resources identified by URIs and manipulated by simple
HTTP methods. Hence, RESTful WPANs greatly reduce the application develop-
ment complexity. However, the differences between IoT applications and Internet
applications are significant. Low processing power and energy consumption con-
straints need to be taken into account. As a consequence, the IETF Constrained
RESTful environments (CoRE) working group introduced a standardized web ser-
vice paradigm called CoAP (Constrained Application Protocol).

4.2 CoAP
CoAP consists of a subset of HTTP functionalities redesigned to adapt to small
devices constraints. It has been built on top of 6LoWPAN and it uses UDP as
transport layer. The transport layer is one of the main differences from HTTP,
which relies on TCP. TCP’s flow control is not suited for WSNs and it has a big
overhead for short transactions. UDP instead provides a way lower overhead and
supports both multicast and broadcast communications [11].

Table 4.2: CoAP protocol Stack

Request/Response
Transaction

UDP
6LoWPAN

IEEE 802.15.4

4.2.1 Architecture
CoAP is organized in two layers, as shown in Table 4.2. The Transaction Layer
handles message exchanges among endpoints. It interfaces with the Transport Layer.
The Request/Response Layer handles RESTful request and responses for resources
manipulation and transmission. It indicates a Method to access a specific resource
and communicates the response Code.

25

4 – Stack Protocol

The dual layer approach is the way CoAP provides reliability instead of TCP
methods and enables asynchronous communication, a key factor for IoT.

4.2.2 Messages
CoAP message format is indicated in Table 4.3. The header is fixed-length (4 bytes)
followed by binary options. An usual request has a header of approximately 10-20
bytes which greatly reduces HTTP header overhead.

CoAP establishes an upper limit for the message length. If MTU is not known
for an endpoint, it has to be equal to 1280 bytes, the minimum MTU allowed in
IPv6.

• Type indicates the type of message, Confirmable(0), Non-Confirmable(1), Ac-
knowledgment (2), Reset (3) which are better described below.

• Code is a 8 bit unsigned integer that can indicate a request (0), a success
response (2xx), a client error response (4xx) or a server error response (5xx).
Code 0.00 indicates an empty message, in such a case the packet is only 4
bytes long. Code represent a Request Method for requests and a Response
Code for responses.

• Message ID is a 16 bit unsigned integer used to detect message duplication
and to match ACK/reset messages to the corresponding confirmable or non-
confirmable message.

Table 4.3: CoAP message format

Messages exchanged in CoAP can be of four types:

• Confirmable (CON): it requires an acknowledgment. It is retransmitted
with a default timeout and an exponential back-off until an ACK is received
in order not to cause congestion.

26

4 – Stack Protocol

• Non-Confirmable (NON): it does not require an acknowledgment. It is the
case of messages repeated regularly such as sensor readings.

• Acknowledgment (ACK): it acknowledges a confirmable message.

• Reset : it indicates that a specific message (CON or NON) was received,
but some context is missing to be processed. It is a way to test an endpoint
liveness, sending a NON empty packet is equivalent of a CoAP Ping.

4.2.3 Requests
A CoAP request contains the Method to be used on the resource, the URI of such
resource, a payload and Internet Media Type, if needed, and optional metadata.

CoAP handles GET, POST, PUT and DELETE requests, easily associated to
those HTTP methods. GET is a safe method so it should only provoke a retrieval
action. GET, PUT and DELETE must be idempotent, which means they must
generate the same result even if invoked multiple times. POST is not idempotent as
it depends on the origin endpoint and the target resource. It usually indicates the
creation of a new resource.

4.2.4 Responses
After having received and interpreted a CoAP request, a server responds with a
CoAP response matched to the request via its token. Such request is identified by
a response code which indicates the result of the request operation. There are three
types of response code:

• Success : the request was received, understood and accepted.

• Client error : the request contains bad syntax or cannot be fulfilled.

• Server Error : the server failed to fulfill the request.
A response can be sent in different ways:
• Piggybacked : the response is sent in the ACK message for the request.

• Separate : it is not always possible to return a piggybacked response. This
could happen when a server needs more time to process a request or it has to
wait for a certain event to occur. When the resource representation is finally
available, the server sends the response to the client. If it is necessary not to
loose the packet, the server sends a CON message with the response and waits
for the client ACK.

• Non-Confirmable : a NON response is generated to respond to a NON
request.

27

4 – Stack Protocol

4.2.5 Resource Discovery
A client needs to learn about the server resources. That is accomplished by making
a request to a specific CoAP URI. CoAP uses two URI schemes:

• coap−URI = ”coap : ””//”host[” : ”port]path[”?”query] being the host an
IPv6 address or a registered name. Default port is 5683;

• coaps−URI = ”coaps : ””//”host[” : ”port]path[”?”query] enables DTLS
security. In this case the default port is 5684;

The path prefix "./well-known/" enables discovery of hosted resources in the
endpoint, useful when humans are not in the loop and essential to maximize inter-
operability.

4.2.6 Observe, subscription and notifications
A web resource will likely changes its value over time. CoAP offers a mechanism to
follow those changes by "observing" a resource, in other words it allows a client to
keep an updated representation of a given resource. A client, the observer, registers
at a specific resource which is responsible of keeping a list of registered observers
[12].

A client registers to a resource by sending an extended GET request to the
server regarding a specific resource. This generates a response with the current
representation of the resource and adds the observer to the list of observers of that
resource. Whenever the state of the resource changes, after a given timeout or under
other events, a Notification is sent by the server with an updated representation of
the resource to all the observers in the list.

Fig 4.4[12] shows an example of a CoAP observe exchange. The observe option is
setted to 0 the first time and it is incremented every time a notification is generated
in order to tell the order of arrival and the representation validity. If a client sends
another message with the observe option setted to 1 it means is asking to unsubscribe
from the list.

4.2.7 Security : DTLS
It is possible to enable DTLS (Datagram Transport Layer Security) over UDP. It
supports RSA-AES or ECC-AES.

To initiate a secure communication a provisioning phase is needed. During such
phase, the device is provided with the security information needed to establish the
connection. Once the provisioning phase ends, the device will be in one of four
possible security modes:

28

4 – Stack Protocol

Figure 4.4: CoAP observe example

• NoSec: it means DTLS is disabled.

• PreSharedKey: DTLS is enabled, each key of a list of preshared keys in-
cludes, in turn, another list of nodes in which it can be used to communicate.

• RawPublicKey: DTLS is enabled. The device has an asymmetric key pair
without a certificate validated using an OOB mechanism.

• Certificate: DTLS is enabled and the device has an asymmetric key pair
associated with an X.509 certificate.

DTLS is the equivalent of TLS plus some added features to deal with the unre-
liability derived by the use of UPD as transport layer. In some cases DTLS implies
too high of a burden for constraint devices and can not be applied and it does not
work for multicast communications.

4.2.8 CoAP/HTTP proxying
CoAP supports a subset of HTTP functions. Therefore, it is possible to map CoAP
requests/responses into HTTP requests/responses. There are several reasons for
proxying between CoAP and HTTP, usually in order to make CoAP resources avail-
able for Internet applications. There are two possible directions: CoAP-HTTP

29

4 – Stack Protocol

Proxying and HTTP-CoAP Proxying. In both ways, only the model of CoAP is
mapped to HTTP.

If the proxy is unable or unwilling to answer a request it returns a 5.05 (Proxying
not supported) response to the client.

4.3 A Publish/Subscribe protocol : MQTT

Figure 4.5: MQTT publisher/subscriber model

The publish/subscribe pattern is a simple way of exchanging messages in dis-
tributed environments. It is particularly efficient when the connection to the network
is intermittent, an event that is frequent in WSNs. It relies on push-based messages
and queues to save contents when the connection is not available.

The publish/subscribe design pattern is particularly useful in one to many com-
munications, when a publisher has to update the state of a certain resource to a
group of listeners, such as sensor readings.

MQTT, which stands for MQ Telemetry Transport, it is an extremely light-
weight (only 2-bytes header) messaging protocol based on the publish/subscribe
pattern on top of TCP/IP. It has been specifically designed for Low power and
Lossy Networks (LLNs).

The communication is based on a broker (as shown in Fig 4.5). Devices at the
edge of a network can publish to a specific topic, in other words an address. Clients
can subscribe, or follow, multiple topics. The job of the broker is to filter messages

30

4 – Stack Protocol

based on topics and to distribute them to each registered subscriber. The broker
allows not only one to many communications but also a de-coupling of applications
since there is no direct connection between publishers and subscribers. Publishers
just publishes messages without knowing who may be registered to the topic. At the
same time, subscribers only express interest in a certain topic without any knowledge
about the subscriber behind it.

MQTT is biderectional and it keeps the state of each session. If a publisher loses
connectivity, all its subscribers get a notification with the so called "Last Will and
Testament" signalling the problem. Then, any authorized client may publish a new
value to the disconnected device.

4.3.1 Message format
Fixed Header

The message header of MQTTmessages contains a 2 bytes fixed header which follows
the following scheme:

7 6 5 4 3 2 1 0
Message Type DUP flag QoS level RETAIN

Remaining Length

• Message Type: 4-bit unsigned integer

– 0 - Reserved
– 1 - CONNECT: client request to connect to the server
– 2 - CONNACK
– 3 - PUBLISH: publish message
– 4 - PUBACK
– 5 - PUBREC: publish received
– 6 - PUBREL: publish release
– 7 - PUBCOMP: publish complete
– 8 - SUBSCRIBE: client subscribe request
– 9 - SUBACK
– 10 - UNSUBSCRIBE: client unsubscribe request
– 11 - UNSUBACK
– 12 - PINGREQ: Ping request

31

4 – Stack Protocol

– 13 - PINGRESP: Ping response
– 14 - DISCONNECT: Client is disconnecting
– 15 - Reserved

• DUP flag: is set when a client or server tries to re-deliver a PUBLISH,
PUBREL, SUBSCRIBE or UNSUBSCRIBE message, in other words, when
the QoS value is greater than zero and an ACK is required.

• QoS flag: it indicates the level of assurance for delivery of a PUBLISH mes-
sage. It is further explained in section QoS.

• RETAIN flag: is only used on PUBLISH messages. When a client sends a
message with RETAIN value equal to one (set) to a server, the latter should
hold on the message after it has been forwarded to the subscribers. Upon new
subscriptions, the retained message on that topic is sent to the new subscriber,
if available, with the flag set. It allows new subscribers to get a last know good
value.

• Remaining Length: it represents the number of bytes remaining in the
current message, the variable header, that may be present between the fixed
header and the payload, and the payload.

Variable Header

Some types of MQTT message includes a variable header that varies according to the
message type. The following are some of the fields that may be present in the variable
header, MQTT protocol specifications can be consulted for further information [13].

• Protocol Name: present in the variable header of a MQTT-CONNECT
message.

• Protocol Version: 8-bit unsigned integer present in the variable header of
a MQTT-CONNECT message.

• Connect flags: present in the variable header of a MQTT-CONNECT mes-
sage, those are

– Clean session: If not set(0), the server must keep subscriptions and in-
flight messages for a client after it disconnects. Used for QoS > 0 so
that the subscribed topics can be delivered when the client reconnects. If
set(1), when a client disconnects the server must discard all the available
information about that client, including states. A clean session client
(flag set) will have to resubscribe each time it connects to the server.

32

4 – Stack Protocol

– Will flag: it indicates that a message is published by the server on behalf
of the client when either an I/O error is found by the server during the
communication, or the client fails to publish before the keep alive timer
runs out. If it is set(1), Will QoS and Will Retain fields in the Connect
flags byte must be present, as well as Will Topic and Will Message in the
payload.

– Keep Alive timer: present in the variable header of a CONNECTmessage.
It defines the maximum time period between two client messages. Used
to detect when the connection to a client is down, improving MQTT
reactiviy compared to TCP/IP timeout. If a client does not send any
message after one and a half times the keep alive time period, it will be
disconnected by the server.

– Topic name: it is present in the variable header of a PUBLISH message.

Payload

Only CONNECT, SUBSCRIBE and SUBACK MQTT messages posses a payload.
In a CONNECT message, the payload contains one or more UTF-8 encoded strings,
an identifier for the client, a will topic, username and password (optional) and the
message. In the SUBSCRIBE message case, the payload contains a list of topics the
client wants to connect to, followed by the QoS levels. SUBACK messages’ payload
specifies a list of granted QoS for the topic names the server have allowed the client
to subscribe to.

4.3.2 Topics and topic matching
There is no formal structure for a topic, a publisher has to create topics and can
choose both the structure and the topic names. However, there are some naming
rules that must be followed, such as [13]:

• a leading ’/’ creates a distinct topic;

• topic names are case sensitive;

• all topics must be at least one character long;

• the NULL character is not valid in a topic;

• there is no limit to the number of levels in a topic name. However the length
is limited to 64k for UTF-8 encoding.

The topic name is present in the header of an MQTT publish message.

33

4 – Stack Protocol

Wildcards

The structure of the topics is hierarchical. A subscription may contain special
characters, wildcards, to allow registration to multiple topics. Multi-level and single-
level wildcards can only be used by subscribers.

• Topic level separator ’/’: is used to separate each level of a topic tree
providing hierarchy to the topic space structure.

• Multi-level wildcard ’#’: it matches the current topic and all the levels
beneath it. It can be specified on its own or next to the topic level separator.
For example, a subscription to device1/sensors/# matches:

– device1/sensors
– device1/sensors/light
– device1/sensors/sht11
– device1/sensors/sht11/temperature
– device1/sensors/sht11/humidity and so on.

• Single-level wildcard ’+’: it matches only one topic level.
Following the previous example, device1/sensors/+ matches:
device1/sensors/light and device1/sensors/sht11
but it does not match device1/sensors/sht11/temperature and
device1/sensors.
As the multi-level wildcard, it must be used next to the topic level separator or
by its own. It can also be used within the topic tree (device1/sensors/+/temperature
is valid).

4.3.3 QoS
MQTT offers three different types of QoS levels:

• 0 - At most once: messages are delivered on best-effort fashion of the
TCP/IP network. Lost messages and data duplication are possible. Useful
for devices which send messages periodically that can be lost without further
implications.

• 1 - At least once: guaranteed delivery of the message, confirmed by an ACK,
although message duplication is possible. If the ACK message is not received
or if there is a well known failure in the network or the device, the publisher
resends the message with the DUP flag set until it gets an ACK response.

34

4 – Stack Protocol

• 2 - Exactly once: it ensures that the message will arrive only once. It is the
highest level of delivery, used when duplicate messages are not acceptable. It
generates more network traffic, PUBREC, PUBREL and PUBCOMPmessages
are needed.

Message ID

When the QoS value is greater than zero, when an acknowledge is needed, a Message
ID (16-bit unsigned integer) must be present. It must be unique in the set of "in-
flight" messages in a particular direction of communication.

Message delivery retry

There are some cases in which TCP may fail to deliver MQTT messages. If a
response is expected (QoS > 0) and it is not received after a certain time period (a
configurable option), the sender will try to resend the message with the DUP flag
set. If a client looses connectivity and regains it ("on reconnect"), both the client
and the server will resend any previous "in-flight" message.

4.4 Gateway Framework
"Deploying and configuring one device to act as a node in the Internet of Things
is relatively easy. Doing the same for hundreds or thousands of devices is not so
easy though" [14]. This is where gateways come in. Advanced software frameworks
operating on the edge of an IoT solution, providing developers an abstraction and
isolation layer from the complexity of hardware and networking systems, guiding
the development and reuse of integrated software and hardware solutions.

4.4.1 Gateway tasks
Hardware and field abstraction

An IoT gateway must provide easy access to I/O and sensor connectivity.

Network management

As a project grows, it is going to need more ways of connectivity and the gateway
should provide it with the means to configure and secure it. It also has to consider
the actions to perform when the connection is down providing an offline mode.

35

4 – Stack Protocol

Applications management

One of the main advantages a gateway provides is the ability to remotely manage
applications, whether by starting, stopping, installing, updating applications or by
controlling configuration parameters.

IoT connectivity management

Both CoAP and MQTT are great protocols for IoT but they focus mainly in the
communication piece lacking some interactions in offline modes. The gateway should
fill those gaps through data buffering, connection retries, provisioning, credentials
and certificates.

4.4.2 Gateway challenges
[15] individuated three major challenges an IoT Gateway must overcome: fragmen-
tation, complexity and lock-in.

Fragmentation

There are multiple solutions, handlers and protocols for every pile of the stack. Start-
ing by the sensor communication protocols we may consider ZigBee, Bluetooth/BLE
or 6LoWPAN amongst many others. They are all gaining strength in the IoT world
and are good solutions according to the situation. A good gateway can’t afford to
loose flexibility by preferring a protocol over the other and things can get tricky
when trying to interface them all.

On the controller side, multiple operative systems, compilers, programming lan-
guages and processors must me considered under the gateway. Communications on
the network depends on budget and technologies, they can run over cellular, Wi-Fi,
Ethernet, proprietary networks and so on. Multiple standards can be manipulated
and there are different choices regarding the communication protocol such as MQTT,
CoAP, LWM2M.

Complexity

Starting again from the sensor level, it is not an easy task to develop low level APIs
to communicate with the sensor OS and HW while respecting its time dependencies.
It is necessary to consider cross compiling, the difficulty to debug, test and provide
on the control level. Standards usually get driven by customer, varying from project
to project. Going up in the stack, other problems such as security, authorization and
authentication, reliability and network stability become crucial in the development
of an IoT Gateway.

36

4 – Stack Protocol

Lock-in

Hopefully, as IoT grows there will be less proprietary solutions that limits the de-
velopment of IoT. But there are multiple cases of proprietary solutions all over the
stack. Certain gateways impose the use of proprietary network protocols, communi-
cation protocols or cloud frameworks. Cases in which network equipment is locked
by carrier and any kind of modification incur high costs or black box devices with
or without APIs exposed for the users.

4.4.3 Eclipse Kura
Kura is an open source platform developed by Eclipse IoT for building IoT gate-
ways. It allows remote control of the gateway while providing a variety of APIs
to access to the underlying hardware, to manage network configuration and cloud
communication.

Kura runs over the Java Virtual Machine (JVM). Java was chosen because it
is OS and CPU architecture independent, its code can be written once and used
anywhere. Java8 and Java9 are committed to IoT development, to improve the way
JVM runs on constrained devices.

Kura employs OSGi, a dynamic component system for Java, basically a container
which allows to modularize the code in blocks called bundles. Bundles can be reused,
controlled and updated independently of the other pieces of code. Any application
in Kura is deployed as an OSGi bundle and runs on the container along with other
Kura’s components.

Kura architecture is shown in Fig 4.61.
Kura provides different services:
• I/O services: serial, USB, Bluetooth, position (GPS), clock service for syn-

chronization purposes and an API for GPIO/SPI/I2C.

• Data transport service: it allows to connect to a MQTT broker.

• Data service: a store and forward service, in a priority queue, for data readings
picked up by the gateway and published to remote servers. The publishing
system is policy-driven, reducing developers concerns about the underlying
network layer and the publishing protocol. Kura uses MQTT for data com-
munication and Eclipse Paho as MQTT client.

• Cloud service: provides an API to communicate with remote servers. Cloud
service allows to manage request/response pattern over MQTT besides typi-
cal publish/subscribe interactions. In addition, it provides the possibility to

1eclipse.github.io/kura/intro

37

eclipse.github.io/kura/intro

4 – Stack Protocol

Figure 4.6: Kura architecture

share a connection to a remote server between more applications in the gate-
way through topic partitioning. It manages message publications life cycle.A
data model for the payload is provided by this service which also manage
serialization (using Google protobuf), encoding and decoding of the messages.

• Configuration service: it provides a snapshot service to import/export the
configuration of all the services in the gateway.

• Remote management: is it possible to remotely deploy, upgrade, start and
stop Kura bundles and to configure system and network properties.

• Networking: it is possible to configure all the interfaces available in the gateway
(Ethernet, WiFi, etc), the firewall and so on.

• Web administrator interface: web console to manage the gateway.

38

Chapter 5

Selected Software

5.1 SW for the motes
In order to connect WSNs to the IoT or more specifically, to the WoT, is it necessary
to start by choosing the software to be installed in the motes to let them be accessible
and communicative with its surroundings. Different choices can be made respect
to motes connectivity, but before start talking about network or communication
protocols it is important to decide which operative system will be implemented on
the motes.

5.2 Operative Systems for the motes
To enable constraint devices to run purpose-written applications requires an under-
lying operative system to manage the resources of the device, focusing on energy,
usually provided by a battery that must run for long periods of time, and memory,
no more than a few kbytes. This is why the hardware of the motes is developed
to reduce power consumption as much as possible, possessing limited resources, the
microcontroller used as a CPU is one example. Even if all the components of such
devices are developed in order to save energy, they can not be running at full power
for too long as the consume would be too high.

In a typical application, a mote is responsible for gathering, processing, and
transmitting data gathered by its sensors, it may manipulate such data though
its actuators. Furthermore, it has to forward routing messages and participate in
distributed algorithms. The operative systems must manage resources and timings
in an efficient way since many of them need real-time responses. A mote can only
execute a single task at the time, the OS must schedule them, allowing to share
CPU resources in order to finish multiple programs in the desired time frame.

The requirements for the OS varies according to the needs of each application.

39

5 – Selected Software

So, installing a program in a mote usually means to flash the mote with a binary
formed by the integration between the application and the operative system, which
acts as a library. The OS needs to be flexible to handle different requirements.

In summary, the crucial elements a sensor network operative system must address
are Power consumption, Limited resources, Concurrency and Flexibility [19]. This
section considers two of the best known OS for resource constrained devices available
for TeloSB (SkyMote), TinyOS and Contiki. More specifically, how they manage
sensor networks main requirements and a brief comparison of the two, justifying the
choice of Contiki as the OS for the motes.

5.2.1 TinyOS
TinyOS is an open source, flexible OS for sensor networks developed at the Uni-
versity of California in Berkeley. It has very low memory requirements as it fits
in approximately 400 bytes. The OS library includes services for data acquisition,
sensor drivers and network protocols [19].

Architecture

TinyOS has a monolithic architecture and is based on components written in NesC
language, a dialect of C. In other words, every application, the OS itself and the
scheduler are composed by components that collectively form an application-specific
image that can be loaded in the mote. Components are wired and interdependent.
Since they are well known at compile time, only used components and procedures
are included in the final image and there is no dead code. Each component, and
the components connected to it, must be present in order to compile or execute
the code. As a consequence, if any component of a program must be replaced or
updated it is necessary to rewrite the whole application into the mote.

Components provides for three types of abstractions: Commands, Events and
Tasks. The main difference between these types is the way they can be called
an by whom. Commands and Events provides inter-component communication,
a command may request a reading from a sensor while events would notify the
completion of such kind of service at a later time. Tasks act as intra-component
concurrency representations. A task do not run immediately, it gets posted by a
command or event handlers and it is executed by the scheduler later.

Components expose a set of services, basically a list of commands they can send
and events they can handle, by using interfaces. An interface can be used or provided
by components. Providers implement commands while users implement events.
Connections between components are expressed through configurations. Configu-
rations specify, for each component, which components use the interfaces it exposes

40

5 – Selected Software

and which component provides the interfaces it uses. They allow to incorporate
more components into a bigger component exposing a single set of interfaces.

Scheduling

As previously mentioned, TinyOS provides concurrency by using tasks that can be
posted and executed later. The scheduler handles tasks in a non-preemptive FIFO
manner. Tasks must run to completion to allow the scheduler to execute another
task which allows to use a single stack for all tasks. It is possible to change the
scheduling policy. When the queue of tasks is empty the mote enters in a sleep
state until it receives an interrupt. It is important to avoid long tasks that may
block the whole application since they can not be preempted. At the same time, it
is necessary to consider the overhead provoked by posting and executing multiple
short tasks.

Power consumption

The execution model of TinyOS is event-driven and split-phase. A request for a
service is decoupled with the signal of its completion. Therefore, the request returns
immediately, as well as the signal event after it notifies the completion of the service.
In addition, every time the queue of tasks is empty, the sensor enters in a sleep
mode. These two factors help to reduce energy wasting for the CPU. Besides CPU,
periphery hardware such as the radio, introduce a considerable waste of energy.
TinyOS introduces interfaces to induce a low power state for those components.

5.2.2 Contiki
Contiki is a lightweight, portable and open source OS for WSNs developed at the
Swedish Institute of Computer Science by Dunkels. It is written in C language, it
is based on a driven event kernel and it supports preemptive multithreading. A
Contiki configuration occupies approximately 2kB of RAM and 40 kB of ROM.

Architecture

Contiki has a modular architecture. It is composed by the kernel, libraries, the pro-
gram loader and a set of processes differentiated in application programs and ser-
vices. Unlike services, application programs do not offer functionalities to other pro-
cesses. A process must save its state into private memory and the kernel only keeps
a pointer to that state. Communication between processes always flows through
the kernel. Device drivers and applications communicate directly with the hardware
[20].

41

5 – Selected Software

Contiki allows dynamic loading and replacing of any application program or
service at run-time through a dedicated relocating function. Every program has an
identification to allow this function to select it and manage it.

A running Contiki system is divided in the OS core and the loaded programs.
The kernel, the program loader and the principal libraries and drivers are located
in the core, which is typically deployed as a single binary while the programs are
distributed independently [20].

Concurrency and execution model

Contiki follows the event driven model at kernel level although it facilitates thread
programming. The execution of a process can be triggered whether by a event sent
by the kernel or rather by a polling mechanism, useful to avoid race conditions. The
kernel can not preempt events that have been scheduled, but event handlers may
use internal mechanisms to preempt other events. Each process must implement
an event handler and can optionally implement a poll handler. Polling can be
considered as a priority queue for scheduling in between asynchronous events[21].

Both synchronous and asynchronous events are supported. Synchronous events
are immediately dispatched to the target process and scheduled while asynchronous
events are enqueued by the kernel are dispatched later, in a similar way to tasks in
TinyOS.

In addition to events, Contiki offers Protothreads for multithreading [22]. Pro-
tothreads are a simplified and lightweight version of normal threads. They save
their own state in private memory since they do not possess a stack. Protothreads
event handlers can not be preempted and run until the protothread goes itself into
a waiting state until reschedule [22]. However, Contiki provides a library on top of
the kernel in order to support preemptive multithreading. Unlike protothreads, the
design used in this library requires every thread to has its own stack and the use of
stack switching functions, the timer and interrupt signals. Linking the preemptive
library means a greater consume of RAM space respect to the event-driven kernel
and code adaptation.

Communication support

Contiki represents communication support as a service. Like every other service
in Contiki, multiple communication stacks can be dynamically loaded or replaced.
Furthermore, such stacks can be divided into different services enabling run-time
replacing of individual parts of them [20].

Contiki was one of the first sensor network OS to support IP protocols, more
specifically IPv6, even if it offers IPv4 and non-IP (RIME) communication.

42

5 – Selected Software

Power consumption

Contiki does not offer any explicit power saving method. The application must
decide when it is better to put the mote or some services as the radio into sleep
mode.

5.2.3 TinyOS and Contiki
A comparison can be made considering the major factors of concern in sensor net-
works [23]:

• Power consumption: TinyOS has implementations for energy conservation,
decreasing the burden on the programmer. Contiki instead, does not provide
an energy saving mechanism but similar results can be achieved by the use of
sleep functions in the application.

• Limited resources: Both operative systems can run on constrained devices.
However, TinyOS requires fewer space, less complexity and it is better suited
when the resources are very limited.

• Concurrency: TinyOS offers only the event-driven kernel while Contiki pro-
vides different libraries on top of it to allow multithreading.

• Flexibility: Both TinyOS and Contiki are flexible to handle different types
of programs but, since Contiki was developed for run-time deployments, it
excels in applications update and replacement. Its modularity allows to replace
fragments of applications without involving the core services.

To bring TinyOS into a mote it is necessary to specify which components to use,
how they are wired and to configure each component correctly. Through a NesC
compiler it is possible to take all NesC files of a program, including TinyOS OS, and
compile them into a single C file. Contiki, on the other hand, requires to write the
boot up code, device drivers and parts of the program loader. Since it is written in
C, a native C compiler can be used [23].

In conclusion, both operative systems can fulfil WSNs constraints. They are
lightweight and flexible. Since both are open source and have been promoting WSN
development for years, they count with the support of a big community of develop-
ers. TinyOS’s community probably is bigger but Contiki has a full set of program
examples and tutorials to start with. In addition, they have their own simulation
program, TOSSIM for TinyOS and Cooja for Contiki, to simulate WSNs before
deployment on the devices.

43

5 – Selected Software

5.2.4 Motivation
Having seen their properties and leaving aside small differences in their performance
on really limited devices, they are both valid operative systems for the project. The
main difference resides in the possibility that Contiki offers to dynamically link and
update services. This thesis aims to be a milestone for a bigger implementation
of WSNs in University like structures. It becomes important to allow an easier
deployment and replacement of not only application programs but also parts of
communication protocols and network protocols. This will facilitate experimental
research, evaluating and comparing different solutions. In addition, Contiki provides
a protocol for Over the air programming[20]. It could allow to remotely replace
services in the motes of a sensor network. This implies that sensors, actuators and
services can be accessed and modified over the cloud. Moreover, Contiki is written
in standard C, development is easy and fast and Instant Contiki provides an entire
development environment installation in a virtual machine.

5.3 Contiki stack configuration

5.3.1 Contiki directory structure
The following is a simple guide of folders of interest in Contiki’s directory structure,
necessary to better understand the stack and its possible configurations:

• apps/ : Contiki applications

• core/ : Contiki core code

– lib/
– loader/
– sys/
– net/

∗ mac/
∗ rime/
∗ rpl/

• cpu/ : Contiki CPU-specific code common to all platforms with the same
microcontroller

• platform/ : contains platform specific code

– sky/ : contains SkyMote (TelosB) specific code

44

5 – Selected Software

• doc/ : Contiki documentation

• examples/ : Contiki examples

• tools/ : Contiki tools

5.3.2 Contiki MAC layer

Contiki’s medium access implementation consists of three layers: Framer, Radio
Duty-Cycle (RDC) and Medium Access Control (MAC) as shown below1:

Figure 5.1: Contiki MAC layers

All three of them must be defined during compilation time through global vari-
ables in core/net/netstack.h. All framer, RDC and MAC implementations can be
found in core/net/mac.

1http://anrg.usc.edu/contiki/index.php/MAC_protocols_in_ContikiOS

45

http://anrg.usc.edu/contiki/index.php/MAC_protocols_in_ContikiOS

5 – Selected Software

Framer Layer

It is a set of functions used to create a frame containing data to be transmitted
and to parse received data. There are two types of framers: framer-nullmac and
framer-802154.

When IPv6 is used, framer-802154 is selected. It creates and parses data frames
according to the IEEE 802.15.4 standard. It inserts and extracts data from the
packetbuf structure.

Framer-nullmac is a very simple framer and it should be combined with nullmac_driver
of the MAC layer. In this case, the implementation just fills the receiver and the
sender addresses of the nullmac header.

RDC layer

The Radio Duty-Cycle layer manages the sleep periods of time of the motes. It
has to ensure motes will be awake to receive messages and it decides when packets
must be sent. Contiki RDC implementations can be found in core/net/mac. They
are contikimac, xmac, lpp, nullrdc and sicslowmac being contikimac the most
commonly used. NullRDC provides a configuration by which the radio is never
turned off, therefore there is no power saving and acts only as a pass-through layer.
Sicslowmac is another example of a simple RDC layer that do not save energy but
it uses IEEE 802.15.4 frames.

Besides nullrdc and sicslowmac, RDC implementations aims to keep the radio off
for the longest possible time since it consumes a big amount of energy. Therefore,
they check the channel periodically for radio activity. If that is the case, the radio
is turned on to control if the packet is addressed to the mote or if it can turn in
a sleep mode. The frequency of the medium control, rdc_channel_check_rate, is
measured in Hz and can be configured.

Controlling the media activity over certain periods of time incurs in packet re-
transmission or strobe packets since the receiver will not be always awake to receive
a packet. As a consequence, the transmitting node will consume more energy and
provoke more radio traffic. However, there is an overall power saving for receivers
in the network.

MAC layer

Contiki offers two types of protocols, nullmac and csma. Nullmac acts as a pass-
trough protocol and simply calls the appropriate RDC functions. CSMA (Carrier
Sense Medium Access) implements the underlying RDC layer and provides address-
ing, sequence number and retransmission. It saves a list of packets sent to each mote
as well as statistics of collisions, retransmissions, etc. Medium access layers can be

46

5 – Selected Software

found in core/net/netstack.h in which a global variable for each one of them defines
the layer: NETSTACK_FRAMER, NETSTACK_RDC and NETSACK_MAC.

5.3.3 Network routing : RPL
There are different implementations of network routing depending on routing metrics
or static vs dynamic routing. Although the objective remains the same, to determine
the path by which packets will arrive from a source to a destination. The default
routing protocol for Contiki is RPL, an IPv6 routing protocol for LLNs developed by
the IETF ROLL group. RPL is a proactive distance vector protocol that generates
Destination Oriented Directed Acycle Graphs (DODAGs) rooted torwards one sink
(DAG root). So data collection is oriented from the source to the sink. A rank is
provided to each node in order to determine its distance to the root of the DODAG.
The root may acts as a border router for the DODAG, connecting the 6LoWPAN
network to other IP networks (as shown in Fig 5.2) . It can aggregate nodes and
routes to the graph and redistribute DODAGs routes [26].

Figure 5.2: An example of a 6LoWPAN connected to another IP network

A network may run multiple instances of RPL. Each one of them is character-
ized by different parameters in order to considerer multiple constraints or to achieve

47

5 – Selected Software

better performance. This can be accomplished indicating dynamic constraints and
metrics in objective functions. It allows to create optimal routes, according to dif-
ferent criteria, between sink and all the other nodes both to collect and to distribute
data.

RPL allows to disseminate network topology information over the DODAG with
minimal configuration in the nodes. It sends DODAG Information Objects (DIO)
messages in order to build and maintain upward routes of the graph, advertising
RPL instance, rank, etc. Nodes must monitor for DIO messages and select a parent
node in the network to join the DODAG. Destination Advertisement Objects (DOA)
are used to maintain downward routes.

Figure 5.3: RPL: collect, distribute and P2P routing

5.4 CoAP implementation: Californium
Californium is an open source Java implementation of CoAP developed by the
Eclipse IoT group. It focus on back-end services such as proxies, cloud services
or gateways. It provides a set of API for RESTful Web Services that supports all of
COAP’s features and it is IETF standards compliant. Appendix subsection A.4.3
provides a guide to install and include Californium in the Kura framework.

Californium provides useful features for this project:

• Implementation of CoAP (RFC 7252)

• Implementation of the Observe draft (RFC 7641)

• Implementation of DTLS 1.2 (RFC 6347)

• OSGi wrapper for managed servers

48

5 – Selected Software

Californium has a three-stage architecture. The stages are decoupled with mes-
sage queues and are managed with independent concurrency models. Stage 1, the
Network stage, depends on OS and transport. Stage 2 handles the CoAP protocol
implementation and the third stage manages the logic.

This architecture is implemented by three components: Resources, Endpoints
and Connectors [Fig 5.4].

CoAP servers reside in the third stage and contain tree structures in which each
node is a resource identified by an address. Each web resource may have a thread
pool to handle requests or inherit it from a parent or an ancestor. When a server
receives a request, it searches for the resource in the tree. It answers with a response,
a response code, according to the search result, and a payload if needed.

Endpoints integrate stage 1 and 2. They enable multiple channels and stack vari-
ations for different transports as UDP or DTLS. Endpoints handle datagrams pars-
ing in Requests objects which are forwarded to the resources. The data parser also
includes a deduplication matcher to individuate duplicated messages. The CoAP
stack implementation of the endpoints includes [24]:

• Blockwise layer: it allows to divide large packets into blocks.

• Observe layer: it handles client-resource relations for the observe feature.

• Token layer: it generates a Token ID for each request.

• Reliability layer: it enables CoAP message retransmission for CON (acknowl-
edged messages) messages.

Connectors reside at the edge of endpoints. They are unaware of the CoAP
messages structure as they simply communicates with the transport protocol sending
and receiving messages with non-blocking methods.

Californium was chosen as CoAP implementation as it is one of the most com-
plete available implementations. At the same time, it belongs to Eclipse IoT and it
is written in Java, which facilitates its incorporation in Kura. Furthermore, Cali-
fornium provides a full library for security purposes in DTLS called Scandium. This
library can be implemented for the CoAP server in the LAN.

5.5 MQTT implementation: Paho
MQTT will be used to make wireless sensors data available to the Cloud, and sub-
sequently allow user applications to consume and analyze such data.

Eclipse Paho is the default MQTT client implementation of Eclipse Kura. The
Data Transport Service of Kura is based on top of Paho. Paho provides support in
many programming languages, Java is one of them.

Paho main features include [25]:

49

5 – Selected Software

Figure 5.4: Californium Architecture Implementation [24]

• MQTT 3.1

• MQTT 3.1.1

• LWT (Last Will and Testament messages)

• SSL / TLS security

• Message Persistence in case of crash of the system

• Automatic Reconnect to the server

• Offline Buffering

• WebSocket Support

• Standard TCP Support

• Non-Blocking API

• Blocking API

• High Availability

50

Chapter 6

Implementation

In this chapter the implementation of the project is described. The first step is the
installation of the CoAP server in the motes followed by the communication to a
6LoWPAN network through the RPL-border router, another TelosB mote which acts
as a sink. This mote is connected to the gateway, a Raspberry Pi, which implements
the Kura framework. The gateway acts both as a client and as a server. It sends
requests to the erbium CoAP servers and it exposes motes web resources to other
CoAP clients in the LAN and to the cloud. Fig 6.1 shows the project implementation
with AWS as cloud platform.

6.1 WSN
This project uses two types of motes, CoAP servers and the RPL-border router.
Appendix subsection A.1.1 contains a tutorial to install Contiki programs into the
motes.

Erbium CoAP server

Erbium (Er) is a low power REST Engine for Contiki. Erbium includes an embedded
CoAP implementation that became the official one for Contiki. It supports RFC
7252 together with blockwise transfers and the observe feature [28].

The er-example-server was used as the CoAP server program for the motes. It
defines a set of resources according to the mote sensors and capabilities. A Contiki
RESOURCE in the coap server is defined by an URI, a method, a name and a brief
description of its content, query options and the supported MediaType as shown
below:

RESOURCE(light, METHOD_GET, "sensors/light", "title=\"Photosynthetic and
solar light (supports JSON)\";rt=\"LightSensor\"");

51

6 – Implementation

Figure 6.1: Project implementation design
52

6 – Implementation

RESOURCE(radio, METHOD_GET, "sensors/radio", "title=\"RADIO:
?p=lqi|rssi\";rt=\"RadioSensor\"");

The server exposes a list of available resources. Some of them can be selected
with a flag at the beginning of the file to meet memory constraints:

#define REST_RES_HELLO 0
#define REST_RES_CHUNKS 0
#define REST_RES_SEPARATE 0
#define REST_RES_PUSHING 0
#define REST_RES_EVENT 0
#define REST_RES_SUB 0
#define REST_RES_LEDS 0
#define REST_RES_TOGGLE 0
#define REST_RES_LIGHT 1
#define REST_RES_TEMP 0 /* added implementation for the sht11 sensor

of the TelosB, causes large code size */
#define REST_RES_BATTERY 1
#define REST_RES_RADIO 1
#define REST_RES_MIRROR 0 /* causes largest code size */

It is possible to load two or three resources per node in a TelosB mote in average.
When an er-coap server receives a GET request in the "/.well-known/core" it

answers with a set of CoRE WebLinks. Each one of them possesses two main
attributes: the name and a brief description of the resource containing the allowed
methods, query parameters and supported MediaTypes. The resources received by
er-CoAP servers are divided in sensors and actuators.

RPL-border-router

Its function is to communicate the 6LoWPAN network and an external IP network.
The ipv6/rpl-border-router/border-router was flashed on the border router mote.
The program waits until it receives the prefix of the network through a SLIP (Serial
Line Internet Protocol)connection with a Contiki tool called tunslip. Once it receives
the prefix, it sets itself as the root of a DAG after which it assigns the prefix of the
rest of the CoAP servers in the network. Further information about the rpl-border-
router setup is available in Appendix section A.2.

The border router hosts a web page with a list of the nodes in the DAG. It
contains a list of neighbors, nodes addresses directly connected to the root, and the
IPv6 links to reach them and multihop nodes as shown in Fig 6.2.

The border router is connected to the Raspberry Pi via USB, thus the latter can
access the RPL network.

53

6 – Implementation

Figure 6.2: RPL border router web page

Copper (Cu)

The Copper(Cu) CoAP user agent is an add-on for the Firefox Web browser. It
allows browsing, bookmarking, and direct interaction with CoAP resources. by
simply inserting a CoAP URI into the address bar [29]. It is a powerful tool to
run simulation and interact directly with the connected nodes. Figure 6.2 shows a
Copper screenshot with the resources of the CoAPServer offered by the gateway.

6.1.1 Cooja simulator
A simulator is a crucial component for the development of wireless sensor network
software. The communication or even the debug of physical devices can become
tedious and troublesome. In addition, the times for compilation and flash into the
mote are high.

Cooja is the default java network simulator for Contiki. It offers a good GUI
interface to add different type of nodes in a noise free medium. Different portions
of the simulation can be modified without interfering with the process. Cooja offers
a packet analyzer and a set of tools to supervise each mote and its communications.

To configure the network as desired it is necessary to add a border router and
some servers. The simulation can be linked with tunslip, through a serial server in
the border router, in order to start the RPL network and allow communication with
the servers.

Once it is active, the CoAP Client in the gateway can starts the communication
6.3. References about the linking between Cooja and tunslip and more configuration

54

6 – Implementation

Figure 6.3: Cooja RPL network simulation

details are listed in Appendix subsection A.2.1.

6.2 Kura bundles

The implementation of the gateway is defined in three bundles:

• SensorsInterfaces : it defines the methods that the other two bundles must
implements as a service.

• GatewayPublisher : it handles the communication with the cloud sending
requests to the CoAPGateway.

• CoAPGateway : it is the main bundle. It is responsible for collecting all
the data from the sensors. Such data is translated to CoapResources that are
exposed to the GatewayPublisher and to the LAN through the CoAPServer.

55

6 – Implementation

6.2.1 SensorInterfaces
SensorInterfaces includes two interfaces to define the behaviour of the CoAPGateway
and publisher classes to communicate to each other. This common OSGi approach
to allow inter-bundle communication is called Service Registry. Each bundle needs
to register a service, in the component XML file, providing its implemented Sensor-
Interfaces interface and bind a reference to the service provided by other bundles.

CoAPGateway implements and provides SensorInterfaces.SensorService and it
binds SensorInterfaces.SensorChangedListener. In an analogous mode, Gateway-
Publisher implements and provides SensorInterfaces.SensorChangedListener and binds
SensorInterfaces.SensorService services.

The interfaces define the methods and parameters that allow SensorChangedLis-
teners to request information about the SensorService implementation. Basically, it
describes how to retrieve information about the network, its nodes and the resources
offered by each one of them. Specific methods will be described in the following sec-
tions.

6.2.2 GatewayPublisher
It manages the communication between the CoAPGateway and the cloud platform.
In order to accomplish such task, it must implement:

• CloudClientListener: it is an implementation of Kura Cloud service. It al-
lows to communicate with instances of diferent CloudService Platforms. Cloud
connections must be created and configured from Kura web UI, under Cloud-
Service. An example of cloud connection with AWS IoT cloud platform will
be described in the following chapters.

• ConfigurableComponent: it allows to expose a Kura service to modify the
configurable properties of the publisher, such as:

– publish.qos: default QoS to publish the messages with.
– publish.retain: default retaing flag for the published messages.
– publish.appTopicPrefix : prefix of topic to publish CoAPGateway responses.
– publish.rate: default publish rate time for observers [ms].
– publish.validity: default publish validity time for resources values [ms].
– subscribe.appTopicPrefix : prefix of topic to receive cloud platform re-

quests.

• SensorChangedListener: it implements the methods needed to communi-
cate with the CoAPGateway. Through this interface it can gather and publish

56

6 – Implementation

information about the wireless sensor network, its nodes and each resource
exposed by them.

As soon as the bundle becomes active and the CloudService becomes connected
it subscribes to the inbound/ topic in order to listen requests from the cloud. Cloud
application requests are forwarded to the SensorService if active, otherwise it replies
with an error message. When a SensorService has to communicate with the cloud
platform it sends the message through GatewayPublisher.

When the SensorService is set, GatewayPublisher sends a request to retrieve
information about the MoteNodes in the network. Afterwards, it sends a resource
discovery request for each mote. All the responses are immediately published by
the cloud client to the respective topic. If the connection with the cloud is down all
incoming responses from the SensorService are just ignored.

QoS

It is possible to select the three MQTT QoS leveles for the messages between the
gateway and the cloud. Messages published by the cloud client (ClientService) are
buffered by Kura DataService until the connection is established. The behaviour is
different according to the QoS value:

• QoS = 0: at most once. The DataService sends the message only once to
the MQTT library avoiding duplicates.

• QoS = 1: at least once. In-flight (unconfirmed) messages can be re-
published on re-connect but it may cause duplicates.

• QoS = 2: exactly once. In-flight messages are deleted when the connection
is down so they are not re-published on re-connect. If the connection falls
down, the application must assume the message was not received by the broker.

This parameter can be modified when publishing responses from the motes exposed
by the gateway. Observed resources do not explicitly need to get their values exactly
one time or ensure delivery since they send multiple and frequent values to the
cloud. In the other hand, information regarding the 6LoWPAN network must ensure
delivery to keep cloud services updated about the CoAP servers that are currently
available through the gateway.

Topic structure

The root of the topic structure used to communicate with the gateway is defined by
"<clientd-id>/appTopixPrefix". Client-id is an unique identifier within AWS
domain used to the connection to AWS cloud services described in the next chapter.

57

6 – Implementation

AppTopixPrefix can be configured through Kura web UI as previously mentioned.
The other topics are added to the root prefix creating a tree structure as described
below:

• neighborhood/: by subscribing to this topic, the connected cloud platform
will get periodic updates of the motes exposed by the server. Their address,
last seen time, parent node and status.

• neighbors/<nodeId>: this topic receives the WebLinks of each mote, which
describes the allowed methods and parameters to interact with each of its
resources.

• neighbors/<nodeId>/sensors/<sensorName>: it receives the reading
values of a specific sensor.

• log/: it logs CoAP message responses indicating the result of each request.

• inbound/: cloud applications must subscribe to this topic in order to make
a request.

Message payload structure

KuraPayload is the standard and recommended payload structure for the messages
sent to the cloud. The format was designed by Eurotech as a flexible and efficient
open format. The format can be serialized into XML, JSON or Google ProtoBuf.

KuraPayload contains the following fields [30]:

• sentOn timestamp: it indicates the timestamp when the data was sent to the
cloud platform.

• metrics: a set of metric data structures represented as name-value pairs. Al-
lowed types of metric are: string, double, int, float, long, boolean, base64Binary.
Sensors responses are represented as metrics.

• position: an optional field to capture a GPS position associated to the pay-
load.

• body: it is an optional section of the payload that allows additional information
to be transmitted in any format defined by the user.

The following snippet shows examples of cloud applications json requests to the
motes, published in the inbound/ topic.

58

6 – Implementation

GET Request to the /radio?p=rssi resource of the mote
aaaa::212:7400:1539:e48b

{
"metrics":{

"method": "GET",
"uri" : "aaaa::212:7400:1539:e48b/sensors/radio",
"query" : "p=rssi"

}
}

PUT Request to the /leds resource of the mote aaaa::212:7400:1539:e48b
{

"metrics":{
"payload": "mode=on",
"method": "PUT",
"uri" : "aaaa::212:7400:1539:e48b/actuators/leds",
"query" : "color=r"

}
}

OBSERVE request to the /light resource of the mote
aaaa::212:7400:1820:23f2 with a particular fixed rate

{
"metrics":{

"method": "GET",
"uri" : "aaaa::212:7400:1820:23f2/sensors/light",
"publishRate" : 1000,
"observe" : 0

}
}

6.2.3 CoAPGateway
The objective of this bundle is to act as a gateway for the 6LoWPAN network
beneath it. It gathers the data from the Telosb sensors and it expose the web
resources to both CoAP and MQTT clients. It implements the SensorService of
the SensorInterfaces and the ConfigurableInterface in order to expose a configurable
service on the Kura web UI.

The main tasks of CoAPGateway are listed below:
• RPL-DAG control: it has to initialize the tree of sensor nodes in the network

and it runs a worker periodically to check for topology changes.

59

6 – Implementation

• Resource discovery: after the initialization of the tree of neighbors, it sends
a discover request to each one of them in order to know which web resources
do they offer. With such information it creates the sensors and actuators
resources for each neighbor with their corresponding attributes.

• CoAP server: as soon as the initialization of the CoAPResources is finished,
it starts a CoAP server bound to the localhost endpoint. Thanks to Kura it is
possible to wire the addres to the LAN in which the Raspberry is connected
to, enabling CoAP clients to access the server.

• Gateway Service: it exposes the same resources to MQTT listeners services,
allowing cloud connections and interactions with the motes.

Data structures

The main data structures can be divided according to its functions in: resources
data structures and concurrency control data structures.

Resources data structures are based in Classes that extend Californium CoAPRe-
source. CoapResource is a tree representation of web resources. Each CoAPResource
contains its children in a ConcurrentHashMap<String, Resource>, a hash table sup-
porting concurrency of retrievals and updates ensuring thread-safe operations[31].
It also possesses a List of observers and yet another ConcurrentHashMap<String,
AttributeValues> for the attributes of each resource. Typical attributes include: TI-
TLE, RESOURCE_TYPE, CONTENT_TYPE, OBSERVABLE, INTERFACE_DESCRIPTION.

The data structures used for web resources are:

• CoapResource neighborsResource:it contains the tree of all the resources
of the 6LoWPAN network. The root is the rpl-border-router which has one
MoteNode child for each neighbor. Each MoteNode possesses two children: a
CoAPResouce for the sensors and another for the actuators. All the resources
of each mote are differentiated as SensorResources or ActuatorResources. Both
of them extend CoAPResource. The name of each node reflects the correspond-
ing section of the url for that resource in the tree. Each extension possess a
set of attributes for statistical purposes.

– MoteNode: it contains the main information about each mote in the
sensor network such as a long indicating the last time it has been seen,
its status and its type. Its name is the IPv6 address of the mote. It has
two children, ’/sensors’ and ’/actuators’.

– SensorResource: extension dedicated for each sensor of the mote. It saves
the sensor value and a CopyOnWriteArrayList<SensorChangedListener>
which indicates all the listeners interested in that resource for observation.

60

6 – Implementation

It manages server requests to GET the sensor value making a client call to
the mote if its value validity time is expired. It handles both synchronous
and asynchronous client calls.

– ActuatorResource: extension dedicated for each actuator of the mote. It
forwards PUT and POST requests from both the global server and the
GatewayPublisher to the actual motes.

• PriorityBlockingQueue <CoapResource> discoverResourcesQueue:
it keeps a priority queue of resources that must be discovered, whether because
they just join the tree or for periodically checks for changes within each mote.
The former resources have a higher priority than the latter, considering it is
more important to know the WebLinks of a new mote. PriorityBlockingQueue
guarantees thread safe operations since it defines blocking versions of put and
take java:concurrency.

• Node<String> rplRoot: it keeps a tree representation of the neighbors of
the network as they are reached by the border router.

• CoapServer coapServer: it contains neighborsResource with all the web
resources that exposes to CoAP client in the network.

In the other hand, the structures used to handle the concurrency for those re-
sources and the medium access are:

• ScheduledExecutorService: it can schedule commands to run after a given
delay, or to execute periodically. By scheduling commands it creates tasks
with different delays and it returns a task handler to cancel or check execution
[32]. This project uses two different types of ScheduledExecutorService for its
concurrency structures:

– ScheduledExecutorService observe:this ExecutorService creates a thread
pool that reuses a fixed number of threads, a Executors.newFixedThreadPool
(int nThreads). It guarantees that at most nThreads will be active at
any given time. Additional tasks submitted when all threads are active
will wait in an unbounded queue until a thread becomes available. The
threads in the pool will cease to exist only after an explicit shutdown()
[32]. observe allows to keep a maximum number of concurrent active
threads, which results vital considering Raspberry Pi limitations. It ex-
ecutes periodical observe requests for each resource, if asked to by the
server or the GatewayPublisher.

– ScheduledExecutorService borderRouterThreadScheduler : it is a Execu-
tors.newSingleThreadScheduledExecutor(). This type of scheduler creates

61

6 – Implementation

a single-threaded ExecutorService. Tasks are guaranteed to execute se-
quentially, only one task will be active at any given time[32]. The border-
RouterThreadScheduler handles the discovery discoverResourcesQueue to
periodically perform discover operations updating or creating the CoAPRe-
sources for each node.

• ArrayList<ThreadRequestHandler> threads :n ThreadRequestHandler
are running in the CoAPGateway, with n equals to the configurable param-
eter of the POOL_SIZE. Each ThreadRequestHandler handles all the requests,
both normal (GET, PUT, POST) and OBSERVE, for a certain number of
motes. This number depends on the total motes of the network. If such
number is lesser or equal than the textttPOOL_SIZE, each mote will have a
dedicated thread. If, in the other hand, the number of motes is greater than
the POOL_SIZE, the remaining motes will be divided according to the network
tree topology controlling rplRoot. Parent and children motes will be handled
by the same thread in order to avoid mixing the timings of communications
of multiple threads on that portion of the network. If their is not parental
relationship between motes they are assigned to different threads in order of
arrival. Since each thread may handle multiple requests for different motes, a
Semaphore mediumAccess is implemented to control how many motes can
receive requests at the same time.

A last data structure, called listeners is used to keep a list of classes that imple-
ment the SensorChangedListener interface and are connected to the CoAPGateway.

RPL-DAG control

It is the first operation of the CoAPGateway as soon as the bundle becomes active.
It retrieves the address of the rpl-border router and it performs an HTTP GET call
to get the addresses of the motes. If the border router does not respond after a
given time, the CoAPGateway reloads it and retry until it becomes active.

The CoAPGateway retrieves the list of motes in the 6LoWPAN network and
creates the first layer of childs of neighborsResource containing an entry for each
mote. Later on, it enqueues each MoteNode in the discoverResourceQueue in order
to enable resource discovery.

Lastly, this function controls the status of each node, the insertion of new nodes
in the network and the removal. Each time a new node is detected it enqueues the
newly created resource for resource discovery. In the other hand, every time a node
becomes inactive, it handles the cancellation of the resources and notifies all the
interested listeners.

This process is executed periodically in a single thread created through border-
RouterThreadScheduler. Every time it finishes the topology control, it sends an

62

6 – Implementation

updated version of the neighborhood to the GatewayPublisher to keep MQTT lis-
teners informed about the status of each mote. After which, it starts the resource
discovery functionality.

Resource discovery

The border router provides the list of neighbors and their IPv6 links. Knowing each
mote server address it is possible to perform a CoRE discover call, in other words,
a GET to "/.well-known/core" on the CoAP server. The server returns a payload
containing its resources in the CoRE Link Format. These links contains the name,
the supported mediatype and a brief description of each resource of the CoAP server.
The CoAPGateway uses such attributes to create its resources and assign them the
given attributes.

This process is necessary to allow listeners to know what are the resources each
node can serve. It is called every time a new node joins the network and periodically
to control if the motes offer new resources or delete old ones.

The discover method of a CoAP client is a blocking operation as it is a CON
messages that must wait for acknowledgment. Multiple variables in the medium
could cause packet loss. CoAP has a mechanism of retransmissions using a default
timeout and exponential back-off between each retransmission. Considering default
transmission parameters, the maximum transmission wait arrives to 93 seconds.
This time has been reduced for the discover method in order to allow other resources
to be discovered. If the timeout runs out and the discover has not been completed,
the same resource is enqueued with a lower priority in a sort of back-off fashion.

The WebLinks generated by the discover method are transmitted to the Gate-
wayPublisher to allow MQTT clients to know the structure of each resource. The
following snippet shows an example of the Erbium CoAP server to a discover request:

</.well-known/core>;
ct = 40,

</sensors/light>;
title = "Photosynthetic and solar light (supports JSON)";
rt = "LightSensor",

</sensors/battery>;
title = "Battery status";
rt = "Battery",

</sensors/radio>;
title = "RADIO: ?p = lqi | rssi";
rt = "RadioSensor"

63

6 – Implementation

CoAP server

Once all the available resources and its attributes have been loaded to neighborsRe-
source, coapServer is instantiated, the resources are added and it starts on the only
Endpoint available, 0.0.0.0/0. The port 5683, default for CoAP communications,
must me opened in Kura Firewall in order to make the coapServer visible to all the
CoAP clients in the local network.

CoAPExchange requests are handled directly by the Actuators or the Sensors
Resources which forward the request to the proper mote. The response is delivered,
as it is, from CoAP server to the clients.

Resource service

CoAPGateway implements the SensorService interface of GatewaySensors. There-
fore, it has to implement all the methods which allow the GatewayPublisher to
access to sensor values and set actuators values. In addition, it must enable the
publisher to access the other functionalities in order to retrieve information about
the 6LoWPAN network and the motes resources. Another functionality offered to
the publisher, typical of a publish/subscribe architecture, is the observeResources
by which the listener can request a periodical update of a set of resources, indicating
the root of interest. Accordingly, listeners can ask to stop such notifications.

The ThreadRequestHandler is the Runnable implementation that handles Re-
sourceRequests, both periodic and non periodic. ThreadRequestHandlers are as-
signed to each mote. When the mote receives an observe call for the first time, it
checks if its thread has been instantiated. If that is not the case, the assigned thread
handler is scheduled at fixed rate in the thread loop.

Every time the ThreadRequestHandler gains access over the medium it executes
a loop in which tries to manage all the requests to the motes contained in its pri-
ority queue. Once it has send it all or after a timeout, equals to two times the
COAP_MAX_TRANSMIT_WAIT (186 seconds), it releases the medium and it updates its
queue. Each periodic request is enqueued again at the end of the process, while
normal requests are just discarded once they finish.

As previously mentioned in subsection 6.2.2, MQTT messages payload is rep-
resented in KuraPayload structures. Every time the GatewayPublisher makes a
request over a sensor or actuator, it must specify the resource path, a KuraPayload
and a pointer to itself in order to get the notifications back. The path is split to
search for the resource along the tree. If any sub section of the path results not valid
a BadRequest is raised and forwarded to the listener. The payload varies according
to the type of resource.

64

6 – Implementation

Data retrieval: getSensorValue() function

In the case of the getSensorValue call, it is possible to observe SensorResources or
perform a normal GET request. This function has to parse the payload in order to
understand what kind of communication is required. It supports both synchronous
and asynchronous requests to the motes. Once it individuates the different possible
variables in the payload it generates a ResourceRequest which is enqueued in one of
the working threads PriorityBlockingQueue. A ResourceRequest object contains all
the significative attributes of the publisher request, the interested CoAPResource
and a priority level. GET requests have higher priority than OBSERVE requests.
They are single specific resource request that have to be delivered as soon as possible
whether observed resources will provide more values with a given period.

In order to observe a resource, a metric called "observe" must be added. Following
the description of [12], the value of the observe attribute can be:

• 0 - indicates that the listener wants to subscribe to that resource

• 1 - indicates that the listener wants to unsubscribe from the resource

The update of the subscribed resources is executed periodically and the period
between one reading and the other can be changed from the configurable interface of
the CoAPGateway in the Kura web console. However, if a listener desires to receive
the updates with a different frequency it can specify the attribute "publishPeriod"
and the period length in milliseconds. Each time an observe get is called, the observe
counter of the interested resource is incremented in a proportional way to the period
duration in seconds. The counter is used by the listener to understand the order
and the number of the readings.

As previously mentioned, observe calls are executed by the thread assigned to
each MoteNode in the thread pool. When the first observe request arrives to the
resource, a registration to the thread priority queue is made. Every time that
another listener wants to observe the same resource it will be added to the resource
list of listeners and automatically included in the observe process running within
the dedicated thread. The resource will be observed until each listener unsubscribe
from it.

When a normal GET request arrives, the service control if the value of the
resource is still valid according to the publisher validityTime. In such case, this
value is returned avoiding useless requests on the medium for data that is not time
sensitive. If the lastUpdate of the resource is too old for that listener, a new request
is necessary.

There are two cases for new GET requests. If the resource is being observed for
other listeners, a ResourceRequest with the specific listener is created and enqueued
within that observer for just one time. The ResourceRequest will be automatically

65

6 – Implementation

discarded from the queue as soon as the response is received. In the other hand, if
there are no active observers for the MoteNode parent, a SimpleRequest is scheduled
in the thread pool. SimpleRequest is another class implementing the Runnable
interface that simply waits to get access to the medium and performs a single request.
After which, the task is considered complete.

Setting a mote resource: setActuatorValue() function

Its behaviour is similar to the getSensorValue() as it has to parse the KuraPay-
load to understand which kind of request it has to create. However, in this case,
a payload with the desired value is needed. Once the required attributes of the
KuraPayload have been validated, it proceeds to create a ResourceRequest with the
proper method, PUT or POST. Such request is enqueued in the thread responsible
of its Mote parent requests, if active. Otherwise, it creates a new SimpleRequest
task in the thread pool.

Neighborhood and neighbor information requests

As soon as the publisher is active, it calls the CoAPGateway to get information
about the nodes in the 6LoWPAN network and their resources. The CoAPGateway
answers with the information gathered by the RPL-DAG and Resource Discovery
functions. Furthermore, it saves a reference to each publisher in order to send
updated data every time it controls the sensor network.

CoAPGateway configurable properties

Through Kura web UI is possible to modify a set of properties for the Gateway:

• coap.maxTransmitWait: Default timeout for responses in CON calls [ms].
CoAP default value is 93000.

• coap.poolSize: Default size of the thread pool.

• coap.semaphore: Default number of threads that can send simultaneous re-
quests to the border router.

• observe.sync: Default type of connection for CoAP observe requests.

• observe.rate: Default rate of CoAP observe requests [ms].

66

6 – Implementation

6.3 AWS IoT
Among the different Cloud platforms that can be selected, AWS offers a wide variety
of choices and possibilities and counts with a dedicated section for IoT devices. AWS
IoT enables Internet-connected devices such as the Kura gateway to connect to the
AWS Cloud and lets applications in the cloud interact with those devices. IoT
applications can collect and process telemetry from the sensors and manipulate the
actuators connected to the gateway.

Communication between a device and AWS IoT is secured by X.509 certificates
that must be registered and activated with AWS IoT and copied into the device
acting as a credential. Appendix section A.5 contains information regarding how
to connect Kura with AWS cloud service. Once it is connected, the GatewayPub-
lisher can publish and subscribe to topics in the cloud. AWS IoT counts with a
MQTT client for testing purposes. Through this service it is possible to subscribe
and publish on topics of interest and watch the resulting communication with the
gateway.

AWS IoT devices use MQTT as communication protocol to the cloud. They
publish their state in JSON messages to MQTT hierarchical topics names in order
to associate the state to the device that is publishing it. Messages published on an
MQTT topic are sent to the AWS IoT MQTT message broker, which is in charge
of forwarding them to the topic subscribers.

There is a shadow thing for each connected device. This "shadow" stores state
information which is later exposed in JSON documents. Items in the state infor-
mation contains two entries: the last state reported by the device and the state
desired by an application. It is particularly useful when dealing with intermittent
connections. Webservers and application will always count with the last state and
data of the device. On the other hand, an application may request a state change
which generates an update in the desired field of the shadow and a message to the
device. The device can synchronize with the shadow when it connects and report
its new state.

The power of AWS IoT relies on the possibility of interconnecting the devices to
all AWS services. This is possible through the definition of rules that filter messages
and define a set of actions enabled when the rule matches. All the messages sent
to the cloud and to other services are protected, authenticated and authorized by
a configurable set of policies and security features. This versatility makes AWS a
powerful choice to show IoT potential on data collection, analysis and consumption.

67

Chapter 7

Simulation and deployment results

This chapter describes all the tests that were conducted to evaluate the Gateway
performance. The environment was first simulated in Cooja and then deployed on
the Telosb motes. Different situations were considered, varying the distance between
the motes, their quantity and the number of threads used in the gateway. The tests
were conducted on the worst case scenario in which all the sensors connected in the
WSN were being observed at the same time, at high rate.

Multiple factors were tested in order to understand which were the limits of
the platform. The Gateway bundle was developed to allow full customization of
factors as the maximum wait time for CoAP communications, the number of threads
dedicated to the motes, as default is one for each mote. It is possible to define the
observe rate for each thread and the number of threads that can send requests to the
border router contemporaneously. The number of motes was gradually increased,
starting from 1 CoAP server to a total of 9, equal to the number of available TelosB
sensors.

ObserveAll function

A special function was developed to test the worst case scenario. Through the
observeAll method, a client in the cloud can request to start the test in which all
resources will be added to their respective priority queue and all threads will start
almost at the same time. A hundred messages will be sent to each mote distributed
among its resources to test the responsiveness of the system. Each sensor resource
will send a request until its node parent, the sensors node present in each MoteNode,
has finished its tasks. After which, all successive requests for that mote will be
omitted and discarded from the thread queue. All the response values are sent to
the cloud in order to demonstrate the work of the service under pressure and to
allow data analysis.

At the end of the observeAll function, a final message is sent, for each resource,

68

7 – Simulation and deployment results

containing data about the performance. Number of sent packets, dropped packets,
the time length of the CoAP request response and the total duration of the test are
some of the elements present in the message.

AWS IoT MQTT client

After the device registration, a MQTT client is available for test purposes in AWS
IoT console. The client allows to publish and subscribe to the interested topics
(section 6.2.2). The gateway will send each requested CoAP message to the cloud
and an update about the neighborhood and the WebLinks of each neighbor every 60
seconds. The GatewayPublisher subscribes to the /inbound topic in order to listen
to cloud requests and the request of the AWS IoT MQTT client to start the test by
giving the command action "OBSERVEALL”.

7.1 Simulation
Cooja helps to better understand the performance of the Gateway. It allows to
start the simulation in a noise free environment and to save time in mote programs
installation and deployment. It also helps to simulate situations of multiple hops,
since physical deployment becomes harder considering the motes could theoretically
reach a distance of 200m with line of sight.

The CoAP servers used in the simulation contained three web resources: /light,
/radio and /battery. All the motes were configured with CSMA/CA as MAC layer
and nullRDC as radio duty cycle.

The length of each CoAP message was observed through Wireshark, a widely
used protocol analyzer, in order to calculate the throughput for each resource. The
length of the GET request packets from the CoAP clients varies according to the
length of the resource name as seen in Fig 7.1, being the GET request for the /light
resource the smallest with 84 bytes and the request for /radio?p=rssi the longest
with 91 bytes.

Table 7.1: CoAPGateway configuration parameters and values

Parameter Value
Observation rate 100 ms
maxTransmitWait 93000 ms

Semaphore access to the router 3
Pool size 1 thred for each mote

Type of request Synchronous

69

7 – Simulation and deployment results

Figure 7.1: CoAP packets length

As previously mentioned, the CoAPGateway bundle can be configured to better
adapt to different situations (Table 7.1). The timeout for the client requests was
set, according to CoAP draft recommendations, to 93000 ms. In other words, the
client will re transmit the message up to four times with exponential back off before
considering the transmission lost. The scenario will test the gateway reliability and
this setting enables CoAP best performance.

Synchronous calls provide better performance regarding the time of execution
and enable a better understanding of what is the behaviour of the exchange. At the
same time, it means the thread will remain blocked until it receives an acknowledge
or the timeout runs out. For this reason, it becomes necessary to allow more threads
to send requests to the border router. This factor can be tuned and, through ex-
perimentation, it was found that having a semaphore size equals to three, for more
than 4 motes, provide a good trade off between blocking times and border router
workload.

The requests were sent every 100 ms. Normally, data such as temperature,
luminosity or battery levels would not be requested so often, a message every a few
seconds or even minutes would be enough. But the purpose of this case scenario is
to test the gateway under a big number of simultaneous requests.

A hundred requests will be generated for each mote, distributed among their web

70

7 – Simulation and deployment results

resources. The packet transmission and reception rate will be configured at 100% to
test the behaviour of the gateway under ideal conditions of noise and interference.

7.1.1 Simulation results
The simulation was focused on testing the reliability, the latency between CoAP
client calls and the erbium CoAP servers response and the scalability of the gateway,
both in number of motes and the distance between them.

The simulation runs on the Raspberry Pi, the border router is started through
the tunslip6 tool and Cooja is connected to it through a serial socket server, as
explained in the previous chapter.

Nodes were inserted into the simulation a few at a time, increasing the distance
between them and the border router. In the final simulation, with 9 nodes, seen in
Fig 7.2, the three is composed by 6 nodes in a distance of 1 hop and 3 in two hops.
The simulations were conducted without altering the Tx/Rx ratio, in a space free
of interference and noise. The results are shown in Table 7.2.

Figure 7.2: Final simulation structure

Being a noise free space, there is no packet loss. The attributes of interest are
the average delay of communications between motes and the gateway, as well as the
throughput, measured in Kbps. The throughput is calculated as:

71

7 – Simulation and deployment results

100 ∗ nMotes ∗ 8(erResCoAP + gwResCoAP)qnMotes
1

qnRes
1 responsetime

(7.1)

Where erResCoAP and gwResCoap are the average of the above mentioned values
for the packet lengths sent by the gateway and the CoAP servers.

Table 7.2: Average throughput and average delay for the simulations

Number of motes Average Throughput [Kbps] Average Delay [ms]
1 4.78 258
2 4.28 290
3 4.25 296
5 2.87 436
8 1.88 677
9 1.83 688

It is possible to see that the throughput diminishes with every added mote but
the result is still more than acceptable. It was observed that with a few motes,
a better performance was obtained by reducing the number of working threads.
However, it is not a practical solution in a real implementation due to the timeout,
not for synchronous connections at least.

As expected, the nodes 2 hops away have a lower throughput and the delay time
is almost twice respect to the rest of the less distant nodes. However, the throughput
remains over 1 Kbps with a response slightly over a second for motes that are more
than 50 meters away.

Table 7.3: My caption

Node Average Delay
[ms]

Average
Throughput [Kbps]

aaaa::212:7409:9:909/ 722 1.74
aaaa::212:7407:7:707/ 827 1.52
aaaa::212:7402:2:202/ 604 2.09
aaaa::212:740a:a:a0a/ 1176 1.08
aaaa::212:7403:3:303/ 578 2.17
aaaa::212:740b:b:b0b/ 575 2.18
aaaa::212:7404:4:404/ 557 2.26
aaaa::212:7406:6:606/ 542 2.32
aaaa::212:7408:8:808/ 607 2.07

72

7 – Simulation and deployment results

7.2 Physical deployment

Figure 7.3: Deployed TelosB sensors

9 TelosB sensors (Fig 7.3) were loaded with different versions of the Erbium
CoAP server in order to simulate a reality with multiple resources. The motes were
distributed in the same floor, in different rooms, in a range of 20m around the
border router connected to the Raspberry Pi. According to TelosB specifications,
the devices should be able to communicate within a range of 40-50m indoor. The
configuration of the motes is the same as in the simulations, CSMA/CA as MAC
layer, nullRDC for the RDC layer, a thread for each mote and the semaphore size
set to 3. The packets were generated, once again, every 100 ms for each thread.

Figure 7.4: Gateway and RPL border router

73

7 – Simulation and deployment results

The final set of web resources exposed by the servers is:

Table 7.4: My caption

Number of motes Temperature Light Radio Leds Battery
3 X
2 X X X
2 X X X
2 X X X

The temperature resource occupies a great portion of the mote memory, as it
uses more libraries for the SHT11 sensor, and it has to loaded alone.

Table 7.5: Real deployment results

Number of nodes Avg Latency Avg Throughput[Kbps]
3 2.55 487
5 2.065 622
8 2.45 500
9 2.07 670

The results (Table 7.5) show that the gateway is reliable and performant even
for 9 sensors. Comparative results with the simulations show better performances in
the real deployment but mainly for the shorter distance between the nodes and the
border router. In addition, the result of interference and noise is seen constantly,
making possible that tests with 5 nodes perform worst than test with more motes.
However the throughput remains always higher than 2 Kbps and the average latency
lower than 700ms.

74

7 – Simulation and deployment results

3 5 8 90
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Number of nodes

Av
g
T
hr
ou

gh
pu

t
[K

bp
s]

Average Throughput for simulations and physical deployment

Physical deployment
Simulation

3 5 8 9250
300
350
400
450
500
550
600
650
700

Number of nodes

Av
g
La

te
nc
y
[m

s]

Average Latency for simulations and physical deployment

Physical deployment
Simulation

It was observed that the packets to the Cloud were sent with a considerable de-
lay of almost 20s with a high rate of generated CoAP responses. The CloudService
copies all the packets in a local database before the DataService publishes them. If
a future application requires faster transmissions, the DataService should be imple-
mented instead of CloudService. For continuous updates with fewer nodes, or with
a frequency equals or higher than a second or more, message are received normally.

In the worst case with 9 motes, the average latency for sensor resource remains
similar, around 500ms. An exception is the temperature resource that can last until
a second with an average of 900ms. This behaviour can be seen in multiple tests and
the main reason resides in the fact that TelosB takes more time to read the SHT11

75

7 – Simulation and deployment results

sensor value. The average latency value for each resource is shown in the following
graphic.

battery light temperature radio

400

600

800

Resource

Av
g
La

te
nc
y
[m

s]

Average latency for each sensor resource

7.3 Integration with AWS

Figure 7.5: MQTTClient interface showing the topic /neighborhood

76

7 – Simulation and deployment results

As previously mentioned, AWS IoT offers a MQTT client that can be used to test
the communication with the gateway. It is possible to publish pseudo CoAP requests
on the topic /inbound and to retrieve periodic information about the neighborhood
subscribing to/neighborhoods topic. Mote WebLinks and pseudo CoAP responses
can be found subscribing to topic neighbors/ and a more specific filtering can be
made subscribing to a particular mote through neighbors/<neighborId>/ for the
WebLinks and neighbors/<neighborId>/sensors/<sensorId> for the responses. An
example of a normal GET request requested from the cloud is shown in Fig 7.6.

Figure 7.6: MQTT Client GET example

As soon as the WSN data reaches the cloud, it is possible to perform multiple
operations to transform it, consume it or analyse it. AWS IoT offers the possibility
of creating rules to filter the data and actions to call other AWS services. It is
possible to create triggers for the data, such as an alarm call whenever a certain
field is higher o lower than a threshold. The data can be sent through SMS, email
or an application.

Data can be saved in DynamoDB tables to be later retrieved by Lambda func-
tions. This is the principle of AWS serverless applications.

7.3.1 Data analysis on AWS
Sensors data is not particularly useful if not properly analysed. AWS allows to
handle the constant stream of data coming from multiple devices. This data can be
processed, analysed, and visualized in a scalable way that allow people to monitor

77

7 – Simulation and deployment results

the performance, look for problems in the network and extract valuable information.
Amazon Kinesis offers a practical an ease to use service for data analysis, a possible
implementation is illustrated in Fig 7.7, extracted from AWS example [?].

Figure 7.7: AWS IoT, Kinesis data analysis

Amazon Kinesis Firehose allows to capture, transform, and load streaming data
from AWS IoT. Once the input is set through AWS IoT rules, it does not require
further administration and it automatically scales to match the throughput of the
stream data.

In a second step, it is possible to select data from the payloads and topics of the
stream and process it with standard SQL through Amazon Kinesis Analytics. The
processed data is forwarded to a Firehose delivery stream to consolidate the data
stream in csv files allocated in S3 buckets.

The processed data is given to Amazon QuickSight, which is a fast, cloud-
powered business analytics service that provides methods to easily create multiple
data visualizations and perform data analysis.

The gateway was running for hours retrieving information of all sensor resources
in the nodes every second. This data was fed into Amazon Kinesis Firehose dataT
streams. A simple SQL query in an IoT rule is enough to select data of interest:

SELECT topic(5) as Node, topic(7) as Sensor, metrics.value as sensorData
FROM ’/kura-gateway/tesi/neighbors/#’

The resulting stream can be processed in Kineses Analytics where another few
lines of SQL code allow to create the rules for an output stream composed by all
the sensors readings:

78

7 – Simulation and deployment results

-- Create an output stream with four columns, which is used to send IoT
data to the destination

CREATE OR REPLACE STREAM "DESTINATION_SQL_SENSOR_DATA_STREAM" (dateTime
TIMESTAMP, moteAddress VARCHAR(25), sensorName VARCHAR(16),
sensorValue SMALLINT);

-- Create a pump that continuously selects from the source stream and
inserts it into the output data stream

CREATE OR REPLACE PUMP "STREAM_PUMP_1" AS INSERT INTO
"DESTINATION_SQL_SENSOR_DATA_STREAM"

-- Filter specific columns from the source stream
SELECT STREAM "sentOn", "nodeAddress", "sensorName", "sensorValue" FROM

"SOURCE_SQL_STREAM_001";

The resulting data tables are saved in multiple cvs files in folders of the S3 bucket
separated by hour, day and month. Those tables can be added to QuickSight for
different types of data analysis, some examples are shown below.

79

Chapter 8

Conclusions

The complexity in developing a gateway for the WSN and IoT resides in the wide
variety of choices that can be taken at every step of the stack. Many decisions were
made taking in consideration what could be the most appropriate development for
a web resource using TelosB sensors as servers. The main objective of the thesis was
accomplished. Through deep analysis about the existent technologies and protocols
in IoT, it was developed a gateway solution with a specific stack allowing WSNs
integration to the internet and to the cloud.

The gateway is able to communicate with any sensor acting as a CoAP server
in an 6LoWPAN network having as a root the rpl border router, which is attached,
in turn, to the Raspberry. CoAP provides an efficient, reliable and low powered
RESTful architecture for constrained devices. The gateway gathers all the resources
in the WSN. Such data can be discovered and requested both from CoAP and
MQTT, two of the most used communication protocols for IoT.

The system allows multiple access to the data in a reliable, flexible and fully
configurable way through the implementation of Kura platform and its web console.
The gateway can handle at least 10 motes with a delay under a second at full capacity
and CoAP retransmissions factors guaranteed zero dropped packets in all the tests,
over an unreliable transport protocol as UDP.

Thanks to OSGi modularity, the created bundles can run along with other so-
lutions. Furthermore, Kura was developed by Eurotech and the Eclipse IoT group,
which guarantees a large number of companies and people that will help to fur-
ther develop the platform. New solutions and new integration methods are being
implemented as in the case of Apache Camel, an open source framework for message-
oriented middleware with a rule-based routing that provides a Java implementation
for the Enterprise Integration Patterns.

Amazon AWS was chosen as an example of the power of cloud platforms and
to show how well they can connect to constrained devices such as the Raspberry
Pi and platforms as Kura. The sensors on the motes were exposed by the gateway

80

8 – Conclusions

and retrieved by the cloud as normal web resources that could be consumed in web
applications or analysed on data streams. Kura can be connected to other cloud
platforms and any MQTT broker implementing the MQTTDataTransport service.

8.0.1 Future work
Despite the good communicational features of the TelosB sensors, their main prob-
lem is the lack of memory. It is not feasible to use security features as DTLS over
Contiki for this kind of mote. However, a 802.15.4 security layer, called LLSEC, can
be implemented. It allows to encrypt and authenticate all the packets exchanged
over the WSN medium using AES-32, 64 or 128. There are some limitations, mostly
regarding anti-replay mechanisms but it remains a good solution for security within
the WSN.

The tests were performed with RDC nullRDC. It means that every sensor was
always awake waiting for radio communication. It is a good solution for testing and
with motes powered by USB terminals but it is not feasible for long term reading
with battery power. A duty cycle implementation is needed in order to set a sleep
schedule for the motes. In addition, an interesting topic of research is CoCoA, a set
of CoRE Congestion Control mechanisms. It is based on a retransmission timeout
(RTO) algorithm that takes into account the round trip time estimates.

Regarding the gateway solution, a next step could be to establish a network of
Raspberry Pis allowing multiple WSNs to communicate with each other through
CoAP protocol and uploading readings results to a centralized database on the
cloud.

Lastly, one of the reasons Contiki was chosen for is the possibility to deploy
different modules on remote sensors. A future possible implementation could include
this feature to allow to deploy different applications in the sensors from a remote
location, whether in the Local network or over a Cloud application.

81

Appendix A

Appendix: SW codes and guides

A.1 Contiki

A.1.1 Contiki and Cooja installation
This guide contains the minimum configuration needed to implement Contiki for
this project. [33] and [34] contains further information about the installation and
development with Contiki.

Contiki must be installed in a Linux-based operative system. There are two ways
to install Contiki:

• InstantContiki: it is a virtual machine prepared with all what it is needed to
use Contiki.

• GitHub repository: Contiki can be downloaded from the repository. Addi-
tional components must be installed to properly run and compile all its fea-
tures.

InstantContiki

InstantContiki is an entire Contiki development environment that runs on a Ubuntu
virtual machine. It can be downloaded from Contiki’s official web page www.contiki-os.
org/start and installed in VMWare Player.

Github repository

In this case, a Linux-based OS is needed.
To install the toolchain and required dependencies (for TelosB), run in a terminal

the following:

82

www.contiki-os.org/start
www.contiki-os.org/start

A – Appendix: SW codes and guides

sudo apt-get install build-essential binutils-msp430 gcc-msp430
msp430-libc msp430mcu mspdebug

sudo apt-get install openjdk-8-jdk opernjdk-8-jre ant libncurses5-dev

It is advisable to clone the latest Contiki git repository release (3.0 until now)
to be updated with the last features and bug fixes. Contiki 3.0 is available at:

https://github.com/contiki-os/contiki/tree/release-3-0
In order to do so type:

sudo apt-get -y install git
git clone --recursive https://github.com/contiki-os/contiki.git

Alternatively, the repository can be downloaded and unzipped with [33]:

wget https://github.com/contiki-os/contiki.git
unzip 3.0.zip
mv contiki-3.0 contiki

A.1.2 Mote programs installation

In order to compile and install these programs into a mote, connect the USB mote
to the device having Contiki installed, give the permissions to write the mote:

sudo chmod 666 /dev/ttyUSB0

select, compile and upload the program choosing the mote type in TARGET and
the usb port as in the following example for the border-router.c:

cd contiki/examples/ipv6/rpl-border-router
sudo make TARGET=sky border-router.upload
sudo make login (To view the mote output)

A.1.3 Run Cooja

cd contiki/tools/cooja

ant run

83

https://github.com/contiki-os/contiki/tree/release-3-0

A – Appendix: SW codes and guides

A.2 RPL border router
After having installed the border router (contiki/examples/ipv6/rpl-border-router
/border-router.c) in a mote, the service can be started in two different ways:

• From the rpl-border-router folder in examples: once the physical mote is con-
nected to the device, type:

cd contiki/examples/ipv6/rpl-border-router

sudo make connect-router

• From the tunslip folder: once the mote, whether physical or simulated, type:

cd contiki/tools/
make tunslip6
sudo ./tunslip6 -a 127.0.0.1 aaaa::1/64 (to make a connection

between the RPL network and your local machine)

Once the Border router process starts it will show the IPv6 addresses of the
border router from which it is possible to retrieve the addresses of all the motes in
the network.

A.2.1 Tunslip configuration for Cooja
In order to connect tunslip to the simulator it is necessary to add a rpl-border-router
mote to the simulation. Then, select Tools -> Serial Socket(SERVER) and choose
the border rooter among the simulation motes. The mote will start listening in port
60001 for client connections.

Such connection can be established as follows:

cd contiki/tools/

sudo ./tunslip6 -a 127.0.0.1 aaaa::1/64

A.3 Raspberry Pi

A.3.1 Raspbian installation
Raspberry Pi uses a dedicated linux-based operative system, Raspbian. Rasp-
bian can be downloaded from the official site https://www.raspberrypi.org/

84

https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/

A – Appendix: SW codes and guides

downloads/raspbian/ and loaded into a microSD card. In order to control the
Pi, without all the peripherals, the ssh or the vnc server must be enabled. To enable
SSH follow the instructions described in

https://www.raspberrypi.org/documentation/remote-access/ssh/
For the VNC server configuration follow these instructions:
https://www.realvnc.com/en/connect/docs/raspberry-pi.html.
Contiki must be installed, as explained in subsection A.1.1, in the Raspberry Pi

in order to enable cooja and tunslip tools.

IPv6 addressing troubleshooting

Setting raspbian in order to allow ipv6 addressing
if Error: SIOCSIFADDR: Permission denied is seen after running tunslip6

it is necessary to delete the line:

net.ipv6.conf.all.disable_ipv6=1

from /etc/systemctl.conf and to add the following lines:

net.ipv6.conf.all.autoconf=0
net.ipv6.conf.all.accept_ra=0
net.ipv6.conf.default.autoconf=0
net.ipv6.conf.default.accept_ra=0

A.4 Kura
Kura offers a vast and clear documentation for installation, configuration and de-
velopment [15].

A.4.1 Installation
Kura was conceived having Raspberry Pi as one of its principal Hardware devices.
The installation is well documented in the official kura documentation, under Rasp-
berry Pi Quick Start, the link for the installation, the configuration and possible
errors can be found in Appendix [ref appendix kura installation].

Once Kura is active and the Rasperry is wired both to Kura and to the LAN,
it is possible to access Kura Web console [A.1] by inserting the Pi’s address in the
URL bar, the username and the password. This console exposes Kura’s services and
allows to change Network settings, Cloud settings and Firewall permissions, among
others. The latter becomes important to open and forward different ports in order
to allow a more pleasant control from a personal computer in the same LAN.

85

https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/documentation/remote-access/ssh/
https://www.realvnc.com/en/connect/docs/raspberry-pi.html

A – Appendix: SW codes and guides

Figure A.1: Kura Web Console

A.4.2 Development
In order to create Kura bundles it is necessary to install the JVM, EclipseIDE
and download the Kura User Workspace archive https://www.eclipse.org/kura/
downloads.php. A guide for doing so is available in [ref Kura documentation] under
Development - getting started.

OSGi bundles

Bundles creation and deployment is described in [ref Kura documentation] under
Development - Hello World Example and Deploying Bundles.

There are two ways to test the bundles:

• Local emulation mode (Linux/ OS X only)

• Remote Target Device: bundles can be deployed to the gateway as separated
bundles or deployment packages. Deployment packages can be added from
the Kura Console, under Packages → Install/Upgrade.

Plugins can also be uploaded to the remote device using the mToolkit plugin for

86

https://www.eclipse.org/kura/downloads.php
https://www.eclipse.org/kura/downloads.php

A – Appendix: SW codes and guides

Eclipse, after having established a connection with the Raspberry Pi through its
local address.

Kura remote debugging

It is possible to remote debug kura to better control and understand the environment
situation. In order to do so, it is necessary to open the tcp port 8000 for localhost,
to stop kura and to start the debugger by typing:

sudo systemctl stop kura

sudo /opt/eclipse/kura/bin/start_kura_debug.sh

Once it starts listening it is possible to test bundles by installing them through
mToolKit, modifying the debug configuration to listen to the port 8000 and starting
the debug. A more detailed guide can be found in [ref kura docs] under Development
→ Remotedebuggingontargetplatform.

A.4.3 Californium
Kura’s main messaging protocol is MQTT but Californium can be imported as a
jar into the project to enable CoAP communication. This project uses californium-
osgi-1.0.0-SNAPSHOT.jar as the Californium library, it contains all the necessary
libraries to run both the client and the server. The jar must be copied in the libs
folder and added in the MANIFEST file under Runtime → Classpathtomakeitrun.

A CoAP server will start by default at the 0.0.0.0/0 network endpoint. In order
to allow other devices to access the server within the LAN it is necessary to open
the port 5683 (default for CoAP communications) in Kura’s Firewall for the address
linked by Kura.

A brief introduction to CoAP programming with Californium can be found at
https://docs.google.com/presentation/d/1dDZ7VTdjBZxnqcIt6qoX742d6dHbzap-D_
H8Frf3LRE/edit#slide=id.p.

A.5 AWS
In order to connect the Pi to AWS cloud follow the instructions of [15] under Cloud
Platforms Connection -> Amazon AWS IoT platform. It describes how to register
the Pi as an AWS thing and how to setup the security certificates and parameters
to establish a secure connection. Once the device is connected to AWS it is possible
to use AWS IoT console to manage it and to test MQTT messaging and rules.

87

https://docs.google.com/presentation/d/1dDZ7VTdjBZxnqcIt6qoX742d6dHbzap-D_H8Frf3LRE/edit#slide=id.p
https://docs.google.com/presentation/d/1dDZ7VTdjBZxnqcIt6qoX742d6dHbzap-D_H8Frf3LRE/edit#slide=id.p

Bibliography

[1] K. Ashton. That ’Internet of Things’ Thing in RFiD Journal, 2009.
[2] Cisco Systems, Inc. The Internet of Things Reference Model in World Forum,

2014.
[3] I. Lee & K. Lee. The Internet of Things (IoT): Applications, investments, and

challenges for enterprises in Kelley School of Business, Indiana University, 2015.
[4] F. Bonomi, R. Milito, J. Zhu & S. Addepalli. Fog Computing and Its Role in

the Internet of Things in San Jose, CA, USA, 2012.
[5] D. Gascón & A. Asín. 50 Sensor Applications for a Smarter World http://www.

libelium.com/resources/top_50_iot_sensor_applications_ranking/
[6] A.Dunkels. FYI: Thingsquare mist http://sourceforge.net/p/contiki/

mailman/message/29876684/, 2012.
[7] B. Cody-Kenny, D. Guerin, D. Ennis, R. S. Carbajo, M. Huggard & C. Mc

Goldrick. Performance Evaluation of the 6LoWPAN protocol on MICAz and
TelosB motes in School of Computer Science and Statistics Trinity College
Dublin, Dublin , Ireland, 2009.

[8] J. Polastre, R. Szewczyk & D. Culler. Telos: Enabling Ultra-Low Power Wire-
less Research in Computer Science Department University of California, Berke-
ley Berkeley, CA, 2005.

[9] E. Upton, R. Mullins, J. Lang & A. Mycroft. RaspberryPi documentation
https://www.raspberrypi.org/documentation/

[10] J. W. Hui & D. E. Culler. Extending IP to Low-Power, Wireless Personal Area
Networks in University of California, Berkeley, USA, 2008.

[11] IETF Z. Shelby, ARM, K. Hartke & C. Bormann. The Constrained Application
Protocol (CoAP) in Universitaet Bremen TZI, 2014.

[12] CoRE Working group, K. Hartke. Observing Resources in CoAP draft-ietf-core-
observe-08 in Universitaet Bremen TZI, 2013.

[13] IBM Eurotech. MQTT V3.1 Protocol Specification
[14] D.J. Walker-Morgan. Eclipse Kura-A Gateway for the Internet of

Things http://www.eclipse.org/community/eclipse_newsletter/2014/
february/article3.php, 2014.

[15] Eurotech, D. Woodard.Eclipse Kura: A gateway framework built for IoT in

88

http://www.libelium.com/resources/top_50_iot_sensor_applications_ranking/
http://www.libelium.com/resources/top_50_iot_sensor_applications_ranking/
http://sourceforge.net/p/contiki/mailman/message/29876684/
http://sourceforge.net/p/contiki/mailman/message/29876684/
https://www.raspberrypi.org/documentation/
http://www.eclipse.org/community/eclipse_newsletter/2014/february/article3.php
http://www.eclipse.org/community/eclipse_newsletter/2014/february/article3.php

Bibliography

Virtual IoT Meetup, 2016.
[16] A. Bellin, P. Salandin & A. Rinaldo. Simulation of dispersion in porous forma-

tions: Statistics, firstâ€order theories, convergence of computations in Univer-
sitd di Trento, Trent, Italy, 1992.

[17] G. E. P Box & G. M. Jenkins. Time Series Analysis: Forecasting and Control
in San Francisco, Holden-Day First edition, 1970.

[18] I. Butera & M. G. Tanda. Acquiferi eterogenei soggetti a ricarica uniforme:
analisi del campo di moto, dei processi di trasporto e condizionamento in Tesi
di dottorato, Politecnico di Torino, 1996.

[19] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D.
Gay, J. Hill M. Welsh & E.Brewer. TinyOS: An operating system for sensor
networks in Ambient intelligence, Springer, Berlin, 2005.

[20] A. Dunkels, B. Gronvall & T. Voigt. Contiki: a Lightweight and Flexible Op-
erating System for Tiny Networked Sensors in Proceedings of the First IEEE
Workshop on Embedded Networked Sensors, Tampa, Florida, USA, 2004.

[21] V. Brussel, Freemind, MTP, Edosoft & MAIS consortium. Contiki and Tiny
OS in Interoperable Sensor Networks, ITEA, 2012.

[22] A. Dunkels, O. Schmidt & T. Voigt, M. Ali. Protothreads: Simplifying Event-
Driven Programming of Memory-Constrained Embedded Systems in Proceedings
of the Fourth ACM Conference on Embedded Networked Sensory Systems,
Boulder, CO, USA, 2006.

[23] T. Reusing. Comparison of Operating Systems TinyOS and Contiki in Seminar:
Sensorknoten - Betrieb, Netze Anwendungen SS2012 Lehrstuhl Netzarchitek-
turen und Netzdienste, Lehrstuhl Betriebssysteme und Systemarchitekturen
FakultÃ¤t fÃ¼r Informatik, Technische UniversitÃ¤t MÃ¼nchen,2012.

[24] M. Kovatsch & J. Vermilliard. Hands on with CoAP in eclipsecon, France,
2014.

[25] Eclipse Eclipse Paho Java Client in https://www.eclipse.org/paho/
clients/java/.

[26] IETF ROLL group. RPL : IPv6 Routing Protocol for Low-power and Lossy
Networks in RFC6550, 2012.

[27] IETF Z. Shelby.Constrained RESTful Environments (CoRE) Link Format in
RFC6690, 2012.

[28] M. Kovatsch, S. Duquennoy & A. Dunkels. A Low-Power CoAP for Contiki
in IEEE 8th International Conference on Mobile Ad-hoc and Sensor Systems,
2011.

[29] M. Kovatsch. Copper (Cu) https://addons.mozilla.org/it/firefox/
addon/copper-270430/

[30] Eclipse. Eclipse Kura API documentation in http://ftp.linux.org.tr/
eclipse/kura/docs/api/0.7.0/index.html?org/eclipse/kura/message/
class-use/KuraPayload.html

89

https://www.eclipse.org/paho/clients/java/
https://www.eclipse.org/paho/clients/java/
https://addons.mozilla.org/it/firefox/addon/copper-270430/
https://addons.mozilla.org/it/firefox/addon/copper-270430/
http://ftp.linux.org.tr/eclipse/kura/docs/api/0.7.0/index.html?org/eclipse/kura/message/class-use/KuraPayload.html
http://ftp.linux.org.tr/eclipse/kura/docs/api/0.7.0/index.html?org/eclipse/kura/message/class-use/KuraPayload.html
http://ftp.linux.org.tr/eclipse/kura/docs/api/0.7.0/index.html?org/eclipse/kura/message/class-use/KuraPayload.html

Bibliography

[31] ORACLE. Java 8 documentation in https://docs.oracle.com/javase/8/
docs/

[32] ORACLE. Java concurrency documentation in https://docs.oracle.com/
javase/7/docs/api/java/util/concurrent/package-summary.html

[33] USC. Contiki tutorials in anrg.usc.edu/contiki/index.php/Contiki_
tutorials

[34] A. LiÃ±ánColina,A.V ives,M.Zennaro,A.Bagula&E.P ietrosemoli.Internet of Things in 5 days.R.Buyya&â£ŽA.V ahidDastjerdi.Internet of Things, Principles and Paradigms.

90

https://docs.oracle.com/javase/8/docs/
https://docs.oracle.com/javase/8/docs/
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/package-summary.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/package-summary.html
anrg.usc.edu/contiki/index.php/Contiki_tutorials
anrg.usc.edu/contiki/index.php/Contiki_tutorials

	Acknowledgements
	Introduction
	The project

	The Internet of Things
	Internet of Things
	IoT Architecture
	Level 1: Devices and Controllers
	Level 2: Connectivity
	Level 3: Edge (Fog) Computing
	Level 4: Data Accumulation
	Level 5: Data Abstraction
	Level 6: Application
	Level 7: Collaboration and Processes

	Technologies of the IoT
	Radio frequency identification (RFID)
	Wireless Sensor Networks(WSN)
	Middleware
	Cloud computing

	IoT applications
	Automotive
	Home automation
	HealthCare
	Sensor Network monitoring
	Industrial IoT
	Agriculture

	IoT challenges
	Summary

	Selected Hardware
	The motes
	TelosbB
	TelosB Components
	Sensors

	Raspberry Pi
	Communication
	OS and deployment
	Local and remote access

	Stack Protocol
	IEEE 802.15.4
	6LowPAN

	REST architecture
	CoAP
	Architecture
	Messages
	Requests
	Responses
	Resource Discovery
	Observe, subscription and notifications
	Security : DTLS
	CoAP/HTTP proxying

	A Publish/Subscribe protocol : MQTT
	Message format
	Topics and topic matching
	QoS

	Gateway Framework
	Gateway tasks
	Gateway challenges
	Eclipse Kura

	Selected Software
	SW for the motes
	Operative Systems for the motes
	TinyOS
	Contiki
	TinyOS and Contiki
	Motivation

	Contiki stack configuration
	Contiki directory structure
	Contiki MAC layer
	Network routing : RPL

	CoAP implementation: Californium
	MQTT implementation: Paho

	Implementation
	WSN
	Cooja simulator

	Kura bundles
	SensorInterfaces
	GatewayPublisher
	CoAPGateway

	AWS IoT

	Simulation and deployment results
	Simulation
	Simulation results

	Physical deployment
	Integration with AWS
	Data analysis on AWS

	Conclusions
	Future work

	Appendix: SW codes and guides
	Contiki
	Contiki and Cooja installation
	Mote programs installation
	Run Cooja

	RPL border router
	Tunslip configuration for Cooja

	Raspberry Pi
	Raspbian installation

	Kura
	Installation
	Development
	Californium

	AWS

	Bibliography

