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Summary

Smartphones and tablets have become an essential element in our everyday lives.
Everyone use these devices to send messages, make phone calls, make payments,
manage appointments and surf the web. All these use cases imply that they have
access to and collect user sensitive information at every moment. This has attracted
the attention of attackers, who started targetting them. The attraction is demon-
strated by the continuous increase in the sophistication and number of malware that
has mobile devices as the target [1] [2].

The Android project is an open-source software which can be downloaded and
studied by anyone. Its openness has allowed, during the years, an intensive in-
spection and testing by developers and researches. This led Google to constantly
updating its product with new functionalities as well as with bug fixes. Various
types of attacks have targetted the Android software but all of them have been
mitigated with the introduction of new security mechanisms and extra prevention
methods. Starting from September 2018, 16 major versions of the OS have been
realized, reducing incredibly the attack surface exposed by the system.

The application ecosystem developed by the Android project is a key factor for
the incredible popularity of the mobile devices manufactured and sold with the OS.
The users can benefit from an immense official store as well as alternative stores,
providing applications for every category and need. The essentiality of applications
has increased the importance of their security in the OS platform. The develop-
ment of strong security mechanisms is of primary importance, but it is not enough.
Software is written by humans, which are not perfect and can make mistakes. This
requires the creation of tools, essential for the analysis and testing of the security
implemented in a system.

The Android architecture and applications structure require interaction between
the various software running on a device. This is made available by applications
components, modular objects which implements the different features provided by
the app. This opening could create holes in the Android Security mechanisms. In
particular, our research starts with the assumption that application’s components
can generate vulnerabilities when not developed correctly and with attention to their
security.

The study of components interactions and system applications lead us to the
discovery of possible interaction vulnerabilities, confirmed by the first major issue
found in the PhoneApp system application. Due to the large size of the source
code in applications, the need for a tool to automatize the process arose. At this
point, we projected and developed the tool architecture, including a static analysis
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component and a dynamic analysis one for testing. The results obtained from the
tool demonstrates that our assumptions were correct, leading us to discover the
second type of vulnerabilities. Both the type of vulnerabilities have been exploited
to present examples of possible malicious applications that could be developed by
attackers.

Finally, the tool has been perfectioned and used to understand how the presented
issues are widespread in the applications provided by the Android operating system
or by third-party developers. The results are used to understand in which situations
the components become more common and to define possible approaches to mitigate
the problem.
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Chapter 1

Introduction

1.1 Context

Smartphones became essential in our lives. Android is the world’s most popular
mobile OS with more than 2 billion devices using it every month. Due to the infinite
functionalities that they can implement, a huge amount of user personal and private
information are collected and stored. At the same time, thanks to sensors and
hardware components, smartphones are capable of recording and collecting data of
user everyday life. With such capabilities and distribution numbers, the Android
OS security must be a priority.

Most of the functionalities of a device are managed by applications. They are
developed and executed in the environment of the Android framework, which is a set
of standards, protocols, and functionalities that developers can use to build apps.

This work aims at analyzing the security of Android, understanding in which
cases its implementation can lead to unwanted errors generating security vulnera-
bilities and privacy issues. When these issues are found, we study how they could
be exploited by malicious actors to craft different types of real-life attacks. Addi-
tionally, we evaluate how widespread the attacks could be according to the affected
OS version distribution or third-party application popularity. Finally, the results
are analyzed to propose specific solutions for each of the issues found.

1.2 Deliverables

The research work had to analyze the possible problems arising from a set of Android
models widely used in the entire platform. The project source code and the number
of third-party applications on the market are incredibly large, hence a manual anal-
ysis is not feasible. We developed a tool to automize the process of scanning the
source code of Android applications to detect exposed components and test them
to identify possible vulnerabilities. The analysis results demonstrated that the plat-
form models are not ideal to help developers in writing secure applications. The
problem does not only affect third-party applications but also applications released
with the OS. We discovered two possible attack methods that malicious actors could
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1 – Introduction

use or even worst, already be using: a Denial of Service attack and a Permission
re-delegation attack. Moreover, the numeric results show that the problem, in the
newer version of Android and recent developed third-party applications, is not de-
creasing. Finally, we consider a set of possible actions that can be taken to reduce
or eliminate the problems detected.

Our analysis is made on the set of APIs that, as shown in 1.1, represent the main
distributions present on the market. The set of third-party applications analyzed
have been downloaded directly from the official Play store which is the only official
market guaranteed by Google. The tool has been developed in Bash and Python
programming languages. The former was used because the Android platform con-
tains a command line debug interface called Android Debug Bridge, optimal to
programmatically interact with a device and automate the testing process. Python
was chosen because of its efficiency in scanning the contents of a text file such as
the AndroidManifest files.

Figure 1.1: Android platform versions distribution [3]

1.3 Environment

Android is an open source software system and as such, most of the research was
made directly accessing the source code. It is distributed through the Android Open
Source Project located in a Git repository hosted by Google. The source code of
each code-line can be downloaded and accessed, up to the latest release.

The work focuses on the most widespread OS versions: Android Marshmallow,
Android Nougat, Android Oreo and the latest Android Pie. The development tool
used is Android Studio, which is the official Integrated Development Environment
for Android apps. Tests were run on the following devices: Google Pixel running
Android 9.0 Pie with API 28, Google Pixel 2 running Android 8.1 Oreo with API
27 as real devices, and Google Pixel 2 running all previous listed versions with APIs
23, 24, 25, 26, 27, 28 as emulated devices.

2



1 – Introduction

1.4 Outline

For a better understanding of the concepts and elements involved in this research, the
document starts with a background chapter. It includes the theoretical information
necessary to have a clear idea of the Android framework and its mechanisms.

The security aspects are then explained in Chapter 3, with a focus on the target
of this research: application components. The possible risks raised by vulnerabilities
in both System and Third-party applications are evaluated.

In Chapter 4, the vulnerabilities found are presented in detail along with proofs
of concept to give an example of real-life attacks.

In the following two chapters, the methods used to detect the issues are explained
and it is explained how they were integrated into the developed analysis tool. A
solution approach is then proposed to help in reducing the attack surface and avoid
the involuntary introduction of new vulnerabilities by developers.

Chapter 7 presents the final results obtained from the analysis of all the Android
major release versions and a large set of third-party applications.
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Chapter 2

Background

Android is a Google-developed mobile operating system for smartphones, tablets
and touchscreen devices. By 2018, were sold over 383 million smartphones with 85.9
percent powered by Android [4]. It is an open source software distributed by the
AOSP project through a Git repository. The OS has over two billion active users
per month with an official application store featuring over 3.3 million applications.

AOSP kernel is derived from the Linux kernel’s LTS branches. The use of a Linux
kernel allows the project to rely on its security features which are deeply used and
tested. On top of the Linux kernel, software including libraries and APIs is written in
C, while application software runs on an application framework Java-based. Google
has also recently included full support for the development of applications in the
Kotlin programming language [5].

2.1 Android Platform architecture

Android Platform architecture is a software stack where each component depends
from and communicate with the underlying layer. 2.1 shows the complete set of
layers and components.

2.1.1 Linux Kernel

The kernel is the core of an operating system, a computer program loaded on start-
up, in charge of managing and controlling every element of the system. The Android
platform is founded on the Linux kernel, which is the most common choice for mo-
bile devices. The role of the kernel includes managing the interaction between the
hardware and the software. The popularity of Linux allows a reliable development
and maintenance of hardware drivers by device manufacturers. Moreover, the ad-
vantage of using this kernel is that it contains several security features on which the
OS can rely. It has been used for years in security-sensitive environments, receiv-
ing constantly research, attacks, and consequent fixes by thousands of developers.
Currently is considered by many security professionals and institutions one of the
most trusted secure kernel. Some of the main key security features that Android
take advantage of are:

4



2 – Background

Figure 2.1: Android Platform architecture stack [6]

❼ Process sandbox

❼ Permission model

❼ A secure mechanism for IPC

5



2 – Background

❼ Modularity, with the possibility to remove components if they are potentially
insecure [7]

2.1.2 Android Runtime

A runtime system is a set of software instructions implementing portions of an
execution model. In particular, it executes actions which are not part of the running
program but that are needed for its correct execution and interaction within the
runtime environment. Every programming language defines a runtime system. The
Android runtime (ART) translates the application’s bytecode into instructions based
on native code that can be executed by the device system. The specific instruction
formats executed in the Android context are the Dalvik Executable format and the
Dex bytecode. Developers write programs in the Java language and the bytecode
is generated by build toolchains at compile time. From Android version 5.0 on,
an instance of the ART is created in each app process. Prior to it, the runtime
was the Dalvik but has been updated to introduce more efficient components such
as Ahead-of-time compilation. A set of core runtime libraries are also included in
Android. They provide the majority of Java programming language functionalities
which are also used by the Java API framework.

2.1.3 Java API framework

Android exposes a set of features and functionalities accessible through Java-based
Application Programming Interfaces. The APIs have the role of simplifying the
use of modular system components implemented by the OS which are the essential
building blocks for apps creation. Each API is developed and distributed in a
package. Any new Android code-line released is characterized by a new API version
containing additional functionalities. The latest Android 9 Pie version features
the new API level 28. Updates to the framework API are created in order to
be compatible with the earlier versions. While new functionalities or replacement
are introduced, the previous parts are deprecated but kept in the framework so
that applications developed on old APIs will keep working. In just a few cases
components of the interfaces may be removed or modified for major reasons such
as applications or system security. APIs new versions are distinguished with API
Levels, increasing integer numbers starting from 1. The Level has an essential role
in the apps development and users experience:

❼ It lets the platform indicate the maximum framework level supported

❼ It lets an application indicate the framework level required

❼ It lets the OS understand if an application is compatible with the Android
device version [8]

The Java API framework access the hardware capabilities of the device through
interfaces provided by the hardware abstraction layer. The HAL is a collection of
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2 – Background

library modules loaded whenever the OS receives a request or need to access an
hardware component.

Android creates an entire set of software features that are made available through
the API. Such features allow communicating with the system and help the interac-
tion between the user and the apps. The following are a list of core components and
services available:

❼ A system to build and manage an app’s UI called View System

❼ A Notification Manager that allows apps to display notifications and custom
alerts in the interface status bar

❼ A set of data managers named Content Providers. They help applications to
share data and they manage the access to data of the system or of other apps

❼ An Activity Manager which control the status of applications and regulate
their lifecycle. It also provides a navigation stack to remember the history of
user interactions with each app.

2.2 Android applications

An Android app is a software application written using Java, Kotlin and C++
languages, running on the Android platform. Apps can be developed and tested
with the official IDE Android Studio. The SDK tools compile source code, resource
files, and any data into an Android package called APK with .apk extension, which
is an archive file. It contains all the information necessary for an app to be installed
on a device and to be executed by the operating system.

There are two types of applications: system apps and third-party apps. System
applications are installed on the device with the OS itself but they can be part of
the AOSP or related to the manufacturer that customized the ROM for the device
it is selling. They can’t be uninstalled by the user and have special permissions that
grant risky privileges, giving them special controls over the system. The system apps
purpose is to directly interact with the user, but also to provide functionalities that
third-party apps can utilize. Examples of this apps are the PhoneApp (managing
the network connection), or the Camera2 app. Third-party applications can be
developed by anyone and are installed by the user, who can get them from over two
and a half million offered through the Google Play store. Besides, a relevant number
of alternative sources are available with fewer guarantees on apps legitimacy.

The essential building blocks of Android apps are called App components. A
component is a module through which the user, the system or another application
can access your app. Usually, more than one component is declared in an app and
it is possible that some depend on others [9]. Only four types of component exist in
the Android framework:

❼ Activities
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2 – Background

❼ Services

❼ Broadcast receivers

❼ Content providers

Components can be declared in a specific Android file called AndroidManifest.xml
which is an XML file describing essential information about the application and its
elements.

2.2.1 Activities

A mobile app is not always started from the same point. A user could open the
email app from its icon and see the list of received emails, or open it from an exter-
nal application to directly start composing an email. This paradigm is made easy
thanks to Android activities. An application can declare more activities and each of
them has a different interface representing different elements. An activity does not
represent the entire application but just a module of it. Each one declares its own
window where the developer can draw the optimal UI. Whenever a new activity is
started, its window is displayed replacing the previous one and the user can start
interacting with it. Usually, activities can depend on the application’s data but they
don’t depend on other activities. They can start components of other apps and in
the same way, they can be started by other components. An activity is declared in
the manifest file using the <activity> tag as a child of the <application> element.
For instance, to declare an activity defined by the ExampleActivity class, the XML
code would be the following [10]:

1 <manifest ... >
2 <application ... >
3 <activity android:name=”.ExampleActivity” />
4 ...
5 </application ... >
6 ...
7 </manifest >

Activity declaration example

The system manages activities with an activity stack. Every time a new activity
is started, it is placed on the top of the stack until the activity exits or another
activity is started. The lifecycle of activities is defined with 7 states displayed
in 2.2. The lifecycle is defined by specific methods that are called by the OS when
necessary. The two main methods are onCreate and onDestroy. The former is called
when the activity has to be created and is in charge of setting up all the necessary
elements and objects, the latter is a final call necessary to release all resources before
the activity gets destroyed.

8



2 – Background

Figure 2.2: Android activity lifecycle [11]

2.2.2 Services

A service, differently from an activity, is a general-purpose component without an
interface. It is used for long-running operations that otherwise would interrupt the
UI for too long to keep the device usable. For example, a service can be used to
play music in the background while the user is interacting with another application
or an activity of the same app. Services can be started and interact with other com-
ponents as well as interact with components of another application. Two type of

9



2 – Background

services can be instantiated: Started services and Bound services. Started services
perform specific long-running operations and they remain active until their work is
completed. Bound services are instead related to the applications that requested
their service. This services usually provide an API for other processes. Different
apps can bound to them simultaneously, and they remain active until all the apps
unbound. Services lifecycle has a few additional methods compared to activities.
They are started when a component calls startService or bindService and the OS
then calls onStartCommand with the arguments passed by the client. When a client
calls bindService, the service returns a special object called IBinder which can be
used to call the methods of the service API. A service is declared in the manifest
file using the <service> tag as a child of the <application> element. For instance,
to declare a service defined by the ExampleService class, the XML code would be
the following [12]:

1 <manifest ... >
2 <application ... >
3 <service android:name=”.ExampleService” />
4 ...
5 </application ... >
6 ...
7 </manifest >

Service declaration example

2.3 Intents

App components are supposed to communicate and interact. In most of the cases,
the communication happens between components of different apps in different pro-
cesses. Linux processes do not share memory space, hence they need a common
protocol to communicate. The Android environment implements inter-process com-
munication through special objects: intent messages. Intents can be used to interact
with a component and ask for an action. In particular, they are used in two cases:

❼ Starting an activity
An intent containing a description of the activity to start and any additional
necessary data has to be created. Such intent is passed to the startActivity
method and the system process is in charge of transferring the message to
the destination activity, following the flow displayed in 2.3. If the component
sending the intent wants to receive a result from the destination activity, the
method startActivityForResult has to be called instead. Once the destination
activity has performed the requested action, a new intent is sent back to the
original activity containing the result.

❼ Starting a service
Again, an intent containing the information about the destination service has
to be created. In this case, the method to be called is startService to request a
one-time action to be executed. Differently, if more than one action is needed,

10



2 – Background

the bindService method has to be called passing the intent. If the destination
service is available, a Binder object is returned and the functions available in
the service interface can be called.

Figure 2.3: Activity started with an intent [13]

There are two different types of intent messages: implicit intents and explicit
intents.

❼ Implicit intents can be created without declaring a specific component as
a destination but a general name for the action needed is sufficient. If more
then one app is capable of managing the requested action, the system lets the
user choose which of the available app should handle it and forward the intent
to the selected component.

❼ Explicit intents must contain specific information about the destination com-
ponent: the concatenation of the package name and the class name or just the
component package name [14].

Both types of intent can contain various type of standard information and the re-
lated data. Android defines a set of fields and the corresponding methods to populate
such fields. The primary information in an intent are action, data and component
name. An action is a constant string such as ACTION MAIN or ACTION DIAL,
while data can be of various types depending on what kind of information the desti-
nation component has to operate on, such as an integer value or a contact number.
The component name is what makes an implicit intent to become an explicit one.

An app has to inform the OS which actions can handle in order to receive an
intent. This is done in the AndroidManifest file declaring intent filters. They are an
Android feature that let the system know if the component wants to receive intents
requesting a certain action. To use this feature, apps has to declare a <intent-filter>
tag attribute in the component tag element. It must include an <action> field and
possibly a <category> or a <data> property.

11



Chapter 3

Android Security

Android is a system software developed for portable devices. It is mainly used on
smartphones, mobile computing devices that allow people to store, access and share
any kind of data, in any place, at any moment during their daily routine. Users can
download new software in the form of apps and it has to run alongside every other
app or OS program. This variety of elements imply the need for different software
protections against possible attacks introduced by each of them. During the years,
Android has introduced several protection mechanisms and keeps adding new ones
to defend devices against modern attacks and newly discovered vulnerabilities.

3.1 Android security mechanisms

Since every element of the Android software stack relies on the kernel, that’s where
the most important security mechanisms are. The Linux kernel is the base for a
mobile computing environment and provides several key security features.

The kernel, the operating system libraries, the OS application runtime, the OS
applications, and the application framework are stored in the System Partition, an
area of the memory which has a read-only access. This means that any program
running on the device will never be able to modify the system source code. By
default, only a small group of core system applications and the kernel process run as
root, a special user account with the highest level of capabilities on a Linux system.
Even with such permissions, a process cannot edit data in the System Partition.

The Android security model is implemented in a two-layer structure:

❼ A kernel-level sandboxing and protection mechanism to isolate applications
called Application Sandbox provided through Linux discretionary access con-
trol (DAC) and Security Enhanced Linux (SELinux).

❼ An application-level permission model implemented by the Android software.
It controls access to system resources, such as the possibility to use the camera
or communicate through the network, and to application components such as
the ability to start services or activities implemented by other apps.

12



3 – Android Security

3.1.1 Application Sandbox

The Application Sandbox is one of the strongest security concepts in Android imple-
mentation. Each application that runs on the system is isolated in its own process
so that it can’t affect the operating system or other applications and at the same
time it can’t be accessed from malicious apps. The isolation is managed with DAC
in two principal ways. First, it ensures that access to system resources can only
happen indirectly by apps through system services. Such services address sharing
concerns and manage access control. For certain situations, DAC directly authorizes
or prevent apps to access system resources. Second, DAC isolates apps using the
kernel features of user ID (UID) and group ID (GID), unique numeric codes associ-
ated with each app and assigned to data and processes. This mechanism prevents
apps from directly accessing the files of other apps using the kernel interfaces.

The shortcomings of DAC have been resolved by Google introducing the SELinux
module. Its main scope is to enforce mandatory access control (MAC), the protocol
used to constrain the ability of an object to access or perform actions on another
object on the same software environment. The module enforces MAC over every
process, including the root processes. The operating principle of SELinux is of
default denial, or, simply put, anything not explicitly allowed is denied [15].

Because this protection is implemented at the Kernel level, it is extended to
operating system applications and native code libraries. The application runtime,
the application framework, the operating system libraries, all applications and any
other software running above the kernel its executed within the Application Sand-
box. Every Android release introduces new protections to enforce the Application
Sandbox, which now features a high number of security mechanisms.

The sandbox is not only necessary between process but also with app data. Store
information in world accessible memory can lead to confused deputy vulnerabilities,
information disclosure leaks and is the primary target for malware that targets
sensitive data. From Android 9 on, apps are not allowed to use shared memory.
Instead, a set of features are available to share data: if some data has to be shared
with another application, developers can use a specific component called content
provider or create a shared folder on the external storage. Content providers are
mainly used to share a specific type of information, providing a client-server model
with an interface which handles inter-process communication and a controlled access
mechanism. External storage instead, is not guaranteed to be always available but
can contain data which should be accessible to other apps and to the user.

3.1.2 Permissions

Android implements a security model based on permissions. A permission has the
purpose of protecting the user privacy and to let him decide whether an application
can use certain device features or access to specific sensitive user data stored on the
device. Depending on the permission requested by the app, the system can directly
grant it or display a request dialog to the user interacting with the device. A set
of predefined permissions exists in the Android framework, but an application can
declare its own permission to control who can access its features or components.
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Permissions are divided into various protection levels. Whether a permission has
to be requested or not depends on its level. The Android permission model defines
three protection level available for third-party applications:

❼ Normal permissions

Normal permissions are related to situations where the app needs to access
resources or data that are available outside the sandbox of the application,
with low risk for the operativity of other apps or user’s sensitive information.
Examples of normal permissions are the one to make the phone vibrate or the
one to set an alarm. When a permission of this level is requested, the system
directly grants it without the need of user interaction.

❼ Signature permissions

Signature permissions are defined by an application (third-party or not) and
are registered in the list of permissions at install time. Applications signed with
the same certificate of the declaring app immediately get them granted. Some
signature permissions are declared by system applications and can be requested
at install time. Examples of signature permissions are the one needed to use
the services available to assist users with disabilities, or the one needed to
change the device settings.

❼ Dangerous permissions

Dangerous permissions are related to situations where the app wants to read
data that include the user’s private information or operate on objects that
could affect the system or other apps operations. Examples of dangerous
permissions are the one necessary to use the camera of the device, or the one
necessary to read the contacts from the device. In order to get a dangerous
permission granted, the user has to grant it at runtime from a specific dialog
displayed by the system.

To request a permission, an app has to declare it in the AndroidManifest.xml
file using the <uses-permission> tag, specifying the permission name through the
android:name attribute of the tag. If dangerous permissions are requested, the app
has to prompt a dialog at runtime in order to get the permission granted by the
user.

Permissions can also be used by application’s components to enforce who can
request and use their functionalities. To do so, a component has to explicitly con-
tain the android:permission attribute when it is declared in the manifest file of the
application. Whenever an external app tries to start a component declaring a per-
mission, the system checks if the requesting app has the necessary custom permission
granted.

3.2 Exposed application components

All the describe security mechanisms are intended to keep applications as separate as
possible within the system, but Android application components are often supposed
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to interact and communicate with other applications. This imposes the necessity of
mechanisms to manage apps interaction and communication. In order to let other
applications start activities or services of an app, Android defines a set of attributes
related to whether the component should be accessible to other apps or not. When
an application component is defined in such a way that other applications can start
it, it is considered an exposed component and can be started using an intent.

Three attributes are influent to limit the exposure:

❼ android:enabled

This attribute can set if the component can be instantiated or not by the
system. The value ”true” will let the system create and start the component
in the application process while the ”false” value will make the activity or
service invisible to other applications and ignored by the system. In the latter
case, none of the other attributes are meaningful and the component won’t be
exposed in any case. If this attribute is not declared, the default value is true.

❼ android:permission

This attribute declares the name of the custom permission that a client app
must have obtained in order to launch the component. If the app doesn’t have
the necessary permission, the intent is not forwarded by the system to the
receiving application and no component will be started. If android:enabled
is set to ”true” but the permission attribute is defined, the component is not
exposed unless. If the permission requested is of the normal level, then it
can be considered exposed since any application could start it without user
interaction.

❼ android:exported

This attribute is the most complex and confusing regarding whether an activity
or service is exposed or not. It set exactly if the element can be launched or
not by components of different applications, setting it to ”true ” if yes and
”false” if not. When it’s set to ”false”, which is the default value, it can not
be started by apps even if it defines intent filters. When the value is set to
”true”, the component is exported and can be started using an explicit intent
with the class name. Additionally, if intent filters are defined for the element,
it can be started with implicit intents. When filters are defined, the value is
set to true by default and the component become exposed.

3.1 summarize the conditions necessary to make a component exposed according
to the attributes previously described. The ”-” symbol means that the value in the
Exposed column will be the same for any possible value of the element in the column.
The intent type can be Implicit or Explicit or both, depending on the elements.

When the declaration of an element in the manifest file equals one of the rows
with the ”V” mark in the exposed column of 3.1, the application component is
exposed and potentially open a breach in the Android security mechanisms of process
isolation. The purpose of intents is not only to start components, but they are also
intended to transmit messages or data. This means that through them, applications
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Table 3.1: Declaration conditions for exposed components

Attribute Tag
Exposed Intent type

enabled permission exported <intent-filter>

false - - - X -

true / - dangerous - - X -

true / - signature - - X -

true / - X / normal - / false - X -

true / - X / normal - V V I

true / - X / normal true V V I / E

true / - X / normal true - V E

true / - X / normal true V V I / E

let data written by other processes enter into their sandbox. If developers do not
correctly validate the input or check their status before a component is started by
an intent, a variety of possible vulnerabilities are created.

3.2.1 System and third-party applications

System and third-party applications must follow the same coding rules and struc-
tures to be developed. Independently from their role and importance, all the appli-
cations have the same set of features to protect themselves and secure their data.
This implies that discovering a vulnerability generated by exposed components can
have different impacts depending on the type of application.

Third-party applications have limited power on the system, but they can obtain
dangerous permissions granted by the user if he trusts them and knows why they
need to use a specific feature of the device. When a dangerous permission is granted
to a third-party app, the user is not aware that such application could potentially
expose components to other apps and indirectly generate vulnerabilities in the object
protected by the permission.

In the case of system applications, the risk is even more serious. First of all,
system apps are installed on every device sold, which means that a vulnerability
generated by an exposed component would affect all the devices on the market.
Secondly, an app installed to be part of the system has various dangerous permissions
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granted by default. They manage the core features of the OS and they need to
have special powers to do so. Many Android features are managed by system-app
processes, which means that attacking a vulnerable exposed component directly
affects the entire service created in the process.
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Chapter 4

Vulnerabilities and Exploits

Whenever a secure program is modified, its definition of secure cannot be guaranteed
anymore. Android was designed with the goal of creating an open ecosystem enriched
by applications, where critical functionalities can be extended or replaced by third-
party applications. To meet this goal, the system needed to have mechanisms to go
through the limits imposed by the security model. Exposed components create a
hole in the sandboxing security mechanism.

Under this assumptions, we decided to analyze whether Android developers are
aware of the risk and write secure applications. Furthermore, we investigated if ex-
posed components can create vulnerabilities leading to security and privacy attacks.

4.1 Unexpected intents

When a component is exposed, an application can send an intent to start it. When an
application A sends an intent with destination an application B, the system receives
the intent and check if an exposed component expecting that intent exists. If yes, the
OS starts the component of application B according to the process displayed in 2.2.
For both activities and services, the system calls the onCreate() method defined by
their class source code. This method is executed in the existing application process,
or a new one is created.

If the exposed component is not intentionally exposed, or it is supposed to be
called only under certain circumstances, its context may not be correctly initialized.
An accessed variable may not be initialized, or an object instance may not exist.
These situations can happen, for instance, if the exposed component is supposed
to be started by an application after the execution of other components [16]. Such
intents can be defined as unexpected intents, due to their characteristic of being
sent/received when they are not expected to.

4.1.1 Denial-of-Service

When unexpected intents are sent, the receiving program will raise unexpected ex-
ceptions potentially causing the crash of the entire process. When a process crash,
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the entire app stops functioning and the program exits. If an Android app crashes,
the system displays a dialog informing the user that the application has stopped
with an option to open the app again as shown in 4.1.

Figure 4.1: System dialog dislpayed when an application crashes [17]

An application doesn’t have to be in the foreground or displayed on the screen
to crash. Any component, such as a service running in the background to play a
song, can fail and crash an app. In such cases, the crash is often confusing because
the user was not interacting with the app named in the system dialog.

The situation in which an actor makes a device or a resource unavailable to a user
is a type of attack called Denial-of-Service (DoS). Since there is no limit imposed
by the Android system on how many times an application can send an intent, a
malicious application could repeatedly start a vulnerable app with an unexpected
intent making the app unavailable to the user for an indefinite amount of time. This
attack not only prevents the usage of the app but slows down the system forcing the
OS to use a lot of its resources in the process of restarting the app and displaying the
crash dialog every time. Even worst, the user doesn’t have a method to understand
which app is doing the attack, unless the malicious app keeps the DoS while the
user uninstalls every third-party app one at a time until the problem stops.

Supposing that the application provides a service continuously needed by the
system or the user and not only used when the user interacts with it, attacking an
exposed component of the app will crash the entire process preventing the service
to keep working. In this case, the attack will not only prevent the use of an app but
also an entire feature of the device. The DoS attack can be also crafted in order to
crash the process only under certain circumstances, such as every time that the user
requires to use such feature.
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4.1.2 Real-life attack: PhoneApp application vulnerability

A relevant example of an exposed vulnerable component was found in the PhoneApp
application. The PhoneApp is an Android system application which is in charge
of managing the device mobile telecommunications network. The app runs the
com.android.phone process, containing all the objects created to keep the device
connected through the mobile operator network. Among the components exposed
by the application, the EmergencyCallbackModeExitDialog is vulnerable to the DoS
attack. The activity declares two intent-filters which can be used to start it and gen-
erate the attack: com.android.phone.action.ACTION SHOW ECM EXIT DIALOG
and com.android.internal.action.ACTION SHOW NOTICE ECM BLOCK OTHERS.
In the following section of code extracted from the manifest file of the app, can be
seen that no attribute is set to prevent the activity from being exposed.

1 ....
2 <activity android:name=”EmergencyCallbackModeExitDialog”
3 android:excludeFromRecents=”true”
4 android:label=”@string/ecm exit dialog”
5 android:launchMode=”singleTop”
6 android:theme=”@android:style/Theme.Translucent.NoTitleBar”>
7 <intent−filter>
8 <action android:name=”com.android.phone.action.

ACTION SHOW ECM EXIT DIALOG” />
9 <action android:name=”com.android.internal.intent.action.

ACTION SHOW NOTICE ECM BLOCK OTHERS” />
10 <category android:name=”android.intent.category.DEFAULT” />
11 </intent−filter>
12 </activity>
13 ....

PhoneApp AndroidManifest.xml

The PhoneApp component expects to receive such intent only if an object indi-
cating that the phone is in the emergency callback mode (ecm) has been instantiated.
The onCreate method checks if the device is in the ECM status calling the method
isInEcm on an object of the class Phone. Before doing so, it doesn’t check whether
the object has been instantiated or not probably because the activity is not sup-
posed to be called by other apps in an unexpected state. A subsequent method
call on the object raises a NullPointerException and crashes the com.android.phone
process. The original vulnerable code can be seen in the following block.

1 @Override
2 public void onCreate(Bundle savedInstanceState) {
3 super.onCreate(savedInstanceState);
4
5 mPhone = PhoneGlobals.getInstance().getPhoneInEcm();
6 // Check if phone is in Emergency Callback Mode. If not, exit.
7 final boolean isInEcm = mPhone.isInEcm();
8 ....

PhoneApp EmergencyCallbackModeExitDialog.java
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The process is automatically restarted by the system but since it manages the
phone signal, when the dialog notifying the crash of the application is closed, the
device doesn’t have any wireless phone network. This condition lasts for a few sec-
onds until the com.android.phone process is restarted and the service restored. If
the device is receiving or sending a phone call, crashing the PhoneApp application
will force close it. Subsequent starts of the activity will cause repeated crashes of
the process, sometimes resulting in a system soft reboot. The danger of the discov-
ered vulnerabilities is that exploiting them to craft an attack is really simple. For
example, to generate a DoS attack from the described vulnerabilities is enough to
write the following lines of code inside a loop or a conditional statement.

1 Intent i = new Intent();
2 i.setAction(”com.android.phone.action.ACTION SHOW ECM EXIT DIALOG”);
3 startActivity(i);

Code to exploit the PhoneApp application vulnerability

The example provided is not the only vulnerable component exposed by the
PhoneApp application but it contains other vulnerable activities and services.

4.2 Permission re-delegation

As previously stated, granting dangerous permissions gives application’s components
special power on the device. The Android permission model is intended to prevent
applications from performing actions against the user will. As defined by [18], per-
mission re-delegation occurs when an application to which was granted a dangerous
permission performs a privileged action for another application without the con-
sent. This kind of vulnerability can be considered as a confused deputy attack or,
similarly, a privilege escalation attack. In this scenario, the attacked application
is the deputy and receives the authority from the user by getting the permission
granted. The deputy declares a vulnerable component exposing its functionalities
to external applications. The application performing the attack doesn’t have the
permission that the deputy has. The requester sends an intent to the exposed com-
ponent, causing the app with the permission to perform an action. The action will
be executed because the deputy has the necessary permission and the malicious app
succeeds in obtaining a privileged action to be executed.

Permission re-delegation attacks can be more dangerous than the previously
described DoS attacks because they can directly impact the user privacy. Moreover,
this kind of vulnerabilities can be exploited to generate more sophisticated attacks
where more than a vulnerable component is used.

4.2.1 Real-life attack: Camera2 application vulnerability

A clear example of this type of vulnerability is given by the Android Camera2 sys-
tem application. It is part of the android.hardware.camera2 package and its function
is to provide an interface to individual hardware camera components connected to
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Figure 4.2: Permission re-delegation scheme [18]

the device. The application exposes a component for the VideoCamera activity as
can be seen from its declaration in the app Android Manifest file. The activity tag
contains an intent-filter and no attribute android:permission or android:exported is
used to enforce its exposure.

1 ....
2 <activity−alias
3 android:name=”com.android.camera.VideoCamera”
4 android:label=”@string/video camera label”
5 android:targetActivity=”com.android.camera.CaptureActivity”>
6 <intent−filter>
7 <action android:name=”android.media.action.VIDEO CAMERA” />
8 <category android:name=”android.intent.category.DEFAULT” />
9 </intent−filter>

10 ....
11 </activity−alias>
12 ....

Camera2 AndroidManifest.xml

This application has the dangerous level permission android.permission.CAMERA
necessary to use the camera. In particular, its onCreate method makes a specific
call to open the camera and to start recording a video. Any third-party application
can start the activity sending to the system an intent with the action set to an-
droid.media.action.VIDEO CAMERA and the device immediately starts recording.
In this situation, the camera app becomes the deputy in a permission re-delegation
scenario. The following lines of code are enough to create an attack recording a
video without the necessary permission.

1 Intent i = new Intent();
2 i.setAction(”android.media.action.VIDEO CAMERA”);
3 startActivity(i);

Code to exploit the Camera2 application vulnerability
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This vulnerability can be exploited by a malicious actor to write an app with
the ability to spy the user. Every Android device has a proximity sensor capable of
detecting when the device is close to an object such as the face, during a phone call,
or in a pocket. To read data from a device sensor, no permission is needed since the
information received do not give sensitive data. The malicious app can read the data
from the sensor and detect when the device is close to an object, which indicates that
the user cannot see the display. In this situation, the application sends an intent
to start the vulnerable component and the camera app starts recording a video. As
soon as the proximity sensor detects that the object is no more close to the device,
an intent to display the home screen can be sent to the system. When this happens,
the camera app stops recording and the video is saved in the device memory. The
malicious app immediately saves the video to its private memory space and delete
it from the gallery. In this way, the spy app has recorded audio and video through
the device camera both without the user being aware of it and without the camera
permission. For instance, if the user makes a phone call without headphones, the
entire call audio is recorded alongside the video of what’s around the person.
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Vulnerabilities Detection

The AOSP project contains the source code of the entire Android OS implemen-
tation. Some of the system applications are included, but others are added when
manufacturers customize the code for their devices. Every Android release contains
on average more than 100 applications. According to [19], on the Google Play store
are available more than 2.6 millions of applications. With such numbers, a manual
analysis to detect the vulnerabilities presented is not feasible. A tool to automate
the process of detection and testing has been developed in order to understand how
widespread the problem is and to find a possible approach to solve it.

5.1 Detection of exposed components

The first step in the analysis of an application is to detect the exposed components
among those declared. The Android app coding rules impose that all the components
have to be declared in the Manifest file. This implies a standard way of defining
components, implemented in section 2.2.1, which allows the use of static analysis on
the XML source code.

5.1.1 Algorithm

The analysis starts with the search for the <application> tag, which indicates that
everything declared from there up to the corresponding <application> closing tag
is an element of the application. The set of attributes of the <application> is
parsed, checking if the android:enabled attribute is not set to false, otherwise the
entire application is not exposed. Next, the components declaration tag of activities
or services is searched. As soon as it is found, it set of attributes is parsed. If
one of the attributes limiting the component exposure is found, the analysis skips
the element until another <activity> or <service> is detected. In particular, the
patterns searched are:

❼ android:enabled=”false”

❼ android:exported=”false”
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❼ android:permission

Note that, when the permission attribute is detected, the component could still be
exposed if the declared permission is of the normal level. The list of app components
requesting a permission are logged in a separate file to check the permission level at
a later time. If none of the listed elements is found, the component is potentially
exposed. The research continues detecting if any <intent-filter> is declared. At this
point two situations can occur:

1. No intent filters declared
If the exported attribute has been set to true explicitly, then the component
is exposed and can be started sending an explicit intent.

2. Intent filters declared
The component is considered exposed and can be started sending an im-
plicit intent after extracting the intent action from the filter tag attribute
android:name.

5.1.2 Pseudo-code

The following pseudo-code represents the implementation of the algorithm used by
the developed tool to find exposed activities.

1 file manifest = applicationApk/AndroidManifest.xml
2 # read the manifest file line by line
3 while manifestline = manifest.readLine():
4
5 # [step 1] scan <application> tag
6 if ’<application’ in manifestLine:
7 # read line from file until the application tag is closed
8 while manifestLine != ”/>”:
9 # no exposed components if the application is disabled

10 if ’android:enabled=”false”’ in manifestLine:
11 exit
12
13 # [step 2] scan <activity> tag
14 if ’<activity’ in manifestLine:
15 # read all <activity> tag attributes
16 while manifestLine != ”/>”:
17 if ’android:enabled=”false”’ in manifestLine:
18 # skip to next component
19 break
20 if ’android:exported=”false”’ in manifestLine:
21 # skip to next component
22 break
23 if ’android:permission=”....”’ in manifestLine:
24 requirePermission = True
25
26 # [step 3] scan for <intent−filter> tags
27 # read line from file until the activity component tag is closed
28 while manifestLine != ”</activity>”:
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29 if ’<intent−filter’ in manifestLine:
30 hasIntent = True
31 intentFilterList.add(filter)
32
33 # [step 4] write activity and related data
34 if requirePermission:
35 logPermission.write(activity)
36 exit
37 if hasIntent:
38 # if it has an intent−filter, can be started with an implicit intent
39 logImplicit.write(activity)
40 else:
41 logExplicit.write(activity)

Pseudo-code to detect exposed components of an application

5.2 Identification of vulnerable components

The second part of the vulnerability detection process requires detecting which of
the exposed components are actually vulnerable. Since the possible reasons for an
applications crash are almost infinite, the static analysis is not enough. The ideal
method to perform the study by executing a program is the dynamic analysis. For
this purpose, an Android command-line tool is used in our process.

5.2.1 Android Debug Bridge

The Android Debug Bridge (adb) is a command-line tool that can be used to com-
municate with an Android device. It consists of a client-server program with three
components:

❼ A daemon (adbd), which runs as a background process on the device. It is
in charge of running commands received from the server on the device.

❼ A server, running on the machine which manages the transmission of requests
and data between the client and adbd.

❼ A client, the command-line terminal on the machine where commands are
submitted to the server.

With adb, commands can be used to make calls to the activity manager (am),
an Android class managing components, which can start an activity and a service
using intents. In order to start a component, the following commands have to be
used in the command line:

1 adb shell am start −a ”implicit.intent.action”
2 adb shell am start −n ”explicit.intent.action”
3
4 adb shell am startService −a ”implicit.intent.action”
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5 adb shell am startService −n ”explicit.intent.action”
6
7 adb shell am startforegroundservice −a ”implicit.intent.action”
8 adb shell am startforegroundservice −n ”explicit.intent.action”

Adb commands to start components using the activity manager

The ”-a” option has to be followed by an intent action, while the ”-n” op-
tion has to be followed by a specific component name in a fixed format: the ap-
plication package name as a prefix, followed by the class name. For instance,
”com.example.app/.ExampleActivity”, where the forward slash separates the two
elements.

A second adb feature used in the dynamic analysis part is the Logcat tool.
Android has a special log where every process writes its status or useful routine
messages. When an application crashes, the system writes on the log a set of infor-
mation that can be used by developers to understand why the crash has happened.
The first functionality necessary is the command to clean the crash channel of the
log, while the second is the command to read the content of the same channel, and
the syntax is the following:

1 adb logcat −b crash −c
2 adb logcat −b crash −d

Adb commands to manage the Logcat crash channel

where the ”-c” option stands for ”clear”, and the ”-d” option stands for ”dump”
the log.

Finally, a last useful feature of adb is the possibility to simulate input touch on
the screen of the device. The command only requires the screen coordinates ex-
pressed in the number of pixels of distance from the bottom left corner of the touch
area and it directly submits an input. The format for the command is the following:

1 # X and Y must be integer numbers
2 adb shell input tap X Y

Adb command to simulate a user touch on the screen area

5.2.2 Testing with adb

All this tools and features can be combined together to automatically analyze the
previously selected exposed components, testing if they are vulnerable. To do so,
the first step is to clear the device screen and display the home screen to start from
a neutral situation. A user input has to be simulated over the home button, giving
a couple of seconds to the device to display the home screen. The next step is to
clear the crash log, in order to be sure that what it contains when we will read it
is only related to an eventual crash happened in the last few seconds. Then, the
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actual testing command has to be submitted, sending an intent to start an exposed
component. Again, a few seconds should be given to the system to start the compo-
nent and let it he following code is the portion of the script implementing the check.

1 # Click home button
2 adb shell input tap 540 1855
3 sleep 2
4
5 # Clear Logcat crash channel
6 adb logcat −b crash −c
7
8 # Start the component
9 adb ”✩action”

10 sleep 4
11
12 # Dump Logcat crash channel
13 adb logcat −b crash −d > logDump
14 if [ logDump != ”” ];
15 then
16 echo ”The exposed component is vulnerable”
17 fi

Script code to automatically test and detect if an exposed component is vulnerable
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Analysis Tool

Software testing is a process conducted on computer programs to provide informa-
tion about quality and reliability. It involves the execution of system and software
components to evaluate one or more properties. The manual testing is infeasible in
most of the software due to the number of lines of code and randomness of program
states and inputs. Test automation requires the use of computer programs which
are separate from the tested software to execute analysis and collect information on
the results.

In our research, we developed an automated tool which can be used by AOSP
developers and app developers to analyze their application code against the flaws
and vulnerabilities arising from exposed components. The tool provides a command
line interface with different analysis options and has been designed with a modular
design for benefits such as augmentation and exclusion.

6.1 Tool structure

An efficient software analysis tool has to be simple and easy to use with few require-
ments on data preparation. The developed tool requires only the path to a folder
containing Android applications files and a connected device (real or emulated), to
perform all the necessary actions to prepare the data for the analysis. For instance,
the input folder could be the AOSP source code of an Android version with a con-
nected device running the same release, and the tool will produce a complete report
on all the applications of the corresponding Android version.

6.1 represents the tool architecture containing all modules involved in the analysis
process as well as input and output data.

The architecture consists of four modules developed to interact and share data.
Specifically, the output files generated by a module, are in a format that the next
module can interpret. The input directory can contain any type of file, but the
analysis starts with the Android application file format called apk. During the tool
execution, different file formats are generated. At the end of the analysis, the results
are collected in text files that can be used by the tester for further analysis. In the
following sections, a detailed description of each module is provided.
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Figure 6.1: Auotomated analysis and detection tool architecture

6.1.1 Apk Extractor

The first step of the analysis is the extraction and preparations of the files used for
the test. This module requires to search within a directory tree, find file paths and
move files. An efficient way to do the listed actions is to use a bash script. Three
different sources for applications can be provided:

❼ Apk files

The apk file format is the standard format used to build an Android applica-
tion. When the user downloads an app from the Google Play store, an apk
file is retrieved. More in general, all third-party apps are provided as apk files,
whether they come from the official store or from another source. These files
are searched within the provided directory by their extension ”.apk”. The list
of files is created recursively searching within the root directory using the bash
command ”find”.

❼ AOSP source code

The source code provided by the AOSP is open-source and it is not compiled.
This means that the tool can directly access the applications files without any
additional manipulation or decompilation. In this case, to detect an applica-
tion folder, the Android manifest location is used.

❼ Android device (physical or emulated)

Not all system applications come from the AOSP. Each manufacturer installs
its own developed system applications to add features and to let the user
handle specific Android components. Such applications are extracted by the
tool from the connected device. The adb tool is used firstly to create the list
of applications which comes with the device, and secondly to extract the apk
files.
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The following code shows the main commands used by the tool in the Apk Ex-
tractor module.

1 # Generate list of apk files in the source directory tree
2 find /path/to/directory −name ”✯.apk” > outputFile
3
4 # Generate a list of apk files present in the connected device
5 # Similar to the previous command but it’s executed in a shell process on the device

created using adb
6 adb shell su < find system/ −name ”✯.apk” > outputFile

Commands used by the Apk Extractor module

When an AOSP directory tree is provided as a source for the analysis, the tool
automatically extracts the additional apks from the connected device and merge
them together. In this way, the numbers presented in the results are comprehensive
of the entire set of applications provided by the OS for the Android release.

6.1.2 Reverse engineering module

Android PacKage is the package file format for the distribution of a mobile app
for the Android operating system. In the apk package are collected the set of files
obtained from the compilation of a program for Android. In the compilation process,
the source code is first processed by the Java compiler obtaining the byte-code
format, corresponding to files with the ’class’ extension. Next, the DEX compiler
transforms the content of the .class files in dex byte-code, a byte-code format for
the Android Runtime. To decompile the byte-code to a human-readable format, two
tools can be used: Apktool and Jadx.

❼ ApkTool is a tool for reverse engineering binary Android apps. It decodes
Java resources to the Smali format, an intermediate format between the byte-
code and the Java source code. The tool also decompiles XML files and return
them to the original format. With ApkTool, the AndroidManifest file of an
application can be retrieved and analyzed to perform the search of exposed
components.

❼ Jadx instead, is a tool for decompiling apk or dex byte-code files. After the
decompilation process, the files are restored to a really close version of the
original Java source code. The code retrieved is stored in the results folder
and can be used to understand and fix the vulnerable methods.

6.1.3 Manifest analyzer

This module implements the exposed components detection. The Reverse engineer-
ing module has decompiled all the apk files in the directory tree preparing the files
for the Manifest analyzer. A file containing the list of AndroidManifest.xml paths is
created with the bash find command as previously described. Next, each manifest
is given as input to the code implementing the algorithm explained in section 5.1.1.
The process also collects statistic data about different information:
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❼ Number of manifest files analyzed

❼ Number of exposed components detected

❼ Number of components startable by implicit intents

❼ Number of components startable by explicit intents

❼ Number of components requiring permissions

The module generates a set of output files with information about the exposed
components and special files necessary as sources for the dynamic analysis performed
by the last module. The most important file contains details about each exposed
component. In particular, the manifest path, the package name, the app name, and
the component name are collected.

6.1.4 Dynamic tester

The last module implements the dynamic analysis. This module needs to read data
from two files written by the Manifest analyzer in a specific format. One file contains
the actions declared by the exposed components that can be started by an implicit
intent. The actions are expressed as a string and must be used with the exact value
coded in the manifest file. The second file contains the component name as specified
in 5.2.1. These files are used as input for the program implementing the algorithm
explained in 5.2.2. During the analysis, the information collected from the Logcat
when a vulnerable component is found are saved in a crash log. Thanks to this log,
when a developer runs the analysis on its application, he can not only detect the
existence of the problem but also easily understand what should be fixed.

6.2 Analysis reports

Each module executed during the analysis generates output log file which can be
used for different reasons. The program creates a folder in the directory where the
tool is run with the name of the analyzed directory with an additional underscore
followed by ’a’ or ’s’ depending if the user asked to analyze activities or services.
Within this directory, at the end of the analysis the following files can be found:

❼ crash actions.txt

It contains the list of actions necessary to start only the vulnerable exposed
components. The list is divided into actions for implicit intents and compo-
nents name for explicit intents.

❼ crash report e.txt

It contains the lines written by the OS on the Logcat crash channel when each
of the vulnerable components causes the crash of an application process. The
reports contain the list of function calls executed up to the crashing method,
including name and line numbers of the java source file. This file includes only
logs of vulnerable activities crashing with explicit intent.
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❼ crash report i.txt

It contains the same information as the previous file but related to the vulner-
able components crashing with implicit intent.

❼ exposed components e.txt exposed components i.txt
and exposed components perm.txt

They contain detailed information about the exposed components, such as
manifest path, package name, app name, and class name. The third file con-
tains the exposed components to be checked for the level of permission.

❼ results.txt

The numeric result collected during the analysis.

❼ test components e and test components i

These files have a special format and are only used by the Dynamic tester
module.

6.3 User Manual

The following list contains the list of requirements to run the tool:

❼ Machine Hardware: no specific requirements

❼ Operating system: Unix-like OS / macOS

❼ Python 3.6

❼ Android Debug Bridge tool (included in the Android SDK Platform-Tools
package or downloadable as a standalone program)

❼ Logcat tool (included in the Android SDK Platform-Tools package)

❼ ApkTool tool (open-source software available on GitHub)

❼ Jadx tool (open-source software available on GitHub)

❼ Android device (optional for the static analysis)

Some parameters of the tool must be set before running the program. In the
extract APKs.sh file, the ’adb’ variable has to be set to the path containing the
ADB tool sources. In the ’activities.py’ and ’services.py’ files, the folder where the
result files are created can be set. The default location is within the folder in which
the tool is run. No other parameter has to be set to run the program.

To run the tool, a set of options is available as presented in the following block.
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1 # List of options for the tool usage
2
3 # Analyse all components of the applications contained in the
4 # directory provided
5 /tool/directory: ✩ tool /directory/containing/apks
6
7 # Analyse activities of the applications contained in the
8 # directory provided
9 ˜/tool/directory: ✩ tool −a /directory/containing/apks

10
11 # Analyse services of the applications contained in the
12 # directory provided
13 ˜/tool/directory: ✩ tool −s /directory/containing/apks
14
15 # Analyse components of the applications contained in the AOSP
16 # version provided and in the connected device
17 ˜/tool/directory: ✩ tool /path/to/AOSP
18
19 # Analyse activities of the applications contained in the AOSP
20 # version provided and in the connected device
21 ˜/tool/directory: ✩ tool −a /path/to/AOSP
22
23 # Analyse services of the applications contained in the AOSP
24 # version provided and in the connected device
25 ˜/tool/directory: ✩ tool −s /path/to/AOSP

Tool commands
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Results

The final goal of the research is not only to understand which problems can arise
with exposed components but also how relevant and widespread the vulnerabilities
are. To answer these questions, the tool has been used to analyze a diverse set of
applications. With the results obtained, several conclusions can be drawn as well
as possible approaches to reduce the risks. Below, the results are presented and
interpreted.

7.1 Analysis setup

7.1.1 Android operating system

The first set of analysis has been carried out on different Android versions. As shown
in 1.1, the OS releases have a various distribution on the market. The code-line
verisions analyzed have been selected in order to support the majority of the devices.
The oldest release Marshmallow, with a distribution of 21.3%, is not supported by
Google anymore but still represents almost a quarter of active devices. Nougat and
Oreo together are installed on 50% of the Android devices and are still updated.
Finally, the latest release of Android called Pie has also been tested since it will
be supported for at least 3 years from August 2018. 1.1 shows data collected on
October 26 2018 and do not include the latest version which has been announced
on August 6 and its distribution was still under 0.1%.

The source code has been downloaded from the official Git repository hosted
by Google. The tests have been performed on different devices depending on the
release, some on physical devices and other on emulated devices. In both cases,
the devices were the Google official devices called Pixel. Among all the devices on
the market, they run the Android version closest to the AOSP original source-code.
This implies that most of the vulnerabilities detected are present on all the Android
devices running the same version. Table 7.1 summarizes the devices used for each
analyzed version.

35



7 – Results

Table 7.1: List of devices used for testing

Codename Android version API Device name Device type

Marshmallow 6.0.0 23 Google Pixel 2 emulated

Nougat 7.0.0 24 Google Pixel 2 emulated

Nougat 7.1.1 25 Google Pixel 2 emulated

Oreo 8.0.0 26 Google Pixel 2 emulated

Oreo 8.1.0 27 Google Pixel 2 physical

Pie 9.0.0 28 Google Pixel 1 physical

7.1.2 Third-party applications

Third-party applications can be downloaded as apk files. Various websites and
repositories implement services to publish or download apps. The Android official
applications market is the Play Store. Google reviews every app before authorizing
its publication on the market. Android includes also a built-in malware protection
called Google Play Protect. These software are not perfect and do not consider all
possible vulnerabilities. To understand if the exposed components generate vulner-
abilities in applications different from the system apps, we used the tool to analyze
a large set of applications published by independent developers.

The application packages analyzed have been downloaded from the Google Play
store. To have relevant results, the number of apps cannot be too small and a
manual download would be infeasible. To automate the download process an unof-
ficial API for the store has been used. The project is open-source and available on
GitHub, with the name of Google Play python API [23]. It contains an unofficial
interface to communicate with the Google servers emulating the packages sent by
the official store application installed with Android. The Google store organizes the
applications in categories and numbers of download. The selection criteria were to
test only free applications from all categories, with more than a hundred thousand
downloads. Third-party applications are usually available for the latest Android
release but are compatible with previous versions. The analysis has been executed
on a physical Google Pixel 2 running Android 8.1. A total of 1496 applications have
been downloaded and tested.
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7.2 Analysis results

7.2.1 Android OS applications results

The results presented group together the applications from the AOSP source code
and the device itself. The apps defined in the AOSP code, are not always installed on
the actual device. A set of them is only for testing by Google developer and others
are deprecated versions not used anymore but kept for compatibility. This is clear
considering the number of manifest files analyzed for each version. It is increasing
of hundreds at every release. The results are relative to the only set of apps that are
actually installed on a device. The number of exposed activities among the Android
releases does not variate too much, while the number of exposed services increases
regularly. The exposed services are more protected by permissions compared to the
activities. Considering that the number of exposed services is approximately half
of the number of exposed activities, the services protected by permissions are three
times more than the activities. The vulnerable components increased considerably
after Android Nougat. This could show that some of the changes in the architecture
generated a high number of issues in the applications framework. Starting from Oreo,
Android releases have an average of 12.8% of vulnerable components among the
exposed ones. It is a relevant result considering that it refers to system applications,
implementing features of the OS itself.

Google releases major updates of the same Android version when a set of impor-
tant updates are necessary. It is usually for security reasons and to update important
bugs that arose after the first release to the public. Comparing the differences in
results between two major updates of the same release, for instance between 7.3
with 7.4 and 7.5 with 7.6, show that the number of vulnerable components does not
really reduce. This can be for two reasons. Firstly, this kind of vulnerability is not
detected simply by a user interacting with the device. Secondly, if some of them
get fixed, new features introduced could create different issues keeping the numbers
stable.

Table 7.2: Results for components in Android 6.0.0 Marshmallow

Component
Manifest

files
Exposed

components
Implicit
intents

Explicit
intents

Requiring
permissions

Vulnerable

Activities 1469 541 413 95 33 24

Services 1469 242 142 26 74 10

7.2.2 Third-party applications results

The results on third-party applications refer to apps with at least a hundred thou-
sand downloads. Apps with such numbers are used from many people and in most
of the cases are probably developed by companies which are specialized in Android
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Table 7.3: Results for components in Android 7.0.0 Nougat

Component
Manifest

files
Exposed

components
Implicit
intents

Explicit
intents

Requiring
permissions

Vulnerable

Activities 1681 688 506 142 40 27

Services 1681 310 155 32 123 12

Table 7.4: Results for components in Android 7.1.1 Nougat

Component
Manifest

files
Exposed

components
Implicit
intents

Explicit
intents

Requiring
permissions

Vulnerable

Activities 1759 664 480 141 43 45

Services 1759 336 154 30 152 24

development. For this reason, they should be less vulnerable since the number of
components in such applications is way smaller than the one in OS applications. Ad-
ditionally, third-party apps require less interaction between their components and
those of others since they are not usually intended to generate features for other
applications.

The analysis of the entire set of downloaded apk files detected a total of 116
applications vulnerable because of exposed activities and 132 because of exposed
services. The 6.85% of applications expose at least a vulnerable activity and the
7.79% a vulnerable service. The number of exposed components, on average, is of
4 per application. As predicted the number of vulnerable third-party apps is lower
compared to the system apps, but the percentage is still pretty high. According
to the results, one every X downloaded apps with the same parameters of the ones
tested could be vulnerable to a DoS attack.
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Table 7.5: Results for components in Android 8.0.0 Oreo

Component
Manifest

files
Exposed

components
Implicit
intents

Explicit
intents

Requiring
permissions

Vulnerable

Activities 2044 658 470 141 47 85

Services 2044 396 163 53 180 60

Table 7.6: Results for components in Android 8.1.0 Oreo

Component
Manifest

files
Exposed

components
Implicit
intents

Explicit
intents

Requiring
permissions

Vulnerable

Activities 2158 690 496 144 50 74

Services 2158 397 164 55 178 70

Table 7.7: Results for components in Android 9.0.0 Pie

Component
Manifest

files
Exposed

components
Implicit
intents

Explicit
intents

Requiring
permissions

Vulnerable

Activities 2728 668 454 161 53 79

Services 2728 434 198 51 185 55

Table 7.8: Results for third-party applications from the Google Play store

Component
Manifest

files
Exposed

components
Implicit
intents

Explicit
intents

Requiring
permissions

Vulnerable

Activities 1694 4051 1983 1758 310 220

Services 1694 3210 827 444 1939 261
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Conclusion

The research started with the assumption that Android components definition can
possibly lead to unwanted situations generating vulnerabilities. To understand it
the problem was real and popular, we reviewed important Android definitions and
concepts to understand where the issues could come from. After understanding
the faults of the possible problems, we created a tool to automate the process of
analysis and detection. Finally, the results have been studied to answer the initial
suppositions and to give a general overview of the current situation of the problem.

The results obtained with the tool demonstrate that the problem actually exists
and that vulnerabilities can be generated if components are not defined with atten-
tion. Specifically, have been presented two possible vulnerabilities arising from a
bad exposure of an application component. Was also demonstrated that the vulner-
abilities could be potentially exploited to generate real-life attacks against the user
device and privacy.

The tool should be used by Android developers as well as by independent devel-
opers to detect if their software is vulnerable and to easily understand how to fix
the issues.

8.1 Proposed solutions

The Android OS will always need let applications expose some of their functionalities
to other applications. The system architecture itself is developed to share and control
every feature of the system using applications components. The solution can not be
to remove the possibility of exposing components to other processes. Instead, what
we think two actions should be done:

❼ Google should make developers more aware of how components must be de-
clared to develop safer applications. The first step for a component creation in
the official developer IDE Android Studio shows a dialog with specific checks
for the component exposure. Such checks have the default values to expose
the component. The developer should manually select the option instead of
having to deselect it to un-expose the component. Figure 8.1 shows the dialog
displayed in Android Studio when a new service class is created.

40



8 – Conclusion

Figure 8.1: Android Studio dialog for service component creation

Additional information should be also provided on the online documentation
made available by Google on the Android developer website. It is the main
source for a developer to learn about the system and it doesn’t clearly state
how dangerous and exposed component could be. Only a few lines are used to
describe that if the android:exported attribute is not declared but an intent-
filter is, the component is automatically exposed. This is a pattern found in
many vulnerable applications. Developers should not use an intent-filter if
they want to share the component only with their app but they should use
explicit intents which are a safer option.

❼ Android Studio should include a software component to help developers run
security checks on their applications before publishing them. The feature
should implement the checks and tests developed in our tool. The analysis
of a single application requires a low running time for completion and can
give an exhaustive set of information to help developers quickly fix possible
vulnerabilities. The tool could be optimized to use the emulator integrated
into Android Studio and do both the static and the dynamic analysis.
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8.2 Fixes and achievements

The PhoneApp vulnerability has been one of the first discovered with a high impact
on the system. For this reason, it has been reported to the Google security team
through the appropriate service. The Android security team has assigned a moderate
severity level and fixed the problem on all their devices with the first security update
release in the month following the report.

The vulnerability has been officially recognized and has received the CVE-2018-
9447. Common Vulnerabilities and Exposures (CVE) is a system providing a list of
entries for publicly known cybersecurity vulnerabilities. Google released the security
patch an August 2018 and disclosed the vulnerability on the relative bulletin. In
particular, the issue has been reported as of type Dos with a moderate severity,
and the updated AOSP versions are 6.0, 6.0.1, 8.0, 8.1. Manufacturers have been
notified of the issue before the public disclosure and can choose to incorporate the
fix as part of their device updates. The report has also been rewarded by the Google
Security rewards committee.

At the time of writing, the permission re-delegation vulnerability found in the
CameraApp application have been reported. The Google security team has filed
an internal report to investigate and fix the issue. It has been marked with the
moderate severity which means that a fix will probably be included in a future
security update.

Finally, the tool will be used to collect information about the other vulnerabilities
and a report will be submitted for each of them.

8.3 Future works

Our analysis demonstrates that exposed components can generate weaknesses in
the Android security system. We believe that they are a starting point for the
generation of various vulnerabilities which are not limited to the ones we presented.
This problem could be further investigated since this and previous researches do not
cover all the possible attack points.

8.3.1 Complete analysis of Android devices

The results obtained by this research up to this point are limited to the Google
official devices. Each manufacturer develops a specific Android customization for
their devices, adding features and applications. The tool will be used to analyze
all vendors Android releases to obtain an overview of the problem considering the
entire market. Since this vulnerabilities are not decreasing with the new releases of
the Android OS, the analysis will be repeated at each new version of the system to
provide constant monitoring and reports, essential for the user security.
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8.3.2 Auotomatic detection of permission re-delegation

Permission re-delegation vulnerabilities, at this point of the research, are limited to
manual detection. We believe that this aspect of the analysis can be studied and
upgraded to use methods including both static and dynamic analysis to automate
the process. In particular, the use of existing software for Android analysis could
be integrated to improve this limitation and possibly demonstrate the existence of
more vulnerabilities generated by exposed components.

8.3.3 Creation of a complete tool

Similar works ([20], [21]) have been presented in the past to detect related problems
in inter-application communications, components interaction, or similar problems
but with different approaches. The Android developers community could obtain
great advantages from the availability of a free open-source tool including a set of
features to analyze their applications before the release. The ideal tool would give
the possibility to analyze an application against all the known issues which can be
generated by applications components. It could also implement the different testing
approaches presented by researchers, to give the highest possible coverage. To boost
this work, the tool developed in our research will be made available as a public
open-source project on a GitHub repository.

43



Bibliography

[1] 2014 Mobile Threat Report, https://blog.lookout.com/

mobile-threat-report-2014

[2] Y. Zhou, X. Jiang, “Dissecting Android Malware: Characterization and Evolu-
tion”, 2012 IEEE Symposium on Security and Privacy, DOI 10.1109/SP.2012.16

[3] Distribution dashboard, https://developer.android.com/about/

dashboards/

[4] Mobile operating system, https://en.wikipedia.org/wiki/Mobile_

operating_system

[5] Android (operating system), https://en.wikipedia.org/wiki/Android_

(operating_system)

[6] Android stack, https://developer.android.com/guide/platform/images/
android-stack_2x.png

[7] System and kernel security, https://source.android.com/security/

overview/kernel-security.html

[8] Android API Levels, http://www.dre.vanderbilt.edu/~schmidt/android/
android-4.0/out/target/common/docs/doc-comment-check/guide/

appendix/api-levels.html

[9] Platform Architecture, https://developer.android.com/guide/platform/

[10] Introduction to Activities, https://developer.android.com/guide/

components/activities/intro-activities

[11] Android activity lifecicle, https://developer.android.com/images/

activity_lifecycle.png

[12] Introduction to Services, https://developer.android.com/guide/

components/services

[13] Introduction to Services, https://developer.android.com/images/

components/intent-filters@2x.png

[14] Intents and Intent Filters, https://developer.android.com/guide/

components/intents-filters

[15] Stephen Smalley, Robert Craig, “Security Enhanced (SE) Android: Bringing
Flexible MAC to Android”, DOI 10.1.1.391.2279

[16] Chiaramida Vincenzo, Pinci Francesco, Buy Ugo, Gjomemo Rigel, “AppSeer:
Discovering Flawed Interactions Among Android Components”, Proceedings of
the 1st International Workshop on Advances in Mobile App Analysis, Mont-
pellier (France), pp. 29-34, DOI 10.1145/3243218.3243225

[17] Crashes, https://developer.android.com/topic/performance/vitals/

crash

44

https://blog.lookout.com/mobile-threat-report-2014
https://blog.lookout.com/mobile-threat-report-2014
http://dx.doi.org/10.1109/SP.2012.16
https://developer.android.com/about/dashboards/
https://developer.android.com/about/dashboards/
https://en.wikipedia.org/wiki/Mobile_operating_system
https://en.wikipedia.org/wiki/Mobile_operating_system
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Android_(operating_system)
https://developer.android.com/guide/platform/images/android-stack_2x.png
https://developer.android.com/guide/platform/images/android-stack_2x.png
https://source.android.com/security/overview/kernel-security.html
https://source.android.com/security/overview/kernel-security.html
http://www.dre.vanderbilt.edu/~schmidt/android/android-4.0/out/target/common/docs/doc-comment-check/guide/appendix/api-levels.html
http://www.dre.vanderbilt.edu/~schmidt/android/android-4.0/out/target/common/docs/doc-comment-check/guide/appendix/api-levels.html
http://www.dre.vanderbilt.edu/~schmidt/android/android-4.0/out/target/common/docs/doc-comment-check/guide/appendix/api-levels.html
https://developer.android.com/guide/platform/
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/images/activity_lifecycle.png
https://developer.android.com/images/activity_lifecycle.png
https://developer.android.com/guide/components/services
https://developer.android.com/guide/components/services
https://developer.android.com/images/components/intent-filters@2x.png
https://developer.android.com/images/components/intent-filters@2x.png
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
http://dx.doi.org/10.1.1.391.2279
http://dx.doi.org/10.1145/3243218.3243225
https://developer.android.com/topic/performance/vitals/crash
https://developer.android.com/topic/performance/vitals/crash


Bibliography

[18] Felt Adrienne Porter, Wang Helen J., Moshchuk Alexander, Hanna Steven,
Chin Erika, “Permission Re-delegation: Attacks and Defenses”, Proceedings of
the 20th USENIX Conference on Security, San Francisco (California)

[19] Google Play Store: number of available apps 2009-
2018, https://www.statista.com/statistics/266210/

number-of-available-applications-in-the-google-play-store/

[20] Daniele Gallingani, Rigel Gjomemo, “Static Detection and Automatic Exploita-
tion of Intent Message Vulnerabilities in Android Applications”

[21] Chin Erika, Felt Adrienne Porter, Greenwood Kate, Wagner David, “Analyzing
Inter-application Communication in Android”, Proceedings of the 9th Interna-
tional Conference on Mobile Systems, Applications, and Services, Bethesda,
Maryland, USA, pp. 459-466, DOI 10.1145/1999995.2000018

[22] Hay Roee, Tripp Omer, Pistoia Marco, “Dynamic Detection of Inter-application
Communication Vulnerabilities in Android”, Proceedings of the 2015 Interna-
tional Symposium on Software Testing and Analysis, Baltimore, MD, USA,
DOI 10.1145/2771783.2771800

[23] Google Play Unofficial Python API, https://github.com/NoMore201/

googleplay-api

45

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://dx.doi.org/10.1145/1999995.2000018
http://dx.doi.org/10.1145/2771783.2771800
https://github.com/NoMore201/googleplay-api
https://github.com/NoMore201/googleplay-api

	Summary
	List of Figures
	List of Tables
	Introduction
	Context
	Deliverables
	Environment
	Outline

	Background
	Android Platform architecture
	Linux Kernel
	Android Runtime
	Java API framework

	Android applications
	Activities
	Services

	Intents

	Android Security
	Android security mechanisms
	Application Sandbox
	Permissions

	Exposed application components
	System and third-party applications


	Vulnerabilities and Exploits
	Unexpected intents
	Denial-of-Service
	Real-life attack: PhoneApp application vulnerability

	Permission re-delegation
	Real-life attack: Camera2 application vulnerability


	Vulnerabilities Detection
	Detection of exposed components
	Algorithm
	Pseudo-code

	Identification of vulnerable components
	Android Debug Bridge
	Testing with adb


	Analysis Tool
	Tool structure
	Apk Extractor
	Reverse engineering module
	Manifest analyzer
	Dynamic tester

	Analysis reports
	User Manual

	Results
	Analysis setup
	Android operating system
	Third-party applications

	Analysis results
	Android OS applications results
	Third-party applications results


	Conclusion
	Proposed solutions
	Fixes and achievements
	Future works
	Complete analysis of Android devices
	Auotomatic detection of permission re-delegation
	Creation of a complete tool


	Bibliography

