Politecnico di Torino

Corso di Laurea Magistrale in Ingegneria Civile Tesi di Laurea Magistrale

Tecniche geomatiche a supporto di analisi geomeccaniche

Relatori:

Candidato:

Andrea Maria Lingua Irene Aicardi Enrica Giacalone

Anno accademico 2018/2019

Abstract

Oggi si assiste ad una crescente innovazione tecnologica relativa alle tecniche di rilevamento geomatico, dovuta alle sempre più avanzate soluzioni hardware e software. Ciò è dovuto al ruolo fondamentale che esse assumono nell' ambito di applicazioni civili e ambientali (cartografia, rilievo catastale, idrografia, monitoraggio di strutture e infrastrutture...).

La presente tesi ha come obiettivo, invece, quello di applicare la geomatica nell'ambito geologico/geomeccanico. In particolare si esplora un metodo d'indagine di pareti rocciose alternativo rispetto ai metodi tradizionali. Questi, infatti, prevedono l'azione diretta di tecnici specializzati sul luogo d'indagine, il quale può non essere di facile raggiungimento.

Il caso in esame è una parete in roccia, ubicata al di sopra di un invaso, ed è soprattutto in casi come quello analizzato, che i rilievi diretti prevedono tempi e costi onerosi, nonché rischi e una maggior qualifica del personale impiegato.

Le aree della geomatica che sono state toccate sono diverse, e nello specifico sono:

- Rilievo topografico

Today there is a growing technological innovation related to geomatic surveying techniques, due to the increasingly advanced hardware and software solutions. This is due to the fundamental role they play in civil and environmental applications (cartography, cadastral survey, hydrography, monitoring of structures and infrastructures ...).

The present thesis, indeed, aims to apply geomatics in the

geological/geomechanical field. In particular, we explore a method of investigating alternative for rock walls, compared to traditional methods. These in fact provide for the direct action of specialized technicians on the survey site, which may not be easy to reach. The case in question is a rock wall, located above a reservoir, and in particular in cases such as the one analyzed, that the direct surveys involve higher costs and times, as well as risks qualification greater of staff and employed.

The areas of geomatics that have been touched are different, and specifically are:

- Topographic survey

- Photogrammetry

- Three-dimensional modeling.

- Fotogrammetria

- Modellazione tridimensionale.

I diversi dati, rilevati tramite i suddetti approcci, sono stati poi elaborati mediante software specifici, effettuando analisi multi temporali, costruzione di modelli 3D solidi, e rilievi geologici computerizzati. Si dimostrerà altresì, che la precisione ottenuta attraverso questo metodo alternativo d'indagine è ampiamente maggiore rispetto alla precisione raggiunta con metodi classici, e l'analisi effettuata offre una visione globale dell'oggetto di studio, nonché una maggiore versatilità

nell'elaborazione e interpretazione dei dati.

The different data, detected through the above mentioned approaches, were then processed using specific software, performing multi-temporal analysis, construction of solid 3D models, and computerized geological surveys.

It will also be demonstrated that the precision obtained through this alternative method of investigation is far greater than the precision achieved with classical methods, and the analysis carried out offers a global view of the study object, as well as greater versatility in processing and interpretation of data.

Sommario

1.	Introduzione e finalità11
2.	Inquadramento geografico e geologico14
3.	Il rilievo GNSS
3.1.	Il posizionamento GNSS19
3.2.	Rilevamento in situ ed elaborazione dati
3.3.	Conversione della quota
3.4.	Analisi file <i>RINEX</i>
4.	Rilievo di dettaglio
4.1.	La stazione totale
4.2.	Rilievo in situ ed elaborazione dati53
5.	Il rilievo fotogrammetrico
5.1.	Cenni di fotogrammetria
5.2.	Acquisizione dati
5.3.	Elaborazione dati
6.	Interpretazione dati
6.1.	Le discontinuità
6.	1.1. Interpretazione cinematismi
6.2.	Analisi multitemporale
6.3.	Estrazione piani di discontinuità113
6.	3.1. Classificazione delle discontinuità115
6.4.	Interpretazione dei distacchi117
6.5.	Confronto con relazione geologica125
7.	Conclusioni
Rif	ferimenti bibliografici134
Al	legati

Indice delle figure

Figura 1. Individuazione globale delle aree di interesse	
Figura 2. Dettaglio delle 6 aree di interesse	
Figura 3. Inquadramento geografico	15
Figura 4. Impianto Pont Ventoux-Susa	16
Figura 5. Bacino Clarea	17
Figura 6. Parete sovrastante il Bacino Clarea	17
Figura 7. Particolare della carta geologica, con legenda	
Figura 8. Errore d'orologio	
Figura 9. Posizionamento GNSS	
Figura 10. Misura di fase	
Figura 11. Differenze prime	
Figura 12. Differenze doppie	
Figura 13. Posizionamento vertici di rete	
Figura 14. Ricevitore GNSS	
Figura 15. Monografie dei vertici topografici	
Figura 16. Richiesta file Rinex - SPINGNSS	
Figura 17. Selezione stazioni permanenti	
Figura 18. Parametri nuovo progetto - LGO	
Figura 19. Punti di stazione - LGO	
Figura 20. Proprietà antenna - LGO	
Figura 21. Proprietà antenna - LGO	
Figura 22. Classificazione punti di stazione - LGO	
Figura 23. classificazione intervalli di misura - LGO	
Figura 24. Finestra satellite stazione 1000 - LGO	
Figura 25. Tracciamento baseline	
Figura 26. Parametri elaborazione baseline - LGO	
Figura 27. Test sulle misure, compensazione preliminare - LGO	
Figura 28. Coordinate punti, compensazione preliminare - LGO	
Figura 29. Test sulle misure, ultima compensazione - LGO	
Figura 30. Diluition Of Precision - LGO	
Figura 31. Altezza ortometrica e ondulazione del geoide	

Figura 32. Superfici equipotenziali
Figura 33. Geoide, ellissoide e telluroide
Figura 34. Conversione coordinate - ConverGO
Figura 35. Convenzione nomenclatura file RINEX
Figura 36. Header - RINEX
Figura 37. Classificazione misure - RINEX
Figura 38. Misure di codice e fase - RINEX
Figura 39. Stazione totale
Figura 40. Assi di rotazione del teodolite
Figura 41. Misure topografiche
Figura 42. Collimazione punto 300053
Figura 43. Monografia punto 3000
Figura 44. Fotografia punto e schema manuale
Figura 45. Esempio file di misura stazione totale
Figura 46. Opzioni progetto - StarNet
Figura 47. Precisione misure – StarNet
Figura 48. Rete Compensata - StarNet
Figura 49. Schema fotogrammetria
Figura 50. Orientamento interno
Figura 51. Distorsioni
Figura 52. Sovrapposizioni
Figura 53. Parametri di orientamento interno ed esterno
Figura 54. Esempio scacchiera per calibrazione fotocamera71
Figura 55. Esempio monodimensionale di autocorrelazione. Verde = autocorrelazione a
pixel intero, Rosso = autocorrelazione a subpixel. L'Asse verticale rappresenta il valore
radiometrico, l'Asse orizzontale la direzione ξ del fotogramma74
Figura 56. Drone SAPR DJI Phantom 4 PRO76
Figura 57. GSD
Figura 58. Esempio di fotografia scattata
Figura 59. Esempio marker - PhotoScan
Figura 60. Allineamento foto - Zona ABC
Figura 61. Allineamento foto - Zona D
Figura 62. Allineamento foto - Zona E

Figura 63. Allineamento foto - Zona F	84
Figura 64. Allineamento foto - Zona G	84
Figura 65. Nuvola densa e sparsa, mesh e texture, GCP - Zona ABC	86
Figura 66. Nuvola densa e sparsa, mesh e testure, GCP - Zona D	87
Figura 67. Nuvola densa e sparsa, mesh e texture, GCP - Zona E	88
Figura 68. Nuvola densa e sparsa, mesh e texture, GCP - Zona F	89
Figura 69. Nuvola densa e sparsa, mesh e testure, GCP - Zona G	90
Figura 70. Ortofoto - Zona ABC	92
Figura 71. Ortofoto - Zona D	92
Figura 72. Ortofoto - Zona E	93
Figura 73. Ortofoto - Zona F	93
Figura 74. Ortofoto - Zona G	94
Figura 75. Angoli Dip e Dip Direction	97
Figura 76. Orientamento poli e bussola geologica	98
Figura 77. Grande cerchio	99
Figura 78. Rappresentazione piano su stereogramma	. 100
Figura 79. Stereogramma polare	. 100
Figura 80. Scivolamento planare e stereogramma	. 102
Figura 81.Scivolamento tridimensionale e stereogramma	. 103
Figura 82. Esempio confronto vegetazione – Zona E	. 104
Figura 83. Analisi multitemporale - Zona ABC	. 105
Figura 84. Analisi multitemporale - Zona D	. 106
Figura 85. Particolari - Zona D	. 106
Figura 86. Analisi multitemporale - Zona E	. 107
Figura 87. Particolari - Zona E	. 108
Figura 88. Particolari - Zona E	. 108
Figura 89. Analisi multitemporale - Zona F	. 109
Figura 90. Particolari - Zona F	. 110
Figura 91. Analisi multitemporale - Zona G	. 111
Figura 92. Particolari - Zona G	. 112
Figura 93. Individuazione piani di discontinuità - 3DReshaper	. 113
Figura 94. Esempio piani di discontinuità	. 114
Figura 95. Elaborazione piani su CloudComapare	. 115

Figura 96. Stereogramma polare e identificazione dei piani medi relativi ai siste	mi di
discontinuità	116
Figura 97. Parametri di orientamento interno fotogrammi	119
Figura 98. Importazione fotogrammi – StereoCAD	119
Figura 99. Numerazione cinematismi	120
Figura 100. Cinematismo 1 e particolare nuvola di punti	121
Figura 101. Cinematismo 2	122
Figura 102. Stereogramma cinematismo 2	123
Figura 103. Delimitazione blocco instabile	124
Figura 104. Classificazione aree della parete	125
Figura 105. Individuazione zone di interesse	126
Figura 106. Identificativi crolli	128
Figura 107. Esempi crolli - Relazione geologica	129

Indice delle tabelle

Tabella 1. Coordinate punti di stazione GNSS	
Tabella 2. Altezze ellissoidiche e quote ortometriche	
Tabella 3. Deviazione standard massima	61
Tabella 4. Residuo misure 3000-1000	62
Tabella 5. Massima variazione, minima variazione, variazione media, s	sqm della
popolazione delle differenze di coordinate	62
Tabella 6. σ massimo, minimo e medio	64
Tabella 7. Voli effettuati	79
Tabella 8. Errori collimazione punti - PhotoScan	
Tabella 9. Tabella riassuntiva - Modello 3D	94
Tabella 10. Tabella riassuntiva - Ortofoto	94
Tabella 11. Piani medi relativi ai sistemi di discontinuità	117
Tabella 12. Orientamento piani coinvolti nel cinematismo 2	122
Tabella 13. Elenco crolli 2016-2017	127

Capitolo 1

Introduzione e finalità

La presente tesi si sviluppa nell'ambito del progetto di ricerca in atto tra IREN S.p.A. e il Dipartimento di Ingegneria dell'Ambiente, Territorio e Infrastrutture (DIATI) del Politecnico di Torino inerente la "Sperimentazione di soluzioni innovative a pilotaggio remoto quali droni, per attività di monitoraggio in campo operativo", nel quale è stato previsto il rilievo di dettaglio di alcune porzioni della parete rocciosa sovrastante l'invaso di Val Clarea, al fine di raccogliere tutte le informazioni necessarie per le analisi di stabilità della parete stessa.

La presente tesi quindi, ha come obiettivo quello di applicare metodologie geomatiche a un problema geomeccanico, ossia quello di ricavare lo stato di fratturazione di una parete rocciosa e riconoscerne i cinematismi pregressi e incipienti.

In aggiunta, si è effettuato un confronto tra le metodologie di rilievo classico e le metodologie più avanzate, proprie di un approccio geomatico informatizzato.

E' infatti noto che le analisi geomeccaniche manuali (ovvero quelle classiche) presentano diverse limitazioni.

Esse prevedono la prossimità dell'operatore alla parete che deve essere analizzata, con ad esempio, l'uso di stendimenti, finestre di rilievo e fori di sondaggi. Gli svantaggi di questa tipologia di rilievo sono:

- Scarsa sicurezza
- Esecuzione potenzialmente molto lunga e costosa
- Possibilità di bassa accessibilità alla parete

L'oggetto in esame è la parete rocciosa, come citato sopra, sovrastante l'invaso di Val Clarea, sulla quale sono state individuate dal geologo incaricato da IREN, 6 (Figura 1 e Figura 2) aree di maggior interesse per lo svolgimento di un'analisi di dettaglio.

Figura 1. Individuazione globale delle aree di interesse

Figura 2. Dettaglio delle 6 aree di interesse

Lo svolgimento del rilievo geomatico si è sviluppato attraverso l'uso di diversi strumenti e di diverse tecniche, sia per quanto riguarda l'acquisizione dei dati in situ, che per quanto riguarda l'elaborazione degli stessi.

Nella prima fase di acquisizione di dati in situ, si è effettuata una rete di inquadramento tramite una strategia di rilievo mista che ha previsto l'utilizzo del posizionamento GNSS e l'uso di una stazione totale.

Successivamente, è stato svolto un rilievo di dettaglio per georeferenziare il rilievo fotogrammetrico. Infatti, nel rilievo in situ è stato altresì utilizzato un drone con camera incorporata per acquisire un numero sufficiente di fotografie delle aree di interesse, utili per le indagini fotogrammetriche.

Terminata la fase di acquisizione, si è passati alla fase di elaborazione dei dati che ha consentito di giungere ad un modello 3D georeferenziato delle aree oggetto di studio.

Infine, il dato elaborato è stato interpretato attraverso l'utilizzo di diversi software. In particolare, si è effettuata un'analisi multitemporale tra due modelli relativi a due epoche diverse della stessa parete, per ricavare la presenza di differenze temporali nella morfologia.

Si sono poi ricavati i piani di discontinuità di una delle zone analizzate della parete, e questi sono stati rappresentati sotto forma di stereogramma equatoriale e polare. Infine, si è tentato di individuare e classificare i tipi di cinematismi avvenuti e quelli incipienti.

Capitolo 2

Inquadramento geografico e geologico

L'oggetto di studio è costituito dalla parete rocciosa sovrastante il Bacino di Val Clarea. Esso si trova nel territorio di Giaglione, piccola cittadina della provincia di Torino (Piemonte) situata in alta Val di Susa, al confine con la Francia (Figura 3). La valle Clarea si sviluppa all'interno della più vasta Val di Susa, ed è percorsa dal torrente Clarea. Inoltre, la valle Clarea si apre all'altezza di Giaglione e si incunea nel Massiccio dell'Ambin (gruppo montuoso delle Alpi Cozie) con una intervallo di altitudine che va da 771 metri s.l.m. fino a 2480 metri s.l.m.

Figura 3. Inquadramento geografico

Il bacino di Val Clarea è un bacino di tipo artificiale, e costituisce il serbatoio idrico dell'impianto idroelettrico Pont Ventoux-Susa [1].

Una centrale idroelettrica sfrutta l'energia gravitazionale potenziale di una grande massa d'acqua posta a una certa quota per trasformarla in energia cinetica e poi in energia elettrica [2].

L'impianto idroelettrico Pont Ventoux-Susa (Figura 4) utilizza le acque della Dora Riparia, e parzialmente quelle del suo affluente Clarea.

Mediante un canale derivatore, le acque vengono convogliate al bacino di Val Clarea, e da qui, tramite una galleria in pressione, l'acqua viene spinta alla centrale sotterranea situata a Giaglione. A valle della centrale l'acqua viene convogliata nel bacino delle Gorge della Dora e nelle ore notturne, questa può essere ripompata nel serbatoio di Val Clarea, così da poterla riutilizzare per la produzione di energia nelle ore diurne.

Figura 4. Impianto Pont Ventoux-Susa

Per la costruzione del serbatoio è stato realizzato un tratto di inalveazione artificiale del Rio Clarea, che scorre al fianco della vasca, e presenta un volume di circa 570 m³, con uno sviluppo complessivo del coronamento della vasca di 852 m (Figura 5) [3].

Figura 5. Bacino Clarea

La stabilità della parete oggetto di studio, detiene perciò un'importanza sostanziale per il regolare funzionamento del bacino idroelettrico. La parete infatti, è monitorata e ispezionata in modo continuativo fin dalla costruzione dell'impianto sottostante, ed è stata sottoposta nel tempo a diverse operazione di stabilizzazione e manutenzione (vedi cap. Confronto con relazione geologica). La parete (Figura 6) presenta peraltro, diverse installazioni di reti paramassi posizionate nelle zone più a valle.

La presente tesi si accosta perciò ad un già sistematico sistema di controllo della parete.

Figura 6. Parete sovrastante il Bacino Clarea

Dal punto di vista geologico, si sono consultate le carte geologiche 1:50.000 del servizio ISPRA (Foglio 153 – Bardonecchia) [4].

Il sito è caratterizzato da una copertura di rocce metamorfiche di stadio medio-alto, e più in particolare da Micascisti e Gneiss (Figura 7).

Sia il Micascisto che lo Gneiss fanno parte del facies scisti blu, sono quindi originati da processi diagenetici che comprendono alte variazioni di pressione e basse variazioni di temperatura. In questo caso, la causa dell'aumento di pressione è dovuto al sollevamento orogenico, ovvero la deformazione tettonica che per spinta laterale genera l'innalzamento di una catena montuosa.

Inoltre, i micascisti e gli gneiss presentano una tipica tessitura di tipo scistosa, ovvero una conformazione a 'strati' con piani di debolezza che favoriscono l'esfoliazione lungo i medesimi piani [5].

Complesso di Clarea

Micascisti e gneiss minuti albitizzati pervasivamente riequilibrati in facies scisti blu di età eo-alpina (CLR); micascisti con tessiture e paragenesi in facies anfibolitica di età prealpina preservate (CLR_a); metabasiti indifferenziate con relitti di associazioni metamorfiche pre-alpine (CLR_b); ortogneiss polimetamorfici (CLR_c).

Figura 7. Particolare della carta geologica, con legenda

Capitolo 3

Il rilievo GNSS

Nel presente capitolo viene descritta la modalità di acquisizione e elaborazione dei dati comprendenti la realizzazione di una rete di inquadramento, i cui vertici sono stati geo localizzati tramite ricevitori GNSS (*Global Navigation Satellite System*) e inscritti nel sistema di riferimento UTM-ETRF2000 (in coerenza con il decreto del 10 novembre 2011 "Adozione del Sistema di riferimento geodetico nazionale" richiamato nelle norma CISIS "Ortoimmagini e modelli altimetrici a grande scala").

I punti così ricavati comporranno la rete d'inquadramento a cui riferire tutti i punti successivi della rete topografica, di cui verrà calcolata la posizione assoluta.

3.1. Il posizionamento GNSS

Il GNSS è un sistema di navigazione globale che si basa su più costellazioni. Questo sistema si basa sul calcolo delle pseudo-distanze, ovvero distanze a meno di una costante. Il satellite emette un'onda radio che viene ricevuta dal ricevitore nel tempo ΔT ; noto

quest'intervallo di tempo e la velocità di propagazione del segnale si può conoscere la distanza satellite-ricevitore. Con tre distanze ricevitore-satellite e note le posizioni dei satelliti nell'istante in cui emettono il segnale, si può ottenere la posizione (x,y,z) del ricevitore.

In realtà, alle incognite date dalle coordinate del ricevitore si aggiungono degli errori sistematici, di cui l'errore di orologio (

Figura 8), dovuto alla diversa scala temporale di satellite e ricevitore, ne rappresenta l'aliquota maggiore.

Figura 8. Errore d'orologio

Moltiplicando il tempo di ricezione del segnale per la velocità della luce si ottiene la distanza satellite-ricevitore a meno di un errore (una costante) (Equazione 1).

$$c T_r^j = \rho_r^j - c \tau_r$$

 ρ_r^j : distanza reale $c T_r^j$: pseudo-distanza $c \tau_r$: errore d'orologio (pedice r = ricevitore; apice j = satellite j)

Complessivamente quindi, per ricavare il posizionamento del ricevitore sono necessarie almeno quattro pseudo-distanze (Figura 9).

Figura 9. Posizionamento GNSS

Le tre ipotesi fondamentali per il funzionamento del posizionamento GNSS sono:

- È nota la posizione del satellite in ogni istante, e ciò è possibile perché i satelliti trasmettono al ricevitore le proprie effemeridi, le quali esprimono la loro posizione nel tempo.
- Tutti i satelliti emettono il segnale allo stesso istante di tempo (satelliti sincroni) e hanno la stessa scala temporale.
- I satelliti viaggiano su orbite particolari, in modo tale che in ogni momento, un qualunque osservatore può ricevere il segnale da almeno quattro satelliti, ossia il minimo necessario.

In generale, quindi lo *pseudorange*, o pseudo-distanza, si esprime come la somma tra il *range* e un aliquota di errore, di cui l'errore di orologio ne rappresenta la parte maggiore (Equazione 2).

$$P_r^j \sim c \ T_r^j = \rho_r^j + e$$

Il segnale GNSS è costituito da tre componenti:

- Componente portante sinusoidale

Essa ha lunghezza d'onda (λ) di circa 20 cm, ed è costituita da 2/3 frequenze (L1, L2, L5).

- Componente impulsiva

Essa è un'onda quadra modulante costituita da due codici, il codice C/A con lunghezza d'onda (λ) pari a 300 m, e il codice P.

- Codice messaggio

E' un'onda quadra modulante con frequenza molto bassa che porta il segnale di navigazione (effemeridi).

La misura dello *pseudorange* può essere effettuata tramite l'uso dei codici, o tramite calcolo della fase della componente portante. I due metodi presentano una diversa procedura, ma generalmente le misure di fase hanno una precisione maggiore.

La precisione della misura infatti, è pari a $\frac{1}{10} \div \frac{1}{100} \lambda$; la lunghezza d'onda della componente portante sinusoidale si aggira sui 20 cm, mentre la lunghezza d'onda del codice C/A, ad esempio, è pari a 300 m.

Nella misura dello *pseudorange* con i codici, il ricevitore cerca la massima correlazione tra il segnale ricevuto e il segnale creato localmente dal ricevitore, ottenendo così il tempo di volo. La formula dello *pseudorange* di codice è:

Equazione 3

$$P_{r}^{j} = \rho_{r}^{j} - c \, dT_{r} + c \, dT^{j} + I_{r}^{j} + T_{r}^{j} + E_{r}^{j} + \mu_{r}^{j} + \varepsilon$$

 $c dT_r$: errore d'orologio del ricevitore

 $c dT^{j}$: errore d'orologio del satellite

 I_r^j : errore ionosferico

 T_r^j : errore troposferico

 E_r^j : errore di effemeridi

 μ_r^j : errore di multipath ε : errore accidentale

Nella misura dello *pseudorange* di fase, questa è legata allo sfasamento α + N cicli. Durante la misura di fase, il ricevitore misura lo sfasamento (α) compreso tra 0 e 2 π , e l'incremento di sfasamento nel tempo (β) (Figura 10). Nello specifico, come per la misura con codice, il ricevitore riceve un segnale e ne genera un altro avente la stessa lunghezza d'onda e correlandoli. In questo modo misura lo sfasamento.

Figura 10. Misura di fase

Sono quindi noti sia lo sfasamento iniziale che l'incremento di sfasamento durante tutta l'acquisizione. Rimane però come incognita il numero di cicli iniziali N (ambiguità). La misura di fase perciò presenta un'incognita in più rispetto alla misura di codice, che è appunto l'ambiguità di fase.

La fase totale vale:

 $\varphi = \alpha + \beta + N$ Equazione 4

La formula dello pseudorange di fase è:

 $\Phi_r^j = \rho_r^j - c \, dT_r + c \, dT^j + I_r^j + T_r^j + E_r^j + \mu_r^j + \varepsilon - \lambda N_r^j$ Equazione 5

 λN_r^j : ambiguità di fase (numero intero), moltiplicata per la lunghezza d'onda del segnale.

Gli errori a cui è soggetta la misura GNSS sono:

- Rifrazione ionosferica
- Rifrazione troposferica
- Errore d'orologio del satellite e del ricevitore
- Errore di posizionamento delle effemeridi
- Errore di variazione del centro di fase dell'antenna
- Errore di multi-percorso
- Errori accidentali

Molti di questi sono errori sistematici, definiti perciò bias.

E' possibile calcolare dei modelli di correlazione spaziale e/o temporale di alcuni di questi *bias*, come ad esempio gli errori atmosferici, i quali sono molto correlati spazialmente, in modo tale da epurare la misura da essi.

Per quanto riguarda l'errore ionosferico, esso è di tipo dispersivo, ovvero è dipendente dalla frequenza, oltre ad essere correlato spazialmente. Una delle modalità più utilizzate per eliminare quasi del tutto l'errore ionosferico consiste nello sfruttare la sua dipendenza dalla frequenza.

Combinando opportunamente due frequenze, infatti, è possibile ottenere una frequenza *ionofree*, tale per cui la misura non è più affetta dall'errore ionosferico.

L'errore troposferico non è di natura dispersiva, per cui segnali a diversa frequenza presentano lo stesso ritardo. L'errore troposferico è legato allo strato d'aria e vapore acquea compreso tra il suolo e 40 km di quota.

Uno dei modelli dell'errore troposferico è quello di Hopfield, che ne valuta la grandezza a partire dall'angolo zenitale (minore è l'angolo zenitale, maggiore è lo spessore di troposfera attraversato dal segnale), pressione e temperatura.

Per poter aumentare la precisione delle misure GNSS, mitigando i *bias*, può essere utilizzato il metodo della differenziazione, in cui non si fa più un posizionamento assoluto bensì un posizionamento relativo con almeno due ricevitori che vedono gli stessi satelliti. In questo caso l'incognita non è più la posizione assoluta dei ricevitori ma il vettore tra i due, detto *baseline*. L'efficienza di questo metodo dipende dalla possibilità di correlazione spaziale di alcuni *bias*, in quanto, se i due ricevitori sono sufficientemente vicini, gli errori atmosferici ad esempio, possono considerarsi comparabili, e questi, nel posizionamento relativo si elidono totalmente o parzialmente.

Nella pratica, nel metodo differenziale uno dei due ricevitori è rappresentato da una stazione permanente (*master*) di cui è nota la posizione assoluta. Dal posizionamento relativo è quindi possibile arrivare alle coordinate del ricevitore utilizzato (*rover*).

Il posizionamento relativo può essere applicato sia a misure di codice che di fase. Nel caso di due ricevitori che osservano simultaneamente un satellite, si parla di posizionamento relativo alle differenze prime (Figura 11), e dalle equazioni delle misure si calcola la differenza.

Figura 11. Differenze prime

A livello di codici si ha:

$$P_{A}^{j} = \rho_{A}^{j} - c \, dT_{A} + c \, dT^{j} + I_{A}^{j} + T_{A}^{j} + E_{A}^{j}$$

$$P_{B}^{j} = \rho_{B}^{j} - c \, dT_{B} + c \, dT^{j} + I_{B}^{j} + T_{B}^{j} + E_{B}^{j}$$
Equations 6

$$P_{AB}^{j} = \rho_{AB}^{j} - c \, dT_{B} + c \, dT_{A} + I_{AB}^{j} + T_{AB}^{j} + E_{AB}^{j}$$

Con le differenze prime si elimina l'errore di orologio del satellite e si riducono gli errori di troposfera, ionosfera e orbita (praticamente si annulla). Considerando come un'unica incognita la somma dei due errori di orologio dei ricevitori, con quattro satelliti e le rispettive misure di codice si abbattono gli altri errori sistematici, aumentando così la precisione della misura.

A livello di fasi si ha:

$$\Phi_{A}^{j} = \rho_{A}^{j} - c \, dT_{A} + c \, dT^{j} - I_{A}^{j} + T_{A}^{j} + E_{A}^{j} - \lambda N_{A}^{j}$$

$$\Phi_{B}^{j} = \rho_{B}^{j} - c \, dT_{B} + c \, dT^{j} - I_{B}^{j} + T_{B}^{j} + E_{B}^{j} - \lambda N_{B}^{j}$$

$$\Phi_{AB}^{j} = \rho_{AB}^{j} - c \, dT_{B} + c \, dT_{A} - I_{AB}^{j} + T_{AB}^{j} + E_{AB}^{j} - \lambda N_{AB}^{j}$$

Nel caso delle misure con fase rimane l'incognita dovuta all'ambiguità di fase iniziale.

Se si considerano invece, due ricevitori e due satelliti si può fare un posizionamento alle differenze doppie , ottenute dalla differenza di due differenze prime (Figura 12).

Figura 12. Differenze doppie

Tradotto in equazioni si ha, per i codici:

$$P_{AB}^{j} = \rho_{AB}^{j} - c \, dT_{B} + c \, dT_{A} + I_{AB}^{j} + T_{AB}^{j}$$

$$P_{AB}^{k} = \rho_{AB}^{k} - c \, dT_{B} + c \, dT_{A} + I_{AB}^{k} + T_{AB}^{k}$$

$$P_{AB}^{kj} = \rho_{AB}^{jk} + I_{AB}^{kj} + T_{AB}^{kj}$$

Si eliminano gli errori d'orologio dei ricevitori, e si abbassano ulteriormente gli errori atmosferici; con almeno tre differenze doppie di codice si arriva ad ottenere un posizionamento relativo.

Per quanto riguarda le misure di fase si ha:

Equazione 9

$$\Phi_{AB}^{jk} = \rho_{AB}^{jk} + I_{AB}^{jk} + T_{AB}^{jk} - \lambda N_{AB}^{jk}$$

Rimane comunque l'incognita relativa all'ambiguità.

Ma, se le due stazioni sono sufficientemente vicine da poter trascurare le differenze (prime e doppie) degli errori ionosferici, si ottiene:

$$\begin{cases} P_{AB}^{kj} = \rho_{AB}^{jk} + I_{AB}^{kj} + T_{AB}^{kj} \sim \rho_{AB}^{jk} \\ \\ \Phi_{AB}^{jk} = \rho_{AB}^{jk} + I_{AB}^{jk} + T_{AB}^{jk} - \lambda N_{AB}^{jk} \sim \rho_{AB}^{jk} - \lambda N_{AB}^{jk} \\ \\ -\Phi_{AB}^{jk} + \rho_{AB}^{jk} = \lambda N_{AB}^{jk} \end{cases}$$

Combinando le misure di codice e fase si ottiene un valore approssimato dell'ambiguità. Questa però, deve essere fissata ad intero, tramite differenze doppie effettuate in epoche diverse.

Infatti, allungando i tempi di acquisizione, si ottiene un numero ridondante di ambiguità di fase di tipo *float*, che, con un problema ai minimi quadrati si fissano ad intero [6].

3.2. Rilevamento in situ ed elaborazione dati

Prima di effettuare il rilievo fotogrammetrico, è necessario che questo venga inquadrato in una rete topografica. Nel caso oggetto di studio, la rete topgrafica comprende tre punti di stazione (1000, 2000, 3000) (Figura 13), di cui sono state ricavate le coordinate tramite l'utilizzo di due ricevitori (Figura 14) GNSS Leica Geosystem 1200 (punti 1000 e 2000) e tramite stazione totale (punto 3000).

La modalità di acquisizione GNSS usata è di tipo statica.

La modalità statica consiste in una posizionamento relativo alle differenze doppie, con determinazione delle *baseline* tra le stazioni. Il tempo di acquisizione è funzione della precisione che si vuole raggiungere e dalla lunghezza della *baseline* [7]; nel presente caso

Equazione 10

si è scelto un tempo di acquisizione di circa 3 ore per raggiungere una precisione millimetrica.

Figura 13. Posizionamento vertici di rete

Figura 14. Ricevitore GNSS

Si è utilizzato il metodo del posizionamento relativo alle differenze doppie con codice + fase per ottenere la differenza di coordinate (*baseline*) tra coppie di punti.

Si sono utilizzate infatti delle stazioni permanenti, tre tra quelle più prossime al punto di rilievo (Rosta, Bussoleno e Cuorgnè), e le stazioni *rover* sono state posizionate sui punti 1000 e 2000.

L'utilità di utilizzare delle stazioni permanenti come stazioni *master*, deriva dalla conoscenza delle coordinate assolute (in qualunque sistema di riferimento) di quest'ultime. Le stazioni permanenti rappresentano la materializzazione a terra di un sistema di riferimento, poiché la loro posizione è controllata e aggiornata periodicamente; esse inoltre forniscono continuativamente all'utenza tutti i dati necessari per la propria geolocalizzazione [8].

I punti geolocalizzati mediante posizionamento GNSS sono stati materializzati a terra tramite tasselli infissi nella pavimentazione (Figura 15).

Vertice 1000

Tassello con piattello in alluminio e rondella grigia

Coordinate UTM ETRF2000 E = 339902.507 m N = 5000613.529 m H = 1038.582 m (ortometrica)h = 1092.5426 m (ellissoidica)

Vertice 2000

Chiodo con rondella grigia

Coordinate UTM ETRF2000 E = 340162.140 m N = 5000467.603 m H = 1034.641 m (ortometrica)h = 1088.5731 m (ellissoidica)

30m

Figura 15. Monografie dei vertici topografici

Il calcolo della rete GNSS è stato effettuato in *post-processing* tramite il software Leica Geo-Office v. 8.4 (LGO), imponendo le stazioni CUOR (Cuorgnè), BUSL (BUSSOLENO) e OSTA (Rosta) come punti di controllo, di cui le coordinate sono note con precisione.

Le osservazioni relative alle stazioni permanenti sono scaricabili dal sito <u>https://www.spingnss.it/</u> (Servizio di Posizionamento Interregionale GNSS Piemonte-Lombardia).

E' stato inserito il giorno del rilievo, l'ora di inizio rilievo, la durata e l'intervallo di campionamento, nonché la tipologia dei file *RINEX* (Osservazione e Navigazione) e le costellazioni (GPS e GLONASS) (Figura 16).

Si approfondirà successivamente nel dettaglio il contenuto dei file di testo RINEX.

SPIN GN. Servizio di Posiziona Piemonte - Lombard	SS amento Interregionale GNSS dia	REGIONE Regione PIEMONTE
Manage dat 6/4 Descelland DINEY		enrica giacalone come Utente
SpiderWeb	VRINEX KISUIJUU SLAUSUCHE LOGOUL	
Homepage	Richiesta file RINEX	2/4
Servizi della rete Stazioni della rete Mappa dei Sti Download RINEX Richiesta file RINEX Richiesta file RINEX Richiesta file RINEX Configurazione Rissultati Statistiche Assistenza Download RINEX 30 s Guide e Utility Utilizzo dei dati di navigazione	Inserisci Fora (locale) di inizio, la durata e l'intervallo di campionamento richia Ora di inizio locale: * 8 : 00 Durata del file: * 10 : 00 ore : min Tipo di file RINEX: * @ Navigazione @ Osservazione Intervallo di campionamento: * 1.00 v sec << Indietro	esto; seleziona inoltre se è necessario ottenere il file di Navigazione (solitamente è necessario). Cancella Avanti >> Cancella Avanti >>

Figura 16. Richiesta file Rinex - SPINGNSS

L'ultima operazione è quella della selezione delle stazioni permanenti d'interesse (Figura 17).

Figura 17. Selezione stazioni permanenti

Con il software LGO si è aperto un nuovo progetto impostando come sistema di coordinate il sistema UTM32WGS84 (Figura 18), e successivamente si sono importati i file relativi sia alle stazioni permanenti, sia alle stazioni *rover* (1000 e 2000) (Figura 19).

a cirici a ci	dinate	Dizionario	Immagine	e sfondo	File CAD	Tem	plate lista ci	odici
Sistema coord	inate:	UTM	32WGS			~	Visualizza	a
Trasformazion	e: -							
Residui:	N	lessuna dis	tribuzione					
Ellissoide local	e: V	VGS 1984		Modello geoide:				
Proiezione:		Modello	-					
Fattore combin	nato med	dio:	1.0					
Shift nord:			0.0			n	1	
			0.0			п	1	
Shift est:								
Shift est:								

Figura 18. Parametri nuovo progetto - LGO

Figura 19. Punti di stazione - LGO

Riguardo alle stazioni *rover*, si definisce il tipo di antenna, in questo caso (Ax1203+ GNSS Tripod) alla quale sono associati determinati valori di errore di variazione del centro di fase dell'antenna (sia in verticale che in orizzontale), nonché l'altezza strumentale (Figura 20). Si verifica inoltre, che l'informazione dell'altezza strumentale totale, presente nel file *RINEX* di osservazione, sia stata letta correttamente dal software.

In particolare l'altezza totale è data dalla somma dell'altezza del treppiede (1.387 m) e dell'altezza dello strumento (0.36 m) (Figura 21).

ocale Globale			
Contenuto	Proprietà	Valore	^
🖃 🔄 Antenne	Nome	AX1203+ GNSS Tripod	
🕀 🧰 AR25.R3 LEIT	Nome IGS	LEIAX1203+GNSS	
🕀 🧰 AX1202 Tripod	Numero di serie		
🗄 🛄 AX1203+ GNSS Trij	Setup ID	0	
	Offset orizzontale	0.0000	
	Offset verticale	0.3600	
	Offset centro di fase (verticale) L1	0.0585	
	Offset centro di fase (verticale) L2	0.0555	
	Offset centro di fase (nord) L1	0.0000	
	Offset centro di fase (nord) L2	0.0000	
	Offset centro di fase (est) L1	0.0000	
	Offset centro di fase (est) L2	0.0000	
< >	Correzioni supplementari	Elevazione e azimut	~

Figura 20. Proprietà antenna - LGO

oprietà i	ntervallo (tra	cciame	nto)						?	×
Antenna	Appunti									
ID punt	0	Inizio i	ntervallo		Fine in	tervallo	Durata	Tipo		
1000		07/11	/2017 07:4	46:22	07/11	/2017 11:03:35	3h 17' 13"	Statico		~
Tipo ant	enna:		AX1203+	GNSS	Fripod		 ✓ Visua 	lizza		
Offset or	izzontale:			0.0000	m		Offset o	rizzontale		
Offset v	erticale:			0.3600	m	Centro di fase				rticals
Altezza antenna: Tipo di misura:				1.3870	m					set ve
			Verticale	~				l .		4HO
Altezza	verticale totale	c.		1.7470	m	e tro				(erticale
Modi non	fica altezza ar istantanei nel	tenna p tracciam	ertutti i pu iento	nti		Tota				>
								OK	An	nulla

Figura 21. Proprietà antenna - LGO

Successivamente, i punti relativi alle stazioni permanenti vengono battezzati come tali, attribuendogli la classe 'Controllo', in questo modo le coordinate di tali punti non subiranno alcuna modifica durante la fase di compensazione (Figura 22).

Figura 22. Classificazione punti di stazione - LGO

Allo stesso modo, vengono definite di 'Controllo' o di 'Navigazione' gli intervalli di misura relativi alle stazioni (Rosso = controllo, Verde = Navigazione) (Figura 23).

ID pu	Classe	Inizio		07:00	08:00	09:00	10:00	11:00	12:00	13:00	14:00	15:00	16:00	17:00
BUSL	Controllo	07/11/2017 05:59:42	-									-		
OSTA	Controllo	07/11/2017 05:59:42												
1000	Navigata	07/11/2017 07:46:22												
2000	Navigata	07/11/2017 08:06:34						_						

Figura 23. classificazione intervalli di misura - LGO

Si mostra a titolo di esempio la finestra satellite della stazione 1000, in cui si notano quali satelliti sono stati intercettati durante l'acquisizione e per quanto tempo (Figura 24).

Figura 24. Finestra satellite stazione 1000 - LGO

Infine si calcolano le *baseline* (Figura 25).

Figura 25. Tracciamento baseline

Per l'elaborazione sono stati mantenuti i parametri di *default*, in cui in particolare si può notare che:

- l'angolo di *cut-off* è fissato 15°
- sono stati utilizzati tutti i satelliti intercettati
- per l'errore troposferico è stato usato il modello di Hopfiled è stato stabilito un massimo di lunghezza della baseline per il fissaggio di ambiguità (80km) (Figura 36).

L'angolo di *cut-off* è l'angolo d'elevazione zenitale del satellite sotto il quale non avviene più l'acquisizione. Esso si definisce, in questo caso, poiché l'errore troposferico aumenta al diminuire dell'angolo d'elevazione del satellite, e per valori più bassi di 15° raggiunge valori troppo alti per una misurazione di precisione.

Esso però può essere impostato con un valore maggiore nel caso in cui il luogo del rilievo sia circondato da ostacoli elevati (ad esempio edifici).

La lunghezza massima della *baseline* per il fissaggio di ambiguità è stabilita in funzione della precisione che si vuole ottenere [9].

Configura parametri per elaborazione GPS ? × Configura parametri per elaborazione GPS ? × Generale Strategia Output esteso Elaborazione automatica Generale Strategia Output esteso Elaborazione automatica Satelliti attivi Automatico ~ Frequenza: • •
 YG01

 YG02

 YG03

 YG05

 YG06

 YG07

 YG08

 YG01

 YG08

 YG01

 YG11

 YG12

 YG13

 YG14

 YG14
 Angolo di cut-off: 15 Fissa ambiguità fino a: 80 😫 km ^ Effemeridi: Durata min. per soluzione float (statica): 300 sec Tipo soluzione Frequenza di campionamento: Usa tutto ~ Hopfield Tipo GNSS: Modello troposferico: ~ Auto Modello ionosferico: Automatico ~ 🗹 Usa modello stocastico 8 🔹 km Distanza minima: Attività ionosferica: Automatici ~ Default 🗹 Visualizza parametri avanzati Default OK Annulla Annulla OK

Figura 26. Parametri elaborazione baseline - LGO

In questo modo, si ottengono le componenti (ΔX , ΔY , ΔZ) delle diverse *baseline*, e per ottenere le coordinate assolute dei punti 1000 e 2000 si effettua la compensazione della rete.

Da una compensazione preliminare è risultato come il posizionamento della stazione 1000 rispetto alla b*aseline* Aosta-1000 non superi il T-test (Figura 27), così come la misura ΔX della stessa b*aseline* non superi il W-test. Inoltre, la precisione sulle coordinate delle stazioni *rover* non è soddisfacente (fino a quasi 1cm in altimetria) (Figura 28).

	Stazione	Obiettivo	MDB	Ro 550	BNR	Test W	Test T	
DX	OSTA	2000	0.0444 m	84	1.2	-1.29	1.01	
DY			0.0229 m	84	1.2	-0.06		
DZ			0.0393 m	81	1.3	-0.26		- 5 - 5 -
DX	OSTA	1000	0.0401 m	82	1.3	-1.96	2.19	
DY			0.0208 m	82	1.3	-1.09		1000
DZ			0.0381 m	81	1.3	0.37		
DX	CUOR	2000	0.0455 m	85	1.2	-0.22	0.05	
DY			0.0235 m	85	1.2	0.11		
DZ			0.0404 m	82	1.3	0.35		
DX	CUOR	1000	0.0413 m	83	1.3	0.34	0.60	
DY			0.0214 m	83	1.2	-1.24		
DZ			0.0392 m	82	1.3	0.36		
D0	BUSL	2000	0.0352 m	29	4.2	1.19	0.63	
DY			0.0181 m	30	4.2	-0.03		
DZ			0.0318 m	36	3.8	-0.07		
DX	BUSL	1000	0.0324 m	34	3.8	1.32	1.86	
DY			0.0167 m	33	3.9	1.84		
DZ			0.0309 m	35	3.8	-0.59		

Figura 27. Test sulle misure, compensazione preliminare - LGO

Coordinate					
Stazione		Coordinate	Corr	Dp	
1000	Latitudine	45° 08' 27.03561" N	0.0000 m	0.0043 m	
	Longitudine	6° 57' 49.33362" E	0.0000 m	0.0029 m	
	Quota	1092.5394 m	0.0000 m	0.0083 m	
2000	Latitudine	45° 08' 22.52141" N	0.0000 m	0.0045 m	
	Longitudine	6° 58' 01.38258" E	0.0000 m	0.0031 m	
	Quota	1088.5696 m	0.0000 m	0.0084 m	
BUSL	Latitudine	45° 08' 12.49356" N	0.0000 m		fissi
	Longitudine	7° 09' 07.75178" E	0.0000 m	-	fissi
	Quota	496.1691 m	0.0000 m	-	fissi
CUOR	Latitudine	45° 23' 16.47581" N	0.0000 m	-	fissi
	Longitudine	7° 38' 51.71303" E	0.0000 m	-	fissi
	Quota	483.0838 m	0.0000 m	-	fissi
OSTA	Latitudine	44° 41' 32.41281" N	0.0000 m	-	fissi
	Longitudine	7° 11' 18.02539" E	0.0000 m	-	fissi
	Quota	1309.4032 m	0.0000 m	-	fissi

Figura 28. Coordinate punti, compensazione preliminare - LGO

Il W-test è un test statistico monodimensionale sulle misure, basato sul rapporto tra lo scarto e lo sqm (scarto quadratico medio) a posteriori di ciascuna misura; minore è il suo valore, maggiore sarà la precisione della misura. Esso è un test ad una coda e risulta non superato quando questo rapporto supera un valore critico, dato dai parametri statistici α e β (probabilità di avere un errore dei I tipo e un errore del II tipo).

Anche il T-test è un test statistico sulle misure, ma è di tipo pluridimensionale, quindi non prende in considerazioni un'unica misura ma un insieme di misure, nel presente caso il T-test è tridimensionale ed è applicato simultaneamente sulle tre componenti della misura di *baseline* (ΔX , ΔY , ΔZ). Come per il W-test, esso risulta non superato per valori maggiori del valore critico [10].

Si decide perciò, di non considerare le misure riguardanti la *baseline* Aosta-1000, e, per una maggiore rigidezza e precisione nella geolocalizzazione delle stazioni *rover*, si è aggiunta un'ulteriore baseline tra i punti *rover* 1000 e 2000, rendendo la prima di tipo *master*.

Dalla seconda compensazione vi sono ancora delle misure a non passare i test statistici, ma la precisione raggiunta per le coordinate delle stazioni *rover* (punti 1000 e 2000), si ritiene soddisfacente (Figura 29).

Test o	telle osservazioni								
	Stazione	Obiettivo	MDB	Rosso	BNR	Test W		Test T	
DX	1000	2000	0.0174 m	4	12.9	0.84		0.51	
DY			0.0089 m	4	12.6	-0.71			
DZ			0.0165 m	4	13.1	0.10			
DX	OSTA	2000	0.0307 m	91	0.9	-1.93		2.26	≙
DY			0.0159 m	91	0.9	0.12			
DZ			0.0270 m	89	0.9	-0.39			
DX	CUOR	2000	0.0316 m	92	0.8	-0.51		0.15	
DY			0.0163 m	92	0.8	0.35			
DZ			0.0279 m	90	0.9	0.42			
DX	CUOR	1000	0.0287 m	90	0.9	0.21		1.64	
DY			0.0149 m	90	0.9	-2.17	Δ		
DZ			0.0272 m	89	0.9	0.62			
DX	BUSL	2000	0.0178 m	61	2.2	0.55		0.20	
DY			0.0091 m	62	2.2	0.47			
DZ			0.0171 m	64	2.1	-0.12			
DX	BUSL	1000	0.0177 m	60	2.3	0.72		0.31	
DY			0.0091 m	59	2.3	0.59			
DZ			0.0169 m	62	2.2	-0.28			

Figura 29. Test sulle misure, ultima compensazione - LGO

Si riportano qui di seguito le coordinate stimate dei punti con le rispettive precisioni (Tabella 1).

1000		σ
Latitudine	45° 08' 27.03556" N	0.0024 m
Longitudine	6° 57' 49.33372" E	0.0016 m
Est	339902.507 m	0.0024 m
Nord	5000613.529 m	0.0016 m
Quota ellissoidica	1092.5427 m	0.0046 m

2000		σ
Latitudine	45° 08' 22.52137" N	0.0024 m
Longitudine	6° 58' 01.38252" E	0.0016 m
Est	340162.140 m	0.0024 m
Nord	5000467.603 m	0.0016 m
Quota ellissoidica	1088.5732 m	0.0046 m

Tabella 1. Coordinate punti di stazione GNSS

La precisione raggiunta per ambedue i due vertici è di circa 3 mm in planimetria e 5 mm in quota.

Il report della compensazione è riportato per intero negli Allegati, ed esso contiene:

- Coordinate dei punti di stazione con relativi errori
- Misure (ΔX , ΔY , ΔZ) compensate con relativi errori
- Baseline compensate con relativi errori
- Ellissi d'errore dei punti di stazioni (direzioni principali)
- Test sui parametri (coordinate) e test sulle misure (ΔX , ΔY , ΔZ).

Tramite i file *RINEX* di navigazione, LGO permette anche di visualizzare i DOP (*Diluition Of Precision*) durante l'intervallo di misura.

I DOP rappresentano un indicatore della precisione della misura; maggiore è il loro valore, più bassa sarà la precisione.

Nello specifico i DOP si suddividono in:

HDOP: precisione in planimetria PDOP: precisione in posizione (planimetria e altimetria) VDOP: precisione in altezza TDOP: precisione dell'errore d'orologio GDOP: precisione globale (posizione ed errore d'orologio) [11].

Il periodo più favorevole (*Global* - DOP basso) è stato quello iniziale, che è anche quello più importante in quanto viene fissata l'ambiguità.

Inoltre si può notare che non ci sono stati *Cycle Slip*, fenomeno in cui l'osservazione si interrompe e si perde il valore di ambiguità di fase che si era fissato (Figura 30).

Se fosse accaduto un *Cycle Slip* si sarebbe perso il valore di ambiguità di fase (incognita essenziale nel posizionamento con fase), e l'operazione di fissaggio di ambiguità sarebbe dovuta ricominciare da capo, perdendo di fatto tutto il tempo di acquisizione precedente. Lasciando tal quale il tempo di acquisizione totale, si sarebbe raggiunta una precisione più bassa.

DOF DOP
 Elevazione 8,00 O Azimut 7,00 6.00 Media Min. Max 5,00 Legenda 3.498 2.100 7.400 2.926 1,800 5.900 - HDOP 1.626 0.900 6.300 4,0 DOP 2 404 1 400 5 600 3,00 2.00 1,00 0,00 09:40:00 08:50:00 10:30:00 Data e ora

Figura 30. Diluition Of Precision - LGO

3.3. Conversione della quota

Il ricevitore GNSS lavora nel sistema di riferimento geocentrico (X, Y, Z), che è lo stesso sistema di riferimento dei satelliti. Per le elaborazioni però, si è utilizzato un sistema di riferimento cartografico piano (Est, Nord, Quota) ovvero l'UTM-ETRF2000.

Il passaggio dal sistema di riferimento geocentrico a quello cartografico avviene tramite proiezione, ed è stato effettuato in LGO.

Per quanto riguarda invece la quota, nelle misure GNSS essa è relativa all'altezza ellissoidica, e per ricavare l'altezza ortometrica si è utilizzato il software ConverGO (Figura 34).

La sigla UTM sta per *Universal Transverse Mercator Projection*, ed è un sistema cartografico internazionale, nonché uno dei più utilizzati.

Per far fronte alla dinamicità della superficie terrestre, che nel tempo si deforma, è necessario che il sistema di riferimento debba essere periodicamente aggiornato e materializzato.

La materializzazione di un sistema di riferimento consiste nel calcolo delle coordinate assolute di punti fissi (che generalmente coincidono con le stazioni permanenti) aggiornate

nel tempo. La materializzazione di un sistema di riferimento prende il nome di ITRF (o ETRF) ossia *International Terrestrial Reference Frame* (o *European Terrestrial Reference Frame*), a cui si aggiunge l'anno a cui risale l'ultimo aggiornamento o verifica.

Nel passaggio tra una sistema di riferimento ad un altro, i software come ConverGO utilizzano dei grigliati a passo costante che tengono conto delle deformazioni corrispondenti ad ogni punto del grigliato [12].

Per quanto riguarda le altezze, tramite misura GNSS si può ricavare solo l'altezza ellissoidica ossia la distanza tra la superficie terrestre e l'ellissoide di riferimento.

L' altezza ortometrica è la distanza tra la superficie terrestre e il geoide lungo la direzione del filo a piombo.

La relazione tra le due altezze è:

Equazione 11

$$h = H + N$$

Dove h è l'altezza ellissoidica, H l'altezza ortometrica e N è detta ondulazione del geoide (Figura 31).

Figura 31. Altezza ortometrica e ondulazione del geoide

L'uso della altezza ortometrica non tiene conto della conformazione delle superfici equipotenziali, che non sono uniformemente parallele tra loro, ma sono ravvicinate lì dove la gravità è maggiore (Figura 32). In questo modo due punti avente lo stesso potenziale, potrebbero risultare con diversi valori di altezza ortometrica.

Figura 32. Superfici equipotenziali

Quindi, piuttosto della distanza geometrica tra superficie terrestre e geoide, si fa riferimento alla distanza ricavata tramite la differenza di potenziale tra la superficie del geoide e la superficie terrestre.

In questo modo entra in gioco la gravità, e *l'altezza normale* (o *quota ortometrica*) si ricava nel seguente modo:

Equazione 12

 $H^N = \frac{c}{\bar{\gamma}}$

Dove

$$c = Wo - Wp = \int_{Po}^{P} g \, dn$$

Equazione 13

 $\bar{\gamma}$ è il valor medio della gravità normale, e H^N l'altezza normale.

Nella pratica a partire dall'altezza ellissoidica, si ricava l'altezza normale tramite la seguente trasformazione:

Equazione 14 $H^N = h - \xi$

dove ξ rappresenta l'anomalia di altezza, rapporto tra il campo anomalo nel punto P e la gravità normale nel punto Q; punto che giace su una superficie di riferimento detta Telluroide (Figura 33).

Si utilizza l'anomalia di altezza ξ piuttosto che l'ondulazione del geoide *N*, perché questa si può misurare con maggiore precisione, essendo ad una profondità minore [13].

Figura 33. Geoide, ellissoide e telluroide

Software come ConverGO attuano queste trasformazioni da un sistema di riferimento ad un altro, e per il passaggio da altezza ellissoidica a quota ortometrica, a partire dall'interpolazione di superfici uniche di Telluroide e Geoide (Figura 34).

IN	IPUT	Coloring Do	Finite State	Oraciani	0	UTPUT
Geografiche	Piane	Seleziona file	Elimina voce	Upzioni	Geografiche	Piane
C ETRF89 ?	ETRS89 © UTM-ETRF2000 © UTM-ETRF89 © Gauss-Boaga	Intera cartella File da trattare:	Svuota lista	Sistema catastale	ETRS89 ? C ETRF2000 C ETRF89 C R0MA40	ETRS89 C UTM-ETRF2000 C UTM-ETRF89 Gauss-Boaga
C ED50	C UTM-ED50				C ED50	C UTM-ED50
SIST. CATASTALE	C (Siena)				SIST. CATASTALE	C (Siena)
QUOTA : Auto	Ellissoidica E00 Geoidica Non modificare				QUOTA :	 Ellissoidica Geoidica Stessa di input
Fuso proiezione	 G 32 G 33 G 34 C Fuso Italia 				Fuso proiezione	© Dvest © Est © 34 © Automatico
Origine longitudini	Greenwich C Roma M.M.				Origine longitudini	Greenwich C Roma M.M.
Formato file con	liste di coordinate	File di output	 Suffisso al nome 	Imposta	Formato file con	liste di coordinate
Codice E	st Nord Quo	Geografiche: _E89	_E00_E50_R40 Pia	ne: _U89 _U00 _U5(Codice	Est Nord Quo

Figura 34. Conversione coordinate - ConverGO

Tramite Convergo, viene inserito un file di testo contenete le coordinate dei punti 1000 e 2000 nel sistema di riferimento UTM-ETRF2000 e le relative altezze ellissoidiche (*Input*). Si specifica il formato in cui sono stati trascritti tali dati, nonché il fuso di proiezione (in questo caso 32). Dalla finestra Opzioni si è scelto di effettuare la trasformazione tramite grigliati presenti nel database.

Il sistema di riferimento di *output* è stato lasciato inalterato (UTM-ETRF2000), mentre la quota è stata definita come Geoidica (quota ortometrica).

Di seguito vengono riportati i valori di quota in input e output, comprendenti anche la differenza tra essi, la quale rappresenta l'ondulazione del geoide (Tabella 2). Come ci si può aspettare, i valori di ondulazione del geoide sono molto simi (differiscono poco meno di 3 cm).

1000	
Quota ellissoidica	1092.5426 m
Quota ortometrica	1038.582 m
ΔΗ	53.961 m
	_
2000	
Quota ellissoidica	1000 5721 m

Quota ellissoldica	1088.5731 m
Quota ortometrica	1034.641 m
ΔΗ	53.932 m

Tabella 2. Altezze ellissoidiche e quote ortometriche

3.4. Analisi file RINEX

I file di osservazione e di navigazione per le stazioni permanenti sono stati scaricati in formato RINEX; per i punti 1000 e 2000 invece, è possibile esportare i file di osservazione e di navigazione, in tale formato, dal software LGO. A titolo di esempio si analizzano i file RINEX relativi ad una sola stazione, in questo caso la stazione *rover* sul punto 1000.

All'interno dei file di misura vi si trovano le pseudo-distanze misurate con il codice e fase, mentre i file di navigazione non sono altro che le effemeridi.

I file di misura sono identificabili dalla lettera o come ultima lettera nel nome del file, mentre i file di navigazione sono identificati dalle lettere $n \in g$, rispettivamente relativi alla costellazione GPS (Americana) e alla costellazione GLONASS (Russa). I dati relativi alla navigazione dei satelliti delle due diverse costellazioni sono trascritti in file separati perché, per i satelliti GPS essi sono espressi tramite i parametri kepleriani, mentre per i satelliti GLONASS tramite posizione e velocità.

Il nome del file RINEX segue una certa convenzione, ossia [Nome della stazione] -[Giorno dell'anno] - [Anno]|[n/o], e il giorno dell'anno è espresso con un numero progressivo (Figura 35).

Nome	Tipo	Dimensione
10001920.17g	File 17G	53 KB
10001920.17n	File 17N	44 KB
10001920.17o	File 170	17.134 KB

Figura 35. Convenzione nomenclatura file RINEX

Nei file RINEX di misura, le prime righe sono occupate dall'header (Figura 36), in cui si può leggere:

- il nome della stazione (riga 4/5)
- le coordinate approssimate del ricevitore, ricavate in modalità *stand alone* (riga 8)
- l'altezza strumentale, ovvero dell'antenna (riga 9)
- l'errore di variazione del centro di fase dell'antenna, per il segnale L1 e L2 (riga 10)
- data e ora della prima osservazione (riga 13)
- data e ora dell'ultima osservazione (riga 14).

Seguono i satelliti GPS [G|Numero Satellite] e GLONASS [R|Numero Satellite] intercettati durante tutto il rilievo, con il numero di osservazioni registrate (Figura 37).

In coda all'header seguono le misure del ricevitore per ogni satellite in termini di codice e fase (C1, P2, L1 e L2) per ogni osservazione (Figura 38).

C1: misura di codice C/A $\lambda_{C/A} \sim 300 m$ L1: misuca di fase $\lambda_{L1} \sim 19 cm$ P2: misura di codice L2C $\lambda_{L2C} \sim 30 m$ L2: misura di fase $\lambda_{L2} \sim 24 cm$

Accanto all'ora e alla data di ogni osservazione vi sono trascritti i satelliti intercettati per quell'osservazione, e sono nell'ordine così come sono elencate le misure nelle righe successive [14].

1	0 1 1			00 0 0 0 0 U U					
T	2.11			OBSERVA	TION .	DA'I'A	М		
2	LEICA GEO	OFFICE	8.4				25-2-1	19 15:	32
3									
4	1000								
5	1000								
6	350240			LEICA G	X1230	+ GNSS	9.02		
7				LEIAX12	03+GN	SS			
8	4474028.	9421	546	465.308	4 44	99176.6	440		
9	1.	7470		0.000	0	0.0	000		
10	L1PhaOff:	0.0	585	L2PhaO	ff:	0.0555			
11	1	1							
12	8	C1	L1	D1	S1	P2	L2	D2	S2
13	2017	7	11	6	46	40.00	00000	GP	S
14	2017	7	11	10	3	53.00	00000	GP	S
15	18								
16	21								

Figura 36. Header - RINEX

		C1	L1	D1	S1	P2	L2	D2	S2
G	1	0	0	0	0	0	0	0	0
G	2	8863	8854	8863	8863	8850	8844	8850	8850
G	3	0	0	0	0	0	0	0	0
G	4	0	0	0	0	0	0	0	0
G	5	0	0	0	0	0	0	0	0
G	6	1399	1399	1399	1399	1317	1317	1317	1317
G	7	0	0	0	0	0	0	0	0
G	8	0	0	0	0	0	0	0	0
G	9	0	0	0	0	0	0	0	0

Figura 37. Classificazione misure - RINEX

7 07 11 06 46 40).0000000 0 10G19	G25G15G24G12R10R1	1R 1R20R21
22004844.820	115636238.98708	-1590.248	48.05
2004839.220			
90106140.50547	-1239.155	43.800	
22653164.280	119043195.72908	2849.984	48.10
2653165.500			
92760906.43546	2220.766	40.750	
22791842.500	119771936.09409	-3276.702	49.70
2791839.380			
93328768.77645	-2553.274	37.900	
20229458.420	106306521.18109	-244.174	52.05
0229457.580			
82836246.88549	-190.266	49.850	
20156547.860	105923375.22609	897.512	51.80
20156543.740			
82537677.29848	699.359	47.200	
20275108.140	108077734.52409	-1549.793	49.75
0275113.500			
84060483.10407	-1205.396	41.550	

Figura 38. Misure di codice e fase - RINEX

Dalla lettura dei file RINEX ci si può accertare del corretto inserimento dei parametri per l'elaborazione dei dati di misura, come ad esempio:

- l'altezza strumentale
- la tipologia di antenna e i relativi valori di *offset* del centro di fase per ogni frequenza
- la durata del tempo di acquisizione.

Inoltre, ancora prima dell'elaborazione tramite LGO, si può conteggiare il numero di satelliti intercettati per ogni epoca di misura, e verificare che questi siano sufficienti per il posizionamento (almeno 4). Nel presente caso, per ogni misura si intercettano mediamente 10-11 satelliti, un numero abbondantemente eccedente rispetto al minimo.

Capitolo 4

Rilievo di dettaglio

La seconda fase del rilievo consiste nella collimazione di punti naturali sulla parete. Questi punti saranno necessari per poter georeferenziare i rilievi successivi, ovvero quelli fotogrammetrici. Nello specifico è stata utilizzata una Image Station Leica Geosystem (Figura 39).

Figura 39. Stazione totale

4.1. La stazione totale

Sinteticamente, una stazione totale è uno strumento che comprende un teodolite e un distanziometro, per la misura rispettivamente di angoli e distanze.

Il teodolite è costituito da tre parti principali: basamento, alidada e cannocchiale. Il basamento costituisce la struttura di supporto dello strumento e include al suo interno il cerchio azimutale che serve per la misura degli angoli orizzontali. L'alidada è posta al di sopra del basamento ed ha una struttura a U che ruota attorno all'asse perpendicolare del basamento. All'interno dell'alidada si trova il cerchio zenitale per la lettura degli angoli verticali, il quale è collegato rigidamente al cannocchiale. Quest'ultimo infine, può ruotare liberamente attorno a un asse ortogonale all'asse di rotazione dell'alidada (Figura 40).

Figura 40. Assi di rotazione del teodolite

La rotazione combinata dell'alidada e del cannocchiale permette la collimazione di un qualunque punto nello spazio circostante, che viene individuato tramite un reticolo impresso nel cannocchiale.

Prima di poter utilizzare una stazione totale è essenziale che questa sia in asse con il punto materializzato a terra, e che quest'asse sia verticale. Per verificare la verticalità dello strumento si utilizza la livella torica situata sulla basetta, mentre l'allineamento con il punto a terra si effettua tramite le viti calanti poste al di sotto della basetta.

Le misure angolari sono di tipo azimutale e zenitale (Figura 41), e nei teodoliti elettroottici la loro lettura avviene in modo automatico attraverso un sistema di cerchi graduati. La lettura degli angoli azimutali (angoli orizzontali) avviene sul cerchio orizzontale mentre la lettura degli angoli zenitali (angoli verticali) sul cerchio verticale.

Figura 41. Misure topografiche

Per quanto riguarda la misura della distanza invece, questa è ad opera del distanziometro ad impulso incorporato nella stazione totale. Il suo funzionamento è basato sulla misura della distanza percorsa dall'impulso emesso dalla stazione e poi riflesso dal punto collimato (prisma o punto naturale). Misurando il tempo di volo dell'impulso e considerando la sua velocità di propagazione pari alla velocità della luce si ha:

$$D = \frac{c \,\Delta t}{2}$$

 $2D = c \Delta t$

Si sottolinea che la precisione di una collimazione senza prisma è inferiore rispetto a quella raggiunta con una collimazione con prisma.

La riflettività di un punto naturale infatti, può essere bassa in caso di superfici non riflettenti, come in questo caso la roccia [15][16].

Per l'operazione di rilievo in situ si è inserita la modalità di collimazione senza prisma per i punti naturali sulla parete.

4.2. Rilievo in situ ed elaborazione dati

Le coordinate del punto 3000 sono state ricavate posizionando la stazione totale sul punto 2000, prima che questo fosse occupato dai ricevitore GNSS, in modo tale da collimare il punto 3000, tramite prisma.

Ponendo la stazione totale sul punto 2000, si è effettuato l'orientamento all'indietro sul punto 1000 e, successivamente, si è ricavato tramite collimazione il punto 3000 (Figura 42).

Successivamente, per il rilievo di dettaglio, a partire dal punto di stazione 3000 (Figura 43) sono stati collimati tutti gli altri punti della rete.

Figura 42. Collimazione punto 3000

Vertice 3000

Chiodo con rondella grigia

Coordinate UTM ETRF2000 E = 339976.861 mN = 5000559.956 mH = 1034.585 m

Figura 43. Monografia punto 3000

A partire dal punto 3000 si sono collimati con stazione totale numerosi punti naturali sulla parete. I punti naturali sono stati scelti in base alla loro visibilità e riconoscibilità, e di ognuno di questi è stata scattata una fotografia per poterne redigere la corrispettiva monografia.

Infatti, la stazioni utilizzata è di tipo *Image Station*, in grado di fotografare il punto oltre che a collimarlo (Figura 44).

Le fotografie scattate, sono state utilizzate successivamente per facilitare l'operazione di correlazione manuale dei punti noti sulla parete, effettuata con il software Photoscan.

Figura 44. Fotografia punto e schema manuale

E' possibile esportare il file di *output* prodotto dalle misure topografiche, come file di testo contenente:

- Nome punto di stazione
- Altezza strumentale (m)
- Nome punto obiettivo
- Angolo orizzontale (gon)
- Angolo verticale (gon)
- Distanza inclinata (m)
- Altezza mira (m).

Segue uno stralcio del file di testo che è stato esportato per le successive operazioni di elaborazione dei dati di misura (Figura 45). I punti numerati in modo progressivo, sono stati poi nominati secondo un codice che comprende il nome della zona.

2000	1.000	10001	200.0004	01 1010	222 4 6 2 7	0
3000	1,055	10001	398,9084	91,1019	333,1627	0
3000	1,655	10002	399,33	91,8896	325,6997	0
3000	1,655	10003	399,7716	91,9992	322,9351	0
3000	1,655	10004	0,6319	92,771	315,9607	0
3000	1,655	10005	89,3899	72,9677	364,2933	0
3000	1,655	10006	89,372	76,2101	355,6461	0
3000	1,655	10007	91,2072	77,0071	356,3342	0

Figura 45. Esempio file di misura stazione totale

Il calcolo della rete topografica di dettaglio è stato realizzato tramite il software Star*Net Microsurvey. In termini pratici il software Star*Net è stato utilizzato per compensare la rete, e dalle misure registrate, ricavare le coordinate assolute dei punti della rete stessa. Si sono quindi impostati i parametri preliminari in termini di sistema di riferimento e di precisione delle misure.

Dalle opzioni del progetto si è fissato il sistema di riferimento come UTM-32N, dove 32Nord rappresenta il codice del fuso in cui risiede l'area di rilievo (Figura 46).

	General	Instrument	Listing File	Other Files	Special	GPS	Modeling	
Adjustr	ment Type – D Ave D	rage Project	Elevation: [0.000	Met	ers	Units Linear: Angular:	Meters ~
OL	evelling							GONS
Coordin	nate System	n						
Grid	d:	UTM-3	82N	Coordinat	e System	Details	Create C	ustom System
A	verage Geo	oid Height:	1050.000	(Mete	ers)			
OLoc	al							
	atum Schen	ne verage Scale	- Factor:	1.000	000000	1		
	atum Schen Apply an A Reduce to	ne werage Scale a Common E	e Factor: Bevation:	1.000	000000	Meter	8	
O Loc Da O Geoid/	cal atum Schen Apply an A Reduce to Vertical De	ne werage Scale a Common E flections	e Factor: Bevation:	1.000	000000	Meter	S	
C Loc Da O Ceoid/ Ceoid/	atum Schen Apply an A Reduce to Vertical De	ne werage Scale a Common E flections odeling	e Factor: Bevation:	1.000	000000	Meter	\$	
Geoid/	atum Schen Apply an A Reduce to Vertical De ng Geoid M ng Vertical I	ne werage Scale a Common E flections odeling Deflections	e Factor: Bevation:	1.000	000000] Meter	\$	
C Loc D. Geoid/ Usir	atum Schen Apply an A Reduce to Vertical De ng Geoid M ng Vertical I	ne werage Scale a Common E flections odeling Deflections To chan	e Factor: Bevation: Ige these opt	1.000 0.000	20000000	Meter	s g Tab	

Figura 46. Opzioni progetto - StarNet

Successivamente si sono definite le precisioni specifiche per ogni misura in termini di deviazione standard (Figura 47).

Nello specifico:

- Distanza inclinata: 3 mm + 2ppm
- Angolo orizzontale (azimutale): 1 milligon
- Angolo verticale: 3 milligon + 0.01524m/(Distanza inclinata)
- Errori di centramento punto di stazione: 1 mm
- Errori di centramento prisma: 1 mm
- Errore altezza verticale stazione totale e/o prisma: 3 mm

ajuanna	it General		Liading Tile Other	Tires opeoidi		outining	
Conv	entional			Leveling			
Dista	nce Constant:	0.003000	Meters	Sections as:	Lengt	h () Turns	
Dista	nce PPM:	2.000		Elev Diff:	0.002403	Meters/Kn	n
Angle	a:	1.000000	MilliGons	-			
Direc	tion:	1.000000	MilliGons				
Azimu	uth / Bearing:	1.000000	MilliGons				
Zenit	h:	3.000000	MilliGons				
Elev	Diff Constant:	0.015240	Meters				
Elev	Diff PPM:	0.000					
Cente	ering Errors:						
Ho	riz Instrument:	0.001000	Meters				
Ho	riz Target:	0.001000	Meters				
14-	rtical:	0.003000	Meters				

Figura 47. Precisione misure – StarNet

I valori di precisione delle misure sono state scelte in base alla potenzialità dello strumento (precisione di angoli e distanze), e in considerazione dell'errore accidentale dell'operatore nell'operazione di messa in opera dello strumento (errore di centramento e di misurazione della verticale per stazione totale e prisma).

Le misure sono state quindi inserite nell'editor del software tramite il linguaggio specifico da esso utilizzato.

I punti di coordinate note sono inseriti come C + (Nome punto) + (Coordinata est) + (Coordinata nord) + (Quota).

Es:

С	1000	339902.507	5000613.529	1038.582	!!!
С	3000	339976.861	5000559.956	1034.585	!!!

I punti esclamativi simboleggiano che ognuna delle coordinate è fissa, nella compensazione quindi non subiranno modifiche.

Le misure di angolo azimutale sono accompagnate dal codice *DN* seguito dal nome del punto e dalla misura dell'angolo. La prima riga delle misure azimutali è aperta dal codice *DB* che identifica il punto di stazione da cui si sono misurate le direzioni.

Es:

DB	3000	
DN	1000	0.0
DN	1000	0.00001
DN	1000	0.00127
DN	F1	309.80674
DN	F2	309.81065
DN	F3	307.00977

Il punto 1000 è stato utilizzato come punto all'indietro per ottenere le successive direzioni (angolo azimutale pari a zero). Si può inoltre notare che, per l'orientamento è stato usata la regola di Bessel.

Secondo la regola di Bessel, per ottenere una misura più precisa, il punto viene collimato due volte, ruotando l'alidada di 180° (o 200 gon) tra una misura e l'altra. Le misure vengono poi opportunamente mediate [17].

La riga conclusiva delle misure azimutali deve presentare il codice **DE**.

Per le misure azimutali si usa invece il codice V + (Punto di partenza/Punto di arrivo) + (Altezza punto di stazione/Altezza prisma).

Es:

V	3000-1000	97.18605	1.636/1.708
V	3000-1000	97.18328	1.636/1.708
V	3000-1000	97.18258	1.636/1.708
V	3000-F1	78.78321	1.636/0.000
V	3000-F2	78.78142	1.636/0.000
V	3000-F3	78.34604	1.636/0.000

I punti naturali collimati non presentano prisma, l'altezza è stata posta quindi pari a zero.

Similmente, per le distanze inclinate il codice per l'inserimento delle misure nell'editor è *D* + (*Punto di partenza/Punto di arrivo*) + (*Altezza punto di stazione/Altezza prisma*).

Es: D 3000-1000 91.783 1.636/1.708 91.783 1.636/1.708 D 3000-1000 3000-F1 295.410 1.636/0.000 D D 3000-F2 295.385 1.636/0.000 3000-F3 296.792 1.636/0.000 D

Vi è la possibilità di inserire, per ciascuna misura un diverso valore di precisione (deviazione standard), a seconda dei casi; in questo caso tutte le misure hanno le stesse precisioni, che sono quelle definite precedentemente nei parametri iniziali di progetto. A compensazione ultimata la rete si presenta nel seguente modo:

Figura 48. Rete Compensata - StarNet

Dalla compensazioni si ottengono le coordinate dei punti della rete e i relativi ellissi d'errore.

L'ellissi d'errore è la superficie geometrica definita dalla precisione della misura lungo tutte le direzioni [18]. Nel presente caso sono indicate solo le direzioni Est, Nord e Quota.

Per le impostazioni iniziali delle precisioni delle misure, queste crescono all'aumentare della distanza rispetto al punto di stazione, e arrivano ad un massimo di circa 1.5 cm in planimetria e di circa 3.5 cm in altimetria.

La precisione così raggiunta è soddisfacente in considerazione degli obiettivi del rilevamento, e delle dimensioni della rete.

Il punto collimato più distante è il C17 (Tabella 3) che presenta:

	Deviazione Standard [m]			
Station	Est	Nord	Elev	
C17	0.014464	0.014143	0.034069	

Tabella 3. Deviazione standard massima

Il report di compensazione è inserito per intero all'interno degli Allegati, ed esso contiene:

- Parametri generali
 - 1. Unità: metri e gon
 - 2. Sistema di riferimento: UTM-32N
 - 3. Ondulazione del geoide: 105.000
 - 4. Precisione a priori delle misure
- Punti di coordinate note
- Osservazioni e relativo errore (precisione)
 - 1. Distanze inclinate
 - 2. Angoli zenitali
 - 3. Angoli azimutali (Direction)
- Compensazione della rete
 - Coordinate compensate dei punti costituenti la rete topografica (Est, Nord, Quota ortometrica)
 - 2. Coordinate compensate dei punti costituenti la rete topografica (Latitudine, Longitudine, Altezza ellissoidica)
 - 3. Misure compensate e relativi errori (precisione)
 - Distanze inclinate
 - Angoli zenitali
 - Angoli azimutali (Direction)
 - Ellissi d'errore assoluto delle coordinate dei punti compensati (Est, Nord, Quota)
 - 5. Ellissi d'errore assoluto delle coordinate dei punti compensati (assi principali)

6. Ellissi d'errore relativo delle coordinate dei punti compensati (assi principali)

Si nota, infine, che il valore di ridondanza del sistema è pari a 7 (Numero delle misure – Numero delle incognite, 233-226). Infatti, tutti i punti della parete sono stati univocamente determinati tramite tre misure (angolo orizzontale, angolo verticale, distanza inclinata), a meno di una precisione a priori dello strumento.

Fa eccezione solamente il punto 1000 (orientamento all'indietro) che è stato collimato seguendo la regola di Bessel (due misure), ed è oltretutto di coordinate note.

Vale la pena perciò osservare i residui (differenza tra misura compensata e misura effettuata) delle misure relative al punto 1000 (Tabella 4).

From	То	Distance [m]	Distance Res [m]	Zenith [gon]	Zenith Res [gon]	Azimuth [gon]	Azimuth Res [gon]
3000	1000	91.7718	-0.0112	97.017681	-0.00624	0.000427	0.000427
3000	1000	91.7718	-0.0112	97.017681	-0.00647	0.000427	0.000417
3000	1000	91.7718	-0.0112	97.017681	-0.00577	0.000427	-0.000843

Tabella 4. Residuo misure 3000-1000

Si nota come i residui siano bassi, ed in particolare circa 1 cm per la distanza inclinata e circa 6 milligon per la l'angolo zenitale. Il residuo sull'angolo orizzontale è irrisorio (minore di 1 milligon).

Si è verificato di quanto avrebbero differito le coordinate dei punti sulla parete se non si fosse avuta ridondanza nelle misure, ovvero se non si fosse collimato più volte il punto 1000 dell'orientamento all'indietro (Tabella 5).

	[m]	
Minimo	0.0000	
Massimo	0.0023	
Media	0.0008	
Deviazione Standard	0.0009	

Tabella 5. Massima variazione, minima variazione, variazione media, sqm della popolazione delle differenze di coordinate

Dalla tabella si evince che la differenza sarebbe stata molto bassa, ovvero mediamente di circa 1 mm fino ad un massimo di circa 2 mm.

Di seguito sono riportati i punti relativi alle cinque zone analizzate e le corrispondenti coordinate, ed infine una tabella riassuntiva sulla precisione delle coordinate sulla parete in termini di deviazione standard (σ) (Tabella 6), dalla quale si evince che la precisione media sulle quote (circa 3 cm) è minore rispetto a quella in planimetria (circa 1 cm).

		Est	Nord	Quota
				ortometrica
Zona ABC				
	ABC1	339977.40357	5000220.57450	1141.77780
	ABC2	339970.06628	5000219.43709	1142.97755
	ABC3	339971.02039	5000223.00429	1134.41635
	ABC4	339979.11293	5000224.74877	1133.26287
	ABC5	339985.95787	5000225.90616	1138.10328
	ABC6	339966.70823	5000221.67010	1138.46633
	ABC7	339966.62844	5000218.75574	1142.60070
	ABC8	339966.70377	5000218.76190	1142.61426
	ABC9	339981.50145	5000222.75426	1141.37762
	ABC10	339978.01934	5000220.50162	1138.62507
	ABCII	339983.19043	5000225.89606	1133.938/1
	ABCIZ	340003.91060	5000228.77955	1142 20170
	ABCI3	340009.85772	5000225.74538	1120 02661
	ABC14 ABC15	339987 511/9	5000233.31340	1129.03001
	ABC15	339965 12142	5000227.50019	1131 50068
	ABC17	339960 12447	5000225.50205	1158 35654
	ABC18	339977.32321	5000218.26710	1147.43896
Zona D				
	D1	339939.09810	5000235.47104	1146.07301
	D2	339944.51201	5000233.23340	1146.05883
	D3	339942.29270	5000229.95637	1151.61958
	D4	339939.51253	5000239.26289	1139.38966
	D5	339929.25469	5000238.08875	1148.25605
	D6	339925.34456	5000238.51711	1154.39044
	D7	339927.74234	5000248.22409	1135.84800
	D8 D0	339935.84421	5000237.28098	1144.52379
	D9 D1 0	339936.52198	5000235.97/34	1145.15854
		337730./8835 220026 04054	JUUU236.J/688	1156 20050
	DTT D1-2	220020 51574	JUUUZZ8.39Z81 5000220 26242	1120.20039
	21U	339939.010/4	5000239.20242	1133 0/610
	D13	339932 85422	5000243.27330	1141 99267
	D15	339922.25606	5000240.07072	1153.23390

Zona E

	E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12	339954.95200 339955.68873 339967.01903 339967.01812 339955.57244 339947.68270 339946.87534 339960.89340 339963.43613 339963.81841 339960.53578 339956.38095	5000284.43412 5000286.02572 5000285.01984 5000285.02083 5000290.10341 5000289.76715 5000285.67973 5000287.18334 5000287.10923 5000281.49820 5000286.69595 5000287.03929	1073.42386 1069.75112 1069.07077 1069.07039 1064.02563 1066.39565 1073.61031 1066.91561 1066.34066 1075.56044 1068.61341 1068.22654
Zona F				
	F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15	339780.93683 339780.94312 339789.42848 339794.91020 339785.69646 339782.71066 339765.93760 339768.88535 339765.67468 339785.44184 339780.58212 339783.62547 339771.13219 339785.36602	5000361.27228 5000361.30306 5000352.38966 5000359.65512 5000364.94927 5000369.74839 5000364.08652 5000364.08652 5000360.61596 5000359.76966 5000361.72120 5000361.65091 5000360.87902 5000364.24625	1132.86587 1132.86554 1135.24164 1117.20940 1120.24986 1120.19928 1119.18142 1137.53041 1132.32356 1142.85932 1132.37622 1133.27513 1129.90853 1139.88960 1123.46227
Zona G				
	G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14	339920.15640 339922.13770 339926.85022 339930.44173 339922.96665 339902.61469 339911.01119 339916.53877 339914.21581 339913.00093 339920.19891 339934.35290 339940.98667 339929.78240	5000272.29906 5000270.74958 5000257.96060 5000269.06478 5000296.32950 5000281.09647 5000276.07236 5000274.96654 5000271.65223 5000269.35295 5000266.45599 5000268.67219	1110.42915 1121.47891 1124.87840 1111.89126 1107.26641 1112.57641 1120.86821 1124.15367 1120.59946 1112.39368 1113.97475 1104.28534 1105.04986 1114.26860

	Est [m]	Nord [m]	Quota [m]
Minimo	0.0111	0.0081	0.0266
Massimo	0.0145	0.0141	0.0341
Media	0.0125	0.0115	0.0296

Capitolo 5

Il rilievo fotogrammetrico

Inquadrati i punti sulla parete nella rete topografica, si è proseguito con un rilievo fotogrammetrico, effettuato tramite drone, lungo le zone di maggior interesse individuate dal geologo.

5.1. Cenni di fotogrammetria

La fotogrammetria è una tecnica di rilevamento metrico tridimensionale che utilizza due o più prese fotografiche di un oggetto da punti distinti nello spazio, per poterne ricavare le coordinate tridimensionali. La geometria di presa dei fotogrammi corrisponde ad una proiezione centrale, vengono quindi mantenuti gli angoli tra immagine e oggetto.

Il fotogramma è metrico in termini di angoli, ma non in termini di distanze.

Ciò invece, non avviene nelle normali fotografie, in quanto queste contengono aberrazioni angolari, che per poter essere rimosse devono essere note.

Perché occorrono almeno due fotogrammi?

Si immagini di scattare due fotogrammi da due punti distinti, che riprendono la medesima porzione di terreno. Noti:

- posizione dei punti di presa C₁ e C₂
- angoli di assetto delle camere 1 e 2

si può ricavare l'equazione della retta r' e della retta r''. Dalla loro intersezione si ottengono le coordinate del punto A (Est, Nord, Quota).

Le immagini del punto A, ovvero, A' e A'', sono detti punti omologhi del punto A, mentre le rette r' e r'', raggi omologhi (Figura 49).

Figura 49. Schema fotogrammetria

La conversione da fotogramma a modello 3D avviene tramite il *restitutore* a patto di fornire alcune informazioni: orientamento interno (OI) e orientamento esterno (OE).

L'orientamento interno (Figura 50) comprende:

- distanza focale
- posizione del punto principale all'interno del fotogramma
- eventuali distorsioni (aberrazioni) (Figura 51)

- distorsione radiale (3 parametri)
- distorsione tangenziale (3 parametri)
- distorsione di affinità (2 parametri)

Figura 50. Orientamento interno

Figura 51. Distorsioni

L'orientamento esterno comprende:

- posizione dei punti di presa
- angoli di assetto della fotocamera

Essi sono definiti come:

- Rollio ω (rotazione attorno l'asse x)
- Beccheggio ϕ (rotazione attorno l'asse y)
- Sbandamento κ (rotazione attorno l'asse z)

Data la necessità di almeno due fotogrammi, per ricostruire in 3D un'intera zona è essenziale che i fotogrammi scattati durante il rilievo abbiano delle sovrapposizioni in direzione longitudinale rispetto alla direzione di presa. Vengono anche applicati dei ricoprimenti trasversali.

A seconda che la superficie da ricostruire sia liscia o molto variabile, sono necessari ricoprimenti maggiori rispetto al minimo teorico (50%), per poter evitare aree defilate.

Ad esempio per superfici rocciose o terreni montuosi, si mantiene un ricoprimento longitudinale di 70/80% e un ricoprimento trasversale del 20/40% (Figura 52).

Figura 52. Sovrapposizioni

Le coordinate immagine sono legate alle coordinate oggetto da una relazione di rototraslazione. Per ricavare le coordinate di un punto fotografato, si parte dalle coordinate della sua immagine nel piano del fotogramma, che viene roto traslato in modo tale da essere coincidente al sistema di riferimento utilizzato. La rotazione consiste nel ruotare il piano del fotogramma secondo gli angoli ω , $\phi \in \kappa$, mentre la traslazione avviene tra il centro di proiezione C e l'origine del sistema di riferimento.

Le equazioni che si ottengono legano quindi, le coordinate immagine alle coordinate reali, e sono:

Equazione 16

$$\zeta = \zeta_0 - c \frac{r_{11}(x - x_0) + r_{21}(y - y_0) + r_{31}(z - z_0)}{r_{13}(x - x_0) + r_{23}(y - y_0) + r_{33}(z - z_0)}$$

$$\eta = \eta_0 - c \frac{r_{12}(x - x_0) + r_{22}(y - y_0) + r_{32}(z - z_0)}{r_{13}(x - x_0) + r_{23}(y - y_0) + r_{33}(z - z_0)}$$

Equazioni di collinearità da oggetto a immagine

Dove (Figura 53):

- $\zeta e \eta$ sono le coordinate pixel del punto immagine;
- $\zeta_0 e \eta_0$ sono le coordinate del punto principale nella matrice del fotogramma;
- *x*, *y*, *z* sono le coordinate terrestri del punto;
- x_0 , y_0 , z_0 sono le coordinate del centro di proiezione;
- *c* è la focale della camera;
- r_{ij} sono i termini della matrice di rotazione.

Figura 53. Parametri di orientamento interno ed esterno

Si può notare che queste equazioni rappresentano una corrispondenza univoca, ossia ad un punto immagine corrisponde solamente un punto oggetto.

Ciò non vale per le equazioni inverse, quelle cioè che legano le coordinate del punto oggetto alle coordinate del punto immagine. Del resto, la fotogrammetria richiede almeno due fotogrammi.

Le equazioni inverse hanno la forma:

Equazione 17

$$x = x_0 + (z - z_0) \frac{r_{11} (\zeta - \zeta_0) + r_{12} (\eta - \eta_0) - r_{13} c}{r_{31} (\zeta - \zeta_0) + r_{32} (\eta - \eta_0) - r_{33} c}$$

$$y = y_0 + (z - z_0) \frac{r_{21} (\zeta - \zeta_0) + r_{22} (\eta - \eta_0) - r_{23} c}{r_{31} (\zeta - \zeta_0) + r_{32} (\eta - \eta_0) - r_{33} c}$$

Equazioni di collinearità da immagine oggetto

In questo caso, si hanno due equazioni e tre incognite (x, y, z) dando per noti:

- l'orientamento esterno

coordinate del centro di proiezione (x_0 , y_0 , z_0) e angoli di assetto della camera (interni ai termini r_{ii})

- l'orientamento interno,
 - $\zeta_0 \in \eta_0 \in c.$

Il sistema, con un unico fotogramma risulta indeterminato, ad ogni punto immagine infatti, corrispondono infiniti punti oggetto (tutti allineati lungo il raggio omologo).

Nella pratica, generalmente non sono noti tutti i parametri di orientamento interno ed esterno (soprattutto i parametri d'orientamento esterno). Essi possono essere però, calcolati a posteriori tramite misure sull'oggetto, ovvero tramite punti di coordinate note chiamati punti d'appoggio (GCP – *Ground Control Point*).

Considerando ad esempio che ad essere ignoto sia l'orientamento esterno, per ogni punto noto, si possono scrivere due equazioni (Equazione 17 - Eq. di collinearità da immagine a

oggetto), e le incognite diventano x_0 , y_0 , z_0 e ω , ϕ , κ . Con tre punti noti sull'oggetto è possibile ricavare i suddetti parametri incogniti, avendo a disposizione 2x3 equazioni in 6 incognite.

Allo stesso modo, se vi fossero ulteriori parametri incogniti, come quelli di orientamento interno (distorsioni, focale, posizione del punto principale), occorrerebbe solo aumentare il numero dei punti d'appoggio.

L'orientamento interno può essere ricavato, oltre che indirettamente attraverso l'uso di punti d'appoggio, anche tramite calibrazione. La calibrazione consiste nel fotografare diverse volte con angolazioni diverse una scacchiera (Figura 54) di cui è nota la geometria. Le fotocamera restituirà delle foto affette da aberrazioni, che possono essere calcolate ed eliminate contro distorcendo le immagini ottenute.

Figura 54. Esempio scacchiera per calibrazione fotocamera

Nel caso di fotogrammetria digitale, l'immagine è costituita da una matrice bidimensionale i cui elementi elementari sono pixel, i quali al loro interno contengono la propria 'informazione' radiometrica sotto forma di numero intero (ad esempio per fotogrammi in scala di grigio si ha 0 = Bianco e 255 = Nero).

L'immagine digitale quindi, presenta una discretizzazione geometrica (divisione in pixel) e una discretizzazione radiometrica.

Il numero di pixel contenuti in un'unità prefissata di lunghezza esprime la risoluzione geometrica dell'immagine. Per convenzione essa si esprime come numero di pixel contenuti in un pollice (dpi). Si nota che la risoluzione dipende dalla dimensione del pixel,

ed in particolare, minore è la dimensione del pixel maggiore sarà la risoluzione dell'immagine.

Per via della discretizzazione geometrica, ogni pixel è individuato da un indice di riga e un indice di colonna che lo caratterizzano, e ad ogni pixel è associato un valore radiometrico medio (medio perché è associato all'intero pixel).

Per immagini in bianco e nero, l'informazione radiometrica è ridotta a due valori:

0 = Bianco

1 = Nero,

ed ogni pixel occupa 1 bit.

Per immagini in toni di grigio, la variazione radiometrica da bianco a nero è suddivisa in 256 intervalli, dove:

0 = Bianco

255 = Nero,

e ogni pixel occupa 1 byte (8 bit).

Nel presente caso, le immagini utilizzate sono a colori (*true color*). Per le immagini a colori, ogni colore può essere ottenuto dalla combinazione dei tre colori primari: rosso, verde e blu (*RGB – Red Green and Blue*). Di conseguenza, ogni pixel occupa 3 byte.

Considerando le dimensioni e la risoluzione delle immagini utilizzate nel rilievo fotogrammetrico, la dimensione delle cartelle file avranno un peso in memoria non trascurabile.

Nella fotogrammetria digitale, la discretizzazione geometrica e radiometrica dell'immagine, ha permesso l'elaborazione di algoritmi in grado di individuare i punti omologhi (in questo caso 'pixel omologhi'), in modo automatico.

Infatti, tramite l'utilizzo di opportuni software, si può automatizzare il processo di individuazione dei punti omologhi (autocorrelazione).

Il riconoscimento automatico avviene mediante un'operazione statistica in cui si cerca la massima correlazione tra due immagini.

In particolare l'operazione si articola tramite due processi:

- Autocorrelazione a pixel intero
- Autocorrelazione a sub pixel

L'autocorrelazione a pixel intero prevede l'estrazione da uno dei due fotogrammi di una sotto-matrice, centrata attorno al pixel di cui si vuol trovare l'omologo (matrice sagoma). Sul secondo fotogramma si individua una sottomatrice di dimensioni maggiori entro la quale si prevede di trovare il punto omologo cercato (matrice di ricerca).

I due punti omologhi sono immagini di uno stesso punto oggetto ripreso da posizioni diverse e in tempi diversi, perciò essi non risulteranno mai identici, ma si diversificheranno per luminosità e deformazioni prospettiche.

La ricerca del punto omologo dovrà avvenire, cercando nella matrice ricerca la sottomatrice di dimensioni uguali alla matrice sagoma che più gli "assomiglia". In questo modo si trova un valore approssimato della posizione del punto omologo.

Nell'autocorrelazione a sub pixel poi, si cerca una somiglianza maggiore (coefficiente di correlazione) effettuando spostamenti tra matrice ricerca e matrice sagoma minori rispetto alla dimensione del pixel, arrivando perciò ad una precisione minore rispetto alla dimensione del pixel (Figura 55).

Figura 55. Esempio monodimensionale di autocorrelazione. Verde = autocorrelazione a pixel intero, Rosso = autocorrelazione a subpixel. L'Asse verticale rappresenta il valore radiometrico, l'Asse orizzontale la direzione ξ del fotogramma.

Per ottimizzare questo processo, i software selezionano preliminarmente quei punti da cui si possono ottenere degli alti valori di autocorrelazione. Si può dimostrare infatti, che le aree che presentano forti contrasti radiometrici, come ad esempio i bordi o gli spigoli, ottengono alti valori diautocorrelazione. Questi punti sono chiamati punti di interesse, o *key points*.

Dall'individuazione dei punti omologhi, è possibile allineare i fotogrammi tra loro in modo tale da ottenere un orientamento relativo dei fotogrammi. Nell'orientamento relativo però, l'allineamento dei fotogrammi non è georeferenziato spazialmente, e possiede 6 gradi di liberta (3 traslativi e 3 rotazionali) [19][20].

Si illustri un esempio numerico.

Si consideri come ignoto sia l'orientamento interno che quello esterno. Si ha:

per l'orientamento interno 3 + 8 parametri incogniti (focale, posizione del punto principale, distorsioni)

- per l'orientamento esterno 6 parametri incogniti (punto di presa, angoli di assetto)
- 3 gradi di libertà per ogni punto oggetto individuato tramite la correlazione tra punti omologhi.

Considerando per ipotesi, di aver a disposizione il numero minimo di fotogrammi, ovvero 2, il numero di parametri incogniti diventano:

34 + 3n (con n numero dei punti omologhi individuati)

Dalla correlazione dei punti omologhi, si hanno le posizioni $(\xi_1 - \eta_1, \xi_2 - \eta_2)$ dei punti immagine che sono stati individuati come omologhi.

Per ricavare la posizione di tutti i punti appartenenti all'area di ricoprimento dei due fotogrammi sono necessari n punti omologhi tali per cui:

$$34 + 3n = 4n$$
$$n = 34$$

Detto ciò si può dedurre che, da un numero relativamente basso di punti omologhi correlati (che possono essere *key points*), si riesce ad orientare relativamente tutti gli altri punti dei fotogrammi sotto forma di nuvola di punti. Si sottolinea che i punti della nuvola, seppur relativamente orientati gli uni agli altri, non sono georeferenziati (coordinate assolute incognite).

Questa è la metodologia operativa di software come Agisoft PhotoScan, che è stato utilizzato per l'elaborazione dei fotogrammi relativi al rilievo eseguito.

5.2. Acquisizione dati

Per l'acquisizione delle immagini in situ è stato utilizzato come strumento il drone SAPR DJI Phantom 4 PRO con ricevitore GNSS e fotocamera incorporati (Figura 56).

Le caratteristiche specifiche della fotocamera sono:

- Focale: 8.8 mm
- Sensore CMOS di dimensione 13.2 x 8.8 mm;
- Dimensione del pixel pari a 2.4 micron.

Figura 56. Drone SAPR DJI Phantom 4 PRO

Si è scelto di utilizzare un drone per il rilievo fotogrammetrico poiché esso è un veicolo aereo pilotabile da remoto, ma è anche possibile impostare una rotta prestabilita ed azionare l' autopilota. Infatti, la presenza a bordo di un sistema di posizionamento GNSS permette la geo localizzazione e la navigazione del drone istante per istante.

Nel caso in esame, per le dimensioni dell'aree analizzate e la loro altitudine, sarebbe stato irrealizzabile effettuare delle fotografie o fotogrammi senza l'utilizzo di uno strumento comandabile da remoto.

Nel caso di modalità di volo automatica, la traiettoria viene impostata apriori in funzione della precisione delle immagini che si vuole ottenere. Vengono definiti:

- Parametri della camera
- Ricoprimento desiderato tra le fotografie
- Dimensione dell'area che si vuole rilevare.

In questo mondo, in considerazione della precisione e del GSD (Ground Sample Distance – distanza reale dell'oggetto rappresentata dalla distanza tra i centri di due pixel consecutivi) che si vuole raggiungere, si ottengono:

- L'altezza di volo
- Traiettorie delle strisciate
- Tempi di volo.

Nel presente caso, piuttosto che una modalità di volo automatica, si è scelto di usare la modalità di volo libero, poiché, la superfice analizzata presenta numerose rientranze e sporgenze.

Il volo è stato perciò compiuto, cercando di mantenere il drone piuttosto vicino alla superficie rocciosa in ogni area, con una distanza media di 8-10 m. Per ogni area di interesse è stato realizzato un volo specifico seguendo uno schema il più possibile a strisciate sovrapposte, nonostante il pilotaggio sia stato di tipo manuale, e mantenendo una sovrapposizione longitudinale dei fotogrammi di circa il 70%.

In questo modo si è raggiunto un GSD medio di circa 3 mm sull'oggetto (Figura 57).

Per ricavare il GSD raggiunto, si è utilizzata la formula seguente:

Equazione 18

$$GSD = \frac{S_w * H}{F_R * imW}$$

Dove:

 S_w è la dimensione del sensore CMOS

H l'altezza media di volo

 F_R distanza focale

imW dimensione dell'immagine in termini di numero di pixel

Il significato geometrico della precedente formula è facilmente intuibile, basti pensare a due raggi relativi a due pixel adiacenti; i triangoli ABC e ADE sono triangoli simili, vale quindi la proporzione:

Equazione 19

$$H:GSD = F_R: D_{px}$$
$$GSD = \frac{H*D_{px}}{F_R}$$

Con D_{px} pari alla dimensione del pixel.

Naturalmente il legame tra la dimensionione del pixel e la dimensione (in pixel) dell'immagine è:

Equazione 20

$$imW = \frac{S_w}{D_{px}}$$

Figura 57. GSD

Le dimensione medie dell'immagine (Figura 58) è di 16.5m x 11m.

Figura 58. Esempio di fotografia scattata

Qui di seguito una tabella riassuntiva sui voli effettuati:

Zona	N Immagini	Memoria [GB]	Tempo di volo [min]
ABC	81	3.68	11
D	80	4.18	8
E	61	2.77	5
F	62	2.82	7
G	63	2.86	8

Tabella 7. Voli effettuati

5.3. Elaborazione dati

L'elaborazione dei fotogrammi prodotti durante il rilievo in sito, è stata eseguita tramite l'uso del software Agisoft PhotoScan.

Si è seguito il processo qui di seguito illustrato:

- 1. Collimazione punti d'appoggio
- 2. Allineamento fotogrammi
- 3. Generazione nuvola densa
- 4. Generazione *mesh* e colorazione (*texture*)

Per goni zona sono stati prodotti circa 60-80 fotogrammi, e collimati circa 15 punti distribuiti omogeneamente lungo tutta l'area.

Photoscan offre la possibilità di allineare i fotogrammi ancor prima dell'applicazione dei punti d'appoggio, in modo tale da ottenere un orientamento relativo dei fotogrammi. Nel presente caso però, si otterrebbe comunque un orientamento assoluto degli stessi, in quanto di questi, per via della presenza di un sistema GNSS all'interno del drone, sono note le coordinate dei centri di proiezione.

La precisione con cui sono state ricavate le coordinate dei centri di proiezione è metrica, per cui non coerente con le precisioni richieste nel presente progetto.

Per ottenere una precisione migliore (centimetrica), prima di allineare i fotogrammi sono stati inseriti i punti d'appoggio, essi infatti, sono stati collimati con una buona precisione (Tabella 6).

In questo modo si ottengono un miglior allineamento dei fotogrammi e una migliore georefenziazione.

I punti di coordinate note sono, per l'appunto, i punti naturali sulla parete, ricavati tramite compensazione della rete topografica nella quale sono inscritti.

La procedura seguita consiste nell'inserire dei marker in corrispondenza dei punti naturali collimati in situ (Figura 59).

Figura 59. Esempio marker - PhotoScan

Al concludersi di tale operazione, si è però deciso di eliminare alcuni dei punti collimati, in quanto questi presentavano un alto valore di varianza. PhotoScan infatti, durante il processo di applicazione dei marker, in automatico riordina i fotogrammi in modo da giustapporli sui punti omologhi collimati manualmente, stabilendo la varianza con cui questi vengono collimati.

Anche la precisione di questa collimazione manuale quindi ha un peso, e questa può essere influenzata da diversi fattori. Trattandosi di punti naturali, e non di target artificiali, la loro visibilità dipende molto dall'angolazione con cui è stato scattato il fotogramma; il punto quindi, può non essere visibile da tutti i fotogrammi, o peggio, si può facilmente sbagliare la collimazione del punto, perché si ha l'impressione che questo si trovi poco distante rispetto alla sua reale posizione.

Per ovviare a tale problema, si sono eliminati i punti più 'problematici' (con un errore maggiore di 3/4 cm), mantenendo comunque una buona ridondanza (si arriva a mantenere un numero sufficientemente numeroso e distribuito di punti *marked*, pari a 7-10).

Complessivamente, la precisione totale con cui si sono collimati i punti si attesta sui 1/2 cm (Tabella 8).

	ZONA	ABC	D	E	F	G
	N. Punti	9	9	7	10	10
e Est n]	Min	0.093	0.396	0.049	0.521	0.487
	Max	2.475	1.646	3.239	2.736	2.887
ror [ci	Media	1.540	0.870	1.384	0.976	1.667
Ē	DevStr	1.855	0.998	1.937	1.258	1.936
Errore Nord [cm]	Min	0.003	0.737	0.184	0.071	0.102
	Max	2.978	4.416	2.937	2.306	2.329
	Media	1.321	2.223	1.611	0.520	1.215
	DevStr	1.824	2.636	2.058	0.904	1.533
Errore Quota [cm]	Min	0.213	0.134	0.195	0.071	0.376
	Max	2.258	1.970	1.202	10.000	2.105
	Media	0.905	0.582	0.599	2.143	1.099
	DevStr	1.179	0.867	0.766	2.074	1.298

Tabella 8. Errori collimazione punti - PhotoScan

Dopo l'allineamento dei fotogrammi, dalla schermata *Show Cameras*, si possono effettivamente vedere i fotogrammi allineati e i loro centri di proiezione, come anche, le traiettorie delle strisciate effettuate (Figura 60 - Figura 64).

Figura 60. Allineamento foto - Zona ABC

Figura 61. Allineamento foto - Zona D

Figura 62. Allineamento foto - Zona E

Figura 63. Allineamento foto - Zona F

Figura 64. Allineamento foto - Zona G

I successivi passaggi ordinatamente elencati sono stati:

- Costruzione della nuvole densa

Viene generata una nuvola di punti densa, tramite collimazione automatica dei punti omologhi. Essa è di molto più densa della nuvola generata dopo l'allineamento dei fotogrammi e di quella generata automaticamente dopo l'allineamneto dei fotogrammi.

- Costruzione mesh

La nuvola densa di punti viene resa 'compatta' tramite la generazione di una *mesh* ad unità triangolare.

- Costruzione texture

La mesh viene colorata.

Vengono di seguito riportate le immagine relative ai passaggi qui sopra elencati per ognuna delle zone esaminate (Figura 65 - Figura 69).

Figura 65. Nuvola densa e sparsa, mesh e texture, GCP - Zona ABC

Figura 66. Nuvola densa e sparsa, mesh e testure, GCP - Zona D

Figura 67. Nuvola densa e sparsa, mesh e texture, GCP - Zona E

Mesh

Figura 68. Nuvola densa e sparsa, mesh e texture, GCP - Zona F

Mesh

Zona G Dimensione 40m x 60m

Texture

Figura 69. Nuvola densa e sparsa, mesh e testure, GCP - Zona G

In conclusione, in questa elaborazione si è generata, a partire da numerosi fotogrammi, una riproduzione esatta (con la precisione del centimetro) di alcune aree della parete. Si può perciò spostare l'analisi della parete dal sito, alla postazione pc dell'operatore, con un aumento esponenziale di confort e sicurezza. La presente tesi ha l'obiettivo altresì di indagare l'utilità e l'efficienza di un'analisi di questo tipo.

Dalla riproduzione 3D della parete in esame, si possono esportare tramite PhotoScan:

- DEM
- Ortofoto
- Nuvola densa di punti.

Il DEM (*Digital Elevation Model* – Modello digitale di elevazione) è una superficie georeferenziata che si costituisce di una maglia di punti, in corrispondenza dei quali è presente, oltre all'informazione planimetrica, quella altimetrica (X, Y, Q) [21].

L'Ortofoto è l'immagine georeferenziata di una superficie, ed inoltre è un'immagine geometricamente corretta (non vi sono deformazioni) [22].

Vengono di seguito riportate le ortofoto (Figura 70 - Figura 74) relative alle cinque zone della parete analizzate, seguono inoltre delle tabelle riassuntive (Tabella 9, Tabella 10) sui prodotti finali dell'elaborazione fotogrammetrica (Modello 3D, Ortofoto).

Per quel che riguarda i DEM essi possono essere consultati tra gli allegati, e in particolare all'interno dei report riguardanti le elaborazioni fotogrammetriche.

Figura 70. Ortofoto - Zona ABC

Figura 71. Ortofoto - Zona D

Figura 72. Ortofoto - Zona E

Figura 73. Ortofoto - Zona F

<image>

Figura 74. Ortofoto - Zona G

ZONA	Numero Punti Nuvola Sparsa	Numero Punti Nuvola Densa	Numero Faces Mesh
ABC	42,584	41,584,037	2,772,258
D	45,338	40,217,427	2,681,141
E	34,659	6,999,163	1,399,801
F	16,536	21,912,345	4,382,447
G	31,065	26,305,244	1,753,671

Tabella 9. Tabella riassuntiva - Modello 3D

ZONA	Dimensione Immagine [pix]	GSD [mm/pix]	Memoria [MB]
ABC	15346x15883	6	659
D	18582x16228	5	1,271
E	9709x6420	5	333
F	11276x7807	7	332
G	10749x10576	5	364

Tabella 10. Tabella riassuntiva - Ortofoto

Capitolo 6

Interpretazione dati

Nel presente capitolo verranno interpretati i dati ottenuti dalle elaborazioni precedenti. In particolare si analizzeranno le aree rilevate in modo tale da individuarne i cinematismi incipienti o avvenuti.

Inizialmente è stata effettuata un'analisi multitemporale tra due rilievi differiti nel tempo, con l'obiettivo di individuarne le differenze, che potrebbero essere causare da distacchi o da movimentazioni di grandi ammassi di roccia.

Successivamente sono stati ricavati i piani di frattura (piani di discontinuità) di una delle cinque zone analizzate.

Infine sono stati analizzati più nel dettaglio alcuni dei cinematismi che sono stati riscontrati attraverso l'analisi multitemporale.

6.1. Le discontinuità

In meccanica delle rocce si distingue tra materiale roccioso (materiale con buone caratteristiche avente solo microfessure) e discontinuità. L'insieme di materiale roccioso e discontinuità costituisce l'ammasso roccioso.

Nell'ammasso roccioso, le discontinuità sono sede di debolezza, poiché queste sono costituite da superfici a contatto in cui può avvenire un movimento relativo.

Esse si dividono in due famiglie:

- *Faglie*: grandi discontinuità nate per sollecitazioni di taglio o trazione, legate ai movimenti tettonici.
- *Giunti*: discontinuità di dimensioni molto più ridotte rispetto alle faglie. In genere, questi non sono isolati ma appartengono a famiglie di giunti.

Nel presente caso, si considereranno al pari delle discontinuità così come sono state definite, i piani di scistosità, in quanto sedi privilegiate di movimenti relativi. Esse non sono generate da un particolare sistema di tensioni, ma sono proprie della conformazione geologica della roccia costituente la parete esaminata (vedi cap. Inquadramento geografico e geologico).

A rigori, i piani di scistosità non costituiscono una perdita di continuità all'interno dell'ammasso roccioso, ma sono di fatto piani di debolezza, vengono quindi trattate insieme ai piani di discontinuità al fine di rilevare la giacitura dei piani coinvolti nei meccanismi di distacco.

La principale caratteristica geometrica delle discontinuità è l'orientamento. Nella pratica, le superfici non sono planari, ma presentano delle irregolarità. Ai fini della caratterizzazione delle fratture però, vale l'ipotesi di piano medio planare, ed esso è definito da due angoli: uno che ne indica l'inclinazione rispetto al piano orizzontale, ed un altro che indica la direzione di immersione rispetto al Nord.

Si definisce la retta di massima pendenza del piano di frattura, e l'angolo compreso tra questa e il piano orizzontale rappresenta l'Inclinazione (o Dip) ψ . L'angolo compreso tra la direzione Nord e la proiezione della retta di massima pendenza sul piano orizzontale,

rappresenta la Direzione di Immersione (o *Dip Direction*) α , letta in senso orario a partire dal Nord (Figura 75).

Figura 75. Angoli Dip e Dip Direction

Il campo di variabilità degli angoli è il seguente:

$$\Psi = [0 \div 90^\circ]$$
$$\alpha = [0 \div 360^\circ]$$

La discontinuità può essere rappresentata anche tramite la retta normale al piano, chiamata Polo. Similmente:

- l'angolo compreso tra il Polo e il piano orizzontale rappresenta l'Inclinazione del polo ψ_{Polo} (Figura 76)
- l'angolo compreso tra la proiezione sul piano orizzontale del polo, e la direzione Nord rappresenta la Direzione di Immersione del polo α_{Polo} , letta in senso orario a partire dal Nord.

Le relazioni che legano la giacitura del piano e la giacitura del polo corrispondente sono:

$$\Psi_{Polo} = 90^{\circ} - \Psi_{Piano}$$

$$\alpha_{Polo} = \alpha_{Piano} \pm 180^{\circ}$$

La misura dell'orientazione di una discontinuità, in situ, è eseguita tramite la bussola geologica che permette di misurare sia l'inclinazione che la direzione di immersione (Figura 76).

Figura 76. Orientamento poli e bussola geologica

La rappresentazione grafica di una discontinuità avviene attraverso la tecnica della Proiezione Sferica, che consiste nell'intersecare il piano della discontinuità con una sfera, facendolo passare per il suo centro.

L'intersezione tra le due entità genera un cerchio, detto Grande Cerchio, che delimita due emisferi. Proiettando il grande cerchio sul piano di riferimento si riesce a rappresentare un piano 3D su un diagramma planare 2D (si considera solo uno dei due emisferi, in genere quello inferiore) (Figura 77).

Il tipo di proiezione usata è la Proiezione equi-area che mantiene le aree ma non la forma, l'arco di circonferenza subisce perciò delle piccole distorsioni.

In questo tipo di rappresentazione, un piano è raffigurato da un arco, mentre una retta (come un Polo) da un punto. Il grafico risultante è detto Stereogramma, attraverso il quale, si determinano i sistemi (o famiglie) di discontinuità (Figura 78).

Figura 78. Rappresentazione piano su stereogramma

Nello stereogramma, i poli rilevati presentano zone di addensamento più o meno evidenti prossime al valore centrale, e questo permette, sia di determinare le diverse famiglie di giunti, sia di ricavare i dati di orientazione caratteristici delle stesse.

Per una maggiore chiarezza nella lettura e interpretazione dello stereogramma vengono utilizzate delle curve di iso-frequenza (Figura 79) [23].

Figura 79. Stereogramma polare

6.1.1. Interpretazione cinematismi

Dallo stereogramma dei piani coinvolti nel cinematismo è possibile interpretare il tipo di movimento che è avvenuto.

In particolare, nel caso di scivolamento planare deve sussistere una relazione tra la giacitura del fronte e la giacitura del sistema di discontinuità; infatti ambedue i piani devono essere rivolti verso la stessa direzione, e inoltre, è necessario che l'inclinazione del piano del fronte sia maggiore rispetto all'inclinazione del piano di discontinuità (Figura 80).

Tradotto in formule deve valere:

Equazione 22

$$\alpha_f - 20^\circ \le \alpha_d \le \alpha_f + 20^\circ$$

 $\psi_d < \psi_f$

E' possibile inoltre, che sia presente un giunto di trazione, cioè un piano di discontinuità subverticale. Anche questo piano è legato da una relazione al piano del fronte, esso infatti deve essere rivolto nella direzione del fronte, ed avere un'inclinazione vicino ai 90°:

Equazione 23

$$\alpha_f - 20^\circ \le \alpha_t \le \alpha_f + 20^\circ$$
$$\psi_t = 70^\circ \div 90^\circ$$

Figura 80. Scivolamento planare e stereogramma

Nel caso di scivolamento tridimensionale sono presenti due sistemi di discontinuità. Perché avvenga cinematismo, è necessario che i due piani diano luogo ad un'intersezione, e lo scivolamento avviene lungo essa. La linea di intersezione deve essere rivolta dalla stessa parte del fronte del pendio (non deve essere rivolto dalla parte opposta), e la sua inclinazione deve essere minore rispetto a quella del fronte.

Equazione 24

$$\alpha_f - 90^\circ \le \alpha_i \le \alpha_f + 90^\circ$$

 $\psi_i < \psi_f$

A livello di stereogramma, l'intersezione deve situarsi tra la curva del fronte e il contorno dello stereogramma (Figura 81) [24].

Figura 81.Scivolamento tridimensionale e stereogramma

6.2. Analisi multitemporale

Prima dell'analisi geomeccanica delle aree di parete, si sono confrontate le nuvole dei punti relative a due rilievi, fatti a distanza di circa un anno e mezzo le une dalle altre. Lo scopo di questa analisi è di individuare delle differenze temporali nella parete rocciosa. Il software utilizzato per questa operazioni è 3DReshaper, il quale elabora sia nuvole di punti che mesh.

Si considera lecito confrontare tal quali le coppie di nuvole, senza attuare né filtraggi né ricampionamenti per i seguenti motivi:

- La vegetazione non è particolarmente disturbante nelle nuvole di punti analizzate, essa è infatti poco diffusa e anche persistente, ossia si ritrova sia nelle scansioni precedenti che in quelle successive
- Qualora vi siano delle differenze maggiormente significative in termini di vegetazione, questa è composta per lo più da muschio compatto, praticamente aderente alla superficie rocciosa, il che rende minimo il *noise*, ma ne rende anche

impossibile un filtraggio efficiente. Si terrà quindi conto della sua presenza nella fase di interpretazione dei grafici di comparazione (Figura 82)

- <image>
- La densità delle due nuvole, ad eccezione di rare zone, è praticamente comparabile.

Figura 82. Esempio confronto vegetazione – Zona E

Il risultato dei confronti tra le coppie di nuvole di punti sono di seguito illustrati.

Area ABC

Questa area non mostra nessuna variazione temporale (Figura 83).

L'istogramma continuo a destra mostra chiaramente come la quasi totalità dei punti della nuvola abbia un valore di spostamento a cavallo dello zero

Figura 83. Analisi multitemporale - Zona ABC

Area D

L'area D si presenta quasi completamente a spostamento pari a zero. Alcune piccole aree però suggeriscono degli spostamenti o distacchi. In particolare, alcune variazioni sono identificabili come distacchi ben visibili, mentre altre potrebbero segnalare solamente una presenza di vegetazione (Figura 84, Figura 85).

Figura 84. Analisi multitemporale - Zona D

Multitemporale

Figura 85. Particolari - Zona D

Area E

L'area E presenta due aree che segnalano chiaramente dei distacchi (1,2); queste regioni hanno delle colorazioni graduali che arrivano dallo spostamento paria a zero (verde) fino al valore di spostamento massimo (rosso). Anche da un confronto più dettagliato si notano delle grosse differenze nella conformazione rocciosa di quelle aree. Inoltre, sono ben visibili le superfici di distacco (Figura 86, Figura 87).

Figura 86. Analisi multitemporale - Zona E

Multitemporale

Rilievo 1

Rilievo 2

Figura 87. Particolari - Zona E

Le altre variazioni temporali presenti nell'area E, sono invece correlabili a variazioni di vegetazione, o distacchi molto contenuti (Figura 88).

Multitemporale

Rilievo 1 Figura 88. Particolari - Zona E

Rilievo 2

Area F

Questa area non mostra forti variazioni temporale.

Ad un'analisi più attenta si può notare come le zone a spostamento diverso da zero siano corrispondenti a piccole macchie di vegetazione presenti sulla parete al tempo del primo rilievo. Esse quindi, possono rappresentare, o la presenza di vegetazione, o distacchi di volumi molto contenuti dovuti a fenomeni erosivi, e poco visibili (Figura 89, Figura 90).

Figura 89. Analisi multitemporale - Zona F

Multitemporale

Figura 90. Particolari - Zona F

Rilievo 2

Area G

In questa area, similmente all'area F, sono presenti delle zone in cui lo spostamento è diverso da zero, anche se molto piccolo. Analizzando da vicino le aree imputate, si può notare una diversa conformazione della vegetazione. Si arriva perciò alla stessa conclusione dell'area precedente (Figura 91, Figura 92).

Figura 91. Analisi multitemporale - Zona G

Multitemporale

Rilievo 1

Rilievo 2

Multitemporale

Rilievo 1

Rilievo 2

Multitemporale

Rilievo 1 Figura 92. Particolari - Zona G Rilievo 2

In conclusione, si può stabilire, che la parete in esame non è soggetta a spostamenti massivi, dati da movimenti di grossi blocchi di roccia, ma piuttosto, è soggetta a distaccamenti puntuali, che possono essere causati:

- da fenomeni erosivi, che coinvolgono volumi molto piccoli di roccia
- da spostamenti relativi tra blocchi di roccia separati da superfici di discontinuità/scistosità.

6.3. Estrazione piani di discontinuità

Sempre tramite il software 3D Reshaper, si sono estrapolati i piani di discontinuità della parete, in modo tale da ottenere i principali piani di frattura dell'area.

A titolo di esempio, si è scelta una zona, e su questa si sono ricavati i piani di frattura. La zona scelta è stata la F.

Dopo aver importato la nuvola di punti della suddetta area, per ricavare i piani di ogni discontinuità si è utilizzato il comando estrai piano (Figura 93).

Figura 93. Individuazione piani di discontinuità - 3DReshaper

Il piano estratto è un piano medio, in quanto una discontinuità presenta ruvidezze ed asperità e non può mai essere perfettamente levigata. 3D Reshaper restituisce infatti l'istogramma continuo dei punti della nuvola che sono stati definiti come appartenenti al piano, in funzione della loro distanza rispetto al piano medio.

A titolo di verifica, si è accertato che l'istogramma continuo di ogni piano rilevato, presenti una forma a campana ed una bassa variabilità, ovvero che la distribuzione delle distanze tra i punti e il piano medio estrapolato siano sufficientemente vicini al valore 0 (Figura 94).

Figura 94. Esempio piani di discontinuità

L'alta densità dei punti della nuvola permette di avere una visione globale e dettagliata di quasi tutta l'area, tanto che, seppur senza la costruzione di una *mesh*, le discontinuità sono ben visibili.

Nonostante ciò, per le zone meno chiare si è utilizzato come supporto il modello 3D con *mesh* continua, generato tramite PhotoScan.

La metodologia seguita per l'estrapolazione dei piani, quasi ricalca la metodologia classica, in quanto, tramite la visualizzazione digitale ci si avvicina alla frattura e si misurano le giaciture del suo piano a partire dalle fasce esposte della stessa.

Da ciò, ne consegue che non tutte le discontinuità sono estrapolabili, poiché le superfici esposte di alcune discontinuità risultano essere troppo sottili, e la densità dei punti, pur essendo elevata, non riesce a raggiungere un numero minimo di punti per quelle aree tanto da poterne estrapolare un piano.

Rimane comunque visibile, in questi casi la traccia della discontinuità stessa. Mediamente, tra tutte le discontinuità presenti, dell'85% di queste si è arrivati ed estrapolarne i piani.

I piani estratti in questo modo, vengono importati sul software CloudCompare. Essi derivano da un campionamento di un'unica nuvola di punti, e sono quindi sotto forma di nuvola di punti, seppur allineati su dei piani.

Per ottenere l'assetto spaziale di ogni piano, le nuvole dei punti relative ad ogni piano devono essere trasformate in *facets*, ossia, per l'appunto, in elementi geometrici piani (Figura 95).

L'assetto spaziale dei piani è espresso tramite i due angoli:

- Dip (Plunge)
- Dip direction (Trend)

Figura 95. Elaborazione piani su CloudComapare

La classificazione delle discontinuità così ottenute sarà efferruata tramite il software Dips.

6.3.1. Classificazione delle discontinuità

Si è utilizzato il software Dips per:

- Rappresentare le discontinuità su uno stereogramma
- Determinare le famiglie di discontinuità
- Ricavare i dati di orientamento caratteristici delle famiglie di discontinuità.

Si importano i piani ottenuti tramite il software 3DReshaper in funzione degli angoli Dip e Dip Direction dei piani, ottenendo così lo Stereogramma Polare.

Questo viene elaborato tramite l'applicazione di linee isofrequenziali, e successivamente vengono delimitate le aree corrispondenti ad ogni sistema di discontinuità.

Dal baricentro di ognuna di queste aree si ricavano i valori caratteristici per ogni sistema di discontinuità che si è delineato (Figura 96, Tabella 11).

Figura 96. Stereogramma polare e identificazione dei piani medi relativi ai sistemi di discontinuità

	Dip Direction Polo	Dip Polo
Sist 1	83	26
Sist 2	349	2
Sist 3	201	14
Sist 4	261	12

Tabella 11. Piani medi relativi ai sistemi di discontinuità

Nella definizione delle aree relative ai sistemi di discontinuità ci si è limitati alle zone centrali, e dove è presente un valore maggiore di densità. Le regioni con scarsi valori densità non sono state prese in considerazione, in quanto non contano di una popolazione sufficiente di poli per essere considerate parte di un sistema di discontinuità.

Questi piani possono rappresentare delle superfici levigate, che sono state scambiate per superfici esposte di discontinuità; un'altra possibilità è che l'area presa in considerazione (in questo caso l'area F) non sia sufficientemente vasta per tenere conto di un numero sufficiente di piani appartenenti ad una certa famiglia di discontinuità, in modo che questa possa essere rilevata, e allo stesso tempo essa non interessa più di tanto l'area stessa.

6.4. Interpretazione dei distacchi

Successivamente all'individuazione dei sistemi di discontinuità, si è provato a capire il tipo di cinematismo che ha causato alcuni dei distacchi identificati tramite l'analisi multitemporale (software 3DReshaper).

In particolare, si analizzeranno i distacchi con un volume maggiore ritrovati nell'area E. Il procedimento utilizzato prevede l'utilizzo di uno stereocomparatore digitale (StereoCAD) per identificare i piani coinvolti nei cinematismi; successivamente essi saranno elaborati tramite il già citato software Dips.

Lo stereocomparatore è uno strumento che restituisce una visione 3D dell'oggetto a partire da due fotogrammi, utilizzando la visione stereoscopica. Tramite essa, il fotogramma di sinistra è visibile solo dall'occhio sinistro, mentre il fotogramma di destra è visibile solo dall'occhio destro, ottenendo così una visione tridimensionale.

Nel presente caso, la visione differenziata per ogni occhio è ottenuta tramite degli occhiali a schermo attivo, che separano la vista dei due fotogrammi ai due occhi per via di una diversa frequenza di campionamento. In questo modo, il fotogramma di sinistra è visibile solo dall'occhio sinistro perché la lente sinistra dell'occhiale ha la stessa frequenza di campionamento del fotogramma sinistro. La stessa cosa vale per il fotogramma di destra.

Nel caso della visione anaglifica, lo stesso effetto è raggiunto grazie a due lenti colorate (rosso e blu) che isolano la vista di ogni occhio ad un unico fotogramma, poiché anch'essi sono differentemente colorati (uno dei due fotogrammi è blu, l'altro rosso).

Inoltre, il funzionamento dello stereocomparatore è basato sulle equazioni di collinearità da immagine a oggetto. Infatti, muovendosi in due dimensioni nello spazio oggetto, i fotogrammi si muovono in tempo reale, in modo tale da essere sovrapposti nel punto indicato dal puntatore; mentre, per muoversi nella terza dimensione, ossia la quota, si utilizza la rotella del mouse, o come nel presente caso, una trackball.

Individuato in punto nello spazio oggetto, questo può essere collimato sovrapponendo il puntatore su di esso, e le sue coordinate sono automaticamente ricavate dallo stereocomparatore tramite le equazioni di collinearità.

Si sottolinea infine, che per poter risolvere le suddette equazioni, devono essere noti a priori i parametri di orientamento interno ed esterno [25].

Nel presente caso, si è fatto uso del software StereoCAD. Gli step che sono stati seguiti sono qui di seguito elencati:

- Si sono esportati i fotogrammi controdistorti dal software PhotoScan
 - Sono state infatti scattate fotografie, e non fotogrammi. Queste perciò presentono delle deformazioni, che possono essere eliminate in quanto già calcolate da PhotoScan nell'allineamento dei fotogrammi.
- Si sono esportati i dati di orientamento esterno della camera dal software PhotoScan

- Si sono ricavati i dati di orientamento interno nonché la dimensione del pixel e la dimensione delle foto in pixel (Figura 97)
- Si importano su StereoCAD i file e dati ricavati negli step precedenti (Figura 98).

Figura 97. Parametri di orientamento interno fotogrammi

Figura 98. Importazione fotogrammi – StereoCAD

Nella zona E sono visibili due aree di distacco di grandi dimensioni. La metodologia utilizzata per individuare il tipo di cinematismo avvenuto consiste nel collimare diversi punti sui piani di discontinuità rimasti esposti dopo il distacco, e di ricavare l'orientamento deglistessi tramite il software CloudCompare (similmente a come si è agito in precedenza, vedi cap. Estrazione piani di discontinuità).

Nella zona E, si è provato ad interpretare il tipo di cinematismo avvenuto nelle due aree 1 e 2 (Figura 99).

Figura 99. Numerazione cinematismi

Nello specifico, il primo distacco, sembrerebbe essere uno scivolamento planare con presenza di giunto di trazione (Figura 100).

Figura 100. Cinematismo 1 e particolare nuvola di punti

Si nota però (dalla nuvola di punti) che la zona presenta delle aree vuote, dovute sicuramente ad una mancanza di fotogrammi orientati in modo tale da fotografare le suddette aree. Con il software StereoCAD, infatti, si può vedere come nessuno dei fotogrammi inseriti mostri le aree rimaste vuote della nuvola dei punti. Inoltre, anche il piano del giunto di trazione è poco visibile, rendendo praticamente impossibile la collimazione di punti appartenenti a tali piani.

Detto ciò, si sottolinea come, l'utilizzo di un software come StereoCAD per la visione stereoscopica, migliori di molto la qualità visiva dell'operatore nell'analisi di superfici come quella in esame, tanto che la tipologia di cinematismo è intuibile nonostante vi siano delle zone in ombra non fotografate.

Nella seconda area, si collimano diversi punti sui due piani di distacco, e diversi punti anche su una area stabile, in modo da poter ottenere il piano del fronte (Figura 101). Infatti, data l'estrema variabilità morfologica della parete in questa zona, si è ritenuto opportuno modellizzare il piano del fronte collimando diversi punti su una zona stabile nei pressi dell'area di distacco, piuttosto che utilizzare un piano medio che comprendesse l'intera area.

Figura 101. Cinematismo 2

I punti collimati vengono poi estratti in formato *shape file* e importati su CloudCompare, con l'obiettivo di ricavare i piani medi a cui i punti appartengono, similmente a come si è già fatto precedentemente (vedi capitolo Estrazione piani). Dai piani ricavati in questo modo si ottengono gli angoli di orientamento (Tabella 12, Figura 102).

	Dip Direction	Dip
Piano 1	3	82
Piano 2	278	64
Intersezione	110	26
Fronte	187	85

 Tabella 12. Orientamento piani coinvolti nel cinematismo 2

Figura 102. Stereogramma cinematismo 2

Il tipo di cinematismo è lo scivolamento tridimensionale.

Si nota inoltre, che poco distante dalla zona interessata dallo scivolamento tridimensionale, è presente un cuneo in procinto di scivolare, delimitato da piani aventi orientamento paragonabile ai piani appena analizzati. Essi quindi, appartengono alle stesse famiglie di discontinuità.

Si proverà perciò a definire in modo approssimato il volume di questo blocco instabile (Figura 103).

Figura 103. Delimitazione blocco instabile

La metodologia seguita consiste nel modellizzare il blocco tramite un solido semplice, delineandone gli spigoli tramite una polilinea.

Questa è stata esportata in *dwg* e trattata con AutoCAD per poterne calcolare il volume. Il volume così ottenuto è molto approssimato, ma restituisce comunque un ordine di grandezza delle dimensioni del blocco, per poter successivamente progettare un adeguato sistema di trattenuta.

Il volume rilevato è di circa 2 m^3 .

In conclusione, le tipologie di distacco rinvenute tramite quest'ultima analisi, ed in concomitanza con le precedenti analisi multitemporali, configurano una parete non soggetta a grossi movimenti relativi tra blocchi di roccia. Essa è tuttavia soggetta a piccoli distacchi puntuali, con un volumetria minore o per lo più uguale ad 0.5 m³, dovuti a fenomeni di erosione ambientale e circoscritti a piccole aree particolarmente fratturate. Mentre, per quanto riguarda crolli dal volume maggiore (maggiori di 1 m³), essi sono dovuti al distacco di placche di roccia provocati dalla natura scistosa della roccia costituente la parete.

6.5. Confronto con relazione geologica

In questo capitolo, si sono confrontati i risultati ottenuti con i metodi geomatici descritti nei precedenti capitoli, con l'ultima relazione geologica disponibile sul sito esaminato.

L'ultima relazione di monitoraggio risale al biennio 2016-2017. Essa è il risultato di una serie di ispezioni dirette in parete eseguite mediante calate con tecniche alpinistiche, oltre che di rilievi LIDAR eseguiti nel corso degli ultimi dieci anni.

Si sottolinea che il confronto è stato effettuato limitatamente a ciò che riguarda le zone osservate (ABC, D, E, F e G), e ai fenomeni di instabilità accorsi nelle stesse; non vi è quindi una visione d'insieme della parete rocciosa nella sua totalità, data la parzialità dei dati a disposizione nella presente analisi, a differenza invece, di quanto si può leggere nella relazione geologica.

All'interno del rapporto, la parete è stata considerata come suddivisa in tre settori (Figura 104). Si può notare come, nella nomenclatura adottata per le zone di parete nella presente analisi, la zona ABC è intermedia al settore A e B, ed è attraversata dal Rio Canalone; mentre le restanti zone (D, E, F e G) appartengono al settore B (Figura 105).

Figura 104. Classificazione aree della parete

Figura 105. Individuazione zone di interesse

Dal rapporto si può leggere che la parete, dal 1996 ad oggi ha subito diversi interventi stabilizzanti, sia di tipo attivo che di tipo passivo. Per quanto riguarda gli interventi di stabilizzazione attiva, sono stati demoliti dei blocchi tramite disgaggi o brillamenti. Essi sono stati effettuati per lo più lungo la zona del Rio Canalone e nella zona più alta al confine tra il settore B e il settore C.

Per quanto riguarda invece le opere di tipo passivo, sono state posizionate delle barriere paramassi in basso lungo tutta la parete a ridosso del bacino, e sono state applicate una serie di pannellature aderenti su alcune delle aree di brillamento.

Sono poi elencati tutti i casi di distacchi, avvenuti dal 2016 al 2017:

ID Area	Fenomeno	Volume m ³
1	crollo	66
2	crollo	17
3	crollo	9
4	crollo	30
5	crollo	2
6	crollo	6
9	crollo	17
10	crollo	3
11	crollo	3
13	crollo	2
14	crollo	16
21	crollo	0.5
23	crollo	1
24	crollo	1
25	crollo	1
29	crollo	1
31	deposito	145
32	crollo	1.5

Tabella 13. Elenco crolli 2016-2017

Figura 106. Identificativi crolli

Di questi si legge: "Nel biennio 2016-2017 in tutti i settori sono stati osservati limitati e puntuali distacchi causati da variazioni repentine della temperatura (termoclastismo) e dall'azione dell'acqua nel periodo autunnale/invernale (crioclastismo) e primaverile (aumento della spinta idraulica), [...] specie in aree caratterizzate da un grado di fratturazione più spinto e con presenza di diffusi stillicidi. [...].

In tutti i casi, i distacchi sono caratterizzati da volumetrie modeste e sono stati trattenuti dalle barriere paramassi poste alla base della parete rocciosa."

Dei fenomeni di crollo sopra elencati si evidenzia come alcuni di questi ricadano nelle zone osservate dal rilievo fotogrammetrico, e la cui causa viene imputata ad "*erosione di placche detritiche appoggiate su cenge*", del tutto comparabili ai tipi di crollo individuati nella presente analisi.

Figura 8 - Crollo n. 13.

Figura 7 – Crollo n. 11

Figura 107. Esempi crolli - Relazione geologica

Indicativamente:

- i crolli 1, 2, 3, 4, 5, 6 ricadono nelle aree D e G
- i crolli 10, 11, 13, 14, 21 ricadono nell'area E
- nessuno dei crolli è collocato nei pressi delle aree ABC e F.

Anche nella presente analisi le aree F e ABC sono state quelle che dal confronto multitemporale hanno mostrato minori differenze.

Si evidenzia infine, la penultima riga della Tabella 13 corrisponde al deposito detritico generatosi tramite l'opera di trattenuta della rete paramassi per gran parte dei i crolli elencati (1, 2, 3, 4, 5, 6, 10, 11, 13, 14 e 21); la sommità del conoide detritico è affettivamente visibile in basso a sinistra dell'area E.

Capitolo 7

Conclusioni

Nella presente tesi si sono applicate metodologie d'indagine geomatiche allo scopo di ricavare delle informazioni geomeccaniche.

La parete rocciosa oggetto d'esame è stata inizialmente geolocalizzata tramite una rete topografica comprendente misure GNSS e misure con stazione totale.

La parete è stata poi sottoposta a rilievo fotogrammetrico con lo scopo di poterne ricostruire un modello 3D.

Combinando insieme i dati ottenuti dal rilievo topografico/GNSS e da quello fotogrammetrico, si è arrivati ad un modello 3D della parete georeferenziato, che è stato sottoposto a diverse procedure di interpretazione.

In particolare, è stata effettuata un'analisi multitemporale tra due modelli relativi a due epoche diverse della stessa parete, per ricavarne le eventuali differenze temporali in termini di spostamenti o distacchi.

Sono poi stati ricavati i piani di discontinuità di una delle zone analizzate della parete, e rappresentati sotto forma di stereogramma.

Infine, si sono individuati e classificati alcuni tra i cinematismi avvenuti e quelli incipienti.

A conclusione di questa tesi si può affermare che la parete analizzata (seppur in parte) presenta un grado medio di fratturazione, e che non è soggetta a grossi movimenti relativi tra blocchi di roccia; essa invece è soggetta a distacchi puntuali di piccola e media entità. I distacchi di piccola entità (minore di 0.5 m³) sono dovuti a fenomeni di erosione ambientale e sono circoscritti a piccole aree particolarmente fratturate, mentre i distacchi di volume maggiore sono dovuti al distacco di placche di roccia provocati dalla natura scistosa della roccia costituente la parete. Inoltre, si può constatare di aver ottenuto una buona riproduzione delle aree della parete esaminate, e che lo studio e l'interpretazione delle stesse abbiano dato dei buoni risultati, tanto da essere comparabile a quelli riportati sulla relazione geologica.

Di seguito vengono descritti i pregi e i limiti riscontrati durante tutte le fasi delle analisi effettuate.

Nella generazione dei modelli 3D, la precisione ottenuta è centimetrica, assolutamente soddisfacente se rapportata alla dimensione totale di ogni area esaminata. Si sottolinea altresì, che la parete presenta diverse zone di sporgenze e rientranze, le quali non tutte hanno una rappresentazione chiara nel modello 3D; vi sono infatti alcuni buchi (molto pochi) nelle nuvole di punti. Qualora fosse necessario è possibile sopperire a queste imperfezioni eseguendo ulteriori rilievi fotogrammetrici specifici per le zone rimaste in ombra.

Nel complesso però, la modellazione 3D effettuata nella presente tesi, ha permesso un'interpretazione soddisfacente del dato ottenuto, considerando anche l'aumento di confort e sicurezza che dà un'analisi effettuata su un modello 3D rispetto al metodo classico di rilievo in situ. L'unico svantaggio presente sono i lunghi tempi impiegati dal software per l'elaborazione delle nuvole dense di punti (mediamente 20 ore per ogni area).

Per quanto riguarda l'analisi multitemporale, si riconosce come questa sia riuscita a mostrare anche distacchi molto piccoli (minori di 0.5 m³) in virtù dei bassi valori di GSD raggiunti. Si afferma inoltre, che è stata una modalità di indagine che ha impiegato tempi molto brevi, e che ha realizzato dei risultati la cui interpretazione si è rivelata molto intuitiva.

Nella fase di identificazione delle superfici di discontinuità (o scistosità), si è già sottolineato che di queste, non tutte si sono rivelate estrapolabili, poiché le superfici esposte di alcune discontinuità sono risultate troppo sottili affinché si riuscisse ad individuarne il piano medio. D'altronde però, questa difficoltà è presente anche nei metodi classici di rilevamento delle discontinuità (es. lo stendimento), pertanto in questo caso, il metodo attuato non rappresenta un miglioramento; rimane del resto, un'ottimizzazione di tempo e un aumento di confort e sicurezza.

Per quanto riguarda l'utilizzo del software StereoCAD, la visione stereoscopica ha fornito una qualità di visualizzazione di gran lunga superiore rispetto ai software utilizzati (CloudCompare, PhotoScan, 3DReshaper), e che ha permesso un'interpretazione più dettagliata delle aree di parete esaminate, tanto da rappresentare, rispetto ai software menzionati, un salto di qualità evidente nel riconoscimento dei cinematismi avvenuti ed incipienti.

Concludendo, si può affermare che le procedure effettuate rappresentino un ottimo supporto alle indagini geologiche e geomeccaniche. Esse inoltre superano i metodi classici di rilievo, non soltanto in termini di riduzione di tempi e costi, ma anche per l'incremento della precisione raggiunta e della flessibilità con cui i dati ottenuti possono essere elaborati ed interpretati.

Riferimenti bibliografici

[1]
AA. VV., Impianto idroelettrico Pont Ventoux – Susa, Torino, Iren Energia (2013) 15
[2] A A VVV Cli immionti idroclettrici. Terine, Iron Energie (2012)
[3] $AA. VV., GII Implanti Idroelettrici, Torino, iren Energia (2013)$
AA. VV., Impianto idroelettrico Pont Ventoux – Susa, Torino, Iren Energia (2013) 16
[4]
Ispra, http
//www.isprambiente.gov.it/Media/carg/
Fiorucci A., Materiale didattico – Geologia Applicata, Torino, Politecnico di Torino (2015)
[6].
Manzino A., Materiale didattico – Geomatica, Cap. Il posizionamento GNSS, Torino, Politecnico di Torino (2018)
[7] Manzina A. Matariala didattiaa. Coomatica Can Il nagizianamenta GNSS. Tarina
Politecnico di Torino (2018)
[8] Manzina A. Matariala didattian Commutian Con Laistami di riferimenta Tarina
Politecnico di Torino (2018)
[9] Manzino A., Materiale didattico – Geomatica, Cap. Il posizionamento GNSS, Torino,
Politecnico di Torino (2018)
[10]
Manzino A., Materiale didattico – Geomatica, Cap. Il trattamento delle misure, Torino, Politecnico di Torino (2018)
 [11] Manzino A., Materiale didattico – Geomatica, Cap. Il posizionamento GNSS, Torino, Politecnico di Torino (2018)
[12]
Manzino A., Materiale didattico – Geomatica, Cap. I sistemi di riferimento, Torino, Politecnico di Torino (2018)
[13]
Manzino A., Materiale didattico – Geomatica, Cap. I sistemi di riferimento, Torino, Politecnico di Torino (2018)
[14]
Pestana A., Techinacal Report Reading RINEX 2.11 Observationa Data Files, Porto, Instituto Superior de Engebheria do Porto (2015)
[15]
Bellone T., Materiale didattico – Topografia, Torino, Politecnico di Torino (2015) 53
Comoglio G., Topografia e Cartografia, Torino, Celid Librerie (2008)

134

[18]
Bellone T., Materiale didattico – Topografia, Torino, Politecnico di Torino (2015) 60
[19]
Manzino A., Materiale didattico – Geomatica, Cap. La fotogrammetria, Torino, Politecnico di Torino (2018).
[20]
Kraus K., Fotogrammetria, Vol.1 - Teoria e Applicazioni, Libreria Universitaria Levrotto & Bella (1994)
[21]
Manzino A., Materiale didattico – Geomatica, Cap. Il GIS, Torino, Politecnico di Torino (2018)
[22]
Manzino A., Materiale didattico – Geomatica, Cap. Il GIS, Torino, Politecnico di Torino (2018)
[23]
Scavia C., Materiale didattico – Meccanica delle rocce, Torino, Politecnico di Torino (2016)
[24]
Scavia C., Materiale didattico – Meccanica delle rocce, Torino, Politecnico di Torino
(2010)
Manzino A., Materiale didattico – Geomatica, Cap. La fotogrammetria, Torino, Politecnico di Torino (2018)

Allegati

Report LGO (pag. 137)

Report StarNet (pag. 142)

Report PhotoScan (pag. 164)

- when it has to be right

Rete Compensazione

www.MOVE3.com (c) 1993-2012 Grontmij Licenziato da Leica Geosystems AG

Creato: 03/31/2019 12:45:36

Informazioni progetto

0
0
0
TM
m wgs84
TM32WGS
00'
2/25/2019 20:35:59
LAREA

Compensazione Tipo: Dimensione: Sistema di coordinate: Modalità quota:	Costrizioni 3D WGS 1984 Ellissoidale		
Numero di iterazioni:	1		
Correzione coordinate massime nell'ultima iterazione: Stazioni	0.0000 m	~	(tolleranza raggiunta)
Numero di stazioni (parzialmente) note:	3		
Numero di stazioni sconosciute:	2		
Totale:	5		
Osservazioni			
Differenze coordinate GPS:	18 (6 baseline)		
Coordinate note:	9		
Totale:	27		
Sconosciuti			
Coordinate:	15		
Totale:	15		
Gradi di libertà: Test	12		
Alfa (multidimensionale):	0.3362		
Alfa 0 (monodimensionale):	5.0 %		
Beta:	80.0 %		
Sigma a priori (GPS):	10.0		
Valore critico test W:	1.96		
Valore critico test T (bidimensionale):	2.42		
Valore critico test T (tridimensionale):	1.89		
Valore critico test F:	1.12		
Test F:	7.16	Δ	(rifiutato)
Risultati basati su un fattore di varianza a posteriori			

Compensazione risultati

Coordinate								
Stazione		Coordinate		Corr		Do		
1000	Latitudine	45° 08' 27 03	8556" N	0 0011 m		0 0024 m		
1000		6° 57' 49 333	72" F	0.0014 m		0.0024 m		
	Quota	1092.5427 m		-0.0041 m		0.0046 m		
2000	Latitudine	45° 08' 22.52	2137" N	-0.0011 m		0.0024 m		
	Longitudine	6° 58' 01.382	252" E	-0.0013 m		0.0016 m		
	Quota	1088 5732 m		0.0036 m		0 0046 m		
BUSI	Latitudine	45° 08' 12 49	9356" N	0.0000 m		-	fis	si
DOOL		7° 09' 07 751	178" F	0.0000 m		_	fis	si
	Quota	496 1691 m		0.0000 m		fis	si	
CHOR	Latitudine	45° 23' 16 47	7581" N	0.0000 m		_	fie	ei
COOK	Longitudine	7° 38' 51 713		0.0000 m		_	fie	si ei
	Quota	/ 30 51.710		0.0000 m		_	fie	si ei
OSTA	Latitudina	403.0030 11	1291" NI	0.0000 m		-	lis	si
USIA	Langitudina	7° 11' 10 000	201 1	0.0000 m		-	lis	si
	Queta	1200 4022 m	539 E	0.0000 m		-	lis	si
	Quota	1309.4032 11	I	0.0000 111		-	115	51
Osservazior	ni e residui							
	Stazione	Obiettivo	Reg oss		Resid		Resid (ENH)	Dp
DX	1000	2000	63.3597 m		0.0003 m	า	-0.0001 m	0.0016 m
DY			272.9904 m		-0.0001 r	n	-0.0001 m	0.0007 m
DZ			-101.1288 m		0.0002 m	ו	0.0004 m	0.0015 m
DX	OSTA	2000	-32834.6881	m	-0.0310 r	n	0.0034 m	0.0037 m
DY			-21687.6051	m	-0.0005 r	n	0.0086 m	0.0016 m
DZ			35047.6093 ו	m	-0.0184 r	n	-0.0348 m	0.0036 m
DX	CUOR	2000	26664.9969 (m	-0.0038 r	n	0.0027 m	0.0037 m
DY			-50444.3632	m	0.0022 m	า	0.0043 m	0.0016 m
DZ			-18996.6823	m	0.0026 m	า	-0.0006 m	0.0036 m
DX	CUOR	1000	26601.6372	m	0.0040 m	า	-0.0103 m	0.0037 m
DY			-50717.3536	m	-0.0099 r	n	0.0015 m	0.0016 m
DZ			-18895.5535	m	0.0048 m	า	0.0053 m	0.0036 m
DX	BUSL	2000	1986.5513 m	1	0.0029 m	า	0.0007 m	0.0037 m
DY			-14426.6447	m	0.0010 m	า	-0.0012 m	0.0016 m
DZ			638.2964 m		0.0014 m	า	0.0031 m	0.0036 m
DX	BUSL	1000	1923.1916 m	1	0.0034 m	า	0.0008 m	0.0037 m
DY			-14699.6350	m	0.0012 m	า	-0.0017 m	0.0016 m
DZ			739.4252 m		0.0012 m	ו	0.0033 m	0.0036 m
Vettore resid	dui baseline GPS							
	Stazione	Obiettivo	Re	g vettore [r	n]	Resid [m]	Resid	[ppm]
DV	1000	2000	297	7.9350	-	0.0004	1.3	
DV	OSTA	2000	526	695.3876		0.0360	0.7	
DV	CUOR	2000	601	37.5904		0.0051	0.1	
DV	CUOR	1000	603	307.0393		0.0117	0.2	
DV	BUSL	2000	145	576.7584		0.0034	0.2	
DV	BUSL	1000	148	343.3381		0.0038	0.3	
Ellissi d'erro	ore assoluta (2D - 39.4% 1	D - 68.3%)						
Stazione	A [m]	B [m]	A/E	3		Phi	ου αυ	ota [m]
1000	0.0025	0.0016	1.6			12°	0.0046	
2000	0.0024	0.0016	1.6			12°	0.0046	i
BUSL	0.0000	0.0000	1.0			90°	0.0000	
CUOR	0.0000	0.0000	1.0			0°	0.0000)
OSTA	0.0000	0.0000	1.0			0°	0.0000)
_								_
Test ed er	rori stimati							
Test delle co	oordinate							

Stazione		MDB	BNR	Test W	Test T
BUSL	Latitudine	0.0146 m	999.9	0.00	0.00

	Longitudine	0.0100 m	999.9	0.00	
	Quota	0.0280 m	999.9	0.00	
CUOR	Latitudine	0.0168 m	999.9	0.00	0.00
	Longitudine	0.0116 m	999.9	0.00	
	Quota	0.0324 m	999.9	0.00	
OSTA	Latitudine	0.0226 m	999.9	0.00	0.00
	Longitudine	0.0160 m	999.9	0.00	
	Quota	0.0431 m	999.9	0.00	

Test delle osservazioni

	Stazione	Obiettivo	MDB	Rosso	BNR	Test W	Test T
DX	1000	2000	0.0174 m	4	12.9	0.84	0.51
DY			0.0089 m	4	12.6	-0.71	
DZ			0.0165 m	4	13.1	0.10	
DX	OSTA	2000	0.0307 m	91	0.9	-1.93	2.26 Å
DY			0.0159 m	91	0.9	0.12	
DZ			0.0270 m	89	0.9	-0.39	
DX	CUOR	2000	0.0316 m	92	0.8	-0.51	0.15
DY			0.0163 m	92	0.8	0.35	
DZ			0.0279 m	90	0.9	0.42	
DX	CUOR	1000	0.0287 m	90	0.9	0.21	1.64
DY			0.0149 m	90	0.9	-2.17 🔺	
DZ			0.0272 m	89	0.9	0.62	
DX	BUSL	2000	0.0178 m	61	2.2	0.55	0.20
DY			0.0091 m	62	2.2	0.47	
DZ			0.0171 m	64	2.1	-0.12	
DX	BUSL	1000	0.0177 m	60	2.3	0.72	0.31
DY			0.0091 m	59	2.3	0.59	
DZ			0.0169 m	62	2.2	-0.28	

Ridondanza:

Errori stimati (osservazioni)

Errori stimati per osservazioni con test W rifiutati (max. 10)

	Stazione	Obiettivo	Test W	Fatt	Err stim
DY	CUOR	1000	-2.17	1.1	-0.0115 m

Errori stimati per osservazioni con test W dell'altezza antenna rifiutati (max. 10)

Stazione	Obiettivo	Test W	Fatt	MDB [m]	Est ant err [m]
OSTA	2000	-2.32	1.2	0.0431	-0.0356

Errori stimati per osservazioni con test T rifiutati (max. 10)

	Stazione	Obiettivo	Test T	Fatt	Err stim
DX	OSTA	2000	2.26	1.1	-0.0340 m
DY					-0.0006 m
DZ					-0.0203 m
					-0.0203

MicroSurvey STAR*NET-PRO Version 7, 2, 2, 7 Run Date: Tue Apr 02 2019 14:39:05

Summary of Files Used and Option Settings

Project Folder and Data Files

Project Name 2018_12_03_CLAREA2 Data File List 1. 2018_12_03_Clarea.2dat

Project Option Settings

STAR*NET Run Mode	: Adjust with Error Propagation
Type of Adjustment	: 3D
Project Units	: Meters; GONS
Coordinate System	: UTM; Zone 32
Ellipsoid	: WGS-84
Major Axis; 1 / Flattening	: 6378137.000; 298.257223563000
Geoid Height	: 1050.0000 (Default, Meters)
Longitude Sign Convention	: Negative West
Input/Output Coordinate Order	: East-North
Angle Data Station Order	: At-From-To
Distance/Vertical Data Type	: Slope/Zenith
Convergence Limit; Max Iterations	: 0.001000; 10
Default Coefficient of Refraction	: 0.070000
Create Coordinate File	: Yes
Create Geodetic Position File	: No
Create Ground Scale Coordinate File	: No
Create Dump File	: No

Instrument Standard Error Settings

Project Default Instrument		
Distances (Constant)	:	0.003000 Meters
Distances (PPM)	:	2.00000
Angles	:	1.000000 MilliGons
Directions	:	1.000000 MilliGons
Azimuths & Bearings	:	1.000000 MilliGons
Zeniths	:	3.000000 MilliGons
Elevation Differences (Constant)	:	0.015240 Meters
Elevation Differences (PPM)	:	0.00000
Differential Levels	:	0.002403 Meters / Km
Centering Error Instrument	:	0.001000 Meters
Centering Error Target	:	0.001000 Meters
Centering Error Vertical	:	0.003000 Meters

Summary of Unadjusted Input Observations

Number of Entered Stations (Meters) = 2

Fixed Stations	E	N	Elev	Description
1000	339902.5070	5000613.5290	1038.5820	_
3000	339976.8610	5000559.9560	1034.5850	

Number of Measured Distance Observations (Meters) = 77

From	То	Distance	StdErr	HI	HT	Comb Grid	Туре
3000	1000	91.7830	0.0035	1.636	1.708	0.9995882	S
3000	1000	91.7830	0.0035	1.636	1.708	0.9995882	S
3000	F1	295.4100	0.0041	1.636	0.000	0.9995809	S
3000	F2	295.3850	0.0041	1.636	0.000	0.9995809	S
3000	F3	296.7920	0.0041	1.636	0.000	0.9995806	S
3000	F4	282.5720	0.0040	1.636	0.000	0.9995820	S
3000	F5	285.8230	0.0040	1.636	0.000	0.9995818	S
3000	F6	284.5830	0.0040	1.636	0.000	0.9995819	S
3000	F7	287.7620	0.0040	1.636	0.000	0.9995821	S
3000	F8	303.2340	0.0041	1.636	0.000	0.9995806	S
3000	F9	304.1370	0.0041	1.636	0.000	0.9995810	S
3000	F10	311.5380	0.0041	1.636	0.000	0.9995802	S
3000	G1	302.5570	0.0040	1.636	0.000	0.9995818	S
3000	G2	306.5560	0.0040	1.636	0.000	0.9995810	S
3000	G3	318.8120	0.0041	1.636	0.000	0.9995807	S
3000	G4	304.2550	0.0040	1.636	0.000	0.9995817	S
3000	G5	301.9110	0.0040	1.636	0.000	0.9995821	S
3000	G6	284.4370	0.0040	1.636	0.000	0.9995817	S
3000	G7	298.8860	0.0040	1.636	0.000	0.9995810	S
3000	E1	278.9980	0.0039	1.636	0.000	0.9995846	S
3000	E2	276.8990	0.0039	1.636	0.000	0.9995849	S
3000	E3	277.1800	0.0039	1.636	0.000	0.9995849	S
3000	E4	277.1790	0.0039	1.636	0.000	0.9995849	S
3000	E5	272.2270	0.0038	1.636	0.000	0.9995854	S
3000	Еб	273.5420	0.0038	1.636	0.000	0.9995852	S
3000	E7	278.5460	0.0039	1.636	0.000	0.9995846	S
3000	D1	344.7810	0.0042	1.636	0.000	0.9995790	S
3000	D2	346.3370	0.0042	1.636	0.000	0.9995790	S
3000	D3	351.4320	0.0042	1.636	0.000	0.9995785	S
3000	D4	339.0730	0.0041	1.636	0.000	0.9995795	S
3000	D5	344.2470	0.0042	1.636	0.000	0.9995788	S
3000	D6	346.4540	0.0042	1.636	0.000	0.9995784	S
3000	D7	331.0570	0.0041	1.636	0.000	0.9995798	S
3000	C1	355.5550	0.0041	1.636	0.000	0.9995792	S
3000	C2	357.0630	0.0042	1.636	0.000	0.9995791	S
3000	C3	351.1530	0.0041	1.636	0.000	0.9995798	S
3000	C4	349.1140	0.0041	1.636	0.000	0.9995799	S
3000	C5	349.4940	0.0041	1.636	0.000	0.9995795	S
3000	C6	353.6820	0.0041	1.636	0.000	0.9995795	S
3000	С7	357.6830	0.0041	1.636	0.000	0.9995792	S
3000	C8	357.6790	0.0041	1.636	0.000	0.9995792	S
3000	С9	353.3840	0.0041	1.636	0.000	0.9995792	S
3000	C10	354.7030	0.0041	1.636	0.000	0.9995795	S
3000	C11	348.2510	0.0041	1.636	0.000	0.9995798	S
3000	C12	347.7620	0.0041	1.636	0.000	0.9995794	S
3000	C13	352.2960	0.0041	1.636	0.000	0.9995791	S
3000	C14	338.8540	0.0041	1.636	0.000	0.9995802	S
3000	C15	345.8610	0.0041	1.636	0.000	0.9995801	S
3000	C16	348.2860	0.0041	1.636	0.000	0.9995800	S
3000	C17	374.4130	0.0042	1.636	0.000	0.9995780	S
3000	C18	359.4710	0.0042	1.636	0.000	0.9995788	S
3000	D8	342.9580	0.0041	1.636	0.000	0.9995791	S
3000	D9	344.3060	0.0041	1.636	0.000	0.9995791	S
3000	D10	344.2080	0.0042	1.636	0.000	0.9995789	S
3000	D11	355.1210	0.0042	1.636	0.000	0.9995782	S
3000	D12	339.0720	0.0041	1.636	0.000	0.9995795	S

3000	D13	332.3540	0.0041 1	.636 0	0.000	0.9995799	S
3000	D14	338.8830	0.0041 1	.636 0	0.000	0.9995793	S
3000	15	345 0930	0 0042 1	636 (0 9995785	S
2000	D10 E0	275 0710		.000 0		0.0005051	0
3000	E0	275.0710	0.0038 1	.636	0.000	0.9995851	5
3000	E9	274.9450	0.0038 1	.636 (0.000	0.9995852	S
3000	E10	281.6400	0.0039 1	.636 0	0.000	0.9995844	S
3000	E11	275.7700	0.0039 1	.636 0	0.000	0.9995850	S
3000	E12	275 6620	0 0039 1	636 (0 9995850	S
2000	<u>шт</u> 2 С0	273.0020	0.00000 1	.000 0		0.0005000	0
3000	Go	303.3670	0.0040 1	.636	0.000	0.9995808	5
3000	G9	303.8660	0.0040 1	.636 (0.000	0.9995811	S
3000	G10	299.0260	0.0040 1	.636 0	0.000	0.9995817	S
3000	G11	304.0520	0.0040 1	.636 0	0.000	0.9995816	S
3000	G12	301.5990	0.0040 1	.636 (0.000	0.9995823	S
3000	G1 3	303 7100	0 0040 1	636 0		0 9995822	S
3000	C14	305 3310		636 0		0 0005015	c
2000	G14 G1F	204 5100	0.0040 1	.000 0		0.9999015	0
3000	GIS	304.5100	0.0040 1	.636 (0.000	0.9995815	5
3000	F11	293.3020	0.0041 1	.636 (0.000	0.9995809	S
3000	F12	295.4780	0.0041 1	.636 0	0.000	0.9995808	S
3000	F13	292.4150	0.0041 1	.636 0	0.000	0.9995811	S
3000	F14	304.5850	0.0041 1	.636 0	0.000	0.9995804	S
3000	F15	287.4830	0.0040 1	.636 (0.000	0.9995816	S
	-						-
	Ν	Number of Zenith	Observatio	ns (GONS	5) = 78		
From	То	Zenith	StdErr	ΗI	H	Т	
3000	1000	97.183050	4.20	1.636	1.70	8	
3000	1000	97.183280	4.20	1.636	1.70	8	
3000	1000	97.182580	4.20	1.636	1.70	8	
3000	F1	78 783210	3 12	1 636	0 00	0	
3000	エ 上 〒 つ	70,701/20	3 1 2	1 636	0.00	0	
3000	FZ	70.701420	J.12 2 1 2	1.050	0.00	0	
3000	E.3	/8.346040	3.12	1.636	0.00	0	
3000	F4	81.495380	3.14	1.636	0.00	0	
3000	F5	81.004580	3.13	1.636	0.00	0	
3000	F6	80.931080	3.14	1.636	0.00	0	
3000	F7	81.383490	3.13	1.636	0.00	0	
3000	F8	78.315000	3.12	1.636	0.00	0	
3000	г٩	79 534290	3 12	1 636	0 00	0	
2000	F10	75.001250	2 1 1	1 626	0.00	0	
2000	F10	77.700320	J.II 2 10	1.050	0.00	0	
3000	GI	84.225940	3.12	1.636	0.00	0	
3000	G2	82.059320	3.12	1.636	0.00	0	
3000	G3	82.061260	3.11	1.636	0.00	0	
3000	G4	84.000160	3.12	1.636	0.00	0	
3000	G5	84.878560	3.12	1.636	0.00	0	
3000	G6	82.699290	3.14	1.636	0.00	0	
3000	G7	81.721430	3.12	1.636	0.00	0	
3000	E1	91 486850	3 15	1 636	0 00	0	
3000	E2	92 273290	3 15	1 636	0.00	0	
2000		92.273290	J.15 2 1 F	1.030	0.00	0	
3000	E3	92.438560	3.15	1.636	0.00	0	
3000	E4	92.438620	3.15	1.636	0.00	0	
3000	E5	93.487520	3.16	1.636	0.00	0	
3000	ЕG	92.964240	3.16	1.636	0.00	0	
3000	E7	91.429950	3.15	1.636	0.00	0	
3000	D1	79.357940	3.09	1.636	0.00	0	
3000	D2	79 456810	3.09	1.636	0 00	0	
3000	 20	78 701790	2.0J 2 N9	1 636	0 00	0	
3000		Q0 210100	2.09	1 636	0.00	0	
2000		70 000070	J.IU	1 ()(0.00	0	
3000	5U 5	18.898210	3.09	1.030	0.00	0	
3000	Dθ	//.842680	3.09	1.636	0.00	U	
3000 3000 3000 3000 3000 3000 3000 300	D7 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 D8 D9 D10 D11 D12 D13 D14 D15 E8 E9 E10 E11 E12 G8 G9 G10 G11 G12 G13 G14 G15 F11 F12 F13 F14	80.54154080.81230080.67184081.95863082.06938081.16966081.33103080.77668080.77393080.76619081.35661081.89504081.02051080.54879082.33797082.55738082.36071079.97627079.54748079.50674079.19623078.04437080.31975081.00144079.79366077.97849092.88244093.01311091.07973092.50603092.59304081.27978082.08795083.60353083.53842085.50930085.44731083.54559083.52727078.73726078.69495079.23824077.891430	3.10 3.09 3.09 3.09 3.09 3.09 3.09 3.09 3.0	1.636 1.63			
---	--	---	---	---	--------	-----	----
3000	F15	80.372410	3.13	1.636	0.000		
	Number of	Measured Direc	tion Obser	vations	(GONS)	= '	78
From	То	Direction	StdErr	t-T			
Set 1 3000 3000 3000 3000	1000 1000 1000 F1	0.000000 0.000010 0.001270 309.806740	1.40 1.40 1.40 1.05	0.07 0.07 0.07 -0.25			
3000	r∠ F3	309.810650	1.05	-0.25			
3000	F4	307.198170	1.05	-0.25			

	_			
3000	F5	309.618550	1.05	-0.24
3000	F6	310 904950	1 05	-0 24
2000		216 702070	1 05	0.00
3000	E /	315./832/0	1.05	-0.22
3000	F8	312.159770	1.05	-0.25
3000	F9	315 412780	1 05	-0 23
5000	F 9	515.412700	1.05	0.25
3000	F10	312.536520	1.05	-0.25
3000	G1	272.642520	1.05	-0.36
2000	61 62	272.157060	1 0 5	0.00
3000	G2	2/2.15/260	1.05	-0.36
3000	G3	270.699650	1.04	-0.38
3000	C1	270 325960	1 05	-0 36
5000	54	270.525500	1.05	0.50
3000	G5	2/2.016400	1.05	-0.36
3000	G6	277.728680	1.05	-0.33
3000	C7	275 014650	1 05	_0 35
5000	97	275.014050	1.05	0.55
3000	El	265.303630	1.05	-0.35
3000	E2	265.162690	1.05	-0.34
2000	E 2	262 520020	1 05	0 24
3000	E S	202.329930	1.05	-0.54
3000	E4	262.530150	1.05	-0.34
3000	E 5	265 263860	1.05	-0.34
2000		2001200000	1 05	0.24
3000	ЕO	267.100430	1.05	-0.34
3000	E7	267.184380	1.05	-0.34
3000	1ח	267 627650	1 04	-0 41
2000		207:027030	1 0 1	0.11
3000	DZ	266.534/10	1.04	-0.41
3000	D3	266.896500	1.04	-0.41
3000	D4	267 632910	1 04	-0 40
2000		200 00000	1 0 4	0.10
3000	D3	269.600230	1.04	-0.40
3000	D6	270.368930	1.04	-0.40
3000	D7	270.201200	1.04	-0.39
3000	C1	260 150210	1 03	_0 /3
2000		200.130210	1.05	0.10
3000	C2	261.522130	1.03	-0.43
3000	C3	261.355370	1.04	-0.42
3000	C4	259 824310	1 04	-0 42
2000	G F		1 0 4	0 40
3000	05	238.318/70	1.04	-0.42
3000	C6	262.162060	1.03	-0.42
3000	С7	262.160630	1.03	-0.43
2000	C °	262 146620	1 0 2	0 12
3000	Co	202.140020	1.05	-0.43
3000	C9	259.375950	1.04	-0.42
3000	C10	260.034750	1.03	-0.43
2000	C11	250 045020	1 0 4	0 4 2
5000		239.043930	1.04	-0.42
3000	C12	255.063770	1.04	-0.41
3000	C13	253.986930	1.04	-0.42
3000	C14	254 982870	1 04	-0 41
2000		251.902070	1 0 1	0.11
3000	015	258.214400	1.04	-0.42
3000	C16	262.484320	1.04	-0.42
3000	C17	263 264790	1.03	-0.44
2000	01 0 G1 0	200.10070	1 00	0.12
3000	C18	260.165870	1.03	-0.43
3000	D8	268.301190	1.04	-0.40
3000	D9	268 138030	1 04	-0.41
2000	D10	260 100060	1 0 4	0 11
3000	DIU	208.100800	1.04	-0.41
3000	D11	268.050490	1.04	-0.42
3000	D12	267.632270	1.04	-0.40
3000	13	269 791270	1 0 1	-0.30
2000		200.704270	1.04	0.59
3000	DI4	268.984/50	⊥.04	-0.40
3000	D15	271.015430	1.04	-0.40
3000	E8	263,974380	1.05	-0.34
3000	 F0	263 201010	1 05	_0 34
5000	ビジ 	203.30101U	1.00	-0.34
3000	EIO	263.231640	1.05	-0.35
3000	E11	264.050780	1.05	-0.34
3000	E12	265,020320	1.05	-0.34
		200.020020		J.J.

3000	G8	273.581200	1.05	-0.36
3000	G9	274.026800	1.05	-0.36
3000	G10	274.434350	1.05	-0.35
3000	G11	272.606380	1.05	-0.36
3000	G12	269.498580	1.05	-0.36
3000	G13	267.994930	1.05	-0.37
3000	G14	270.453090	1.05	-0.36
3000	G15	271.651380	1.05	-0.36
3000	F11	308.826920	1.05	-0.25
3000	F12	309.936310	1.05	-0.25
3000	F13	309.427700	1.05	-0.25
3000	F14	311.297940	1.05	-0.25
3000	F15	309.558990	1.05	-0.25

Adjustment Statistical Summary

	Iterations	5	=	2
	Number of	Stations	=	77
	Number of Number of Number of	Observations Unknowns Redundant Obs	= =	233 226 7
Observation	Count	Sum Squares of StdRes		Error Factor
Directions	78	0.543		0.481
Distances	77	20.566		2.982
Zeniths	78	6.467		1.661
Total	233	27.575		1.985

Warning: The Chi-Square Test at 5.00% Level Exceeded Upper Bound Lower/Upper Bounds (0.491/1.512)

Adjusted Station Information

Adjusted Coordinates (Meters)

Station	E	Ν	Elev	Description
1000	339902.5070	5000613.5290	1038.5820	-
3000	339976.8610	5000559.9560	1034.5850	
F1	339780.9382	5000361.2710	1132.8659	
F2	339780.9445	5000361.3017	1132.8655	
F3	339789.4299	5000352.3884	1135.2416	
F4	339794.9115	5000359.6539	1117.2094	
F5	339785.6978	5000364.9480	1120.2499	
F6	339782.7119	5000369.7471	1120.1993	
F7	339765.9388	5000382.8321	1119.1814	
F8	339768.8867	5000364.0851	1137.5304	
F9	339757.0632	5000373.1868	1132.3236	
F10	339762.6760	5000360.6145	1142.8593	
G1	339920.1583	5000272.2987	1110.4291	
G2	339922.1396	5000270.7492	1121.4789	
G3	339926.8522	5000257.9603	1124.8784	
G4	339930.4437	5000269.0645	1111.8913	

G5	339922.9686	5000271.6395	1107.2664
CG	339902 6165	5000296 3290	1112 5764
90	555502.0105	5000290.5290	1112.5704
G7	339911.0131	5000281.0960	1120.8682
F:1	339954 9538	5000284 4340	1073 4239
	000000000	5000204.4540	1075.4255
E2	339955.6906	5000286.0256	1069.7511
E3	339967.0209	5000285.0198	1069.0708
	220067 0200		1000 0704
上4	339967.0200	5000285.0208	1069.0704
E5	339955.5742	5000290.1033	1064.0256
F6	339917 6815	5000289 7670	1066 3957
	555547.0045	5000205.7070	1000.3337
E7	339946.8772	5000285.6795	1073.6103
D1	339939.1003	5000235.4708	1146.0730
	220044 5142	E000222 2222	1146 0500
DZ	339944.3142	5000255.2552	1140.0000
D3	339942.2949	5000229.9561	1151.6196
D4	339939 5147	5000239 2626	1139 3897
	000000000000000000000000000000000000000	5000235.2020	11.10.05.00
D5	339929.2568	5000238.0884	1148.2560
D6	339925.3467	5000238.5168	1154.3904
27	220027 7444		1125 0400
DT	559927.7444	5000248.2258	1133.8480
C1	339977.4058	5000220.5745	1141.7778
C2	339970 0686	5000219 4370	1142 9776
02	555576.0000	5000219.1570	1142.0770
C3	339971.0227	5000223.0042	1134.4163
C4	339979.1152	5000224.7488	1133.2629
C F	220005 0601	5000225 0062	1120 1022
0	339903.9001	JUUUZZJ.900Z	1130.1033
C6	339966.7105	5000221.6700	1138.4663
C7	339966 6307	5000218 7557	1142 6007
		5000210.7557	1142.0007
C8	339966./061	5000218./618	1142.6143
С9	339981.5037	5000222.7543	1141.3776
C1 0	220070 0216	5000220 5016	1120 6251
CIU	559970.0210	JUUUZZU.JUIU	1130.0231
C11	339983.1927	5000225.8961	1133.9387
C12	340003 9128	5000228.7797	1138 3774
01.2	240000 0000		1140 0010
013	340009.8600	5000225./456	1142.2018
C14	340003.7944	5000235.3136	1129.0366
C15	330087 5137	5000227 3083	1120 8001
	559907.5157	5000227.5005	1129.0091
C16	339965.1237	5000225.3026	1131.5007
C17	339960.1268	5000206.5692	1158.3565
C10	220077 2255	5000210 2671	11/7 /200
	339911.3233	JUUU210.2071	1147.4390
D8	339935.8464	5000237.2807	1144.5238
90	339936 5241	5000235 9771	1145 1585
D10			1146 7100
DIU	339936.7905	5000236.5766	1146./188
D11	339936.0428	5000228.3925	1156.2886
12	339939 5179	5000239 2622	1139 3861
	00000	5000255.2022	1100.0001
DI3	339934.433/	5000245.2750	1133.9461
D14	339932.8564	5000241.1608	1141.9927
ח 1 5	330000 0500	5000240 0704	1153 2330
DIJ	559922.2502	5000240.0704	1133.2339
E8	339960.8952	5000287.1832	1066.9156
E 9	339963.4380	5000287.1091	1066.3407
 E10	220062 0202	E000201 4001	1075 5604
EIU	339963.8203	5000281.4981	10/5.5604
E11	339960.5376	5000286.6958	1068.6134
E12	339956 3828	5000287 0392	1068 2265
			1104 1505
GO	339916.340/	5000276.0720	1124.153/
G9	339914.2177	5000274.9661	1120.5995
G10	339913 0028	5000278 0581	1112 2027
			1110 00:00
GII	339920.2008	5000271.6519	1113.9747
G12	339934.3549	5000269.3527	1104.2853
C13	330010 0006	5000266 4557	1105 0/00
GIJ	JJJJJ4U.J000	5000200.4337	1103.0499
G14	339929.7843	5000268.6719	1114.2686
G15	339924 4555	5000270.4123	1114.1434
 E-1-1	220705 4420	E0002E0 7004	1120 2700
ГТТ	JJY/0J.4432	JUUUJJY./684	1132.3/02
F12	339780.5834	5000361.7199	1133.2751

F13	339783.6268	5000361.6496	1129.9085
F14	339771.1335	5000360.8776	1139.8896
F15	339785.3673	5000364.2450	1123.4623

Adjusted Positions and Ellipsoid Heights (Meters) (Average Geoid Height = 1050.000 Meters)

Station	Latitude	Longitude	Ellip Ht
1000	45-08-27.035537	6-57-49.333709	2088.5820
3000	45-08-25.361215	6-57-52.797888	2084.5850
F1	45-08-18.766742	6-57-44.061879	2182.8659
F2	45-08-18.767744	6-57-44.062132	2182.8655
 F3	45-08-18.486011	6-57-44.460692	2185.2416
F 4	45-08-18.725785	6-57-44.703137	2167.2094
 F5	45-08-18 889712	6-57-44 275426	2170 2499
F6	45-08-19 042695	6-57-44 133262	2170 1993
F7	45-08-19 452761	6-57-43 350655	2169 1814
F8	45-08-18 848037	6-57-43 507180	2187 5304
F9	45-08-19 133141	6-57-42 955657	2182 3236
F10	45-08-18 730566	6-57-43 227000	2192.8593
G1	45-08-15 998978	6-57-50 534890	2160 4291
G2	45-08-15 950414	6-57-50 627336	2171 4789
C2	45-08-15 540081	6-57-50 857717	2174 8784
GJ GA	45-08-15 902629	6-57-51 009249	2161 8913
C5	45-08-15 979921	6-57-50 664240	2157 2664
GS G6	45-08-16 762900	6 = 57 = 49 = 704512	2162 5764
G0 C7	45-08-16 276422	6-57-50 106283	2170 8682
G7 F1	45-08-16 420379	6-57-52 113051	2123 1239
E1 F2	45-08-16 472525	$6 - 57 - 52 \cdot 113031$	2123.4255
E2	45-08-16 449195	6-57-52 664533	2119.7511
E3 F1	45-08-16 449226	6-57-52 664489	2119.0700
	45 08 10.449220	6-57-52 134904	2119.0704
ES F6	45-08-16 587160	6 = 57 = 51 = 774278	2114.0250
E0 E7	45-08-16 454127	6-57-51 742048	2123 6103
הם 1	45 08 10.454127	6-57-51 444079	2125.0105
D1 D2	45-08-14 753689	6-57-51 694384	2196.0730
2D אם	45-08-14 645749	6-57-51 596613	2201 6196
	45 08 14.045749	6-57-51 458670	2189 3897
	45 08 14.944070	6-57-50 990655	2109.3097
DS	45 08 14.090401	6-57-50 811245	2190.2900
00 ק	45-08-15 225486	6-57-50 909766	2185 8480
C1	45-08-14 370563	6-57-53 213099	2103.0400
C2	45-08-14 327740	6-57-52 879578	2102 0776
C2	45-08-14.527740	$6 = 57 = 52 \cdot 67 = 57 \cdot 6$	2192.9770
C.A	45-08-14 507144	6-57-53 287402	2183 2629
C5	45-08-14 550212	6-57-53 599271	2188 1033
C6	45 08 14.550212	6-57-52 723349	2188 4663
C0 C7	45-08-14 302869	6-57-52 723058	2100.4003
C 9	45 00 14.502009	6-57-52 726498	2192.0007
CO	45-08-14.505150	6-57-53 308002	2192.0143
CJ 0	45-08-14.444500	6-57-53 242259	2191.3770
C11	45-08-14.500/05	6-57-53 170653	2183 0387
C12	15 00 11.54/02/ 15-08-17 657016	6_57_5/ /17/00	2102.2007
C13	15-08-17 567507	6-57-51 603012	2100.3774
C14	45-08-17 869722	6-57-54 101177	2179 N366
C15	15 00 14.009422 15-08-17 506005	6-57-53 6607//	2179.0300
C16	45-08-17 513667	6-57-52 6/6552	2181 5007
C17	45-08-13 002006	6-57-52 130507	2202.3007
	コリ しし エン・グレムログロ	0 07 02.400007	2200.0000

C18	45-08-14.295771	6-57-53.212982	2197.4390
D8	45-08-14.877698	6-57-51.293104	2194.5238
D9	45-08-14.836032	6-57-51.325619	2195.1585
D10	45-08-14.855666	6-57-51.337116	2196.7188
D11	45-08-14.590010	6-57-51.312336	2206.2886
D12	45-08-14.944865	6-57-51.458817	2189.3861
D13	45-08-15.135447	6-57-51.219246	2183.9461
D14	45-08-15.000917	6-57-51.151816	2191.9927
D15	45-08-14.956955	6-57-50.668132	2203.2339
E8	45-08-16.514262	6-57-52.381745	2116.9156
E9	45-08-16.513937	6-57-52.498179	2116.3407
E10	45-08-16.332533	6-57-52.522141	2125.5604
E11	45-08-16.498186	6-57-52.365943	2118.6134
E12	45-08-16.505915	6-57-52.175433	2118.2265
G8	45-08-16.118226	6-57-50.365005	2174.1537
G9	45-08-16.080517	6-57-50.259988	2170.5995
G10	45-08-16.179660	6-57-50.200833	2162.3937
G11	45-08-15.978064	6-57-50.537581	2163.9747
G12	45-08-15.915153	6-57-51.187881	2154.2853
G13	45-08-15.826748	6-57-51.494765	2155.0499
G14	45-08-15.889376	6-57-50.979532	2164.2686
G15	45-08-15.941392	6-57-50.733694	2164.1434
F11	45-08-18.721760	6-57-44.269753	2182.3762
F12	45-08-18.780991	6-57-44.045130	2183.2751
F13	45-08-18.781201	6-57-44.184468	2179.9085
F14	45-08-18.745996	6-57-43.613694	2189.8896
F15	45-08-18.866675	6-57-44.261117	2173.4623

Convergence Angles (GONS) and Grid Factors at Stations (Grid Azimuth = Geodetic Azimuth - Convergence) (Elevation Factor Includes a 1050.00 Meter Geoid Height Correction)

	Convergence		Factors -	
Station	Angle	Scale	x Elevation	= Combined
1000	-1.604133	0.99991516	0.99967265	0.99958784
3000	-1.603361	0.99991487	0.99967328	0.99958818
F1	-1.605223	0.99991564	0.99965788	0.99957355
F2	-1.605223	0.99991564	0.99965788	0.99957355
F3	-1.605133	0.99991561	0.99965751	0.99957315
F4	-1.605082	0.99991559	0.99966033	0.99957595
F5	-1.605177	0.99991562	0.99965986	0.99957551
F6	-1.605209	0.99991564	0.99965986	0.99957553
F7	-1.605384	0.99991570	0.99966002	0.99957575
F8	-1.605345	0.99991569	0.99965715	0.99957287
F9	-1.605468	0.99991574	0.99965796	0.99957373
F10	-1.605405	0.99991572	0.99965631	0.99957206
G1	-1.603784	0.99991509	0.99966139	0.99957652
G2	-1.603764	0.99991509	0.99965966	0.99957478
G3	-1.603710	0.99991507	0.99965913	0.99957423
G4	-1.603680	0.99991505	0.99966117	0.99957625
G5	-1.603756	0.99991508	0.99966189	0.99957700
G6	-1.603972	0.99991516	0.99966106	0.99957625
G7	-1.603880	0.99991513	0.99965976	0.99957492
E1	-1.603442	0.99991496	0.99966719	0.99958218
E2	-1.603436	0.99991496	0.99966777	0.99958275
E3	-1.603322	0.99991491	0.99966787	0.99958281
E4	-1.603322	0.99991491	0.99966787	0.99958281
E5	-1.603439	0.99991496	0.99966866	0.99958365

	1			
E 6	-1.603518	0.99991499	0.99966829	0.99958331
E7	-1.603524	0.99991499	0.99966716	0.99958218
D1	-1.603576	0.99991502	0.99965581	0.99957086
D2	-1.603521	0.99991500	0.99965581	0.99957084
۶a	-1 603541	0 99991501	0 99965494	0 99956998
	-1 603574	0.0001502	0.999905191	0.999950990
	1.003374	0.99991302	0.99900000	0.999957190
D5	-1.603676	0.99991506	0.99965547	0.9995/056
D6	-1.603715	0.99991507	0.99965451	0.99956961
D7	-1.603696	0.99991507	0.99965741	0.99957251
C1	-1.603185	0.99991487	0.99965648	0.99957138
C2	-1.603258	0.99991490	0.99965629	0.99957122
С3	-1.603250	0.99991489	0.99965764	0.99957256
C 4	-1 603170	0 99991486	0 99965782	0 99957271
C 5	-1 603102	0.999991100	0.999905702	0 00057102
CC CC	1 602202	0.00001401	0.00065700	0.00057104
	-1.603293	0.99991491	0.99965700	0.99957194
C /	-1.603292	0.99991491	0.99965635	0.9995/129
C8	-1.603292	0.99991491	0.99965635	0.99957129
C9	-1.603145	0.99991485	0.99965655	0.99957143
C10	-1.603179	0.99991487	0.99965698	0.99957187
C11	-1.603130	0.99991485	0.99965771	0.99957259
C12	-1 602924	0 99991477	0 99965702	0 99957181
C13	-1 602863	0 99991474	0 99965642	0 99957119
	1 602000	0.00001477	0.00065040	0.999957119
	-1.602929	0.999914//	0.99965848	0.99957527
C15	-1.603088	0.99991483	0.99965836	0.9995/322
C16	-1.603311	0.99991492	0.99965809	0.99957304
C17	-1.603351	0.99991494	0.99965388	0.99956885
C18	-1.603185	0.99991487	0.99965560	0.99957049
D8	-1.603610	0.99991503	0.99965605	0.99957111
D9	-1.603602	0.99991503	0.99965595	0.99957101
D10	-1 603600	0 99991503	0 99965571	0 99957077
D10	-1 603603	0.0001503	0.00065/21	0 99956927
	1.003003	0.99991303	0.999903421	0.99990927
	-1.603574	0.99991502	0.99965686	0.9995/191
DI3	-1.603628	0.99991504	0.99965771	0.9995/2/8
D14	-1.603642	0.99991505	0.99965645	0.99957152
D15	-1.603747	0.99991509	0.99965469	0.99956980
E8	-1.603384	0.99991493	0.99966821	0.99958317
E9	-1.603359	0.99991492	0.99966830	0.99958325
E10	-1.603352	0.99991492	0.99966686	0.99958181
F.11	-1 603387	0 99991494	0 99966795	0 99958291
F12	-1 603429	0.00001/05	0.999900799	0.99990291
	1 602022	0.0001511	0.00065024	0.00057420
Go	-1.603822	0.99991511	0.99965924	0.99957438
G9	-1.603845	0.99991512	0.99965980	0.9995/495
G10	-1.603859	0.99991512	0.99966109	0.99957624
G11	-1.603784	0.99991509	0.99966084	0.99957596
G12	-1.603641	0.99991504	0.99966236	0.99957742
G13	-1.603573	0.99991501	0.99966224	0.99957728
G14	-1.603686	0.99991506	0.99966079	0.99957588
G15	-1.603740	0.99991508	0.99966081	0.99957592
 F11	-1 605177	0 99991563	0 99965796	0 99957361
	1 605007	0.00001 ECA	0.00000000000000000000000000000000000	0.00057340
	-1.0U3ZZ/	0.99991364	U. 33303/81	0.99997/349
FIJ J	-1.605196	0.99991563	0.99965834	0.9995/400
E'⊥4	-1.605321	0.99991568	0.99965678	0.99957249
F15	-1.605180	0.99991563	0.99965935	0.99957501
Project Averages:	-1.603830	0.99991511	0.99965985	0.99957499

Adjusted Observations and Residuals

Adjusted Measured Distance Observations (Meters)

From	То	Distance	Residual	StdErr	StdRes
3000	1000	91 7718	-0.0112	0.0035	3.2*
3000	1000	91 7718	-0 0112	0 0035	3.2*
3000	F1	295 4100	-0 0000	0 0041	0.0
3000	F2	295,3100	-0.0000	0.0041	0.0
2000	F2	295.5050	0.0000	0.0041	0.0
3000		290.7920	-0.0000	0.0041	0.0
3000	F 4	282.5720	-0.0000	0.0040	0.0
3000	F'S	285.8230	-0.0000	0.0040	0.0
3000	F.0	284.5830	-0.0000	0.0040	0.0
3000	F. 1	287.7620	-0.0000	0.0040	0.0
3000	F8	303.2340	-0.0000	0.0041	0.0
3000	F9	304.1370	-0.0000	0.0041	0.0
3000	F10	311.5380	-0.0000	0.0041	0.0
3000	G1	302.5570	-0.0000	0.0040	0.0
3000	G2	306.5560	-0.0000	0.0040	0.0
3000	G3	318.8120	-0.0000	0.0041	0.0
3000	G4	304.2550	-0.0000	0.0040	0.0
3000	G5	301.9110	-0.0000	0.0040	0.0
3000	G6	284.4370	-0.0000	0.0040	0.0
3000	G7	298.8860	-0.0000	0.0040	0.0
3000	E1	278.9980	-0.0000	0.0039	0.0
3000	E2	276.8990	-0.0000	0.0039	0.0
3000	E3	277.1800	0.0000	0.0039	0.0
3000	E4	277.1790	-0.0000	0.0039	0.0
3000	E5	272.2270	-0.0000	0.0038	0.0
3000	=0 Еб	273.5420	-0.0000	0.0038	0.0
3000	E7	278.5460	-0.0000	0.0039	0.0
3000	י <u>ב</u> 1	344 7810	-0.0000	0 0042	0 0
3000	D1 D2	346 3370	-0.0000	0.0042	0.0
3000	D2 D3	351 1320	-0.0000	0.0042	0.0
3000		330 0730	-0.0000	0.0042	0.0
3000	D4 DE	244 2470	-0.0000	0.0041	0.0
3000	D5	344.2470	-0.0000	0.0042	0.0
3000	D6	346.4540	-0.0000	0.0042	0.0
3000	D7	331.0570	-0.0000	0.0041	0.0
3000		355.5550	-0.0000	0.0041	0.0
3000	C2	357.0630	-0.0000	0.0042	0.0
3000	C3	351.1530	-0.0000	0.0041	0.0
3000	C4	349.1140	-0.0000	0.0041	0.0
3000	C5	349.4940	-0.0000	0.0041	0.0
3000	C6	353.6820	-0.0000	0.0041	0.0
3000	C7	357.6830	-0.0000	0.0041	0.0
3000	C8	357.6790	-0.0000	0.0041	0.0
3000	C9	353.3840	-0.0000	0.0041	0.0
3000	C10	354.7030	-0.0000	0.0041	0.0
3000	C11	348.2510	-0.0000	0.0041	0.0
3000	C12	347.7620	-0.0000	0.0041	0.0
3000	C13	352.2960	-0.0000	0.0041	0.0
3000	C14	338.8540	-0.0000	0.0041	0.0
3000	C15	345.8610	-0.0000	0.0041	0.0
3000	C16	348.2860	-0.0000	0.0041	0.0
3000	C17	374.4130	-0.0000	0.0042	0.0
3000	C18	359.4710	-0.0000	0.0042	0.0
3000	D8	342.9580	-0.0000	0.0041	0.0
3000	D9	344.3060	-0.0000	0.0041	0.0
3000	D10	344.2080	-0.0000	0.0042	0.0
3000	 D11	355.1210	-0.0000	0.0042	0_0
	-				

3000 3000 3000 3000 3000 3000 3000 300	D12 D13 D14 D15 E8 E9 E10 E11 E12 G8 G9 G10 G11 G12 G13 G14 G15	339.0720 332.3540 338.8830 345.0930 275.0710 274.9450 281.6400 275.7700 275.6620 303.3670 303.8660 299.0260 304.0520 301.5990 303.7100 305.3310 304.5100	$\begin{array}{c} -0.0000\\ -0.000\\ -$	0.0041 0.0041 0.0042 0.0038 0.0039 0.0039 0.0039 0.0039 0.0040	$\begin{array}{c} 0 \ . \ 0 \\ 0 \ . \ 0 \ . \ 0 \\ 0 \ . \ 0 \ . \ 0 \\ 0 \ . \$
3000	F11	293.3020	-0.0000	0.0041	0.0
3000	F12	295.4780	-0.0000	0.0041	0.0
3000	F13	292.4150	-0.0000	0.0041	0.0
3000	F15	287.4830	-0.0000	0.0041	0.0
	Adjusted 2	Zenith Observation	s (GONS)		
From	То	Zenith	Residual	StdErr	StdRes
3000	1000	97.176808	-0.006242	4.20	1.5
3000	1000	97.176808	-0.006472	4.20	1.5
3000	1000	97.176808	-0.005772	4.20	1.4
3000	F.T E.S	78.783210 79.791420	-0.000000	3.1Z 3.12	0.0
3000	г∠ F3	78.701420		3.12	0.0
3000	F4	81.495380	-0.000000	3.14	0.0
3000	 F5	81.004580	-0.000000	3.13	0.0
3000	F6	80.931080	0.00000	3.14	0.0
3000	F7	81.383490	0.000000	3.13	0.0
3000	F8	78.315000	-0.000000	3.12	0.0
3000	F9	79.534290	-0.000000	3.12	0.0
3000	F10	77.760320	-0.000000	3.11	0.0
3000	GI	84.225940	0.000000	3.12	0.0
3000	GZ	82.059320	-0.000000	3.1Z 3.11	0.0
3000	G3 G4	84,000160	0.000000	3.12	0.0
3000	G5	84.878560	-0.000000	3.12	0.0
3000	G6	82.699290	0.00000	3.14	0.0
3000	G7	81.721430	-0.000000	3.12	0.0
3000	E1	91.486850	0.00000	3.15	0.0
3000	E2	92.273290	0.000000	3.15	0.0
3000	E3	92.438560	0.00000	3.15	0.0
3000	E4	92.438620	0.00000	3.15	0.0
3000	ED F6	93.48/520		3.16 २.16	0.0
3000	E7	92,904240 91 129950		J.⊥0 3 15	0.0
3000	D1	79.357940	-0.000000	3.09	0.0
3000	D2	79.456810	-0.000000	3.09	0.0
3000	D3	78.701790	-0.000000	3.09	0.0
3000	D4	80.319100	-0.000000	3.10	0.0
3000	D5	78.898270	0.00000	3.09	0.0

3000	D6	77.842680	-0.000000	3.09	0.0
3000	D7	80.541540	-0.000000	3.10	0.0
3000	C1	80.812300	-0.000000	3.09	0.0
3000	C2	80.671840	-0.000000	3.09	0.0
3000	C.3	81.958630	-0.000000	3.09	0.0
3000	C4	82 069380	-0.000000	3.09	0.0
3000	C 5	81 169660	-0.000000	3 09	0.0
3000	C6	81 331030	0.000000	3 09	0.0
3000	C7	80 776680	0.000000	3 09	0.0
2000	C P	00.770000	0.000000	2.09	0.0
3000	C0	80.766100	-0.000000	3.09	0.0
3000	C 1 0	81 256610	-0.000000	2.09	0.0
3000	C10 C11	81.330010	-0.000000	3.09	0.0
3000		81.893040	-0.000000	3.09	0.0
3000		81.020310	-0.000000	3.09	0.0
3000	C13	80.548790	-0.000000	3.09	0.0
3000	C14	82.337970	-0.000000	3.10	0.0
3000	C15	82.557380	0.000000	3.09	0.0
3000	C16	82.360710	0.000000	3.09	0.0
3000	C17	78.847500	-0.000000	3.08	0.0
3000	C18	79.976270	0.00000	3.08	0.0
3000	D8	79.547480	-0.000000	3.09	0.0
3000	D9	79.506740	0.00000	3.09	0.0
3000	D10	79.196230	-0.000000	3.09	0.0
3000	D11	78.044370	-0.000000	3.09	0.0
3000	D12	80.319750	-0.000000	3.10	0.0
3000	D13	81.001440	0.00000	3.10	0.0
3000	D14	79.793660	-0.000000	3.10	0.0
3000	D15	77.978490	-0.000000	3.09	0.0
3000	E8	92.882440	-0.000000	3.16	0.0
3000	E9	93.013110	0.00000	3.16	0.0
3000	E10	91.079730	0.00000	3.15	0.0
3000	E11	92.506030	0.00000	3.15	0.0
3000	E12	92.593040	-0.000000	3.15	0.0
3000	G8	81.279780	-0.000000	3.12	0.0
3000	G9	82 087950	-0.000000	3.12	0.0
3000	G1 0	83 603530	-0.000000	3,13	0.0
3000	G11	83 538420	0 000000	3 12	0 0
3000	G12	85 509300	-0.000000	3.12	0.0
3000	G12 C13	85 447310	0.000000	3 12	0.0
3000	G13	83 545590	0.000000	3 12	0.0
3000	G14 C15	83 527270	-0.000000	3.12	0.0
3000	GLJ E11	83.327270	-0.000000	3.12	0.0
3000		70./3/200	-0.000000	3.13	0.0
3000		70.0004950	0.000000	3.1Z	0.0
3000	ELJ	/9.238240	0.000000	3.13	0.0
3000	F'14	//.891430	-0.000000	3.12	0.0
3000	F15	80.372410	-0.000000	3.13	υ.Ο

Adjusted Measured Direction Observations (GONS)

From	То	Direction	Residual	StdErr	StdRes
3000	1000	0.000427	0.000427	1.40	0.3
3000	1000	0.000427	0.000417	1.40	0.3
3000	1000	0.000427	-0.000843	1.40	0.6
3000	F1	309.806740	0.00000	1.05	0.0
3000	F2	309.810650	0.00000	1.05	0.0
3000	F3	307.009770	-0.000000	1.05	0.0
3000	F4	307.198170	0.00000	1.05	0.0

3000	F5	309.618550	-0.000000	1.05	0.0
3000	Fб	310 904950	0.00000	1.05	0.0
3000	10 F7	315 783270	-0.000000	1 05	0 0
3000	E 9	312 150770	0.000000	1.05	0.0
3000	FO	215 412700	0.000000	1.05	0.0
3000	F'9	315.412780	-0.000000	1.05	0.0
3000	F.T.O	312.536520	-0.000000	1.05	0.0
3000	G1	272.642520	-0.000000	1.05	0.0
3000	G2	272.157260	-0.000000	1.05	0.0
3000	G3	270.699650	-0.000000	1.04	0.0
3000	G4	270.325960	0.00000	1.05	0.0
3000	G5	272.016400	0.00000	1.05	0.0
3000	G6	277.728680	0.00000	1.05	0.0
3000	G7	275.014650	0.00000	1.05	0.0
3000	E1	265.303630	-0.000000	1.05	0.0
3000	E2	265 162690	0 000000	1 05	0 0
3000	т 2 2	262 529930	0 000000	1 05	0.0
2000		262 520150	0.000000	1 05	0.0
3000	E4 DE	202.330130	-0.000000	1.05	0.0
3000	E5	265.263860	0.000000	1.05	0.0
3000	E 6	267.100430	0.000000	1.05	0.0
3000	E'/	267.184380	0.000000	1.05	0.0
3000	D1	267.627650	-0.000000	1.04	0.0
3000	D2	266.534710	0.00000	1.04	0.0
3000	D3	266.896500	-0.00000	1.04	0.0
3000	D4	267.632910	0.00000	1.04	0.0
3000	D5	269.600230	-0.000000	1.04	0.0
3000	D6	270.368930	-0.000000	1.04	0.0
3000	D7	270.201200	-0.000000	1.04	0.0
3000	C1	260 150210	0.00000	1.03	0.0
3000	C2	261 522130	-0 000000	1 03	0 0
3000	C3	261 355370		1 04	0 0
2000	C1	250 024210	0.000000	1 04	0.0
3000	C4 CE	259.024310	0.000000	1.04	0.0
3000	C5	258.518770	-0.000000	1.04	0.0
3000	6	262.162060	0.000000	1.03	0.0
3000	C7	262.160630	-0.000000	1.03	0.0
3000	C8	262.146620	-0.000000	1.03	0.0
3000	C9	259.375950	0.00000	1.04	0.0
3000	C10	260.034750	0.00000	1.03	0.0
3000	C11	259.045930	-0.000000	1.04	0.0
3000	C12	255.063770	-0.000000	1.04	0.0
3000	C13	253.986930	0.00000	1.04	0.0
3000	C14	254.982870	0.00000	1.04	0.0
3000	C15	258.214400	0.00000	1.04	0.0
3000	C16	262.484320	-0.000000	1.04	0.0
3000	C17	263 264790	0,000000	1.03	0.0
3000	C18	260 165870	-0.000000	1 03	0.0
3000		269 301100	-0.000000	1 04	0.0
2000		260.301190	0.000000	1.04	0.0
3000	D9 D10	200.130030	-0.000000	1.04	0.0
3000	DIU	268.100860	0.000000	1.04	0.0
3000	DII	268.050490	0.000000	1.04	0.0
3000	D12	267.632270	-0.000000	1.04	0.0
3000	D13	268.784270	0.00000	1.04	0.0
3000	D14	268.984750	-0.000000	1.04	0.0
3000	D15	271.015430	-0.00000	1.04	0.0
3000	E8	263.974380	-0.000000	1.05	0.0
3000	E9	263.381810	0.00000	1.05	0.0
3000	E10	263.231640	0.00000	1.05	0.0
3000	E11	264.050780	0.00000	1.05	0.0
3000	E12	265.020320	0.00000	1.05	0.0
-		· · · · · ·			

3000	G8	273.581200	0.000000	1.05	0.0
3000	G9	274.026800	0.000000	1.05	0.0
3000	G10	274.434350	-0.000000	1.05	0.0
3000	G11	272.606380	-0.000000	1.05	0.0
3000	G12	269.498580	0.00000	1.05	0.0
3000	G13	267.994930	0.000000	1.05	0.0
3000	G14	270.453090	0.000000	1.05	0.0
3000	G15	271.651380	-0.000000	1.05	0.0
3000	F11	308.826920	-0.000000	1.05	0.0
3000	F12	309.936310	-0.000000	1.05	0.0
3000	F13	309.427700	-0.000000	1.05	0.0
3000	F14	311.297940	-0.000000	1.05	0.0
3000	F15	309.558990	-0.000000	1.05	0.0

Adjusted Azimuths (GONS) and Horizontal Distances (Meters)

(Relative Confidence of Azimuth is in MilliGons) NOTE - Adjustment Failed the Chi-Square Test Angular and Distance Errors are Scaled by Total Error Factor

From	То	Grid Azimuth	Grid Dist	95%	RelConfid	lence
			Grnd Dist	Azi	Dist	PPM
1000	3000	139.74803	91.6438	0.00	0.0000	0.0075
			91.6815			
3000	C1	199.89780	339.3819	63.82	0.0315	92.6716
			339.5248			
3000	C10	199.78234	339.4564	63.81	0.0309	90.9444
			339.5992			
3000	C11	198.79352	334.1199	63.86	0.0300	89.8060
	- 1 0	101 01105	334.2603	~~ ~ ~ ~		
3000	C12	194.81135	332.2793	63.87	0.0308	92.7143
2000	C1 0	100 70451	332.4191	62 04	0 0015	
3000	C13	193./3451	335.8356	63.84	0.0315	93.8566
2000	C1 4	104 70045	335.9770	<u> </u>	0 0001	00 0405
3000	C14	194./3045	325.7577	63.93	0.0291	89.3485
2000	Q1 F	107 06100	325.8946	CO 07	0 0000	07 0001
3000	C15	197.96198	332.8183 222 0501	63.87	0.0293	87.9281
2000	016	202 22101	332.9381	62 05	0 0206	00 2001
3000	C10	202.23191	334.8392	63.65	0.0296	00.3091
3000	C17	203 01239	353 7979	63 71	0 0346	07 0173
3000		203.01230	353 9322	03.71	0.0340	97.0473
3000	C18	199 91346	341 6892	63 80	0 0325	95 1496
5000	010	100.01040	341 8332	05.00	0.0525	55.1450
3000	C2	201 26972	340.5867	63 81	0.0317	93,0050
	02	201.203,2	340.7301	00.01	0.001/	
3000	С3	201.10296	337.0023	63.83	0.0301	89.3180
			337.1440			
3000	C4	199.57190	335.2148	63.85	0.0299	89.1595
			335.3557			
3000	C5	198.26635	334.1737	63.86	0.0308	92.0537
			334.3143			
3000	C6	201.90965	338.4382	63.82	0.0308	91.1240
			338.5806			
3000	C7	201.90822	341.3537	63.80	0.0316	92.5973
			341.4974			
3000	C8	201.89421	341.3453	63.80	0.0316	92.6069
			341.4890			

3000	С9	199.12354	337.2337	63.83	0.0314	93.0262
3000	D1	207.37525	326.6750	63.92	0.0322	98.6319
3000	D10	207.84846	325.8525	63.93	0.0323	99.2477
3000	D11	207.79809	334.0665	63.86	0.0342	102.3053
3000	D12	207.37987	322.8607	63.95	0.0310	95.9199
3000	D13	208.53187	317.5283 317.6617	64.00	0.0300	94.3625
3000	D14	208.73235	321.8180 321.9534	63.96	0.0314	97.7207
3000	D15	210.76303	324.5124 324.6492	63.94	0.0336	103.4560
3000	D2	206.28230	328.3201 328.4584	63.90	0.0322	98.1406
3000	D3	206.64409	331.8053 331.9452	63.88	0.0333	100.2981
3000	D4	207.38051	322.8606 322.9964	63.95	0.0310	95.9220
3000	D5	209.34783	325.3688 325.5059	63.93	0.0326	100.2822
3000	D6	210.11653	325.5409 325.6783	63.93	0.0338	103.8150
3000	D7	209.94880	315.5779 315.7106	64.02	0.0303	96.0253
3000	D8	208.04879	325.2715 325.4085	63.93	0.0319	98.1562
3000	D9	207.88563	326.4803 326.6178	63.92	0.0320	98.1645
3000	E1	205.05123	276.3916 276.5064	64.47	0.0207	74.7436
3000	E10	202.97924	278.7631 278.8790	64.44	0.0209	74.9875
3000	E11	203.79838	273.7473 273.8609	64.51	0.0202	73.6438
3000	E12	204.76792	273.6841 273.7977	64.51	0.0201	73.5264
3000	E2	204.91029	274.7473 274.8614	64.50	0.0203	73.7975
3000	E3	202.27753	275.1123 275.2265	64.49	0.0202	73.4711
3000	Ε4	202.27775	275.1113 275.2255	64.49	0.0202	73.4712
3000	E5	205.01146	270.6910 270.8033	64.56	0.0197	72.8876
3000	Ε6	206.84803	271.7598 271.8726	64.54	0.0199	73.3812
3000	E7	206.93198	275.9105 276.0252	64.48	0.0207	74.9338
3000	E8	203.72198	273.2396 273.3530	64.52	0.0200	73.1937
3000	E9	203.12941	273.1768 273.2902	64.52	0.0199	73.0204
3000	F1	249.55438	279.0367 279.1537	64.44	0.0297	106.3998

3000	F10	252.28416	292.5957	64.26	0.0316	107.8465
3000	F11	248.57456	292.7186	64.46	0.0296	106.8588
3000	F12	249.68395	277.0924	64.44	0.0298	106.6935
3000	F13	249.17534	279.0837 276.8842	64.47	0.0292	105.2799
3000	F14	251.04558	277.0003 286.2796	64.34	0.0310	108.2590
3000	F15	249.30663	286.3998 273.8113	64.51	0.0280	102.2485
3000	F2	249.55829	273.9259	64.44	0.0297	106.4095
3000	F3	246.75741	279.1274	64.43	0.0301	107.7153
3000	F4	246.94581	279.7863	64.56	0.0269	99.4279
3000	F5	249.36619	273.0778	64.52	0.0274	100.4632
3000	F6	250.65259	273.1921 271.7964	64.54	0.0274	100.8954
3000	F7	255.53091	275.4289	64.49	0.0273	98.9522
3000	F8	251.90741	285.6899	64.35	0.0306	106.9500
3000	F9	255.16042	288.4334	64.31	0.0296	102.6451
3000	G1	212.39013	293.1926	64.26	0.0258	88.1140
3000	G10	214.18196	289.0403	64.31	0.0261	90.4483
3000	G11	212.35399	293.8191	64.25	0.0264	89.9189
3000	G12	209.24618	293.6955	64.25	0.0249	84.6361
3000	G13	207.74253	295.6843	64.23	0.0250	84.4965
3000	G14	210.20069	295.0638	64.23	0.0265	89.7183
3000	G15	211.39899	294.2480	64.24	0.0264	89.8877
3000	G2	211.90487	294.3382	64.24	0.0277	94.0942
3000	G3	210.44725	306.1083	64.11	0.0283	92.5106
3000	G4	210.07356	294.5716	64.24	0.0261	88.5283
3000	G5	211.76401	293.3101	64.25	0.0253	86.3435
3000	G6	217.47629	273.8822	64.51	0.0261	95.4099
3000	G7	214.76226	286.5289	64.34	0.0276	96.2225
3000	G8	213.32881	290.2218	64.29	0.0282	97.0006
3000	G9	213.77441	291.7934 291.9157	64.27	0.0275	94.3717

Error Propagation

Station Coordinate Standard Deviations (Meters) NOTE - Adjustment Failed the Chi-Square Test Standard Deviations are Scaled by Total Error Factor

Station	E	Ν	Elev
1000	0.00000	0.00000	0.000000
3000	0.00000	0.00000	0.000000
F1	0.011833	0.011842	0.027314
F2	0.011833	0.011841	0.027311
F3	0.011903	0.011979	0.027367
F4	0.011112	0.011091	0.026584
F5	0.011258	0.011256	0.026800
F6	0.011230	0.011231	0.026685
F7	0.011244	0.011290	0.027013
F8	0.012165	0.012124	0.027906
F9	0.012016	0.011985	0.028163
F10	0.012515	0.012456	0.028523
G1	0.012036	0.010616	0.028627
G2	0.012107	0.011344	0.028713
G3	0.012568	0.011598	0.029772
G4	0.012109	0.010693	0.028749
G5	0.012040	0.010410	0.028643
G6	0.011291	0.010726	0.026887
G7	0.011801	0.011294	0.028010
E1	0.011419	0.008462	0.027175
E2	0.011356	0.008305	0.027033
E3	0.011382	0.008262	0.027066
E 4	0.011382	0.008262	0.027066
E.5	0.011197	0.008084	0.026678
E6	0.011225	0.008190	0.026770
E 7	0.011386	0.008488	0.027132
	0.013397	0.013167	0.031611
D2	0.013461	0.013167	0.031760
D3	0 013601	0 013596	0 032071
D4	0 013242	0 012660	0 031272
D5	0.013348	0.013330	0.031489
D6	0.013367	0.013796	0.031498
р7	0 012951	0 012395	0 030615
C1	0.013898	0.012849	0.032773
C2	0 013945	0 012941	0 032881
C3	0 013805	0 012298	0 032564
C4	0.013735	0.012230	0.032403
C5	0.013693	0.012568	0.032303
C	0.013860	0.012600	0.032690
C7	0.013075	0.012000	0.032050
C8	0.013975	0.012914	0.032951
	0.013975	0.012913	0.032577
C10	0.013014	0.012612	0.032377
C10 C11	0.013601	0.012012	0.032703
	0.013691	0.012239	0.032303
	U.UIJOIJ 0 012751	0.012093 0.012006	0 022440
	0.01025/01	0.011000	0.021540
	0.0136304	U.UII9UZ	0.031548
	U.UI3639	U.UI195/	0.032189
СТР	0.013/19	0.012083	0.032373

C17	0.014464	0.014143	0.034069
C18	0.013989	0.013282	0.032977
D8	0.013340	0.013048	0.031485
D9	0.013388	0.013098	0.031594
D10	0.013365	0.013215	0.031535
D11	0.013694	0.013959	0.032272
D12	0.013242	0.012660	0.031272
D13	0.013027	0.012256	0.030795
D14	0.013203	0.012855	0.031174
D15	0.013326	0.013705	0.031405
E8	0.011304	0.008183	0.026902
E9	0.011304	0.008158	0.026897
E10	0.011522	0.008548	0.027384
E11	0.011323	0.008249	0.026945
E12	0.011315	0.008242	0.026940
G8	0.011954	0.011522	0.028337
G9	0.012000	0.011287	0.028485
G10	0.011870	0.010745	0.028250
G11	0.012068	0.010846	0.028678
G12	0.012072	0.010200	0.028682
G13	0.012160	0.010239	0.028860
G14	0.012130	0.010851	0.028790
G15	0.012091	0.010850	0.028717
F11	0.011765	0.011793	0.027129
F12	0.011849	0.011855	0.027307
F13	0.011678	0.011690	0.027125
F14	0.012262	0.012234	0.027956
F15	0.011385	0.011388	0.026860

Station Coordinate Error Ellipses (Meters) NOTE - Adjustment Failed the Chi-Square Test Error Ellipses are Scaled by Total Error Factor Confidence Region = 95

Station	Semi-Major	Semi-Minor	Azimuth of	Elev
	Axis	Axis	Major Axis	
1000	0.00000	0.00000	0.00	0.00000
3000	0.00000	0.00000	0.00	0.00000
F1	0.029689	0.028243	49.55	0.053534
F2	0.029689	0.028240	49.56	0.053529
F3	0.030125	0.028303	46.76	0.053638
F4	0.027441	0.026906	146.95	0.052103
F5	0.027676	0.027434	149.37	0.052527
F6	0.027554	0.027423	150.65	0.052302
F7	0.027900	0.027254	155.53	0.052945
F8	0.030555	0.028877	51.91	0.054696
F9	0.029606	0.029139	55.16	0.055198
F10	0.031555	0.029536	52.28	0.055903
G1	0.029593	0.025834	112.39	0.056109
G2	0.029702	0.027696	111.90	0.056277
G3	0.030828	0.028318	110.45	0.058353
G4	0.029725	0.026078	110.07	0.056348
G5	0.029604	0.025325	111.76	0.056139
G6	0.027752	0.026131	117.48	0.052697
G7	0.028957	0.027571	114.76	0.054898
E1	0.027991	0.020659	105.05	0.053262
E2	0.027835	0.020276	104.91	0.052983
E3	0.027869	0.020213	102.28	0.053049

			1	
E 4	0.027869	0.020213	102.28	0.053048
E5	0.027449	0.019730	105.01	0.052288
ЕG	0 027551	0 019942	106 85	0 052469
E7	0.027045	0.020675	106.03	0.052105
E /	0.02/945	0.020675	106.93	0.055177
D1	0.032799	0.032221	107.38	0.061956
D2	0.032957	0.032222	106.28	0.062249
۶u	0 033292	0 033279	106 64	0 062859
D 3	0.000202	0.030275	107.20	0.002000
D4	0.032433	0.030969	107.38	0.061292
D5	0.032674	0.032629	109.35	0.061718
D6	0.033796	0.032690	10.12	0.061734
7ס	0 031735	0 030303	109 95	0 060005
<u></u>	0.034030	0.021451	100.00	0.064000
	0.034020	0.031431	99.90	0.004233
C2	0.034136	0.031676	101.27	0.064446
C3	0.033791	0.030100	101.10	0.063825
C.4	0.033619	0.029888	99.57	0.063509
05	0 033510	0 030762	00 27	0 063312
	0.033319	0.030702	90.27	0.003312
C6	0.033929	0.030840	101.91	0.0640/2
C7	0.034210	0.031608	101.91	0.064584
C8	0.034209	0.031611	101.89	0.064582
C 9	0 033813	0 031372	99 12	0 063851
	0.033013	0.031372	00 70	0.000000
CIU	0.034027	0.030872	99.78	0.064253
C11	0.033514	0.030006	98.79	0.063312
C12	0.033337	0.030807	94.81	0.062973
C13	0.033679	0.031520	93.73	0.063599
C1A	0 032711	0 029106	94 73	0 061834
	0.032711	0.020100	07.00	0.001034
	0.033389	0.029264	97.90	0.063090
C16	0.033585	0.029571	102.23	0.063449
C17	0.035406	0.034617	103.01	0.066774
C18	0.034242	0.032512	99.91	0.064633
80	0 032664	0 031927	108 05	0 061709
00	0.022700	0.022040	107 00	0.061022
	0.032760	0.032049	107.09	0.001923
DIO	0.032/20	0.032340	10/.85	0.061808
D11	0.034177	0.033509	7.80	0.063252
D12	0.032433	0.030969	107.38	0.061292
13	0.031922	0.029963	108.53	0.060357
D10	0 033333	0 031449	100 73	0 061100
	0.032555	0.031440	10.75	0.001100
D15	0.0335/3	0.032591	10.76	0.061554
E8	0.027691	0.019999	103.72	0.052726
E9	0.027685	0.019947	103.13	0.052716
E10	0.028217	0.020904	102.98	0.053672
F11	0 027740	0 020160	103 80	0 052811
	0.027720	0.020100	104 77	0.052011
EIZ	0.02//34	0.020123	104.77	0.052801
G8	0.029309	0.028152	113.33	0.055540
G9	0.029459	0.027537	113.77	0.055830
G10	0.029197	0.026143	114.18	0.055369
C11	0 029653	0 026420	112 35	0 056209
C1 2	0.020641	0.020120	100 25	0.050205
GIZ	0.029641	0.024857	109.25	0.036216
GI3	0.029831	0.024984	± 07.74	0.056565
G14	0.029772	0.026473	110.20	0.056428
G15	0.029694	0.026449	111.40	0.056284
F11	0.029597	0.028047	48 57	0.053172
 E-1-2	0 020764	0 020027	10.07	0 052520
	0.029/04	0.020230	49.00	0.000020
F.T.2	0.029150	0.028038	49.18	0.053164
F14	0.030992	0.028933	51.05	0.054793
F15	0.027997	0.027746	49.31	0.052645

Relative Error Ellipses (Meters) NOTE - Adjustment Failed the Chi-Square Test

Relative Error Ellipses are Scaled by Total Error Factor Confidence Region = 95

Stations		Semi-Major	Semi-Minor	Azimuth of	Vertical
From	То	Axis	Axis	Major Axis	
1000	3000	0.000000	0.00000	0.00	0.000000
3000	C1	0.034020	0.031451	99.90	0.064233
3000	C10	0.034027	0.030872	99.78	0.064253
3000	C11	0.033514	0.030006	98.79	0.063312
3000	C12	0.033337	0.030807	94.81	0.062973
3000	C13	0.033679	0.031520	93.73	0.063599
3000	C14	0.032711	0.029106	94.73	0.061834
3000	C15	0.033389	0.029264	97.96	0.063090
3000	C16	0.033585	0.029571	102.23	0.063449
3000	C17	0.035406	0.034617	103.01	0.066774
3000	C18	0.034242	0.032512	99.91	0.064633
3000	C2	0.034136	0.031676	101.27	0.064446
3000	C3	0.033791	0.030100	101.10	0.063825
3000	C4	0.033619	0.029888	99.57	0.063509
3000	C5	0.033519	0.030762	98.27	0.063312
3000	C6	0.033929	0.030840	101.91	0.064072
3000	C7	0.034210	0.031608	101.91	0.064584
3000	C8	0.034209	0.031611	101.89	0.064582
3000	С9	0.033813	0.031372	99.12	0.063851
3000	D1	0.032799	0.032221	107.38	0.061956
3000	D10	0.032720	0.032340	107.85	0.061808
3000	D11	0.034177	0.033509	7.80	0.063252
3000	D12	0.032433	0.030969	107.38	0.061292
3000	D13	0.031922	0.029963	108.53	0.060357
3000	D14	0.032333	0.031448	108.73	0.061100
3000	D15	0.033573	0.032591	10.76	0.061554
3000	D2	0.032957	0.032222	106.28	0.062249
3000	D3	0.033292	0.033279	106.64	0.062859
3000	D4	0.032433	0.030969	107.38	0.061292
3000	D5	0.032674	0.032629	109.35	0.061718
3000	D6	0.033796	0.032690	10.12	0.061734
3000	D7	0.031735	0.030303	109.95	0.060005
3000	D8	0.032664	0.031927	108.05	0.061709
3000	D9	0.032780	0.032049	107.89	0.061923
3000	E1	0.027991	0.020659	105.05	0.053262
3000	E10	0.028217	0.020904	102.98	0.053672
3000	E11	0.027740	0.020160	103.80	0.052811
3000	E12	0.027734	0.020123	104.77	0.052801
3000	E2	0.027835	0.020276	104.91	0.052983
3000	E3	0.027869	0.020213	102.28	0.053049
3000	E4	0.027869	0.020213	102.28	0.053048
3000	E5	0.027449	0.019730	105.01	0.052288
3000	ЕG	0.027551	0.019942	106.85	0.052469
3000	E7	0.027945	0.020675	106.93	0.053177
3000	E8	0.027691	0.019999	103.72	0.052726
3000	E9	0.027685	0.019947	103.13	0.052716
3000	F1	0.029689	0.028243	49.55	0.053534
3000	F10	0.031555	0.029536	52.28	0.055903
3000	F11	0.029597	0.028047	48.57	0.053172
3000	F12	0.029764	0.028236	49.68	0.053520
3000	F13	0.029150	0.028038	49.18	0.053164
3000	F14	0.030992	0.028933	51.05	0.054793
3000	F15	0.027997	0.027746	49.31	0.052645

3000	F2	0.029689	0.028240	49.56	0.053529
3000	F3	0.030125	0.028303	46.76	0.053638
3000	F4	0.027441	0.026906	146.95	0.052103
3000	F5	0.027676	0.027434	149.37	0.052527
3000	F6	0.027554	0.027423	150.65	0.052302
3000	F7	0.027900	0.027254	155.53	0.052945
3000	F8	0.030555	0.028877	51.91	0.054696
3000	F9	0.029606	0.029139	55.16	0.055198
3000	G1	0.029593	0.025834	112.39	0.056109
3000	G10	0.029197	0.026143	114.18	0.055369
3000	G11	0.029653	0.026420	112.35	0.056209
3000	G12	0.029641	0.024857	109.25	0.056216
3000	G13	0.029831	0.024984	107.74	0.056565
3000	G14	0.029772	0.026473	110.20	0.056428
3000	G15	0.029694	0.026449	111.40	0.056284
3000	G2	0.029702	0.027696	111.90	0.056277
3000	G3	0.030828	0.028318	110.45	0.058353
3000	G4	0.029725	0.026078	110.07	0.056348
3000	G5	0.029604	0.025325	111.76	0.056139
3000	G6	0.027752	0.026131	117.48	0.052697
3000	G7	0.028957	0.027571	114.76	0.054898
3000	G8	0.029309	0.028152	113.33	0.055540
3000	G9	0.029459	0.027537	113.77	0.055830

Elapsed Time = 00:00:00