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Abstract	
	

In	 the	 present	 contribution,	 the	 Cohesive	 Crack	 Model	 was	 applied	 to	 the	

masonry	arches.	The	model	used	is	an	elasto-plastic	model	able	to	coherently	

describe	the	behaviour	of	materials	as	it	uses	a	couple	of	constitutive	laws:	

• A	tension	-	strain	relationship,	which	describes	the	elastic	and	hardening	

behaviour	of	the	integral	material	up	to	the	ultimate	tension	su;	

• A	 tension	 -	 opening	 of	 the	 slot	 relationship,	 which	 describes	 the	

"softening"	behaviour	of	the	cracked	material,	up	to	the	critical	opening	

wc,	 in	 addition	 to	 which	 the	 interaction	 between	 the	 slit	 faces	 is	

annulated.	

In	 the	 '80s	an	algorithm	of	calculation	was	developed,	 it	was	called	"Frana",	

allowing	it	to	apply	the	model	of	the	cohesive	crack	to	beam	segments,	simply	

supported,	subject	to	simple	bending	moment.	In	the	present	work,	the	above	

mentioned	algorithm	has	been	translated	into	Matlab’s	language,	after	which	

it	has	been	passed	to	adapt	this	model	to	the	case	of	masonry	arches.	They	may	

be	considered	as	structures	subject	to	off-centered	compression.	

To	 do	 this	 I	 used	 the	 theory	 of	 cohesive	 crack.	 In	 fact,	 the	 first	 part	 of	 the	
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constitutive	 law	 which	 describes	 the	 "softening"	 behaviour	 of	 the	 cracked	

material,	has	been	translated	in	such	a	way	that	the	tensile	stresses	due	to	the	

flexion	 were	 applied	 to	 a	 structure	 subjected	 to	 simple	 compression.	 The	

compression	 tension	 was	 considered	 equal	 to	 the	 compression	 tension	

produced	in	each	section	for	the	"arch’s	effect".	

The	 disordered	 and	 fragile	 materials	 such	 as	 concrete,	 rocks,	 ceramics	 and	

masonry	 contain	 a	 large	 number	 of	 defects	 and	micro-cracks.	 By	 subjecting	

them	 to	 high	 tensile	 stresses,	 an	 interaction	 occurs	 between	 the	 growth	

processes	of	the	micro-cracks	which	causes	the	localization	of	the	deformation	

in	 a	 very	 narrow	 band,	 where	 the	 dissipation	 of	 energy	 occurs,	 while	 the	

material,	 outside	 this	 band,	 involves	 elastic	 and	 linear.	 According	 to	 the	

concepts	of	the	continuous	mechanics,	it	can	be	said	that	in	this	band	(called	

the	process	zone),	a	reduction	in	load-bearing	capacity	occurs	as	a	consequence	

of	 an	 increase	 in	 inelastic	 strain.	 This	 phenomenon	 is	 called	 a	 negative	

incrimination.	 The	 classical	 theory	of	plasticity	 is	not	 applicable	because	 the	

stability	postulate	of	Drucker	 is	violated.	The	consequences	of	 this	violation,	

even	in	the	absence	of	geometrically	unstable	effects,	are:	

• possibility	to	have	loss	of	stability	 in	the	crack	opening	control	(snap-

back);	

• possibility	 to	 have	 loss	 of	 stability	 in	 displacement	 control	 (snap-

through);	

The	algorithm	developed	 identifies	 the	 section	of	 the	arch	most	 stressed,	 in	

terms	of	tensile	stress,	that	is,	it	identifies	the	section	in	which	the	crack	will	be	

created.	At	this	point	identify	the	load	necessary	for	the	crack	to	be	born.	In	the	

following	phases	it	identifies	the	load	necessary	for	the	increase	to	the	crack.	
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The	iteration	ends	when	the	height	of	the	crack	has	reached	to	90	percent	of	

the	 total	 height	 of	 the	 section.	At	 the	 same	 time,	 the	 algorithm	performs	 a	

crushing	 check,	 that	 is,	 it	 evaluates,	 in	 the	 same	 section,	 if	 the	 maximum	

compression	tension	reaches	to	resistance	of	the	material.	

The	cohesive	crack	model	it	was	applied	to	5	fictitious	arches	and	to	the	Mosca	

bridge.		

The	analysis	carried	out	allowed	to	show	very	interested	results.	In	fact,	plotting	

the	 increase	 in	 variable	 load	 with	 the	 relative	 vertical	 displacement	 of	 the	

section	where	are	 localized	the	brittle	hinges,	 in	control	of	amplitude	of	 the	

crack,	we	obtain:	

• loss	of	stability	in	the	crack	opening	control	(snap-back).	

Wanting	to	chart	the	increase	in	load,	obtained	to	propagate	the	cracks	in	the	

brittle	hinges,	with	the	absolute	vertical	displacement	of	the	arch,	measured	in	

the	arch	crown,	we	obtain:	

• loss	of	stability	in	displacement	control	(snap-through);	

Therefore,	in	the	sections	in	which	the	cracking	progresses	(local	analysis),	the	

unstable	snap-back	phenomenon	is	observed,	while	always	during	the	cracking	

phase	the	arch	(global	analysis)	shows	a	snap-through	phenomenon.		

Remember	that	the	snap-back	represents	a	phenomenon	that	can	be	framed	

within	the	framework	of	the	Catastrophe	Theory.	

A	 further	 interesting	 result	 that	has	been	 found	 is	 that,	 for	geometries	with	

lower	falls	than	1/5	the	cracking	phenomenon	does	not	develop.	Moreover,	the	

algorithm	shows	how,	in	the	gradation	of	the	degree	of	lowering,	the	second	
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pair	of	hinges	is	formed	closer	and	closer	to	the	arch	crown	(in	fact,	it	passes	

from	the	arch	behaviour	to	the	beam	behaviour).	
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1 Introduction	
	

This	thesis	work	deals	with	the	use	of	the	Cohesive	Crack	Model	in	the	analysis	

of	crack	propagation	problem	in	mode	I	in	masonry	arch.	

When	brittle	materials	are	subjected	to	high	tensile	stresses,	 the	 interaction	

yaking	place	between	the	growth	processes	of	the	micro-cracks	gives	rise	to	a	

non	 linear	 type	 of	 behaviour.	 Energy	 dissipation	 occurs	 solely	 along	 a	 zone,	

referred	 to	 as	 the	 process	 zone,	 where	 the	 deformation	 is	 localised.	 The	

material	outside	this	band	retains	its	linear	elastic	behaviour.	The	behaviour	of	

the	material	 in	 the	 process	 zone	 is	 characterised	 by	 a	 reduction	 in	 bearing	

capacity	due	to	an	anelastic	increment	of	Drucker’s	stability	postulate	(de	³	0)	

which	makes	it	impossible	to	apply	ther	Theory	of	Plasticity.	This	violation	gives	

rise	 to	 phenomena	 such	 as	 loss	 of	 stability	 in	 controlled	 loading	 conditions	

(snap-through),	 loss	 of	 stability	 in	 controlled	displacement	 conditions	 (snap-

back),	 bifurcation	 of	 the	 equilibrium	 path	 and	 variability	 of	 the	 results	

depending	on	thr	type	of	mesh	employed	in	the	numerical	simulation.	All	this	

can	 be	 identified,	 as	 will	 be	 seen	 in	 the	 following	 chapters,	 applying	 the	

Cohesive	Crack	Model.	

The	Cohesive	Crack	Model	uses	two	constitutive	laws:	one	for	the	uncracked	

material	and	another	that	is	applicable	to	the	process	zone.	The	first	law	is	the	
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well	known	(definite	positive)	linear	elastic	relationship	between	stresses	and	

strains,	whilst	the	other	is	still	a	linear	elastic	law	but	has	a	negative	slope	and	

established	a	correlation	between	re-closing	stresses	and	the	mutual	opening	

displacement	 in	 the	 process	 zone.	 In	 this	 way	 the	 Cohesive	 Crack	 Model	

manages	to	replicate	the	real	behavior	of	the	material	in	the	cracking	process.	

The	Finite	Element	Method	had	made	to	implement	the	foregoig	consideration	

in	a	computation	code	and	apply	it	to	masonry	arches.	
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2 Masonry	bridges	
	

2.1 Historical	Overview	
	

Archaeologists	believe	that	arches	and	vaults	originated	in	the	marshlands	of	

Lower	Egypt	or	Mesopotamia	about	 five	 thousand	years	ago.	The	prototype	

was	a	structure	built	of	bundles	of	reeds	placed	upright	in	the	ground	and	bent	

over	and	tied	together	at	the	top	to	form	a	roof.	This	technique	is	still	used	in	

southern	Iraq.	The	outer	surfaces	of	some	of	these	buildings	are	covered	with	

mud	plaster	and	this	was	probably	an	intermediate	stage	in	the	evolution	of	the	

vault.	 Probably	 the	 Chinese	 first	 employed	 the	 arch	 in	 the	 construction	 of	

bridges	across	small	streams.	It	is	known	that	bridges	and	other	public	works	

were	built	there	about	2900	BC	and	that	possibly	the	arch	was	used	then.		

Nevertheless,	the	greatest	examples	of	their	use	were	the	arch	bridges	built	in	

the	Roman	age.	Anyone	approaching	the	study	of	masonry	arch	bridges	will	be	

struck	 by	 the	 diversity	 of	 structural	 models	 and	materials	 employed	 in	 the	

Roman	solution	of	bridging	a	gap	with	an	arch.	Many	of	 them	still	exist	and	

some	remain	in	service	to	this	day,	together	with	the	considerable	number	of	

masonry	arch	bridges	built	during	the	centuries	until	the	First	World	War.		
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Figure	1	–	Roman	Bridge	in	Rome	(Garibaldi	Bridge)	

	

The	 fundamental	 form	 of	 masonry	 bridges	 was	 surprisingly	 constant	

throughout	the	civilised	world	from	Roman	times	through	Byzantium	and	the	

Islamic	world	and	into	medieval	Europe,	where	the	church	kept	the	secrets	of	

masonry	bridges	alive.	In	fact,	church	building	and	bridge	building	were	closely	

connected,	with	the	same	masons	building	both	and	travelling	round	Europe	

with	the	skills	and	secrets.	St.	Benezet	who	built	the	bridge	at	Avignon	is	well	

known,	and	the	Pope	was	head	of	bridge	building	faculty	of	monks,	and	is	thus	

still	 known	 as	 the	 Pontifex	 Maximus	 (Pontif)	 or	 chief	 bridge	 builder.	 It	 is	

interesting	to	note	that	 in	areas	of	strong	nonconformist	religion	there	were	

few	masonry	 arches	 in	 the	 18th	 century	 and	 early	 19th	 century.	 The	 USA	 is	

surprisingly	short	of	early	masonry	aches.	This	perhaps	also	accounts	for	the	

number	 of	 dramatic	 bridges	 could	 “Devil’s	 Bridge”,	 in	 that	 anything	 not	

buildable	by	the	local	church	masons	must	have	been	built	by	the	devil	rather	

than	the	Romans,	medieval	monks	or	Moorish	engineers.  
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The	Age	of	Enlightenment	and	the	scientific	approach	to	bridge	design	started	

with	the	Italian	Renaissance	of	the	15th	century,	which	gave	us	the	chain	arch	

bridge	and	the	segmental	arch.	But	it	became	established	in	France	in	the	18th	

century	 with	 Hubert	 Gautier’s	 Traite	 des	 Ponts	 published	 in	 1716	 and	 the	

formation	of	the	Ecole	des	Ponts	et	Chaussees	in	1747,	which	gave	us	balanced	

thrust	arches.		

This	 also	 led	 later	 to	 the	 separation	 of	 appearance	 from	 constructional	

necessity.	 In	 the	 19th	 and	 20th	 centuries	 the	 Ecole	 des	 Pontes	 et	 Chaussees	

advocated	that	the	principles	of	masonry	arch	appearance	should	apply	even	if	

the	structure	underneath	was	not	masonry.	This	Beaux	Arts	view,	which	was	so	

in	 conflict	 with	Modernism,	 probably	 hastened	 the	 separation	 of	 engineers	

from	training	in	aesthetics,	and	promoted	the	idea	of	bridges	being	solely	about	

pure	engineering,	and	the	false	argument	that	“the	appearance	will	look	after	

itself	 if	 the	 structure	 is	 functional”.	Hitler’s	 fondness	 for	masonry	 arches	on	

early	autobahns	probably	aided	their	rejection	post-war.		

 

2.2 Description	of	the	constructin	method	
	

There	are	two	fundamental	structural	problems	when	building	with	masonry:	

how	to	achieve	height	and	how	to	span	an	opening,	i.e.	how	to	span	vertical	

and	horizontal	spaces.	Spanning	vertically	is	done	by	using	columns,	walls	and	

towers,	and	spanning	horizontally	is	done	by	using	lintels,	beams	and	arches.	In	

addition,	 some	 structural	 elements	 such	 as	 vaults	 and	 domes	 can	

simultaneously span	vertically	and	horizontally.  
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The	 arch	 is	 one	 of	 the	 older	 forms	 of	 bridge.	 It	 is	 rather	 like	 an	 inverted	

suspension	bridge,	with	all	the	tensions	replaced	by	compressions.		

Masonry	arches,	being	made	of	relatively	big	voussoirs	joined	by	mortar	cannot	

take	tension	and	need	continuous	support	during	construction	from	below.	This	

type	of	 falsework	 is	 called	 centring,	 and	 is	often	of	 the	general	 form	shown	

below.		

	

Figure	2	-	Centring	

	

The	type	of	falsework	depends	very	much	on	the	material	of	which	the	bridge	

is	made,	and	on	 the	 size	of	 the	bridge.	This	picture	 shows	 the	corbels	upon	

which	the	centring	was	erected.		

When	the	centring	has	been	removed,	or	struck,	the	arch	will	inevitably	settle	

slightly.	 This	 is	 inevitable,	 because	 it	 can	 only	 generate	 the	 required	

compressive	 forces	 by	 undergoing	 some	 strain.	 All	 structures,	 in	 fact,	 must	

deflect	when	temporary	support	is	removed.		

The	wedge	shaped	blocks	from	which	an	arch	is	built	are	known	as	voussoirs.	

They	are	usually	symmetrically	disposed	about	a	central	voussoir	known	as	the	
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key-stone	from	a	mistaken	idea	on	the	pat	of	early	builders	that	it	had	a	special	

function	to	perform.	It	is	in	fact	an	aesthetic	and	traditional	feature	rather	than	

a	structural	requirement.	The	blocks	in	the	abutments	upon	which	the	end	of	

the	voussoirs	rest	are	known	as	skew	backs	and	the	surface	between	an	end	

voussoir	and	a	skew-back	is	the	springing.	The	highest	point	of	the	arch	is	the	

crown	and	the	lower	sections	are	the	haunches.	This	is	a	general	term	and	there	

is	 no	hard	and	 fast	definition	of	how	much	of	 the	 structure	 is	 included	 in	 a	

haunch.	The	upper	boundary	line	of	the	arch	ring	is	the	extrados	and	the	lower	

line	is	the	intrados.	The	under	surface	of	the	arch	ring	is	the	soffit.	The	outer	

walls	which	retain	the	fill	are	the	spandrel	walls	and	they	become	the	wing-

walls	at	either	side	of	the	arch.		

	

2.3 Design	methods	
	

2.3.1 Introduction		

Over	the	centuries,	different	critical	approaches	have	been	used	to	address	the	

problem	 of	 masonry	 arch	 design	 methods.	 These	 approaches	 are	 briefly	

described	in	chronological	order,	in	the	following	paragraphs,	to	show	how	the	

partial	 understanding	 of	 arch	 structural	 behavior,	 as	 can	 be	 acquired	 from	

traditional	methods,	might	be	effectively	improved.		

	

2.3.2 Geometric	and	empirical	design	

For	several	centuries,	methods	that	relied	exclusively	on	geometric	parameters	

were	used	to	provide	dimension	to	vaulted	structures.	If,	on	the	one	hand,	such	
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methods	 originated	 from	 experience	 and	 provided	 an	 answer	 to	 the	 static	

problem,	on	the	other,	 they	neglected	the	 intrinsic	mechanisms	 forming	the	

basis	of	the	phenomena	observed	(Figure	3).		

	

Figure	3	–	Empirical	formula	for	arch	design:	𝐀𝐁 = 	𝐁𝐂 = 𝐂𝐃 = 𝐀𝐁′	(adapted	from	Vittone	1776)	

	

Among	 the	 empirical	 approaches,	we	 have	 to	 recall	 the	 statement	 given	 by	

Robert	Hooke	in	1675,	who,	at	the	end	of	his	treatise	on	helioscopes,	wrote:	

“Ut	pendet	continuum	flexile,	sic	stabit	contiguum	rigidum	inversum,”	which	

translates	as,	 “As	hangs	 the	 flexible	 line,	 so	but	 inverted	will	 stand	 the	 rigid	

arch”	(Figure	4a).	This	sentence,	originally	written	as	an	anagram,	generalizes	

the	 idea	 of	 the	 funicular	 shape	 that	 a	 string	 takes	 under	 a	 set	 of	 loads.	 If	

rigidified	and	inverted,	this	shape	illustrates	a	path	of	compressive	forces	for	an	

arched	structure	to	support	the	same	set	of	inverted	loads.	This	shape	of	the	

string	and	the	inverted	arch	is	called	a	funicular	shape	for	these	loads.		

In	1748,	Poleni	analyzed	a	real	structure	using	Hooke’s	idea	to	assess	the	safety	

of	the	cracked	dome	of	St.	Peter’s	in	Rome.	Poleni	showed	that	the	dome	was	

safe	by	employing	the	hanging	chain	principle.	For	this,	he	divided	the	dome	in	

slices	 and	 hung	 32	 unequal	 weights	 proportional	 to	 the	 weight	 of	
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corresponding	 sections	 of	 that	 “arch”	 wedge,	 and	 then	 showed	 that	 the	

hanging	chain	could	fit	within	the	section	of	the	arch	(Figure	4b).	 If	a	 line	of	

force	can	be	found	that	lies	everywhere	within	the	masonry,	then	the	structure	

can	be	shown	to	be	safe	for	that	set	of	loads	[Heyman	1966].		

	

	

Figure	4	–	(a)	Poleni’s	drawing	of	Hooke’s	analogy	between	an	arch	and	a	hanging	chain,	and	(b)	his	
analysis	of	the	Dome	of	St.-Peter’s	in	Rome	[1748].	

	

2.3.3 Early	kinematic	Approch	

In	the	eighteenth	century,	design,	as	it	is	meant	today,	saw	the	light,	thanks	to	

De	 La	 Hire	 (1730)	 and	 Mascheroni	 (1785),	 among	 others,	 who	 performed	

theoretical	analyses	and	experimental	 tests	 to	assess	 the	state	of	an	arch	at	

final	 collapse.	 The	 developed	 design	 philosophy	 is	 close	 to	 the	 notions	

underlying	both	modern	limit	state	and	plastic	design	(Figure	5).	
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Figure	5	–	Collapse	mechanism	according	to	Mascheroni	

	

A	significant	contribution	to	the	developing	of	De	La	Hire’s	topics	was	provided	

by	Claude	Antonie	Couplet.	He	introduced	the	concepts	of	engrenèment	entre	

les	 voussoir,	 that	 is,	 adherence	and	 friction,	which	prevent	 the	 sliding	along	

joints,	and	charnières,	that	is,	the	hinges	whose	formation	allows	the	mutual	

rotation	of	the	blocks	[Couplet	1731].	Couplet’s	work,	albeit	little	known	among	

his	 contemporaries,	 has	 the	 great	 merit	 of	 expressing	 an	 outstanding	

progression	in	the	theoretical	setting	of	structural	mechanics.	

It	is	quite	singular	to	note	that	the	contribution	given	by	Couplet	was	almost	

ignored	in	the	following	years.	In	fact,	in	1773	Coulomb	presented	to	the	French	

Royal	 Academy	 the	 concepts	 of	 friction	 and	 hinge	 between	 arch	 blocks	 as	

absolutely	 original	 aspects.	 Coulomb	 developed	 a	 consistent	 and	 general	

theory	 providing	 the	mathematical	 base	 for	 the	 description	 of	 the	 different	

possible	modes	 of	 collapse,	 taking	 into	 account	 both	 relative	 rotations	 and	

sliding	between	parts.	He	also	stated	that	the	failure	due	to	sliding	is	rare	and	

suggested	 to	 consider	 only	 overturning	 (rotational)	 failures	 for	 practical	
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purposes.	He	proposed	the	use	of	a	theory	of	“maxima	and	minima”	(from	our	

modern	point	of	view,	and	optimization	method)	to	determine	the	position	of	

the	more	unfavourable	hinges	or	sections	of	rupture.		

A	further	development	arrived	with	the	thrust	line	theory	and	graphic	statics	

during	19th	c.	Graphic	statics	supplied	a	practical	method	consistently	based	on	

the	catenary	principle.	Graphic	statics	was	actually	used	for	the	assessment	of	

a	large	amount	of	masonry	bridges	and	large	buildings	up	to	the	beginning	of	

20th	 c.	 An	 example	 is	 given	 by	 Rubio’s	 analysis	 of	 the	 structure	 of	Mallorca	

Cathedral.		

	

2.3.4 Elastic	analysis	

Navier	 (1833)	 was	 the	 first	 to	 observe	 the	 distribution	 of	 stresses	 at	 the	

interfaces	 between	 arch	 segments	 accurately.	 He	 shifted	 the	 focus	 of	 the	

analysis	 to	 the	 actual	 state	 of	 stress	 in	 the	 material.	 To	 analyze	 stress	

distribution	over	a	cross	section,	he	introduced	the	thrust-line	concept.	He	also	

proved	 that	 the	 resulting	 line	 of	 action	must	 lie	 within	 the	 central	 kern	 to	

prevent	tension	[Navier	1833].		

Mery’s	 (1840)	studies	gained	widespread	recognition.	They	were	extensively	

used	in	the	dimensioning	of	arch	structures.	His	method	was	based	on	the	use	

of	a	graphing	procedure	to	check	the	thrust	line	in	agreement	with	the	stress	

limitations	 identified	 by	 Navier	 [Mery	 1840].	 	 Mery's	 method,	 successfully	

applied	for	over	a	century,	is	based	on	the	following	hypotheses:	

• The	analyzed	arch	is	round	and	of	constant	thickness;	

• The	 mechanism	 of	 breakage	 of	 Mascheroni	 (Figure	 5)	 is	 valid,	 ie	
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formation	of	3	plastic	hinges,	which	2	of	on	the	kidneys	and	1	in	arch	

crown;	

• The	arch	must	have	not	excessive	light	(no	more	than	10	m);	

• The	arch	must	be	constructed	of	approximate	homogeneous	material	

to	a	rigid	body;	

• The	 acting	 loads	must	 be	 symmetrical	with	 respect	 to	 the	 symmetry	

axis.	

Furthermore	this	is	a	method	of	verification	of	breakage	of	the	arches	based	on	

static	graphics.	Basically,	when	checking	using	this	method,	reference	is	made	

to	an	arbitrary	line	of	pressures	that	passes	to	the	key	and	the	intrados	to	the	

kidneys	and	it	is	required	that	wherever	it	is	contained	within	the	middle	third	

of	the	section	(it	is	carried	out	the	section	only	for	a	section	of	the	arc	that	goes	

from	 the	 arch	 crown	 to	 the	 section	 to	 the	 kidneys).	 If	 the	 pressure	 curve	

remains	within	the	average	third-party	strip,	then	all	the	sections	are	subject	to	

compression	and	therefore	the	arch	is	stable.	Therefore	a	collapse	mechanism	

is	assumed	and	a	safety	factor	of	3	is	required	(ratio	between	the	middle	third	

and	the	whole	thickness).	

Soon,	 the	 application	 of	 the	 theory	 of	 elasticity	 encountered	 criticism:	 The	

concepts	of	homogeneity	and	isotropy,	in	fact,	were	far	from	the	real	conditions	

of	damaged	and	cracked	materials.		

Alberto	Castigliano	(1879)	tackled	the	problem	by	applying	the	minimum	strain	

energy	 theorem	 to	 masonry	 arches.	 He	 also	 introduced	 the	 concept	 of	 an	

elastically	imperfect	system:	“Les	corps	qui,	après	avoir	_et_e	comprim_es,	ne	

reprennent	 pas	 exactement	 leur	 formes	 primitives	 en	 enlevants	 les	 forces	

ext_erieurs.”		
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Figure	6	-	Graphic	method	of	Navier	-	Mery	(1928).	Stability	verification	of	a	symmetrical	and	
symmetrically	loaded	arch.	

	

2.3.5 Modern	kinematic	approach	(Limit	analysis)	

The	rigid-block	model	used	in	the	eighteenth	century	to	study	the	behavior	of	

masonry	arches	underwent	major	revisions	during	the	last	century	as	a	result	

of	 the	 various	 experiments	 carried	 out	 on	 arch	 models.	 One	 of	 the	 most	

significant	 revisions	 with	 respect	 to	 the	 eighteenth-century	 theories	 was	

formulated	 by	 Heyman	 (1966,	 1982).	 Referring	 back	 to	 Kooharian’s	 (1953)	

studies,	he	proposed	that	plastic	theory	formulated	initially	for	steel	structures	

could	be	applied	to	masonry	gravity	structures	such	as	arch	bridges	provided	

certain	assumptions	were	made.	An	underlying	premise	was	that	masonry	can	

conceptually	be	considered	as	possessing	a	 ‘ductile’	moment	capacity,	albeit	

one	which	is	primarily	a	function	of	the	arch	thickness	and	normal	force	at	a	
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cross-section.		

	

Figure	7	–	Load	–	deflection	responses	of	two	3	m	span	brickwork	arch	ribs	(after	Gilbert	1997).	

	

Experimental	evidence	largely	supports	this	standpoint.	For	example	Figure	7	

shows	 the	 load	 vs.	 deflection	 responses	 of	 two	 bare	 masonry	 arch	 ribs	 of	

differing	construction	tested	to	collapse	in	the	laboratory.	Using	terminology	

borrowed	from	the	field	of	steel	structures,	in	both	cases	it	is	evident	that	the	

overall	 response	 is	 reasonably	 “ductile”	 (in	 that	 the	 fall	 off	 in	 capacity	 is	

relatively	 modest	 providing	 displacements	 are	 small).	 The	 contribution	 of	

interring	 friction	 to	 the	 resistance	 in	 the	 case	 of	 arch	 no.	 2	 increases	 this	

apparent	“ductility”.	Similarly	when	soil	filling	is	present	the	response	generally	

becomes	 yet	 more	 “ductile”,	 as	 increasing	 mobilized	 soil	 strength	 acts	 to	

counteract	the	damaging	effects	of	gross	displacements.	Thus	Heyman	strongly	

argued	that	plastic	 theory	should	also	be	applied	to	 the	analysis	of	masonry	

structures,	 including	 masonry	 arch	 bridges	 specifically	 [Heyman	 1980].	 To	

perform	an	analysis	he	simplified	the	problem	by	assuming	that:		
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1. stone	has	no	tensile	strength;		

2. stone	has	infinite	compressive	strength;	

3. the	sliding	of	a	stone	on	another	cannot	occur.	

The	 choice	 of	 this	 constitutive	 law	 for	 the	material,	 however,	 seems	 to	 be	

penalizing	compared	to	the	way	the	material	actually	behaves.	In	fact,	although	

it	may	be	true	that	the	shear	component	of	the	stress,	exerted	between	two	

adjacent	voussoirs,	cannot	by	any	means	exceed	the	friction	resistance,	the	fact	

remains	 that	 stone	 is	 considered	 as	 a	material	with	 no	 tensile	 strength	 but	

infinite	compressive	strength.		

Starting	 from	 these	 assumptions,	 the	 formation	 of	 a	 hinge	 right	 where	 the	

thrust	line	is	tangent	to	the	arch	at	the	edges	can	be	acknowledged;	thus,	a	rigid	

rotation	 of	 the	 faces	 of	 the	 two	 adjacent	 segments	 takes	 place	 around	 the	

extreme	fiber	of	the	section	[Gilbert	and	Melbourne	1994].		

Three	tangential	points	lead	to	the	formation	of	three	hinges;	this	results	in	a	

statically	 determinate	 structure.	 The	 limit	 to	 trigger	 a	 kinematic	 collapse	

mechanism	lies	in	the	formation	of	a	fourth	hinge.	The	limit	analysis	consists	of	

the	identification	of	the	lowest	possible	load	multiplier	that	generates	a	line	of	

thrust	that	is	always	contained	within	the	arch	volume	and	tangential	to	arch	

edges	at	four	points	(hinges)	(Figure	8).		
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Figure	8	–	Thrust	line	at	collapse	in	masonry	arch.	

	

The	theorems	of	plastic	limit	analysis	require	satisfaction	of	certain	conditions	

[Horne	1979]	and	before	proceeding	 further	 it	 is	worthwhile	 to	 simply	 state	

these:		

I. Equilibrium	condition	The	computed	internal	actions	must	represent	a	

state	 of	 equilibrium	 between	 the	 internal	 and	 external	 loads	 (the	

corollary	 of	 the	 equilibrium	 conditions	 are	 compatibility	 conditions,	

which	should	instead	be	satisfied	if	an	energy	method	is	being	used).		

II. Mechanism	 condition	 Sufficient	 releases	must	 be	made	 to	 transform	

the	structure	into	a	mechanism.		

III. Yield	condition.	The	stresses	 in	the	material	must	be	everywhere	 less	

than	or	equal	to	the	material	strength	(e.g.	shear,	crushing	and	tensile	

strength	limits	must	all	be	respected).		

Now	consider	a	structure	subject	to	an	applied	 load	which	 is	multiplied	by	a	

load	factor	λ.	The	three	fundamental	theorems	of	plastic	analysis	can	now	be	

stated	in	simplified	form	as:		
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Ø Static	or	 lower	bound	theorem	If	at	any	 load	factor	λ	the	equilibrium	

and	yield	conditions	are	everywhere	satisfied,	then	λ	=	λl	which	is	less	

than	or	equal	to	the	failure	load	factor	λp.		

Ø Kinematic	or	upper	bound	theorem	If	at	any	load	factor	λ	is	equal	to	the	

work	done	in	plastic	energy	dissipation,	then	λ	=	λu	which	is	greater	than	

or	equal	to	the	failure	load	factor	λp.		

Ø Uniqueness	theorem	If	at	any	load	factor	λ,	the	internal	stress	state	is	

such	that	the	three	conditions	of	equilibrium,	mechanism,	and	yield	are	

satisfied	then	that	load	factor	is	the	collapse	load	factor	λp.		

The	relationship	between	upper	and	lower	bound	solutions	is	also	presented	

graphically	in	Figure	9	below.		

	

Figure	9	–	The	relationship	between	upper	and	lower	bound	solutions.	

	

Figure	9	also	provides	an	indication	that	optimization	techniques	can	be	applied	
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to	search	for	the	exact	solution,	corresponding	to	the	exact	load	factor	λp.	Such	

techniques	will	be	discussed	later	in	the	paper.		

Heyman	considered	only	the	hinging	or	“rocking”	yield	condition,	excluding	the	

possibility	of	sliding	or	crushing	failure.	This	meant	that	for	the	 lower	bound	

theorem	 to	 be	 satisfied	 all	 that	 was	 required	 was	 for	 a	 thrust	 line	 to	 be	

identified	which	was	in	equilibrium	with	the	applied	loads,	and	which	lay	wholly	

within	the	masonry.		

Linked	 to	 the	 above	 theorem,	 Heyman	 then	 proposed	 the	 concept	 of	 a	

geometric	 factor	of	safety	 (G.F.O.S.),	which	gives	an	 indication	of	how	much	

larger	the	arch	under	consideration	is	in	comparison	to	one	that	is	just	stable	

under	the	given	loading	pattern.	One	advantage	of	the	G.F.O.S.	is	that	it	can	be	

applied	to	long	span	bridges	where	foreseeable	live	loads	may	be	neg-	ligible	in	

comparison	to	structural	self	weight.		

Harvey	 (1988)	 extended	 the	 applicability	 of	 Heyman’s	 “safe	 theorem”	 and	

G.F.O.S.	by	proposing	that	the	term	‘thrust	line’	be	replaced	with	‘thrust	zone’,	

which	at	each	cross-section	is	of	sufficient	depth	to	carry	the	load,	based	on	

consideration	of	the	actual	material	crushing	strength.		

	

2.3.6 Recent	developments	(FEM	analysis)	

Extensive	studies	have	been	carried	out	recently	on	arch	and	vault	structures,	

some	of	them	dealing	with	the	problem	of	friction	resistance.	Several	studies	

based	 on	 the	 finite-element	 method	 (FEM)	 and	 on	 nonlinear	 FEM	 tension	

models	 show	 the	 potential	 of	 the	method	 to	 compute	 both	 load-deflection	

curves	and	the	interaction	of	the	arch	structure	with	the	filling.	
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Most	of	modern	possibilities	based	on	FEM	fall	within	 two	main	approaches	

referred	to	as	macro-modelling	and	micro-modelling.		

	

2.3.6.1 FEM	Based	approaches.	Macro-Modelling	

Macro-modelling	is	probably	the	most	popular	and	common	approach	due	to	

its	lesser	calculation	demands.	In	practice-oriented	analyses	on	large	structural	

members	or	full	structures,	a	detailed	description	of	the	interaction	between	

units	and	mortar	may	not	be	necessary.	In	these	cases,	macro-modelling,	which	

does	not	make	any	distinction	between	units	and	joints,	may	offer	an	adequate	

approach	 to	 the	 characterization	 of	 the	 structural	 response.	 The	 macro-

modelling	 strategy	 regards	 the	 material	 as	 a	 fictitious	 homo-	 geneous	

orthotropic	continuum.		

An	appropriate	relationship	is	established	between	aver-	age	masonry	strains	

and	 average	 masonry	 stresses.	 A	 complete	 macro-model	 must	 account	 for	

different	tensile	and	compressive	strengths	along	the	material	axes	as	well	as	

different	 inelastic	 properties	 along	 each	 material	 axis.	 The	 continuum	

parameters	must	be	determined	by	means	of	tests	on	specimens	of	sufficiently	

large	 size	 subjected	 to	 homogeneous	 states	 of	 stress.	 As	 an	 alternative	 to	

difficult	experimental	tests,	it	is	possible	to	assess	experimentally	the	individual	

components	and	consider	the	obtained	data	as	input	parameters	of	a	numerical	

homogenization	technique.	Compared	to	more	detailed	approaches	affording	

the	description	of	discontinuities,	macro-modelling	shows	significant	practical	

advantages.	 In	 particular,	 FE	meshes	 are	 simpler	 since	 they	 do	 not	 have	 to	

accurately	describe	the	internal	structure	of	masonry	and	the	finite	elements	

can	have	dimensions	greater	than	the	single	brick	units.	This	type	of	modelling	
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is	 most	 valuable	 when	 a	 compromise	 between	 accuracy	 and	 efficiency	 is	

needed.		

The	macro-models,	also	termed	Continuum	Mechanics	finite	element	models,	

can	be	related	to	plasticity	or	damage	constitutive	laws.		

The	macro-models	have	been	extensively	used	with	the	aim	of	analyzing	the	

seismic	response	of	complex	masonry	structures,	such	as	arch	bridges	(Pela’	et	

al.),	historical	buildings	(Mallardo	et	al.),	and	mosques	and	cathedrals	(Roca	et	

al.,	Martínez	et	al.;	Murcia-Delso	et	al.).		

A	drawback	of	the	macro-modelling	approach	lays	in	its	description	of	damage	

as	a	smeared	property	spreading	over	a	large	volume	of	the	structure.	In	real	

unreinforced	masonry	 structures,	 damage	 appears	 normally	 localized	 in	 iso-	

late	 large	 cracks	 or	 similar	 concentrated	 lesions.	 A	 smeared	 modelling	 of	

damage	provides	a	rather	unrealistic	description	of	damage	and	may	result	in	

predictions	either	inaccurate	or	difficult	to	associate	with	real	observations.		

Macro-models	encounter	a	significant	 limitation	 in	 their	 inability	 to	simulate	

strong	 discontinuities	 between	 different	 blocks	 or	 parts	 of	 the	 masonry	

construction.	 Such	 discontinuities,	 corresponding	 either	 to	 physical	 joints	 or	

individual	 cracks	 formed	 later	 in	 the	 structure,	may	 experience	 phenomena	

such	 as	 block	 separation,	 rotation	 or	 frictional	 sliding	 which	 are	 not	 easily	

describable	 by	 means	 of	 a	 FEM	 approach	 strictly	 based	 on	 continuum	

mechanics.		

However,	 a	 possible	 way	 of	 overcoming	 these	 limitations	 consists	 of	 the	

inclusion	 within	 the	 FEM	 mesh	 of	 joint	 interface-elements	 to	 model	 the	

response	of	discontinuities.		
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2.3.6.2 FEM	Based	approaches.	Micro-Modelling	

n	the	micro-modelling	strategy,	 the	different	components,	namely	 the	units,	

mortar	 and	 the	 unit/mortar	 interface	 are	 distinctly	 described.	 The	 socalled	

detailed	 micro-models	 describe	 the	 units	 and	 the	 mortar	 at	 joints	 using	

continuum	finite	elements,	whereas	the	unitmortar	interface	is	represented	by	

discontinuous	 elements	 accounting	 for	 potential	 crack	 or	 slip	 planes	 (Figure	

10).	Detailed	micro-modelling	is	probably	the	more	accurate	tool	available	to	

simulate	the	real	behavior	of	masonry.	It	 is	particularly	adequate	to	describe	

the	local	response	of	the	material.	Elastic	and	inelastic	properties	of	both	unit	

and	mortar	can	be	realistically	taken	into	account.		

The	 detailed	 macro-modelling	 strategy	 leads	 to	 very	 accurate	 results,	 but	

requires	an	intensive	computational	effort.	This	drawback	is	partially	overcome	

by	 the	 simplified	 micro-models,	 where	 expanded	 units,	 represented	 by	

continuum	elements,	are	used	to	model	both	units	and	mortar	material,	while	

the	behavior	of	the	mortar	 joints	and	unitmortar	 interfaces	 is	 lumped	to	the	

discontinuous	 elements	 (Figure	 10).	Masonry	 is	 thus	 considered	 as	 a	 set	 of	

elastic	blocks	bonded	by	potential	fracture/slip	lines	at	the	joints.		
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Figure	10	-	Modelling	strategies	for	masonry	structures	(Lourenço):	masonry	sample	(a);	detailed	(b)	and	
simplified	(c)	micro-modelling;	macro-modelling	(d) 

	

The	micro-modelling	approaches	are	suitable	for	small	structural	elements	with	

particular	 interest	 in	 strongly	heterogeneous	 states	of	 stress	and	 strain.	The	

primary	aim	 is	 to	closely	 represent	masonry	based	on	 the	knowledge	of	 the	

properties	of	each	constituent	and	the	interface.	The	necessary	experimental	

data	must	be	obtained	from	laboratory		

tests	on	the	constituents	and	small	masonry	samples.	Nevertheless,	the	high	

level	of	refinement	required	means	an	intensive	computational	effort	(i.e.	great	

number	of	degrees	of	 freedom	of	 the	numerical	model),	which	 limits	micro-

models	applicability	to	the	analysis	of	small	elements	(as	laboratory	specimens)	

or	small	structural	details.		
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2.3.7 LEFM	Model	for	masonry	arches	

2.3.7.1 Introduction	to	fracturing	process	

More	recent	methods	[Carpinteri	et	al.	2015;	Accornero	et	al.	2016;	Lacidogna	

and	 Accornero	 2018]	 for	 the	 evaluation	 of	 masonry	 arch	 structure	 stability	

consist	of	incremental	analysis	of	the	fracturing	process	by	means	of	LEFM.		

Masonry	 is	 characterized	by	anisotropic	and	nonlinear	behavior	even	at	 low	

strain	 values.	 Masonry	 materials	 subject	 to	 uniaxial	 load	 tests	 exhibit	

appreciably	 different	 tensile	 strength	 and	 compressive	 strength	 values:	 the	

latter	being	significantly	higher	than	the	former.	Therefore	it	was	thought	that	

the	constitutive	 law	that	best	 represents	 the	behavior	of	natural	or	artificial	

masonry	materials	 is	an	elastic-softening	constitutive	 law	 (Figure	11).	This	 is	

equivalent	 to	simply	considering	an	elastic	constitutive	 law	combined	with	a	

crisis	condition	for	fracturing	in	accordance	with	the	concepts	of	LEFM;	that	is	

to	say,	the	material	has	a	purely	elastic	behavior	with	the	possibility	of	cracks	

forming	and	propagating.		

	

Figure	11	–	Elastic-softening	constitutive	law.	
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2.3.7.2 Mechanism	of	crack	opening	and	closure	

At	 the	base	of	 this	method	 there	 is	 the	hypothesis	 that,	an	elastic-softening	

material	 is	 replaced	 by	 a	 material	 with	 a	 purely	 elastic	 behavior	 with	 the	

possibility	of	cracks	formation	and	extension.	This	hypothesis	applies	only	to	

structures	large	enough	to	allow	tension	profiles	to	develop	close	to	the	crack	

tip,	as	foreseen	by	linear	elastic	fracture	mechanics.		

Take	normalized	crack	depth	ξ	=	a/b	(Figure	12.a)	as	the	damage	parameter	and	

the	stress	 intensity	factor,	KI,	 (Figure	12.b)	as	the	load	parameter.	The	stress	

intensity	factor	is	an	amplification	factor	of	the	stress	field	when	the	loads	are	

symmetrical	relative	to	the	crack	(e.g.,	axial	force	and	bending	moment).	Shear	

is	disregarded.		

	

Figure	12	–	Cracked	beam	element:	𝛏 = 𝐚𝐛+𝟏; 	𝛔 = 𝐊𝐈(𝟐𝛑𝐫)+𝟎.𝟓	

	

The	 energetic	 meaning	 of	 KI	 ,	 the	 square	 of	 this	 parameter,	 omitting	 a	

proportionality	factor,	represents	the	elastic	energy	released	by	the	system	per	

unit	of	 virtual	 crack	extension.	 The	KI	 reaches	 its	 critical	 value	KIC	when	 this	

virtual	 extension	 becomes	 real,	 since	 the	 energy	 released	 in	 an	 elementary	

crack	extension	is	sufficient	to	supply	the	surface	energy	of	the	new	geometry.		

The	 bending	 moment	 produces	 a	 stress	 intensity	 factor	 at	 the	 crack	 tip	
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expressed	as:	

	 𝐾: =
𝑀

𝑡𝑏>/@
𝑌B(𝜉)	

	
(	1	)	

with:	

𝑌B 𝜉 = 6 1.99𝜉
G
@ − 2.47𝜉

>
@ + 12.97𝜉

M
@ − 23.17𝜉

O
@ + 24.8𝜉

Q
@ 	

	
(	2	)	

Similarly,	a	tensile	axial	force,	F,	produces:	

	 𝐾: =
𝐹

𝑡𝑏G/@
𝑌S(𝜉)	

	
(	3	)	

with:	

𝑌S 𝜉 = 1.99𝜉
G
@ − 0.41𝜉

>
@ + 18.70𝜉

M
@ − 38.50𝜉

O
@ + 53.86𝜉

Q
@	

	
(	4	)	

When	the	axial	force	is	compressive	and	the	bending	moment	tends	to	open	

the	crack,	as	 is	usually	 the	case	 in	masonry	arches,	 the	 total	 stress	 intensity	

factor	can	be	determined	by	applying	the	superposition	principle:	

	 𝐾: = 𝐾:B − 𝐾:S =
𝐹

𝑡𝑏G/@
𝑒
𝑏
𝑌B 𝜉 − 𝑌S 𝜉 	

	
(	5	)	

where	e	stands	for	the	eccentricity	of	the	equivalent	axial	force,	relative	to	the	

centroid	of	the	cross-sectional	area.		

From	the	critical	condition	KI	=	KIC,	it	is	possible	to	determine	the	dimensionless	

crack	 extension	 axial	 force	 as	 a	 function	 of	 crack	 depth	 ξ	 and	 relative	

eccentricity	of	the	load,	e=b:	



 

“Evolutionary	analysis	of	the	fracturing	process	in	masonry	arches:	
Application	of	the	Cohesive	Crack	Model”. 

 

 
 
 

	
26	

	

	 𝐹W =
𝐹W

𝑡𝑏G/@𝐾:W
=

1
𝑒
𝑏 𝑌B 𝜉 − 𝑌S 𝜉

	
	

(	6	)	

The	curves	 in	Figure	13	graphically	represent	this	expression	and	show	

how,	 when	 eccentricity	 e=b	 is	 fixed,	 the	 fracturing	 process	 reaches	 a	

condition	of	stability	only	after	showing	an	unstable	condition.	If	the	load	

F	 is	 unable	 to	 follow	 the	 decreasing	 unstable	 branch	 of	 the	 e=	 b	 =	

constant	 curve	 in	 a	 strain-softening	 unloading	 process,	 the	 fracturing	

process	 leads	 to	 catastrophic	 behavior	 and	 the	 representative	 point	

advances	horizontally	until	it	meets	the	e=	b	=	constant	curve	again	on	

the	stable	branch.	On	the	other	hand,	the	possibility	of	 load	relaxation	

and	 a	 more	 or	 less	 catastrophic	 fracturing	 behavior	 depends	 on	 the	

structure’s	geometric	and	mechanical	 characteristics	and	 is	affected	 in	

particular	by	degree	of	redundancy	and	size	(scale	effect).		

	

Figure	13	–	Fracturing	process	for	eccentric	axial	load.	
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It	is	also	important	to	consider	that,	for	each	relative	crack	depth	ξ,	there	

is	 a	 relative	 eccentricity	 value	 below	 which	 the	 crack	 tends,	 at	 least	

partially,	to	close	again.	From	the	closing	condition	KI=	0,	the	following	is	

obtained:		

	 𝐾: = 0 =
𝐹

𝑡𝑏G/@
𝑒
𝑏
𝑌B 𝜉 − 𝑌S 𝜉 	

	
(	7	)	

from	which:	

	 𝑒
𝑏
=
𝑌S(𝜉)
𝑌B(𝜉)

	
	

(	8	)	

This	equation	is	graphically	represented	in	Figure	14.	The	area	below	the	curve	

represents	the	crack	and	loading	conditions	whereby	KI<	0.		

	

Figure	14	–	Crack	closuse	curve	
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2.3.7.3 Stiffness	of	the	cracked	section	

Now	consider	 the	 loss	of	 stiffness	 in	 the	cross	 section	of	a	 cracked	beam.	A	

cracked	 cross	 section	 (Figure	 12.a)	 behaves	 like	 an	 elastic	 hinge	 with	 the	

rotational	stiffness	determined	by	an	energy	balance	between	elastic	work	and	

fracture	work.		

The	rotational	stiffness	of	an	elastically	fixed	joint	is:	

	
𝑊 =

𝑏@𝑡𝐸

2 𝑌B@ 𝜉 𝑑𝜉
[
\

	
	

(	9	)	

where	E=	Young’s	modulus	of	the	material. The	stiffness	matrix	of	the	cracked	

element	(Figure	15)	is	changed	only	by	the	four	rotational	terms	as	described	

in	Figure	16,	where	A	and	I	are	the	area	and	the	inertia	moment	of	the	cross	

section,	respectively,	and	l	is	the	length	of	the	beam	finite	element.		

From	the	stiffness	matrix,	it	can	be	seen	that	terms	that	link	the	moments	M1	

and	M2	to	the	rotations	φ1	and	φ2	obtained	by	applying	the	principle	of	virtual	

work	to	a	beam	with	an	elastic	hinge	simulating	a	crack	at	the	midspan,	return	

the	 standard	 values	 of	 the	 uncracked	 beam	 finite	 element	 as	 W	 tends	 to	

infinity:	

	
lim
`→b

𝜑
𝐸𝐼(3𝐸𝐼 + 4𝑙𝑊)
𝑙(𝐸𝐼 + 𝑙𝑊)

= 𝜑
4𝐸𝐼
𝑙

	
	

(	10	)	

	
lim
`→b

𝜑
𝐸𝐼(3𝐸𝐼 + 2𝑙𝑊)
𝑙(𝐸𝐼 + 𝑙𝑊)

= 𝜑
2𝐸𝐼
𝑙

	
	

(	11	)	
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Figure	15	–	Cracked	beam	elemnt:	elastic	hinge	simulating	a	crack.	

	

	

Figure	16	–	Stiffness	matrix	of	the	cracked	element.	

	

2.3.7.4 Calculation	procedure	

Setting	 the	 geometrical	 characteristics	 of	 the	 structure	 and	 the	mechanical	

characteristics	of	the	material,	 like	the	maximum	compressive	stress	and	the	

fracture	toughness	KIC,	the	arch	is	analyzed	by	creating	a	FEM	(Finite	Element	
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Method)	 model	 and	 considering	 the	 stone	 structure	 clamped	 to	 rigid	

abutments.	The	calculation	uses	a	step-by-step	 loading	process	and	for	each	

load	increment	the	code	returns	the	axial	force	and	bending	moment	in	each	

section;	from	these	values,	using	the	classical	relations	of	beam	theory,	it	is	pos-	

sible	 to	 determine	 the	 maximum	 tensile	 or	 compressive	 forces	 and	 their	

eccentricity	with	respect	to	the	centroid	in	each	section	of	the	structure.		

When	a	section	crisis	is	triggered	by	tensile	stresses,	the	relative	crack	depth	ξ	

is	determined.	In	this	way,	the	updated	crack	depth	is	determined.		

Therefore,	the	routine	is	applied	again	considering	the	modified	stiffness	of	the	

cracked	elements.	 If	 the	new	relative	crack	depth	ξ	 is	equal	to	that	 formerly	

determined,	 the	process	stabilizes.	 If	 the	new	relative	crack	depth	ξ	 is	 lower	

than	the	former,	the	routine	resorts	to	the	curve	of	closure,	which	allows	to	

check	 the	 value	of	 the	 stress	 intensity	 factor	 KI,	 determining	 the	 admissible	

crack	 depth.	 After	 this	 check,	 the	 ξ	 values	which	 fall	 in	 the	 field	 KI	 ≥	 0	 are	

considered.		

Increasing	the	load,	the	inefficiency	of	the	arch	section	takes	place	when	ξ	≥	

0.7,	or	when	the	compressive	strength	in	the	considered	element	is	reached.		
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3 The	cohesive	crack	model	
	

3.1 Fondation	of	the	cohesive	crack	model	
	

“As	is	known,	the	intensity	of	the	force	of	cohesion,	actiong	between	two	pieces	

of	 material	 previously	 constituting	 a	 single	 unit	 and	 afterwards	 separeted,	

depends	strongly	on	thr	distance	y	between	these	segments.”1	

This	model	was	proposed	by	Barenblatt	and	Dugdale.	He	was	later	spotted	by	

Bilby,	Cottrell	and	Swinden,	Willis	and	Rice.	More	recently	it	was	re-proposed	

by	Wnuk	under	the	name	of	Final	Stretch	Model	and	by	Hillerborg,	Modeer	and	

Petersson	 under	 the	 name	 Fictious	 Crack	 Model.	 Carpinteri	 re-proposed	 in	

1985	the	primitive	name	of	Cohesive	Crack	Model.	

The	basic	hypothesis	is	that,	as	extension	of	the	real	crack,	a	fictitious	fissure,	

called	"Process	Zone",	is	formed	in	which	the	material,	although	damaged,	is	

still	able	to	transfer	tensions.	

																																																													
1	G.I.	Barenblatt,	“On	some	basic	ideas	of	the	theory	of	equilibrium	crack	…”,	1961.	
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Figure	17	–	Process	zone	(without	shearing	stresses).	

	

In	fact,	according	to	the	theory	of	elasticity,	described	in	Paragraph	2.3.7,	at	the	

apex	of	a	crack,	there	is	a	stress	singularity.	In	practice,	the	materials	solicited	

beyond	 the	 limit	 of	 proportionality	 exhibit	 non-linear	 behavior.	 This	 means	

that,	around	the	end	of	the	crack,	there	is	always	a	non-linear	behavior	zone	

and	therefore	the	stress	singularity	disappears.	The	cohesive	model	allows	us	

to	grasp	and	take	into	account	this	non-linear	behavior.	From	the	standpoint	of	

non-linear	behavior,	one	can	essentially	distinguish	two	types	of	materials:	

1. Some	materials,	if	deformed	beyond	the	limit	of	proportionality,	have	

further	resistance	reserves	and	are	called	"strain	hardering".	 In	these	

cases,	energy	dissipation	occurs	mainly	in	the	volume	of	the	material,	in	

a	 plastic	 area	 located	 around	 the	 apex	of	 the	 crack.	 In	 this	 family	 of	

materials	are	mainly	those	of	metal.	
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2. Other	materials,	if	deformed	beyond	the	limit	of	proportionality,	show	

a	decrease	in	resistance	which	is	also	called	"strain	softening".	In	these	

cases,	 the	 non-linear	 zone	 tends	 to	 localize	 in	 a	 very	 narrow	 band	

collinear	to	the	fissure.	Energy	dissipation	occurs	mainly	on	the	surface	

of	 the	 fracture.	 This	material	 family	 includes	 concrete,	 rocks,	 bricks,	

ceramics	and	fibro-reinforced	compounds.	

In	 this	 last	 case,	 the	 process	 zone	 can	 be	 simulated	with	 a	 "cohesive	 force	

distribution"	behind	the	end	of	the	fictitious	fissure,	i.e.	it	can	be	studied	with	

the	cohesive	model.	In	fact,	this	model	is	able	to	explain	the	transition	between	

the	two	extreme	situations	of	collapse:	

a) that	 foreseen	 by	 the	 limit	 analysis,	 for	 the	 achievement	 of	 the	 last	

bending	moment	in	the	weakened	section	from	the	notch;	

b) that	 foreseen	 by	 the	 Linear	 Elastic	 Fracture	 Mechanics,	 for	 fracture	

propagation.	

	

3.2 The	cohesive	constitutive	law	
	

In	 the	 non-linear	 fracture	 model	 (cohesive	 model)	 the	 way	 to	 consistently	

describe	the	behavior	of	materials	is	to	use	a	set	of	constitutive	laws:	

I. a	tension-strain	relationship,	which	describes	the	elastic	and	hardening	

behavior	 of	 the	 integral	 material	 up	 to	 the	 maximum	 tension	 (su),	

including	the	drains	(to	see	Figure	18a);	

II. a	 tension-opening	 of	 the	 crack	 relationship,	 which	 describes	 the	

"softening"	behavior	of	the	cracked	material,	up	to	the	critical	opening	
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of	the	toilet,	beyond	which	the	iteration	between	the	faces	of	the	crack	

is	canceled	(to	see	Figure	18b).	

	

Figure	18	–	Constitutive	law:	(a)	undamaged	material,	(b)	process	zone.	

	

Figure	19	-	The	cohesive	crack	model:	(a)	Process	zone;	(b)	Cohesive	forces		of	reclosing.	

For	 steels	 the	 constitutive	 law	 is	 generally	of	 the	most	 complex	 type,	 and	a	

modeling	 is	 somewhat	more	 difficult	 because	 it	must	 provide	 two	 different	

dissipation	mechanisms	(dissipation	in	the	volume	of	intact	material	and	on	the	
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surface	 of	 the	 crack),	 for	 concretes,	 rocks,	 walls	 (where	 the	 dissipation	 of	

energy	takes	place	exclusively	on	the	surface	of	the	crack)	the	simplest	elasto-

softening	law	is	able	to	coherently	describe	reality.	

The	so-called	cohesive	crack	model	is	quite	similar	to	the	Dugdale	model	but,	

unlike	 the	 latter,	 the	 distribution	 of	 cohesive	 forces	 is	 not	 constant	 but	

decreases	as	the	crack	opening	increases,	with	a	softening	law	(Figure	18b).	The	

area	facing	the	end	of	the	"real"	crack	is	damaged	and	micro-cracked	and	in	it	

a	segment	of	the	macrofession	in	progress	can	be	distinguished,	still	however	

partially	 sewed	 by	 inclusions,	 aggregates	 and	 fibers	 (Figure	 18a).	 This	 zone,	

where	non-linear	and	dissipated	microscopic	phenomena	occur,	as	previously	

mentioned,	takes	the	name	of	"Process	zone".	

The	end	of	the	cohesive	(or	fictitious)	slot	coincides	with	the	end	of	the	process	

zone,	in	which	the	opening	w	is	canceled	and	the	reclosing	tension	is	equal	to	

the	tensile	strength	su,	this	point	takes	the	name	of	fictitious	crack	tip.	The	end	

of	the	real	slot	is	instead	located	at	the	critical	opening	wc,	so	the	interaction	is	

canceled,	 this	point	 is	called	real	crack	tip.	 In	 the	 intermediate	points	of	 the	

process	zone,	the	pairs	s-w	are	provided	by	the	cohesive	law	(Figure	18b).	

	

3.3 The	cohesive	model	in	problems	of	MODE	I	
	

The	cohesive	model	is	based	on	the	following	assumptions:	

1) the	process	zone	begins	to	develop	when	the	maximum	main	tension	

reaches	the	tensile	strength	of	the	material;	
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2) the	 process	 zone	 is	 developed	 perpendicular	 to	 the	 main	 tensile	

tension;	

3) in	 the	 process	 area	 the	 material	 is	 partially	 damaged,	 but	 can	 still	

transfer	 tensions.	 In	 numerical	 simulations,	 the	 process	 zone	 is	

represented	as	a	fictitious	extension	of	the	crack.	

The	tensile	forces,	which	act	on	the	fictitious	extension	of	the	crack,	are	defined	

as	decreasing	functions	of	the	distance	w	between	the	flap	edges.	About	these	

forces,	called	cohesive,	in	the	numerical	simulations	that	will	be	present	later,	

the	following	hypotheses	have	been	assumed:	

4) absence	of	tangential	components;	

5) s-w	linear	law:	

	 𝜎 = 𝜎g 1 −
𝑤
𝑤i

	
	

(	12	)	

where	wc	is	the	critical	opening	value	of	the	crack,	i.e.	it	is	assumed	that	

for	opening	values	greater	than	wc,	the	material	is	not	able	to	transmit	

stress.	The	area	subtended	by	the	curve	s-w,	represents	 the	 fracture	

energy	GF	=	GIC.	

6) w	 is	 an	 increasing	monotone	 function	of	 time	during	 the	 irreversible	

cracking	process;	

7) outside	 the	 damaged	 area,	 the	 material	 behaves	 in	 an	 elastic-linear	

manner.	

Based	on	the	previous	hypothesis,	indicating	with	w(x)	the	opening	of	the	crack	

in	a	generic	point,	and	considering	the	reference	system	(Figure	19),	we	obtain:	

	 lim
j→\k

𝑤 = 0	 (	13	)	
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and	taking	into	account	the	cohesive	law:	

	 lim
j→\k

𝜎 = 𝜎g	 (	14	)	

	

This	last	formula	indicates	that,	approaching	the	apex	of	the	fictitious	fissure	

along	 the	process	area,	 the	 tension	 tends	 to	su.	The	hypothesis	2)	 indicates	

that,	under	conditions	of	incipient	propagation	of	the	fissure,	it	results:	

	 lim
j→\l

𝜎 = 𝜎g	 (	15	)	

	

This	equation	indicates	that,	by	approaching	the	apex	of	the	fictitious	fissure	

coming	from	the	intact	material	and	moving	in	the	-x	direction,	the	main	tensile	

tension	tends	again	to	the	value	su.	

These	last	two	equations	show	that	s(x)	is	a	continuous	function	in	x=	0.	The	

cohesive	model	does	not	 involve	 the	emergence	of	 tension	singularities	and	

therefore	the	use	of	singular	elements	is	not	required.	

	

Figure	20	-	Nodes	of	the	lattice	of	finite	elements	placed	at	the	crack	propagation	line.	
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In	the	problems	of	MODE	1,	the	crack	trajectory	is	known	for	considerations	of	

symmetry.	Applying	the	Finite	Element	Method,	it	is	possible	to	build	a	mesh	

with	n	pairs	of	nodes	arranged	along	the	direction	of	propagation	of	the	crack.		

	

Figure	21	-	Stress	acting	on	the	fictitious	fissure.	(a)	and	equivalent	nodal	forces	applied	to	the	lattice	of	
finite	elements.	

Hence,	the	cohesive	forces	are	rapresented	by	nodal	forces,	Fi,	whose	intensity	

depends	on	 the	opening	of	 the	crack	according	 to	 the	costitutive	 law	of	 the	

material,	σc-wn.		

The	problem	can	be	formulated	as	follow:	

	 𝑤 = 𝐻 𝐹 + 𝐶 𝑃	 (	16	)	

	

where,	

{w}=	stands	for	the	vector,	of	size	n,	containing	the	opening	displacements	of	

the	crack;	
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[H]=	is	the	matrix,	of	size	nxn,	of	the	influence	coefficients	corresponding	to	Fj=	

1;	

{C}=	 is	 the	vector	of	 the	 influence	coefficients	of	 the	action	due	to	 the	unit	

external	load	P.	

	
Figure	22	-	Distribution	of	the	forces	of	reclosing	above	the	real	crack	tip,	at	the	first	step	(a)	and	at	a	

generic	step	(b)	for	advancing	the	crack.	

	

The	cohesive	tensions	of	reclosing,	acting	on	the	fictitious	crack	(Figure	21a)	are	

replaced	by	nodal	forces	(Figures	21b).	The	intensity	of	these	forces	depend,	as	

said	by	the	opening	of	the	fissures	w,	according	to	the	law	s-w.	At	a	generic	

propagation	step	(Figures	22)	one	can	then	write	the	following	equations:	

𝐹p = 0;	 for	i=1,	2	…,	j-1;	 real	crack	(w	>	wc);	 (	17.a	)	

𝐹p = 𝐹g 1 −
𝑤p
𝑤i

+ 𝐹q	 for	i=	j,	…,	m-1;	 fictitious	crack	(0	<	w<	wc);	 (	17.b)	

𝐹p = 𝐹g	𝑎𝑛𝑑	𝑤p = 0	 for	i=	m;	 tip	of	fictitious	crack;	 (	17.c)	

𝑤p = 0	 for	i=	m+1,	…,	n;	 uncracked	material;	 (	17.d)	
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Where,	 FN	 is	 the	 additional	 term	 that	 takes	 into	 account	 the	 presence	 of	

compression.	FN	is	a	function	of	q.	

The	total	number	of	equations	is	2n+1	(n	is	the	numner	of	Eqs.	(16)	and	n+1	

that	of	Eqs.	(17.a-d)),	as	well	as	that	of	the	unknowns,	w,	F	and	P.	

The	deflection	of	the	loading	point	is	determined	by:	

	

	 𝛿 = 𝐶 u 𝐹 + 𝐷w𝑃	 (	18	)	

	

where	Dp	denotes	the	deflection	of	the	loading	point	when	P	=	1.	

The	equations	in	the	system	depend	on	the	indices	j	(tip	of	the	real	crack)	and	

m	(tip	of	the	fictitious	crack),	which	vary	with	the	crack	propagation	process.	

The	instructions	for	determining	such	equations	are	as	follows:	

1) At	the	first	step	the	process	zone	has	not	yet	been	formed	and	the	real	

crack	tip	coincides	with	the	tip	of	the	notch,	so	that	j	=	m.	When	there	

is	no	notch,	then	m=j=1;	

2) At	each	step,	the	fictitious	crack	increases	by	a	quantity	fly	so	that	m	is	

increased	by	1;	

3) Solve	the	system	of	2n	+	1	equations	and	check	the	opening	wj	of	the	

tip	of	the	real	crack:	

a. If	wc	³	wj:	go	to	step	4);	

b. If	wj	>	wc:	increase	j	and	check	the	remaining	number	of	

cohesive	links	(which	is	m	-	j):	

i. m	–	j	³	4:	the	system	is	well	posed,	return	to	step	3);	

ii. m	-	j	<	4:	the	problemi	s	too	brittle.	Refine	thr	mesh	(by	

increasing	n)	and	repeat	the	analysis;	
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4) Make	sure	that	Fi	<	Fu	in	the	uncracked	material	and	that	w	<	wc	in	the	

orocess	zone;	

5) Determine	the	deflection	d	of	the	loading	point	on	the	basis	of	Eq.	

(18).	

6) If	m	<	n	go	back	ti	spet	2);	if	it	is	not,	the	analysis	stops.	

	

In	elastic	and	elasto-plastic	models,	the	stress	and	displacement	functions	are	

continuous	and	differentiable:	this	is	not	the	case	in	the	Cohesive	Model,	since	

the	 stresses	 are	 continuous	 and	 the	 displacements	 are	 discontinuous	 in	 the	

process	zone.	

Furthermore,	during	crack	growth,	the	state	of	stress	at	the	tip	of	the	fictitious	

crack	is	known:	at	this	point,	in	fact,	the	principal	tensile	stress	equals	the	value	

of	 the	 material's	 ultimate	 tensile	 strength.	 The	 model	 makes	 it	 possible	 to	

describe	size	effect	and	ductile-to-brittle	transition	phenomena.	The	collapse	

brought	about	by	the	brittle	propagation	of	the	crack	and	described	by	Linear	

Elastic	Fracture	Mechanics	(L.E.F.M.),	is	interpreted	by	the	Cohesive	Model	as	

a	cusp	catastrophe,	which	is	characterized	by	a	softening	branch	with	positive	

slope	and	referred	to	as	snap-back.	

	

	

3.4 Application	of	the	cohesive	model	to	masonry	arches	
	

3.4.1 The	calculation	algorithm	

In	 this	 paragraph	we	will	 show	 the	 calculation	 reports,	 implemented	 in	 the	

MATLAB	software	to	apply	the	cohesive	model	to	the	masonry	arches.	
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To	obtain	the	final	algorithm,	whose	instructions	are	given	in	Paragraph	3.4.2,	

we	 started	 from	 an	 old	 calculation	 code,	 developed	 to	 analyze	 problems	 of	

beams	 simply	 supported	and	 subjected	 to	a	 simple	bending	moment,	 called	

FR.ANA	(FRacture	ANAlysis).	This	calculation	code	solves	the	problem	of	solving	

the	system	of	n	equations	in	2	x	n	incoquite	thanks	to	a	mathematical	artifact	

that	 uses	 an	 aux	 dimensional	 calculation	 matrix	 Aus(18x18)	 where	 18	

corresponds	 to	 the	 number	 of	 nodes	 in	 which	 the	 section	 is	 discretized.	

Therefore,	by	means	of	a	numerical	simulation	to	the	finite	elements,	the	Aus	

matrix	 has	 been	 adapted	 to	 a	 fictitious	 beam,	 which	 in	 addition	 to	 being	

subjected	to	a	bending	moment	is	also	added	to	compression.	

The	implemented	calculation	algorithm,	once	defined	the	geometry	of	the	arc	

to	be	studied,	after	having	divided	it	into	16	parts	(17	nodes),	performs	a	linear	

elastic	analysis	and	identifies	the	characteristics	of	the	stresses	(M,	T	and	N)	in	

the	assigned	nodes,	due	to	the	weight	and	the	weight	of	the	abutment.	In	the	

initial	 phase	 we	 consider	 a	 variable	 load	 q	 equal	 to	 zero.	 At	 this	 point,	 it	

identifies	the	most	stressed	node	in	terms	of	bending	moment	and	applies	the	

FR.ANA	code	with	the	modified	Aus	matrix	to	the	section	corresponding	to	this	

node.	 In	 this	 phase,	 the	 algorithm	 divides	 the	 section	 into	 18	 nodes	 and	

identifies	the	load	necessary	to	create	the	crack,	i.e.	the	load	necessary	for	the	

fictitious	 crack	 tip	 to	 move	 from	 node	 i (edge)	 to	 node	 i+1.	 Following	 the	

displacement	 of	 the	 fictitious	 crack	 tip	 the	 algorithm	 estimates	 the	 new	

position	 of	 the	 real	 crack	 beam	 and	 performs	 a	 new	 elastic	 analysis	 of	 the	

structure.	Phase	two	provides	for	the	estimation	of	the	Δq	load	necessary	for	

the	real	fictitious	tip	to	move	to	the	next	node.	It	is	a	process	in	control	of	crack	

opening.	This	is	an	iterative	procedure	where	for	each	step	you	make:	

1) calculation	of	the	agents	stresses	in	the	section;	
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2) calculation	of	the	load	Δq	necessary	to	move	the	fictitious	crack	tip	to	

the	next	node;	

3) check	the	position	of	the	real	crack	tip;	

4) recalculation	of	the	position	of	the	fictitious	crack	beam.	

All	 this	 is	 repeated	until	 the	 real	 crack	 tip	 reaches	90%	of	 the	height	of	 the	

section.	

It	should	be	noted	that,	the	algorithm	implemented	in	addition	to	the	cracking	

check	carries	out	a	check	on	the	crusching	section.	

To	model	the	true	behavior	of	the	material,	a	bilinear	cohesive	law	was	used	

for	the	process	zone:	

	

	

Chart	1	-	Cohesive	constitutive	law	used	in	the	process	zone.	

Following	are	the	main	function	of	the	calculation	algorithm,	implemented	in	

Matlab,	used:	

• Biutarc	(for	more	information	to	see	Appendix	1).	Represents	the	main	

program	 (mean).	 It	 governs	 the	 calls	 of	 the	 other	 "functions"	 of	 the	
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program	and	controls	the	progress	of	the	processing	flow.	The	operating	

scheme	is	as	follows:	

1) The	general	data	of	 the	problem	are	 read.	The	arch	 is	divided	

into	16	beam	elements;	

2) An	 elastic	 calculation	 is	 carried	 out	 in	 order	 to	 identify	 the	

section	 in	which	 the	 crack	will	 be	 born	 and	 propagate	 (called	

sez_cal);	

3) The	section	identified	in	18	nodes	is	subdivided;	

4) The	forces	of	reclosing,	the	openings	and	the	displacement	are	

calculated	by	effect	of	the	own	weight	and	of	the	variable	load	

(initially	equal	to	0);	

5) Based	on	the	solution	found	in	the	previous	step	(4),	the	variable	

load	 is	 calculated	 so	 as	 to	 reach	 the	 tensile	 strength	 of	 the	

material	in	the	fictitious	tip	(and	then	move	this	tip);	

6) With	 this	new	variable	 load	value	 the	problem	 is	 solved	again	

and	it	is	verified	if	the	real	tip	has	to	advance;	

7) Starting	from	point	4.	

8) Last	phase	sees	the	calculation	of	the	variable	load	that	produces	

the	 achievement	 of	 the	 ultimate	 compression	 tension	 of	 the	

material	in	the	compressed	limb.	

• Calcolo_P	(for	more	information	to	see	Appendix	3).	Once	the	section	

to	be	studied	has	been	identified,	this	routin	carries	out	the	transition	

from	the	distributed	load	of	the	permanent	loads	to	a	concentrated	load	

directed	perpendicular	to	the	axis	of	the	part	of	the	arch	that	will	study	

it.	
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• Fem	 (for	more	 information	 to	see	Appendix	5).	 It	 corresponds	 to	 the	

function	that	performs	the	linear	analysis	of	the	arch.	It	allows,	in	the	

first	phase,	to	identify	the	sez_cal,	i.e.	the	section	in	which	the	analysis	

will	 take	 place	 with	 the	 cohesive	 model.	 In	 the	 following	 steps	 it	

performs	the	elastic	analyzes	and	estimate	of	the	characteristics	of	the	

stresses	in	the	section	identified	(sez_cal).	

• Legge_costitutiva	 (for	 more	 information	 to	 see	 Appendix	 6).	 This	

function	starts	from	the	cohesive	law	of	the	material	used	(see	Chart	1)	

and	transforms	it	into	a	matrix	that	allows	the	letcoe	funcution	to	solve	

the	problem:	

𝑐𝑤𝑠 =
0

0,032
0,071

					
30
5,4
0
					
0,04375
0,071
0,071

					
30
11
0

	

	

• Letcoe	(for	more	information	to	see	Appendix	7).		This	function	reads	

the	coefficients	of	 influence	 from	the	cohesive	array	aus	 (18x18)	and	

rewrites	the	vector	coe().	This	vector	is	used		

Once	 the	 vector	 coe()	 is	 obtained,	 the	 coefficients	 are	 passed,	 only	

those	necessary	to	solve	the	system.	Based	on	the	opening	of	the	slit	in	

the	previous	step,	establishes	the	f-w	link	of	the	nodes	present	in	the	

cohesive	 tract	 through	 the	 csw()	 matrix,	 based	 on	 this	 modifies	 the	

coefficients	of	the	matrix	and	the	vector	of	the	known	terms	in	order	to	

reduce	the	unknowns	of	the	system.	

In	practice	in	this	function	the	Eq.	(16)	system	is	solved.	

For	example:	
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DATA:	 matrix	 H,	 vector	 D,	 external	 force	 P	

(that	of	the	previous	step).	

UNKNOWNS:	vector	w,	vector	F.	

	

n	°	equations:	20	-	5	+	1	=	16	

unknowns	w:	11	-	5	=	6	

unknowns	f:	20	-	5	+	1	=	16	

Introducing	however	the	constitutive	law	f-w	

of	the	cohesive	tract	(11	-	5)	=	6	relations.		

Therefore:	

number	of	equations:	16	

unknowns	w:	0	

unknown	f:	16	

	

	

• Soluz	(for	more	information	to	see	Appendix	9).		This	function	calculates	

the	slit	openings	w(),	known	as	the	forces	of	reclosing.	

	

3.4.2 Matlab	program	instructions	

The	objective	of	the	analysis	carried	out	with	the	aid	of	MATLAB	is	the	search	

for	the	maximum	variable	load	(called	"q")	which	leads	to	the	formation	of	4	

brittle	hinges	(and	therefore	to	a	kinematism)	along	the	development	of	the	

axis	line	of	an	arc	of	any	geometry.	

Several	phases	of	initialization	of	the	program	are	necessary	(up	to	four	phases,	

which	is	equivalent	to	the	maximum	number	of	hinge	formation,	but,	if	there	is	

a	symmetry	of	the	arch,	these	can	be	reduced).	
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The	program	requires	the	following	input	data:	

• Geometry	of	the	arc	axis	line.	You	need	to	supply	the	x,	y	coordinates	

written	in	the	vector	form	of	the	type:	

𝑥 = [𝑥G, 𝑥@, … 𝑥GO]
𝑦 = [𝑦G, 𝑦@, … 𝑦GO]

	

	and	it	is	used	as	a	unit	of	measure	of	the	lengths	cm;	

• The	modulus	of	linear	elasticity	"E"	of	the	material	constituting	the	arch	

in	[kg/cm2];	

• The	depth	"b"	and	the	height	of	the	arch	"h"	in	[cm]	considered	constant	

throughout	the	arc's	development;	

• Compression	strength	values	"fc"	and	traction	"ft"	in	[kg/cm2];	

• The	weight	per	unit	volume	of	"puv"	abutments	in	[kg	/	cm3];	

• Height	of	the	abutments	from	the	"H"	tax	plane	in	[cm].	

The	arch	axis	line	is	divided	into	16	beam	elements	(17	nodes)	each	of	which	is	

intended	as	a	rectilinear	structural	element	stuck	at	the	ends	(i	and	j)	(to	see	

Figure	23).	

	

Figure	23	–	Generic	beam	element.	

	

	

Figure	24	-	Schematization	of	the	arch.	
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Let	M,	T,	N	be	the	reactions	to	the	joints	and	j,	v,	w	respectively	the	rotation	

and	 the	 two	 imposed	 displacements,	 assumed	 positive	 according	 to	 the	

convention	shown	in	Figure	25,	we	have	the	following	matrix	relation:	

	

	

This	relation	expresses	the	vector	of	the	binding	reactions	as	the	sum	of	two	

contributions:	 the	 first	 deriving	 from	 the	 imposed	 displacements	 and	 the	

second	from	the	equilibrium	of	the	external	loads	acting	on	the	beam.	

	

Figure	25	–	Convetion	of	the	sign.	

	

The	 symmetric	 matrix	 (6x6)	 that	 multiplies	 the	 displacement	 vector	 is	 the	

stiffness	matrix	of	the	element	and	each	column	is	obtained	by	imposing	the	
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relative	unit	displacement	or	rotation	and	calculating	the	hyperstatic	reactions	

at	the	extremes.	

The	second	contribution	is	the	vector	of	the	forces	equivalent	to	the	external	

load,	with	the	negative	algebraic	sign.	In	the	case	of	uniformly	distributed	load	

"p",	the	carrier	is:	

𝑄 = −
𝑝𝑙@

12
,
𝑝𝑙
2
, 0,

𝑝𝑙@

12
,
𝑝𝑙
2
, 0 	

	

Considering	 the	 "a"	 inclination	 of	 the	 structural	 element	 in	 question	 with	

respect	to	the	uniformly	distributed	vertical	load	"p",	we	write:	

	

𝑄 = −
𝑝𝑙@

12
;	
𝑝𝑙	𝑐𝑜𝑠α

2
;	−

𝑝𝑙	𝑠𝑒𝑛α
2

;	
𝑝𝑙@

12
;	
𝑝𝑙	𝑐𝑜𝑠α

2
;	−

𝑝𝑙	𝑠𝑒𝑛α
2

	

	

The	load	"p"	acting	on	each	structural	element	is	given	by	the	sum	of	the	own	

weights	and	the	variable	loads	(structural	unknown	"q").	

The	weights	are	calculated	by	multiplying	the	weight	per	unit	of	volume	of	the	

arch	abutments	for	the	area	of	the	same	falling	over	the	element	multiplied	by	

the	depth	and	divided	by	the	length	of	the	element,	or	in	formula:	

	

	 𝑝_w��w�p�(𝑘) =
𝑝𝑢𝑣 ∗ 𝑏 ∗ [ 𝐻 − 𝑦� + 𝐻 − 𝑦��G ]

2
	 (	19	)	
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From	the	first	elastic	analysis	on	the	structure	emerges	the	section	that	will	be	

affected	by	the	formation	of	the	crack.	Once	this	section	has	been	identified,	

the	 program	 creates	 the	 conditions	 for	 applying	 the	 cohesive	model,	 i.e.	 it	

calculates	 the	 component	 (P)	 perpendicular	 to	 the	 axis	 line	 of	 the	 element	

considered.	

The	program	at	each	step	calculates	the	value	of	the	variable	load	such	as	to	

make	the	resulting	P	able	to	advance	the	fictitious	crack	tip.		

The	analysis	stops	in	only	two	cases:	

1. A	slit	depth	of	90%	of	 the	height	of	 the	arc	 section	 in	one	of	 the	16	

elements	has	been	reached;	

2. CRUSHING	has	been	achieved	in	one	of	the	16	elements	(overcoming	

the	compressive	strength).	

The	1st	PHASE	OF	INITIALIZATION	is	then	started	and	the	program	is	stopped.	

From	the	results	we	can	see	in	which	of	the	two	cases	we	have	reached	and	in	

which	segment	the	crushing	occurred	or	we	reached	an	extension	of	the	crack	

equal	to	90%	of	the	height	of	the	section.	

Once	this	part	has	been	identified,	 in	the	subsequent	phases	we	consider	an	

elastic	hinge,	in	the	section	analyzed	in	the	previous	phase,	which	indicates	the	

impossibility	 of	 transmitting	 bending	 moment	 between	 the	 two	 adjacent	

sections.	

Therefore	 in	 the	subsequent	phases,	 to	structural	elements	 that	can	be	of	3	

types	and	are	indicated	in	Figure	26.	
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Figure	26	–	3	types	of	the	structural	elements	used.	

	

Taking	into	account	the	new	structural	elements	(equipped	with	hinges)	that	

compose	the	new	axis	line	of	the	arch,	a	2nd	PHASE	OF	INITIALISATION	is	started	

(taking	 into	 account	 the	 presence	 of	 the	 last	 hinge	 formed	 in	 the	 previous	

phase,	imposing	that	M	=	0)	which	will	lead	to	the	formation	of	new	hinges	(due	

to	CUSHING	or	the	achievement	of	a	90%	gap	extension)	in	one	or	more	new	

sections	 that	 will	 again	 be	 identified	 by	 starting	 the	 load	 from	 the	 value	

previously	reached	for	the	formation	of	the	first	hinge.	This	will	be	followed	by	

a	3rd	INITIALIZATION	PHASE	and	a	4th	INITIALIZATION	PHASE	in	the	case	where	

asymmetric	cases	are	analyzed	for	geometry	or	loads	for	which	the	formation	

of	 the	 hinges	 is	 not	 symmetrical	 along	 the	 whole	 arc	 development,	 until	 a	

kinematism	is	achieved	(4	hinges)	and	then	collapse.	

What	is	derived	from	the	program	is	precisely	the	value	of	the	variable	load	that	

leads	to	the	formation	of	new	hinges.	
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4 Parametric	analysis	bases	on	the	theoretical	
model	

	

4.1 Descrizione	of	the	application	
	

In	this	chapter	we	will	describe	the	results	obtained	by	applying	the	cohesive	

crack	model	 into	false	bridges	 in	masonry	arches.	What	unites	these	bridges	

are:	

• The	materials	constituting	the	arch	and	abutment;	

• The	section	of	the	arch;	

• The	length	of	the	arch.	

The	arches	analyzed	have	different	degrees	of	lowering,	that	is,	the	relationship	

between	 arrow	 and	 length.	 Specifically,	 arches	 have	 been	 analyzed	 with	 a	

degree	of	lowering	equal	to	1/3,	1/4,	1/5,	1/6	and	1/7.	

In	the	application	of	the	program	written	in	Matlab,	referred	to	in	the	previous	

chapter,	the	cohesive	model	was	applied	to	pre-defined	masonry	arches	and	

we	obtained	the	variable	load	value	that	we	have	the	formation	of	a	first	pair	

of	brittle	hinges	and	the	value	with	which	we	form	the	second	pair	of	hinges.	

The	arches	analyzed	are	symmetric	and	symmetrically	loaded.	
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Furthermore,	for	each	arch,	its	behavior	has	been	plotted,	differentiating	the	

"local"	behavior	 found	 in	 the	 section	 in	which	 the	 cracking	and	 the	 "global"	

behavior	of	the	structure	during	this	phenomenon	develops.	In	the	first	case,	

the	variable	load	q,	intended	as	a	live	load,	was	plotted,	which	is	remembered	

having	 been	 modified	 according	 to	 the	 propagation	 of	 the	 crack,	 with	 the	

vertical	displacement	of	the	section	in	which	the	crack	developed.	While	in	the	

second	one	has	studied	what	happened	in	terms	of	vertical	displacement	in	the	

arch	crown	under	the	effect	of	the	load	q	varied	to	accommodate	the	cracking	

conditions	 and	 because	 of	 the	 static	 changes	 induced	 by	 the	 progressive	

increase	 in	the	crack.	This	phase	has	been	studied	using	the	software	to	the	

finite	elements	SdC.	

The	fictitious	cases	analyzed	are	5.	In	the	first	of	the	two	following	tables,	some	

geometric	data	such	as	the	arrow	“f”,	the	height	“h”	of	the	arch	section,	the	

width	“b”	of	the	examined	bridge	section	and	the	maximum	height	“H”	of	the	

abutment	 are	 summarized	 on	 a	 case-by-case	 basis.	 In	 the	 second	 table	

summarizes	 some	 mechanical	 characteristics	 of	 the	 materials,	 such	 as	 the	

elasticity	modulus	 “E”,	 the	weight	 per	 unit	 of	 volume	 “puv”	 of	 the	material	

constituting	the	abutment,	the	compressive	strength	of	the	masonry	“fc”	and	

tensile	strength	“ft”.	

Case	
Degree	of	

lowering	

f	

[cm]	

h	

[cm]	

b	

[cm]	

H	

[cm]	

1	 1/3	 1500	 150	 100	 1710	

2	 1/4	 1124	 150	 100	 1335	

3	 1/5	 900	 150	 100	 1110	

4	 1/6	 750	 150	 100	 960	
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Case	
Degree	of	

lowering	

f	

[cm]	

h	

[cm]	

b	

[cm]	

H	

[cm]	

5	 1/7	 642.8	 150	 100	 853	

	

Material	
puv	

[kg/cm3]	

E	

[kg/cm2]	

fc	

[kg/cm2]	

ft	

[kg/cm2]	

Masonry	 0.0025	 300000	 -500	 30	

	

	

4.2 Geometry	with	lowering	1/3	
	

The	 first	case	examined	concerns	a	bridge	 in	masonry	arch	with	a	degree	of	

lowering	equal	to	1/3.	The	geometrical	characteristics	are	indicated	in	Figure	

27.	

	

Figure	27	–	Masonry	arch	with	a	degree	of	lowering	equal	to	1/3.	
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The	cohesive	crack	model	was	applied	to	the	geometries	shown	in	Figure	27,	

using	the	program	written	 in	MATLAB,	described	 in	Chapter	3.	The	structure	

appears	to	be	doubly	interlocked,	therefore	we	will	look	for	the	formation	of	n.	

4	brittle	hinges.	

The	fictitious	bridge	examined	is	symmetrical	and,	since	we	use	a	live	load	that	

is	 uniformly	 distributed,	 symmetrically	 loaded.	 Therefore,	 we	 will	 have	 the	

formation	of	pairs	of	contemporary	hinges	and	to	reach	the	desired	number	it	

was	enough	to	use	two	initializations.	

In	the	two	different	phases	of	initiation	we	obtained:	

Phase	 n°	of	the	
hinges	

Cause	 n°		node	
q	

[kg/cm]	

1a	 2	 crushing	 1	and	17	 214.94	

2a	 2	 crushing	 3	and	15	 77.71	

	

In	Figure	28	the	results	obtained	are	shown	schematically	the	position	of	the	

brittle	hinges.	

	

Figure	28	–	Position	of	the	brittle	hinges	in	the	arch.	
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Analyzing	the	results	obtained,	it	is	clear	that	once	the	first	pair	of	hinges	has	

been	formed,	in	order	to	form	the	second	one,	a	lower	load	is	required,	so	that	

for	the	analyzed	geometry	the	instantaneous	formation	of	the	four	hinges	can	

be	obtained	to	the	variable	load	of	214.94	kg/cm.	

Another	important	aspect	is	that	for	the	masonry	arch	with	degree	of	lowering	

equal	to	1/3	the	cracking	process	is	not	obtained,	i.e.	the	crushing	is	reached	

first.	

	

4.3 Geometry	with	lowering	1/4	
	

The	Second	case	examined	concerns	a	bridge	in	masonry	arch	with	a	degree	of	

lowering	equal	to	1/4.	The	geometrical	characteristics	are	indicated	in	Figure	

29.	

	

Figure	29	–	Masonry	arch	with	a	degree	of	lowering	equal	to	1/4.	

	

Also	in	this	case,	the	structure	appears	to	be	doubly	interlocked,	therefore	we	

will	look	for	the	formation	of	n.	4	brittle	hinges.	
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The	 fictitious	 bridge	 examined	 is	 symmetrical	 and	 symmetrically	 loaded.	

Therefore	we	will	have	the	formation	of	pairs	of	contemporary	hinges	and	to	

reach	the	desired	number	it	was	enough	to	use	two	initializations.	

In	the	two	different	phases	of	initiation	we	obtained:	

Phase	 n°	of	the	
hinges	

Cause	 n°		node	
q	

[kg/cm]	

1a	 2	 crushing	 1	and	17	 489.61	

2a	 2	 crushing	 3	and	15	 343.56	

	

In	Figure	30	the	results	obtained	are	shown	schematically	the	position	of	the	

brittle	hinges.	

	

Figure	30	–	Position	of	the	brittle	hinges	in	the	arch.	

	

Analyzing	the	results	obtained,	it	is	clear	that	once	the	first	pair	of	hinges	has	

been	formed,	in	order	to	form	the	second	one,	a	lower	load	is	required,	so	that	

for	the	analyzed	geometry	the	instantaneous	formation	of	the	four	hinges	can	

be	obtained	to	the	live	load	of	489.61	kg/cm.	
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If	we	want	to	compare	the	results	obtained,	it	is	clear	that	even	for	an	arch	with	

a	degree	of	lowering	equal	to	1/4	the	load	necessary	to	initialize	the	cracking	

process	 is	 not	 reached.	While	 the	 position	 of	 the	 brittle	 hinges	 in	 the	 two	

initialization	phases	remains	the	same.	

	

4.4 Geometry	with	lowering	1/5	
	

The	third	case	examined	concerns	a	bridge	in	masonry	arch	with	a	degree	of	

lowering	equal	to	1/5.	The	geometrical	characteristics	are	indicated	in	Figure	

31.	

	

Figure	31	–	Masonry	arch	with	a	degree	of	lowering	equal	to	1/5.	

	

In	this	case	the	program	shows	a	whole	crack	process.	In	fact,	as	can	be	seen	

from	the	results	obtained	shown	in	the	following	table,	it	is	possible	to	obtain	

the	formation	of	n.	4	brittle	hinges	for	cracking.	

Phase	 n°	of	the	
hinges	

Cause	 n°		node	
q	

[kg/cm]	

1a	 2	 cracking	 1	and	17	 353.78	
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Phase	 n°	of	the	
hinges	

Cause	 n°		node	
q	

[kg/cm]	

2a	 2	 cracking	 3	and	15	 444.20	

	

In	 this	 case,	 during	 the	 first	 initialization	 phase	 the	 cohesive	 crack	 was	

advanced,	which	develops	in	node	1	and	by	symmetry	in	node	17.	

Once	the	section	 in	which	the	cracking	process	begins	will	be	 identified,	 the	

program	divides	this	section	into	18	nodes.	The	real	crack	tip	and	the	fictitious	

crack	tip	will	move	on	these	nodes.	

The	 following	 table	 shows	 the	 relevant	 results	 obtained	 from	 the	 iterations	

developed	to	conduct	the	crack	(fictitious	crack	tip)	up	to	90%	of	the	section	

height	for	the	application	of	the	cohesive	crack	model:	

Step	 ntipa	 q	
[kN/m]	

δv(1-17)	
[cm]	

x	
[cm]	

1	 0	 352	 2	 0,0	
2	 1	 353.78	 12	 15.8	
3	 2	 353.66	 11.70	 23.7	
4	 3	 353.55	 11.39	 31.6	
5	 4	 353.45	 11.08	 39.5	
6	 5	 353.36	 10.77	 47.4	
7	 6	 353.27	 10.46	 55.3	
8	 7	 353.20	 10.16	 63.2	
9	 8	 353.13	 9.85	 71.1	
10	 9	 353.07	 9.54	 78.9	
11	 10	 353.02	 9.24	 86.8	
12	 11	 352.98	 8.93	 94.7	
13	 12	 352.94	 8.63	 102.6	
14	 13	 352.91	 8.32	 110.5	
15	 14	 352.89	 8.023	 118.4	
16	 15	 352.87	 7.718	 126.3	
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where:	

ntipa:	it	is	the	position	of	the	real	crack	tip	;	

q:	it	is	the	live	load;	

dv:	vertical	displacement	read	at	the	section	in	which	the	crack	takes	place;	

x:	height	of	the	crack	

it	is	interesting	to	note	how,	once	the	load	q	has	been	obtained	which	causes	

the	displacement	of	the	real	crack	(step	2)	towards	the	inside	of	the	section,	i.e.	

we	have	the	birth	of	the	real	crack,	the	program,	in	the	next	step,	identifies	a	

lower	load	to	advance	the	crack.	This	shows	how	the	crack	begins	to	open	with	

the	maximum	load	and	continues	to	open	monotonously	as	the	load	decreases	

in	the	softening	phase.	

In	Chart	2	the	vertical	displacemente	is	plotted	to	vary	of	q.	

	

Chart	2	–	Trend	of	the	variable	load	vs	displacement	in	control	of	advancement	of	the	crack	opening	(w).	
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According	to	the	Chart	2	we	can	see	how,	upon	reaching	the	load	q	equal	to	

353.78	kg/cm,	i.e.	the	load	that	produces	the	anazation	of	the	real	crack	tip,	

and	therefore	the	opening	of	the	real	crack	tip,	the	behavior	of	the	material	in	

the	softening	phase	shows	a	positive	slope.	 In	 this	case,	once	 the	maximum	

load	is	reached	(q=	353.78	kg/cm)	the	load	is	vertically	dropped.	The	softening	

trait	 is	 thus	 ignored	 and	 becomes	 virtual.	 In	 fact,	 to	 identify	 the	 softening	

section	 with	 positive	 slope	 it	 is	 necessary	 to	 pilot	 the	 loading	 process	 by	

opening	the	crack	(w).	

This	is	the	typical	behavior	of	relatively	fragile	materials	(such	as	concrete,	cast	

iron,	glass,	masonry,	etc.),	which	have	a	low	fracture	energy	value	(GIC).	

The	instability	described	above	is	called	"snap-back".	This	instability	represents	

a	phenomenon	included	in	the	Catastrophe	Theory.	

Once	the	first	phase	of	 initialization	has	been	completed,	the	program,	once	

assigned	a	hinge	in	the	cracked	sections	(1	and	17),	resumes	the	anailisi	and	

begins	the	second	phase	of	initialization.	In	this	phase,	due	to	the	geometry	of	

the	analyzed	arch,	the	program	identifies	the	birth	of	the	cracking	process	in	

sections	3	and	15.	The	following	table	summarizes	the	results	obtained	from	

the	application	of	the	cohesive	model:	

Step	 ntipa	 q	
[kN/m]	

δv(3-15)	
[cm]	

x	
[cm]	

1	 0	 442	 3.50	 0	
2	 1	 444.20	 12.02	 15.8	
3	 2	 444.04	 11.72	 23.7	
4	 3	 443.89	 11.41	 31.6	
5	 4	 443.76	 11.1	 39.5	
6	 5	 443.63	 10.79	 47.4	
7	 6	 443.52	 10.48	 55.3	
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Step	 ntipa	 q	
[kN/m]	

δv(3-15)	
[cm]	

x	
[cm]	

8	 7	 443.42	 10.17	 63.2	
9	 8	 443.34	 9.87	 71.1	
10	 9	 443.26	 9.56	 78.9	
11	 10	 443.20	 9.25	 86.8	
12	 11	 443.14	 8.95	 94.7	
13	 12	 443.09	 8.64	 102.6	
14	 13	 443.05	 8.34	 110.5	
15	 14	 443.02	 8.03	 118.4	
16	 15	 443	 7.73	 126.3	

	

Plotting	the	results	of	the	application	of	the	cohesive	model,	even	in	this	case,	

a	positive	slope	(phenomenon	of	the	snap-back)	 is	 found	for	the	"softening"	

section,	as	shown	in	Chart	3.	

	

Chart	3	–	Clear	phenomenon	of	the	snap-back	in	the	second	group	of	the	brittle	hinges	in	the	arch	with	
degree	of	lowering	equal	to	1/5.	
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Note	 the	 values	 of	 the	 variable	 load	 q,	which	 is	 remembered	 to	 have	 been	

calculated	 in	 crack	 opening	 control	 (w),	 in	 a	 subsequent	 phase	 the	 overall	

structure	of	the	arch	was	calculated	for	each	iteration	step	of	the	initialization	

phase	1	and	2	vertical	displacement,	measured	in	the	arch	crown.	To	do	this,	

the	structure	of	the	initial	arch	was	created	with	finite	elements.	This	model	of	

the	calculation	was	assigned	the	uniformly	distributed	load	q,	derived	from	the	

two	previous	phases.	At	each	loading	step:	

1. For	the	first	phase	of	initialization	the	moment	of	inertia	of	the	section	

has	been	reduced	in	correspondence	with	the	crack	(section	n.	1	and	n.	

17)	to	take	into	account,	at	each	step,	the	progress	of	the	real	crack	tip	

and	therefore	of	the	portion	section	no	longer	reagent;	

2. For	 the	 second	 initialization	 phase	 a	 hinge	 was	 introduced	 in	 the	

completely	cracked	sections	from	the	previous	phase	(section	n.	1	and	

n.	17)	and	we	proceeded	as	described	in	the	previous	point	to	take	into	

account	the	progressive	advancement	of	the	crack	(in	the	section	n.	3	

and	n.	15).	

	

Figure	32	–	FEM	calculation	scheme	of	arch	with	degree	of	lowering	equal	to	1/5.	
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For	 each	 loading	 phase,	 the	 vertical	 displacement	 in	 the	 arch	 crown	 was	

measured.	The	following	table	shows	the	results	obtained:	

q		
[kN/m]	

𝛿	
[cm]	

0	 0.05558176	

353.78	 0.4717934	
353.66	 0.4917684	
353.55	 0.5125505	
353.45	 0.5341569	
353.36	 0.556732	
353.27	 0.580563	
353.20	 0.606723	
353.13	 0.6364917	
353.07	 0.6728707	
353.02	 0.7213555	
352.98	 0.7927232	
352.94	 0.9093977	
352.91	 1.121974	
352.89	 1.55454	
352.87	 2.524069	
444.20	 4.629277	
444.04	 4.632518	
443.89	 4.637092	
443.76	 4.643514	
443.63	 4.652184	
443.52	 4.664127	
443.42	 4.680449	
443.34	 4.70297	
443.26	 4.733971	
443.20	 4.777144	
443.14	 4.837199	
443.09	 4.921322	
443.05	 5.042167	
443.02	 5.234753	
443.00	 5.643672	
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Therefore,	plotting	the	results	obtained	we	find:	

	

Chart	4	-	Trend	of	the	displacement	of	the	arch	crown	to	the	variation	of	the	live	load	q.	

	

In	Chart	4,	points	A,	B	and	C	are	highlighted.	These	points	represent:	

A:	starting	point	of	the	cracking	process	in	sections	1	and	17;	

B:	points	for	reaching	the	maximum	extension	of	the	crack	in	sections	1	and	17	

and	formation	of	brittle	hinges;	

C:	starting	point	of	the	cracking	process	in	sections	3	and	15	due	to	the	new	

loading	process	due	to	the	change	in	the	static	scheme	of	the	arch.	

The	structural	behavior	shown	in	Chart	4	is	very	interesting.	in	fact,	looking	at	

a	focus	of	the	chart,	we	notice	an	unstable	trait	that	goes	from	A	to	B	(to	see	

Chart	5).	
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Chart	5	–	Focus	of	the	Chart	4.	

	

Once	 point	 A	 is	 reached,	 to	move	 forward	 and	 follow	 the	 crack	 process	 in	

sections	1	and	17	entirely,	the	load	must	decrease.	Howeven,	goes	ahead	even	

if	the	load	decreases	in	sections	1	and	17,	the	fesseura	advances,	resulting	in	a	

progressive	reduction	in	the	stiffness	of	the	sections	themselves.	This	produces	

an	increase	in	the	vertical	displacement	in	the	arch	crow	and	therefore	a	trait	

(A-B)	which	can	be	understood	as	a	"structural	softening"	zone.	Now,	imagining	

to	conduct	the	analysis	in	force	control,	as	happens	in	reality,	having	reached	

point	A,	a	small	increase	in	load	would	lead	directly	to	point	B’	suddenly	(to	see	

Chart	6),	making	the	stroke	A-B-B’	a	virtual	stroke.		

Ultimately,	having	arrived	at	the	stationary	point	A,	if	we	continue	to	increase	

the	load	q,	it	jumps	discontinuously	on	the	stable	branch	B'-P	(to	see	Chart	6),	

which	at	a	similar	load	shows	a	significantly	greater	lowering.	From	an	energetic	

point	of	view,	the	energy	returned	by	the	system	in	jump	A-B	'is	equal	to	the	
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area	subtended	by	the	line	AB',	for	the	length	of	the	arch.	This	energy	will	be	

transformed	 into	 the	 kinetic	 vibrational	 energy	 of	 the	 system	 around	 the	

condition	 represented	 by	 the	 point	 B'.	 The	 instability	 phenomenon	 just	

described,	especially	in	the	jump	from	A	to	B,	is	called	snap-through.	

	

Chart	6	–	Focus	of	the	Chart	4	where	the	phenomenon	of	the	snap-through	is	cleary	shown	

	

In	 conclusion,	 Figure	 33	 schematically	 shows	 the	 position	 of	 the	 n.	 4	 brittle	

hinges	obtained.	

	

Figure	33	–	Position	of	the	brittle	hinges	in	arch	with	degree	of	lowering	equal	to	1/5.	
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4.5 Geometry	with	lowering	1/6	
	

The	fourth	case	examined	concerns	a	bridge	in	masonry	arch	with	a	degree	of	

lowering	equal	to	1/6.	The	geometrical	characteristics	are	indicated	in	Figure	

34.	

	

Figure	34	–	Masonry	arch	with	a	degree	of	lowering	equal	to	1/6.	

	

Also	in	this	case	the	program	shows	a	whole	crack	process.	In	fact,	as	can	be	

seen	from	the	results	obtained	shown	in	the	following	table,	 it	 is	possible	to	

obtain	the	formation	of	n.	4	brittle	hinges	for	cracking.	

Phase	 n°	of	the	
hinges	

Cause	 n°		node	
q	

[kg/cm]	

1a	 2	 cracking	 2	and	16	 459.31	

2a	 2	 cracking	 4	and	14	 715.13	
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In	 this	 case,	 during	 the	 first	 initialization	 phase	 the	 cohesive	 crack	 was	

advanced,	which	develops	in	node	2	and	by	symmetry	in	node	16.	

The	 following	 table	 shows	 the	 relevant	 results	 obtained	 from	 the	 iterations	

developed	to	conduct	the	crack	(fictitious	crack	tip)	up	to	90%	of	the	section	

height	for	the	application	of	the	cohesive	crack	model:	

Step	 ntipa	 q	
[kN/m]	

δv(2-16)	
[cm]	

x	
[cm]	

1	 0	 453.00	 2.00	 0.0	
2	 1	 459.31	 5.90	 15.8	
3	 2	 458.71	 5.75	 23.7	
4	 3	 458.15	 5.58	 31.6	
5	 4	 457.64	 5.42	 39.5	
6	 5	 457.19	 5.26	 47.4	
7	 6	 456.80	 5.10	 55.3	
8	 7	 456.45	 4.95	 63.2	
9	 8	 456.16	 4.79	 71.1	
10	 9	 455.90	 4.64	 78.9	
11	 10	 455.68	 4.49	 86.8	
12	 11	 455.49	 4.34	 94.7	
13	 12	 455.34	 4.19	 102.6	
14	 13	 455.22	 4.04	 110.5	
15	 14	 455.13	 3.89	 118.4	
16	 15	 455.06	 3.74	 126.3	

	

also	in	this	case	it	is	interesting	to	note	how,	once	the	load	q	has	been	obtained	

which	causes	the	displacement	of	the	real	ctack	(step	2)	towards	the	inside	of	

the	section,	i.e.	we	have	the	birth	of	the	real	crack,	the	program,	in	the	next	

step,	 identifies	a	 lower	 load	to	advance	the	crack.	This	shows	how	the	crack	

begins	to	open	with	the	maximum	load	and	continues	to	open	monotonously	

as	the	load	decreases	in	the	softening	phase.	It	is	clearly	phenomenon	of	the	

snap-back	(to	see	Chart	7).	
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Chart	7	–	Trend	of	the	variable	load	vs	displacement	in	control	of	advancement	of	the	crack	opening	(w).	
Clear	phenomenon	of	the	snap-back	in	the	first	group	of	brittle	hinges	in	arch	with	degree	of	lowering	

equal	to	1/6	

	

According	to	the	Chart	7	we	can	see	how,	upon	reaching	the	load	q	equal	to	

353.78	kg/cm,	i.e.	the	load	that	produces	the	anazation	of	the	real	crack	tip,	

and	therefore	the	opening	of	the	real	crack	tip,	the	behavior	of	the	material	in	

the	softening	phase	shows	a	positive	slope.	 In	 this	case,	once	 the	maximum	

load	is	reached	(q	=	353.78	kg/cm)	the	load	is	vertically	dropped.	The	softening	

trait	 is	 thus	 ignored	 and	 becomes	 virtual.	 In	 fact,	 to	 identify	 the	 softening	

section	 with	 positive	 slope	 it	 is	 necessary	 to	 pilot	 the	 loading	 process	 by	

opening	the	crack	(w).	

Once	the	first	phase	of	 initialization	has	been	completed,	the	program,	once	

assigned	a	hinge	in	the	cracked	sections	(2	and	16),	resumes	the	anailisi	and	

begins	the	second	phase	of	initialization.	In	this	phase,	due	to	the	geometry	of	

the	analyzed	arch,	the	program	identifies	the	birth	of	the	cracking	process	in	
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sections	4	and	14.	The	following	table	summarizes	the	results	obtained	from	

the	application	of	the	cohesive	model:	

Step	 ntipa	 q	
[kN/m]	

δv(4-14)	
[cm]	

x	
[cm]	

1	 0	 715.00	 10.00	 0,0	
2	 1	 715.80	 46.85	 15.8	
3	 2	 715.72	 45.67	 23.7	
4	 3	 715.64	 44.40	 31.6	
5	 4	 715.57	 43.30	 39.5	
6	 5	 715.50	 42.11	 47.4	
7	 6	 715.44	 40.93	 55.3	
8	 7	 715.38	 39.74	 63.2	
9	 8	 715.34	 38.56	 71.1	
10	 9	 715.29	 37.37	 78.9	
11	 10	 715.25	 36.19	 86.8	
12	 11	 715.22	 35.00	 94.7	
13	 12	 715.19	 33.82	 102.6	
14	 13	 715.17	 32.63	 110.5	
15	 14	 715.14	 31.44	 118.4	
16	 15	 715.13	 30.25	 126.3	

	

Plotting	the	results	of	the	application	of	the	cohesive	model,	even	in	this	case,	

a	positive	slope	(phenomenon	of	the	snap-back)	 is	 found	for	the	"softening"	

section,	as	shown	in	Chart	8.	
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Chart	8	–	Clear	phenomenon	of	the	snap-back	in	the	second	group	of	the	brittle	hinges	in	the	arch	with	
degree	of	lowering	equal	to	1/6.	

	

Equally	as	done	for	arch	with	degree	of	lowering	equal	to	1/5,	note	the	values	

of	the	variable	load	q,	which	is	remembered	to	have	been	calculated	in	crack	

opening	control	(w),	in	a	subsequent	phase	the	overall	structure	of	the	arch	was	

calculated	 for	 each	 iteration	 step	of	 the	 initialization	phase	 1	 and	2	 vertical	

displacement,	measured	in	the	arch	crown	with	the	finite	elements.	This	model	

of	calculation	was	assigned	the	uniformly	distributed	load	q,	derived	from	the	

two	previous	phases:	

1. For	the	first	phase	of	initialization	the	moment	of	inertia	of	the	section	

has	been	reduced	in	correspondence	with	the	crack	(section	n.	2	and	n.	

16)	to	take	into	account,	at	each	step,	the	progress	of	the	real	crack	tip	

and	therefore	of	the	portion	section	no	longer	reagent;	

2. For	 the	 second	 initialization	 phase	 a	 hinge	 was	 introduced	 in	 the	

completely	cracked	sections	from	the	previous	phase	(section	n.	2	and	
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n.	16)	and	we	proceeded	as	described	in	the	previous	point	to	take	into	

account	the	progressive	advancement	of	the	crack	(in	the	section	n.	4	

and	n.	14).	

	

Figure	35	–	FEM	calculation	scheme	of	arch	with	degree	of	lowering	equal	to	1/6.	

	

For	 each	 loading	 phase,	 the	 vertical	 displacement	 in	 the	 arch	 crown	 was	

measured.	The	following	table	shows	the	results	obtained:	

q		
[kN/m]	

𝛿	
[cm]	

0	 0.03590795	
459.31	 0.3483266	
458.71	 0.3496106	
458.15	 0.3513696	
457.64	 0.353774	
457.19	 0.3570736	
456.80	 0.36136398	
456.45	 0.3680452	
456.16	 0.3772681	
455.90	 0.3909369	
455.68	 0.4120263	
455.49	 0.4461711	
455.34	 0.5048064	
455.22	 0.6126329	
455.13	 0.8257242	
455.06	 1.265398	
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q		
[kN/m]	

𝛿	
[cm]	

715.80	 1.887031	
715.72	 1.887565	
715.64	 1.8883	
715.57	 1.889331	
715.50	 1.890738	
715.44	 1.892705	
715.38	 1.895445	
715.34	 1.899388	
715.29	 1.905084	
715.25	 1.913655	
715.22	 1.927107	
715.19	 1.949538	
715.17	 1.990807	
715.14	 2.079163	
715.13	 2.3196	

	

Therefore,	plotting	the	results	obtained	we	find:	

	

Chart	9	-	Trend	of	the	displacement	of	the	arch	crown	to	the	variation	of	the	live	load	q.	
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In	Chart	4,	points	A,	B	and	C	are	highlighted.	These	points	represent:	

A:	starting	point	of	the	cracking	process	in	sections	2	and	16;	

B:	points	for	reaching	the	maximum	extension	of	the	crack	in	sections	2	and	16	

and	formation	of	brittle	hinges;	

C:	starting	point	of	the	cracking	process	in	sections	4	and	14	due	to	the	new	

loading	process	due	to	the	change	in	the	static	scheme	of	the	arch.	

In	 this	case,	 looking	at	 the	Chart	9,	 the	snap-through	phenomenon	 is	clearly	

visible.	However,	 looking	at	a	focus	of	the	Chart	10	the	"jump"	linked	to	the	

instability	is	clearer:	

	

Chart	10	–	Focus	of	the	Chart	9	where	the	phenomenon	of	the	snap-through	is	clearly	visible.	
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In	 the	 same	way	as	 the	 case	 seen	 in	 the	previous	paragraph,	we	notice	 the	

phenomenon	of	the	snap-through.	In	fact,	having	arrived	at	the	stationary	point	

A,	if	we	continue	to	increase	the	load	q,	it	jumps	discontinuously	on	the	stable	

branch	 B'-P	 (to	 see	 Chart	 10),	 which	 at	 a	 similar	 load	 shows	 a	 significantly	

greater	lowering.	From	an	energetic	point	of	view,	the	energy	returned	by	the	

system	in	jump	A-B	'is	equal	to	the	area	subtended	by	the	line	AB',	for	the	length	

of	the	arch.	This	energy	will	be	transformed	into	the	kinetic	vibrational	energy	

of	the	system	around	the	condition	represented	by	the	point	B'.		

In	 conclusion,	 Figure	 36	 schematically	 shows	 the	 position	 of	 the	 n.	 4	 brittle	

hinges	obtained.	

	

Figure	36	–	Position	of	the	brittle	hinges	in	arch	with	degree	of	the	lowering	equal	to	1/6.	

	

	

4.6 Geometry	with	lowering	1/7	
	

The	 last	 case	examined	concerns	a	bridge	 in	masonry	arch	with	a	degree	of	

lowering	equal	to	1/7.	The	geometrical	characteristics	are	indicated	in	Figure	

37.	
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Figure	37	–	Masonry	arch	with	a	degree	of	lowering	equal	to	1/7.	

	

Also	in	this	case,	the	program	shows	a	whole	crack	process.	In	fact,	as	can	be	

seen	from	the	results	obtained	shown	in	the	following	table,	 it	 is	possible	to	

obtain	the	formation	of	n.	4	brittle	hinges	for	cracking.	

	

Phase	 n°	of	the	
hinges	

Cause	 n°		node	 q	
[kg/cm]	

1a	 2	 cracking	 2	and	16	 408.62	

2a	 2	 cracking	 5	and	13	 690.28	

	

In	 this	 case,	 during	 the	 first	 initialization	 phase	 the	 cohesive	 crack	 was	

advanced,	which	develops	in	node	2	and	by	symmetry	in	node	16.	

The	 following	 table	 shows	 the	 relevant	 results	 obtained	 from	 the	 iterations	

developed	to	conduct	the	crack	(fictitious	crack	tip)	up	to	90%	of	the	section	

height	for	the	application	of	the	cohesive	crack	model:	

Step	 ntipa	 q	
[kN/m]	

δv(2-16)	
[cm]	

x	
[cm]	

1	 0	 404.00	 2.30	 0.0	
2	 1	 408.62	 6.02	 15.8	
3	 2	 408.07	 5.87	 23.7	



 

“Evolutionary	analysis	of	the	fracturing	process	in	masonry	arches:	
Application	of	the	Cohesive	Crack	Model”. 

 

 
 
 

	
78	

	

4	 3	 407.55	 5.71	 31.6	
5	 4	 407.09	 5.54	 39.5	
6	 5	 406.68	 5.37	 47.4	
7	 6	 406.31	 5.21	 55.3	
8	 7	 405.99	 5.05	 63.2	
9	 8	 405.72	 4.89	 71.1	
10	 9	 405.48	 4.74	 78.9	
11	 10	 405.28	 4.58	 86.8	
12	 11	 405.11	 4.43	 94.7	
13	 12	 404.97	 4.27	 102.6	
14	 13	 404.86	 4.12	 110.5	
15	 14	 404.78	 3.97	 118.4	
16	 15	 404.72	 3.82	 126.3	

	

also	in	this	case	it	is	interesting	to	note	how,	once	the	load	q	has	been	obtained	

which	causes	the	displacement	of	the	real	crack	(step	2)	towards	the	inside	of	

the	section,	i.e.	we	have	the	birth	of	the	real	crack,	the	program,	in	the	next	

step,	 identifies	a	 lower	 load	to	advance	the	crack.	This	shows	how	the	crack	

begins	to	open	with	the	maximum	load	and	continues	to	open	monotonously	

as	the	load	decreases	in	the	softening	phase.	It	is	clearly	phenomenon	of	the	

snap-back	(to	see	Chart	11)	
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Chart	11	–	Trend	of	the	variable	load	vs	displacement	in	control	of	advancement	of	the	crack	opening	
(w).	Clear	phenomenon	of	the	snap-back	in	the	first	group	of	brittle	hinges	in	arch	with	degree	of	

lowering	equal	to	1/7	

	

According	to	the	Chart	11	we	can	see	how,	upon	reaching	the	load	q	equal	to	

408.62	kg/cm,	i.e.	the	load	that	produces	the	anazation	of	the	real	crack	tip,	

and	therefore	the	opening	of	the	real	crack	tip,	the	behavior	of	the	material	in	

the	softening	phase	shows	a	positive	slope.	 In	 this	case,	once	 the	maximum	

load	is	reached	(q=	408.62	kg/cm)	the	load	is	vertically	dropped.	The	softening	

trait	 is	 thus	 ignored	 and	 becomes	 virtual.	 In	 fact,	 to	 identify	 the	 softening	

section	 with	 positive	 slope	 it	 is	 necessary	 to	 pilot	 the	 loading	 process	 by	

opening	the	crack	(w).	

Once	the	first	phase	of	 initialization	has	been	completed,	the	program,	once	

assigned	a	hinge	in	the	cracked	sections	(2	and	16),	resumes	the	anailisi	and	

begins	the	second	phase	of	initialization.	In	this	phase,	due	to	the	geometry	of	

the	analyzed	arch,	the	program	identifies	the	birth	of	the	cracking	process	in	

sections	5	and	13.	This	last	result	is	very	interesting.	In	fact,	remembering	that	
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the	second	initialization	phase	led	to	the	formation	of	the	second	pair	of	hinges	

in	the	sections:	

• 3-15	for	arch	with	degree	of	lowering	1/5;	

• 4-14	for	arch	with	degree	of	lowering	1/6;	

• 5-13	for	arch	with	degree	of	lowering	1/7;	

it	is	clear	how,	as	the	degree	of	lowering	decreases,	the	position	of	the	second	

pair	of	hinges	moves	towards	the	arch	crown	of	the	arch.	This	highlights	how,	

if	the	degree	of	lowering	decreases,	we	have	a	transition	from	the	arch	behavior	

to	the	beam	behavior.	

The	following	table	summarizes	the	results	obtained	from	the	application	of	the	

cohesive	model:	

Step	 ntipa	 q	
[kN/m]	

δv(5-13)	
[cm]	

x	
[cm]	

1	 0	 689.00	 10.00	 0.0	
2	 1	 690.28	 45.65	 15.8	
3	 2	 690,20	 44.50	 23.7	
4	 3	 690.11	 43.35	 31.6	
5	 4	 690.04	 42.19	 39.5	
6	 5	 689.97	 41.03	 47.4	
7	 6	 689.91	 39.88	 55.3	
8	 7	 689.85	 38.72	 63.2	
9	 8	 689.80	 37.57	 71.1	
10	 9	 689.76	 36.42	 78.9	
11	 10	 689.72	 35.26	 86.8	
12	 11	 689.68	 34.10	 94.7	
13	 12	 689.65	 32.94	 102.6	
14	 13	 689.63	 31.79	 110.5	
15	 14	 689.61	 30.63	 118.4	
16	 15	 689.59	 29.47	 126.3	
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Plotting	the	results	of	the	application	of	the	cohesive	model,	even	in	this	case,	

a	positive	slope	(phenomenon	of	the	snap-back)	 is	 found	for	the	"softening"	

section,	as	shown	in	Chart	12.	

	

Chart	12	–	Clear	phenomenon	of	the	snap-back	in	the	second	group	of	the	brittle	hinges	in	the	arch	with	
degree	of	lowering	equal	to	1/7.	

	

Equally	as	done	for	arches	with	degree	of	lowering	equal	to	1/5	and	to	1/6,	note	

the	values	of	the	variable	load	q,	which	is	remembered	to	have	been	calculated	

in	crack	opening	control	(w),	in	a	subsequent	phase	the	overall	structure	of	the	

arch	was	calculated	for	each	iteration	step	of	the	initialization	phase	1	and	2	

vertical	displacement,	measured	 in	 the	arch	crown	with	 the	 finite	elements.	

This	model	of	 the	calculation	was	assigned	 the	uniformly	distributed	 load	q,	

derived	from	the	two	previous	phases:	

1. For	the	first	phase	of	initialization	the	moment	of	inertia	of	the	section	

has	been	reduced	in	correspondence	with	the	crack	(section	n.	2	and	n.	
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16)	to	take	into	account,	at	each	step,	the	progress	of	the	real	crack	tip	

and	therefore	of	the	portion	section	no	longer	reagent;	

2. For	 the	 second	 initialization	 phase	 a	 hinge	 was	 introduced	 in	 the	

completely	cracked	sections	from	the	previous	phase	(section	n.	2	and	

n.	16)	and	we	proceeded	as	described	in	the	previous	point	to	take	into	

account	the	progressive	advancement	of	the	crack	(in	the	section	n.	5	

and	n.	13).	

	

Figure	38	–	FEM	calculation	scheme	of	arch	with	degree	of	lowering	equal	to	1/7.	

	

For	 each	 loading	 phase,	 the	 vertical	 displacement	 in	 the	 arch	 crown	 was	

measured.	The	following	table	shows	the	results	obtained:	

q		
[kN/m]	

𝛿	
[cm]	

0.00	 0.02435273	
408.62	 0.2081952	
408.07	 0.2089852	
407.55	 0.2100604	
407.09	 0.2135436	
406.68	 0.2163117	
406.31	 0.2201945	
405.99	 0.225772	
405.72	 0.2340284	
405.48	 0.2467577	
405.28	 0.2511272	
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q		
[kN/m]	

𝛿	
[cm]	

405.11	 0.2673622	
404.97	 0.3027611	
404.86	 0.3679492	
404.78	 0.4972966	
404.72	 0.7670499	
690.28	 0.9333968	
690.20	 0.935886	
690.11	 0.9390113	
690.04	 0.9430132	
689.97	 0.9481436	
689.91	 0.9459039	
689.85	 0.9541984	
689.80	 0.9651587	
689.76	 0.9797988	
689.72	 0.9996402	
689.68	 1.02728	
689.65	 1.067996	
689.63	 1.134858	
689.61	 1.267287	
689.59	 1.614586	

	

Therefore,	plotting	the	results	obtained	we	find:	
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Chart	13	-	Trend	of	the	displacement	of	the	arch	crown	to	the	variation	of	the	live	load	q.	

	

In	Chart	13,	points	A,	B	and	C	are	highlighted.	These	points	represent:	

A:	starting	point	of	the	cracking	process	in	sections	2	and	16;	

B:	points	for	reaching	the	maximum	extension	of	the	crack	in	sections	2	and	16	

and	formation	of	brittle	hinges;	

C:	starting	point	of	the	cracking	process	in	sections	5	and	13	due	to	the	new	

loading	process	due	to	the	change	in	the	static	scheme	of	the	arch.	

In	this	case,	looking	at	the	Chart	13,	the	snap-through	phenomenon	is	clearly	

visible.	However,	 looking	at	a	focus	of	the	Chart	14	the	"jump"	linked	to	the	

instability	is	clearer:	
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Chart	14	–	Focus	of	the	Chart	13	where	the	phenomenon	of	the	snap-through	is	clearly	visible.	

	

In	 the	 same	way	as	 the	 case	 seen	 in	 the	previous	paragraph,	we	notice	 the	

phenomenon	of	the	snap-through.	In	fact,	having	arrived	at	the	stationary	point	

A,	if	we	continue	to	increase	the	load	q,	it	jumps	discontinuously	on	the	stable	

branch	 B'-P	 (to	 see	 Chart	 14),	 which	 at	 a	 similar	 load	 shows	 a	 significantly	

greater	lowering.	From	an	energetic	point	of	view,	the	energy	returned	by	the	

system	in	jump	A-B	'is	equal	to	the	area	subtended	by	the	line	AB',	for	the	length	

of	the	arch.	This	energy	will	be	transformed	into	the	kinetic	vibrational	energy	

of	the	system	around	the	condition	represented	by	the	point	B'.		

In	conclusion,	Figure	39	schematically	shows	the	position	of	the	nos.	4	brittle	

hinges	obtained.	
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Figure	39	–	Position	of	the	brittle	hinges	in	arch	with	degree	of	the	lowering	equal	to	1/6.	
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5 The	case	study:	Mosca	Bridge	
	

5.1 Historical	view	of	Mosca	Bridge	
	

The	Moscow	Bridge	is	the	most	audacious	construction	carried	out	in	Turin	in	

the	first	half	of	the	1800s,	 it	takes	its	name	from	the	author,	Carlo	Bernardo	

Mosca,	who	had	to	fight	against	the	distrust	and	meanness	of	many	"experts"	

in	order	to	realize	his	masterpiece.	the	consequent	opposition	of	the	municipal	

administration	to	a	project	considered	even	reckless	(the	same	struggle	that,	

forty	years	later,	will	have	to	support	Alessandro	Antonelli	to	make	accept	the	

bold	construction	of	the	Mole).	In	Figure	40	there	is	an	illustration	of	the	Bridge	

located	on	the	Dora	River,	in	correspondence	of	Corso	Giulio	Cesare.	

The	bridge	designs	presented	by	French	engineers	 in	1812	 included	three	or	

even	five	arched	structures.	When	Moscow,	ten	years	later,	was	commissioned	

to	 study	 the	 same	problem,	he	proposed	a	more	daring	 solution,	devising	a	

single-span	bridge,	of	great	light	and	strongly	lowered.	Moscow	illustrated	his	

project	in	which	he	proposed	"...	the	maximum	accuracy	and	precision,	both	in	

the	 apparatus	 in	 the	 cutting	 stones,	 as	 in	 the	 most	 minute	 construction	

warnings	...".	
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Figure	40	–	Mosca	Bridge	over	the	Dora	River	in	Turin	(Italy)	

(image	by	authors).	

	

The	Moscow	Bridge	was	built	between	1823	and	1828,	 this	bridge	achieved	

European	fame	both	for	the	audacity	of	the	project	and	for	the	perfection	of	

the	execution.	Unfortunately,	today	the	majority	ignore	its	existence,	but	once	

the	 inhabitants	 of	 Turin	 were	 proud	 of	 it,	 and	 in	 addition	 to	 their	 sober	

elegance,	they	admired	their	exceptional	slenderness,	so	difficult	to	obtain	with	

the	stone	structure.	

	The	structural	typology	and	the	execution	technique	make	this	work	classify	as	

a	Perronet	type	bridge.	The	artifice	designed	to	obtain	the	real	arch	faithful	to	

the	design	was	to	build	the	rib	raised	above	the	project	profile.	At	the	time	of	

disarming,	 the	 relative	 displacement	 of	 the	 segments,	 resulting	 from	 the	

deformation	 due	 to	 their	 own	 weight	 and	 expected	 almost	 exactly	 by	 the	

author,	 brought	 the	 side	 surfaces	 of	 the	 blocks	 into	 contact.	 The	 method,	

already	 tested	 by	 some	 builders	 on	 bridges	 of	 lesser	 light,	 was	 applied	 by	
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Moscow	with	particular	precautions	and	the	result	obtained	was	exceptional.	

The	ashlars	were	brought	into	contact	so	as	to	form	a	monolithic	structure	and	

the	shape	of	 the	arch	approached	that	designed	 in	such	a	measure	 that	 the	

lowering	(ratio	between	the	arrow	of	the	arch	and	the	rope)	in	the	real	bridge	

is	0.123	while	on	the	drawing	it	was	0.122.	

	

Figure	41	-	Original	structural	model	of	the	Mosca	Bridge	(19th	century),	Dept.	of	Structural,	
Geotechnical	and	Building	Engineering,	Politecnico	di	Torino	(Italy)	(image	by	authors).	

	

The	total	length	of	the	bridge,	including	the	entrance	yards,	is	129	meters	and	

the	width	is	13.7	meters.	The	structure	entirely	in	cut	stone	is	a	single,	strongly	

lowered	arch;	the	intrados	is	an	arc	of	a	circle	of	5.5	meters	of	arrow	and	45	

meters	of	rope.	The	cylindrical	vault,	constructed	from	93	courses	of	ashlars,	

has	 a	 key	 thickness	 of	 1.5	 meters.	 The	 material	 used	 for	 the	 structure	 is	

exclusively	Malanaggio	stone,	a	gneiss	with	mechanical	characteristics	similar	

to	those	of	granite,	of	a	pleasant	greenish	gray	color	that	is	maintained	over	

time.	 The	 entire	 requirement	 was	 extracted	 from	 the	 main	 quarry	 of	 the	

Malanaggio,	near	Pinerolo.	
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5.2 Application	of	the	cohesive	crack	model	to	Mosca	Bridge	
	

The	geometric	and	mechanical	data	relating	to	the	Mosca	Bridge,	in	order	to	

perform	the	calculation,	are	represented	in	Figure	42	and	summarized	in	the	

following	table,	whose	meaning	has	already	been	explained	in	Chapter	3:	

	

Figure	42	–	Geometric	of	the	Mosca	Bridge.	

	

Material	
b	

[cm]	

h	

[cm]	

puv	

[kg/cm3]	

E	

[kg/cm2]	

fc	

[kg/cm2]	

ft	

[kg/cm2]	

Masonry	 100	 150	 0.0025	 300000	 -500	 30	

	

The	weight	 per	 volume	unit,	 equal	 to	 0.0025	 kg/cm3,	was	 calculated	 as	 the	

average	between	the	weight	per	unit	volume	of	the	Manalaggio	stone	(equal	

to	0.0027	kg/cm3)	which	constitutes	the	arc	and	the	weight	of	the	filling	(equal	

to	0.0023	kg/cm3).	

The	following	table	summarizes	the	results	obtained	from	the	two	initialization	

phases:	

Phase	 n°	of	the	
hinges	

Cause	 n°		node	 q	
[kg/cm]	

1a	 2	 cracking	 2	and	16	 364.59	
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Phase	 n°	of	the	
hinges	

Cause	 n°		node	 q	
[kg/cm]	

2a	 3	 cracking	 8,	9	and	10	 465,80	

	

In	 this	 case,	 during	 the	 first	 initialization	 phase	 the	 cohesive	 crack	 was	

advanced,	which	develops	in	node	2	and	by	symmetry	in	node	16.	

The	 following	 table	 shows	 the	 relevant	 results	 obtained	 from	 the	 iterations	

developed	to	conduct	the	crack	(fictitious	crack	tip)	up	to	90%	of	the	section	

height	for	the	application	of	the	cohesive	crack	model:	

Step	 ntipa	 q	
[kN/m]	

δv(2-16)	
[cm]	

x	
[cm]	

1	 0	 0.00	 0.00	 0.0	
2	 1	 364,59	 5.95	 15.8	
3	 2	 364,03	 5.80	 23.7	
4	 3	 363,50	 5.63	 31.6	
5	 4	 363,03	 5.47	 39.5	
6	 5	 362,61	 5.31	 47.4	
7	 6	 362,23	 5.14	 55.3	
8	 7	 361,91	 4.98	 63.2	
9	 8	 361,63	 4.83	 71.1	
10	 9	 361,39	 4.67	 78.9	
11	 10	 361,19	 4.52	 86.8	
12	 11	 361,02	 4.36	 94.7	
13	 12	 360,88	 4.21	 102.6	
14	 13	 360,77	 4.06	 110.5	
15	 14	 360,68	 3.91	 118.4	
16	 15	 360,62	 3.76	 126.3	

where:	

ntipa:	it	is	the	position	of	the	real	crack	tip;	

q:	it	is	the	variable	load;	
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dv:	vertical	displacement	read	at	the	section	in	which	the	crack	takes	place;	

x:	height	of	the	crack	

also	in	this	case	it	is	interesting	to	note	how,	once	the	load	q	has	been	obtained	

which	causes	the	displacement	of	the	real	crack	(step	2)	towards	the	inside	of	

the	section,	i.e.	we	have	the	birth	of	the	real	crack,	the	program,	in	the	next	

step,	 identifies	 a	 lower	 load	 to	 advance	 the	 crak.	 This	 shows	how	 the	 crack	

begins	to	open	with	the	maximum	load	and	continues	to	open	monotonously	

as	the	load	decreases	in	the	softening	phase.	It	is	clearly	phenomenon	of	the	

snap-back	(to	see	Chart	15).	

	

Chart	15	–	Trend	of	the	variable	load	vs	displacement	in	control	of	advancement	of	the	crack	opening	
(w).	Clear	phenomenon	of	the	snap-back	in	the	first	group	of	brittle	hinges	in	Mosca	Bridge	

	

According	to	the	Chart	15	we	can	see	how,	upon	reaching	the	load	q	equal	to	

364,59	kg/cm,	i.e.	the	load	that	produces	the	anazation	of	the	real	crack	tip,	

and	therefore	the	opening	of	the	real	crack	tip,	the	behavior	of	the	material	in	

the	softening	phase	shows	a	positive	slope.	 In	 this	case,	once	 the	maximum	



 

“Evolutionary	analysis	of	the	fracturing	process	in	masonry	arches:	
Application	of	the	Cohesive	Crack	Model”. 

 

 
 
 

	
93	

	

load	is	reached	(q=	364,59	kg/cm)	the	load	is	vertically	dropped.	The	softening	

trait	 is	 thus	 ignored	 and	 becomes	 virtual.	 In	 fact,	 to	 identify	 the	 softening	

section	 with	 positive	 slope	 it	 is	 necessary	 to	 pilot	 the	 loading	 process	 by	

opening	the	crack	(w).	

Once	the	first	phase	of	 initialization	has	been	completed,	the	program,	once	

assigned	a	hinge	in	the	cracked	sections	(2	and	16),	resumes	the	anailisi	and	

begins	the	second	phase	of	initialization.	In	this	phase,	due	to	the	geometry	of	

the	analyzed	arch,	the	program	identifies	the	birth	of	the	cracking	process	in	

sections	8,10	and	in	addition,	a	crack	is	born	in	the	section	n.	9.	According	to	

the	paragraph,	 the	 results	 obtained	 show	how	an	 increase	 in	 the	degree	of	

lowering	leads	to	the	formation	of	hinges	in	the	sections	next	to	the	arch	crown.	

The	following	table	summarizes	the	results	obtained	from	the	application	of	the	

cohesive	model:	

Step	 ntipa	 q	
[kN/m]	

δv(8-9-10)	
[cm]	

x	
[cm]	

1	 0	 0.00	 	7.00	 0.0	
2	 1	 465.80	 38.82	 15.8	
3	 2	 465.72	 37.84	 23.7	
4	 3	 465.64	 36.86	 31.6	
5	 4	 465.57	 35.87	 39.5	
6	 5	 465.50	 34.89	 47.4	
7	 6	 465.44	 33.91	 55.3	
8	 7	 465.39	 32.93	 63.2	
9	 8	 465.34	 31.94	 71.1	
10	 9	 465.30	 30.96	 78.9	
11	 10	 465.26	 29.97	 86.8	
12	 11	 465.23	 28.99	 94.7	
13	 12	 465.20	 28.01	 102.6	
14	 13	 465.18	 27.02	 110.5	
15	 14	 465.16	 26.04	 118.4	
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Step	 ntipa	 q	
[kN/m]	

δv(8-9-10)	
[cm]	

x	
[cm]	

16	 15	 465.14	 25.05	 126.3	
	

Plotting	the	results	of	the	application	of	the	cohesive	model,	even	in	this	case,	

a	positive	slope	(phenomenon	of	the	snap-back)	 is	 found	for	the	"softening"	

section,	as	shown	in	Chart	16.	

	

Chart	16	–	Clear	phenomenon	of	the	snap-back	in	the	second	group	of	the	brittle	hinges	in	the	Mosca	
Bridge	

	

Equally	as	done	for	arches	with	degree	of	lowering	equal	to	1/5,	to	1/6	and	to	

1/7,	 note	 the	 values	 of	 the	 live	 load	 q,	which	 is	 remembered	 to	 have	 been	

calculated	 in	 crack	 opening	 control	 (w),	 in	 a	 subsequent	 phase	 the	 overall	

structure	of	the	arch	was	calculated	for	each	iteration	step	of	the	initialization	

phase	1	and	2	vertical	displacement,	measured	in	the	arch	crown	with	the	finite	

elements.	This	model	of	the	calculation	was	assigned	the	uniformly	distributed	

load	q,	derived	from	the	two	previous	phases:	
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3. For	the	first	phase	of	initialization	the	moment	of	inertia	of	the	section	

has	been	reduced	in	correspondence	with	the	crack	(section	n.	2	and	n.	

16)	to	take	into	account,	at	each	step,	the	progress	of	the	real	crack	tip	

and	therefore	of	the	portion	section	no	longer	reagent;	

4. For	 the	 second	 initialization	 phase	 a	 hinge	 was	 introduced	 in	 the	

completely	cracked	sections	from	the	previous	phase	(section	n.	2	and	

n.	16)	and	we	proceeded	as	described	in	the	previous	point	to	take	into	

account	the	progressive	advancement	of	the	crack	(in	the	section	n.	8,	

n.	9	and	n.	13).	

	

Figure	43	–	FEM	calculation	scheme	of	Mosca	Bridge.	

	

For	 each	 loading	 phase,	 the	 vertical	 displacement	 in	 the	 arch	 crown	 was	

measured.	The	following	table	shows	the	results	obtained:	

q		
[kN/m]	

𝛿	
[cm]	

0.00	 0.01878232	
364.59	 0.1493562	
364.03	 0.1498205	
363.50	 0.1504727	
363.03	 0.1513845	
362.61	 0.1526517	
362.23	 0.1544193	
361.91	 0.1569171	
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q		
[kN/m]	

𝛿	
[cm]	

361.63	 0.1605234	
361.39	 0.165888	
361.19	 0.1741812	
361.02	 0.187634	
360.88	 0.21078	
360.77	 0.2534892	
360.68	 0.33855189	
360.62	 0.35178052	
465.80	 0.3568921	
465.72	 0.3915207	
465.64	 0.4324286	
465.57	 0.4806732	
465.50	 0.5372213	
465.44	 0.6029462	
465.39	 0.6783479	
465.34	 0.7633233	
465.30	 0.8570634	
465.26	 0.9582355	
465.23	 1.066252	
465.20	 1.170155	
465.18	 1.330334	
465.16	 1.563011	
465.14	 2.112796	

	

Therefore,	plotting	the	results	obtained	we	find:	
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Chart	17	-	Trend	of	the	displacement	of	the	arch	crown	due	to	the	variation	of	the	live	load	q	in	Mosca	
Bridge.	

	

In	Chart	17,	points	A,	B	and	C	are	highlighted.	These	points	represent:	

A:	starting	point	of	the	cracking	process	in	sections	2	and	16;	

B:	points	for	reaching	the	maximum	extension	of	the	crack	in	sections	2	and	16	

and	formation	of	brittle	hinges;	

C:	starting	point	of	the	cracking	process	in	sections	8,	9	and	10	due	to	the	new	

loading	process	due	to	the	change	in	the	static	scheme	of	the	arch.	

In	this	case,	looking	at	the	Chart	17,	the	snap-through	phenomenon	is	clearly	

visible.	However,	 looking	at	a	focus	of	the	Chart	18	the	"jump"	linked	to	the	

instability	is	clearer:	
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Chart	18	–	Focus	of	the	Chart	17	where	the	phenomenon	of	the	snap-through	is	clearly	visible.	

	

In	 the	 same	 way	 as	 the	 case	 seen	 in	 the	 previous	 chapter,	 we	 notice	 the	

phenomenon	of	the	snap-through.	In	fact,	having	arrived	at	the	stationary	point	

A,	if	we	continue	to	increase	the	load	q,	it	jumps	discontinuously	on	the	stable	

branch	 B'-P	 (to	 see	 Chart	 18),	 which	 at	 a	 similar	 load	 shows	 a	 significantly	

greater	lowering.	From	an	energetic	point	of	view,	the	energy	returned	by	the	

system	in	jump	A-B	'is	equal	to	the	area	subtended	by	the	line	AB',	for	the	length	

of	the	arch.	This	energy	will	be	transformed	into	the	kinetic	vibrational	energy	

of	the	system	around	the	condition	represented	by	the	point	B'.		

In	 conclusion,	 Figure	 44	 schematically	 shows	 the	 position	 of	 the	 n.	 5	 brittle	

hinges	obtained.	
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Figure	44	–	Position	of	the	brittle	hinges	in	Mosca	Bridge.	
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Conclusion	
	

In	this	thesis	work,	the	model	of	the	cohesive	crack	was	applied	to	bridges	with	

masonry	 arches,	 using	 a	 program	 written	 in	 Matlab.	 The	 purpose	 of	 this	

application	was	 to	 determine	 the	maximum	 live	 load	 that	 the	 arches	 under	

examination	can	withstand	before	reaching	the	 formation,	by	cracking	or	by	

reaching	 the	 maximum	 compressive	 strength,	 of	 n.	 4	 brittle	 hinges.	 The	

analyzed	arches	have	a	degree	of	lowering	equal	to	1/3,	1/4,	1/5,	1/6,	1/7	and	

about	1/8	 (Moscow	Bridge).	 From	 the	application	of	 the	program	written	 in	

Matlab	it	was	found	that	for	a	degree	of	lowering	greater	than	and	equal	to	1/4	

the	maximum	live	load	borne	does	not	cause	cracking	but	the	crushing	in	the	

sections	 where	 the	 formation	 of	 brittle	 hinges	 is	 found.	 Below	 the	

aforementioned	degree	of	lowering	the	formation	of	the	n.	4	hinges	occur	due	

to	the	birth	and	development	of	the	cracking	process.	Following	the	cracking	

process	 by	means	 of	 the	 cohesive	model	 theory,	 i.e.	 by	 varying	 the	 load	 in	

control	 of	 the	 crack	 opening,	 it	 was	 found,	 in	 the	 sections	 in	 which	 crack	

propagation	occurred	and	for	all	arches	with	lower	and	equal	lowering	degree	

1/5,	 a	 behavior	 of	 the	 snap-back	 type	 material.	 This	 behavior	 is	 entirely	

plausible	for	materials	of	a	relatively	fragile	type	such	as	masonry,	but	readable	

only	 if	 the	 analysis	 is	 carried	 out	 in	 control	 of	 the	 gap	 opening	 and	 not	 in	
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displacement	control	or	in	load	control.	While,	analyzing	the	same	arches	from	

a	global	point	of	view,	a	structural	snap-through	behavior	was	found.	

In	conclusion	it	was	shown	how	the	cohesive	model	allows	us	to	grasp	the	real	

behavior	of	the	material.	

Moreover,	from	the	analysis	it	is	also	found	that	the	first	pair	of	crack	is	formed	

near	the	section	to	the	kidneys	while	the	position	of	the	second	pair	is	linked	

to	the	degree	of	 lowering	of	the	arch.	 In	 fact,	 it	has	been	noted	that,	as	the	

degree	of	lowering	decreases,	the	position	of	the	second	pair	moves	more	and	

more	 towards	 the	arch	 crown,	 that	 is,	we	are	getting	 closer	and	 closer	 to	a	

beam	behavior.	
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function [risultati]=biutarc 
    %Parameters: constant for all beams 
E = 300000; b=100;  h=150;    A = b*h;    I = (b*h^3)/12;     fc= -500;   ft=15;              
%  { kg*cm2} {cm}    {cm}      {cm2}           {cm4}             {kg*cm2}  {kg*cm-2}  
  puv=25*10-4;      H=1110;    gf=14;                  
  %  {kg*cm-3}       {cm}     {kg/cm}          
%vettore aus 
 aus=[-0.00014488;  -0.00013582; -0.00012786;   -0.00011999;   -0.00011219;        
-0.00010442;    -0.00009666;    -0.00008891;    -0.00008116;    -0.00007341;       
-0.00006566;    -0.00005791;    -0.00005015;    -0.00004239;    -0.00003461;       
-0.0000268;     -0.00001891;    -0.00001068;    -0.00013582;    -0.00012875;       
-0.00012102;    -0.00011357;    -0.00010619;    -0.00009883;    -0.00009148;       
-0.00008414;    -0.00007681;    -0.00006948;    -0.00006215;    -0.00005481;       
-0.00004747;    -0.00004013;    -0.00003276;    -0.00002538;    -0.00001791;       
-0.00001012;    -0.00012786;    -0.00012102;    -0.00011444;    -0.00010719;       
-0.00010019;    -0.00009323;    -0.0000863;     -0.00007938;    -0.00007246;       
-0.00006555;    -0.00005863;    -0.00005172;    -0.00004479;    -0.00003786;       
-0.00003092;    -0.00002395;    -0.00001691;    -0.00000956;    -0.00011999;       
-0.00011357;    -0.00010719;    -0.00010105;    -0.00009423;    -0.00008766;       
-0.00008113;    -0.00007462;    -0.00006812;    -0.00006162;    -0.00005512;       
-0.00004862;    -0.00004211;    -0.0000356;     -0.00002908;    -0.00002253;       
-0.0000159;     -0.00000899;    -0.00011219;    -0.00010619;    -0.00010019;       
-0.00009423;    -0.00008851;    -0.00008213;    -0.00007598;    -0.00006987;       
-0.00006378;    -0.00005769;    -0.00005161;    -0.00004552;    -0.00003944;       
-0.00003334;    -0.00002723;    -0.00002111;    -0.0000149;     -0.00000843;       
-0.00010442;    -0.00009883;    -0.00009323;    -0.00008766;    -0.00008213;       
-0.00007683;    -0.00007086;    -0.00006513;    -0.00005944;    -0.00005377;         
-0.0000481;     -0.00004243;    -0.00003676;    -0.00003108;    -0.00002539;        
-0.00001968;    -0.0000139;     -0.00000787;    -0.00009666;    -0.00009148;       
-0.0000863;     -0.00008113;    -0.00007598;    -0.00007086;    -0.00006598;       
-0.00006044;    -0.00005512;    -0.00004985;    -0.00004459;    -0.00003934;       
-0.00003408;    -0.00002882;    -0.00002355;    -0.00001826;    -0.0000129;        
-0.00000731;    -0.00008891;    -0.00008414;    -0.00007938;    -0.00007462;       
-0.00006987;    -0.00006513;    -0.00006044;    -0.00005598;    -0.00005084;       
-0.00004595;    -0.00004109;    -0.00003625;    -0.0000314;     -0.00002656;       
-0.00002171;    -0.00001683;    -0.0000119;     -0.00000675;    -0.00008116;       
-0.00007681;    -0.00007246;    -0.00006812;    -0.00006378;    -0.00005944;       
-0.00005512;    -0.00005084;    -0.0000468;     -0.00004208;    -0.0000376;        
-0.00003316;    -0.00002873;    -0.0000243;     -0.00001986;    -0.00001541;       
-0.0000109;     -0.00000618;    -0.00007341;    -0.00006948;    -0.00006555;       
-0.00006162;    -0.00005769;    -0.00005377;    -0.00004985;    -0.00004595;       
-0.00004208;    -0.00003846;    -0.00003416;    -0.00003009;    -0.00002607;       
-0.00002205;    -0.00001802;    -0.00001399;    -0.0000099;     -0.00000562;       
-0.00006566;    -0.00006215;    -0.00005863;    -0.00005512;    -0.00005161;       
-0.0000481;     -0.00004459;    -0.00004109;    -0.0000376;     -0.00003416;       
-0.00003095;    -0.00002706;    -0.00002341;    -0.0000198;     -0.00001619;       
-0.00001257;    -0.0000089;     -0.00000506;    -0.00005791;    -0.00005481;       
-0.00005172;    -0.00004862;    -0.00004552;    -0.00004243;    -0.00003934;       
-0.00003625;    -0.00003316;    -0.00003009;    -0.00002706;    -0.00002427;       
-0.0000208;     -0.00001756;    -0.00001435;    -0.00001115;    -0.0000079;        
-0.0000045;     -0.00005015;    -0.00004747;    -0.00004479;    -0.00004211;       
-0.00003944;    -0.00003676;    -0.00003408;    -0.0000314;     -0.00002873;       
-0.00002607;    -0.00002341;    -0.0000208;     -0.00001842;    -0.00001536;       
-0.00001253;    -0.00000973;    -0.0000069;     -0.00000393;    -0.00004239;           
-0.00004013;    -0.00003786;    -0.0000356;     -0.00003334;    -0.00003108;           
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-0.00002882;     -0.00002656;    -0.0000243;     -0.00002205;    -0.0000198;            
-0.00001756;     -0.00001536;    -0.0000134;     -0.00001075;    -0.00000833;         
-0.0000059;      -0.00000337;    -0.00003461;    -0.00003276;    -0.00003092;        
-0.00002908;     -0.00002723;    -0.00002539;    -0.00002355;     -0.00002171;       
-0.00001986;     -0.00001802;    -0.00001619;    -0.00001435;    -0.00001253;       
-0.00001075;     -0.0000092;     -0.00000696;    -0.00000492;    -0.00000281;      
-0.0000268;      -0.00002538;    -0.00002395;    -0.00002253;    -0.00002111;      
-0.00001968;     -0.00001826;    -0.00001683;    -0.00001541;    -0.00001399;      
-0.00001257;     -0.00001115;    -0.00000973;    -0.00000833;    -0.00000696;      
-0.00000581;     -0.00000396;    -0.00000226;    -0.00001891;    -0.00001791;      
-0.00001691;     -0.0000159;     -0.0000149;     -0.0000139;     -0.0000129;       
-0.0000119;      -0.0000109;     -0.0000099;     -0.0000089;     -0.0000079;       
-0.0000069;      -0.0000059;     -0.00000492;    -0.00000396;    -0.00000322;       
-0.00000173;     -0.00001068;    -0.00001012;    -0.00000956;    -0.00000899;      
-0.00000843;     -0.00000787;    -0.00000731;    -0.00000675;    -0.00000618;      
-0.00000562;     -0.00000506;    -0.0000045;     -0.00000393;    -0.00000337;      
-0.00000281;     -0.00000226;    -0.00000173;    -0.00000138] 
  
 %vettore df 
 df=[-0.00029272; -0.00027688; -0.00026104; -0.00024519; -0.00022934; -0.00021347; 
-0.00019761; -0.00018173; -0.00016585; -0.00014996; -0.00013406; -0.00011816; -
0.00010225; -0.00008633; -0.0000704; -0.00005442; -0.0000383; -0.00002155]; 
   
%ponte Mosca H=760 cm 
%x=[0 263.2433 533.6215 810.1636 1091.8765 1377.7485 1666.7529 1957.8519 2250 
2542.1481 2833.2471 3122.2515 3408.1235 3689.8364 3966.3785 4236.7567 4500]; 
%y=[0 127.0047 238.013 332.6265 410.5052 471.3694 515.0007 541.2423  550 541.2423 
515.0007 471.3694 410.5052 332.6265 238.013 127.0047 0];  
 
%f/l=1/3 l=4500 cm e f=1500 cm H=1710 cm 
%x=[0 148.07 353.88 601.46 885.32 1199.39 1536.42 1889.82 2250 2610.18 2963.58 
3300.61 3614.68 3898.54 4146.12 4351.93 4500]; 
%y=[0 296.71 594.21 857.98 1082.17 1260.46 1393.21 1473.24 1500 1473.24 1393.21 
1260.46 1082.17 857.98 594.21 296.71 0]; 
  
%f/l=1/4 l=4500 cm e f=1125 cm H=1335 cm 
%x=[0 210.26 447.90 709.72 992.21 1291.58 1603.83 1924.73 2250 2575.27 2896.17 
3208.42 3507.79 3790.28 4052.10 4289.74 4500]; 
%y=[0 248.90 471.80 665.73 828.08 956.66 1049.77 1106.13 1125 1106.13 1049.77 
956.66 828.08 665.73 471.80 248.90 0]; 
  
%f/l=1/5 l=4500 cm e f=900 cm H=1110 cm 
%x=[0 234.55 487.35 756.10 1038.34 1331.54 1632.98 1940.11 2250 2559.89 2867.02 
3168.45 3461.66 3743.90 4012.65 4265.45 4500]; 
%y=[0 201.52 382.85 537.87 666.66 768.05 841.12 885.25 900 885.25 841.12 768.05 
666.66 437.87 382.85 201.52 0]; 
  
%f/l=1/6 l=4500 cm e f=750 cm H=960 cm 
%x= [0 248.29 509.61 782.13 1064.15 1353.83 1649.32 1948.68 2250 2551.32 2850.68 
3146.17 3435.85 3717.87 3990.39 4251.71 4500]; 
%y= [0 171.06 321.68 450.77 557.56 641.34 701.58 737.87 750 737.87 701.58 641.34 
557.56 450.77 321.68 171.06 0]; 
  
%f/l=1/7 l=4500 cm e f=642.80 cm H=853 cm 
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%x= [0 256.84 523.31 798.14 1079.98 1367.72 1659.3 1953.92 2250 2546.08 2840.70 
3132.28 3420.02 3701.86 3976.69 4243.16 4500]; 
%y= [0 147.66 277.10 387.71 478.95 550.42 601.64 632.50 642.8 632.5 601.64 550.42 
478.95 387.71 277.10 147.66 0]; 
    
%Fessurazione modello coesivo     
%Initializations 
stiffness=zeros(16,1); q=0.0; 
[M,N,sez_cal]=fem(x,y,q,E,I,A,b,puv,H,stiffness); 
O=sez_cal; 
%definizione nodi nella sezione 
deltah=h/17; 
for i=1:18 
    if i==1 
        z(i)=0; 
    else 
        z(i)=z(i-1)+i*deltah 
    end 
    z=z' 
end 
[csw,wc]=legge_costitutiva(ft,gf,N,sez_cal,A); 
[P,beta] = calcolo_carico(x,y,H,b,puv,sez_cal,q); 
ntip=1;  
ntipa=1; 
nnod=18; 
q_coesivo=0; 
k=1; 
G=0; 
u=0; 
e=0; 
o=0; 
t=0; 
    while ntipa<=15 
        [N,M]=Cal_N(x,y,q_coesivo,E,I,A,b,puv,H,stiffness,sez_cal); 
        sigmat=ft+(N*(-1))/A; 
        [coe,ab]=letcoe(aus,nnod,ntipa,ntip,csw,z,wc); 
        [p,w,abb]=soluz(coe,P,ntipa,ntip,nnod,df); 
        abft=ab*sigmat; 
        if ntip==1 
            deltaf=(abft/p); 
        else 
            if ntip~=18 
                deltaf=(abft-pold)/(p-pold); 
            else 
                deltaf=deltaf 
            end 
        end  
        P=P+deltaf; 
        pold=p 
        G(k)=P 
        u(k)=abb*cos(beta) 
        e(k)=N 
        if ntip~=18 
            ntip=ntip+1; 
        else 
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            ntip==18 
        end 
        if w>=wc 
            ntipa=ntipa+1; 
        else 
            ntipa=ntipa; 
        end 
        t(k)=ntipa 
        k=k+1 
        F=P 
        [q_coesivo]=load_variable(F,x,y,H,b,puv,sez_cal); 
        o(k)=q_coesivo; 
    end 
    [q_coesivo]=load_variable(F,x,y,H,b,puv,sez_cal); 
    plot(u,G); 
    crush=0; 
     while crush==0  
        [M,N]=fem(x,y,q,E,I,A,b,puv,H,stiffness);  
        crush=crushing_collapse(M, N, h, abs(fc), I, A);     
        if  crush==1 
            q_classic=q;            
        end      
        %Load increase 
        q=q+0.01; 
    end 
    disp(q_classic); 
    disp(q_coesivo); 
    disp(ntipa); 
    disp(ntip); 
	



 

“Evolutionary	analysis	of	the	fracturing	process	in	masonry	arches:	application	of	the	cohesive	crack	model”. 
 

APPENDICE 2: Cal_N 

	

109	
	

function [N,M]=Cal_N(x,y,q_coesivo,E,I,A,b,puv,H,stiffness,sez_cal) 
%Initializations  
rigidezza_definitiva=zeros(51,51);  q_definitiva=zeros(51,1);   indice=1; 
%Ciclo spostamenti 
for k=1:16 
  
    L=sqrt((x(k+1)-x(k))^2 + (y(k+1)-y(k))^2); 
    alpha=atan((y(k+1)-y(k))/(x(k+1)-x(k))); 
    assemblaggio=zeros(51,6); 
       
  
    kloc =    (E*I).*[ 4/L,     -6/L^2,     0,      2/L,      6/L^2,      0; 
                      -6/L^2,    12/L^3,    0,     -6/L^2,   -12/L^3,     0; 
                        0,         0,     A/(I*L),  0,          0,      -A/(I*L); 
                        2/L,    -6/L^2,     0,     4/L,       6/L^2,      0; 
                        6/L^2,  -12/L^3,    0,     6/L^2,     12/L^3,     0; 
                        0,          0,   -A/(I*L),   0,         0,       A/(I*L)]; 
   
  rot = [     1,      0,          0,              0,      0,              0; 
                0,  cos(alpha),     sin(alpha),     0,      0,              0; 
                0,  -sin(alpha),    cos(alpha),     0,      0,              0; 
                0,      0,          0,              1,      0,              0; 
                0,      0,          0,              0,  cos(alpha),     sin(alpha); 
                0,      0,          0,              0, -sin(alpha),    cos(alpha)]; 
                     
    if stiffness(k)~=0 
        %Moltiplico *EI non refresha 
        kloc(1,1)=E*I*(3*E*I+4*L*stiffness(k))/(L*(E*I+L*stiffness(k))); 
        kloc(1,4)=E*I*(3*E*I+2*L*stiffness(k))/(L*(E*I+L*stiffness(k))); 
        kloc(4,1)=E*I*(3*E*I+2*L*stiffness(k))/(L*(E*I+L*stiffness(k))); 
        kloc(4,4)=E*I*(3*E*I+4*L*stiffness(k))/(L*(E*I+L*stiffness(k))); 
    end 
     
    kglob = rot'*kloc*rot; 
     
    %Carico equivalente nodale 
    p_proprio=(puv*b*((H-y(k))+(H-y(k+1))))*(1/2); 
     
        Q=[-
((q_coesivo+p_proprio)*cos(alpha)*L^2)/12,((q_coesivo+p_proprio)*cos(alpha)*L/2),-
((q_coesivo+p_proprio)*sin(alpha)*L/2),   
((q_coesivo+p_proprio)*cos(alpha)*L^2)/12,((q_coesivo+p_proprio)*cos(alpha)*L/2),-
((q_coesivo+p_proprio)*sin(alpha)*L/2)]'; 
    %Matrice assemblaggio 
    switch k         
       case 1 
       assemblaggio(1:3,4:6)=eye(3); 
       assemblaggio(46:48,1:3)=eye(3); 
       case 16 
       assemblaggio(43:45,1:3)=eye(3); 
       assemblaggio(49:51,4:6)=eye(3); 
       otherwise 
       assemblaggio(indice:indice+5,1:6)=eye(6); 
       indice=indice+3; 
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    end 
     
    %Assemblaggio carico 
    q_definitiva=q_definitiva+assemblaggio*Q; 
    %Assemblaggio rigidezza 
    rigidezza_definitiva=rigidezza_definitiva+assemblaggio*kglob*assemblaggio'; 
end 
  
spostamenti_ll=rigidezza_definitiva(1:45,1:45)\q_definitiva(1:45); 
  
%PROVA 
%reazioni=rigidezza_definitiva(46:51,1:45)*spostamenti_ll-q_definitiva(46:51); 
%[reazione1,reazione2]=calcolo_reazioni(reazioni,x,y); 
%FINE PROVA 
  
%Ciclo calcolo MTN per ciascuna trave  
MTN=zeros(102,1); indice=1; spostamenti_LL=zeros(51,1); 
spostamenti_LL(4:48)=spostamenti_ll(1:45); index=1; 
for k=1:16 
  
    L=sqrt((x(k+1)-x(k))^2 + (y(k+1)-y(k))^2); 
    alpha=atan((y(k+1)-y(k))/(x(k+1)-x(k))); 
     
    kloc =     (E*I).*[ 4/L,   -6/L^2,   0,       2/L,       6/L^2,      0; 
                      -6/L^2,   12/L^3,  0,      -6/L^2,   -12/L^3 ,     0; 
                        0,        0,   A/(I*L),     0,         0,      -A/(I*L); 
                        2/L,    -6/L^2,   0,       4/L,      6/L^2,      0; 
                        6/L^2,  -12/L^3,  0,      6/L^2,      12/L^3,    0; 
                        0,         0,   -A/(I*L),   0,          0,     A/(I*L)]; 
                     
    rot = [     1,      0,          0,              0,      0,              0; 
                0,  cos(alpha),     sin(alpha),     0,      0,              0; 
                0,  -sin(alpha),    cos(alpha),     0,      0,              0; 
                0,      0,          0,              1,      0,              0; 
                0,      0,          0,              0,   cos(alpha),   sin(alpha); 
                0,      0,          0,              0   -sin(alpha),   cos(alpha)]; 
             
    if stiffness(k)~=0 
        %Moltiplico *EI non refresha 
        kloc(1,1)=E*I*(3*E*I+4*L*stiffness(k))/(L*(E*I+L*stiffness(k))); 
        kloc(1,4)=E*I*(3*E*I+2*L*stiffness(k))/(L*(E*I+L*stiffness(k))); 
        kloc(4,1)=E*I*(3*E*I+2*L*stiffness(k))/(L*(E*I+L*stiffness(k))); 
        kloc(4,4)=E*I*(3*E*I+4*L*stiffness(k))/(L*(E*I+L*stiffness(k))); 
    end 
         
    spostamenti_locali=rot*spostamenti_LL(indice:indice+5,1); 
    Q=[-
((q_coesivo+p_proprio)*cos(alpha)*L^2)/12,((q_coesivo+p_proprio)*cos(alpha)*L/2),-
((q_coesivo+p_proprio)*sin(alpha)*L/2),   
((q_coesivo+p_proprio)*cos(alpha)*L^2)/12,((q_coesivo+p_proprio)*cos(alpha)*L/2),-
((q_coesivo+p_proprio)*sin(alpha)*L/2)]'; 
  
  
    MTN_singola=kloc*spostamenti_locali-rot*Q; 
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    MTN(index:index+5,1)=MTN_singola(1:6); 
    indice=indice+3; 
    index=index+6; 
end 
%Arco simmetrico, se vuoi migliora. A questo punto in MTN hai gli sforzi 
%agli estremi di ogni beam, visti sia da destra sia da sinistra: 
%lenght(MTN)=2*num.beam 
indice=1; 
M=zeros(17,1); N=zeros(17,1); T=zeros(17,1); 
for k=1:6:54 
    M(indice)=-MTN(k); 
    T(indice)=MTN(k+1); 
    N(indice)=-abs(MTN(k+2)); 
    indice=indice+1; 
end 
N=N(sez_cal); 
M=M(sez_cal); 
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function [P,beta] = calcolo_carico(x,y,H,b,puv,sez_cal,q) 
%valutazioene del fattore di carico 
 
 if sez_cal==1 
    ma=(x(sez_cal+1)-x(sez_cal))^2*((H-y(sez_cal+1)))*0.5 
    mb=(1/6)*(x(sez_cal+1)-x(sez_cal))^2*((y(sez_cal+1)-y(sez_cal))) 
    R=((H-y(sez_cal))+(H-y(sez_cal+1)))*(x(sez_cal+1)-x(sez_cal))*0.5 
    c=(ma+mb)/R 
    alpha=atan((y(sez_cal+1)-y(sez_cal))/(x(sez_cal+1)-x(sez_cal))) 
    d=c*tan(alpha) 
    e=0.5*c*b*((H-y(sez_cal)-d)+(H-y(sez_cal))) 
    l=c 
    delta=alpha 
else 
    ma=(1/3)*((y(sez_cal)-y(sez_cal-1))*(x(sez_cal)-x(sez_cal-1))^2) 
    mb=0.5*(H-y(sez_cal))*((x(sez_cal)-x(sez_cal-1))^2) 
    R1=0.5*((H-y(sez_cal-1))+(H-y(sez_cal))*(x(sez_cal)-x(sez_cal-1))) 
    c1=(ma+mb)/R1 
    alpha=atan((y(sez_cal)-y(sez_cal-1))/(x(sez_cal)-x(sez_cal-1))) 
    d=c1*tan(alpha) 
    e1=0.5*b*c1*((H-y(sez_cal))+(H-y(sez_cal-1)-d)) 
    md=(1/6)*(y(sez_cal+1)-y(sez_cal))*((x(sez_cal+1)-x(sez_cal))^2) 
    mc=0.5*(H-y(sez_cal+1))*(x(sez_cal+1)-x(sez_cal)) 
    R2=0.5*((H-y(sez_cal))+(H-y(sez_cal+1)))*(x(sez_cal+1)-x(sez_cal)) 
    c2=(md+mc)/R2 
    gamma=atan((y(sez_cal+1)-y(sez_cal))/(x(sez_cal+1)-x(sez_cal))) 
    g=((x(sez_cal+1)-x(sez_cal))-c2)*tan(gamma) 
    e2=0.5*c2*b*((H-y(sez_cal)-g)+(H-y(sez_cal+1))) 
    e=e1+e2 
    l=c1+c2 
    delta=(alpha+gamma)/2 
 end 
P=(e*puv+l*q)*cos(delta) 
beta=delta 
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function [crush]=crushing_collapse(M, N, h, fc, I, A) 
%fc viene passata in modulo 
crush=0; 
  
for i=1:17 
    if abs(M(i))*h/(2*I)+abs(N(i))/A>fc 
        crush=1; 
    end 
end 
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function [M,N,sez_cal]=fem(x,y,q,E,I,A,b,puv,H,stiffness) 
%Initializations  
rigidezza_definitiva=zeros(51,51);  q_definitiva=zeros(51,1);   indice=1; 
%Ciclo spostamenti 
for k=1:16 
  
    L=sqrt((x(k+1)-x(k))^2 + (y(k+1)-y(k))^2); 
    alpha=atan((y(k+1)-y(k))/(x(k+1)-x(k))); 
    assemblaggio=zeros(51,6); 
       
  
    kloc =     (E*I).*[ 4/L     ,   -6/L^2      ,   0           ,   2/L     ,   
6/L^2   ,   0; 
                      -6/L^2    ,   12/L^3      ,   0           ,   -6/L^2  ,   -
12/L^3 ,   0; 
                        0       ,   0           ,   A/(I*L)     ,   0       ,   0       
,   -A/(I*L); 
                        2/L     ,   -6/L^2      ,   0           ,   4/L     ,   
6/L^2   ,   0; 
                        6/L^2   ,   -12/L^3     ,   0           ,   6/L^2   ,   
12/L^3  ,   0; 
                        0       ,   0           ,   -A/(I*L)    ,   0       ,   0       
,   A/(I*L)];            
  
    rot = [     1,      0,          0,              0,      0,              0; 
                0,  cos(alpha),     sin(alpha),     0,      0,              0; 
                0,  -sin(alpha),    cos(alpha),     0,      0,              0; 
                0,      0,          0,              1,      0,              0; 
                0,      0,          0,              0,  cos(alpha),     sin(alpha); 
                0,      0,          0,              0, -sin(alpha),    cos(alpha)]; 
                     
    if stiffness(k)~=0 
        %Moltiplico *EI non refresha 
        kloc(1,1)=E*I*(3*E*I+4*L*stiffness(k))/(L*(E*I+L*stiffness(k))); 
        kloc(1,4)=E*I*(3*E*I+2*L*stiffness(k))/(L*(E*I+L*stiffness(k))); 
        kloc(4,1)=E*I*(3*E*I+2*L*stiffness(k))/(L*(E*I+L*stiffness(k))); 
        kloc(4,4)=E*I*(3*E*I+4*L*stiffness(k))/(L*(E*I+L*stiffness(k))); 
    end 
     
    kglob = rot'*kloc*rot; 
     
    %Carico equivalente nodale 
    p_proprio=(puv*b*((H-y(k))+(H-y(k+1))))*(1/2); 
     
        Q=[-((q+p_proprio)*cos(alpha)*L^2)/12,((q+p_proprio)*cos(alpha)*L/2),-
((q+p_proprio)*sin(alpha)*L/2),   
((q+p_proprio)*cos(alpha)*L^2)/12,((q+p_proprio)*cos(alpha)*L/2),-
((q+p_proprio)*sin(alpha)*L/2)]'; 
    %Matrice assemblaggio 
    switch k         
       case 1 
       assemblaggio(1:3,4:6)=eye(3); 
       assemblaggio(46:48,1:3)=eye(3); 
       case 16 
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       assemblaggio(43:45,1:3)=eye(3); 
       assemblaggio(49:51,4:6)=eye(3); 
       otherwise 
       assemblaggio(indice:indice+5,1:6)=eye(6); 
       indice=indice+3; 
    end 
     
    %Assemblaggio carico 
    q_definitiva=q_definitiva+assemblaggio*Q; 
    %Assemblaggio rigidezza 
    rigidezza_definitiva=rigidezza_definitiva+assemblaggio*kglob*assemblaggio'; 
end 
  
spostamenti_ll=rigidezza_definitiva(1:45,1:45)\q_definitiva(1:45); 
  
%PROVA 
%reazioni=rigidezza_definitiva(46:51,1:45)*spostamenti_ll-q_definitiva(46:51); 
%[reazione1,reazione2]=calcolo_reazioni(reazioni,x,y); 
%FINE PROVA 
  
%Ciclo calcolo MTN per ciascuna trave  
MTN=zeros(102,1); indice=1; spostamenti_LL=zeros(51,1); 
spostamenti_LL(4:48)=spostamenti_ll(1:45); index=1; 
for k=1:16 
  
    L=sqrt((x(k+1)-x(k))^2 + (y(k+1)-y(k))^2); 
    alpha=atan((y(k+1)-y(k))/(x(k+1)-x(k))); 
     
    kloc =     (E*I).*[ 4/L     ,   -6/L^2      ,   0           ,   2/L     ,   
6/L^2   ,   0; 
                      -6/L^2    ,   12/L^3      ,   0           ,   -6/L^2  ,   -
12/L^3 ,   0; 
                        0       ,   0           ,   A/(I*L)     ,   0       ,   0       
,   -A/(I*L); 
                        2/L     ,   -6/L^2      ,   0           ,   4/L     ,   
6/L^2   ,   0; 
                        6/L^2   ,   -12/L^3     ,   0           ,   6/L^2   ,   
12/L^3  ,   0; 
                        0       ,   0           ,   -A/(I*L)    ,   0       ,   0       
,   A/(I*L)]; 
                     
    rot = [     1,      0,          0,              0,      0,              0; 
                0,  cos(alpha),     sin(alpha),     0,      0,              0; 
                0,  -sin(alpha),    cos(alpha),     0,      0,              0; 
                0,      0,          0,              1,      0,              0; 
                0,      0,          0,              0,      cos(alpha),     
sin(alpha); 
                0,      0,          0,              0,      -sin(alpha),    
cos(alpha)]; 
             
    if stiffness(k)~=0 
        %Moltiplico *EI non refresha 
        kloc(1,1)=E*I*(3*E*I+4*L*stiffness(k))/(L*(E*I+L*stiffness(k))); 
        kloc(1,4)=E*I*(3*E*I+2*L*stiffness(k))/(L*(E*I+L*stiffness(k))); 
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        kloc(4,1)=E*I*(3*E*I+2*L*stiffness(k))/(L*(E*I+L*stiffness(k))); 
        kloc(4,4)=E*I*(3*E*I+4*L*stiffness(k))/(L*(E*I+L*stiffness(k))); 
    end 
         
    spostamenti_locali=rot*spostamenti_LL(indice:indice+5,1); 
    Q=[-((q+p_proprio)*cos(alpha)*L^2)/12,((q+p_proprio)*cos(alpha)*L/2),-
((q+p_proprio)*sin(alpha)*L/2),   
((q+p_proprio)*cos(alpha)*L^2)/12,((q+p_proprio)*cos(alpha)*L/2),-
((q+p_proprio)*sin(alpha)*L/2)]'; 
  
  
    MTN_singola=kloc*spostamenti_locali-rot*Q; 
    MTN(index:index+5,1)=MTN_singola(1:6); 
    indice=indice+3; 
    index=index+6; 
end 
%Arco simmetrico. A questo punto in MTN hai gli sforzi 
%agli estremi di ogni beam, visti sia da destra sia da sinistra: 
%lenght(MTN)=2*num.beam 
indice=1; 
M=zeros(17,1); N=zeros(17,1); T=zeros(17,1); 
for k=1:6:54 
    M(indice)=-MTN(k); 
    T(indice)=MTN(k+1); 
    N(indice)=-abs(MTN(k+2)); 
    indice=indice+1; 
end 
N(10)=N(8); 
N(11)=N(7); 
N(12)=N(6); 
N(13)=N(5); 
N(14)=N(4); 
N(15)=N(3); 
N(16)=N(2); 
N(17)=N(1); 
M(10)=M(8); 
M(11)=M(7); 
M(12)=M(6); 
M(13)=M(5); 
M(14)=M(4); 
M(15)=M(3); 
M(16)=M(2); 
M(17)=M(1); 
S=abs (M) 
[Mmax,sez_cal]=max (S) 
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function[csw,wc]=legge_costitutiva(ft,gf,N,sez_cal,A) 
%definizione legge costitutiva 
cws(1,2)=ft 
cws(2,2)=cws(1,2)/2 
cws(3,2)=0 
csw(1,1)=0 
csw(2,1)=0.045 
csw(3,2)=0.09 
nret=2 
nr=nret+1 
som=0.0 
csw(1,2)=1 
csw(nr,1)=1 
wc=0,047 
csw(1,1)=0.0 
csw(1,2)=ft 
csw(1,3)=wc 
csw(1,4)=ft 
csw(nr,1)=wc 
csw(nr,2)=0.0 
csw(nr,3)=wc 
csw(nr,4)=0.0 
if nret>1 
    for j=2:nret 
        csw(j,1)=csw(j,1)*wc 
        csw(j,2)=csw(j,2)*ft 
    end 
    for j=2:nret 
        csw(j,4)=csw(j,2)-csw(j,1)*(csw(j+1,2)-csw(j,2))/(csw(j+1,1)-csw(j,1)) 
    end 
    for j=2:nret 
        csw(j-1,3)=csw(j-1,1)-csw(j-1,2)*(csw(j,1)-csw(j-1,1))/(csw(j,2)-csw(j-
1,2)) 
    end 
else 
    csw(nret,3)=csw(nr,3) 
end 
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function [coe,ab]=letcoe(aus,nnod,ntipa,ntip,csw,z,wc) 
%Questa funzione legge i coefficienti di influenza per ogni situazione di 
%carico unitaria. 
%Questa funzione modifica i coefficienti della matrice coe()in modo da 
%inserire il legame costitutivo e risolve il sistema. 
%Questa funzione risolve un sistema di equazioni lineare. Si ricorda che le 
%incognite del problema sono in parte spostamenti e in parte forze coesive 
%di richiusura. Una volta calcolate si procede al calcolo delle ulteriori 
%forze coesive incognite. 
  
%Definizione variabili 
  nta=ntipa-1 
  nnod=18; 
  ycor=0.9; 
%Lettura matrice dei coefficienti di influenza 
coe=[] 
   nk=0 
   for k=1:nnod 
       if k>=ntipa 
           for i=ntipa:nnod 
               coe(nk+i)=aus(i)*ycor*2 
           end 
           nk=nk+nnod 
       else 
           nk=nk+nnod 
       end 
   end 
   nk=nnod*nnod 
   for i=ntipa:nnod 
       coe(nk+i)=aus(i)*ycor*2 
   end 
if ntip==0 
    ab=(z(2)-z(1))/2 
else 
    ab=z(2)-z(1) 
end 
pu=csw(1,2)*ab 
nta=ntipa-1 
 %correzione vettore termini noti 
ncor=ntip-ntipa 
nw=nnod*nnod 
if ncor~=0 
    for i=1:ncor 
        coe(nw+nta+i)=coe(nw+nta+i)+wc 
    end 
end 
lk=nta*nnod+nta 
for i=1:ncor 
    coe(lk+i)=coe(lk+i)+(wc/pu) 
    lk=lk+nnod 
end 
%passaggio dalla vettore coe() alla matrice a[n,n] e al vettore dei 
%termini noti f(n) 
f=0 
a=0 
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nwa=nnod-nta 
qk=nta 
if nta==0 
    qk=nta 
else 
    qk=nta*nnod+nta 
end 
for j=1:nwa 
    for i=1:nwa 
        a(i,j)=coe(i+qk) 
    end 
    qk=qk+nnod 
end 
for b=1:nwa 
    f(b)=coe(nw+b+nta) 
end 
o=f' 
x=pinv(a)*o 
%calcolo delle aperture della fessura incognite e passaggio dal vettore x() al 
vettore coe() 
nta=ntipa-1 
nwa=nnod-nta 
nw=nnod*nnod 
ncor=ntip-ntipa 
for i=1:nwa 
    coe(nw+i+nta)=x(i) 
end 
if ncor>=1 
    for j=1:ncor 
        coe(nw+nwa+j+nta)=wc*(1-x(j)/pu) 
    end 
end 
coe=coe' 
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function [q_coesivo]=load_variable(F,x,y,H,b,puv,sez_cal) 
 if sez_cal==1 
    ma=(x(sez_cal+1)-x(sez_cal))^2*((H-y(sez_cal+1)))*0.5 
    mb=(1/6)*(x(sez_cal+1)-x(sez_cal))^2*((y(sez_cal+1)-y(sez_cal))) 
    R=((H-y(sez_cal))+(H-y(sez_cal+1)))*(x(sez_cal+1)-x(sez_cal))*0.5 
    c=(ma+mb)/R 
    alpha=atan((y(sez_cal+1)-y(sez_cal))/(x(sez_cal+1)-x(sez_cal))) 
    d=c*tan(alpha) 
    e=0.5*c*b*((H-y(sez_cal)-d)+(H-y(sez_cal))) 
    l=c 
    delta=alpha 
else 
    ma=(1/3)*((y(sez_cal)-y(sez_cal-1))*(x(sez_cal)-x(sez_cal-1))^2) 
    mb=0.5*(H-y(sez_cal))*((x(sez_cal)-x(sez_cal-1))^2) 
    R1=0.5*((H-y(sez_cal-1))+(H-y(sez_cal))*(x(sez_cal)-x(sez_cal-1))) 
    c1=(ma+mb)/R1 
    alpha=atan((y(sez_cal)-y(sez_cal-1))/(x(sez_cal)-x(sez_cal-1))) 
    d=c1*tan(alpha) 
    e1=0.5*b*c1*((H-y(sez_cal))+(H-y(sez_cal-1)-d)) 
    md=(1/6)*(y(sez_cal+1)-y(sez_cal))*((x(sez_cal+1)-x(sez_cal))^2) 
    mc=0.5*(H-y(sez_cal+1))*(x(sez_cal+1)-x(sez_cal)) 
    R2=0.5*((H-y(sez_cal))+(H-y(sez_cal+1)))*(x(sez_cal+1)-x(sez_cal)) 
    c2=(md+mc)/R2 
    gamma=atan((y(sez_cal+1)-y(sez_cal))/(x(sez_cal+1)-x(sez_cal))) 
    g=((x(sez_cal+1)-x(sez_cal))-c2)*tan(gamma) 
    e2=0.5*c2*b*((H-y(sez_cal)-g)+(H-y(sez_cal+1))) 
    e=e1+e2 
    l=c1+c2 
    delta=(alpha+gamma)/2 
 end 
q_coesivo=(F+e*puv*cos(delta))/(l*cos(delta)) 
	



 

“Evolutionary	analysis	of	the	fracturing	process	in	masonry	arches:	application	of	the	cohesive	crack	model”. 
 

APPENDICE 8: Soluz 

	

121	
	

function [p,w,abb]=soluz(coe,P,ntipa,ntip,nnod,df) 
%Questa funzione prepara la matrice dei coefficienti e il vettore termini 
%noti per il calcolo delle forze di richiusura dovute alla forza esterna e 
%degli spostamenti dovuti alla microfessurazione. 
%correzione matrice e termini noti microfessure 
nw=nnod*nnod 
nta=ntipa-1 
nwa=nnod-nta 
ncor=ntip-ntipa 
for i=1:nwa 
    coe(nw+nta+i)=-coe(nw+nta+i)*P 
end 
%memorizzazione nuove forze e spostamenti 
p=0 
w=0 
for i=ntipa:nnod 
    p(i)=coe(nw+i) 
end 
if ncor==0 
    for i=ntipa:ntip 
        w(i)=0 
    end 
else 
    for i=1:ncor 
        w(nta+i)=coe(nw+nnod+i) 
    end 
end 
if nta>0 
    for i=1:nta 
        nk=nnod*nta+i 
        som=0 
        for j=ntipa:nnod 
            som=som+coe(nk)*p(j) 
            nk=nk+nnod 
        end 
        w(i)=som+coe(nw+i)*P 
    end 
end 
%Calcolo spostamento del punto di carico esterno 
som=0 
for i=1:nnod 
    som=som+df(i)*p(i) 
end 
abb=som+0.000157737*P 
p=p(ntip) 
w=w(ntipa) 
 
	


