POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Civile

Tesi di Laurea Magistrale

Sviluppo di un macro-modello per la simulazione del collasso progressivo di strutture intelaiate con tamponamenti in muratura

Relatore

Candidata

Ing. Fabio Di Trapani

Chiper Mihaela Sabina

Anno Accademico 2018/2019

Dedico questo lavoro alle persone la cui presenza è stata indispensabile per me in questi anni di studi, Mia mamma e il mio fidanzato.

Indice

Introduz	ione		1
Capitolo	1. Int	roduzione alla robustezza strutturale	5
1.1	ll co	ncetto di robustezza strutturale	. 5
1.2	Fatt	ori che influenzano la robustezza delle strutture	. 9
1.3	Mec	canismi resistenti	. 9
Capitolo	2.	Modellazione in OpenSees di fenomeni di collasso progressivo in strutture intelaiate	in
с.а.			13
2.1	Mod	lellazione attraverso elementi a fibre	14
2.2	Larg	e displacement	17
2.3	Cord	otational Transformation	17
2.4	Mat	eriali utilizzati in OpenSees	18
2.4.	1	Calcestruzzo	18
2.4.	2	Acciaio	23
Capitolo	3.	Validazione della proposta di modellazione per gli elementi frame	27
3.1	Spec	cimens J. Weng et al., 2016 (7)	27
3.1.	1	Specimen FR	30
3.1.	2	Specimen FR-S	35
3.1.	3	Specimen PR	40
3.2	Spec	imens of Hai S Lew et al. (4)	45
3.2.	1	Specimen IMF	47
3.3	Spec	imen S3 of Yu J, Tan KH, 2013 (9)	50
3.4	Spec	imens BNS and BSS (10)	57
3.4.	1	Telaio non tamponato senza dettagli sismici	59
3.4.	2	Telaio non tamponato con dettagli sismici:	67
Capitolo	4.	Proposta di modellazione dei telai tamponati	77
4.1	Defi	nizione dei telai tamponati considerati	78
4.1.	1	Casi sperimentali considerati	79
4.1.	2	Casi numerici considerati	83
4.2	Мос	lellazione in OpenSees del telaio in calcestruzzo armato	89
4.3	Mac	romodellazione del tamponamento in muratura1	05
4.4	Con	fronto dei risultati1	19
Capito 10 eleva	olo 5. zioni	Simulazione di scenari di collasso progressivo su un edificio in calcestruzzo armato 1	са .37
5.1	Мос	lellazione della struttura mediante il software <i>Edilus</i>	37

5.1.1	Sisma e struttura:	138
5.2 Mc	dellazione della struttura mediante il software OpenSees	142
5.3 Coi	nfronto dei risultati	157
5.3.1	Valutazione dell'influenza del numero di piani	157
5.3.2	Influenza della posizione della colonna rimossa	
Capitolo 6.	Analisi dinamiche con rimozione istantanea del pilastro	163
6.1 Ana	alisi dinamiche mediante OpenSees	163
6.1.1	Analisi dinamiche con rimozione della colonna centrale	165
6.1.2	Analisi dinamiche con rimozione della colonna di bordo	166
6.1.3	Influenza della posizione della colonna rimossa	167
6.2 Cor	nfronto dei risultati	169
Conclusioni		171
Ringraziamer	nti	173
Bibliografia		175

Introduzione

La robustezza strutturale rappresenta la capacità di una struttura di resistere al collasso progressivo in seguito ad un danneggiamento locale di un elemento strutturale primario dovuto ad un'azione accidentale, come ad esempio la perdita di una colonna di un edificio. Risulta quindi fondamentale garantire una certa solidità strutturale in caso di eventi eccezionali di questo genere, ed in tal senso, le strutture vengono classificate come robuste se presentano la capacità di non mostrare danni sproporzionati rispetto alle cause scatenanti come ad esempio esplosioni o urti.

L'interesse verso questo argomento è sempre più aumentato negli ultimi anni e questo è evidenziato dal sempre maggiore numero di test sperimentali e numerici effettuati e dalle raccomandazioni presenti all'interno delle norme tecniche. Questo si lega alla necessità di garantire un'elevata sicurezza pubblica, contenendo i danni economici che derivano dal collasso multiplo di strutture residenziali, commerciali o di uso pubblico.

Negli ultimi anni sono stati diversi gli autori che si sono concentrati sul tema della robustezza strutturale e sulla ricerca di metodi di valutazione della stessa. Tra questi possono risulta interessante citare il metodo di valutazione della domanda di carico dinamico-spostamento attraverso un approccio pseudo-statico di Izzuddin et al. (2008). In seguito è stata proposta un'applicazione di tale metodo sulle strutture in acciaio (Vlassis et al.,2008).

Altri studi sperimentali sono stati condotti su strutture intelaiate in scala ridotta in calcestruzzo armato (Ren et al., 2016) e su strutture reali (Xiao et al., 2015). Insieme a questi è interessante citare anche gli studi sperimentali, accompagnati da interpretazioni numeriche, di Yu et al., 2013, Pham et al., 2015, Pham et al., 2017 e Weng et al., 2017, che hanno determinato i parametri geometrici e meccanici che influiscono sulla robustezza strutturale. In seguito sono state effettuate prove di tipo numerico su modelli tridimensionali di strutture intelaiate, che simulavano la rimozione istantanea di pilastri (Arshian e Morgenthal, (2017)). È stata inoltre applicata l'analisi dinamica incrementale, con la definizione di funzioni di fragilità (Brunesi et al., (2015)).

Tuttavia tutti gli studi sopra citati non tengono in considerazione il contributo di resistenza fornito dalla presenza dei tamponamenti in muratura sui telai in calcestruzzo armato. Per questo motivo risulta interessante menzionare gli studi numerici effettuati da Farazman 2013 e Xavier et al., 2015 e quelli sperimentali di Quian et al.,2017 e di Li et al., 2019, i quali hanno determinato quale sia l'influenza della tamponatura in muratura su strutture soggette a carichi gravitazionali. Questi studi hanno messo in evidenza la necessità di identificazione di un modello che tenga in conto l'interazione tra la muratura e il telaio in calcestruzzo armato.

In questa tesi dunque si è posta l'attenzione su questo aspetto, che risulta essere quindi di fondamentale importanza nel campo dell'ingegneria civile. In particolare si è cercato di determinare quale sia l'influenza del tamponamento in muratura sulla robustezza degli edifici intelaiati in calcestruzzo armato soggetti a collasso progressivo.

A tal fine dunque si è cercato di determinare un metodo di modellazione della tamponatura stessa, di semplice applicazione, in modo tale da poter studiarne il comportamento nonostante il problema risulta caratterizzato da numerose non linearità. Ciò richiederebbe una modellazione accurata e dispendiosa dal punto di vista computazionale, di conseguenza in questa tesi viene proposto un metodo semplificato utilizzando puntoni equivalenti, di cui in seguito verranno determinate tutte le caratteristiche meccaniche e geometriche.

La modellazione del tamponamento in muratura è avvenuto in seguito all'osservazione del meccanismo di fessurazione dei telai in calcestruzzo armato tamponato. Sono stati quindi utilizzati modelli sperimentali e numerici accurati appartenenti a studi pregressi, di cui si aveva a disposizione il quadro fessurativo in situazione di collasso progressivo, al fine di trovare un metodo di modellazione che potesse riproporre le curve dei test di pushdown a disposizione.

I casi studio analizzati sono stati in totale quindici. Per essi è stato calibrato un modello numerico, utilizzando il software *OpenSees*, ed è stata condotta un'analisi non lineare di pushover. In seguito è stato progettato un edificio in calcestruzzo armato tamponato in muratura in zona sismica, mediante l'utilizzo del software *Edilus*, al fine di ricavarne il comportamento in caso di azioni accidentali agenti su di esso. In questo modo, una volta validato il metodo di valutazione del contributo di resistenza dovuto alla tamponatura, esso è stato applicato su un caso di cui non si avevano a disposizione le curve sperimentali o numeriche, osservando che il comportamento ottenuto è risultato essere in linea con i modelli analizzati precedentemente.

Come anticipato, l'analisi numerica è stata condotta utilizzando il software *OpenSees*. Esso restituisce infatti risultati attendibili, in quanto permette di modellare gli elementi strutturali attraverso elementi a fibre. In questo modo è possibile effettuare un'analisi non lineare delle strutture, in quanto c'è la possibilità di attribuire ad ogni fibra legami costitutivi non lineari dei materiali.

La presente tesi dunque tratta l'argomento della robustezza cercando di tenere in considerazione tutte queste variabile che la influiscono. I capitoli che la compongono dunque presentano il percorso seguito per arrivare alla determinazione della macro-modellazione della tamponatura.

Il primo capitolo infatti presenta un'introduzione alla robustezza strutturale, mettendo in luce quali sono i fattori che la influiscono e come negli ultimi anni essa abbia assunto un ruolo sempre più importante all'interno della progettazione strutturale.

Nel secondo capitolo verrà introdotto l'utilizzo del software *OpenSees*, facendo una proposta di modellazione a partire dai criteri geometrici utilizzati fino ad arrivare alla definizione dei materiali implementati per la modellazione. L'obiettivo di questa parte è quello di determinare una proposta di modellazione delle strutture sottoposte al collasso progressivo.

Nel terzo capitolo la proposta di modellazione di cui sopra verrà validata, applicandola su telai in cemento armato, di cui si hanno a diposizione le curve sperimentali derivanti da prove di laboratorio effettuate rimuovendo la colonna centrale, prese da articoli riguardanti l'argomento della robustezza.

Dal quarto capitolo ci si concentrerà invece sui telai tamponati in muratura, al fine di determinare un metodo di modellazione efficace ma semplice in grado di rappresentare il comportamento dei telai in condizioni di collasso progressivo. Come si vedrà, la presenza della tamponatura determina una modifica del meccanismo resistente della struttra, perciò risulta importante tenerne conto.

Nel quinto capitolo verrà condotta la progettazione di un edificio in cemento armato tamponato a dieci piani, al fine di eseguire le stesse analisi in condizioni di azioni accidentali anche su di esso. La progettazione avviane mediante il software *Edilus*.

Infine nel sesto capitolo verranno condotte analisi dinamiche sullo stesso edificio, attraverso l'ausilio del software *OpenSees*.L'obiettivo di questa fase del lavoro è quello di determinare

quale sia la domanda di resistenza della struttura in condizioni di collasso progressivo, al fine di effettuare un confronto con la curva di capacità ricavata attraverso un'analisi pushover.

Capitolo 1. Introduzione alla robustezza strutturale

1.1 Il concetto di robustezza strutturale

Il concetto di robustezza strutturale nasce nell'ambito dell'ingegneria strutturale in seguito all'osservazione del comportamento delle strutture in calcestruzzo armato quando esse risultano sottoposte ad una azione di tipo accidentale. Nello specifico, è stato osservato in alcuni casi come la perdita improvvisa di un elemento primario della struttura abbia portato al collasso totale. Questo fatto è avvenuto a causa della mancanza della capacità di contenere gli effetti conseguenti a questo fenomeno, provocando quindi un effetto domino incontrollabile.

Le azioni accidentali a cui possono essere sottoposte le strutture sono ad esempio le esplosioni, gli impatti e le azioni conseguenti ad errori umani. La struttura deve avere la capacità di contenere il danno e questo si ottiene attraverso una progettazione mirata per affrontare questo tipo di problema, basata sullo studio della resistenza disponibile. Questo tipo di azioni hanno sulla struttura un effetto dinamico improvviso ed il suo contenimento è fortemente legato al comportamento non lineare delle parti strutturali. Nel condurre uno studio che porta alla determinazione della resistenza, risulta quindi fondamentale tener conto di tutte queste variabili.

Negli ultimi anni si è posta sempre più attenzione sul tema della robustezza strutturale, specialmente in seguito ad alcuni episodi di collasso parziale o totale di edifici in cemento armato. Si possono ad esempio osservare gli effetti catastrofici riscontrati nei casi del Ronan Point Building (London, 1968), dell'Alfred P. Murrah Federal Building (Oklahoma City, 1995) ed infine del World Trade Center (New York, 2001). Nel primo caso (**Figura 1-1**) il collasso è stato scatenato da un'esplosione dovuta ad una fuga di gas al diciottesimo piano e, come si può osservare, questo ha avuto conseguenze sull'intero edificio. Per quanto riguarda gli ultimi due casi invece (**Figura 1-2** e **Figura 1-3**), l'origine del crollo è imputabile ad attacchi terroristici.

Figura 1-1.Collasso parziale del Ronan Point Building (London, 1968)

Figura 1-2.Collasso parziale dell'Alfred P. Murrah Federal Building (Oklahoma City, 1995)

Figura 1-3.Collasso del World Trade Center (New York, 2001)

Per tutti e tre i casi presentati non sono stati riscontrati errori di progettazione ed è stata verificata l'assenza di anomalie in fase costruttiva. Le strutture tuttavia non sono state di in grado di ridistribuire i carichi attraverso percorsi alternativi, giungendo quindi al collasso. In seguito a questi episodi è risultata necessaria la stesura di nuove norme per la progettazione, che possano portare alla realizzazione di strutture robuste, in grado di contenere le conseguenze delle azioni accidentali. Per poter sottostare quindi alle nuove regole, i progettisti hanno dovuto prendere in considerazione la non linearità meccanica dei materiali impiegati e la non linearità geometrica. Altri accorgimenti da prendere in considerazione per garantire un comportamento adeguato, specialmente nelle strutture nuove, sono l'individuazione di percorsi di carico alternativi oppure l'individuazione di elementi chiave per la stabilità della struttura, la cui progettazione viene fatta in modo accurato per resistere alle azioni accidentali. Infine possono essere condotte analisi di rimozione degli elementi strutturali, e questo può essere fatto sia sulle strutture nuove sia su quelle esistenti, al fine di individuare la riserva di resistenza disponibile.

Tuttavia la varietà delle strutture nuove ed esistenti e la difficoltà nel prevedere le possibili azioni accidentali portano ad una difficile valutazione del grado di robustezza necessario. Per questo motivo, nella progettazione, è importante considerare il massimo evento credibile ed adottare tecniche costruttive in grado di dar vita a strutture duttili seguendo il concetto di *Capacity Design*, che possano far innescare il meccanismo di catenaria, con connessioni tra gli

elementi strutturali capaci di trasmettere il momento flettente e percorsi alternativi per i carichi. Tutto questo determina necessariamente un aumento dei costi di progettazione, perciò risulta necessario essere ragionevoli nel valutare tutte le variabili.

Molti sono i fattori che influiscono sulla riserva di resistenza in caso di scenari di carico eccezionali e, a tale proposito, è stato effettuato uno studio legato all'effetto del tamponamento in muratura sulla robustezza dei telai in calcestruzzo armato. É stata quindi eseguita un'analisi numerica di pushover su telai perimetrali estratti da edifici tridimensionali in cui sono stati fatti variare i parametri geometrici e meccanici che ne influenzano il comportamento, come ad esempio la luce delle travi, la presenza dei dettagli sismici, il numero di piani, la deformabilità del telaio e la sezione delle travi.

Poiché i telai considerati risultano essere tamponati in muratura, è risultato fondamentale determinare un metodo di modellazione del tamponamento. In tal senso sono stati utilizzati puntoni equivalenti che ne simulano il comportamento in situazioni di carico accidentale, caratterizzate da precisi parametri meccanici e geometrici, che variano a seconda delle proprietà dell'edificio considerato.

1.2 Fattori che influenzano la robustezza delle strutture

La robustezza delle strutture è una caratteristica che può essere raggiunta attraverso particolari costruttivi da definire in fase progettuale, tutti fattori che, al di là dell'aleatorietà dell'evento, possano permettere di contenere i danni che ne conseguono. Secondo quanto riportato nelle Norme Tecniche per le Costruzioni (2018), le strutture progettate al fine di resistere alle azioni accidentale devono presentare una cerca duttilità e resistenza strutturale, che siano in grado di contenere il danneggiamento senza andare incontro al collasso globale. Inoltre, oltre alle strategie che possono essere adottate in fase di progetto, possono essere adottati sistemi di controllo della struttura in esercizio, scelti in relazione alle azioni alle quali essa potrebbe essere soggetta.

Alcuni degli accorgimenti da adottare al fine di rispettare questi requisiti sono la monoliticità delle strutture, garantendo quindi un comportamento di insieme, e la loro iperstaticità. Questo si ottiene attraverso adeguate connessioni, che ne garantiscono un buon collegamento tra gli elementi strutturali. Altri fattori che influiscono la robustezza strutturale sono il rispetto del criterio della gerarchia delle resistenze, la presenza dei dettagli costruttivi per quanto riguarda i nodi trave-colonna al fine di garantire capacità di plasticizzazione degli stessi, rigidezza della struttura e resistenza al taglio.

Tutti questi elementi dunque permettono di progettare strutture duttili, resistenti e robuste, in grado di evitare il collasso progressivo.

1.3 Meccanismi resistenti

Determinare la riserva di capacità portante di una struttura in cemento armato in caso di rimozione di un elemento strutturale risulta essere altamente complicato. L'improvviso scenario della perdita della colonna determina infatti una risposta dinamica altamente non lineare. Per questo motivo risulta importante tenere in conto le non linearità del problema nella valutazione della riserva di resistenza. Tuttavia l'utilizzo di analisi dinamiche non lineari nella progettazione strutturale diventa complicato. Da qui nasce la necessità di utilizzare metodi semplificati per la determinazione della resistenza, prendendo in considerazione l'amplificazione dinamica dovuta allo scenario di carico.

La rimozione accidentale di una colonna all'interno di un edificio in cemento armato determina l'improvviso istaurarsi di un meccanismo di collasso, che può essere riprodotto attraverso test numerici di pushdown. In particolare viene applicato uno spostamento verticale nel punto alla sommità della colonna che viene rimossa, e attraverso il monitoraggio dei punti di vincolo, viene determinato il valore di carico verticale che ne risulta.

Il tipico risultati di un test di pushdown viene riportato in **Figura 1-4**, in cui si può osservare un primo tratto in cui la trave risulta essere interessata da meccanismo ad arco, per poi raggiungere una seconda configurazione di equilibrio, in cui, all'aumentare dello spostamento verticale, si innesca il meccanismo di catenaria.

Figura 1-4. Tipico andamento della curva di pushdown

Durante l'istaurarsi dei meccanismi sopra citati, in cui aumenta lo spostamento verticale, la trave in cemento armato passa dall'essere interessata da un'iniziale azione di compressione ad una successiva azione di trazione, come viene riportato in **Figura 1-5**:

Figura 1-5. Evoluzione della forza assiale durante il meccanismo di collasso

In particolare, una volta superato il limite elastico, le barre di armatura presenti all'interno della trave iniziano a snervarsi, arrivando alla formazione delle cerniere plastiche. A questo punto si innesca il meccanismo ad arco che porta a generare una spinta all'interno delle travi, che incrementa la loro resistenza. Man mano che lo spostamento verticale aumenta, si giunge allo stadio in cui dalla compressione si passa alla trazione della trave, in quanto si innesca il meccanismo di catenaria (**Figura 1-6**).

Figura 1-6. Meccanismo ad arco (a) e meccanismo a catenaria (b)

Nel momento in cui il meccanismo della trave cambia, entrano in gioco anche le barre di armatura longitudinale del pilatro, in quanto determinano un contenimento della deformabilità laterale della trave.

Il collasso della trave avviene nel momento in cui le barre di armatura presenti all'interno della trave giungono a rottura nelle zone di giunzione tra la trave e le colonne esterne. In questo punti infatti si vengono ad innescare sforzi elevati di trazione nel momento in cui la trave si trova in regime di catenaria.

Il meccanismo di catenaria può svilupparsi oppure no, a seconda della capacità della trave. Di conseguenza, può presentarsi il caso in cui non ci sia il recupero di capacità di carico della struttura, affidando tutta la capacità portane alla risposta flessionale con la conseguente formazione del meccanismo ad arco. In quest'ultimo caso, la struttura arriva al collasso se la domanda di resistenza supera il valore massimo di capacità di resistenza, senza poter ulteriormente contare sul recupero dovuto alla catenaria.

La presenza della tamponatura, modifica in questo senso la risposta da parte della struttura all'improvvisa rimozione della colonna. Le curve di pushdown dei telai tamponati risultano essere nettamente più alte, offrendo quindi una riserva di resistenza superiore, ed inoltre cambiano i meccanismi resistenti rispetto al caso di telaio non tamponato, osservando una migrazione dei punti di formazione della cerniera plastica sulle travi che costituiscono il telaio. Inoltre il meccanismo resistente a catenaria non si viene a formare nel caso di telai tamponati,

in quanto la presenza della tamponatura determina un minor danneggiamento dei giunti del telaio a causa nella minore forza assiale che si genera nella trave, la quale diminuisce proprio per la forza di compressione che si genera all'interno della muratura. Tenere quindi in conto la presenza della tamponatura risulta essere fondamentale per poter determinare la capacità portante dei telai in calcestruzzo armato tamponati.

Capitolo 2. Modellazione in OpenSees di fenomeni di collasso progressivo in strutture intelaiate in c.a.

Nel presente capitolo viene proposta una modellazione del comportamento dei telai in calcestruzzo armato sottoposti a collasso progressivo. In tal senso risulta importante prendere in considerazione tutte le problematiche legate a questo fenomeno.

È stato osservato infatti come una struttura sottoposta a collasso progressivo presenti una prima fase iniziale flessionale, in cui l'elemento trave passa dalla fase elastica per arrivare infine allo snervamento delle barre di armatura inferiori. A questo punto si innesca il meccanismo ad arco, che porta ad avere compressione nella trave, che ha effetti benefici dal punto di vista della resistenza. All'aumentare dello spostamento in direzione verticale del punto di mezzeria della trave, essa si trova a passare dalla compressione alla trazione, per arrivare infine a trovare un nuovo stato di equilibrio in cui si innesca il meccanismo a catenaria. Come si può osservare il comportamento meccanico in questione risulta essere complicato, e per modellare una struttura sottoposta a collasso progressivo sarebbe importante prendere in considerazione tutte le non linearità del caso, a partire dall'analisi in regime di grandi spostamenti, per passare al comportamento non lineare dei materiali che vengono utilizzati. In tal senso viene presa in considerazione anche l'instabilità in compressione delle barre longitudinali di armatura, che diminuisce all'aumentare del passo dell'armatura trasversale e il diverso comportamento del calcestruzzo in compressione nella fase post-picco al crescere del confinamento laterale.

Tutti questi aspetti sono stati presi in considerazione eseguendo un'analisi non lineare mediante l'ausilio del software di calcolo *OpenSees*, che ha permesso di eseguire una modellazione a fibre degli elementi strutturali. Questo ha portato a determinare una proposta di modellazione che ha restituito risultati validi, della quale in seguito vengono mostrati i passaggi.

2.1 Modellazione attraverso elementi a fibre

Il software di calcolo strutturale *OpenSees (Open System for Earthquake Engineering)* permette di eseguire una modellazione a fibre delle sezioni degli elementi strutturali. Ciò risulta essere conveniente poiché permette di condurre analisi di tipo non lineare su tali elementi, in quanto dà la possibilità di attribuire ad ogni fibra legami costitutivi dei materiali costituenti che non presentano comportamento puramente elastico. Risulta quindi che ogni fibra costituente l'elemento presenta un comportamento di tipo monoassiale (**Figura 2-1**).

Figura 2-1. Modellazione a fibre di una sezione in calcestruzzo armato

Prendendo in considerazione una sezione in calcestruzzo armato, risulta necessario eseguire una modellazione utilizzando le fibre sia l'area di calcestruzzo sia l'area di armatura. In particolare il calcestruzzo presenta un comportamento differente a seconda che esso sia confinato o meno. Per questo motivo al calcestruzzo confinato all'interno delle staffe è possibile attribuire una legge costitutiva differente rispetto a quello esterno alle staffe.

Figura 2-2. Modellazione a fibre di una sezione in calcestruzzo armato

Come si può meglio osservare in **Figura 2-2**, la sezione finale si ottiene sovrapponendo le 3 aree differentemente modellate.

L'elemento strutturale così creato viene in seguito suddiviso in una serie di sezioni di controllo, i quali rappresentano i punti di integrazione di Gauss-Lobatto lungo l'elemento stesso.

Per gli elementi a fibre si utilizza il concetto di plasticità distribuita. Esso si differenzia dalla plasticità concentrata, in quanto prevede di distribuire la plasticità sull'intero elemento, piuttosto che considerarla concentrata nelle cerniere plastiche (**Figura 2-3**).

Figura 2-3.Concetto di plasticità concentrata e plasticità distribuita

Come è noto infatti, nel campo della plasticità concentrata, gli elementi costituenti la struttura rimangono in campo elastico, prevedendo quindi dei punti precisi di formazione delle cerniere plastiche, in cui viene concentrata tutta la non linearità del problema. Questo risulta non del tutto in linea con il comportamento reale delle strutture, specialmente per la difficoltà di un'individuazione precisa della posizione della cerniera plastica. Per contro, questo metodo permette di avere un vantaggio dal punto di vista computazionale, arrivando ad avere elementi strutturali facilmente gestibili.

Per quanto riguarda invece la modellazione a fibre, la plasticità risulta diffusa lungo tutto l'elemento. In questo modo non è necessaria la determinazione del punto di formazione della cerniera plastica e il calcolo del momento di plasticizzazione. Tuttavia, questo modo richiede un maggior onere computazione, a fronte però di un comportamento più realistico dell'elemento.

Gli elementi a fibre risultano essere essenzialmente di due tipi:

- Force Based Elements (FBE)
- Displacement Based Elements (DBE)

Per gli elementi *Displacement Based* viene seguito il classico approccio degli elementi finiti, in cui la deformazione dell'elemento viene interpolata a partire dall'approssimazione del campo degli spostamenti. In seguito viene utilizzato il principio dei lavori virtuali per ricavarne le forze nodali.

Per interpolare il campo di deformazioni, si sceglie di adottare per il campo degli spostamenti u(x) funzioni di forma con andamento lineare e per v(x) con andamento quadratico. Si ottengono così una deformazione assiale costante ed una curvatura lineare. A causa dell'approssimazione scelta, risulta quindi necessario adottare una discretizzazione sufficientemente raffinata per poter cogliere in modo adeguato il campo di deformazione.

Per gli elementi *Forced Based* invece non è richiesta una discretizzazione fitta, in quanto l'approssimazione risulterà essere adeguata grazie all'utilizzo di sezioni di controllo definite dai punti di integrazione.

La risposta degli elementi cambia in modo significativo a seconda che venga utilizzato un tipo di elemento piuttosto che l'altro, ma si ottiene comunque un buon comportamento se la mesh viene gestita in modo adeguato.

2.2 Large displacement

Le analisi che vengono eseguite in ambito strutturale possono fare riferimento a due tipi di configurazione. In particolare gli elementi possono essere analizzati in configurazione indeformata, facendo l'ipotesi di avere piccoli spostamenti e valutando così l'equilibrio della struttura trascurando la deformata dovuta all'applicazione dei carichi esterni.

Tuttavia, nel momento in cui un elemento strutturale, come per esempio una trave in cemento armato, viene caricato, esso si deforma in maniera non trascurabile. Per questo motivo è possibile eseguire analisi sotto l'ipotesi di grandi spostamenti, assumendo quindi che la trave possa raggiungere configurazioni differenti rispetto allo stato indeformato. Ciò comporta l'introduzione di ipotesi differenti in quanto le due configurazioni si legano ad analisi strutturali completamente diverse tra di loro e questo lo si può osservare dai risultati in termini di sollecitazioni che vengono ricavati.

L'analisi in configurazione indeformata porta ad avere notevoli vantaggi dal punto di vista del calcolo, in quanto permette di attribuire leggi costitutive elastiche lineare ai materiali utilizzati e consente l'applicare il principio di sovrapposizione degli effetti. Per contro invece l'analisi in configurazione deformata si porta dietro tutti i problemi legati alla non linearità geometrica e meccanica, in cui la configurazione finale di equilibrio della struttura dipende dalla posizione che essa assume in seguito all'applicazione dei carichi esterni.

Il discorso dell'analisi non lineare in regime di grandi spostamenti si lega alla robustezza strutturale, in quanto, in caso di azioni accidentali, le travi che compongono la struttura devono manifestare la capacità di passare da un meccanismo flessionale ad un meccanismo a catenaria, che si allontana di molto dalla configurazione indeformata.

2.3 Corotational Transformation

A seconda del problema che si sta affrontando, risulta importante determinare in *OpenSees* anche il tipo di trasformazione geometrica che si intende eseguire. In particolare, per tenere conto del regime in grandi spostamenti e della non linearità del modello, è stata scelta la *Corotational Coordinate Transformation*, che svolge una trasformazione geometrica esatta della rigidezza della trave dal sistema locale al sistema globale.

La sintassi utilizzata in OpenSees per applicare questo tipo di trasformazione è la seguente:

geomTransf Corotational \$transfTag <-jntOffset \$dXi \$dYi \$dXj \$dYj>

\$transfTag = etichetta per la trasformazione corotational;

dXi dYi dYj dYj = (facoltativi)coordinate del nodo iniziale e del nodo finale dell'elemento nel sistema di riferimento globale.

2.4 Materiali utilizzati in OpenSees

I materiali da costruzione sono caratterizzati da un legame tensionale σ - ϵ fortemente non lineare il quale conferisce una non linearità meccanica alla struttura. La presenza di questo comportamento elasto-plastico nel materiale rende inadeguata la teoria lineare per la valutazione dello stato limite ultimo. L'accoppiamento dell'acciaio e del calcestruzzo, materiali costitutivi del cemento armato, crea un legame costitutivo non lineare in cui, superata la tensione di snervamento, nascono plasticizzazioni che rendono non lineare il rapporto tra carico applicato e deformazione. Affiancando al comportamento fragile del calcestruzzo il comportamento duttile dell'acciaio, l'effetto non è la rottura catastrofica una volta superato lo snervamento, ma è la generazione di una deformazione plastica permanente che può portare ad una nuova configurazione di equilibrio. Questo è possibile sotto l'ipotesi di perfetta aderenza tra calcestruzzo e barre di acciaio che assicura la piena collaborazione tra i due materiali.

In questa sezione si descrivono le caratteristiche principali dei legami costitutivi scelti per modellare al meglio il comportamento dei due materiali.

2.4.1 Calcestruzzo

Il calcestruzzo è un materiale composto da cemento e inerti, fortemente non omogeneo e che determina un comportamento non lineare anche per la sollecitazione di compressione pura. Si instaurano, infatti, all'interfaccia tra pasta cementizia e aggregati, delle concentrazioni di sollecitazione che portano a fenomeni di microfessurazione interna.

Per questa modellazione si utilizza il legame proposto da Kent e Park (1971), modificato da Park et al. (1982), in base al quale la curva nel piano sforzo-deformazione si è ottenuta con una prova monoassiale di compressione. Questo modello è implementato su *OpenSees* con il comando *Concrete02* della libreria *uniaxialMaterial* (**Figura 2-4**)

Il ramo crescente di compressione è rappresentato da una parabola limitata da una deformazione del 2‰ la quale non è influenzata dell'entità di armatura trasversale. La necessità di ricorrere alla modifica operata da Park et al., 1982 consente di prendere in considerazione l'incremento di duttilità dovuto alla presenza di rinforzi trasversali, il quale modifica il comportamento del ramo decrescente (**Figura 2-5**).

Figura 2-5. Legame costitutivo del calcestruzzo proposto da (Park et al., 1982)

Figura 2-6. Modellazione tramite fibre

Con una modellazione a fibre è possibile associare alle varie fibre di cui è composta la sezione diversi materiali (**Figura 2-6**). In questo modo il confinamento della sezione, per mezzo della presenza di staffe, è reso possibile definendo un materiale che ha come parametri di resistenza quelli calcolati, mediante implementazione su *Excel*, del *modello di Saatcioglu e Razvi (1999)*. Il calcestruzzo confinato dal rinforzo trasversale è sottoposto ad una pressione laterale che si sviluppa in seguito alla compressione assiale, creando uno stato di stress multiassiale di difficile formulazione teorica (**Figura 2-7**).

Figura 2-7. Pressione di confinamento: (a) sviluppo della pressione di confinamento in una sezione quadrata; (b) variazione di pressione di confinamento per mezzo del rinforzo trasversale. (1)

Più aumenta il numero delle barre longitudinali bloccate dal rinforzo trasversale più aumentano i parametri di resistenza delle fibre di calcestruzzo confinato. Il modello empirico di Saatcioglu e Razvi (2), propone una pressione equivalente (f_{le}) che comporta la stessa pressione di confinamento esercitata dall'elemento trasversale. Tale pressione risulta avere dei picchi in corrispondenza dei nodi poiché qui si ha una maggiore rigidezza flessionale.

Si riportano di seguito le formulazioni necessarie per l'implementazione del modello:

$$f_{cc}' = f_{c0}' + k_1 f_{le} \tag{2.1}$$

$$f_{cc}' = f_{c0}' + k_1 f_{le} \tag{2.2}$$

$$f_{le} = k_2 f_l \tag{2.3}$$

$$f_l = \frac{\sum_{i=1}^q A_s f_s sin\alpha}{sb_c} \tag{2.4}$$

$$k_1 = 6.7(f_{le})^{-0.17} \tag{2.5}$$

$$k_2 = 0.26 \sqrt{\left(\frac{b_c}{s}\right) \left(\frac{b_c}{s_1}\right) \left(\frac{1}{f_l}\right)} \le 1.0$$
(2.6)

in cui q rappresenta il numero di rinforzi trasversali nella sezione considerata. La pressione equivalente f_{le} calcolata in MPa è il rapporto tra le forze di trazione nei rinforzi e l'area stessa della sezione. I coefficienti riduttivi k_1 e k_2 tengono conto della pressione di confinamento che aumenta con l'aumentare della forza, spaziatura dell'armatura trasversale (s)e dell'interasse dell'armatura longitudinale (s_1).

Il modello risulta così definito e validato da prove sperimentali di Saatcioglu e Razvi (1) (Figura 2-8):

Figura 2-8. Modello Saatcioglu and Razvi

In cui si ha il ramo crescente della curva:

$$f(\varepsilon) = f_{cc}' \left[2 \left(\frac{\varepsilon}{\varepsilon_1} \right) - \left(\frac{\varepsilon}{\varepsilon_1} \right)^2 \right]^{\frac{1}{1+2K}} \qquad 0 \le \varepsilon \le \varepsilon_1$$
(2.7)

ed il ramo decrescente lineare della curva:

$$f(\varepsilon) = \max \begin{pmatrix} f_{cc}' \left[1 - 0.15 \frac{\varepsilon - \varepsilon_1}{\varepsilon_{85} - \varepsilon_1} \right] \\ 0.2 f_{cc}' \end{pmatrix} \qquad \varepsilon_1 \le \varepsilon \le \varepsilon_{20}$$
(2.8)

In cui valgono:

$$\varepsilon_1 = \varepsilon_{01}(1 + 5K) \tag{2.9}$$

$$K = \frac{k_1 f_{le}}{f'_{c0}}$$
(2.10)

$$\rho_{c} = \frac{\sum_{i=1}^{n} (A_{sx})_{i} + \sum_{j=1}^{m} (A_{sy})_{j}}{[s(b_{cx} + b_{cy})]}$$
(2.11)

$$\varepsilon_{85} = \varepsilon_{085} + 260\rho_c\varepsilon_1 \tag{2.12}$$

I parametri ε_1 e ε_{01} rappresentano la deformazione di picco del calcestruzzo confinato e non confinato. La pendenza del ramo post–picco è regolata dalla deformazione ε_{85} la quale è funzione del rapporto di rinforzo laterale nelle due direzioni ρ_c . Il coefficiente K, equivale al rapporto tra l'incremento di resistenza svolto dalle staffe e il valore di resistenza al picco iniziale f'_{c0} del calcestruzzo non confinato. Al parametro ε_{085} si associa il valore 0.00306(1).

Il modello si ritiene valido dal confronto tra i risultati analitici e sperimentali ottenuti per i diversi valori che caratterizzano la disposizione e la geometria delle staffe. Non si tiene conto in questo modello dell'instabilità per buckling dell'armatura longitudinale, la quale è definita per mezzo di altre leggi nel legame costitutivo dell'acciaio.

2.4.2 Acciaio

Il legame elasto-plastico con incrudimento dell'acciaio è stato descritto ricorrendo al comando *Hysteretic* della libreria *uniaxialMaterial* (**Figura 2-9**)

Figura 2-9. Legame costitutivo dell'acciaio implementato dal comando Hysteretic di OpenSees

La scelta di un legame costitutivo di questo tipo è giustificata dal fatto che è possibile ricostruire il comportamento del materiale a trazione e compressione definendo i singoli punti della spezzata stess-strain. Infatti, il legame costitutivo definito dalla bilatera classica del modello di Prandtl con incrudimento, non permette di cogliere la rottura delle singole barre longitudinali all'interno della simulazione effettuata con *OpenSees*. Pertanto, è stato utile definire un terzo punto oltre allo stato di snervamento e rottura degli acciai. Il comportamento dell'acciaio sottoposto ad uno stato di trazione monoassiale è definito in **Figura 2-10**.

Figura 2-10. Comportamento a trazione scelto per l'acciaio e implementato dal comando Hysteretic di *OpenSees*

Il comportamento a trazione dell'acciaio è caratterizzato dal modulo elastico E, dalla resistenza a snervamento f_y , dalla deformazione a snervamento ε_1 , dalla resistenza ultima f_y , dalla deformazione di rottura $\varepsilon_2 = \varepsilon_{Lim}$ e dalla σ_3 e ε_3 i quali identificano il terzo punto del comportamento a trazione del materiale. È necessario assegnare i termini riguardanti il danneggiamento dovuto alla duttilità, in questo caso pari a 0 e i parametri riguardanti il pinching durante la fase di ricarico, considerato pari ad 1.

Durante la fase di validazione del modello si è riscontrata l'importanza di una adeguata modellazione del comportamento in compressione dell'acciaio. Per tener conto dell'instabilità per buckling dell'armatura longitudinale si è preso in considerazione il *modello di Dhakal e Maekawa, 2002* (3).

Nelle membrature in cemento armato, i ferri d'armatura possono subire, in seguito ad un'alta compressione, una grande deformazione laterale, dunque incorrere in fenomeni di instabilità. A causa di ciò la resistenza media a compressione diminuisce nella fase seguente allo snervamento.

Il modello di Dhakal e Meakawa propone una relazione sforzo-deformazione in compressione che può essere applicata alle barre di rinforzo con qualsiasi proprietà geometriche e meccaniche. Per generare le relazioni che reggono il modello, hanno sviluppato uno studio parametrico basato su esperimenti o analisi di alcuni studi sperimentali eseguiti in passato (Monti and Nuti, 1992). Le barre di rinforzo sono state modellate come delle colonne verticali di lunghezza L e diametro D con incastrati i due nodi. Si è applicato uno spostamento incrementale in testa all'elemento e si è adottato un comportamento elastico perfettamente plastico con $f_y =$ 400MPa e E = 200GPa. Attraverso lo studio parametrico analitico, gli autori esprimono qual è il comportamento medio delle barre di armatura in compressione. In particolare, riportano:

- La tensione e deformazione media a compressione dipende solo dal rapporto di snellezza definito come L/D e dalla $\sqrt{f_{\gamma}}$;
- Subito dopo la fase di buckling la curva ha una pendenza negativa approssimativamente pari al 2% del modulo di Young;
- La tensione media post-buckling è costante e si attesta sul 20% della resistenza a snervamento.

Il modello proposto è mostrato in Figura 2-11.

Figura 2-11. Modello Dhakal and Maekawa (2002)

Le coordinate del punto intermedio possono essere valutate dalle seguenti relazioni:

$$\frac{\varepsilon^*}{\varepsilon_y} = 55 - 2.3 \sqrt{\frac{f_y}{100}} \frac{L}{D} \qquad \frac{\varepsilon^*}{\varepsilon_y} \ge 7$$
(2.13)

$$\frac{\sigma^*}{\sigma_l^*} = \alpha (1.1 - 0.016 \sqrt{\frac{f_y}{100}} \frac{L}{D} \quad \sigma^* \ge 0.2 f_y \tag{2.14}$$

Queste relazioni derivano dall'analisi condotta su barre che hanno un incrudimento lineare. Il coefficiente α tiene conto di diversi modelli di incrudimento che si possono avere e per i due casi estremi esso vale 1.0 per le barre con incrudimento lineare e 0.75 per barre elastiche perfettamente plastiche.

Il modello a fibre che sfrutta gli elementi finiti riesce a prevedere il comportamento medio delle barre di rinforzo in compressione caratterizzate da grandi non linearità geometriche. Questo comportamento risulta essere influenzato solo da L/D e $\sqrt{f_y}$. l'analisi di Dhakal e Meaekawa è validata anche da un confronto con risultati sperimentali per provini con applicazione di carico sia monotona che ciclica.

L'applicazione di questo modello è stata prevista per ricreare il ramo in compressione del legame costituivo delle barre di acciaio attraverso i tre punti previsti dal comando *Hysteretic* di *OpenSees*. L'instabilità, e dunque la perdita di resistenza in compressione, è funzione della spaziatura tra le staffe. Il parametro *L*, infatti, ha assunto il valore del passo tra gli elementi di rinforzo trasversale.

Capitolo 3. Validazione della proposta di modellazione per gli elementi frame

Le scelte operate sulla geometria e sui materiali della proposta di modellazione per gli elementi strutturali sono state validate su campioni presi da articoli presenti in letteratura riguardanti test numerici e sperimentali.

I dati sperimentali di J. Weng et al. (7), Hai S Lew et al. (4) e Anh Tuan Phan et al. (9) sono stati usati come riferimento per tarare i parametri sforzo-deformazione. La scelta di questi studi è dovuta alla completezza dei loro programmi sperimentali ed alla chiarezza con cui sono riportati i dettagli strutturali. Tuttavia, per alcuni parametri, omessi nei vari articoli, è stato necessario fare delle assunzioni la cui validità è resa possibile dalla calibrazione iterativa per i diversi campioni.

Lo scopo di questo capitolo è quello di ottenere gli stessi risultati dei vari studi condotti sulla robustezza delle strutture in c.a., applicando il modello proposto nel capitolo precedente. Per ogni articolo preso in considerazione si confrontano dunque i risultati sperimentali con i risultati numerici ottenuti mediante l'ausilio del software *OpenSees*.

3.1 Specimens J. Weng et al., 2016 (7)

Lo studio congiunto della Nanyang Technological University di Singapore e della University of New South Wales di Canberra proposto da J. Weng et al., 2016, modella il processo che porta al collasso tre diversi campioni in scala in cemento armato. Nella modellazione numerica che porta al collasso progressivo si è tenuto conto dell'azione catenaria come ultimo stato sotto una deformazione estrema. In particolare a fronte della perdita improvvisa di un pilastro, si passa da un iniziale meccanismo resistente di tipo flessionale ad un successivo meccanismo resistente di catenaria. Nonostante la formazione di cerniere plastiche si raggiunge una nuova configurazione di equilibrio stabile in cui i vincoli servono a mobilizzare la catenaria alle grandi deformazioni dopo una instabilità transitoria.

Questo studio punta a sviluppare uno schema che quantifica il danno e può essere facilmente implementato. Il comportamento non lineare del materiale è stato caratterizzato da una discretizzazione a fibre della sezione e da più punti di integrazione su ogni elemento. Di

conseguenza il modello *fiber beam element* (**Figura 3-1**) utilizzato da J.Weng et al., 2016, risulta essere ideale per validare il modello proposto in questa tesi.

Figura 3-1. Modello Fiber Beam Element

Per ricreare il meccanismo strutturale del telaio sottoposto a danneggiamento progressivo, si sono creati tre campioni in scala 1:3 estratti dalla zona centrale e laterale di un telaio a grandezza reale (**Figura 3-2**)

Figura 3-2. Localizzazione dei campioni e prototipi da testare

I tre campioni *FR (Full Restraint), PR (Partial Restraint), FRS (Full Restraint Seismic),* sono realizzati tenendo conto dei criteri dell'EC2 con un peso proprio e peso permanente portato pari a 5.0kN/m² e 7.1kN/m² rispettivamente e diverse armature che prendono in considerazione la presenza di dettagli costruttivi in zone sismiche. Per simulare l'estrazione dei campioni dal telaio e ricreare le stesse condizioni di vincolo hanno utilizzato delle celle di carico di trazione-compressione per monitorare le reazioni orizzontali e verticali alla base delle colonne e alle estremità delle travi. Lo schema statico presenta due cerniere alla base delle travi e quattro vincoli elastici (tre per il campione *PR*) con rigidezza bilineare come vincoli orizzontali.

Con il software *OpenSees* si è ricostruito lo stesso schema statico utilizzando il modello a fibre proposto per ricreare la stessa non linearità geometrica e meccanica. Ogni elemento è stato modellato con il comando *dispBeamColumn* secondo quanto riportato in fase di proposta del

modello con la conseguente trasformazione geometrica del sistema di riferimento *corotational*. I vincoli orizzontali configurati come dei vincoli elastici dalla rigidezza prestabilita dallo studio di J. Weng et al., 2016, sono stati creati mediante la sovrapposizione di due nodi di coordinate uguali e collegati da un elemento *zerolengthsection* di lunghezza unitaria. A questo si è associata una rigidezza assiale che ha come modulo di Young quello derivante dalla rigidezza dei vincoli, e come aria della sezione la stessa della trave.

I materiali utilizzati nella sperimentazione e i loro parametri di resistenza richiamati nell'articolo sono raccolti in **Tabella 3-1**.

Concrete	fc	30	MPa
concrete	ft	$0.56\sqrt{f_c}$	MPa
Steel	fy	505	MPa
5.000	fu	605	MPa

Tabella 3-1. parametri di resistenza del materiale. Spec.FR-FRS-PR

Nello studio sperimentale si è adottato per il calcestruzzo il modello modificato Kent-Park con il comportamento isteretico basato sulle regole di Spacone et al. Per l'acciaio hanno adottato un modello bilineare simmetrico elasto-plastico con incrudimento.

Il modello ricreato in *OpenSees*, sulla base delle considerazioni precedenti, realizza materiali con parametri di resistenza differenti per la zona non confinata e confinata dal rinforzo trasversale. Quest'ultima varia nelle diverse sezioni individuate nei tre campioni. Le dimensioni del copriferro sono state ipotizzate con un valore di 20mm poiché nello studio sperimentale non si accenna a questo dettaglio costruttivo.

Per l'acciaio si sono indicati i tre punti caratteristici per il comportamento a trazione e a compressione secondo il modello di Dhakal e Meaekawa (3).

I quattro vincoli elastici orizzontali hanno un comportamento bilineare simmetrico a trazione e a compressione le cui rigidezze richiamate nell'articolo risultano in **Tabella 3-2**.

Campione	Vincolo	K1 [N/mm]	Gap [mm]	K2 [N/mm]
	1	636	2.4	18355
FR	2	244	3.1	27677
	3	337	3.7	10566
	4	455	2.6	85010
	1	2715	2.2	20641
FRS	2	716	4.5	23667
I KO	3	160	7.8	101894
	4	2073	3.9	4080
	1	1359	2.9	27860
PR	2	396	1.9	5917
	3	2695	1.7	27606

Validazione della proposta di modellazione per gli elementi frame

Tabella 3-2. Proprietà dei vincoli elastici dei campioni

3.1.1 Specimen FR

Il campione *FR* è caratterizzato dalla geometria rappresentata in **Figura 3-3**.

Figura 3-3. Dettaglio costruttivo campione FR
La discretizzazione degli elementi tiene conto di cambi di sezione (si sono individuate tre sezioni) ed inoltre nelle vicinanze del vincolo è stata effettuata una divisione degli elementi secondo uno schema: h/2 - h - 3h / 2.

Lo schema statico adottato per il modello viene riportato in Figura 3-4:

Figura 3-4. Schema statico

Per questo campione le caratteristiche del materiale sono richiamate in **Tabella 3-3** e **Tabella 3-4**.

		Uniaxial Concrete					
		Unconfined	Confined Sez C-C	Confined Sez A-A	Confined Sez B-B		
Concrete compressive strength at 28 days	\$fpc	-30	-35.18	-33.65	-32.8		
Concrete strain at maximum strength	\$epsc0	-0.004	-0.004	-0.004	-0.004		
Concrete crushing strength	\$fpcu	-12	-12	-12	-12		
Concrete strain at crushing strength	\$epscU	-0.03	-0.02	-0.018	-0.015		
Ratio between unloading slope at \$epscu and initial slope	\$lambda	0.1	0.1	0.1	0.1		
Tensile strength	\$ft	2	2	2	2		
Tension softening stiffness (slope of the linear tension softening branch)	\$Et	1500	1500	1500	1500		

Tabella 3-3. Parametri calcestruzzo ca	ampione FF	R
--	------------	---

١	/alidazione	della	proposta	di	modellazione	per	gli	elementi	frame
							<u> </u>		

Stress at first point of the envelope in the positive direction	\$s1p	505	[Mpa]
Strain at first point of the envelope in the positive direction	\$e1p	0.002	[-]
Stress at second point of the envelope in the positive direction	\$s2p	605	[Mpa]
Strain at second point of the envelope in the positive direction	\$e2p	0.14	[-]
Stress at third point of the envelope in the positive direction	\$s3p	20	[Mpa]
Strain at third point of the envelope in the positive direction	\$e3p	0.161	[-]
Stress at first point of the envelope in the negative direction	\$s1n	-505	[Mpa]
Strain at first point of the envelope in the negative direction	\$e1n	-0.002	[-]
Stress at second point of the envelope in the negative direction	\$s2n	-304.6	[Mpa]
Strain at second point of the envelope in the negative direction	\$e2n	-0.07	[-]
Stress at third point of the envelope in the negative direction	\$s3n	-101	[Mpa]
Strain at third point of the envelope in the negative direction	\$e3n	-0.2	[-]
Pinching factor for strain (or deformation) during reloading	\$pinchx	1	[-]
Pinching factor for stress (or force) during reloading	\$pinchy	1	[-]
Damage due to ductility	\$damage1	0	[-]
Damage due to energy	\$damage2	0	[-]

Tabella 3-4. Parametri acciaio campione FR

I vincoli elastici sono stati modellati con il comando *Hysteretic* associando il materiale a ciascun elemento *zerolengthSection*. I valori riportati nel codice di calcolo sono riassunti in **Tabella 3-5**.

Element	88	81	82	87	
\$s1p	0.085	0.042	0.069	0.066	[Mpa]
\$e1p	2.4	3.1	3.7	2.6	[-]
\$s2p	4.895	9.533	4.344	24.558	[Mpa]
\$e2p	4.8	6.2	7.4	5.2	[-]
\$s3p	106.867	163.294	63.044	496.836	[Mpa]
\$e3p	104.8	106.2	107.4	105.2	[-]
\$s1n	-0.085	-0.042	-0.069	-0.066	[Mpa]
\$e1n	-2.4	-3.1	-3.7	-2.6	[-]
\$s2n	-4.895	-9.533	-4.344	-24.558	[Mpa]
\$e2n	-4.8	-6.2	-7.4	-5.2	[-]
\$s3n	-106.867	-163.294	-63.044	-496.836	[Mpa]
\$e3n	-104.8	-106.2	-107.4	-105.2	[-]
\$pinchx	1	1	1	1	[-]
\$pinchy	1	1	1	1	[-]
\$damage1	0	0	0	0	[-]
\$damage2	0	0	0	0	[-]

Validazione della proposta di modellazione per gli elementi frame

Tabella 3-5. Parametri vincoli elastici campione FR

Si riportano i risultati numerici di taratura del modello proposto a partire dai risultati sperimentali ottenuti e riportati dallo studio di J. Weng et al. (**Figura 3-5**, **Figura 3-6**, **Figura 3-7**, **Figura 3-8**). Dal confronto delle curve si evince una buona affidabilità del modello proposto, in quanto si sono ottenute delle previsioni ragionevolmente accurate ma non perfette. Come in qualsiasi modello numerico, è impossibile considerare tutti i fattori che possono influenzare l'accuratezza della modellazione. Ad esempio, nel presente modello numerico, così come in quello sviluppato nel report di J. Weng et al., 2016, non viene presa in considerazione la discontinuità con cui si sviluppa il cracking. Tuttavia, ci si aspetta che, se fosse disponibile

un modello numerico ragionevolmente più accurato si arriverebbe ad un'indicazione più utile circa lo stato di danno dei membri strutturali dei telai.

Figura 3-5. Confronto campione FR di J. Weng et al., 2016.

Figura 3-6. Confronto su elemento 3 del Campione FR di J. Weng et al., 2016.

Figura 3-7. Confronto su elemento 13 del Campione FR di J. Weng et al., 2016.

Figura 3-8. Vertical displacement - Horizontal displacement del Campione FR di J. Weng et al., 2016

3.1.2 Specimen FR-S

Il campione *FR-S* è caratterizzato dalla geometria rappresentata in **Figura 3-9**. La geometria è pressoché uguale al precedente campione con l'aggiunta di dettagli costruttivi utili in ambito sismico, cambia infatti la disposizione dei rinforzi trasversali in prossimità degli appoggi.

Figura 3-9. Dettaglio costruttivo campione FR-S

La discretizzazione degli elementi tiene conto di cambi di sezione (si sono individuate quattro sezioni) ed inoltre nelle vicinanze del vincolo è stata effettuata una divisione degli elementi secondo uno schema: h/2 - h - 3h / 2.

Lo schema statico adottato per il modello viene riportato in Figura 3-4:

Figura 3-10.Schema statico

Per simulare il diverso confinamento dovuto ai dettagli sismici rispetto al campione precedente, le caratteristiche di resistenza del materiale sono richiamate in **Tabella 3-6** e **Tabella 3-7**.

		Uniaxial Concrete					
			Confined	Confine	Confine	Confine	
		Unconfined	Sez C-C	d	d	d	
			562 0-0	Sez A-A	Sez B-B	Sez D-D	
Concrete compressive strength at 28 days	\$fpc	-30	-35.18	-33.65	-32.8	-35.8	
Concrete strain at maximum strength	\$epsc0	-0.004	-0.004	-0.004	-0.004	-0.004	
Concrete crushing strength	\$fpcu	-10	-10	-10	-10	-10	
Concrete strain at crushing strength	\$epscU	-0.03	-0.02	-0.018	-0.015	-0.03	
Ratio between unloading slope at \$epscu	\$lambd	0.1	0.1	0.1	0.1	0.1	
and initial slope	а	0.1	0.1	0.1	0.1	0.1	
Tensile strength	\$ft	2	2	2	2	2	
Tension softening stiffness (slope of the linear tension softening branch)	\$Et	1500	1500	1500	1500	1500	

Tabella 3-6. Parametri calcestruzzo campione FR-S

Validazione della	proposta di model	lazione per gli	elementi frame
-------------------	-------------------	-----------------	----------------

Stress at first point of the envelope in the positive direction	\$s1p	505	[Mpa]
Strain at first point of the envelope in the positive direction	\$e1p	0.002	[-]
Stress at second point of the envelope in the positive direction	\$s2p	605	[Mpa]
Strain at second point of the envelope in the positive direction	\$e2p	0.14	[-]
Stress at third point of the envelope in the positive direction	\$s3p	20	[Mpa]
Strain at third point of the envelope in the positive direction	\$e3p	0.161	[-]
Stress at first point of the envelope in the negative direction	\$s1n	-505	[Mpa]
Strain at first point of the envelope in the negative direction	\$e1n	-0.002	[-]
Stress at second point of the envelope in the negative direction	\$s2n	-304.6	[Mpa]
Strain at second point of the envelope in the negative direction	\$e2n	-0.07	[-]
Stress at third point of the envelope in the negative direction	\$s3n	-101	[Mpa]
Strain at third point of the envelope in the negative direction	\$e3n	-0.2	[-]
Pinching factor for strain (or deformation) during reloading	\$pinchx	1	[-]
Pinching factor for stress (or force) during reloading	\$pinchy	1	[-]
Damage due to ductility	\$damage1	0	[-]
Damage due to energy	\$damage2	0	[-]

Tabella 3-7. Parametri acciaio campione FR-S

I vincoli elastici sono stati modellati con il comando *Hysteretic* associando il materiale a ciascun elemento *zerolengthSection*. I valori riportati nel codice di calcolo sono riassunti in **Tabella 3-8**.

Validazione della	proposta di	modellazione	per gli el	ementi frame
-------------------	-------------	--------------	------------	--------------

Element	88	81	82	87	
\$s1p	0.332	0.179	0.069	0.449	[Mpa]
\$e1p	2.2	4.5	7.8	3.9	[-]
\$s2p	5.046	11.834	88.308	1.768	[Mpa]
\$e2p	4.4	9.0	15.6	7.8	[-]
\$s3p	119.718	143.317	654.386	24.435	[Mpa]
\$e3p	104.4	109.0	115.6	107.8	[-]
\$s1n	-0.332	-0.179	-0.069	-0.449	[Mpa]
\$e1n	-2.2	-4.5	-7.8	-3.9	[-]
\$s2n	-4.895	-9.533	-4.344	-24.558	[Mpa]
\$e2n	-4.4	-9.0	-15.6	-7.8	[-]
\$s3n	-119.718	-143.317	-654.386	-24.435	[Mpa]
\$e3n	-104.4	-109.0	-115.6	-107.8	[-]
\$pinchx	1	1	1	1	[-]
\$pinchy	1	1	1	1	[-]
\$damage1	0	0	0	0	[-]
\$damage2	0	0	0	0	[-]

Tabella 3-8. Parametri vincoli elastici campione FR-S

Di seguito si riportano i risultati di taratura del modello proposto a partire dai risultati ottenuti e riportati dallo studio di J. Weng et al., 2016. Dal confronto delle curve si evince una buona affidabilità del modello proposto, in quanto in tutti i casi si arriva al risultato sperimentale. (da **Figura 3-11** a **Figura 3-14**)

Figura 3-11. Confronto campione Fr-S di J. Weng et al., 2016

Figura 3-12. Confronto su elemento 3 del Campione Fr-S di J. Weng et al., 2016

Figura 3-13. Confronto su elemento 13 del Campione FR-S di J. Weng et al., 2016

Figura 3-14. Vertical displacement - Horizontal displacement del Campione FR-S di J. Weng et al., 2016

3.1.3 Specimen PR

Il campione PR è caratterizzato dalla geometria rappresentata in Figura 3-3. La differenza rispetto al campione FR la si può notare dallo schema statico utilizzato, il quale, in accordo con quanto studiato da J. Weng et al., 2016, è riportato in **Figura 3-15**.

Figura 3-15. Schema statico

La discretizzazione degli elementi tiene conto di cambi di sezione (si sono individuate tre sezioni) ed inoltre nelle vicinanze del vincolo è stata effettuata una divisione degli elementi secondo uno schema: h/2 - h - 3h / 2 per cogliere al meglio le variazioni di curvatura.

Per questo campione le caratteristiche del materiale sono richiamate in **Tabella 3-9** e **Tabella 3-10**.

	-	uniaxialMaterial Concrete02				
	-	Unconfined	Confined	Confined	Confined	
		Onconjineu	Sez C-C	Sez A-A	Sez B-B	
Concrete compressive strength at 28 days	\$fpc	-30	-35.18	-33.65	-32.8	
Concrete strain at maximum strength	\$epsc0	-0.004	-0.004	-0.004	-0.004	
Concrete crushing strength	\$fpcu	-12	-12	-12	-12	
Concrete strain at crushing strength	\$epscU	-0.03	-0.02	-0.018	-0.015	
Ratio between unloading slope at \$epscu	\$lambda	0.1	0.1	0.1	0.1	
and initial slope	φιαπούα	0.1	0.1	0.1	0.1	
Tensile strength	\$ft	2	2	2	2	
Tension softening stiffness (slope of the	\$Et	1500	1500	1500	1500	
linear tension softening branch)	ΨΔι	1500	1500	1500	1500	

Tabella 3-9. Parametri calcestruzzo campione FR

Stress at first point of the envelope in the positive direction	\$s1p	505	[Mpa]
Strain at first point of the envelope in the positive direction	\$e1p	0.002	[-]
Stress at second point of the envelope in the positive direction	\$s2p	605	[Mpa]
Strain at second point of the envelope in the positive direction	\$e2p	0.15	[-]
Stress at third point of the envelope in the positive direction	\$s3p	20	[Mpa]
Strain at third point of the envelope in the positive direction	\$e3p	0.171	[-]
Stress at first point of the envelope in the negative direction	\$s1n	-505	[Mpa]
Strain at first point of the envelope in the negative direction	\$e1n	-0.002	[-]
Stress at second point of the envelope in the negative direction	\$s2n	-304.6	[Mpa]
Strain at second point of the envelope in the negative direction	\$e2n	-0.07	[-]
Stress at third point of the envelope in the negative direction	\$s3n	-101	[Mpa]
Strain at third point of the envelope in the negative direction	\$e3n	-0.2	[-]
Pinching factor for strain (or deformation) during reloading	\$pinchx	1	[-]
Pinching factor for stress (or force) during reloading	\$pinchy	1	[-]
Damage due to ductility	\$damage1	0	[-]
Damage due to energy	\$damage2	0	[-]

Tabella 3-10. Parametri acciaio campione FR

I vincoli elastici sono stati modellati con il comando *Hysteretic* associando il materiale a ciascun elemento *zerolengthSection*. I valori riportati nel codice di calcolo sono riassunti in **Tabella 3-11**.

Element	88	81	82	
\$s1p	0.085	0.042	0.069	[Mpa]
\$e1p	2.4	3.1	3.7	[-]
\$s2p	4.895	9.533	4.344	[Mpa]
\$e2p	4.8	6.2	7.4	[-]
\$s3p	106.867	163.294	63.044	[Mpa]
\$e3p	104.8	106.2	107.4	[-]
\$s1n	-0.085	-0.042	-0.069	[Mpa]
\$e1n	-2.4	-3.1	-3.7	[-]
\$s2n	-4.895	-9.533	-4.344	[Mpa]
\$e2n	-4.8	-6.2	-7.4	[-]
\$s3n	-106.867	-163.294	-63.044	[Mpa]
\$e3n	-104.8	-106.2	-107.4	[-]
\$pinchx	1	1	1	[-]
\$pinchy	1	1	1	[-]
\$damage1	0	0	0	[-]
\$damage2	0	0	0	[-]

Tabella 3-11. Parametri vincoli elastici campione PR

Di seguito si riportano i risultati di taratura del modello proposto a partire dai risultati ottenuti e riportati dallo studio di J. Weng et al., 2016. Dal confronto delle curve si evince una buona affidabilità del modello proposto, in quanto in tutti i casi si arriva al risultato sperimentale (da **Figura 3-16** a **Figura 3-19**).

Figura 3-16. Confronto campione PR di J. Weng et al., 2016

Figura 3-17. Confronto su elemento 3 del Campione PR di J. Weng et al., 2016

Figura 3-18. Confronto su elemento 13 del Campione PR di J. Weng et al., 2016

Figura 3-19. Vertical displacement - Horizontal displacement del Campione PR di J. Weng et al., 2016

In generale, è possibile trovare un buon accordo tra tutti i risultati ottenuti, in termini di resistenza di picco dei telai di prova sia nelle fasi di flessione che in quelle di catenaria. Si dimostra dunque la validità dei criteri di modellazione proposti in questa tesi.

Come mostrato nella **Figura 3-5** e nella **Figura 3-11**, la prima improvvisa caduta della forza applicata per i campioni FR e FR-S è stata causata dalla frattura delle barre di acciaio inferiori a metà campata. Tali occorrenze causano solo una piccola deviazione tra i modelli numerici e quelli effettivi. La seconda caduta nella curva forza-spostamento si trova in corrispondenza della rottura delle barre superiori, in mezzeria per il campione FR, in corrispondenza dell'incastro per il campione FR-S. Tuttavia, la frattura della barra di armatura di entrambi i casi implica l'eventuale collasso della struttura dovuto alla tensione assiale nella fase di azione della catenaria.

Il comportamento del campione PR con un contenimento orizzontale inferiore è diverso da FR e FR-S. L'azione catenaria non potrebbe svilupparsi ulteriormente dopo la frattura delle barre di armatura longitudinali inferiori di metà campata.

Quindi si può concludere che il modello numerico può fornire buoni input per la convalida delle considerazioni successive di questa tesi.

3.2 Specimens of Hai S Lew et al. (4)

Lo studio condotto dal National Institute of Standard and Technology e dal Purdue University (West Lafayette, Indiana) rappresenta uno studio numerico sperimentale di un sistema composto da trave e tre colonne in cemento armato. Il blocco trave-colonna rappresenta una porzione del telaio strutturale che compone un edificio di cemento armato di dieci piani (Intermediate Moment Frame: IMF). Lo studio è volto a mitigare il collasso strutturale sproporzionato. Il prototipo costruito su scala reale è stato sottoposto a spostamento verticale monotono crescente della colonna centrale per simulare il caso di rimozione di una colonna. Il test si è concluso quando si è sviluppato il meccanismo di collasso ultimo. Sono state misurate le caratteristiche di risposta del campione tra cui gli spostamenti verticali e orizzontali in posizioni specifiche, rotazioni alle estremità della trave e deformazioni nelle barre d'armatura in varie posizioni.

Il collasso è stato caratterizzato dallo schiacciamento del calcestruzzo nella parte superiore della trave vicino alla colonna centrale, dallo sviluppo delle principali fessure di flessione, e dalla frattura delle barre di rinforzo longitudinali inferiori della trave in corrispondenza della colonna centrale.

Le analisi numeriche del blocco trave-colonna sono state effettuate utilizzando diverse modellazioni che hanno fornito informazioni dettagliate sul comportamento generale e sulle modalità di collasso della trave. È stato osservato un buon accordo tra i risultati sperimentali e numerici.

Le analisi confermano che dopo lo scenario di rimozione della colonna si giunge al carico finale attraverso l'azione di catenaria, in cui si sviluppa una tensione assiale nella trave. L'aumento della forza di trazione è limitato dalla resistenza a frattura del rinforzo longitudinale della trave.

Tutte le travi e le colonne sono state progettate con calcestruzzo avente una resistenza nominale alla compressione di 27,6 Mpa, con barre di rinforzo ASTM A706-Grade 60 con una resistenza minima allo snervamento di 413.7 MPa. Le tabelle di seguito (**Tabella 3-12**, **Tabella 3-13**) mostrano la resistenza media a compressione e trazione del calcestruzzo e le proprietà meccaniche delle barre di armatura utilizzate per il test.

Compressive Strength	Tensile Strength
$f_c' \; [MPa]$	$f'_t \ [MPa]$
32	3.1

 Tabella 3-12. Tensione media di compressione e trazione del calcestruzzo del blocco travecolonna. Spec. IMF

	Bar Size	$\begin{array}{c} \mathbf{Diameter} \\ [mm] \end{array}$	Yield Strength $f_y [MPa]$	Ultimate Strength $f_u [MPa]$	Rupture Strain [%]
Α	#8	25.40	476	648	21
\mathbf{B}	#9	28.65	462	641	18
\mathbf{C}	#9	28.65	483	690	17
D	#4	12.70	524	710	14

Tabella 3-13. Proprietà meccaniche dell'armatura. Spec. IMF

Come mostrato in **Figura 3-20** tutte le barre longitudinali della trave sono state ancorate ai giunti esterni del blocco trave-colonna mediante ancoraggio meccanico per simulare la continuità delle barre longitudinali nel telaio reale.

Figura 3-20. Disposizione dell'armatura del campione

Le basi delle colonne sono state progettate per simulare dei vincoli rigidi. La parte superiore delle colonne è trattenuta da un dispositivo a due rulli che ne impedisce lo spostamento orizzontale mentre sono consentiti gli altri gradi di libertà.

Per applicare il carico alla colonna centrale sono stati utilizzati quattro martinetti idraulici da 534 kN posti al di sotto del pavimento del laboratorio; il carico è stato trasferito al campione

utilizzando quattro aste post-tensionate ancorate a una piastra di acciaio che ha trasferito il carico nella parte superiore della colonna. Il test è stato eseguito sotto controllo di spostamento con una velocità di circa 25 mm/min. Il movimento fuori dal piano dell'intero blocco è stato bloccato da quattro guide in acciaio fissate al pavimento.

3.2.1 Specimen IMF

Il modello sperimentale proposto dal NIST risulta essere un ulteriore esempio per la validazione del modello proposto in questa tesi, pertanto si è associato il modello numerico sviluppato in *OpenSees*.

Lo schema statico utilizzato è riportato Figura 3-21.

Figura 3-21. Schema statico del campione

La discretizzazione degli elementi tiene conto di cambi di sezione (si sono individuate tre sezioni) ed inoltre nelle vicinanze del vincolo è stata effettuata una divisione degli elementi secondo uno schema: h/2-h-3h/2 per cogliere al meglio le variazioni di curvatura.

In effetti una integrazione della sezione trasversale lungo lo sviluppo della trave condotta con un passo molto ampio compromette la risposta del materiale. Tuttavia un passo molto piccolo causa una risposta del materiale non oggettiva e un'inefficienza computazionale.

A differenza dei campioni proposti nello studio J. Weng et al., 2016, tutti i vincoli di questo modello sono rigidi.

Per questo campione le caratteristiche del materiale sono richiamate in **Tabella 3-14** e in **Tabella 3-15**. Dal confronto con la **Tabella 3-15** si può notare che la deformazione ultima dell'acciaio utilizzata nel modello implementato con *OpenSees* è maggiore di quella dichiarata nel report del NIST-TN 1720. Dopo numerosi tentativi per tarare il modello numerico sulla base di quello sperimentale si è ritenuto veritiera una deformazione ultima pari a 0,25. Poiché

questo parametro è stato stimato con una procedura iterativa, si è ritenuto opportuno assegnare a tutte le tipologie di barre di rinforzo longitudinale la stessa deformazione ultima. Nel report, infatti, non si specificano i motivi che hanno determinato le scelte delle caratteristiche delle diverse armature.

		uniaxialMaterial Concrete02			
		Unconfined	Confined	Confined	Confined
			Sez H-H	Sez F-F	Sez G-G
Concrete compressive strength at 28 days	\$fpc	-32	-45.14	-39.71	-32.68
Concrete strain at maximum strength	\$epsc0	-0.004	-0.009	-0.007	-0.004
Concrete crushing strength	\$fpcu	-12	-35	-35	-30
Concrete strain at crushing strength	\$epscU	-0.03	-0.04	-0.04	-0.04
Ratio between unloading slope at \$epscu and initial slope	\$lambda	0.5	0.5	0.5	0.5
Tensile strength	\$ft	3.1	3.1	3.1	3.1
Tension softening stiffness (slope of the linear tension softening branch)	\$Et	2000	2000	2000	2000

Tabella 3-14. Parametri calcestruzzo campione IMF

Stress at first point of the envelope in the positive direction	\$s1p	476	462	483
Strain at first point of the envelope in the positive direction	\$e1p	0.002	0.002	0.002
Stress at second point of the envelope in the positive direction	\$s2p	648	641	690
Strain at second point of the envelope in the positive direction	\$e2p	0.25	0.25	0.25
Stress at third point of the envelope in the positive direction	\$s3p	20	20	20
Strain at third point of the envelope in the positive direction	\$e3p	0.29	0.29	0.29
Stress at first point of the envelope in the negative direction	\$s1n	-476	462	-483
Strain at first point of the envelope in the negative direction	\$e1n	-0.002	-0.002	-0.002
Stress at second point of the envelope in the negative direction	\$s2n	-648	-641	-690
Strain at second point of the envelope in the negative direction	\$e2n	-0.25	-0.25	-0.25
Stress at third point of the envelope in the negative direction	\$s3n	-20	-20	-20
Strain at third point of the envelope in the negative direction	\$e3n	-0.29	-0.29	-0.29
Pinching factor for strain (or deformation) during reloading	\$pinchx	1	1	1
Pinching factor for stress (or force) during reloading	\$pinchy	1	1	1
Damage due to ductility	\$damage1	0	0	0
Damage due to energy	\$damage2	0	0	0

Tabella 3-15. Parametri acciaio campione IMF

Di seguito si riportano i risultati di taratura del modello proposto a partire dai risultati ottenuti e riportati dallo studio proposto dal NIST-TN 1720, 2011(**Figura 3-22, Figura 3-23, Figura 3-24**).

Figura 3-22. Diagramma carico applicato - spostamento verticale del campione

Figura 3-23. Diagramma sforzo normale - spostamento verticale del campione

Figura 3-24. Diagramma spostamento orizzontale - spostamento verticale del campione

Lo scopo di questo paragrafo è confrontare i risultati numerici su uno studio computazionale di un sistema trave-colonna in cemento armato con quelli sperimentali provenienti da un test su scala reale e valutare la capacità del modello proposto in questa tesi di simulare il comportamento strutturale del telaio.

Il modello proposto è in grado di riprodurre adeguatamente il comportamento strutturale complessivo. Si evince una sovrastima della resistenza alla flessione del 18%. Questa è funzione delle diverse leggi costitutive e dei livelli di confinamento considerato, nonché delle assunzioni semplificative adottate. Nonostante queste si riesce ad approssimare in modo soddisfacente il comportamento strutturale nella fase finale dal punto di vista della forza applicata in relazione allo spostamento verticale della sezione di mezzeria. (Bertagnoli, 2016) (Lew, 2011)

3.3 Specimen S3 of Yu J, Tan KH, 2013 (9)

Le assunzione esposte per la validazione del modello utilizzando il software *OpenSees* vengono applicate anche su un modello ad elementi finiti di *Yu J, Tan KH, 2013*, di cui vengono riportati i risultati all'interno dell'articolo "Numerical investigations on static and dynamic responses of reinforced concrete sub-assemblages under progressive collapse" di Anh Tuan Pham, Kang Hai Tan, Jun Yu,(**9**).

In particolare in questo articolo viene proposto un modello ad elementi finiti basato su un provino sottoposto ad una serie di prove di laboratorio condotte su un sotto-assemblaggio di due travi unite tramite un tronco di colonna, ricavato all'interno di un telaio tridimensionale. L'obiettivo è quello di determinarne il comportamento in caso di collasso progressivo dovuto alla rimozione di una colonna in presenza di azioni accidentali. Ciò che è stato osservato a partire dalle prove sperimentali conferma la formazione del meccanismo a catenaria che impedisce il collasso totale della trave.

Le prove di laboratorio effettuate sul campione su cui si basa il modello ad elementi finiti di cui sopra sono state condotte alla Nanyang Technological University nel 2010. In particolare le prove sono state effettuate su 8 campioni, in cui sono state variate le dimensioni complessive e la quantità di armatura longitudinale.

Al fine di validare i risultati riportati, è stato creato un modello a fibre analizzato mediante il software *OpenSees* del provino S3, inserendo le leggi costitutive dell'acciaio e del calcestruzzo esposte precedentemente.

La configurazione di prova iniziale viene riportata in Figura 3-25:

Figura 3-25. Configurazione di prova

Nella **Figura 3-26** viene riportata la disposizione dell'armatura longitudinale e dell'armatura a taglio, insieme alle principali dimensioni geometriche del provino.

Figura 3-26. Prospetto del provino

In **Tabella 3-16 A-B** vengono riportate le dimensioni del provino, le barre utilizzate e le caratteristiche meccaniche del provino *S3*:

Specimen S3			
Ln [mm]	2750		
Beam section [mm]	150 x 250		
l01[mm]	1000		
l02[mm]	345		
Long. Reinforcement- top end span	3T13		
Long. Reinforcement- bottom end span	2T10		

2T13

Long. Reinforcement- top mid span

	Elastic modulus [MPa]	Yield strength [MPa]	Ultimate strength [MPa]	Fracture strain [%]	Concrete strength [MPa]
<i>R6</i>	199,177	349	459	-	
T10	211,020	511	622	11.00	38.15
T13	184,423	494	593	10.92	

Tabella 3-16 A-B. Proprietà geometriche e meccaniche del provino S3

Lo schema statico adottato per il campione in questione segue quello indicato per il modello numerico presentato all'interno dell'articolo e viene riportato in **Figura 3-27**:

Figura 3-27. Schema statico adottato

Di conseguenza si hanno alle due estremità della trave, in corrispondenza dei due tronchi di colonna esterni, due carrelli ad asse verticale, che impediscono quindi lo spostamento in direzione verticale, ma permettono quello in direzione orizzontale. Per quanto riguardano invece i vincoli laterali a molla, essi sono stati modellati in *OpenSees* attraverso degli elementi *"truss"* a comportamento elastico, ai quali viene attribuito un modulo elastico alto, confrontabile con quello dell'acciaio. É stato adottato questo tipo di vincolo in seguito all'osservazione del fatto che una modellazione più accurata dei vincoli a molla portava a risultati fuorvianti, di conseguenza si è scelto di semplificare il problema.

Le due travi ed i tronchi di colonna sono stati discretizzati tenendo conto del cambio di sezione e del cambio del passo delle staffe. Inoltre, nell'intorno del nodo trave colonna, è stata adottata una discretizzazione più fitta al fine di cogliere in maniera adeguate i gradienti di deformazione, posizionando altri tre nodi alle distanze pari a h/2 - h - 3h/2 a partire dal bordo della colonna, dove *h* rappresenta l'altezza della trave. Per tutti gli elementi che compongono la struttura sono stati utilizzati elementi *dispBeamColumn*, senza considerare all'incrocio tra trave e colonna alcun elemento rigido, in quanto è stato osservato che la loro presenza restituiva risultati non del tutto soddisfacenti.

Vengono inoltre riportati in **Tabella 3-17**, **Tabella 3-18**, **Tabella 3-19**, **Tabella 3-20** i materiali implementati in *OpenSees*, che seguono tutte le indicazioni e le leggi esposte nella parte teorica della validazione del modello. In particolare il calcestruzzo risulta essere differente nelle travi e nelle colonne a causa della differente armatura e del differente confinamento. Per l'acciaio invece viene indicato il comportamento in trazione e in compressione, quest'ultimo in base al modello di Dhakal e Meaekawa (3).

		Beam Con	ecrete	
		Core concrete	Cover concrete	
Concrete compressive strength at 28 days	\$fpc	-42.73	-39.15	
Concrete strain at maximum strength	\$epsc0	-0.00316	-0.004	
Concrete crushing strength	\$fpcu	-10.05	-10.25	
Concrete strain at crushing strength	\$epsu	-0.01	-0.01	
Ratio between unloading alope at epscu and initial slope	\$lambda	0.1	0.1	
Tensile strength	\$ft	2	2	
Tension softening stiffness (slope of the linear tension softening branch)	\$Ets	1500	1500	

Tabella 3-17. Calcestruzzo utilizzato per le travi

		Column Co	ncrete	
		Core concrete	Cover concrete	
Concrete compressive strength at 28 days	\$fpc	-42.85	-39.15	
Concrete strain at maximum strength	\$epsc0	-0.00316	-0.004	
Concrete crushing strength	\$fpcu	-10.97	-10.25	
Concrete strain at crushing strength	\$epsu	-0.01	-0.01	
Ratio between unloading alope at epscu and initial slope	\$lambda	0.1	0.1	
Tensile strength	\$ft	2	2	
Tension softening stiffness (slope of the linear tension softening branch)	\$Ets	1500	1500	

		Bars $\Phi 10$
		(stirrups Φ 6/100)
Stress at first point of the envelope in the positive direction [Mpa]	\$s1p	511
Strain at first point of the envelope in the positive direction [-]	\$e1p	0.00243
Stress at second point of the envelope in the positive direction [Mpa]	\$s2p	622
Strain at second point of the envelope in the positive direction [-]	\$e2p	0.20
Stress at third point of the envelope in the positive direction [Mpa]	\$s3p	20
Strain at third point of the envelope in the positive direction [-]	\$e3p	0.601
Stress at first point of the envelope in the negative direction [Mpa]	\$s1n	-511
Strain at first point of the envelope in the negative direction [-]	\$e1n	-0.00243
Stress at second point of the envelope in the negative direction [Mpa]	\$s2n	-94.10
Strain at second point of the envelope in the negative direction [-]	\$e2n	-0.02
Stress at third point of the envelope in the negative direction [Mpa]	\$s3n	-102.2
Strain at third point of the envelope in the negative direction [-]	\$e3n	-0.05
Pinching factor for strain (or deformation) during reloading [-]	\$pinchx	1
Pinching factor for stress (or force) during reloading [-]	\$pinchy	1
Damage due to ductility: D1(mu-1) [-]	\$damage1	0
Damage due to energy: D2(Eii/Eult) [-]	\$damage2	0

Tabella 3-18	Calcestruzzo	utilizzato	per	le colo	onne
--------------	--------------	------------	-----	---------	------

	Tabella 3-19.	Barre di	armatura di	i diametro	10	$\mathbf{m}\mathbf{m}$
--	---------------	----------	-------------	------------	----	------------------------

		Bars Φ 13
		(stirrups Φ 6/100)
Stress at first point of the envelope in the positive direction [Mpa]	\$s1p	494
Strain at first point of the envelope in the positive direction [-]	\$e1p	0.00235
Stress at second point of the envelope in the positive direction [Mpa]	\$s2p	593
Strain at second point of the envelope in the positive direction [-]	\$e2p	0.20
Stress at third point of the envelope in the positive direction [Mpa]	\$s3p	20
Strain at third point of the envelope in the positive direction [-]	\$e3p	0.601
Stress at first point of the envelope in the negative direction [Mpa]	\$s1n	-494
Strain at first point of the envelope in the negative direction [-]	\$e1n	-0.00235
Stress at second point of the envelope in the negative direction [Mpa]	\$s2n	-164.77
Strain at second point of the envelope in the negative direction [-]	\$e2n	-0.04
Stress at third point of the envelope in the negative direction [Mpa]	\$s3n	-98.8
Strain at third point of the envelope in the negative direction [-]	\$e3n	-0.07
Pinching factor for strain (or deformation) during reloading [-]	\$pinchx	1
Pinching factor for stress (or force) during reloading [-]	\$pinchy	1
Damage due to ductility: D1(mu-1) [-]	\$damage1	0
Damage due to energy: D2(Eii/Eult) [-]	\$damage2	0

Validazione della proposta di modellazione per gli elementi frame

Tabella 3-20. Barre di armatura di diametro pari a 13 mm

Vengono inoltre riportate tutte le curve ricavate attraverso l'analisi non lineare del modello numerico del provino S3. In particolare può essere fatto un confronto tra la curva pushdown sperimentale e quella numerica ottenuta con *OpenSees*, osservando come il modello abbia restituito risultati soddisfacenti, ma non perfetti, dovuti al fatto che in un modello numerico risulta difficile tenere conto di tutte le non linearità del problema (**Figura 3-28**). Tuttavia l'andamento qualitativo risulta essere il medesimo, riuscendo a prendere in modo adeguato la fase legata alla ripresa di resistenza.

Negli altri grafici (**Figura 3-29**, **Figura 3-30**) si possono osservare l'andamento dello sforzo normale nella trave e lo spostamento orizzontale dei nodi vincolati mediante i carrelli.

Figura 3-28. Curva carico-spostamento verticale

Figura 3-29. Curva sforzo normale-spostamento verticale

Mid-span Displacement [mm]

Figura 3-30. Curva spostamento orizzontale-spostamento verticale

3.4 Specimens BNS and BSS (10)

All'interno dell'articolo "Effects of Masonry Infill Wall on the Performance of RC Frames to Resist Progressive Collapse" di Kai Qian, M. ASCE1; and Bing Li, M. ASCE2 (10) vengono riportati i risultati delle prove sperimentali effettuate su 6 provini, che rappresentano un sottoassemblaggio di travi e colonne appartenente ad un edificio reale, con dimensioni scalate rispetto alla struttura originaria di cui fanno parte. In particolare, in questa fase di calibrazione del modello, sono stati considerati i due provini non tamponati, di cui vengono riportate le caratteristiche meccaniche e geometriche in **Tabella 3-21**:

	Element size		Beam Reinforcement			Column		m Reinforcement Column Specimen		Specimen
	Span [mm]	Infill wall	Longitudinal Positive(%)	Longitudinal negative (%)	Transverse in ends (%)	Transverse in ends (%)	Joint (%)	description		
BNS	1800	None	0.73	0.97	0.32	0.32	N/A	Nonseismic designed bare frame with short span		
BSS	1800	None	1.40	1.40	1.20	1.00	1.00	Seismic designed bare frame with short span		

Tabella 3-21. Dimensioni ed armatura dei provini non tamponati

I due provini considerati presentano dunque la medesima geometria, essendo entrambi telai a tre piani e a due campate (**Figura 3-31**). Come si può osservare è stato considerato un sottoassemblaggio di bordo dell'edificio. Per questo motivo sono presenti vincoli alla traslazione orizzontale in corrispondenza delle travi solamente a sinistra, per simulare la presenza del resto dell'edificio, che garantisce una minore deformabilità del telaio stesso.

Figura 3-31. Vista in pianta dell'edifico (a) e vista in prospetto, con individuazione del telaio a due campate considerato (b)

In condizioni di rimozione accidentale della colonna centrale, infatti, il telaio di bordo non presenta il vincolo alla deformazione laterale dell'intero edificio circostante, perciò questo rappresenta il caso peggiore.

Su questi provini è stata condotta una prova sperimentale di pushdown, di cui sono presenti all'interno dell'articolo le curve ricavate, in cui viene riportato l'andamento del carico applicato all'aumentare dello spostamento in direzione verticale del punto in corrispondenza della colonna rimossa.

Al fine di fare un confronto con i risultati sperimentali riportati, è stata condotta un'analisi numerica sugli stessi telai, utilizzando il software *OpenSees*, in cui viene eseguita una modellazione a fibre degli elementi strutturali. In questo modo si è cercato di tenere conto della non linearità del problema, attribuendo ad ogni fibra della sezione legami costitutivi non lineari. Per simulare invece la presenza della parte restante dell'edificio, sono stati posti, in corrispondenza delle travi, carrelli ad asse orizzontale, che bloccano quindi la deformazione del telaio considerato.

Come anticipato, cono stati presi in considerazione i due telai non tamponati con e senza la presenza di dettagli sismici. Vengono quindi di seguito riportate le fasi di taratura del modello.

3.4.1 Telaio non tamponato senza dettagli sismici

In **Figura 3-32** viene riportata la geometria del telaio senza dettagli sismici, in cui si può osservare come il passo delle staffe rimanga costante in corrispondenza del nodi trave-colonna:

Figura 3-32. Dimensioni ed armatura del provino considerato

Le sezioni 1 e 2 sono relative alle colonne del telaio, mentre le sezioni 3 e 4 si riferiscono alle travi e vengono riportate in **Figura 3-33**:

Figura 3-33. Sezioni delle colonne e delle trave

In Figura 3-34 viene riportato lo schema statico adottato per questo telaio.

Figura 3-34. Schema statico adottato

Le travi e le colonne che compongono il telaio vengono modellati in *OpenSees* utilizzando gli elementi *dispBeamColumn*. Essi richiedono una discretizzazione delle parti strutturali accurata, in modo da poter cogliere in modo adeguato il gradiente di deformazione.

La discretizzazione adottata tiene conto del cambio di sezione, quindi della disposizione dell'armatura longitudinale.

Ad esempio, all'interno della singola campata, si è scelto di mettere un nodo ogni 10 cm nelle due parti terminale, arrivando fino a 70 cm vicino alla colonna centrale e fino a 60 cm vicino alle colonne laterali. In questo modo si è tenuto conto anche delle sezioni in cui si sovrappongo le barre per il momento negativo con quelle per il momento positivo.

Per modellare il calcestruzzo si è scelto di utilizzare il *Concrete02*, tenendo conto della differenza tra calcestruzzo confinato e non confinato. Vengono riportati in **Tabella 3-22**, **Tabella 3-23**, **Tabella 3-24**, **Tabella 3-25** i parametri meccanici implementati in *OpenSees*, per ognuna delle 4 sezioni considerate:

		Concrete Section 1	
		Core concrete	Cover concrete
Concrete compressive strength at 28 days	\$ <i>f</i> _c	-35.68	-32.1
Concrete strain at maximum strength	\$ ϵ_{psc0}	-0.00311	-0.002
Concrete crushing strength	\$ <i>f</i> _{cu}	-7.14	-6.48
Concrete strain at crushing strength	ε_{pscu}	-0.0155	-0.01
Ratio between unloading slope at epscu and initial slope	\$λ	0.1	0.1
Tensile strength	f_t	2	2
Tension softening stiffness (slope of the linear tension softening branch)	E_t	1500	1500

 Tabella 3-22. Materiali utilizzati per la sezione 1

		Concrete Section 2	
		Core concrete	Cover concrete
Concrete compressive strength at 28 days	\$ <i>f</i> _c	-35.68	-32.1
Concrete strain at maximum strength	ϵ_{psc0}	-0.00311	-0.002
Concrete crushing strength	\$ <i>f</i> _{cu}	-7.14	-6.48
Concrete strain at crushing strength	\$e _{pscu}	-0.0155	-0.01
Ratio between unloading slope at epscu and initial slope	\$λ	0.1	0.1
Tensile strength	f_t	2	2
Tension softening stiffness (slope of the linear tension softening branch)	E_t	1500	1500

Tabella 3-23. Materiali utilizzati per la sezione 2

		Concrete Section 3	
		Core concrete	Cover concrete
Concrete compressive strength at 28 days	\$ <i>f</i> _c	-35.15	-32.1
Concrete strain at maximum strength	ϵ_{psc0}	-0.00294	-0.002
Concrete crushing strength	\$ <i>f</i> _{cu}	-7.03	-6.42
Concrete strain at crushing strength	\$e _{pscu}	-0.016	-0.01
Ratio between unloading slope at epscu and initial slope	\$λ	0.1	0.1
Tensile strength	f_t	2	2
Tension softening stiffness (slope of the linear tension softening branch)	\$ <i>E</i> _t	1500	1500

Tabella 3-24. Materiali utilizzati per la sezione 3

		Concrete Section 4	
		Core concrete	Cover concrete
Concrete compressive strength at 28 days	f_c	-35.41	-32.1
Concrete strain at maximum strength	ϵ_{psc0}	-0.00311	-0.002
Concrete crushing strength	\$ <i>f</i> _{cu}	-7.08	-6.42
Concrete strain at crushing strength	\$e _{pscu}	-0.0155	-0.01
Ratio between unloading slope at epscu and initial slope	\$λ	0.1	0.1
Tensile strength	f_t	2	2
Tension softening stiffness (slope of the linear tension softening branch)	E_t	1500	1500

Tabella 3-25. Materiale utilizzati per la sezione 4

Per la modellazione delle barre di acciaio è stato utilizzato il materiale *Hysteretic*, tenendo conto in compressione del modello di Dhakal-Maekawa(3). Vengono quindi riportati in **Tabella 3-26** e **Tabella 3-27** i parametri meccanici importati in *OpenSees*, che caratterizzano il materiale:

		Bars $\Phi 6$
		(stirrups Φ 3/65)
Stress at first point of the envelope in the positive direction [Mpa]	\$s1p	449
Strain at first point of the envelope in the positive direction [-]	\$e1p	0.00214
Stress at second point of the envelope in the positive direction [Mpa]	\$s2p	537
Strain at second point of the envelope in the positive direction [-]	\$e2p	0.18
Stress at third point of the envelope in the positive direction [Mpa]	\$s3p	20
Strain at third point of the envelope in the positive direction [-]	\$e3p	0.3
Stress at first point of the envelope in the negative direction [Mpa]	\$s1n	-449
Strain at first point of the envelope in the negative direction [-]	\$e1n	-0.00214
Stress at second point of the envelope in the negative direction [Mpa]	\$s2n	-96.49
Strain at second point of the envelope in the negative direction [-]	\$e2n	-0.02
Stress at third point of the envelope in the negative direction [Mpa]	\$s3n	-89.8
Strain at third point of the envelope in the negative direction [-]	\$e3n	-0.05
Pinching factor for strain (or deformation) during reloading [-]	\$pinchx	1
Pinching factor for stress (or force) during reloading [-]	\$pinchy	1
Damage due to ductility: D1(mu-1) [-]	\$damage1	0
Damage due to energy: D2(Eii/Eult) [-]	\$damage2	0

Tabella 3-26. Barre $\Phi 6$ (staffe $\Phi 3/65$)

		Bars Φ10 (stirrups Φ3/50)
Stress at first point of the envelope in the positive direction [Mpa]	\$s1p	515
Strain at first point of the envelope in the positive direction [-]	\$e1p	0.00245
Stress at second point of the envelope in the positive direction [Mpa]	\$s2p	594
Strain at second point of the envelope in the positive direction [-]	\$e2p	0.18
Stress at third point of the envelope in the positive direction [Mpa]	\$s3p	20
Strain at third point of the envelope in the positive direction [-]	\$e3p	0.35
Stress at first point of the envelope in the negative direction [Mpa]	\$s1n	-515
Strain at first point of the envelope in the negative direction [-]	\$e1n	-0.00245
Stress at second point of the envelope in the negative direction [Mpa]	\$s2n	-307.99
Strain at second point of the envelope in the negative direction [-]	\$e2n	-0.07
Stress at third point of the envelope in the negative direction [Mpa]	\$s3n	-103
Strain at third point of the envelope in the negative direction [-]	\$e3n	-0.1
Pinching factor for strain (or deformation) during reloading [-]	\$pinchx	1
Pinching factor for stress (or force) during reloading [-]	\$pinchy	1
Damage due to ductility: D1(mu-1) [-]	\$damage1	0
Damage due to energy: D2(Eii/Eult) [-]	\$damage2	0

Validazione della proposta di modellazione per gli elementi frame

Tabella 3-27. Barre $\Phi 10$ (staffe $\Phi 3/50$)

Vengono riportati i risultati ottenuti in seguito alla calibrazione del modello in **Figura 3-35**, dove viene fatto un confronto con la curva sperimentale riportata all'interno dell'articolo (10). Come si può osservare, i risultati ottenuti mostrano una buona attendibilità del modello utilizzato, con la necessità di generarne uno più accurato al fine di sopperire alla difficoltà nel tenere in conto tutte le non-linearità del problema.

Figura 3-35. Confronto tra la curva sperimentale e la curva numerica di pushdown

Nelle **Figura 3-36**, **Figura 3-37**, **Figura 3-38** viene riportato l'andamento dello spostamento in direzione orizzontale in corrispondenza di ogni piano, facendo anche in questo caso un confronto con le curve sperimentali.

Figura 3-36. Spostamento orizzontale del primo piano

Mid-span Displacement [mm]

Figura 3-37. Spostamento orizzontale del secondo piano

Figura 3-38. Spostamento orizzontale del terzo piano
3.4.2 Telaio non tamponato con dettagli sismici:

In Figura 3-39 viene riportata la geometria del telaio con dettagli sismici.

Figura 3-39. Dimensioni ed armatura del provino considerato

Le sezioni 1 e 2 sono relative alle colonne del telaio, mentre le sezioni 3 e 4 si riferiscono alle travi e vengono riportate in **Figura 3-40**:

Figura 3-40. Sezioni delle colonne e delle travi

In Figura 3-41 viene riportato lo schema statico adottato per questo telaio.

Figura 3-41. Schema statico adottato

Come nel caso del telaio senza dettagli sismici, le travi e le colonne che compongono il telaio vengono modellati in *OpenSees* utilizzando gli elementi *dispBeamColumn*. Anche in questo caso è stata eseguita una discretizzazione delle parti strutturali accurata al fine di cogliere i gradienti di deformazione.

La discretizzazione adottata tiene conto in questo caso sia della disposizione delle armature longitudinali sia del cambio del passo delle staffe, in quanto esso diminuisce notevolmente in corrispondenza dei nodi trave-colonna.

Per modellare il calcestruzzo è stato scelto il materiale *Concrete02*, tenendo conto della differenza tra calcestruzzo confinato e non confinato. Vengono riportati nelle **Tabella 3-28**, **Tabella 3-29**, **Tabella 3-30**, **Tabella 3-31** i parametri meccanici implementati in *OpenSees*, per ognuna delle 4 sezioni considerate, ricavati a partire dalla classe di calcestruzzo utilizzata:

		Concrete Section 1	
		Core concrete	Cover concrete
Concrete compressive strength at 28 days	\$ <i>f</i> _c	-39.62	-33.9
Concrete strain at maximum strength	\$e _{psc0}	-0.00369	-0.002
Concrete crushing strength	\$ <i>f</i> _{cu}	-12	-6.78
Concrete strain at crushing strength	\$ε _{pscu}	-0.03	-0.01
Ratio between unloading slope at epscu and initial slope	\$λ	0.1	0.1
Tensile strength	f_t	2	2
Tension softening stiffness (slope of the linear tension softening branch)	E_t	1500	1500

 Tabella 3-28. Materiali utilizzati per la sezione 1

		Concrete Section 2	
		Core concrete	Cover concrete
Concrete compressive strength at 28 days	\$ <i>f</i> _c	-37.12	-33.9
Concrete strain at maximum strength	ϵ_{psc0}	-0.00295	-0.002
Concrete crushing strength	\$ <i>f</i> _{cu}	-7.42	-6.78
Concrete strain at crushing strength	\$e _{pscu}	-0.0235	-0.01
Ratio between unloading slope at epscu and initial slope	\$λ	0.1	0.1
Tensile strength	f_t	2	2
Tension softening stiffness (slope of the linear tension softening branch)	E_t	1500	1500

Tabella 3-29. Materiali utilizzati per la sezione 2

		Concrete Section 3	
		Core concrete	Cover concrete
Concrete compressive strength at 28 days	\$ <i>f</i> _c	-36.91	-33.9
Concrete strain at maximum strength	ϵ_{psc0}	-0.00289	-0.002
Concrete crushing strength	\$ <i>f</i> _{cu}	-7.38	-6.78
Concrete strain at crushing strength	ε_{pscu}	-0.0275	-0.01
Ratio between unloading slope at epscu and initial slope	\$λ	0.1	0.1
Tensile strength	f_t	2	2
Tension softening stiffness (slope of the linear tension softening branch)	E_t	1500	1500

Tabella 3-30. Materiali utilizzati per la sezione 3

		Concrete Section 4	
		Core concrete	Cover concrete
Concrete compressive strength at 28 days	\$ <i>f</i> _c	-39.42	-33.9
Concrete strain at maximum strength	ϵ_{psc0}	-0.00358	-0.002
Concrete crushing strength	\$ <i>f</i> _{cu}	17	-6.78
Concrete strain at crushing strength	ϵ_{pscu}	-0.03	-0.01
Ratio between unloading slope at epscu and initial slope	\$λ	0.1	0.1
Tensile strength	f_t	2	2
Tension softening stiffness (slope of the linear tension softening branch)	E_t	1500	1500

Tabella 3-31. Materiale utilizzati per la sezione 4

Per la modellazione delle barre di acciaio è stato utilizzato il materiale *Hysteretic*, tenendo conto in compressione della legge di Dhakal-Maekawa, come nl caso precedente. Vengono quindi riportati nelle **Tabella 3-32**, **Tabella 3-33**, **Tabella 3-34**, **Tabella 3-35** i parametri meccanici importati in *OpenSees* riferiti alle bare di armature utilizzate:

		Bars $\Phi 10$
		(stirrups Φ 3/130)
Stress at first point of the envelope in the positive direction [Mpa]	\$s1p	515
Strain at first point of the envelope in the positive direction [-]	\$e1p	0.00245
Stress at second point of the envelope in the positive direction [Mpa]	\$s2p	594
Strain at second point of the envelope in the positive direction [-]	\$e2p	0.17
Stress at third point of the envelope in the positive direction [Mpa]	\$s3p	20
Strain at third point of the envelope in the positive direction [-]	\$e3p	0.25
Stress at first point of the envelope in the negative direction [Mpa]	\$s1n	-515
Strain at first point of the envelope in the negative direction [-]	\$e1n	-0.00245
Stress at second point of the envelope in the negative direction [Mpa]	\$s2n	-92.95
Strain at second point of the envelope in the negative direction [-]	\$e2n	-0.02
Stress at third point of the envelope in the negative direction [Mpa]	\$s3n	-103
Strain at third point of the envelope in the negative direction [-]	\$e3n	-0.05
Pinching factor for strain (or deformation) during reloading [-]	\$pinchx	1
Pinching factor for stress (or force) during reloading [-]	\$pinchy	1
Damage due to ductility: D1(mu-1) [-]	\$damage1	0
Damage due to energy: D2(Eii/Eult) [-]	\$damage2	0

Validazione della proposta di modellazione per gli elementi frame

Tabella 3-32. Barre $\Phi 10$ (staffe $\Phi 3/130$)

		Bars $\Phi 10$
		(stirrups Φ 3/65)
Stress at first point of the envelope in the positive direction [Mpa]	\$s1p	515
Strain at first point of the envelope in the positive direction [-]	\$e1p	0.00245
Stress at second point of the envelope in the positive direction [Mpa]	\$s2p	594
Strain at second point of the envelope in the positive direction [-]	\$e2p	0.17
Stress at third point of the envelope in the positive direction [Mpa]	\$s3p	20
Strain at third point of the envelope in the positive direction [-]	\$e3p	0.25
Stress at first point of the envelope in the negative direction [Mpa]	\$s1n	-515
Strain at first point of the envelope in the negative direction [-]	\$e1n	-0.00245
Stress at second point of the envelope in the negative direction [Mpa]	\$s2n	-227.35
Strain at second point of the envelope in the negative direction [-]	\$e2n	-0.05
Stress at third point of the envelope in the negative direction [Mpa]	\$s3n	-103
Strain at third point of the envelope in the negative direction [-]	\$e3n	-0.08
Pinching factor for strain (or deformation) during reloading [-]	\$pinchx	1
Pinching factor for stress (or force) during reloading [-]	\$pinchy	1
Damage due to ductility: D1(mu-1) [-]	\$damage1	0
Damage due to energy: D2(Eii/Eult) [-]	\$damage2	0

Tabella 3-33. Barre $\Phi 10$ (staffe $\Phi 3/65$)

		Bars $\Phi 13$
		(stirrups Φ 3/60)
Stress at first point of the envelope in the positive direction [Mpa]	\$s1p	534
Strain at first point of the envelope in the positive direction [-]	\$e1p	0.00245
Stress at second point of the envelope in the positive direction [Mpa]	\$s2p	618
Strain at second point of the envelope in the positive direction [-]	\$e2p	0.16
Stress at third point of the envelope in the positive direction [Mpa]	\$s3p	20
Strain at third point of the envelope in the positive direction [-]	\$e3p	0.25
Stress at first point of the envelope in the negative direction [Mpa]	\$s1n	-534
Strain at first point of the envelope in the negative direction [-]	\$e1n	-0.00245
Stress at second point of the envelope in the negative direction [Mpa]	\$s2n	-336.09
Strain at second point of the envelope in the negative direction [-]	\$e2n	-0.06
Stress at third point of the envelope in the negative direction [Mpa]	\$s3n	-106.80
Strain at third point of the envelope in the negative direction [-]	\$e3n	-0.08
Pinching factor for strain (or deformation) during reloading [-]	\$pinchx	1
Pinching factor for stress (or force) during reloading [-]	\$pinchy	1
Damage due to ductility: D1(mu-1) [-]	\$damage1	0
Damage due to energy: D2(Eii/Eult) [-]	\$damage2	0

Tabella 3-34. Barre Φ13 (staffe Φ 3/60)

		Bars Φ13 (stirrups Φ3/120)
Stress at first point of the envelope in the positive direction [Mpa]	\$s1p	534
Strain at first point of the envelope in the positive direction [-]	\$e1p	0.00245
Stress at second point of the envelope in the positive direction [Mpa]	\$s2p	618
Strain at second point of the envelope in the positive direction [-]	\$e2p	0.16
Stress at third point of the envelope in the positive direction [Mpa]	\$s3p	20
Strain at third point of the envelope in the positive direction [-]	\$e3p	0.25
Stress at first point of the envelope in the negative direction [Mpa]	\$s1n	-534
Strain at first point of the envelope in the negative direction [-]	\$e1n	-0.00245
Stress at second point of the envelope in the negative direction [Mpa]	\$s2n	-117.77
Strain at second point of the envelope in the negative direction [-]	\$e2n	-0.03
Stress at third point of the envelope in the negative direction [Mpa]	\$s3n	-106.80
Strain at third point of the envelope in the negative direction [-]	\$e3n	-0.06
Pinching factor for strain (or deformation) during reloading [-]	\$pinchx	1
Pinching factor for stress (or force) during reloading [-]	\$pinchy	1
Damage due to ductility: D1(mu-1) [-]	\$damage1	0
Damage due to energy: D2(Eii/Eult) [-]	\$damage2	0

Validazione della proposta di modellazione per gli elementi frame

Tabella 3-35. Barre Φ 13 (staffe Φ 3/120)

Come nel caso precedente, viene riportata nella **Figura 3-42** la curva di pushdown ottenuta in seguito alla taratura del modello. Come si può osservare, i risultati ottenuti in questo secondo caso risultano essere peggiori rispetto al telaio senza dettagli sismici. La curva ottenuta infatti mostra un andamento simile alla curva sperimentale, riuscendo a determinare il punto di crisi della struttura, ma non la riprende in modo preciso, nonostante i criteri utilizzati per il modello strutturale adottate siano gli stessi nei due telai. Questo dimostra che, nonostante il modello sia accurato, non si riescono a considerare in modo adeguato tutte le non linearità del problema(**Figura 3-42**).

Figura 3-42. Confronto tra la curva sperimentale e la curva numerica di pushdown

Vengono inoltre riportati gli spostamenti orizzontali in corrispondenza dei tre piani, in funzione dello spostamento verticale in del punto centrale del telaio. **Figura 3-43**, **Figura 3-44**, **Figura 3-45**.

Figura 3-43. Spostamento orizzontale del primo piano

Figura 3-44. Spostamento orizzontale del secondo piano

Figura 3-45. Spostamento orizzontale del terzo piano

Si può quindi concludere che la modellazione a fibre e l'infittimento della mesh permette di ottenere risultati attendibili in termini di resistenza offerta in caso di rimozione accidentale della colonna centrale. Tuttavia il comportamento della struttura risulta essere fortemente non lineare e si presenta dunque la difficoltà di individuare un modello numerico preciso che possa essere del tutto in linea con i risultati sperimentali.

Capitolo 4. Proposta di modellazione dei telai tamponati

All'interno del presente capitolo viene studiata l'influenza del tamponamento perimetrale in muratura sul comportamento dei telai in calcestruzzo armato sottoposti al collasso progressivo. Come è stato possibile osservare nei precedenti capitolo, le strutture interessate da questo tipo di azione accidentale presentano un comportamento tipico, mostrando un iniziale meccanismo resistente flessionale, in seguito al quale si innescano i meccanismi ad arco e a catenaria. Nel momento in cui viene introdotta la tamponatura perimetrale attraverso pannelli di muratura, questo comportamento dei telai in calcestruzzo armato tende a variare. É stato osservato infatti, mediante studi di tipo sperimentale, come all'interno di un telaio tamponato ci sia una modifica del meccanismo resistente, in cui non si osserva solitamente l'istaurarsi del meccanismo a catenaria. Questo è dovuto ad un minor danneggiamento del nodo trave-colonna in quanto all'interno della trave risulta esserci uno sforzo di compressione minore, che viene in parte scaricato all'interno della muratura. Si osserva inoltre una migrazione della zona di formazione della cerniera plastica e un generale aumento della resistenza della struttura in termini di capacità portante. Tutti questi aspetti portano dunque ad avere un comportamento differente della struttura, di conseguenza da questo deriva la necessità di prendere in considerazione l'influenza del tamponamento.

Tuttavia il problema risulta essere di difficile calibrazione e una modellazione accurata richiederebbe un elevato costo computazionale. In queste condizioni diventa importante determinare un metodo di modellazione del tamponamento che risulti semplice ed efficace e che allo stesso tempo rappresenti l'influenza di una grande quantità di variabili geometriche e meccaniche. Per questo motivo, come verrà spiegato nel dettaglio all'interno del presente capitolo, è stata scelta una modellazione della tamponatura attraverso puntoni equivalenti, che possano restituire una risposta anelastica relativamente semplice.

Al fine di validare un metodo di modellazione accurato, sono stati presi in considerazione casi sperimentali e numerici appartenenti a studi precedenti. Le variabili presenti all'interno di questi studi sono la presenza dei dettagli sismici, la presenza dei vincoli laterali, il numero di piani e la variazione delle dimensioni delle travi costituenti il telaio. A partire dunque da questi dati, l'obiettivo è stato quello di trovare una modellazione, che permettesse di ricavare gli stessi risultati ottenuti per via sperimentale e numerica FEM. In questo modo, una volta ottenuti tali

risultati, è stato possibile effettuare delle osservazioni e delle correlazioni, che hanno in seguito permesso di determinare una proposta di modellazione dei telai tamponati, tenendo in considerazione di tutte le variabili caratterizzanti il problema.

É stata quindi condotta una modellazione di ciascun telaio considerato in *OpenSees*, utilizzando il metodo del puntone equivalente. Sono stati così calibrati i parametri meccanici e geometrici per ogni modello considerato al fine di ottenere la migliore corrispondenza con i risultati sperimentali e numerici dei test associati. Infine è stata condotta una ricerca delle relazioni di correlazione tra i parametri dei puntoni, al fine di determinare un metodo semplificato applicabile ad ogni telaio in calcestruzzo armato tamponato in muratura.

4.1 Definizione dei telai tamponati considerati

Sono stati considerati in questo studio sei differenti edifici, da cui sono stati estrapolati telai perimetrali di dimensioni ridotte rispetto a quelle dell'intera struttura. Su questi telai sono state effettuate prove sperimentali e numeriche, utili ai fini della modellazione che verrà in seguito esposta. In particolare sono stati considerati i campioni scalati rispetto alle dimensioni reali sottoposti a prove sperimentali di pushdown i cui risultati sono riportati all'interno dell'articolo **Qian, K. & Li, B.** 2017 "Effects of Masonry Infill Wall on the Performance of RC Frames to Resist Progressive Collapse." J Struct Eng, 143(9): 04017118. di Qian, K. & Li, B. 2017. I telai sottoposti a prove numeriche invece sono presenti all'interno della tesi di laurea magistrale di Dalmasso M., 2018 (27) , in cui sono presenti tutti i risultati ottenuti mediante l'utilizzo dei software *Atena* e *OpenSees*. Viene riportata di seguito una tabella che riassume i casi considerati, con un codice identificativo per ognuno di essi, i quali verranno illustrati nel dettaglio nel seguente paragrafo.

	Codice identificativo
Telaio tamponato sismico sperimentale senza vincoli con $l/h = 2(25)$	tts2
Telaio tamponato non sismico sperimentale senza vincoli con $l/h = 2(25)$	ttns2
Telaio tamponato sismico senza vincoli con l/h = 1	tts
Telaio tamponato sismico con vincoli con $l/h = 1$	ttsv
Telaio tamponato non sismico con vincoli con $l/h = 1$	ttnsv
Telaio tamponato non sismico senza vincoli $con l/h = 1$	ttns
Telaio tamponato sismico senza vincoli con $l/h = 2$	ttsl
Telaio tamponato sismico con vincoli con $l/h = 2$	ttsvl
Telaio tamponato non sismico con vincoli con $l/h = 2$	ttnsvl
Telaio tamponato non sismico senza vincoli con $l/h = 2$	ttnsv
Telaio tamponato non sismico con vincoli con $l/h = 2 \text{ con } w/t=0,20$	ts2tnsvl
Telaio tamponato non sismico con vincoli con $l/h = 2 \text{ con } w/t=0,43$	ts3tnsvl
Telaio tamponato non sismico con vincoli con $l/h = 2 \text{ con } w/t=0,80$	ts4tnsvl
Telaio tamponato a tre piani sismico con vincoli con $l/h = 1$	t3tsv
Telaio tamponato a quattro piani sismico con vincoli con $l/h = 1$	t4tsv

Tabella 4-1. Casi sperimentali e numerici considerati

4.1.1 Casi sperimentali considerati

All'interno dell'articolo dall'articolo "Effects of Masonry Infill Wall on the Performance of RC Frames to Resist Progressive Collapse" di Kai Qian, M.ASCE1; and Bing Li, M.ASCE2 (10) vengono riportati i risultati ottenuti in seguito a prove sperimentali di pushdown effettuate su telai bidimensionali scalati rispetto alle dimensioni reali. Essi sono stati estrapolati da un edificio a otto piani (**Figura 4-1**), del quale in particolare sono stati considerati i telai di bordo, che presentano dunque i vincoli alla deformabilità laterale solamente a sinistra, mentre a destra risulta essere liberi di muoversi in direzione orizzontale. Il campione sottoposto al test di laboratorio presenta dunque la stessa geometria del telaio reale, essendo esso solamente di dimensioni scalate. In particolare sono stati considerati i due telai tamponati con (WSS) e senza (WNS) la presenza dei dettagli sismici, al fine di indagare l'influenza di questa ulteriore variabile.

Figura 4-1. Edificio reale

Per quanto riguarda il campione con dettagli sismici, viene riportata la **Figura 4-2** in cui si può osservare la sua geometria e la disposizione dell'armatura longitudinale e trasversale.

Figura 4-2.Campione sismico *tts2* sottoposto a prove di laboratorio (a); Sezioni delle travi e delle colonne considerate (b)

Figura 4-3.Campione non sismico *ttns2* sottoposto a prove di laboratorio (a); Sezioni delle travi e delle colonne considerate (b)

I due campioni sono stati costruiti senza la colonna centrale al piano inferiore, per simulare la sua rimozione a causa di esplosioni o impatti di veicoli a terra. Le due colonne laterali invece sono state ancorate alla base mediante plinti di dimensioni 300x400 mm. Inoltre, al fine di simulare il vincolo orizzontale offerto dalle restanti campate dell'edificio, sono stati utilizzati tre carelli ad asse orizzontale, posti in corrispondenza dell'asse delle travi, solamente nella parte sinistra del telaio. Il carico verticale è stato applicato ai provini attraverso un martinetto idraulico in corrispondenza della colonna centrale.

Per quanto riguarda il provino con dettagli sismici *tts2* viene riportato in **Figura 4-4** il suo quadro fessurativo in seguito alla prova di pushdown:

Figura 4-4. Quadro fessurativo del provino con dettagli sismici

La figura mostra in ordine quali sono le fessure che si vengono a creare all'interno dei pannelli all'aumentare dello spostamento verticale del punto di mezzeria. Risulta infatti che la fessurazione si viene a creare inizialmente all'interno dei pannelli di tamponamento, per interessare infine le travi in cemento armato, con conseguente rottura delle barre di armatura. La curva carico-spostamento ottenuta in seguito alla prova eseguita viene riportata in **Figura 4-5**:

Figura 4-5. Curva sperimentale carico-spostamento verticale del provino con dettagli sismici (curva rossa)

Come si può osservare il carico di picco è stato ottenuto in corrispondenza dello spostamento verticale pari a 3 mm. Oltre questo valore è stata osservata una caduta improvvisa della capacità portante del telaio fino allo spostamento pari ad 8 mm, per mantenere poi un andamento circa costante fino allo spostamento pari a 156 mm.

Il provino senza dettagli sismici *ttns2* presenta il quadro fessurativo riportato in Figura 4-6:

Figura 4-6. Quadro fessurativo del provino senza dettagli sismici

Anche in questo caso i numeri riportati in figura indicano la sequenza con cui si formano le fessure all'interno del provino all'aumentare del carico applicato. In seguito alla prova effettuata è stato possibile affermare che la capacità resistente del campione è da attribuire principalmente ai pannelli di tamponamento piuttosto che al telaio in c.a. nella fase iniziale del test. Viene riportata in **Figura 4-7** la curva carico-spostamento ottenuta per questo campione:

Figura 4-7. Curva carico-spostamento verticale del campione senza dettagli sismici (curva rossa)

4.1.2 Casi numerici considerati

Viene preso in considerazione in questa fase il caso studio riferito ad un edificio residenziale a cinque piani in cemento armato, di cui sono riportate tutte le analisi numeriche effettuate all'interno della tesi di laurea magistrale di Dalmasso M, (2018)(27). Si è supposto che l'edificio subisca una perdita accidentale di una colonna centrale di uno dei telai perimetrali. La struttura dell'edificio è stata progettata ipotizzando due diverse configurazioni di campate

centrali convergenti alla colonna di interesse. In questo modo si ottengono due disposizioni a campata centrale, una con campate corte e rapporto l/h_c (luce/altezza della colonna) pari a 1 (*edificio A*-**Figura 4-8**(a)) e l'altra con campate lunghe e rapporto l/h_c pari a 2 (*edificio B*-**Figura 4-8**(b)). Gli edifici appena presentati sono stati progettati considerando delle travi alte (30x50 cm). La struttura dell'edificio B è stata progettata anche considerando altre due configurazioni del rapporto base-altezza della trave b/h. In particolare sono state utilizzate le travi con dimensioni 100x20 cm (*edificio C*-**Figura 4-8**(c)), 70x30 cm (*edificio D*-**Figura 4-8**(d)) e 50x40 cm (*edificio E*-**Figura 4-8**(e))

Figura 4-8. Vista 3D degli edifici considerati e telai ricavati: a) Edificio A; b) Edificio B; c) Edificio C; d) Edificio D; e) Edificio E

Le dimensioni in pianta degli edifici sono 19,08 x 16,48 metri, mentre le altezze dell'interpiano sono 3,57 m dal piano campagna alla prima elevazione e 3,07 m dalla seconda elevazione in poi. Gli edifici sono progettati utilizzando il valore caratteristico delle resistenze del calcestruzzo e dell'acciaio $f_c = 25$ MPa e $f_y = 450$ MPa rispettivamente. I carichi caratteristici di progetto sui solai sono $G_{1k} = 3,20$ kN / m, $G_{2k} = 3,80$ kN / m, $Q_{k1} = 2,00$ kN / m (affollamento), mentre i carichi agenti sul tetto sono $G_{1k} = 3,20$ kN / m, $G_{2k} = 2,10$ kN / m, $Q_{k1} = 0,50$ kN / m (manutenzione), $Q_{k1} = 0,48$ kN / m (neve). Gli edifici A e B sono stati progettati considerando i carichi sismici, i dettagli sismici e le regole di progettazione secondo la gerarchia delle resistenze. Il rischio sismico del sito (Palermo) è stato definito coerentemente con l'uso residenziale dell'edificio e le caratteristiche del suolo (terreno roccioso). I parametri di rischio secondo le Norme Tecniche per le Costruzioni (NTC 2018) sono VN = 50 (vita nominale), S = 1 (fattore del suolo), TR = 475 anni (periodo di ritorno), $a_g = 0,176$ g (accelerazione di picco). Per estendere l'indagine a strutture non sismicamente progettate, gli edifici A e B sono stati progettati anche considerando solo carichi verticali e ignorando i dettagli sismici.

Tutti i telai presentati sono stati sottoposti al test di pushdown, al fine di valutare quale sia la loro capacità portante in caso di rimozione della colonna centrale. Sono stati inoltre considerati i casi in cui i telai vengono vincolati lateralmente, al fine di valutare quale sia l'influenza della deformabilità laterale del telaio sulla sua resistenza.

La tamponatura utilizzata per queste struttura è dello stesso tipo di quella testata sperimentalmente da Cavaleri & Di Trapani (2014), composta da laterizi cavi in argilla, connessi attraverso uno strato di malta cementizia di 10 mm, di cui vengono riportati in **Tabella 4-2** i parametri meccanici:

<i>f_{m1}</i> (MPa)	<i>f_{m2}</i> (MPa)	f _{vm} (MPa)	E_1 (MPa)	<i>E</i> ₂ (MPa)	G (MPa)
4.18	8.66	1.07	5032	6401	2547

Tabella 4-2. Parametri meccanici della muratura

Dei telai presentati è stata effettuata una modellazione raffinata ad elementi finiti, attraverso l'utilizzo del software di calcolo *Atena 2D*, di cui viene riportato un esempio in figura:

Figura 4-9. Tipico modello FE realizzato in Atena

A tutti gli elementi descritti è stata assegnata inoltre la non linearità geometrica, al fine di poter condurre un'analisi in condizione indeformata della struttura, sotto l'ipotesi di grandi spostamenti.

Tutti i telai tamponati descritti sono stati quindi sottoposti al test di pushdown, in seguito ai quali essi hanno mostrato la formazione di un meccanismo resistente complicato.

Per quanto riguarda il telaio con rapporto $l/h_c = 1$ è stata infatti osservata la formazione di due regioni diffusive per ciascun pannello di tamponamento che individuano due campi di compressione caratterizzati da fessure diagonali che lo attraversano. Questo meccanismo va a influenzare la distribuzione delle tensioni locali all'interno delle travi in calcestruzzo, che porta ad avere una migrazione delle cerniere plastiche verso l'interno della trave stessa. Si osserva infine un rapido decadimento della resistenza del sistema in seguito allo scorrimento che verifica all'interno dei giunti di malta. Viene di seguito riportata la curva di pushdown ottenuta in seguito alla prova (**Figura 4-10**).

Figura 4-10. Curva pushdown dei campioni ttsv e ttnsv

Come si può osservare l'influenza della progettazione sismica sui telai con tamponamento in muratura non risulta essere rilevante. Le due curve per i campioni sismico e non sismico risultano avere all'incirca lo stesso andamento. Questo è dovuto proprio alla presenza della tamponatura, la quale determina un incremento della resistenza tale da rendere irrilevante l'influenza dei dettagli sismici.

Di seguito invece viene riportata la curva pushdown dei campioni non vincolati lateralmente (**Figura 4-11**). Per essi è stato osservato che la maggiore deformabilità laterale del sistema si traduce in una significativa riduzione dell'azione di compressione sulle travi, che si trasforma in una riduzione della resistenza complessiva del telaio. Inoltre a differenza dei telai vincolati lateralmente, la resistenza ultima viene mantenuta fino al collasso del sistema, che avviene a causa della rottura delle barre di armatura.

Figura 4-11.Curva pushdown dei campioni tts e ttns

Risulta interessante osservare come per tutti i campioni non si osserva la formazione del meccanismo di catenaria in seguito alla fase di flessione.

Per quanto riguarda i campione con rapporto $l/h_c = 2$, si possono fare le stesse osservazioni dei telai con $l/h_c = 1$. Anche in questo caso si può osservare (**Figura 4-12** e **Figura 4-13**) come per i campioni vincolati lateralmente ci sia una caduta di resistenza in seguito al raggiungimento del picco a causa dello scorrimento dei giunti di malta, mentre quelli senza vincoli laterali mantengono lo stesso valore massimo fino al collasso, che avviene a causa della frattura delle barre. Inoltre è stata osservata una migrazione più marcata della posizione di formazione della cerniera plastica rispetto al caso dei telai con $l/h_c = 1$, a causa della maggiore flessibilità delle travi, che seguono la deformazione del pannello di tamponamento.

Figura 4-12.Curva pushdown dei campioni ttsvl e ttnsvl

Figura 4-13.Curva pushdown dei campioni ttsl e ttnsl

Infine sono stati analizzati i campioni con differenti dimensioni delle travi, imponendo che esse siano in spessore, a differenza dei primi casi in cui sono state utilizzate travi spesse. É stato osservato come per i telai con rapporti h_b/t_b bassi ci sia una elevata capacità di spostamento, la quale potrebbe essere attribuita alla maggiore duttilità delle travi.

4.2 Modellazione in *OpenSees* del telaio in calcestruzzo armato

I casi sperimentali e numerici introdotti sono stati presi in considerazione al fine di determinare una proposta di modellazione delle strutture in calcestruzzo armato tamponate sottoposte al collasso progressivo. Il ragionamento seguito è stato quello di riproporre le stesse curve di pushdown senza la necessità di effettuare una modellazione accurata ad elementi finiti, ma cercando allo stesso tempo di prendere in considerazione tutte le criticità legate al problema in esame. Per quanto riguarda i pannelli in muratura, come si è visto, risulta complicato determinarne il comportamento. Inoltre la loro presenza determina una modifica dei meccanismi resistenti dell'intero sistema.

A tal fine è stato utilizzato il software *OpenSees* e sono state adottate le medesime regole di calibrazione introdotte nel capitolo 2, le quali vengono di seguito riassunte:

 Il software di calcolo permette di eseguire una modellazione a fibre degli elementi strutturali, attraverso la quale è possibile attribuire ad ogni fibra costituente la sezione trasversale una legge costitutiva differente a seconda del materiale che viene utilizzato. Attraverso la modellazione a fibre inoltre è possibile servirsi del concetto di plasticità distribuita, che non richiede dunque la determinazione della posizione delle cerniere plastiche che si andranno a formare sull'elemento strutturale.

- Attraverso un'accurata mesh, è possibile ottenere una buona approssimazione del campo degli spostamenti, anche attraverso l'utilizzo dell'elemento *displacement based* (DBE) sia per le travi che per le colonne.
- Le analisi eseguire attraverso il software di calcolo vengono effettuate sotto l'ipotesi di grandi spostamenti, prendendo in considerazione la configurazione deformata degli elementi.
- Viene applicata una trasformazione di tipo *Corotational* della rigidezza delle travi e dei pilastri dal sistema locale al sistema globale.
- I materiali utilizzati, appartenenti alla libreria *uniaxialMaterial*, sono il *Concrete02* per il calcestruzzo, adottando il modello di Saatcioglu e Razvi(2) precedentemente esposta, e l'*Hysteretic* per l'acciaio, per il quale si seguono in compressione il modello sperimentale di Dhakal e Maekawa(3).

Vengono quindi riportati inizialmente riportati i parametri di calibrazione utilizzati in *OpenSees* per la modellazione degli elementi in calcestruzzo armati che costituiscono telai, ed in seguito, verrà esposta la modellazione adottata per i pannelli di tamponamento.

Il significato dei simboli utilizzati per il materiale *Hysteretic* è il seguente:

Stress at first point of the envelope in the positive direction [Mpa]	\$s1p
Strain at first point of the envelope in the positive direction [-]	\$e1p
Stress at second point of the envelope in the positive direction [Mpa]	\$s2p
Strain at second point of the envelope in the positive direction [-]	\$e2p
Stress at third point of the envelope in the positive direction [Mpa]	\$s3p
Strain at third point of the envelope in the positive direction [-]	\$e3p
Stress at first point of the envelope in the negative direction [Mpa]	\$s1n
Strain at first point of the envelope in the negative direction [-]	\$e1n
Stress at second point of the envelope in the negative direction [Mpa]	\$s2n
Strain at second point of the envelope in the negative direction [-]	\$e2n
Stress at third point of the envelope in the negative direction [Mpa]	\$s3n
Strain at third point of the envelope in the negative direction [-]	\$e3n
Pinching factor for strain (or deformation) during reloading [-]	\$pinchx
Pinching factor for stress (or force) during reloading [-]	\$pinchy
Damage due to ductility: D1(mu-1) [-]	\$damage1
Damage due to energy: D2(Eii/Eult) [-]	\$damage2

Il significato dei simboli utilizzati per il materiale *Concrete02* è il seguente:

Concrete compressive strength at 28 days	\$fpc
Concrete strain at maximum strength	\$epsc0
Concrete crushing strength	\$fpcu
Concrete strain at crushing strength	\$epsu
Ratio between unloading slope at epscu and initial slope	\$lambda
Tensile strength	\$ft
Tension softening stiffness (slope of the linear tension softening branch)	\$Ets

4.2.1.1 Casi sperimentali tts2 e ttns2

Viene inizialmente considerato il telaio con dettagli sismici tts2. Per quanto riguarda l'acciaio sono stati considerati 4 diversi materiali, in quanto cambiano sia le barre longitudinali sia il passo delle staffe e questo influisce sul ramo di compressione dell'acciaio, per il quale si è utilizzata la teoria di *Dhakal e Maekawa* (3) (**Tabella 4-3**).

-	Bars Φ 10	Bars Φ 10	Bars Φ 13	Bars Φ 13
	Stirrups spacing	Stirrups spacing	Stirrups spacing	Stirrups spacing
	130 mm	65 mm	60 mm	120 mm
\$s1p	515	515	534	534
\$e1p	0.00245	0.00245	0.00254	0.00254
\$s2p	594	594	618	618
\$e2p	0.17	0.17	0.16	0.16
\$s3p	20	20	20	20
\$e3p	0.25	0.25	0.25	0.25
\$s1n	-515	-515	-534	-534
\$e1n	-0.00245	-0.00245	-0.00254	-0.00254
\$s2n	-92.95	-227.35	-336.09	-117.77
\$e2n	-0.02	-0.05	-0.06	-0.03
\$s3n	-103	-103	-106.8	-106.8
\$e3n	-0.05	-0.08	-0.08	-0.06
\$pinchx	1	1	1	1
\$pinchy	1	1	1	1
\$damage1	0	0	0	0
\$damage2	0	0	0	0

Tabella 4-3. Hysteretic utilizzato per la modellazione in OpenSees

Per quanto riguarda il calcestruzzo, sono stati definiti 4 diversi materiali per tenere conto delle 4 diverse sezioni considerate (**Tabella 4-4**, **Tabella 4-5**).

	Column Concrete Section 1		Column Concrete Section 2	
	Core concrete	Cover concrete	Core concrete	Cover concrete
\$fpc	-39.62	-33.9	-37.12	-33.9
\$epsc0	-0.00369	-0.002	-0.00295	-0.002
\$fpcu	-12	-6.78	-7.42	-6.78
\$epsu	-0.03	-0.01	-0.0235	-0.01
\$lambda	0.1	0.1	0.1	0.1
\$ft	2	2	2	2
\$Ets	1500	1500	1500	1500

Tabella 4-4. Concrete02 utilizzato per le sezioni delle colonne

	Beam Concrete Section 3		Beam Concrete Section 4	
	Core concrete	Core concrete	Core concrete	Cover concrete
\$fpc	-36.91	-39.42	-39.42	-33.9
\$epsc0	-0.00289	-0.00358	-0.00358	-0.002
\$fpcu	-7.38	-17	-17	-6.78
\$epsu	-0.0275	-0.03	-0.03	-0.01
\$lambda	0.1	0.1	0.1	0.1
\$ft	2	2	2	2
\$Ets	1500	1500	1500	1500

Tabella 4-5. Concrete02 utilizzato per le sezioni delle travi

Si procede dunque con il telaio senza dettagli sismici *ttns2*. Vengono riportate le tabelle che riassumono i materiali importati in *OpenSees*.

Per quanto riguarda l'acciaio sono stati considerati due diversi materiali poiché variano sia le barre longitudinali sia il passo delle staffe all'interno delle travi e delle colonne, e questo influisce sul ramo di compressione per il quale si è adottata la teoria di *Dhakal e Maekawa*(3) (**Tabella 4-6**).

	Bars Ø 6	Bars Φ 10
	Stirrups spacing	Stirrups spacing
	65 mm	50 mm
\$s1p	449	515
\$e1p	0.00214	0.00245
\$s2p	537	594
\$e2p	0.18	0.18
\$s3p	20	20
\$e3p	0.3	0.35
\$s1n	-449	-515
\$e1n	-0.00214	-0.00245
\$s2n	-96.49	-307.99
\$e2n	-0.02	-0.07
\$s3n	-89.80	-103
\$e3n	-0.05	-0.10
\$pinchx	1	1
\$pinchy	1	1
\$damage1	0	0
\$damage2	0	0

Tabella 4-6. Hysteretic utilizzato per la modellazione in OpenSees

Per quanto riguarda il calcestruzzo, sono stati definiti 4 diversi materiali per tenere conto delle 4 diverse sezioni considerate (**Tabella 4-7**, **Tabella 4-8**):

	Column Concrete Section 1 - 2			
	Core concrete	Core concrete		
\$fpc	-35.68	-35.68		
\$epsc0	-0.00311	-0.00311		
\$fpcu	-7.14	-7.14		
\$epsu	-0.0155	-0.0155		
\$lambda	0.1	0.1		
\$ft	2	2		
\$Ets	1500	1500		

Tabella 4-7. Concrete02 utilizzato per le sezioni 1 e 2 delle colonne

	Beam Concrete Section 3		Beam Concrete Section 4	
	Core concrete	Core concrete	Core concrete	Cover concrete
\$fpc	-35.15	-32.1	-35.41	-32.1
\$epsc0	-0.00294	-0.002	-0.00303	-0.002
\$fpcu	-7.03	-6.42	-7.08	-6.42
\$epsu	-0.016	-0.01	-0.0155	-0.01
\$lambda	0.1	0.1	0.1	0.1
\$ft	2	2	2	2
\$Ets	1500	1500	1500	1500

Tabella 4-8. Concrete02 utilizzato per le sezioni delle travi

4.2.1.2 Casi numerici tts, ttsv, ttnsv, ttns, ttsl, ttsvl, ttnsvl e ttnsl

I materiali implementati in *OpenSees* cambiano a seconda del fatto che siano presenti dettagli sismici o meno, in quanto cambia sia il confinamento del calcestruzzo sia il ramo di compressione dell'acciaio a causa dell'infittimento della staffatura. Come spiegato nel capitolo 2, infatti, per il calcestruzzo viene utilizzato il modello di *Saatcioglu e Razvi*(2) che tiene conto del confinamento del calcestruzzo, mentre per quanto riguarda l'acciaio, si è scelto di tenere conto dell'instabilità delle barre di armatura in compressione, utilizzando le formulazioni di *Dhakal e Maekawa*(3).

Si inizia quindi dai telai senza dettagli sismici *ttns (ttnsv)* e *ttnsl (ttnsvl)* appartenenti agli edifici A e B.

Per quanto riguarda l'acciaio sono stati considerati quattro diversi materiali nonostante le barre longitudinali siano le medesime sia nelle travi che nelle colonne. Il motivo è legato al cambiamento del passo delle staffe e questo influisce sul ramo di compressione dell'acciaio, in quanto si è utilizzato il modello di *Dhakal-Maekawa*(3). Tuttavia per rispettare i limiti imposti sulla deformazione si è dovuta fare un'approssimazione mettendo il passo delle staffe pari a 130 ovunque e, in questo modo, il materiale risulta essere uguale in tutti e quattro i casi (**Tabella 4-9**).

-	Bars Ø 14
	Stirrups spacing
	150, 160,190, 200
\$s1p	450
\$e1p	0.002
\$s2p	540
\$e2p	0.12
\$s3p	0
\$e3p	0.121
\$s1n	-450
\$e1n	-0.002
\$s2n	-96.25
\$e2n	-0.02
\$s3n	-90
\$e3n	-0.04
\$pinchx	1
\$pinchy	1
\$damage1	0
\$damage2	0

Tabella 4-9. Hysteretic utilizzato per i telai senza dettagli sismici degli edifici A e B

Per quanto riguarda il calcestruzzo, sono stati definiti 4 diversi materiali per tenere conto delle 4 diverse sezioni considerate, rispettivamente quelle della colonna con passo 150 mm e con passo 160 mm e quelle della trave con passo 190 mm e 200 mm (**Tabella 4-10** e **Tabella 4-11**):

	Column Concrete Section 1		Column Concrete Section 2	
	Core concrete	Cover concrete	Core concrete	Cover concrete
\$fpc	-29.26	-25	-29.04	-25
\$epsc0	-0.0037	-0.002	-0.0036	-0.002
\$fpcu	-6	-5	-6	-5
\$epsu	-0.01	-0.011	-0.01	-0.011
\$lambda	0.1	0.1	0.1	0.1
\$ft	2	2	2	2
\$Ets	1500	1500	1500	1500

Tabella 4-10. Concrete02 utilizzato per le sezioni delle colonne

	Page Consulto Section 2		Page Concrete Section 1	
	Beam Concrete Section 5		Deam Concrete Section 4	
	Core concrete	Core concrete	Core concrete	Cover concrete
\$fpc	-27.47	-25	-27.37	-25
\$epsc0	-0.003	-0.002	-0.0029	-0.002
\$fpcu	-5.5	-5	-5.5	-5
\$epsu	-0.012	-0.011	-0.012	-0.011
\$lambda	0.1	0.1	0.1	0.1
\$ft	2	2	2	2
\$Ets	1500	1500	1500	1500

Tabella 4-11. Concrete02 utilizzato per le sezioni delle travi

Procediamo quindi con i telai con dettagli sismici *tts (ttsv)* e *ttsl (ttslv)* appartenenti agli edifici A e B. Per quanto riguarda l'acciaio sono stati considerati 4 diversi materiali nonostante le barre longitudinali siano le stesse sia nelle travi che nelle colonne, in quanto, come nel caso precedente, cambia il passo delle staffe e questo influisce sul ramo di compressione dell'acciaio in quanto è stata utilizzato il modello di *Dhakal e Maekawa*(3) (**Tabella 4-12**).

-	Bars Ø 16	Bars Φ 16	Bars Φ 16	Bars Φ 16
	Stirrups spacing	Stirrups spacing	Stirrups spacing	Stirrups spacing
	50 mm	170 mm	110 mm	220 mm
\$s1p	450	450	450	450
\$e1p	0.002	0.002	0.002	0.002
\$s2p	540	540	540	540
\$e2p	0.12	0.12	0.12	0.12
\$s3p	0	0	0	0
\$e3p	0.121	0.121	0.121	0.121
\$s1n	-450	-450	-450	-450
\$e1n	-0.002	-0.002	-0.002	-0.002
\$s2n	-366.78	-92.33	-201.11	-92.33
\$e2n	-0.08	-0.02	-0.04	-0.02
\$s3n	-90	-90	-90	-90
\$e3n	-0.10	-0.14	-0.07	-0.14
\$pinchx	1	1	1	1
\$pinchy	1	1	1	1
\$damage1	0	0	0	0
\$damage2	0	0	0	0

Tabella 4-12. Hysteretic utilizzato per la modellazione in OpenSees

Per quanto riguarda il calcestruzzo, sono stati definiti 4 diversi materiali per tenere conto delle 4 diverse sezioni considerate, rispettivamente quelle della colonna con passo 50 mm e con passo 170 mm e quelle della trave con passo 110 mm e 220 mm (da **Tabella 4-13** a **Tabella 4-14**):

	Column Concrete Section 1		Column Concrete Section 2	
	Core concrete	Cover concrete	Core concrete	Cover concrete
\$fpc	-37.36	-25	-29.48	-25
\$epsc0	-0.0069	-0.002	-0.0038	-0.002
\$fpcu	-7.5	-5	-6	-5
\$epsu	-0.032	-0.011	-0.009	-0.011
\$lambda	0.1	0.1	0.1	0.1
\$ft	2	2	2	2
\$Ets	1500	1500	1500	1500

Tabella 4-13. Concrete02 utilizzato per le sezioni delle colonne

	Beam Concrete Section 3		Beam Concrete Section 4	
	Core concrete	Core concrete	Core concrete	Cover concrete
\$fpc	-29.38	-25	-27.67	-25
\$epsc0	-0.0038	-0.002	-0.0031	-0.002
\$fpcu	-6	-5	-5.8	-5
\$epsu	-0.016	-0.011	-0.0115	-0.011
\$lambda	0.1	0.1	0.1	0.1
\$ft	2	2	2	2
\$Ets	1500	1500	1500	1500

Tabella 4-14. Concrete02 utilizzato per le sezioni delle travi

4.2.1.3 Caso numerico ts2tnsvl

Le proprietà meccaniche dei materiali del telaio non sismico con travi sottili *ts2tnsvl* non cambiano rispetto ai precedenti considerati, ma variano le barre di armatura e la staffatura, e questo porta a dover implementare in *OpenSees* materiali diversi rispetto ai casi precedenti, in quanto il calcestruzzo risulta essere diversamente confinato e il ramo di compressione delle barre di armatura cambia a causa del buckling.

In alcuni casi sono stati raggruppati acciai che in teoria dovrebbero avere rami di compressione differenti. Tuttavia per rispettare i limiti imposti sulla deformazione del modello di Dhakal-

	Bars Ø 14	Bars Φ 16
	Stirrups spacing	Stirrups spacing
	150, 160 mm	190, 200 mm
\$s1p	450	450
\$e1p	0.002	0.002
\$s2p	540	540
\$e2p	0.12	0.12
\$s3p	0	0
\$e3p	0.121	0.121
\$s1n	-450	-450
\$e1n	-0.002	-0.002
\$s2n	-96.25	-92.33
\$e2n	-0.02	-0.02
\$s3n	-90	-90
\$e3n	-0.04	-0.04
\$pinchx	1	1
\$pinchy	1	1
\$damage1	0	0
\$damage2	0	0

Maekawa(3) si è dovuta fare un'approssimazione mettendo un passo delle staffe inferiore e in questo modo si sono ottenuti acciai con le stesse proprietà (**Tabella 4-15**).

Tabella 4-15. Hysteretic utilizzato per la modellazione in OpenSees

Per quanto riguarda il calcestruzzo, sono stati definiti 4 diversi materiali per tenere conto delle 4 diverse sezioni considerate, rispettivamente quelle della colonna con passo 150 mm e con passo 160 mm e quelle della trave con passo 190 mm e 200 mm (**Tabella 4-16**, **Tabella 4-17**):

	Column Concrete Section 1		Column Concrete Section 2	
	Core concrete	Cover concrete	Core concrete	Cover concrete
\$fpc	-29.26	-25	-29.04	-25
\$epsc0	-0.0037	-0.002	-0.0036	-0.002
\$fpcu	-6	-5	-6	-5
\$epsu	-0.01	-0.011	-0.01	-0.011
\$lambda	0.1	0.1	0.1	0.1
\$ft	2	2	2	2
\$Ets	1500	1500	1500	1500

Tabella 4-16. Concrete02 utilizzato per la sezione 1 delle colonne

	Beam Concrete Section 3-4		
	Core concrete	Cover concrete	
\$fpc	-25	-25	
\$epsc0	-0.002	-0.002	
\$fpcu	-5	-5	
\$epsu	-0.011	-0.011	
\$lambda	0.1	0.1	
\$ft	2	2	
\$Ets	1500	1500	

Tabella 4-17. Concrete02 utilizzato per le sezioni 3 e 4 delle travi

4.2.1.4 Caso numerico ts3tnsvl

Le proprietà meccaniche dei materiali del telaio non sismico con travi sottili *ts3tnsvl* non cambiano rispetto ai casi precedenti, ma variano le barre di armatura e la staffatura, e questo, come precedentemente specificato, porta a dover implementare in *OpenSees* materiali diversi rispetto ai casi precedenti (**Tabella 4-18**).

_	Bars Φ 14 Stirrups spacing	Bars Φ 14	Bars Φ 16 Stirrups spacing
		Stirrups spacing	
	140 mm	90 mm	90 mm
\$s1p	450	450	450
\$e1p	0.002	0.002	0.002
\$s2p	540	540	540
\$e2p	0.12	0.12	0.12
\$s3p	0	0	0
\$e3p	0.121	0.121	0.121
\$s1n	-450	-450	-450
\$e1n	-0.002	-0.002	-0.002
\$s2n	-96.25	-221.71	-257
\$e2n	-0.02	-0.05	-0.06
\$s3n	-90	-90	-90
\$e3n	-0.04	-0.07	-0.08
\$pinchx	1	1	1
\$pinchy	1	1	1
\$damage1	0	0	0
\$damage2	0	0	0

Tabella 4-18. Hysteretic utilizzato per la modellazione in OpenSees

Per quanto riguarda il calcestruzzo, sono stati definiti 2 diversi materiali per tenere conto delle 3 diverse sezioni considerate, rispettivamente quelle della colonna con passo 140 mm e con passo 90 mm e quelle della trave con passo 90 mm (**Tabella 4-19**):
	Column Con	crete Section 1	Column and Beam Concrete Section 2,3		
	Core concrete	Cover concrete	Core concrete	Cover concrete	
\$fpc	-29.50	-25	-32.76	-25	
\$epsc0	-0.0038	-0.002	-0.0051	-0.002	
\$fpcu	-6	-5	-7	-5	
\$epsu	-0.01	-0.011	-0.014	-0.011	
\$lambda	0.1	0.1	0.1	0.1	
\$ft	2	2	2	2	
\$Ets	1500	1500	1500	1500	

Tabella 4-19. Concrete02 utilizzato per le sezioni delle colonne e delle travi

4.2.1.5 Caso numerico ts4tnsvl

Le proprietà meccaniche dei materiali del telaio non sismico con travi sottili *ts4tnsvl* non cambiano rispetto ai casi precedenti, ma variano le barre di armatura e la staffatura (**Tabella 4-20**).

—	Bars Ø 14	Bars Φ 14		
	Stirrups spacing	Stirrups spacing		
	140 mm	90 mm		
\$s1p	450	450		
\$e1p	0.002	0.002		
\$s2p	540	540		
\$e2p	0.12	0.12		
\$s3p	0	0		
\$e3p	0.121	0.121		
\$s1n	-450	-450		
\$e1n	-0.002	-0.002		
\$s2n	-96.25	-221.71		
\$e2n	-0.02	-0.05		
\$s3n	-90	-90		
\$e3n	-0.04	-0.07		
\$pinchx	1	1		
\$pinchy	1	1		
\$damage1	0	0		
\$damage2	0	0		

Tabella 4-20. Hysteretic utilizzato in corrispondenza del passo delle staffe pari a 140 mm

Per quanto riguarda il calcestruzzo, sono stati definiti 2 diversi materiali per tenere conto delle 3 diverse sezioni considerate, rispettivamente quelle della colonna con passo 140 mm e con passo 90 mm e quelle della trave con passo 90 mm (**Tabella 4-21**):

	Column Concrete Section 1		Column and Beam Concrete Section 2,3		
	Core concrete	Cover concrete	Core concrete	Cover concrete	
\$fpc	-29.50	-25	-29.89	-25	
\$epsc0	-0.0038	-0.002	-0.0040	-0.002	
\$fpcu	-6	-5	-6	-5	
\$epsu	-0.01	-0.011	-0.0125	-0.011	
\$lambda	0.1	0.1	0.1	0.1	
\$ft	2	2	2	2	
\$Ets	1500	1500	1500	1500	

 Tabella 4-21. Concrete02 utilizzato per la sezione 1 delle colonne

4.3 Macromodellazione del tamponamento in muratura

La simulazione del collasso progressivo di un telaio tamponato attraverso un modello ad elementi finiti raffinato risulta essere dispendiosa dal punto di vista computazionale. Come è stato precedentemente osservato la presenza del tamponato perimetrale in una struttura in c.a. determina un cambiamento del meccanismo resistente. Come si può osservare in **Figura 4-14**, il tipico quadro fessurativo di un pannello di tamponatura sottoposto al collasso progressivo presenta due regioni diffusive di compressione che portano alla migrazione della cerniera plastica verso l'interno della trave. Questo determina una riduzione della luce di calcolo per il meccanismo resistente. Inoltre lungo la digonale del pannello si osserva una regione in cui si verifica lo scorrimento dei giunti di malta, che determina la formazione di un meccanismo attritivo. L'osservazione del meccanismo che si viene a creare nei modelli sperimentali e numerici considerati ha portato alla determinazione della proposta di modellazione del tamponamento. A tal fine è stata testata la modellazione del tamponamento in muratura attraverso puntoni equivalenti, come viene presentata nell'articolo redatto da Di Trapani et. al.(11).

Figura 4-14.Quadro fessurativo osservato sul modello FE al termine del test pushdown del campione con lb/lc=2 e vincoli laterali: a) telaio non tamponato; b) telaio tamponato.

Il modello a puntoni equivalenti si riferisce a telai tamponati soggetti ad azioni sismiche, perciò applicate attraverso forze equivalenti orizzontali. Per questo motivo è importante riadattare le relazioni utilizzate al caso di rimozione istantanea di una colonna. Anche in questo caso il telaio risulta essere sottoposto ad azioni dinamiche, ma la direzione del carico è verticale ed inoltre i meccanismi di collasso risultano essere differenti. Per questo motivo i puntoni equivalenti utilizzati per modellare la tamponatura andranno riadattati al caso in esame.

I test numerici effettuati sono stati numerosi, tuttavia ciò ha portato alla determinazione di un modello sempre più raffinato che ha permesso di riprendere le curve sperimentali e numeriche di carico-spostamento in maniera via via più precisa. Le prime prove effettuate hanno previsto la modellazione del tamponamento prima attraverso un puntone diagonale ed in seguito attraverso tre puntoni diversamente inclinati. In particolare nella prima configurazione è stata utilizzato il modello semi-empirico di Di Trapani et. al(11) in cui sono state invertite, nelle relazioni matematiche, la luce interna e l'altezza interna della colonna, proprio perché il carico risulta essere verticale.

Nella seconda configurazione, la quale si è rivelata infine la modellazione più appropriata, sono stati utilizzati tre puntoni diversamente inclinati. In **Figura 4-15** vengono riportate le due configurazioni di puntoni utilizzati.

Queste due configurazioni derivano proprio dall'osservazione del meccanismo resistente osservato. Mentre nella configurazione ad un puntone diagonale si va a modellare solamente il meccanismo attritivo in cui si osserva lo scorrimento dei giunti, nella configurazione a tre puntoni si vanno a modellare anche le due parti laterali diffusive.

Figura 4-15. Configurazione del puntone equivalente per il telaio tamponato a) modello con puntone singolo; b) modello con tre puntoni

La modellazione dei puntoni equivalenti in *OpenSees* è avvenuta utilizzando gli elementi *truss* sia nela configurazione ad un puntone che in quella a tre, che lavorano solamente in compressione. A questi elementi è possibile attribuire un materiale e un'area trasversale. Per qunto rigurda il materiale è stata attribuita la legge costitutiva del *Concrete02*, che viene riportata in **Figura 4-16**, caratterizzata da una resistenza e una deformazione di picco, in seguito alle quali è presente un ramo discendente per il quale vengono definite la resistenza e la deformazione ultime.

Figura 4-16. Legge costitutiva del punto equivalente

L'identificazione dell'area trasversale del puntone equivalente nella prima configurazione considerata è avvenuta moltiplicando lo spessore reale del pannello di muratura per una larghezza equivalente, determinata utilizzando la relazione (4.1), nella quale vengono invertite la luce e l'altezza del pannello rispetto alla formulazione originale:

$$w = \frac{l_b}{h_b} \frac{c^*}{\lambda^{*\beta^*}} d \tag{4.1}$$

Inoltre l'influenza dei carichi verticali sulle colonne viene ignorata. Il parametro λ^* viene valutato attraverso la formula proposta da Papia et al. (2003)(12), dove risultano nuovamente invertiti i termini relativi alle travi e alle colonne:

$$\lambda^{*} = \frac{\widetilde{E}_{m}}{E_{c}} \frac{t l_{b}^{'}}{A_{b}} \left(\frac{l_{b}^{'2}}{h_{c}^{'2}} + \frac{l}{4} \frac{A_{b}}{A_{c}} \frac{h_{c}^{'}}{l_{b}^{'}} \right)$$
(4.2)

I simboli A_b e A_c rappresentano l'area della sezione trasversale delle travi e delle colonne mentre il significato degli altri simboli possono essere osservati in **Figura 4-17**:

Figura 4-17. Identificazione dei parametri geometrici utilizzati

I parametri $c^* \in \beta^*$ vengono ricavati utilizzando le seguenti equazioni, nelle quali compare il modulo di Poisson, valutato lungo la direzione diagonale del pannello di muratura, che può essere in prima approssimazione assunto pari a 1:

$$c^* = 0.249 - 0.0116\nu + 0.567\nu^2$$

$$\beta^* = 0.146 - 0.0073\nu + 0.126\nu^2$$
(4.3)

I valori di resistenza e di deformazione da attribuire infine ai puntoni equivalenti, sono valutati con le seguenti relazione:

$$f_{md0} = \tilde{f}_m \cdot 26.9 \cdot \alpha^{-0.287} \tag{4.4}$$

(A A)

(1 -

(1 7)

$$f_{mdu} = f_{md0} \cdot 0.043 \cdot \beta - 0.06 \tag{4.5}$$

$$\varepsilon_{md0} = \varepsilon_{m0} \cdot 3.024 \cdot \gamma^{0.347} \tag{4.6}$$

$$\mathcal{E}_{mdu} = \mathcal{E}_{md0} \cdot 0.0184 \, \delta^{-1.166} \tag{4.7}$$

Dove i parametri α , β , γ e δ assumono la seguente espressione:

$$\alpha = \frac{\tilde{f}_m^{2} \cdot w \cdot t}{f_{vm}^{0.2} (h_c / l_b) \cdot \lambda^{*0.2}}$$
(4.8)

$$\beta = \frac{f_{md0}^{0.7} \cdot w \cdot t}{\tilde{E}_m^{0.2} d}$$

$$\tag{4.9}$$

$$\gamma = \left(\frac{f_{mdu}^{2}}{f_{md0}}\right) \left(\frac{E_{c}}{\tilde{E}_{m}^{1.5}}\right)$$
(4.10)

$$\delta = \tilde{E}_m^{0.20} \cdot \varepsilon_{md0} \tag{4.11}$$

dove $\mathcal{E}_{m0} = 0.0015$.

Nella prima configurazione quindi è stato adottato un solo puntone per ogni pannello di muratura, posizionato lungo la sua diagonale, modellato secondo le relazioni sopra riportate.

Per quanto riguarda invece la configurazione a tre puntoni, risulta importante fare una differenziazione tra i due tipi di elementi utilizzati.

Per comprendere in dettaglio il posizionamento dei puntoni nella seconda configurazione, si è scelto di prendere in considerazione uno dei telai analizzati. Precisamente, se si considera un telaio tamponato a due campate, esso risulta essere interessato da due pannelli di tamponatura: quello di sinistra, che va dalla colonna esterna sinistra fino a quella centrale che viene rimossa, e quello di destra, che va dalla colonna centrale fino alla colonna esterna destra (la schematizzazione viene riportata in **Figura 4-18**). Esaminando ad esempio la parte sinistra del telaio, il tamponamento verrà modellato attraverso puntoni compressi posizionati nel seguente

modo:

- due puntoni (che verranno chiamati Puntoni Laterali B1 e B2) che assumono la seguente posizione:
 - il primo puntone B1 parte dal nodo in basso a sinistra, che si forma all'intersezione tra l'asse della trave del primo piano e la colonna di sinistra, fino al punto dove si forma la cerniera plastica sulla trave dell'ultimo piano. Questo puntone quindi attraversa l'intero telaio nel suo sviluppo in altezza.
 - Il secondo puntone B2 parte dal punto dove si forma la cerniera plastica sulla trave del primo piano accanto alla colonna centrale che viene rimossa e arriva fino al nodo che si forma tra l'asse della trave dell'ultimo piano e la colonna centrale del telaio, attraversando così tutti i piani del telaio.
- un puntone (che verrà chiamato Puntone Centrale BC) che va dal nodo che si forma all'intersezione tra l'asse trave di un certo piano con il puntone B1 e l'asse della trave del piano successivo col la biella B2. Di conseguenza, se il telaio è a due piani, si avrà un solo puntone BC; se il telaio è a tre piani, si avranno due puntoni BC e così via.

Figura 4-18. Schematizzazione del posizionamento delle bielle

La scelta di puntare i puntoni B nel punto in cui si formano le cerniere plastiche è sempre risultata adeguata, anche nei casi in cui sono variati la luce della campata o il numero di piani.

L'individuazione del punto in cui si forma la cerniera plastica è avvenuto inizialmente in modo del tutto qualitativo, in seguito all'osservazione del quadro fessurativo del telaio.

In seguito tuttavia è stato osservato come questa posizione, espressa attraverso una percentuale della luce, assumesse un andamento proporzionale al rapporto tra la luce e l'altezza della colonna (**Tabella 4-22 Figura 4-19**). In particolare essa vale circa 0,4 per $l/h_c = 1 e 0,3$ per $l/h_c = 2$.

	h _c [mm]	l[mm]	l_{h_c}	αlb
tts2	825	1800	2	0.278
ttns2	825	1800	2	0.319
tts	3170	3440	1	0.471
ttsv	3170	3440	1	0.363
ttnsv	3170	3440	1	0.392
ttns	3170	3440	1	0.5
ttsl	3170	6160	2	0.317
ttsvl	3170	6160	2	0.266
ttnsvl	3170	6160	2	0.282
ttnsv	3170	6160	2	0.333
ts2tnsvl	3170	6160	2	0.317
ts3tnsvl	3170	6160	2	0.317
ts4tnsvl	3170	6160	2	0.317
t3tsv	3170	3440	1	0.392
t4tsv	3170	3440	1	0.397
ttnsz ttsv ttnsv ttnsv ttns ttsl ttsvl ttnsvl ttnsvv ts2tnsvl ts3tnsvl ts4tnsvl t3tsv t4tsv	3170 3170	3440 3440 3440 3440 6160 6160 6160 6160 6160 6160 6160 6160 6160 6160 6160 6160 6160 6160 6160 6140 6140 6140 6140 6140 6140 6140 6140 6140 6140	$ \begin{array}{c} 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \end{array} $	0.317 0.471 0.363 0.392 0.5 0.317 0.266 0.282 0.333 0.317 0.317 0.317 0.317 0.317 0.392 0.397

Tabella 4-22. Posizione della cerniera plastica

Figura 4-19. Variazione della posizione della cerniera plastica

Nella configurazione a tre puntoni è stato nuovamente adottato come modello per la determinazione dei parametri geometrici e meccanici delle bielle BC quello di Di Trapani et. Al., utilizzando quindi le relazioni precedentemente riportate. Per quanto riguarda invece i puntoni laterali, essi sono stati modellati attraverso elementi singoli a comportamento elastico. Ciò che si è ottenuto in seguito a questi primi test viene riportato in **Figura 4-20**, **Figura 4-21**, **Figura 4-23**.

Figura 4-20. Confronto tra analisi pushdown effettuate su telai tamponati con rapporto l_b/h_c =1: a) presenza di vincoli laterali; b) assenza di vincoli laterali

Figura 4-21. Confronto tra analisi pushdown effettuate su telai tamponati con rapporto l_b/h_c =2: a) presenza di vincoli laterali; b) assenza di vincoli laterali.

Figura 4-22. Deformata in *OpenSees* dei modelli con 1 e 3 puntoni dei telai tamponati con rapporto $l_b/h_c = 1$: a) un puntone con vincoli laterali rigidi; b)3 puntoni con vincoli laterali rigidi; c) un puntone senza vincoli laterali rigidi; d)3 puntoni senza vincoli laterali rigidi;

Figura 4-23. Deformata in *OpenSees* dei modelli con 1 e 3 puntoni dei telai tamponati con rapporto $l_b/h_c=2$: a) un puntone con vincoli laterali rigidi; b)3 puntoni con vincoli laterali rigidi; c) un puntone senza vincoli laterali rigidi; d)3 puntoni senza vincoli laterali rigidi;

Dai risultati ottenuti attraverso questi primi test è stato osservato come il modello a tre puntoni abbia restituito risultati soddisfacenti, ma non del tutto precisi, specialmente per i telai con un numero di piani superiore oppure nei casi in cui non sono presenti vincoli laterali.

Per questo motivo si è deciso di aumentare l'accuratezza della modellazione, cercando di introdurre fattori correttivi della resistenza dei puntoni.

Per quanto riguarda i puntoni laterali B1 e B2 si è scelto di adottare il legame costitutivo del *Concrete02*, dove come valore di resistenza è stato considerato quello della muratura a compressione (**Tabella 4-23**).

f _m [MPa]
10.1
10.1
8.66
8.66
8.66
8.66
8.66
8.66
8.66
8.66
8.66
8.66
8.66
8.66
8.66

Tabella 4-23. Valore medio di resistenza a compressione della muratura

Il valore di resistenza di picco delle bielle BC invece è stato determinato per via iterativa, cercando di ottenere curve carico-spostamento che si adattassero a quelle dei modelli numerici e sperimentali, calcolando l'area trasversale delle bielle moltiplicando lo spessore della muratura per il valore di w calcolato utilizzando la formulazione di Di Trapani et. Al.(11)

$$w = \frac{l_b}{h_b} \frac{c^*}{\lambda^{*\beta^*}} d \tag{4.12}$$

Sono stati ottenuti i seguenti valori di area trasversale e di resistenza di picco delle bielle BC (**Tabella 4-24**):

Proposta c	li mode	ellazione	dei	telai	tamponati
------------	---------	-----------	-----	-------	-----------

	w[mm]	t [mm]	<i>A</i> [<i>mm</i> ²]	$f_{md0}[MPa]$
tts2	836	65	54370	0.44
ttns2	836	65	54370	0.50
tts	1122	300	336478	1.82
ttsv	1122	300	336478	1.82
ttnsv	1122	300	336478	1.82
ttns	1122	300	336478	1.82
ttsl	2611	300	783296	0.33
ttsvl	2611	300	783296	0.33
ttnsvl	2611	300	783296	0.33
ttnsv	2611	300	783296	0.33
ts2tnsvl	2611	300	783296	0.34
ts3tnsvl	2611	300	783296	0.34
ts4tnsvl	2611	300	783296	0.34
t3tsv	1122	300	336478	2.31
t4tsv	1122	300	336478	2.48

Tabella 4-24. Parametri meccanici e geometrici delle bielle B

Si può osservare come il rapporto tra la resistenza di picco dei puntoni e la resistenza media a compressione della muratura, utilizzando questo criterio, assuma un andamento lineare in funzione dell'inclinazione di questi puntoni rispetto all'orizzontale (**Figura 4-24**):

Poiché i puntoni compressi sono stati definiti in *OpenSees* attraverso il *Concrete02*, è risultato necessario determinare anche una deformazione di picco, insieme ad una resistenza e una deformazione ultime.

Per quanto riguarda la resistenza ultima dei puntoni BC, è stato necessario uno studio più approfondito rispetto alla resistenza di picco, in quanto essa non risultava dipendente solamente dall'inclinazione delle bielle. In particolare è stata notata la sua dipendenza dalla deformabilità del telaio in direzione orizzontale, in quanto i telai non vincolati lateralmente presentano una curva di pushdown più "piatta", senza il tipico picco iniziale dei telai tamponati.

È risultato inoltre importante prendere in considerazione il numero dei piani, il rapporto base/altezza della trave, la presenza dei dettagli sismici ed il rapporto luce/altezza della colonna del telaio, tutti elementi che, combinati tra di loro, hanno portato a determinare la resistenza ultima dei puntoni.

Per questo motivo sono stati dunque introdotti dei fattori che possano tenere in conto tutte queste variabili, e in particolare, questi fattori vanno moltiplicati per una resistenza ultima "di base", la quale invece varia solamente in funzione dell'inclinazione dei puntoni.

Nella **Tabella 4-25** vengono riportati la resistenza ultima di base (**Figura 4-25**) ed i fattori correttivi per i quali essa viene moltiplicata, secondo una relazione del tipo:

$$f_{cu} = f_{cu,base} \cdot \beta \cdot \gamma \cdot \delta \cdot \zeta \cdot \eta \tag{4.13}$$

(1 12)

In particolare si hanno i seguenti coefficienti correttivi:

- β = coefficiente che tiene conto della presenza dei dettagli sismici e assume il valore 1.1 in caso di telaio sismico e 1.5 in caso di telaio non sismico;
- γ = coefficiente che tiene conto della deformabilità laterale del telaio, che assume il valore 1.5 nel caso di presenza di vincoli laterali e 1 nel caso di assenza di vincoli laterali. Tutti i casi intermedi, come ad esempio presenza di vincoli solo da un lato del telaio, si collocano tra questi due casi estremi.
- δ = coefficiente che tiene conto del numero di piani. In particolare è stato osservato come passare da un telaio a due piani ad uno a tre piani provocasse l'abbattimento della resistenza ultima di quasi il 50 %, senza però notare particolari cambiamenti all'ulteriore aumento del numero di piani. Di conseguenza è stato introdotto questo coefficiente che vale 0.9 nel caso di telaio a due piani e 0.45 nel caso di telai con numero di piani superiore a due.
- ζ = coefficiente che tiene conto del rapporto tra la luce della trave e l'altezza del piano, che assume il valore 1 nel caso questo rapporto valga 1 e 1.1 nel caso valga 2 (**Figura 4-26**).

Figura 4-26. Andamento del coefficiente ζ

- η = coefficiente che tiene conto del rapporto tra la base della trave e l'altezza della trave, assumendo un andamento di tipo quadratico rispetto a questo parametro(**Figura 4-27**).

-	β	γ	δ	ζ	η	$f_{u,base}[MPa]$	f _{ud} [MPa]
tts2	1.1	1.4	0.45	1.1	0.99	0.13	0.10
ttns2	1.5	1.4	0.45	1.1	0.99	0.15	0.15
tts	1.1	1.5	0.9	1	0.95	0.57	0.80
ttsv	1.1	1	0.9	1	0.95	0.57	0.53
ttnsv	1.5	1	0.9	1	0.95	0.57	0.73
ttns	1.5	1.5	0.9	1	0.95	0.57	1.09
ttsl	1.1	1.5	0.9	1.1	0.95	0.13	0.20
ttsvl	1.1	1	0.9	1.1	0.95	0.13	0.13
ttnsvl	1.5	1	0.9	1.1	0.95	0.13	0.18
ttnsv	1.5	1.5	0.9	1.1	0.95	0.13	0.27
ts2tnsvl	1.5	1	0.9	1.1	0.25	0.13	0.05
ts3tnsvl	1.5	1	0.9	1.1	0.43	0.13	0.08
ts4tnsvl	1.5	1	0.9	1.1	0.7	0.13	0.14
t3tsv	1.1	1	0.45	1	0.95	0.71	0.33
t4tsv	1.1	1	0.45	1	0.95	0.76	0.36

Figura 4-27. Andamento del coefficiente η

Tabella 4-25. Resistenza ultima dei puntoni BC

Per quanto riguarda i due valori di deformazione, si è osservato come mantenendo un valore costante per ognuno dei due parametri si ottenessero comunque risultati accettabili. In una prima fase infatti si è cercato di determinare valori di deformazione molto precisi, tuttavia al fine di semplificare la modellazione, si è infine deciso di attribuire il valore di circa 1.9% alla deformazione di picco e di circa 7% alla deformazione ultima.

4.4 Confronto dei risultati

In base alle considerazioni fatte riguardo la modellazione della tamponatura perimetrale dei telai in calcestruzzo armato, si possono andare ad osservare i risultati ottenuti. In molti casi si può osservare come la curva ottenuta attraverso il test pushdown effettuato in *OpenSees* riprenda quasi perfettamente quelle ricavate utilizzando un modello ad elementi finiti raffinato. Vengono quindi riportati gli schemi statici adottati e i diagrammi ottenuti per tutti i casi considerati, in cui viene effettuato un confronto tra le curve sperimentali e numeriche(da **Figura 4-28** a **Figura 4-57**).

Figura 4-29. Telaio tamponato con dettagli sismici (10)

• Caso sperimentale *ttns2*

Figura 4-31. Telaio tamponato senza dettagli sismici (10)

Caso numerico tts

Figura 4-32. Schema statico adottato

Figura 4-33. Telaio tamponato con dettagli sismici senza vincoli laterali con l/h=1

Figura 4-35. Telaio tamponato con dettagli sismici con vincoli laterali con l/h=1

Figura 4-37. Telaio tamponato senza dettagli sismici con vincoli laterali con l/h=1

Figura 4-39. Telaio tamponato senza dettagli sismici senza vincoli laterali con l/h=1

Figura 4-41. Telaio tamponato con dettagli sismici senza vincoli laterali con l/h=2

Figura 4-43. Telaio tamponato con dettagli sismici con vincoli laterali con l/h=2

Caso numerico *ttnsvl*

Figura 4-45. Telaio tamponato senza dettagli sismici con vincoli laterali con l/h=2

Caso numerico *ttnsl*

Figura 4-47. Telaio tamponato senza dettagli sismici senza vincoli laterali con l/h=2

Figura 4-49. Telaio tamponato senza dettagli sismici con vincoli laterali con l/h=2 con w/t=0.2

• Caso numerico *ts3tnsvl*

Figura 4-51. Telaio tamponato senza dettagli sismici con vincoli laterali con l/h=2 con w/t=0.43

• Caso numerico *ts4tnsvl*

Figura 4-53. Telaio tamponato senza dettagli sismici con vincoli laterali con l/h=2 con w/t=0.8

Caso numerico t3tsv

Figura 4-55. Telaio tamponato con dettagli sismici con vincoli laterali a tre piani

• Caso numerico *t4tsv*

Figura 4-57. Telaio tamponato con dettagli sismici con vincoli laterali a quattro piani

Come si può osservare le risposte ottenute risultano essere soddisfacenti, in quanto si ottengono diagrammi, che in modo qualitativo, ripercorrono le curve ottenute effettuando le simulazioni sui modelli raffinati ad elementi finiti. I casi in cui sono stati ottenuti i risultati migliori sono rappresentati dai telai vincolati lateralmente, per i quali questo tipo di modellazione a puntoni risulta essere particolarmente indicata. Per quanto riguarda invece i telai non vincolati lateralmente, si sono riscontrate alcune difficoltà, specialmente dovute alla determinazione della resistenza ultima dei puntoni. Da qui nasce l'esigenza di introdurre i coefficienti correttivi di cui sopra.

Poiché la modellazione ha restituito risultati soddisfacenti, si è scelto di applicarla, nel capitolo seguente, ad un edificio tamponato di dieci piani, che è stato modellato utilizzando il software di calcolo *Edilus*, al fine di ricavare gli stessi risultati, studiando allo stesso tempo l'influenza del numero di piani e del numero di campate. Sullo stesso edificio verranno effettuate analisi di tipo dinamico, in modo da poter confrontare la riserva di resistenza con la domanda.

Capitolo 5. Simulazione di scenari di collasso progressivo su un edificio in calcestruzzo armato a 10 elevazioni

All'interno del presente capitolo verrà condotta la pr0gettazione di un edificio in calcestruzzo armato a dieci piani, al fine di poter in seguito applicare le regole di modellazione degli elementi in c.a. e della tamponatura individuate nei capitoli precedenti. Questo verrà fatto con il fine di poter determinare la capacità di una struttura di grandi dimensioni in situazione di collasso progressivo. A tal fine sarà considerato un telaio perimetrale della struttura, che verrà sottoposto al test di pushdown, rimuovendo sia la colonna centrale sia la colonna di bordo, simulando così un'azione accidentale come un'esplosione o un impatto veicolare al piano terra. La stessa struttura sarà utilizzata inoltre per determinare l'influenza del numero di piani sulla capacità portante.

La struttura verrà inizialmente modellata utilizzato il software *Edilus*, per andare in seguito ad utilizzare il software *OpenSees* per eseguire le analisi pushover. Ciò richiede anche la modellazione a fibre del telaio, per la quale verrà applicata la proposta di modellazione introdotta nel Capitolo 2.

5.1 Modellazione della struttura mediante il software *Edilus*

È stata condotta, attraverso l'utilizzo del software di calcolo strutturale *Edilus*, la progettazione di un edificio tamponato avente 10 elevazioni fuori terra, al fine di poter applicare ad uno dei telai appartenenti all'edificio la modellazione della tamponatura attraverso puntoni equivalenti precedentemente esposta.

In questa fase sono stati analizzati gli effetti del numero dei piani, del collasso di colonne differenti rispetto a quella centrale, avendo a disposizione telai a tre campate, e della presenza della tamponatura al di fuori di quella strettamente adiacente alla colonna che viene rimossa.

L'edificio progettato presenta una regolarità strutturale sia in pianta sia in altezza. Viene riportata in **Figura 5-1** la pianta dell'edificio, in cui viene evidenziato il telaio che è stato analizzato.

Figura 5-1. Pianta dell'edificio con individuazione del telaio considerato

L'edificio progettato è stato supposto ad uso ufficio pubblico. Esso è situato nel comune di Palermo, a 14 metri sul livello del mare, in zona sismica 2. L'azione sismica è stata valutata in conformità con le Norme Tecniche per le Costruzioni.

Gli spettri di risposta sono stati determinati mediante l'ausilio del software di calcolo *Edilus*, utilizzato per la progettazione dell'intera struttura. A tal fine, sono stata fatte le seguenti assunzioni:

5.1.1 Sisma e struttura:

- Accelerazione orizzontale massima del terreno: 0,176 Ag/g
- Tipo di terreno prevalente: C
- Classe dell'edificio: Classe 2

- Tipologia della struttura: A telaio, miste equivalenti a telaio con più campate sia in direzione X sia in direzione Y

- Classe di duttilità: Bassa
- Coefficiente viscoso equivalente: 5%
- Coefficiente di amplificazione topografica: 1,00
- Fattore di struttura q- SLU per sisma verticale: 1,5
- Fattore di struttura q – SLU per sisma orizzontale: 3,120 sia in direzione X sia in direzione Y;

- Valore di base q_0 : 3,9 sia in direzione X sia in direzione Y;

- Fattore K_w : 0,5 sia in direzione X sia in direzione Y;

- Rapporto $\frac{\alpha_u}{\alpha_1}$:1,3 sia in direzione X sia in direzione Y;

 La configurazione in pianta è compatta ossia la distribuzione di masse e rigidezze è approssimativamente simmetrica rispetto a due direzioni ortogonali e il contorno di ogni orizzontamento è convesso;

- Il rapporto tra i lati del rettangolo circoscritto alla pianta di ogni orizzontamento è inferire a 4;

- Ciascun orizzontamento ha una rigidezza nel proprio piano tanto maggiore della corrispondente rigidezza degli elementi strutturali verticali da potersi assumere che la sua deformazione in pianta influenzi in modo trascurabile la distribuzione delle azioni sismiche tra questi ultimi e ha resistenza sufficiente a garantire l'efficacia di tale distribuzione;

- Tutti i sistemi resistenti alle azioni sismiche si estendono per tutta l'altezza della costruzione.

Viene riportato in Figura 5-2 il diagramma degli spettri di risposta ottenuti attraverso Edilus:

Figura 5-2. Spettro di progetto SLV in direzione orizzontale e in direzione verticale

La costruzione è costituita da dieci piani fuori terra, arrivando ad una quota finale di 34 metri, con un interpiano pari a 3,4 metri ognuno. Il software *Edilus* permette di condurre la

progettazione attraverso l'utilizzo di elementi *pilatro*, *trave*, *solaio in cemento armato* e *tamponatura*. Vengono infatti definiti i nodi degli elementi, per completare infine il modello utilizzando gli elementi predefiniti. Infine esiste la possibilità di visualizzare la struttura in tre dimensioni, al fine di eseguire un controllo visivo della stessa, come viene riportato in **Figura 5-3**.

Figura 5-3. Edificio tamponato a dieci piani progettato in Edilus

L'edificio rappresenta una struttura a telai portanti in calcestruzzo armato orditi nelle due direzioni X e Y, tamponata in muratura portante. La fondazione è stata realizzata attraverso una platea di spessore pari a 60 cm. La stratigrafia mostra una sabbia argillosa mediamente consolidata entro la profondità di scavo a partire dal piano campagna, pari a 75 cm, senza che vi sia la presenza della falda.

Le travi sono state progettate a sezione rettangolare 30x50 cm, mentre le colonne presentano sezione 40x80. Il solaio risulta essere in latero-cemento, di spessore complessivo pari a 25, di cui 4 cm di soletta piena. Le pignatte hanno spessore pari a 40 cm, mentre ogni travetto risulta spesso 10 cm. Le tamponature perimetrali sono realizzate in muratura portante di spessore pari a 30 cm.

Il software di calcolo permette di ottenere tutte le tavole di carpenteria dei piani, le armature delle travi, dei pilastri, della platea e dei solai. Vengono riportate all'interno dell'Allegato 2 le

		kN/m^2	Lunghezza di influenza [m]	kN/m
Solaio	Peso proprio solaio	3.53	2.15	7.59
	Permanente non strutturale	2.36	2.15	5.07
	Sovraccarico accidentale	3	2.15	6.45
	Neve	0.5	2.15	1.08
Tamponatura	Peso proprio tamponatura	1.6	2.9	4.64
	Permanente non strutturale	0.74	2.9	1.15
Trave	Peso proprio	12.5	0.3	3.75

tavole di interesse riguardanti il telaio perimetrale preso in considerazione. Di seguito invece viene riportata la **Tabella 5-1**, contenente l'analisi dei carichi dell'edificio in esame.

Tabella 5-1. Carichi agenti sulla struttura tamponata

Al fine di effettuare in confronto tra un edificio tamponato ed uno non tamponato, è stata inoltre eseguita la progettazione dello stesso edificio senza tamponatura perimetrale (**Figura 5-4**).

Figura 5-4. Edificio non tamponato progettato in Edilus

5.2 Modellazione della struttura mediante il software OpenSees

La modellazione dell'edificio mediante il software *OpenSees* ha seguito le stesse regole adottate per i casi esaminati nei capitoli precedenti. Prima di riportare i parametri di calibrazione dei telai modellati in *OpenSees*, viene riportata una tabella (**Tabella 5-2**) riassuntiva di tutti i casi considerati e sottoposti all'analisi di pushdown, insieme ad un codice identificativo per ognuno di essi.

	Codice
Telaio tamponato sismico a sei campate e dieci piani con rimozione della colonna centrale	et10
Telaio tamponato sismico a sei campate e otto piani con rimozione della colonna centrale	et8
Telaio tamponato sismico a sei campate e sei piani con rimozione della colonna centrale	et6
Telaio tamponato sismico a sei campate e quattro piani con rimozione della colonna centrale	et4
Telaio tamponato sismico a sei campate e due piani con rimozione della colonna centrale	et2
Telaio tamponato sismico a due campate e dieci piani con rimozione della colonna centrale	tt10
Telaio tamponato sismico a due campate e otto piani con rimozione della colonna centrale	tt8
Telaio tamponato sismico a due campate e sei piani con rimozione della colonna centrale	tt6
Telaio tamponato sismico a due campate e quattro piani con rimozione della colonna centrale	tt4
Telaio tamponato sismico a due campate e due piani con rimozione della colonna centrale	tt2
Telaio tamponato sismico a due campate e dieci piani con vincoli laterali con rimozione della colonna centrale	tt10v
Telaio tamponato sismico a due campate e otto piani con vincoli laterali con rimozione della colonna centrale	tt8v
Telaio tamponato sismico a due campate e sei piani con vincoli laterali con rimozione della colonna centrale	tt6v
Telaio tamponato sismico a due campate e quattro piani con vincoli laterali con rimozione della colonna centrale	tt4v
Telaio tamponato sismico a due campate e due piani con vincoli laterali con rimozione della colonna centrale	tt2v
Telaio tamponato sismico a sei campate e dieci piani con rimozione della colonna di bordo	edst1
Telaio sismico a sei campate e dieci piani con rimozione della colonna centrale	e10
Telaio sismico a sei campate e otto piani con rimozione della colonna centrale	e8
Telaio sismico a sei campate e sei piani con rimozione della colonna centrale	e6
Telaio sismico a sei campate e quattro piani con rimozione della colonna centrale	e4
Telaio sismico a sei campate e due piani con rimozione della colonna centrale	e2
Telaio sismico a due campate e dieci piani con rimozione della colonna centrale	t10
Telaio sismico a due campate e otto piani con rimozione della colonna centrale	t8
Telaio sismico a due campate e sei piani con rimozione della colonna centrale	t6
Telaio sismico a due campate e quattro piani con rimozione della colonna centrale	t4
Telaio sismico a due campate e due piani con rimozione della colonna centrale	t2
Telaio sismico a due campate e dieci piani con vincoli laterali con rimozione della colonna centrale	t10v
Telaio sismico a due campate e otto piani con vincoli laterali con rimozione della colonna centrale	t8v
Telaio sismico a due campate e sei piani con vincoli laterali con rimozione della colonna centrale	t6v
Telaio sismico a due campate e quattro piani con vincoli laterali con rimozione della colonna centrale	t4v
Telaio sismico a due campate e due piani con vincoli laterali con rimozione della colonna centrale	t2v
Telaio sismico a sei campate e dieci piani con rimozione della colonna di bordo	eds1

Tabella 5-2. Telai sottoposti ad analisi di pushdown

Vengono quindi riportate di seguito le principali ipotesi adottate per la modellazione del telaio in calcestruzzo armato:

- Il software di calcolo permette di eseguire una modellazione a fibre degli elementi strutturali, attraverso la quale è possibile attribuire ad ogni fibra costituente la sezione trasversale una legge costitutiva differente a seconda del materiale che viene utilizzato. Attraverso la modellazione a fibre inoltre è possibile servirsi del concetto di plasticità distribuita, che non richiede dunque la determinazione della posizione delle cerniere plastiche che si andranno a formare sull'elemento strutturale.
- Attraverso un'accurata mesh, è possibile ottenere una buona approssimazione del campo degli spostamenti, anche attraverso l'utilizzo dell'elemento *displacement based* (DBE) sia per le travi che per le colonne.
- Le analisi eseguire attraverso il software di calcolo vengono effettuate sotto l'ipotesi di grandi spostamenti, prendendo in considerazione la configurazione deformata degli elementi.
- Viene applicata una trasformazione di tipo *Corotational* della rigidezza delle travi e dei pilastri dal sistema locale al sistema globale.
- I materiali utilizzati, appartenenti alla libreria *uniaxialMaterial*, sono il *Concrete02* per il calcestruzzo, adottando il modello di Saatcioglu e Razvi precedentemente esposta, e l'*Hysteretic* per l'acciaio, per il quale si seguono in compressione il modello sperimentale di Dhakal e Maekawa.

Per semplicità di compressione viene riportato all'interno dell'Allegato 1 tutto lo script del telaio perimetrale tamponato estrapolato dall'edificio, utilizzato per la definizione del modello implementato in *OpenSees*. In questo modo è possibile osservare come sono stati definiti i materiali, le sezioni e gli elementi costituenti il modello.

Per quanto riguarda la modellazione della tamponatura, risulta importante effettuare delle considerazioni aggiuntive rispetto ai casi esaminati nei precedenti capitoli. In questo caso infatti la tamponatura risulta avere comportamenti differenti a seconda di dove si posiziona la colonna che viene rimossa. In effetti avendo a disposizione una struttura a sei campate, si avrà la tamponatura adiacente alla colonna rimossa, che risulta sottoposta a carichi verticali e che verrà quindi modellata seguendo le regole adottate per i telai tamponati precedentemente esaminati. Inoltre è presente la tamponatura restante, non adiacente alla colonna, che risulta prevalentemente sottoposta a carichi orizzontali, in quanto si oppone alla deformabilità in

direzione orizzontale dell'intero telaio. Per queste ultime viene adottato il modello a puntoni equivalenti di Di Trapani et al.(11), il quale prevede si modellare la tamponatura soggetta a carichi orizzontali attraverso puntoni diagonali resistenti a compressione, i cui parametri meccanici e geometrici tengono conto di tutta la geometria del telaio.

Lo spessore t del puntone è uguale allo spessore effettivo del pannello di tamponatura, mentre la larghezza viene invece valutata secondo la relazione:

$$w = k^{\gamma^*} \left(\frac{h}{l}\right) \frac{c^*}{\lambda^{*\beta^*}} d$$
(5.1)

Dove h, l, d rappresentano l'altezza, la lunghezza e la diagonale del pannello di tamponatura, mentre k tiene conto dell'irrigidimento laterale esercitato dai carichi verticali agenti sul telaio e trasferiti al tamponamento, che può essere determinato attraverso la seguente relazione.

$$\boldsymbol{\kappa} = [1 + (18\lambda^* + 200)\boldsymbol{\varepsilon}_{\nu}] \tag{5.2}$$

(5.0)

In cui ε_{v} rappresenta la deformazione assiale verticale valutata sulle due colonne laterali:

$$\varepsilon_{\nu} = \frac{F_{\nu}}{2E_c A_c} \tag{5.3}$$

In cui F_v , E_c , A_c rappresentano il carico totale agente sulle colonne, il modulo elastico del calcestruzzo e la sezione della colonna.

Facendo uso della formulazione proposta da Papia et al. (2003)(12), è possibile anche determinare il valore di λ :

$$\lambda^{*} = \frac{\tilde{E}_{m}}{E_{c}} \frac{th}{A_{c}} \left(\frac{h^{2}}{l^{2}} + \frac{1}{4} \frac{A_{c}}{A_{b}} \frac{l}{h} \right)$$
(5.4)

Dove \tilde{E}_m e A_b rappresentano il modulo di Young della muratura in direzione diagonale e l'area della trave. Si inoltre considera $\tilde{E}_m = \sqrt{E_{m1} \cdot E_{m2}}$ in cui E_{m1} e E_{m2} corrispondono al modulo di Young della muratura in direzione orizzontale e verticale rispettivamente.

Il parametro γ tiene conto dell'eventuale presenza di aperture, con conseguente perdita di rigidezza, e del rapporto di forma del pannello di tamponatura.

$$\gamma^* = 1 + 0.5 \frac{r}{(l/h)^4} \tag{5.5}$$

Si inserisce r = 1 essendo poiché la tamponatura risulta essere senza aperture.

Il coefficiente di Poisson v, in assenza di dati, si considera pari a 0,1.

$$c^* = 0.249 - 0.0116\nu + 0.567\nu^2$$

$$\beta^* = 0.146 - 0.0073\nu + 0.126\nu^2$$
(5.6)

Il modello ha dimostrato un buon accordo con i risultati sperimentali e permette di determinare in modo accurato la rigidezza equivalente di ciascuna tipologia di telaio tamponato.

Per la loro modellazione in *OpenSees* è stato utilizzato il materiale *Concrete02*, il quale è stato attribuito ad elementi *truss*, i quali richiedono solamente la definizione dell'area trasversale complessiva.

In Tabella 5-3 vengono riportati dei puntoni equivalenti sottoposti a carichi orizzontali:

Compressive strength	\$fpc	-1.8
Strain at maximum strength	\$epsc0	-0.0013
Crushing strength	\$fpcu	-0.8
Ctrain at crushing strength	\$epscU	-0.0074
Ratio between unloading slope at \$epscu and initial slope	\$lambda	0.1
Tensile strength	\$ft	0
Tension softening stiffness (slope of the linear tension softening branch)	\$Et	0
Cross area [mm ²]		303219

Tabella 5-3. Concrete02 utilizzato per i puntoni equivalenti

Per quanto riguarda la modellazione dei pannelli di tamponatura sulle due campate adiacenti alla colonna che viene rimossa, vengono adottate esattamente stesse regole esposte in modo dettagliato all'interno del capitolo 4. Le proprietà meccaniche e geometriche vengono ricavata

a partire dalle relazioni di correlazione ricavate a partire dai casi sperimentali esposti. In particolare si è proceduto ricavando come prima cosa la posizione della cerniera plastica a partire dal grafico riportato in **Figura 4-19**. In seguito sono stati posizionati i puntoni B, che vanno dal primo piano fino all'ultimo, e dei puntoni BC, di cui si può adesso ricavare l'angolo di inclinazione. A partire da quest'ultimo, è stato ricavato il valore di resistenza di picco dei puntoni BC e il valore di base della resistenza ultima, servendosi dei grafici riportati in **Figura 4-24** e in **Figura 4-25**. Infine è stato ricavato il valore di resistenza ultima delle bielle BC, introducendo i coefficienti di correzione che tengono conto della presenza dei dettagli sismici, del numero di piani e delle dimensioni del telaio.

La disposizione dei puntoni utilizzati per la modellazione della tamponatura quando viene rimossa la colonna centrale dell'edificio viene riportata in **Figura 5-5**, dove si possono osservare sia i puntoni reagenti a carichi orizzontali sia quelli utilizzati per la modellazione della tamponatura adiacente alla colonna.

Simulazione di scenari di collasso progressivo su un edificio in calcestruzzo armato a 10 elevazioni

Figura 5-5. Schema statico adottato in caso di rimozione della colonna centrale dell'edificio

In **Figura 5-6** vengono invece riportate le immagini restituite dalle analisi di pushdown effettuate in *OpenSees*, in cui si può osservare la deformata che assume la struttura.

Figura 5-6. Telaio tamponato a sei campate e dieci piani - Modellazione in *OpenSees* In questa fase è stata posta l'attenzione su diversi aspetti, come ad esempio la determinazione dell'influenza del numero di piani o quella della presenza di un numero maggiore di campate, che si porta dietro tamponatura aggiuntiva che si oppone alla deformabilità laterale del telaio.

Per questo motivo, partendo dalla struttura iniziale progettata in *Edilus*, vengono ricavati i telai con un numero di piani inferiore (in particolare sono stati considerati i telai ad uno, due, quattro, sei e otto piani) ed anche i telai a due campate. Questi ultimi prendono in considerazione le due campate adiacenti alla colonna che viene rimossa ed essi vengono analizzati sia con sia senza vincoli laterali.

Risulta quindi importante specificare che, avendo considerato telai a diversi piani a partire dall'edificio a dieci piani progettato, il valore dell'angolo di inclinazione delle bielle BC varia a seconda del caso, così come variano i coefficienti di correzione della resistenza ultima. Per

questo motivo quindi non sono stati adottati gli stessi parametri meccanici in *OpenSees* per tutti i casi considerati.

Essendo presente inoltre la tamponatura non strettamente adiacente alla colonna che viene rimossa, essa determina un contributo di vincolo laterale. Per questo motivo questo tipo di telaio è stato considerato come una via di mezzo tra un telaio vincolato e uno non vincolato lateralmente, e questo influisce sul coefficiente che tiene conto dei vincoli per la correzione della resistenza ultima.

Vengono quindi riportate le tabelle che riassumono le proprietà dei puntoni equivalenti B(**Tabella 5-4**) e BC (**Tabella 5-5** - **Tabella 5-9**) per tutti i telai considerati, la cui disposizione la si può osservare in **Figura 5-7-Figura 5-10**.

Compressive strength	\$fpc	-8.66
Strain at maximum strength	\$epsc0	-0.0015
Crushing strength	\$fpcu	-2.5
Ctrain at crushing strength	\$epscU	-0.008
Ratio between unloading slope at \$epscu and initial slope	\$lambda	0.10
Tensile strength	\$ft	0
Tension softening stiffness (slope of the linear tension softening branch)	\$Et	0
Cross area [mm ²]		310886

Tabella 5-4. Parametri meccanici e geometrici dei puntoni B

Compressive strength	\$fpc	-1.24
Strain at maximum strength	\$epsc0	-0.0018
Crushing strength	\$fpcu	-0.25
Ctrain at crushing strength	\$epscU	-0.009
Ratio between unloading slope at \$epscu and initial slope	\$lambda	0.10
Tensile strength	\$ft	0
Tension softening stiffness (slope of the linear tension softening branch)	\$Et	0
Strut width w [mm]		2565
Cross area [mm ²]		769559

 Tabella 5-5. Parametri meccanici e geometrici dei puntoni BC per il telaio a sei campate e a

 10 piani con rimozione della colonna centrale

Compressive strength	\$fpc	-1.15
Strain at maximum strength	\$epsc0	-0.0018
Crushing strength	\$fpcu	-0.23
Ctrain at crushing strength	\$epscU	-0.009
Ratio between unloading slope at \$epscu and initial slope	\$lambda	0.10
Tensile strength	\$ft	0
Tension softening stiffness (slope of the linear tension softening branch)	\$Et	0
Strut width w [mm]		2565
Cross area [mm ²]		769559

Tabella 5-6.Parametri meccanici e geometrici dei puntoni BC per il telaio a sei campate e a 8e 6 piani con rimozione della colonna centrale

Compressive strength	\$fpc	-0.97
Strain at maximum strength	\$epsc0	-0.0018
Crushing strength	\$fpcu	-0.19
Ctrain at crushing strength	\$epscU	-0.009
Ratio between unloading slope at \$epscu and initial slope	\$lambda	0.10
Tensile strength	\$ft	0
Tension softening stiffness (slope of the linear tension softening branch)	\$Et	0
Strut width w [mm]		2565
Cross area [mm ²]		769559

Tabella 5-7.Parametri meccanici e geometrici dei puntoni BC per il telaio a sei campate e a 4piani con rimozione della colonna centrale

Simulazione di scenari di collasso progressivo su un edificio in calcestruzzo armato a 10 elevazioni

Compressive strength	\$fpc	-0.42
Strain at maximum strength	\$epsc0	-0.0018
Crushing strength	\$fpcu	-0.19
Ctrain at crushing strength	\$epscU	-0.009
Ratio between unloading slope at \$epscu and initial slope	\$lambda	0.18
Tensile strength	\$ft	0
Tension softening stiffness (slope of the linear tension softening branch)	\$Et	0
Strut width w [mm]		2565
Cross area [mm ²]		769559

Tabella 5-8.Parametri meccanici e geometrici dei puntoni BC per il telaio a sei campate e a 2piani con rimozione della colonna centrale

Compressive strength	\$fpc	-1.24
Strain at maximum strength	\$epsc0	-0.0018
Crushing strength	\$fpcu	-0.25
Ctrain at crushing strength	\$epscU	-0.009
Ratio between unloading slope at \$epscu and initial slope	\$lambda	0.18
Tensile strength	\$ft	0
Tension softening stiffness (slope of the linear tension softening branch)	\$Et	0
Strut width w [mm]		2565
Cross area [mm ²]		769559

Tabella 5-9.Parametri meccanici e geometrici dei puntoni BC per il telaio a sei campate e a10 piani con rimozione della colonna centrale

Simulazione di scenari di collasso progressivo su un edificio in calcestruzzo armato a 10 elevazioni

Figura 5-7. Schema statico adottato per l'edificio a otto piani e sei campate

Figura 5-8. Schema statico adottato per l'edificio a sei piani e sei campate

Figura 5-9. Schema statico adottato per l'edificio a quattro piani e sei campate

Figura 5-10. Schema statico adottato per l'edificio a due piani e sei campate

Per quanto riguarda i puntoni BC dei telai a due campate, è importante specificare che esse assumono le stesse proprietà meccaniche dei telai a 6 campate, con una leggera variazione della resistenza ultima dovuta al coefficiente di correzione che tiene conto dei vincoli laterali. Questo succede in quanto sono stati considerati i telai a due campate con e senza vincoli laterali, al fine di determinare quale sia il contributo di vincolo alla deformabilità laterale della tamponatura. Vengono di seguito riportati gli schemi statici adottati per i telai a due campate e dieci piani. Tutti gli altri telai vengono ricavati a partire a questi rimuovendo man mano i piani che li compongono. Simulazione di scenari di collasso progressivo su un edificio in calcestruzzo armato a 10 elevazioni

Figura 5-11. Schema statico adottato per il telaio a due campate non vincolato lateralmente

Figura 5-12. Schema statico adottato per il telaio a due campate vincolato lateralmente

Infine è stata condotta la modellazione del telaio a sei campate e a dieci piani nel caso di rimozione della colonna di bordo. Questo risulta essere un caso molto gravoso per la stabilità della struttura. La modellazione della tamponatura avviene seguendo gli stessi criteri adottati in precedenza, con la differenza che verranno considerate solamente due puntoni BC che attraversano l'intero telaio, in quanto la colonna di pannelli adiacente la colonna risulta essere singola in questo caso. Nella **Figura 5-13** si può osservare la disposizione dei puntoni utilizzati.

Figura 5-13. Schema statico adottato nel caso di rimozione della colonna di bordo

Di seguito viene riportata (**Figura 5-14**) la deformata che la struttura assume man mano che l'analisi di pushdown prosegue. Come si può osservare la struttura si deforma in maniera rilevante verso l'esterno, nonostante siano presenti altre cinque campate dell'edificio che si oppongono a questo spostamento.

Figura 5-14. Deformata della struttura durante il test di pushdown

5.3 Confronto dei risultati

5.3.1 Valutazione dell'influenza del numero di piani

Vengono di seguito riportati i diagrammi ricavati dalle analisi condotte sui diversi tipi di telai, al fine di mettere in risalto l'influenza del numero di piano sulla capacità portante della struttura. In questo senso sono state condotte le prove di pushdown sia sui telai tamponati sia su quelli non tamponati, al fine di osservarne la differenza in termini di resistenza.

Figura 5-15. Telaio tamponato a sei campate con dettagli sismici senza vincoli laterali

Figura 5-16. Telaio tamponato a due campate con dettagli sismici senza vincoli laterali

Figura 5-17. Telaio tamponato a due campate con dettagli sismici con vincoli laterali

Come si può osservare da questi primi diagrammi (**Figura 5-15-Figura 5-16-Figura 5-17**) il numero dei piani assume un'influenza rilevante sulla capacità portante dei telai tamponati. In particolare si ottengono curve che assumono approssimativamente lo stesso andamento, con la differenza che la resistenza di picco e la resistenza ultima del sistema cresce all'aumentare del numero dei piani sia nei telai a due campate sia in quelli a 6 campate.

Per quanto riguarda invece l'influenza della tamponatura sulla deformabilità del telaio, si può osservare come essa risulti non del tutto trascurabile. La presenza dei vincoli laterali e, in minore parte, la presenza dei pannelli di tamponatura sulle campate non interessate dalla rimozione della colonna, determinano una leggera variazione delle curve di capacità dei telai.

Figura 5-18. Telaio non tamponato a sei campate con dettagli sismici senza vincoli laterali: Influenza del numero di piani

Figura 5-19. Telaio non tamponato a due campate con dettagli sismici senza vincoli laterali: Influenza del numero di piani

Figura 5-20. Telaio non tamponato a due campate con dettagli sismici con vincoli laterali: Influenza del numero di piani

Le stesse considerazioni fatte per il telaio tamponati possono essere applicate al telaio non tamponato (**Figura 5-18-Figura 5-19-Figura 5-20**). In questo secondo caso tuttavia risulta più marcata l'influenza dei vincoli lateri e si può osservare come essi portino anche ad un aumento della capacità portante del telaio in calcestruzzo armato.

È possibile inoltre osservare come la presenza della tamponatura determini un rilevante incremento in termini di capacità portante del sistema, presentando un picco iniziale nelle curve di pushdown, che rappresenta un maggiore valore del carico di plasticizzazione. Poiché le curve di pushdown ricavate rappresentano la capacità dei telai, ciò vuol dire che la domanda di resistenza andrà confrontata con esse al fine di determinare se il telaio è in grado di salvarsi, rimanendo eventualmente nel tratto elastico della curva di capacità.

Le considerazioni effettuate sull'influenza del numero dei piani vengono riassunte attraverso il diagramma riportato in **Figura 5-21**, in cui vengono riportate le resistenze di picco dei sistemi tamponati e non tamponati. Le due curve partono dallo stesso punto, il quale rappresenta il telaio ad un piano, che non prevede la presenza di nessun pannello di tamponatura, per poi assumere andamenti differenti, potendo così osservare l'influenza della tamponatura in muratura sulla capacità portante dei sistemi.

Figura 5-21. Influenza del numero di piani sulla capacità di resistenza del telaio a sei campate

Al fine di poter individuare il valore dell'incremento di resistenza che si ottiene aggiungendo la tamponatura perimetrale, viene riportato in **Figura 5-22** il diagramma che riporta tale andamento.

Figura 5-22.Incremento di capacità portante dovuto alla presenza della tamponatura del telaio a sei campate

5.3.2 Influenza della posizione della colonna rimossa

Sono state infine effettuate le analisi di pushdown sui telai tamponati a dieci piani e a sei campate, in cui è stata rimossa la colonna di bordo (1°colonna), al fine di effettuare un confronto con il caso di rimozione della colonna centrale.

Come si può osservare dal diagramma riportato (**Figura 5-23**), la condizione più gravosa sulla resistenza del telaio la si può osservare nella condizione di rimozione della colonna di bordo, in cui si osserva un dimezzamento della resistenza del sistema.

Figura 5-23. Telaio tamponato a sei campate con dettagli sismici senza vincoli laterali: Influenza della posizione della colonna rimossa

Al fine di poter verificare tutte le informazioni riportate all'interno del presente capitolo viene riportato all'interno dell'Allegato 1 il codice del modello dell'edificio.

Capitolo 6. Analisi dinamiche con rimozione istantanea del pilastro

Le analisi effettuate fino a questo punto hanno portato alla determinazione della capacità dei telai tamponati, senza prendere in considerazione gli aspetti dinamici del problema. Questo è avvenuto mediante i test di pushdown eseguiti in *OpenSees*, in cui vengono applicati staticamente incrementi di forza all'aumentare dello spostamento verticale del telaio. Ciò che restituisce questo tipo di analisi è la curva di capacità dell'intero sistema.

Tuttavia il problema della robustezza strutturale si porta dietro la questione legata agli effetti dinamici che si vengono a generare una volta rimosso un elemento del telaio. Di conseguenza la domanda di resistenza reale dei telai può essere valutata solamente simulando la rimozione istantanea dell'elemento strutturale ed in questo modo è possibile osservare se il sistema è in grado di raggiungere un nuovo stato di equilibrio oppure se va incontro al collasso. Questo è possibile farlo effettuando un confronto tra il carico atteso staticamente ed il carico richiesto derivante dalle analisi dinamiche.

6.1 Analisi dinamiche mediante OpenSees

Il software di calcolo *OpenSees* permette di effettuare un'analisi dinamica della struttura in seguito alla rimozione istantanea della colonna, simulando quindi un evento accidentale. Per rimuovere un elemento strutturale è possibili utilizzare il *remove comand*, il quale richiede di indicare un elemento della colonna che viene eliminato dal modello. In seguito a questo, viene effettuata un'analisi *time history* del sistema, indicando un vettore di accelerazioni nulle.

In questa fase si osserva l'oscillazione della struttura nel tempo solamente nel caso in cui essa non vada incontro al collasso, altrimenti il sistema diverge, con spostamenti che aumentano via via nel tempo.

Poiché viene fatta un'analisi dinamica della struttura, è richiesto che vengano assegnate le masse ad ogni nodo trave-pilastro, utilizzando il comando *mass*. Ciò lo si fa andando a considerare tutti i carichi agenti sul telaio che viene preso in considerazione, applicando il metodo delle aree di influenza per poter ricavare il carico al metro lineare agente su ogni trave di ogni piano. A questo punto vengono calcolate le masse da attribuire ad ogni nodo in N \cdot

 s^2 /mm, con l'accortezza di considerare infine il valore di massa dimmezzato in quanto esse vengono calcolate a partire da carichi distribuiti sulla struttura.

Oltre ad attribuire le masse ai nodi trave-colonna, vengono inoltre assegnati i carichi distribuiti agenti, attraverso il comando *eleLoad*, il quale richiede di indicare tutti gli elementi da caricare, il tipo di carico, che in questo caso risulta essere *beamUniform*, ed infine il valore del carico.

Una volta avviata l'analisi dinamica della struttura, viene inizialmente applicato il carico sulla struttura in dieci step successivi, alla fine dei quali viene rimosso l'elemento e vengono registrate le oscillazioni della struttura e le reazioni alla base nel tempo.

Al termine dell'analisi dinamica è possibile determinare la curva di richiesta di resistenza della struttura, la quale può essere raffrontata con quella di pushdown ricavata in precedenza. Da questo confronto è possibile dedurre se il sistema risulta in grado di salvarsi in seguito all'azione accidentale di rimozione della colonna oppure va incontro al collasso. Questo tipo di analisi sono state condotte sia sui telai tamponati sia non tamponati, rimuovendo sia la colonna centrale che quella di bordo. Di seguito vengono quindi riportati questi diagrammi, insieme a quelli che riportano la variazione nel tempo dello spostamento verticale e della reazione verticale alla base (**Figura 6-1-Figura 6-12**).

Figura 6-1. Analisi statiche e dinamiche dei telai con tamponamento e senza tamponamento

Figura 6-2. Reazione verticale nel tempo dei telai con tamponamento e senza tamponamento

Figura 6-3. Spostamento verticale nel tempo dei telai con tamponamento e senza tamponamento

Figura 6-4. Analisi statiche e dinamiche dei telai con tamponamento e senza tamponamento

Figura 6-5. Reazione verticale nel tempo dei telai con tamponamento e senza tamponamento

Figura 6-6.Spostamento verticale nel tempo dei telai con tamponamento e senza tamponamento

6.1.3 Influenza della posizione della colonna rimossa

Figura 6-7. Analisi statiche e dinamiche con rimozione della colonna di bordo e della colonna centrale del telaio con tamponamento

Figura 6-8. Analisi statiche e dinamiche con rimozione della colonna di bordo e della colonna centrale del telaio senza tamponamento

Figura 6-9. Andamento della reazione verticale nel tempo del telaio con tamponamento con rimozione della colonna di bordo e della colonna centrale

Figura 6-10. Andamento della reazione verticale nel tempo del telaio senza tamponamento con rimozione della colonna di bordo e della colonna centrale

Figura 6-11. Andamento dello spostamento verticale nel tempo del telaio con tamponamento con rimozione della colonna di bordo e della colonna centrale

Figura 6-12. Andamento dello spostamento verticale nel tempo del telaio senza tamponamento con rimozione della colonna di bordo e della colonna centrale

6.2 Confronto dei risultati

Come si può osservare dai diagrammi riportati, i telai con tamponatura in muratura mostrano una maggiore capacità rispetto a quelli non tamponati. Questo lo si può osservare andando a confrontare la curva pushdown con la richiesta di resistenza che ne deriva dalle prove dinamiche. Risulta infatti che la curva dinamica rimane nel tratto elastico della curva di pushdown, senza che il sistema tamponato arrivi alla plasticizzazione. Di conseguenza, sia nel caso di rimozione della colonna centrale sia in quello di rimozione della colonna di bordo si può osservare come il telaio riesca a ridistribuire i carichi in maniera adeguata. Osservando inoltre i diagrammi della variazione della reazione verticale alla base nel tempo, si può notare come il sistema oscilli inizialmente, per andare infine ad assestarsi attorno ad un valore di carico che corrisponde al valore del carico statico. Ciò che succede dal punto di vista fisico all'interno del sistema, è un aumento della reazione verticale alla base delle colonne che non vengono rimosse. Questo fenomeno è dovuto proprio alla rimozione istantanea della colonna centrale o di bordo, che risultava quindi inizialmente interessata da un certo valore di carico, il quale va a ridistribuirsi tra le colonne rimanenti.

Le stesse osservazioni non possono essere fatte per i telai non tamponati. Risulta infatti che la curva dinamica, sia nel caso di rimozione della colonna centrale sia in quello di rimozione della colonna di bordo, ripercorra tutta la curva di pushdown. Questo significa che il sistema supera il tratto elastico, per andare incontro alla plasticizzazione arrivando infine al collasso. Questo fenomeno può essere osservato anche all'interno dei grafici riguardanti la variazione di spostamento verticale nel tempo. Il sistema infatti raggiunge grandi valori di spostamento e, la curva di variazione, anziché oscillare inizialmente per andare a stabilizzarsi, diverge.

A partire da queste prove dinamiche si possono fare differenti osservazioni riguardo all'influenza della tamponatura in muratura sui telai in calcestruzzo armato. Risulta notevole l'aumento della capacità portante dei sistemi tamponati e questo è stato possibile osservarlo già a partire dalle curve di pushdown. Attraverso le prove dinamiche si è potuto osservare come un'azione istantanea, come la rimozione di una colonna, possa essere contenuta, permettendo così di salvare la struttura. Ciò risulta essere fondamentale dal punto di vista della robustezza, in quanto si è osservato come l'introduzione della tamponatura perimetrale garantisca rilevanti margini di capacità portante.

Conclusioni

Il lavoro effettuato in questa tesi ha permesso di identificare un metodo di modellazione delle strutture in calcestruzzo armato soggette a collasso progressivo quando viene rimosso un elemento strutturale primario, come ad esempio una colonna. Per questo motivo sono stati presi in considerazione studi sperimentali e numerici effettuati su campioni in c.a., di cui è stata individuata la curva di pushdown, al fine di determinare un metodo di modellazione degli stessi che permettesse di riproporne il comportamento in maniera via via più precisa. Ciò è avvenuto inizialmente per via iterativa, utilizzando il software per la modellazione a fibre *OpenSees*, attraverso il quale è stato possibile considerare alcune delle non linearità caratterizzanti il problema.

In questa tesi è stata inoltre indagata l'influenza del tamponamento in muratura sulle strutture intelaiate in calcestruzzo armato e questo è stato fatto attraverso una macro-modellazione della tamponatura stessa attraverso puntoni equivalenti. Questa scelta è stata dettata dall'osservazione del quadro fessurativo di una serie di telai tamponati sottoposti a collasso progressivo. È stato osservato infatti come la tipica fessurazione di un telaio tamponato presenti una regione diffusiva laterale, oltre alla zona centrale del pannello in cui si verifica lo scorrimento dei giunti di malta. Queste osservazioni hanno portato alla determinazione di una configurazione geometrica a tre puntoni diversamente disposti, caratterizzati ognuno da specifiche caratteristiche meccaniche, in seguito ricavate. Basandosi infatti sulle curve di pushdown numeriche e sperimentali a disposizione, si è cercato di calibrare in maniera adeguata il modello a puntoni equivalenti. Di conseguenza una volta determinata la posizione dei puntoni in base al quadro fessurativo e l'area trasversale degli stessi utilizzando la formulazione di Di Trapani et al., (2018) con i valori di luce e altezza scambiati tra di loro, si è cercato infine di determinare la loro resistenza a compressione. É stata osservata infine una certa correlazione lineare tra questa resistenza e l'inclinazione dei puntoni stessi.

Lo stesso procedimento è stato seguito per la determinazione della resistenza ultima dei puntoni equivalenti, conducendo però un'analisi dei risultati più accurata al fine di poter tenere in conto i dettagli sismici, le condizioni di vincolo e le dimensioni dell'intero telaio.

Ciò che è stato osservato in fase di calibrazione del modello, è che la tamponatura risulta in grado di fornire elevata resistenza aggiuntiva alle strutture intelaiate bidimensionali, la quale è possibile determinarla attraverso la modellazione a puntoni equivalenti. Essi infatti si sono rivelati adeguati per ricavare l'andamento delle curve pushdown dei telai tamponati, con il

tipico picco iniziale. È stato osservato infatti che i puntoni di tipo B portano ad incrementare la resistenza della struttura, portando un innalzamento della curva pushdown del telaio non tamponato, mentre i puntoni di tipo BC portano ad avere il tipico picco iniziale.

Avendo determinato un metodo di modellazione efficace della tamponatura, si è deciso di applicarlo su un telaio di grandi dimensioni, caratterizzato dall'avere sei campate e dieci piani fuori terra. Questo è stato fatto sia per indagare l'influenza del numero di piani sulla curva di capacità sia per determinare quale sia il caso più gravoso tra la rimozione della colonna centrale e la rimozione di quella di bordo del telaio. È stato osservato in questa fase un incremento della resistenza del telaio proporzionale al numero di piani, in maniera più marcata per i telai tamponati rispetto a quelli non tamponati.

Per quanto riguarda l'influenza della posizione della colonna che viene rimossa, è risultato che la condizione peggiore fosse rappresentata dalla rimozione della colonna di bordo. Risulta infatti che la curva di capacità viene pressoché dimezzata. Ciò è stato osservato anche attraverso le prove dinamiche. Rimuovendo infatti la colonna centrale, si sono osservate oscillazioni del sistema che vanno a stabilizzarsi dopo un periodo relativamente corto. Ciò non si più affermare per il caso di rimozione della colonna di bordo, in quanto a parità di periodo, le oscillazioni risultano essere decisamente più ampie rispetto al caso di rimozione della colonna centrale.

Le prove dinamiche effettuate, rimuovendo istantaneamente un pilastro, hanno messo in evidenza anche la differenza di domanda di resistenza tra i telai tamponati e non tamponati. È risultato infatti che i telai tamponati in muratura riescono a ridistribuire i carichi in maniera efficace, senza andare incontro al collasso del sistema, al contrario dei telai non tamponati, per i quali si osserva una curva degli spostamenti nel tempo divergente. Ciò significa che essi non sono in grado di contenere gli effetti dovuti alla rimozione della colonna, mostrando uno spostamento verticale, che va incrementando nel tempo.

Il lavoro effettuato offre dunque un metodo di modellazione in grado di restituire risultati soddisfacenti per quanto riguarda la determinazione della curva di capacità di telai sottoposti al collasso progressivo. Tuttavia questo tipo di fenomeno risulta essere altamente complesso. Per raggiungere una completa conoscenza del problema, si rivelano necessarie ulteriori ricerche che mettano in luce aspetti non ancora affrontati.

Ringraziamenti

Scrivo l'ultima parola della conclusione della mia tesi e mi ritrovo nel paragrafo *"ringraziamenti"*, l'ultima parte che rimane da fare prima della consegna della versione definitiva della tesi. Quasi mi mancano le parole, quasi non so da che punto iniziare. Questa tesi rappresenta per me la conclusione di un percorso lungo, troppo lungo, spesso mi è mancata la motivazione, spesso mi sono chiesta cosa mi abbia spinto ad affrontarlo. Tuttavia, tornando indietro col pensiero, mi pare di vederlo il filo conduttore che mi ha portato fino a questo punto e non ho dubbi sul fatto che la differenza nel mio percorso l'abbiano fatta tutte le persone che in questi anni mi sono state vicine.

Inizio col ringraziare il mio relatore, Fabio Di Trapani, il quale, durante il nostro primo incontro, mi disse "ti vedo convinta sulla robustezza". Con la testa piena di possibili argomenti, ma con la voglia di iniziare il prima possibile, qualche giorno dopo mi sono ritrovata "convinta sulla robustezza". L'interesse per questo argomento è cresciuto quotidianamente, il lavoro fatto insieme per me è diventato sempre più stimolante, merito anche dell'intesa trovata insieme. Ti ringrazio per aver creduto nelle mie capacità e per avermi dato *fiducia*. Questa fiducia mi ha stimolato a fare le cose nel migliore dei modi.

Ringrazio mia mamma, la persona che per lunghi anni è stata la mia famiglia, il mio unico punto di riferimento. Incredula davanti a tutti i sacrifici fatti per portare a termine questa percorso, ha sempre saputo aspettare, paziente, dandomi fiducia nonostante la strada sia sempre sembrata in salita. Ti ringrazio soprattutto per avermi donato la *libertà* di scegliere, di sbagliare, di pensare con la mia testa, di imparare. Ringrazio inoltre il compagno di mia mamma Dorel, che ha creduto in me in questi anni, trattandomi come una figlia.

Ringrazio il mio fidanzato, Gabriele. Mi risulta difficile mettere i pensieri in ordine per questo ringraziamento. Ci siamo conosciuti proprio tra i banchi dell'università, in questi anni siamo cresciuti insieme, vivendo quasi in simbiosi, condividendo ogni difficoltà e gioia. La tua presenza per me è stata fondamentale, quasi da non riuscire a immaginare come avrei potuto fare senza di te. Ti ringrazio per l'*amore* che mi hai sempre dimostrato e per avermi insegnato ad essere una persona migliore.

Ringrazio la famiglia del mio fidanzato, Paola, Gianfranco, Lorenzo, Valeria e i nonni. La mia piccola *famiglia* con voi è diventata enorme. Il vostro aiuto e la vostra disponibilità sono state fondamentali per me in questi anni. Il vostro ruolo più importante è stato quello di riportarmi

sempre con i piedi per terra, quando iniziavo a sentirmi smarrita. Ora che ho finito la tesi tornerò a godermi i pranzi della domenica come si deve.

Ringrazio i miei amici Francesca e Kevin. Il tempo passato con voi in questi anni per me ha rappresentato uno dei pochi momenti di svago che valeva la pena concedersi, e così ci siamo ritrovati a stringere un rapporto di *amicizia* profondo, sincero. Io vi parlavo del progetto di cemento armato e degli esami e voi mi facevate vedere la vostra prima casa, i primi mobili, la prima macchina, le prime ecografie, facendomi sognare ad occhi aperti.

Ringrazio i miei amici Alessia e Luca. Ora che siete lontani da Torino mi rendo conto di quanto sia stata importante la vostra *presenza* negli anni in cui siete stati qui, in cui abbiamo preparato insieme gli esami, le giornate in aula studio e poi i panini alle undici di sera in centro. Ora che vi siete spostati, improvvisamente le mie vacanze preferite sono a Londra.

Ringrazio i miei colleghi che mi hanno accompagnato durante questi ultimi mesi. La "*cantina*" per me è diventata una certezza: Patrizia sempre seduta alla mia sinistra, Luciano sempre il primo ad arrivare, il "poca ansia Michelle" di Giovanni, Orazio che arrivava il venerdì, Andrea che ho riempito sempre di messaggi alla ricerca disperata di aiuto, Alessandro con il quale dovevo sempre dividere gli ultimi biscotti, Maicol con la sua tranquillità, Christian che ogni tanto ci faceva viaggiare con la mente verso paesi lontani, Simone che arrivava alle quattro e attaccava la musica. Concludo quindi questo percorso con dei ricordi bellissimi insieme a voi.
Bibliografia

- Saatcioglu, M., and Razvi, S., 1991, "Analytical model for confined concrete.", Res. Rep. No. 9101, Dept. of Civ. Engrg., University of Ottawa, Ottawa, ON, Canada, 59.
- (2) Saatcioglu, M., and Razvi, S. R., 1992, "Strength and ductility of confined concrete.", J. Struct. Engrg., ASCE, 118(6), 1590–1607.
- (3) Dhakal, R. P., and Maekawa, K., 2002, "Modeling for Postyield Buckling of Reinforcement.". In: Journal of Structural Engineering 128.9, pp.1147
- (4) Hai S Lew et al. "An experimental and computational study of reinforcement concrete assemblies under a column removal scenario." In: NIST Technical Note 1720 (2011), p. 106.
- (5) Namyo Salim Lim, KH Tan e CK Lee. "Effects of rotational capacity and horizontal restraint on development of catenary action in 2-D RC frames." In: Engineering Structure 153 (2017), pp.613-627.
- (6) Gabriele Bertagnoli et al., "Robustness of reinforced concrete framed buildings: a comparison between different numerical models". In: Ket Engineering Materials. Vol. 711. Tans Tech Publ.2016, pp.814-821.
- (7) **Jian Weng et al.** "Damage assessment for reinforced concrete frames subject to progressive collapse". In: Engineering Structures 149 (2017), pp.147-160.
- (8) Y Xiao et al., "Collapse Test of Three-Story Half-Scale Reinforcement Concrete Frame Building.". In: ACI Structural Journal 112.4 (2015).
- (9) Anh Tuan Pham, Kang Hai Tan e Juan Yu. "Numerical investigations on static and dynamic responses of reinforced concrete sub-assemblages under progressive collapse". In: Engineering structures 149 (2017), pp. 2-20
- (10) Qian, Kai, and Bing Li. "Effects of masonry infill wall on the performance of RC frames to resist progressive collapse." Journal of Structural Engineering 143.9 (2017): 04017118.
- (11) Di Trapani, Fabio, et al. "Empirical Equations for the Direct Definition of Stress– Strain Laws for Fiber-Section-Based Macromodeling of Infilled Frames." Journal of Engineering Mechanics 144.11 (2018): 04018101.
- (12) Papia, M., Cavaleri, L., Fossetti, M. (2003). "Infilled frames: developments in the evaluation of the stiffening effect of infills." Structural engineering and mechanics, 16(6), 675-93.

- (13) Izzuddin, B.A., Vlassis, A. G., Elghaz1ouli, A. Y. & Nether-cot, D.A. 2008
 "Progressive collapse of multi-storey buildings due to sudden column loss—Part I: Simplified assessment framework." Eng Struct, 30(5): 1308–1318.
- (14) Vlassis, A.G., Izzuddin, B.A., Elghazouli, A.Y. & Nethercot D.A. 2008
 "Progressive collapse of multi-storey buildings due to sudden column loss Part II: Application." Eng Struct, 30(5): 1424-1438
- (15) Ren, P., Li, Y., Lu, X., Guan, H. & Zhou, Y. 2016 "Experimental investigation of progressive collapse resistance of one-way reinforced concrete beam–slab substructures under middle-column-removal scenario.", Eng Struct 118: 28–40
- (16) Xiao, Y., Kunnath, S., Li, F.W., Zhao, Y.B., Lew, H.S. & Bao, Y. 2015 "Collapse test of three-story half-scale reinforced concrete frame building." ACI Structural Journal, 112(4): 429-438.
- (17) Yu, J. & Tan, K.H. 2013 "Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column subassemblages." Eng Struct, 55:90–106.
- (18) Pham X.D., Tan K.H., Yu J. 2015." A simplified approach to assess progressive collapse resistance of reinforced concrete framed structures." Engineering Structures 101: 45–57.
- (19) Pham, A.T., Tan, K.H. & Yu, J. 2017 "Numerical investigations on static and dynamic responses of reinforced concrete sub-assemblages under progressive collapse." Eng Struct, 149: 2–20.
- (20) Weng, J., Lee, C.K., Tan K.H. & Lim N.S. 2017 "Damage as-sessment for reinforced concrete frames subject to progressive collapse." Eng Struct, 149: 147–160.
- (21) Arshian, A.H. & Morgenthal, G. 2017 "Three-dimensional progressive collapse analysis of reinforced concrete frame structures subjected to sequential column removal." Eng Struct, 132: 87–97.
- (22) Brunesi, E., Nascimbene, R., Parisi, F. & Augenti N. 2015 "Progressive collapse fragility of reinforced concrete framed structures through incremental dynamic analysis." Eng Struct 104: 65–79.
- (23) Farazman, S., Izzuddin, B.A & Cormie, D. 2013 "Influence of Unreinforced Masonry Infill Panels on the Robustness of Multistory Buildings." J Perform Constr Facil, 27(6): 673-682.

- (24) Xavier, F.B., Macorini, L. & Izzuddin, M.B. 2015 "Robustness of Multistory Buildings with Masonry Infill." J Perform Constr Facil, 29(5): B4014004.
- (25) Qian, K. & Li, B. 2017 "Effects of Masonry Infill Wall on the Performance of RC Frames to Resist Progressive Collapse." J Struct Eng, 143(9): 04017118.
- (26) Li, S., Kose, M.M., Shan, S., Sezen H. 2019. "Modeling Methods for Collapse Analysis of Reinforced Concrete Frames with Infill Walls." J. Struct. Eng. 145(4): 04019011.
- (27) **Dalmasso M.**, 2018 "Influenza dei tamponamenti in muratura sulla robustezza di strutture intelaiate in calcestruzzo armato.", Master's Thesis, Politecnico di Torino
- (28) Norme Tecniche per le Costruzioni. 2018
- (29) EN 1991-1-7, Eurocode 1: "Actions on structures Part 1-7:General actions Accidental actions", CEN, European Standard, Brussels, Belgium, 1991.

Allegato 1

Script del modello del telaio a sei campate e dieci piani

# SET UP # units: Newton, mm, sec		
<pre># define GEOMETRY</pre>		
# Dimension		
set x00 0: #colonna 1		
set x0 400;	set x56 32450;	set v42 29850;
set x1 650;	set x57 32900;	set y43 30350;
set x2 950;	set x58 33680;	#considero asse trave
set x3 1400;	set x59 35620;	set y44 30600;
set x4 2180;	set x60 36400;	set y45 31500;
set x5 4120;	set x61 36850;	set y46 32350;
set x555 4900;	set x62 37150;	set y47 33250;
set x6 5350;	set x64 37800; #colonna 7	set y48 33/50; #gongidere agge trave
set x8 5900;	set v0 0.	#CONSIDERO ASSE LIAVE
set x9 6300: #colonna 2	set v1 1150:	<pre># nodal coordinates:</pre>
set x10 6700:	set v2 2000:	" modal 0001alma000.
set x11 6950;	set v3 2900;	#Primo piano
set x12 7250;	set y4 3150; #considero	L L
set x13 7700;	asse trave	node 1 \$x00 \$y4;
set x14 8480;	set y5 3400;	node 2 \$x0 \$y4;
set x15 10420;	set y555 4300;	node 3 \$x1 \$y4;
set x16 11200;	set y6 5150;	node 4 \$x2 \$y4;
set x17 11650;	set y7 6050;	node 5 \$x3 \$y4;
set x18 11950;	set y8 6550; #considero	node 6 \$x4 \$y4;
set x19 12200;	asse llave	node 8 $\$x555$ $\$x4$.
#colonna 3	set v10 7700:	node 9 $\$x6$ $\$v4$:
set x21 13000;	set v11 8550;	node 10 \$x7 \$v4;
set x22 13250;	set y12 9450;	node 11 \$x8 \$y4;
set x23 13550;	set y13 9950; #considero	node 12 \$x9 \$y4;
set x24 14000;	asse trave	
set x25 14780;	set y14 10200;	node 13 \$x10 \$y4;
set x26 16720;	set y15 11100;	node 14 \$x11 \$y4;
set x27 17500;	set y16 11950;	node 15 \$x12 \$y4;
Set x20 1/950;	Set y17 12850;	node 10 3×13 3×4 ;
set $x_{29} = 10230$,	asse trave	node 18 $\$x15$ $\$y4$.
set x31 18900;	set v19 13600;	node 19 \$x16 \$v4;
#colonna 4	set v20 14500;	node 20 \$x17 \$v4;
set x32 19300;	set y21 15350;	node 21 \$x18 \$y4;
set x33 19550;	set y22 16250;	node 22 \$x19 \$y4;
set x34 19850;	set y23 16750;	node 23 \$x20 \$y4;
set x35 20300;	#considero asse trave	
set x36 21080;	set y24 17000;	node 24 \$x21 \$y4;
set x3/ 23020;	set y25 1/900;	node 25 $\xi x 22 \xi y 4;$
set x30 23000;	set y20 10/30;	node 27 $\$x23 \$y4;$
set x40 24550:	set v28 20150:	node 28 $\$x25 \$v4:$
set x41 24800;	#considero asse trave	node 29 \$x26 \$y4;
set x42 25200;	set y29 20400;	node 11129 16980 \$y4;
#colonna 5	set y30 21300;	node 30 \$x27 \$y4;
set x43 25600;	set y31 22150;	node 31 \$x28 \$y4;
set x44 25850;	set y32 23050;	node 32 \$x29 \$y4;
set x45 26150;	set y33 23550;	node 33 \$x30 \$y4;
set X46 26600;	#considero asse trave	ποαε 34 \$Χ31 \$Υ4;
set X4/ Z/38U;	set ¥34 23800;	node 35 6422 641.
SEL AND 29320; Set \$49 30100.	set v36 25550.	node 36 Sx33 Sv4;
set x50 30550:	set v37 26450:	node 37 \$x34 \$v4:
set x51 30850;	set y38 26950;	node 38 \$x35 \$v4:
set x52 31100;	#considero asse trave	node 11138 20820 \$y4;
set x53 31500; #colonna 6	set y39 27200;	node 39 \$x36 \$y4;
set x54 31900;	set y40 28100;	node 40 \$x37 \$y4;
set x55 32150;	set y41 28950;	node 41 \$x38 \$y4;

	40 6 20 6 4 -	
node	42 \$X39 \$Y4;	node /42 \$x39 \$y8;
node	43 \$x40 \$y4;	node /43 \$x40 \$y8;
node	44 \$x41 \$y4;	node 744 24990 \$y8;
node	45 \$x42 \$v4:	node 745 \$x42 \$v8:
nodo	16 612 61.	nodo 746 61142 6119.
noue	40 3X43 3Y4;	node 746 3x43 3yo;
node	47 \$x44 \$y4;	node 747 \$x44 \$y8;
node	48 \$x45 \$y4;	node 748 \$x45 \$y8;
node	49 Sx46 Sv4.	node 749 \$x46 \$v8.
n e el e	FO = 47 = 6-4	node 719 \$810 \$90,
node	50 \$X47 \$Y4;	node /50 \$x4/ \$y8;
node	51 \$x48 \$y4;	node 751 \$x48 \$y8;
node	52 \$x49 \$v4;	node 752 \$x49 \$v8;
node	53 Sx50 Sv4.	node 753 \$x50 \$v8.
	E4 C-E1 C-A	nodo 754 ĉuEl ĉuO.
noae	54 \$X51 \$Y4;	node /54 \$x51 \$y8;
node	55 \$x52 \$y4;	node 755 \$x52 \$y8 ;
node	56 \$x53 \$y4;	node 756 \$x53 \$y8;
node	57 \$x54 \$v4:	node 757 \$x54 \$v8:
nodo		nodo 760 évele ével
node	00 \$X00 \$Y4;	noue /Jo \$xJJ \$yo;
node	59 \$x56 \$y4;	node 759 \$x56 \$y8;
node	60 \$x57 \$y4;	node 760 \$x57 \$y8;
node	61 Sx58 Sv4.	node 761 \$x58 \$v8.
n e el e	(2) (2)	node 701 \$400 \$40,
node	62 \$X39 \$Y4;	node /62 \$x59 \$y8;
node	63 \$x60 \$y4;	node 763 \$x60 \$y8;
node	64 \$x61 \$v4:	node 764 \$x61 \$v8:
nodo	6E \$1.60 \$1.4.	nodo 765 \$162 \$190
noue	05 \$X02 \$Y4,	110de 703 \$x02 \$y0,
node	66 Şx63 Şy4;	node 766 \$x63 \$y8;
node	67 \$x64 \$y4;	node 767 \$x64 \$y8;
#Seco	ondo piano	#Terzo piano
10000	Sindo Piano	"ioilo piano
	71 0 00 0 0	
node	/1 \$XUU \$Y8;	node 81 \$XUU \$Y13;
node	72 \$x0 \$y8;	node 82 \$x0 \$y13 ;
node	73 \$x1 \$y8;	node 83 \$x1 \$y13;
node	74 \$x2 \$v8.	node 84 Sx2 Sv13.
n e el e	75 6-2 6-0.	node of \$A2 \$910,
node	15 283 298;	node 85 \$x3 \$y13;
node	76 \$x4 \$y8;	node 86 \$x4 \$y13 ;
node		1 07 4 5 4 10
nouc	// \$X5 \$V8;	node 8/ \$x5 \$v13;
node	// \$X5 \$Y8; 78 \$x555 \$v8.	node 8/ \$x5 \$y13; node 88 \$x555 \$v13;
node	77 \$x5 \$y8; 78 \$x555 \$y8; 70 \$x6 \$x8;	node 8/ \$x5 \$y13; node 88 \$x555 \$y13;
node node	// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8;	node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13;
node node node	77 \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8;	node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13;
node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8;</pre>	node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13;
node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8;</pre>	node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 811 \$x8 \$y13;
node node node node node	77 \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8;	node 87 \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13;
node node node node	77 \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$x2	node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13;
node node node node node	77 \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 713 \$x10 \$y8;	node 87 \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13;
node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8;</pre>	<pre>node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13;</pre>
node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8;</pre>	<pre>node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13;</pre>
node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8;</pre>	<pre>node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13;</pre>
node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8;</pre>	<pre>node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13;</pre>
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 717 \$x14 \$y8;</pre>	<pre>node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13;</pre>
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8;</pre>	<pre>node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 818 \$x15 \$y13;</pre>
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8;</pre>	<pre>node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 818 \$x15 \$y13; node 819 \$x16 \$y13;</pre>
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8;</pre>	<pre>node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 818 \$x15 \$y13; node 819 \$x16 \$y13; node 819 \$x16 \$y13;</pre>
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8:</pre>	<pre>node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 818 \$x15 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13;</pre>
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 721 \$x18 \$y8; 721 \$x18 \$y8;</pre>	<pre>node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 818 \$x15 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 821 \$x18 \$y13;</pre>
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 722 \$x19 \$y8;</pre>	<pre>node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 818 \$x15 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13;</pre>
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8;</pre>	<pre>node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 817 \$x14 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13;</pre>
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8;</pre>	node 87 \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 818 \$x15 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13;
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8;</pre>	<pre>node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 812 \$x9 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 818 \$x15 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13;</pre>
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$v8;</pre>	<pre>node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 818 \$x15 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 824 13030 \$y13; node 825 \$x22 \$v13;</pre>
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8</pre>	node 87 \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 817 \$x14 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 824 13030 \$y13; node 825 \$x22 \$y13; node 826 \$x23 \$v13
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8; 726 \$x23 \$y8; 727 \$x24 \$x8 727 \$x24 \$</pre>	<pre>node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 818 \$x15 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 825 \$x22 \$y13; node 826 \$x23 \$y13;</pre>
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8; 727 \$x24 \$y8;</pre>	<pre>node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 812 \$x9 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 818 \$x15 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 824 13030 \$y13; node 825 \$x22 \$y13; node 826 \$x23 \$y13; node 827 \$x24 \$y13;</pre>
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8; 727 \$x24 \$y8; 728 \$x25 \$y8;</pre>	<pre>node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 810 \$x7 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 824 13030 \$y13; node 825 \$x22 \$y13; node 826 \$x23 \$y13; node 827 \$x24 \$y13; node 828 \$x25 \$y13;</pre>
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8; 727 \$x24 \$y8; 728 \$x25 \$y8; 729 \$x26 \$y8;</pre>	<pre>node 87 \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 817 \$x14 \$y13; node 818 \$x15 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 824 13030 \$y13; node 825 \$x22 \$y13; node 826 \$x23 \$y13; node 827 \$x24 \$y13; node 827 \$x24 \$y13; node 829 \$x26 \$v13;</pre>
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8; 727 \$x24 \$y8; 728 \$x25 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8;</pre>	<pre>node 8/ \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 812 \$x9 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 820 \$x17 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 824 13030 \$y13; node 825 \$x22 \$y13; node 826 \$x23 \$y13; node 827 \$x24 \$y13; node 828 \$x25 \$y13; node 829 \$x26 \$y13; node 829 \$x26 \$y13;</pre>
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8; 727 \$x24 \$y8; 728 \$x25 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 720 \$x27 \$x24 \$y8; 729 \$x26 \$y8; 720 \$x27 \$x24 \$y8; 729 \$x26 \$y8; 720 \$x27 \$x24 \$y8; 720 \$x27 \$x24 \$y8; 720 \$x27 \$x24 \$y8; 721 \$x28 \$x25 \$y8; 722 \$x29 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 727 \$x24 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 720 \$x27 \$x24 \$y8; 720 \$x27 \$x24 \$y8; 720 \$x26 \$y8; 720 \$x27 \$x24 \$y8; 720 \$x27 \$x24 \$y8; 720 \$x26 \$y8; 720 \$x27 \$x26 \$x66 \$x66 \$x66 \$x66 \$x66 \$x66 \$x66</pre>	node 87 \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 818 \$x15 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 822 \$x19 \$y13; node 824 13030 \$y13; node 825 \$x22 \$y13; node 826 \$x23 \$y13; node 827 \$x24 \$y13; node 828 \$x25 \$y13; node 829 \$x26 \$y13; node 829 \$x26 \$y13; node 829 \$x26 \$y13; node 829 \$x26 \$y13;
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8; 727 \$x24 \$y8; 728 \$x25 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 729 \$y26 \$y8; 730 \$x27 \$y8; 730 \$x27 \$y8; 730 \$x27 \$y8; 730 \$x27 \$y8;</pre>	node 87 \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 824 13030 \$y13; node 825 \$x22 \$y13; node 827 \$x24 \$y13; node 827 \$x24 \$y13; node 829 \$x26 \$y13; node 829 \$x26 \$y13; node 830 17410 \$y13; node 831 \$x28 \$y13;
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8; 727 \$x24 \$y8; 728 \$x25 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 720 \$x27 \$y8; 730 \$x27 \$y8; 731 \$x28 \$y8;</pre>	node 87 \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 812 \$x9 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 824 13030 \$y13; node 825 \$x22 \$y13; node 826 \$x23 \$y13; node 827 \$x24 \$y13; node 828 \$x25 \$y13; node 829 \$x26 \$y13; node 829 \$x26 \$y13; node 820 \$7410 \$y13; node 820 \$7410 \$y13; node 821 \$x28 \$y13; node 821 \$x28 \$y13; node 823 \$x29 \$y13;
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8; 727 \$x24 \$y8; 728 \$x25 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 730 \$x27 \$y8; 731 \$x28 \$y8; 732 \$x29 \$y8;</pre>	node 87 \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 812 \$x9 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 818 \$x15 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 820 \$x17 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 824 13030 \$y13; node 825 \$x22 \$y13; node 826 \$x23 \$y13; node 827 \$x24 \$y13; node 828 \$x25 \$y13; node 829 \$x26 \$y13; node 830 17410 \$y13; node 831 \$x28 \$y13; node 831 \$x28 \$y13; node 832 \$x29 \$y13;
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8; 727 \$x24 \$y8; 728 \$x25 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 730 \$x27 \$y8; 731 \$x28 \$y8; 732 \$x29 \$y8; 733 \$x30 \$y8;</pre>	node 87 \$x5 \$y13; node 88 \$x555 \$y13; node 810 \$x7 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 818 \$x15 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 824 13030 \$y13; node 825 \$x22 \$y13; node 826 \$x23 \$y13; node 827 \$x24 \$y13; node 828 \$x25 \$y13; node 829 \$x26 \$y13; node 830 17410 \$y13; node 831 \$x28 \$y13; node 832 \$x29 \$y13; node 833 \$x30 \$y13; node 833 \$x30 \$y13;
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8; 727 \$x24 \$y8; 728 \$x25 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 730 \$x27 \$y8; 731 \$x28 \$y8; 733 \$x30 \$y8; 734 \$x31 \$x8</pre>	node 87 \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 824 13030 \$y13; node 825 \$x22 \$y13; node 826 \$x23 \$y13; node 827 \$x24 \$y13; node 827 \$x24 \$y13; node 829 \$x26 \$y13; node 830 17410 \$y13; node 831 \$x28 \$y13; node 832 \$x29 \$y13; node 833 \$x30 \$y13; node 834 \$x31 \$y13;
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8; 727 \$x24 \$y8; 728 \$x25 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 731 \$x28 \$y8; 732 \$x29 \$y8; 731 \$x28 \$y8; 733 \$x30 \$y8; 734 \$x31 \$y8;</pre>	node 87 \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 812 \$x9 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 824 13030 \$y13; node 825 \$x22 \$y13; node 826 \$x23 \$y13; node 827 \$x24 \$y13; node 828 \$x25 \$y13; node 829 \$x26 \$y13; node 829 \$x26 \$y13; node 831 \$x28 \$y13; node 831 \$x29 \$y13; node 831 \$x29 \$y13; node 833 \$x30 \$y13; node 834 \$x31 \$y13;
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8; 727 \$x24 \$y8; 728 \$x25 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 730 \$x27 \$y8; 731 \$x28 \$y8; 732 \$x29 \$y8; 733 \$x30 \$y8; 734 \$x31 \$y8;</pre>	<pre>node 87 \$x5 \$y13; node 88 \$x555 \$y13; node 810 \$x7 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 812 \$x9 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 818 \$x15 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 824 13030 \$y13; node 825 \$x22 \$y13; node 826 \$x23 \$y13; node 827 \$x24 \$y13; node 828 \$x25 \$y13; node 829 \$x26 \$y13; node 830 17410 \$y13; node 831 \$x28 \$y13; node 831 \$x28 \$y13; node 833 \$x30 \$y13; node 833 \$x30 \$y13; node 834 \$x31 \$y13;</pre>
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8; 727 \$x24 \$y8; 728 \$x25 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 731 \$x28 \$y8; 732 \$x29 \$y8; 733 \$x30 \$y8; 734 \$x31 \$y8;</pre>	node 87 \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 818 \$x15 \$y13; node 820 \$x17 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 824 13030 \$y13; node 825 \$x22 \$y13; node 826 \$x23 \$y13; node 827 \$x24 \$y13; node 829 \$x26 \$y13; node 829 \$x26 \$y13; node 831 \$x28 \$y13; node 831 \$x28 \$y13; node 833 \$x30 \$y13; node 834 \$x31 \$y13; node 835 \$x32 \$y13; node 835 \$x32 \$y13;
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8; 727 \$x24 \$y8; 728 \$x25 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 730 \$x27 \$y8; 731 \$x28 \$y8; 731 \$x28 \$y8; 733 \$x30 \$y8; 734 \$x31 \$y8;</pre>	node 87 \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 824 13030 \$y13; node 825 \$x22 \$y13; node 826 \$x23 \$y13; node 827 \$x24 \$y13; node 827 \$x24 \$y13; node 829 \$x26 \$y13; node 829 \$x26 \$y13; node 831 \$x28 \$y13; node 831 \$x28 \$y13; node 833 \$x30 \$y13; node 834 \$x31 \$y13; node 835 \$x32 \$y13; node 835 \$x32 \$y13; node 836 \$x33 \$y13; node 835 \$x32 \$y13; node 835 \$x32 \$y13; node 835 \$x32 \$y13; node 835 \$x32 \$y13; node 836 \$x33 \$y13; node 837 \$x34 \$y13;
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 715 \$x12 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8; 727 \$x24 \$y8; 728 \$x25 \$y8; 729 \$x26 \$y8; 730 \$x27 \$y8; 731 \$x28 \$y8; 732 \$x29 \$y8; 733 \$x30 \$y8; 734 \$x31 \$y8;</pre>	node 87 \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 812 \$x9 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 824 13030 \$y13; node 825 \$x22 \$y13; node 826 \$x23 \$y13; node 827 \$x24 \$y13; node 828 \$x25 \$y13; node 829 \$x26 \$y13; node 830 17410 \$y13; node 831 \$x28 \$y13; node 831 \$x28 \$y13; node 831 \$x29 \$y13; node 831 \$x28 \$y13; node 831 \$x29 \$y13; node 831 \$x29 \$y13; node 831 \$x29 \$y13; node 831 \$x29 \$y13; node 833 \$x30 \$y13; node 834 \$x31 \$y13; node 835 \$x32 \$y13; node 836 \$x33 \$y13; node 837 \$x34 \$y13;
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8; 727 \$x24 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 730 \$x27 \$y8; 731 \$x28 \$y8; 732 \$x20 \$y8; 733 \$x30 \$y8; 734 \$x31 \$y8;</pre>	node 87 \$x5 \$y13; node 88 \$x555 \$y13; node 810 \$x7 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 818 \$x15 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 824 13030 \$y13; node 825 \$x22 \$y13; node 826 \$x23 \$y13; node 827 \$x24 \$y13; node 829 \$x26 \$y13; node 829 \$x26 \$y13; node 831 \$x28 \$y13; node 831 \$x28 \$y13; node 831 \$x28 \$y13; node 833 \$x30 \$y13; node 834 \$x31 \$y13; node 834 \$x31 \$y13; node 835 \$x32 \$y13; node 836 \$x33 \$y13; node 837 \$x34 \$y13; node 838 20390 \$y13; node 838 20390 \$y13;
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8; 727 \$x24 \$y8; 728 \$x25 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 730 \$x27 \$y8; 731 \$x28 \$y8; 732 \$x29 \$y8; 733 \$x30 \$y8; 734 \$x31 \$y8; 735 \$x32 \$y8; 736 \$x33 \$y8; 737 \$x34 \$y8; 738 \$x35 \$y8; 739 \$x34 \$y8; 730 \$x27 \$y8; 731 \$x28 \$y8; 734 \$x31 \$y8;</pre>	node 87 \$x5 \$y13; node 88 \$x555 \$y13; node 810 \$x7 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 818 \$x15 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 824 13030 \$y13; node 824 \$x23 \$y13; node 824 \$x23 \$y13; node 824 \$x25 \$y13; node 826 \$x22 \$y13; node 827 \$x24 \$y13; node 828 \$x25 \$y13; node 830 17410 \$y13; node 831 \$x28 \$y13; node 832 \$x29 \$y13; node 834 \$x31 \$y13; node 834 \$x31 \$y13; node 835 \$x32 \$y13; node 836 \$x33 \$y13; node 837 \$x34 \$y13; node 838 20390 \$y13; node 839 \$x36 \$y13;
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 715 \$x12 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8; 727 \$x24 \$y8; 728 \$x25 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 731 \$x28 \$y8; 731 \$x28 \$y8; 732 \$x29 \$y8; 733 \$x30 \$y8; 734 \$x31 \$y8; 735 \$x32 \$y8; 736 \$x32 \$y8; 737 \$x34 \$y8; 738 \$x35 \$y8; 738 \$x35 \$y8; 738 \$x35 \$y8; 738 \$x35 \$y8;</pre>	node 87 \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 812 \$x9 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 818 \$x15 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 820 \$x17 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 824 13030 \$y13; node 825 \$x22 \$y13; node 826 \$x23 \$y13; node 827 \$x24 \$y13; node 828 \$x25 \$y13; node 829 \$x26 \$y13; node 830 17410 \$y13; node 831 \$x28 \$y13; node 831 \$x29 \$y13; node 833 \$x30 \$y13; node 834 \$x31 \$y13; node 835 \$x32 \$y13; node 837 \$x34 \$y13; node 837 \$x34 \$y13; node 838 20390 \$y13; node 839 \$x36 \$y13; node 840 \$x37 \$y13;
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8; 727 \$x24 \$y8; 728 \$x25 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 730 \$x27 \$y8; 731 \$x28 \$y8; 732 \$x29 \$y8; 733 \$x30 \$y8; 734 \$x31 \$y8; 735 \$x32 \$y8; 736 \$x33 \$y8; 737 \$x34 \$y8; 738 \$x35 \$y8; 739 \$x36 \$y8; 739 \$x36 \$y8;</pre>	node 87 \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 812 \$x9 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 818 \$x15 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 824 13030 \$y13; node 825 \$x22 \$y13; node 826 \$x23 \$y13; node 827 \$x24 \$y13; node 828 \$x25 \$y13; node 829 \$x26 \$y13; node 830 17410 \$y13; node 831 \$x28 \$y13; node 831 \$x28 \$y13; node 833 \$x30 \$y13; node 834 \$x31 \$y13; node 835 \$x32 \$y13; node 835 \$x32 \$y13; node 837 \$x34 \$y13; node 837 \$x34 \$y13; node 837 \$x34 \$y13; node 838 20390 \$y13; node 839 \$x36 \$y13; node 840 \$x37 \$y13; node 840 \$x37 \$y13;
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8; 727 \$x24 \$y8; 728 \$x25 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 731 \$x28 \$y8; 732 \$x29 \$y8; 733 \$x30 \$y8; 734 \$x31 \$y8; 735 \$x32 \$y8; 736 \$x33 \$y8; 737 \$x34 \$y8; 738 \$x35 \$y8; 739 \$x36 \$y8; 739 \$x36 \$y8; 739 \$x36 \$y8; 739 \$x36 \$y8; 739 \$x36 \$y8;</pre>	node 87 \$x5 \$y13; node 88 \$x555 \$y13; node 810 \$x7 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 813 \$x10 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 818 \$x15 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 824 13030 \$y13; node 824 \$x23 \$y13; node 825 \$x22 \$y13; node 826 \$x23 \$y13; node 827 \$x24 \$y13; node 828 \$x25 \$y13; node 829 \$x26 \$y13; node 829 \$x26 \$y13; node 831 \$x28 \$y13; node 831 \$x28 \$y13; node 832 \$x29 \$y13; node 834 \$x31 \$y13; node 834 \$x31 \$y13; node 835 \$x32 \$y13; node 837 \$x34 \$y13; node 838 \$x36 \$y13; node 839 \$x36 \$y13; node 840 \$x37 \$y13; node 841 \$x38 \$y13; node 841 \$x38 \$y13; node 841 \$x38 \$y13;
node node node node node node node node	<pre>// \$x5 \$y8; 78 \$x555 \$y8; 79 \$x6 \$y8; 710 \$x7 \$y8; 711 \$x8 \$y8; 712 \$x9 \$y8; 713 \$x10 \$y8; 714 \$x11 \$y8; 715 \$x12 \$y8; 716 \$x13 \$y8; 717 \$x14 \$y8; 718 \$x15 \$y8; 719 \$x16 \$y8; 720 \$x17 \$y8; 721 \$x18 \$y8; 722 \$x19 \$y8; 723 \$x20 \$y8; 724 12810 \$y8; 725 \$x22 \$y8; 726 \$x23 \$y8; 727 \$x24 \$y8; 728 \$x25 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 729 \$x26 \$y8; 730 \$x27 \$y8; 731 \$x28 \$y8; 732 \$x29 \$y8; 733 \$x30 \$y8; 734 \$x31 \$y8; 735 \$x32 \$y8; 736 \$x32 \$y8; 737 \$x34 \$y8; 738 \$x35 \$y8; 738 \$x35 \$y8; 739 \$x36 \$y8; 730 \$x37 \$y8; 740 \$x37 \$y8;</pre>	node 87 \$x5 \$y13; node 88 \$x555 \$y13; node 89 \$x6 \$y13; node 810 \$x7 \$y13; node 811 \$x8 \$y13; node 812 \$x9 \$y13; node 812 \$x9 \$y13; node 814 \$x11 \$y13; node 815 \$x12 \$y13; node 816 \$x13 \$y13; node 816 \$x13 \$y13; node 817 \$x14 \$y13; node 819 \$x16 \$y13; node 819 \$x16 \$y13; node 820 \$x17 \$y13; node 821 \$x18 \$y13; node 822 \$x19 \$y13; node 823 \$x20 \$y13; node 824 13030 \$y13; node 825 \$x22 \$y13; node 826 \$x23 \$y13; node 827 \$x24 \$y13; node 828 \$x25 \$y13; node 829 \$x26 \$y13; node 829 \$x26 \$y13; node 829 \$x26 \$y13; node 830 17410 \$y13; node 831 \$x28 \$y13; node 832 \$x29 \$y13; node 833 \$x30 \$y13; node 834 \$x31 \$y13; node 835 \$x32 \$y13; node 835 \$x32 \$y13; node 837 \$x34 \$y13; node 837 \$x34 \$y13; node 839 \$x36 \$y13; node 840 \$x37 \$y13; node 841 \$x38 \$y13; node 841 \$x38 \$y13; node 841 \$x38 \$y13; node 842 \$x39 \$y13; node 841 \$x38 \$y13; node 842 \$x39 \$y13; node 841 \$x38 \$y13; node 842 \$x39 \$y13; node 844 \$x37 \$y13; node 844 \$x37 \$y13; node 844 \$x37 \$y13; node 844 \$x38 \$y13; node 844 \$x37 \$y13; node 844 \$x37 \$y13; node 844 \$x38 \$y13; node 844 \$x37 \$y13; node 844 \$x38 \$y13;

node node	844 845	24770 \$y13; \$x42 \$v13:	
nouc	. 010	YA12 YY10,	
node	846	\$x43 \$y13;	
node	e 848	\$x44 \$y13; \$x45 \$v13;	
node	849	\$x46 \$y13;	
node	850	\$x47 \$y13;	
node	851 852	\$x48 \$y13; \$x49 \$v13;	
node	853 e	\$x50 \$y13;	
node	854	\$x51 \$y13;	
node	855	\$x52 \$y13;	
noue	000	şxJ2 şYI2;	
node	857	\$x54 \$y13;	
node	858	\$x55 \$y13;	
node	860	\$x57 \$v13;	
node	861	\$x58 \$y13;	
node	862	\$x59 \$y13;	
node	e 863	\$x60 \$y13;	
node	865	\$x61 \$y13; \$x62 \$v13:	
node	866 e	\$x63 \$y13;	
node	867	\$x64 \$y13;	
#Oua	irto	piano	
	0.1	÷ 00 ÷ 10	
node	91 92	\$x00 \$y18; \$v0 \$v18•	
node	e 93	\$x1 \$v18;	
node	94	\$x2 \$y18;	
node	95	\$x3 \$y18;	
node	96	\$x4	
node	97 98	ຈxວ ຈy⊥8; \$x555 \$v18•	
node	99	\$x6 \$y18;	
node	910	\$x7 \$y18;	
node	911	\$x8 \$y18;	
node	912	\$x9 \$y18;	
node	913	\$x10 \$y18;	
node	914	\$x11 \$y18;	
node	915 916	\$x13 \$v18:	
node	917	\$x14 \$y18;	
node	918	\$x15 \$y18;	
node	919	\$x16 \$y18;	
node	920 921	\$x1/ \$y18; \$y18 \$y18:	
node	922	\$x19 \$y18;	
node	923	\$x20 \$y18;	
node	92.4	\$x21 \$v18:	
node	925	13240 \$y18;	
node	926	\$x23 \$y18;	
node	927	\$x24 \$y18;	
node	928 928	\$x25 \$y18; \$x26 \$v18;	
node	930	17620 \$v18;	
node	931	\$x28 \$y18;	
node	e 932	\$x29 \$y18;	
node	933 934	\$x30 \$y18; \$x31 \$v18:	
node	935	\$x32 \$y18;	
node	: 936 937	γχοο γγ⊥δ; \$x34 \$v18•	
node	938	20180 \$y18;	
node	939	\$x36 \$y18;	
node	940	\$x37 \$y18;	
node	941 942	>x38 >y18; Sx39 Sv18∙	
node	943	24560 \$v18;	
node	944	\$x41 \$y18;	
node	945	\$x42 \$y18;	

	010	C 12 (·1 0	
node	940	ŞX43 -	γΥΥ	;
node	947	\$x44 \$	5y18	;
node	948	\$x45	5v18	:
	0 F C	- 1C	- <u>1</u> - 0	'
node	949	\$x46 \$	y18	;
node	950	\$x47 \$	3y18	;
node	951	Sx48	- 	•
noue) J T	YA10 .	гу⊥О	'
node	952	\$x49 \$	3y18	;
node	953	Śx5∩ °	5v1 2	:
noue	200	4AJU .	гу⊥О	'
node	954	\$x51 \$	ÿy18	;
node	955	\$x52 \$	5v18	;
n1	050	6EO	2 - 0	<u>′</u>
node	956	SX23	⊳Ат8	;
node	957	\$~5/ (3,710	
) J /	4AJ4 -	гу⊥о	'
node	958	\$x55 \$	jy18	;
node	959	\$x56 \$	5v18	;
nod-	960	0	2,,10	<i>.</i>
noae	900	YCX¢	∍утқ	;
node	961	\$x58 \$	3y18	;
node	962	\$x59	5v18	:
	202	4AJJ .	- <u>y</u> ± 0	'
node	963	\$x60 \$	3y18	;
node	964	\$x61 0	- 5v1 2	:
noue	204	YAUL .	-y±0	'
node	965	\$x62 \$	y18	;
node	966	\$x63 \$	5v18	;
node	967	STEN 0	ະ <u>-</u> 2,,71 ດ	
noae	901	9X04	удт8	;
#∩11i,	nto r	iano		
#⊻u⊤j	ico b	'Lano		
node	101	\$x00 9	5v23	:
	100	¢		'
node	102	şxU Ş <u>ı</u>	123;	
node	103	\$x1 \$v	/23:	
node	104	5 v 0 c-	,22,	
noae	±04	YXZ Ş	123;	
node	105	\$x3 \$v	723;	
node	106	ς.v.Λ ς.	,22.	
noue	100	YA4 9	(23;	
node	107	\$x5 \$y	/23;	
node	108	\$x555	Śv2	3:
	100	+	~ 1 4	~,
node	T03	şх6 Ş <u>т</u>	123;	
node	1010	Sx7	5v23	:
noue	1010	~~ ^	- <u>1</u>	'
node	1011	Şx8 S	y23	;
node	1012	\$x9 \$	5v23	;
noue	- U - Z	4AJ '	- <u>1</u> 2J	'
node	1013	\$x10	\$v2	3;
node	101/	C - 1 1	÷ 1 4	~ ,
noae	TOT4	⇒x11	şy∠	; د
node	1015	\$x12	\$v2	3;
node	1014	. <u>-</u>	6440	х .
node	TOTE	, ≎x13	şy∠	s;
node	1017	\$x14	\$y2	3;
node	1010	S⊽15	5,70	
node	TOTO	CLXY	γy∠	J;
node	1019	\$x16	\$y2	3;
nodo	1020	\$ - 17	\$172	з .
noue	TUZU	, 1×1	γyΖ	J;
node	1021	\$x18	\$y2	3;
node	1022	S ⊽ 10	·	· ·
noue	TUZZ	YX13	S + + ')	~ -
node	1023	÷ 00	Şy2	2;
		i şx∠u	\$y2 \$y2	3; 3;
		ŞXZU	\$y2 \$y2	3; 3;
		\$X20	\$y2 \$y2	3; 3;
node	1024	\$x20	\$y2 \$y2 \$y2	3; 3; 3;
node	1024	\$x20	\$y2 \$y2 \$y2	3; 3; 3;
node node	1024 1025	\$x21 \$x22 \$x22	\$y2 \$y2 \$y2 \$y2 \$y2	3; 3; 3; 3;
node node node	1024 1025 1026	\$x20 \$x21 \$x22 13450	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2) \$v	3; 3; 3; 3; 23;
node node node	1024 1025 1026	\$x20 \$x21 \$x22 13450	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3; 3; 3; 3; 23; 3.
node node node node	1024 1025 1026 1027	\$x20 \$x21 \$x22 13450 \$x24	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3; 3; 3; 23; 23;
node node node node	1024 1025 1026 1027	\$x20 \$x21 \$x22 13450 \$x24 \$x24 \$x25	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3; 3; 3; 23; 23; 3;
node node node node	1024 1025 1026 1027 1028	\$x21 \$x22 \$x22 \$1345(\$x24 \$x24 \$x25 \$x26	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3; 3; 3; 3;; 23; 3;;
node node node node node	1024 1025 1026 1027 1028 1029	\$x21 \$x22 13450 \$x24 \$x25 \$x26	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3; 3; 3; 23; 3; 3; 3;
node node node node node node	1024 1025 1026 1027 1028 1029	\$x20 \$x21 \$x22 513450 \$x24 \$x25 \$x26 \$x26 \$x27	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3; 3; 3;; 23;; 3;; 3;;
node node node node node	1024 1025 1026 1027 1028 1029	\$x21 \$x22 \$x22 \$1345(\$x24 \$x25 \$x26 \$x26 \$x27 1783(\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3; 3; 3;; 3;; 3;; 3;; 3;; 3;; 3;;
node node node node node node	1024 1025 1026 1027 1028 1029 1030	\$x21 \$x22 13450 \$x24 \$x25 \$x26 \$x26 \$x27 \$x27	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3; 3; 3;; 3;; 3;; 3;; 3;; 3;; 3;;
node node node node node node node	1024 1025 1026 1027 1028 1029 1030 1031	\$x20 \$x21 \$x22 1345(\$x24 \$x25 \$x26 \$x26 \$x27 1783(\$x29	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3; 3; 3;; 3;; 3;; 3;; 3;; 3;; 3;; 3;; 3
node node node node node node node	1024 1025 1026 1027 1028 1029 1030 1031 1032	\$x21 \$x22 1345(\$x24 \$x25 \$x26 \$x27 1783(\$x29 \$x30	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	333333333233 3333333333333333333333333
node node node node node node node	1024 1025 1026 1027 1028 1029 1030 1031 1032	\$x20 \$x21 \$x22 \$1345(\$x24 \$x25 \$x26 \$x26 \$x27 1783(\$x29 \$x29 \$x30	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3; 3; 3;; 3;; 3;; 3;; 3;; 3;; 3;; 3;;
node node node node node node node node	1024 1025 1026 1027 1028 1029 1030 1031 1032 1033	\$x21 \$x22 1345(\$x24 \$x25 \$x26 \$x27 1783(\$x29 \$x30 \$x31	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3; 3; 3;; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3;
node node node node node node node node	1024 1025 1026 1027 1028 1030 1031 1032 1033	\$x21 \$x22 \$x22 \$x24 \$x25 \$x26 \$x27 1783(\$x29 \$x30 \$x31	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3;;;;; 3;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
node node node node node node node node	1024 1025 1026 1027 1028 1029 1030 1031 1032 1033	\$x20 \$x21 \$x22 \$1345(\$x24 \$x25 \$x26 \$x26 \$x27 1783(\$x29 \$x30 \$x31	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3;
node node node node node node node node	1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034	\$x20 \$x21 \$x22 1345(\$x24 \$x25 \$x26 \$x26 \$x26 \$x27 1783(\$x29 \$x30 \$x31 \$x31	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3;
node node node node node node node node	1024 1025 1026 1027 1028 1030 1031 1032 1033 1034	\$x20 \$x21 \$x22 1345 \$x24 \$x25 \$x26 \$x27 1783 \$x29 \$x30 \$x31 \$x32 \$x32	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3
node node node node node node node node	1024 1025 1026 1027 1028 1032 1032 1033 1034	\$x20 \$x21 \$x22 1345(\$x24 \$x25 \$x26 \$x27 1783(\$x27 \$x29 \$x20 \$x20 \$x20 \$x21 \$x23 \$x25 \$x26 \$x27 1783(\$x26 \$x27 1783(\$x27 \$x26 \$x26 \$x27 1783(\$x26 \$x27 \$x26 \$x26 \$x27 \$x26 \$x26 \$x27 \$x26 \$x27 \$x26 \$x26 \$x27 \$x26 \$x27 \$x26 \$x27 \$x26 \$x27 \$x26 \$x27 \$x26 \$x27 \$x26 \$x27 \$x26 \$x27 \$x26 \$x27 \$x26 \$x27 \$x26 \$x27 \$x26 \$x27 \$x26 \$x27 \$x26 \$x27 \$x26 \$x27 \$x26 \$x27 \$x26 \$x27 \$x26 \$x20 \$x26 \$x27 \$x26 \$x27 \$x26 \$x26 \$x27 \$x26 \$x27 \$x26 \$x20 \$x26 \$x27 \$x26 \$x26 \$x27 \$x26 \$x27 \$x26 \$x26 \$x27 \$x26 \$x27 \$x26 \$x20 \$x26 \$x20 \$x26 \$x20 \$x20 \$x20 \$x20 \$x20 \$x20 \$x20 \$x20	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3
node node node node node node node node	1024 1025 1026 1027 1028 1039 1039 1039 1039 1039 1039	\$x20 \$x21 \$x22 1345(\$x24 \$x25 \$x26 \$x27 1783(\$x29 \$x30 \$x31 \$x31 \$x32 \$x33 1997(\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3
node node node node node node node node	1024 1025 1026 1027 1028 1039 1039 1039 1039 1039	\$x20 \$x21 \$x22 1345(\$x24 \$x25 \$x26 \$x27 1783(\$x27 \$x30 \$x31 \$x31 \$x32 \$x31 \$x32 \$x33 \$y35	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3
node node node node node node node node	1024 1025 1026 1027 1028 1039 1030 1031 1035 1036 1037	\$x20 \$x21 \$x22 1345(\$x24 \$x25 \$x26 \$x27 1783(\$x29 \$x30 \$x31 \$x32 \$x31 \$x32 \$x33 1997(\$x35	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
node node node node node node node node	1024 1025 1026 1027 1028 1030 1031 1032 1033 1034 1035 1036 1037 1038	\$x20 \$x21 \$x22 1345(\$x24 \$x25 \$x26 \$x27 1783(\$x29 \$x30 \$x31 \$x32 \$x31 \$x32 \$x33 1997(\$x35 \$x36	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
node node node node node node node node	1024 1025 1026 1027 1028 1032 1032 1033 1034 1035 1036 1035 1036 1035	\$x20 \$x21 \$x22 1345(\$x24 \$x25 \$x26 \$x27 1783(\$x29 \$x30 \$x31 \$x31 \$x32 \$x33 1997(\$x35 \$x35 \$x36 \$x36 \$x36 \$x36 \$x36 \$x36 \$x36 \$x37 \$x37 \$x36 \$x37 \$x36 \$x37 \$x36 \$x37 \$x36 \$x37 \$x36 \$x37 \$x36 \$x37 \$x36 \$x37 \$x36 \$x37 \$x36 \$x37 \$x36 \$x37 \$x36 \$x37 \$x36 \$x37 \$x37 \$x37 \$x36 \$x37 \$x37 \$x37 \$x37 \$x36 \$x37 \$x37 \$x37 \$x37 \$x37 \$x37 \$x37 \$x37	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
node node node node node node node node	1024 1025 1026 1027 1028 1032 1032 1033 1034 1035 1036 1037 1038 1039	\$x20 \$x21 \$x22 1345(\$x24 \$x25 \$x26 \$x27 1783(\$x29 \$x30 \$x31 \$x32 \$x31 \$x32 \$x33 1997(\$x35 \$x36 \$x36 \$x37 \$x37 \$x36 \$x37 \$x36 \$x37 \$x36 \$x36 \$x37 \$x37 \$x36 \$x37 \$x36 \$x37 \$x36 \$x37 \$x36 \$x37 \$x36 \$x37 \$x36 \$x37 \$x36 \$x37 \$x36 \$x37 \$x37 \$x36 \$x37 \$x37 \$x37 \$x36 \$x37 \$x37 \$x37 \$x37 \$x37 \$x37 \$x37 \$x37	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
node node node node node node node node	1024 1025 1026 1027 1028 1030 1033 1034 1035 1036 1037 1038 1039 1040	\$x20 \$x21 \$x22 1345(\$x24 \$x25 \$x26 \$x27 1783(\$x27 1783(\$x30 \$x31 \$x31 \$x32 \$x33 1997(\$x33 \$x33 \$x32 \$x33 \$x32 \$x33 \$x32 \$x33 \$x32 \$x33 \$x32 \$x33 \$x32 \$x33 \$x32 \$x33 \$x33	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	33323333233333333333333333333333333333
node node node node node node node node	1024 1025 1026 1027 1028 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040	\$x20 \$x21 \$x22 1345(\$x24 \$x25 \$x26 \$x27 1783(\$x29 \$x30 \$x31 \$x32 \$x33 1997(\$x35 \$x36 \$x36 \$x37 \$x38 \$x37 \$x38 \$x37	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3 3 3 3 3 3 3 3 3 3 3 3 3 3
node node node node node node node node	1024 1025 1026 1027 1028 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040	\$x20 \$x21 \$x22 1345(\$x24 \$x25 \$x26 \$x27 1783(\$x29 \$x30 \$x31 \$x32 \$x32 \$x33 1997(\$x35 \$x36 \$x37 \$x38 \$x37 \$x38 \$x37	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3 3 2 3 3 2 3
node node node node node node node node	1024 1025 1026 1027 1028 1030 1031 1032 1033 1034 1035 1036 1037 1038 1036 1040 1041 1042	\$x20 \$x21 \$x22 1345(\$x24 \$x25 \$x26 \$x27 1783(\$x29 \$x30 \$x31 \$x32 \$x31 \$x32 \$x33 1997(\$x35 \$x36 \$x36 \$x38 \$x36 \$x36 \$x36 \$x36 \$x36 \$x36 \$x36 \$x37 \$x36 \$x36 \$x36 \$x36 \$x36 \$x36 \$x36 \$x36	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	333233332333333323;;;;;;;;;;;;;;;;;;;;
node node node node node node node node	1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041	\$x20 \$x21 \$x22 1345(\$x24 \$x25 \$x26 \$x27 1783(\$x29 \$x30 \$x31 \$x32 \$x31 \$x32 \$x33 1997(\$x35 \$x36 \$x37 \$x38 2435(\$x41	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	33333333333333333333333333333333333333
node node node node node node node node	1024 1025 1026 1027 1028 1030 1031 1032 1033 1034 1035 1036 1035 1036 1037 1040 1041 1042	\$x20 \$x21 \$x22 1345(\$x24 \$x25 \$x26 \$x27 1783(\$x26 \$x27 1783(\$x26 \$x27 1783(\$x26 \$x27 1783(\$x26 \$x27 1783(\$x26 \$x27 1783(\$x26 \$x27 1783(\$x26 \$x27 1783(\$x26 \$x27 1783(\$x26 \$x27 1783(\$x26 \$x27 1783(\$x26 \$x27 1783(\$x26 \$x27 1783(\$x26 \$x27 \$x30 \$x31 \$x32 \$x33 1997(\$x35 \$x35 \$x35 \$x35 \$x35 \$x35 \$x36 \$x35 \$x36 \$x36 \$x37 \$x36 \$x36 \$x37 \$x36 \$x36 \$x37 \$x36 \$x36 \$x37 \$x36 \$x36 \$x37 \$x36 \$x36 \$x37 \$x36 \$x36 \$x36 \$x37 \$x36 \$x36 \$x36 \$x36 \$x37 \$x36 \$x36 \$x36 \$x36 \$x36 \$x36 \$x36 \$x36	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	33333333333333333333333333333333333333
node node node node node node node node	1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1044	\$x20 \$x21 \$x22 1345(\$x24 \$x25 \$x26 \$x27 1783(\$x29 \$x30 \$x31 \$x32 \$x31 \$x32 \$x33 1997(\$x35 \$x36 \$x36 \$x37 \$x38 \$x36 \$x37 \$x36 \$x37 \$x36 \$x36 \$x37 \$x36 \$x37 \$x36 \$x36 \$x37 \$x36 \$x37 \$x36 \$x37 \$x36 \$x36 \$x37 \$x36 \$x37 \$x36 \$x36 \$x36 \$x37 \$x36 \$x36 \$x36 \$x37 \$x36 \$x36 \$x36 \$x37 \$x36 \$x36 \$x37 \$x36 \$x36 \$x37 \$x36 \$x36 \$x36 \$x37 \$x36 \$x36 \$x36 \$x36 \$x36 \$x36 \$x37 \$x36 \$x36 \$x36 \$x36 \$x36 \$x36 \$x36 \$x36	\$\frac{\sqrt{2}}{\sqrt{2}} \$\frac{\sqrt{2}}{\sqrt{2}} \$\frac{\sqrt{2}}{\sqrt{2}} \$\frac{\sqrt{2}}{\sqrt{2}} \$\frac{\sqrt{2}}{\sqrt{2}} \$\sqrt{2} \$	33323333333333333333333333333333333333
node node node node node node node node	1024 1025 1026 1027 1028 1030 1031 1032 1033 1034 1035 1036 1037 1038 1040 1041 1042 1043	\$x20 \$x21 \$x22 1345(\$x22 \$x26 \$x27 1783(\$x26 \$x27 1783(\$x30 \$x31 \$x32 \$x33 1997(\$x33 1997(\$x33 \$x33 1997(\$x33 \$x32 \$x33 1997(\$x33 \$x32 \$x33 \$x32 \$x33 1997(\$x36 \$x32 \$x32 \$x33 \$x32 \$x32 \$x32 \$x32 \$x32	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
node node node node node node node node	1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1049 1041 1042	\$x20 \$x21 \$x22 1345(\$x22 \$x25 \$x26 \$x27 1783(\$x29 \$x30 \$x31 \$x32 \$x31 \$x32 \$x33 1997(\$x35 \$x36 \$x37 \$x38 \$x38 \$x38 \$x32 \$x38 \$x31 \$x32 \$x33 \$x32 \$x33 \$x32 \$x33 \$x32 \$x34 \$x32 \$x32 \$x31 \$x32 \$x32 \$x32 \$x31 \$x32 \$x32 \$x32 \$x32 \$x33 \$x32 \$x32 \$x32	\$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2 \$y2	3 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3

node node node node node node node node	1047 1048 1049 1050 1051 1052 1053 1054 1055 1055 1055 1055 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067	\$x44 \$x45 \$x46 \$x47 \$x48 \$x50 \$x51 \$x52 \$x53 \$x55 \$x55 \$x55 \$x55 \$x56 \$x57 \$x58 \$x59 \$x60 \$x61 \$x62 \$x63 \$x64	<pre>\$y23; \$y23;</pre>
#Sest	to pia	ino	
node node node node node node node node	111 \$ 112 \$ 113 \$ 114 \$ 115 \$ 116 \$ 117 \$ 118 \$ 119 \$ 1110 1111 1112	5x00 \$ 5x0 \$ 5x1 \$ 5x2 \$ 5x3 \$ 5x4 \$ 5x5 \$ 5x555 5x6 \$ 5x6 \$ 5x7 \$ 5x8 \$ 5x9 \$	y28; 728; 728; 728; 728; 728; 728; 728; 7
node node node node node node node node	1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123	\$x10 \$x11 \$x12 \$x13 \$x14 \$x15 \$x16 \$x17 \$x18 \$x19 \$x20	\$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28;
node node node node node node node node	1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134	\$x21 \$x22 1367(\$x24 \$x25 \$x26 \$x27 1805(\$x29 \$x30 \$x30 \$x31	<pre>\$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28;</pre>
node node node node node node node node	1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145	\$x32 \$x33 1975(\$x35 \$x36 \$x37 \$x38 2413(\$x40 \$x41 \$x42	\$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28; \$y28;
node node node	1146 1147 1148	\$x43 \$x44 \$x45	\$y28; \$y28; \$y28;

node	1	1	45	9		\$ ¢	X	4	67		\$ ¢	У	2	8	;	
node	1	1	5	1		э S	x x	4	8		э S	y v	2	0 8	;	
node	1	1	5	2		\$	x	4	9		\$	ı V	2	8	;	
node	1	1	5	3		\$	x	5	0		\$	y	2	8	;	
node	1	1	5	4		\$	х	5	1		\$	У	2	8	;	
node	1	1	5	5		\$	Х	5	2		\$	У	2	8	;	
node	T	T	5	6		Ş	х	5	3		Ş	У	2	8	;	
node	1	1	5	7		\$	X	5	4		\$	У	2	8	;	
node	1	1	5	8		Р С	X	5	5		Р С	У	2	8	;	
node	1	1	5	0		ч S	x	5	7		ч S	У V	2	8	Έ	
node	1	1	6	1		\$	x	5	8		\$	v	2	8	;	
node	1	1	6	2		\$	x	5	9		\$	ý	2	8	;	
node	1	1	6	3		\$	х	6	0		\$	ý	2	8	;	
node	1	1	6	4		\$	х	6	1		\$	У	2	8	;	
node	1	1	6	5		\$	х	6	2		\$	У	2	8	;	
node node	1	1	6	6 7		Ş	x x	6	3 4		Ş	У v	2 2	8	;	
#\$0++	-	- m	õ		n	-	2	ñ	_		Ŧ	1		Ű	'	
#Sell	+		.0		Р	+	a		.0							
node	1	2	1		Ş	X	0	υ	ċ	Ş	У С	3	3	;		
node	1 1	2	ک 2		ç S	X	U 1		ç S	У v	2	л С	í			
node	1 1	2	د 4		မှ S	x	⊥ 2		မှ S	У v	3	с З	:			
node	1	2	5		Ş	x	3		Ş	ı V	3	3	;			
node	1	2	6		\$	x	4		\$	y	3	3	;			
node	1	2	7		\$	x	5		\$	У	3	3	;			
node	1	2	8		\$	Х	5	5	5		\$	У	3	3	;	
node	1	2	9		\$	Х	6		\$	У	3	3	;			
node	1	2	1	0		\$	Х	7		\$	У	3	3	;		
node	1	2	1	1		Ş	Х	8		Ş	У	3	3	;		
node	T	2	T	2		Ş	x	9		Ş	У	3	3	;		
node	1	2	1	3		\$	x	1	0		\$	У	3	3	;	
node	1	2	1	4		\$	Х	1	1		\$	У	3	3	;	
node	1	2	1	5		\$	Х	1	2		\$	У	3	3	;	
node	1	2	1	6		Ş	Х	1	3		Ş	У	3	3	;	
node	1	2	1	0		Ş	x	1	4		Ş	У 	ン っ	ン っ	;	
node	1	2	1	8		Р С	X	1	5		Р С	У	2	2 2	;	
node	1	2	2	0		ч S	× v	1	7		ч S	У v	2	2 2	Έ.	
node	1	2	2	1		ŝ	x	1	8		ŝ	ı V	3	3	;	
node	1	2	2	2		\$	x	1	9		\$	ý	3	3	;	
node	1	2	2	3		\$	Х	2	0		\$	y	3	3	;	
node	1	2	2	4		\$	x	2	1		\$	У	3	3	;	
node	1	2	2	5		\$	х	2	2		\$	У	3	3	;	
node	1	2	2	6		\$	X	2	3		\$	Y	3	3	;	
node	1	2	2	7		1	3	8	8	0	~	Ş	У	3	3	;
node	1	2	2	8		Р С	X	2	5		Р С	У	2	с 2	;	
node	1	2	23	0		ŝ	v	2	7		ŝ	y v	3	3	Έ.	
node	1	2	3	1		ŝ	x	2	8		ŝ	ı V	3	3	;	
node	1	2	3	2		1	8	2	6	0	ĺ	ŝ	v	3	, 3	;
node	1	2	3	3		\$	х	3	0		\$	У	3	3	;	
node	1	2	3	4		\$	Х	3	1		\$	У	3	3	;	
node	1	2	3	5		\$	x	3	2		\$	У	3	3	;	
node	1	2	3	6		1	9	5	4	0	,	\$	Y	3	3	;
node	1	2	3	7		\$	Х	3	4		\$	У	3	3	;	
node	1	2	3	8		Ş	X	3	5		Ş	У	3	3	;	
node	1	2 2	3 1	9		ې د	X	ゴ っ	0 7		ې د	Y	ゴ っ	ゴ っ	;	
node	1 1	2	± ⊿	1		ې 2	у Х	с a	2	ρ	ç	YS	د 17	л С	י ר	
node	1	2	4	2		\$	x	3	9	5	\$	v	1 3	3	;	'
node	1	2	4	3		\$	x	4	0		\$	ý	3	3	;	
node	1	2	4	4		\$	х	4	1		\$	ý	3	3	;	
node	1	2	4	5		\$	х	4	2		\$	У	3	3	;	
node	1	2	4	6		\$	x	4	3		\$	У	3	3	;	
node	1	2	4	7		\$	Х	4	4		\$	У	3	3	;	
node	1	2	4	8		Ş	X	4	5		Ş	У	3	3	;	
node	1	2	4	9		Ş	X	4	67		Ş	У	3 2	3 2	;	
node	Τ	Ζ	C	υ		Ŷ	х	4	1		Ŷ	Υ	З	З	í	

node node node node node node node node	1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267	<pre>\$x48 \$y33; \$x49 \$y33; \$x50 \$y33; \$x51 \$y33; \$x52 \$y33; \$x53 \$y33; \$x55 \$y33; \$x55 \$y33; \$x56 \$y33; \$x57 \$y33; \$x58 \$y33; \$x59 \$y33; \$x60 \$y33; \$x61 \$y33; \$x61 \$y33; \$x64 \$y33; \$x63 \$y33; \$x64 \$y33;</pre>
#Otta	avo pi	ano
node node node node node node node node	131 \$ 132 \$ 133 \$ 134 \$ 135 \$ 136 \$ 137 \$ 138 \$ 139 \$ 1310 1311	5x00 \$y38; 5x1 \$y38; 5x2 \$y38; 5x3 \$y38; 5x4 \$y38; 5x5 \$y38; 5x555 \$y38; 5x6 \$y38; \$x7 \$y38; \$x8 \$y38; \$x8 \$y38;
node node node node node node node node	1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323	<pre>\$x10 \$y38; \$x11 \$y38; \$x12 \$y38; \$x13 \$y38; \$x14 \$y38; \$x15 \$y38; \$x16 \$y38; \$x17 \$y38; \$x17 \$y38; \$x18 \$y38; \$x19 \$y38; \$x20 \$y38;</pre>
node node node node node node node node	1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334	<pre>\$x21 \$y38; \$x22 \$y38; \$x23 \$y38; 14090 \$y38; \$x25 \$y38; \$x26 \$y38; \$x27 \$y38; \$x28 \$y38; \$x29 \$y38; \$x29 \$y38; 18470 \$y38; \$x31 \$y38;</pre>
node node node node node node node node	1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345	19330 \$y38; \$x33 \$y38; \$x34 \$y38; \$x35 \$y38; \$x36 \$y38; \$x37 \$y38; 23710 \$y38; \$x39 \$y38; \$x40 \$y38; \$x41 \$y38; \$x42 \$y38;
node node node node node node	1346 1347 1348 1349 1350 1351 1352	\$x43 \$y38; \$x44 \$y38; \$x45 \$y38; \$x46 \$y38; \$x47 \$y38; \$x47 \$y38; \$x48 \$y38; \$x48 \$y38; \$x49 \$y38;

1 1050 0 50 0 00	1
node 1353 \$x50 \$y38;	node
node 1354 \$x51 \$y38;	node
node 1355 \$x52 \$y38;	node
node 1356 \$x53 \$y38;	node
<u> </u>	
node 1357 \$x54 \$x38.	node
node 1250 (viet (viet)	node
1000 1550 \$X55 \$Y50;	node
node 1359 \$x56 \$y38;	node
node 1360 \$x57 \$y38;	node
node 1361 \$x58 \$y38;	node
node 1362 \$x59 \$v38:	node
node $1363 \le v \le 0 \le v 38$	node
10de 1303 \$x00 \$y30,	noue
node 1364 \$x61 \$y38;	node
node 1365 \$x62 \$y38;	node
node 1366 \$x63 \$y38;	node
node 1367 \$x64 \$v38;	node
#Nono piano	#Deci:
#Nono piano	"DCCI
	_
node 141 \$x00 \$y43;	node
node 142 \$x0 \$y43;	node
node 143 \$x1 \$y43;	node
node 144 \$x2 \$v43:	node
node $1/5 \leq v^2 \leq v/3$	node
noue 145 \$x5 \$y45,	noue
node 146 \$X4 \$Y43;	node
node 147 \$x5 \$y43;	node
node 148 \$x555 \$y43;	node
node 149 \$x6 \$v43;	node
node 1410 \$x7 \$v43	node
node 1411 649 6442.	node
100e 1411 9x0 9y43,	noue
node 1412 \$X9 \$Y43;	node
node 1413 \$x10 \$y43;	node
node 1414 \$x11 \$y43;	node
node 1415 \$x12 \$v43:	node
node 1416 $\$v13$ $\$v43$.	node
node 1417 (14 (42)	nouc
node 1417 \$X14 \$Y43;	node
node 1418 \$x15 \$y43;	node
node 1419 \$x16 \$y43;	node
node 1420 \$x17 \$y43;	node
node 1421 \$x18 \$v43:	node
node $1422 \pm 19 \pm 43$	node
node 1422 (x1) (y4),	nouc
node 1423 \$x20 \$y43;	node
node 1424 \$x21 \$y43;	node
node 1425 \$x22 \$y43;	node
node 1426 \$x23 \$v43;	node
node 1427 \$x24 \$v43.	node
node $111427 14210 cm/2$.	node
1100e 111427 14310 3943;	node
node 1428 \$x25 \$y43;	node
node 1429 \$x26 \$y43;	node
node 1430 \$x27 \$y43;	node
node 1431 \$x28 \$y43;	node
node 1432 \$x29 \$v43:	node
nodo 1/33 19600 cu/3.	nodo
100e 1433 10090 3y43;	node
node 1434 \$X31 \$Y43;	node
node 1435 19110 \$y43;	node
node 1436 \$x33 \$y43;	node
node 1437 \$x34 \$v43	node
node 1438 $\leq v > 5 \leq v / 2$.	nodo
node 1420 é-26 é-42	noue
1000 1439 \$X36 \$Y43;	node
node 1440 \$x37 \$y43;	node
node 111440 23490 \$y43;	node
node 1441 \$x38 \$y43;	node
node 1442 \$x39 \$v43:	node
node 1443 $\$x40$ $\$v43$.	node
node 1444 én 41 én 42-	noue
1000 1444 \$X41 \$Y43;	noae
node 1445 \$x42 \$y43;	node
node 1446 \$x43 \$y43;	node
node 1447 \$x44 \$v43:	node
node 1448 \$x45 \$v43	node
node 1449 \$v/6 \$v/?.	nodo
node 1450 6-47 6-42	noue
node 1450 \$x4/ \$y43;	node
	nouc
node 1451 \$x48 \$y43;	node

node	1453 \$x50 \$y43;	
node	1454 Sv51 Sv43	
inouc	1151 VASI VY15,	
node	1455 \$X52 \$Y43;	
node	1456 \$x53 \$y43;	
node	1457 Sx54 Sx43.	
n e el e	14E0 C-EE C-42.	
noue	1400 3×00 3¥40;	
node	1459 \$x56 \$y43;	
node	1460 \$x57 \$v43;	
node	1461 Sx58 Sv43.	
nede	1460 ¢.50 ¢y40,	
noae	1462 \$x59 \$y43;	
node	1463 \$x60 \$y43;	
node	1464 \$x61 \$y43;	
node	1465 \$x62 \$v43:	
node	1466 662 642.	
noue	1400 3×03 3¥43;	
node	1467 \$x64 \$y43;	
#Deci	mo piano	
	1 1 1	
	454 4 66 4 46	
node	151 \$x00 \$y48;	
node	152 \$x0 \$y48;	
node	153 \$x1 \$v48;	
node	154 Sv2 Sv48.	
nod-	155 6	
node	15C A A A A	
node	156 Şx4 Şy48;	
node	157 \$x5 \$y48;	
node	158 \$x555 \$v48:	
nodo	159 506 60000	
noue	159 380 3940;	
node	1510 \$x7 \$y48;	
node	1511 \$x8 \$y48;	
node	1512 \$x9 \$v48;	
	1512 6-10 6-40	
node	1513 ŞXIU ŞY48;	
node	1514 Şxll Şy48;	
node	1515 \$x12 \$y48;	
node	1516 \$x13 \$v48:	
nodo	1517 6.14 6.40	
noue	1510 à 15 à 40	
node	1518 \$x15 \$y48;	
node	1519 \$x16 \$y48;	
node	1520 \$x17 \$v48:	
node	1521 Sv18 Sv48.	
nede	1521 ÇA10 ÇY40,	
noae	1522 ŞX19 ŞY48;	
node	1523 \$x20 \$y48;	
node	1524 \$x21 \$v48:	
nodo	1525 \$222 \$240,	
noue	1525 \$X22 \$Y40,	
node	1526 \$x23 \$y48;	
node	1527 \$x24 \$y48;	
node	111527 14520 \$v48;	
node	1528 Sx25 Sv48	
node	1520 \$126 \$140,	
noue	1529 \$X20 \$Y40;	
node	1530 \$x27 \$y48;	
node	1531 \$x28 \$y48;	
node	1532 \$x29 \$v48;	
node	1533 \$x30 \$v48.	
nede	1534 c21 c40.	
noae	τυρά όχοτ όλας;	
node	1535 \$x32 \$y48;	
node	1536 \$x33 \$y48;	
node	1537 \$x34 \$v48:	
nodo	1538 5235 5710.	
noue	1520 0 26 0 10	
node	1539 \$X36 \$Y48;	
node	1540 \$x37 \$y48;	
node	111540 23280 \$v48;	
node	1541 \$x38 \$v48.	
	1E40 6-20 640	
noae	1042 3X39 3Y48;	
node	1543 \$x40 \$y48;	
node	1544 \$x41 \$y48;	
node	1545 \$x42 \$v48:	
nodo	1546 5243 5270.	
	1543 0 4A 0 40	
node	154/ \$X44 \$Y48;	
node	1548 \$x45 \$y48;	
node	1549 \$x46 \$v48;	
node	1550 \$x47 \$v48	
node	1551 \$2/0 \$770.	
noae	1550 A 40 A 40	
node	1552 Şx49 Şy48;	

 node
 1553
 \$x50
 \$y48;
 node
 1643
 \$x00
 \$y41;
 node
 1746
 \$x9
 \$y44;

 node
 1554
 \$x51
 \$y48;
 node
 1644
 \$x00
 \$y42;
 node
 1747
 \$x9
 \$y45;

 node
 1555
 \$x52
 \$y48;
 #node
 1645
 \$x00
 \$y43;
 node
 1748
 \$x9
 \$y46;

 node
 1556
 \$x53
 \$y48;
 #considero
 asse trave
 node
 1749
 \$x9
 \$y47;

 #node
 1556
 \$x53
 \$y48;
 #considero
 asse trave
 node
 1750
 \$x9
 \$y48
 node 1557 \$x54 \$y48; node 1558 \$x55 \$y48; node 1559 \$x56 \$y48; node 1560 \$x57 \$y48; node 1561 \$x58 \$y48; node 1562 \$x59 \$y48; node 1563 \$x60 \$y48; node 1564 \$x61 \$y48; node 1565 \$x62 \$y48; node 1566 \$x63 \$y48; node 1567 \$x64 \$y48; #Colonna 1 node 161 \$x00 \$y0;

 node 1612 \$x00 \$y10;
 node 1612 \$x00 \$y11;
 node 1716 \$x9 \$y14;

 node 1613 \$x00 \$y11;
 node 1716 \$x9 \$y15;

 #node 1614 \$x00 \$y12;
 node 1717 \$x9 \$y15;

 #node 1615 \$x00 \$y13;
 node 1718 \$x9 \$y16;

 #considero asse trave
 node 1719 \$x9 \$y17;

 #node 1616 \$x00 \$y14;
 mode 1720 \$x9 \$y18;

 node 1616 \$x00 \$y14; node 1617 \$x00 \$y15; node 1628 \$x00 \$v26; node 1629 \$x00 \$y27; #node 1630 \$x00 \$y28; #considero asse trave node 1631 \$x00 \$y29; node 1632 \$x00 \$y30; node 1633 \$x00 \$y31; node 1634 \$x00 \$y32; #node 1635 \$x00 \$y33; #considero asse trave node 1636 \$x00 \$y34; node 1637 \$x00 \$y35;

 node 1637 \$x00 \$y35;
 node 1741 \$x9 \$y39;
 #lode 1845 \$x20 \$y45

 node 1638 \$x00 \$y36;
 node 1741 \$x9 \$y39;
 #considero asse trav

 node 1640 \$x00 \$y37;
 node 1742 \$x9 \$y40;
 mode 1846 \$x20 \$y44;

 #node 1640 \$x00 \$y38;
 node 1743 \$x9 \$y41;
 node 1846 \$x20 \$y44;

 #considero asse trave
 node 1744 \$x9 \$y42;
 node 1847 \$x20 \$y45;

 #node 1641 \$x00 \$y39;
 #considero asse trave
 node 1848 \$x20 \$y46;

 node 1642 \$x00 \$y40;

node 1646 \$x00 \$y44;

 node 1640 \$x00 \$y44;
 #considero asse training

 node 1647 \$x00 \$y45;
 #Colonna 3

 node 1648 \$x00 \$y46;
 #Colonna 3

 node 1649 \$x00 \$y47;
 #node 1650 \$x00 \$y48;

 #node 1650 \$x00 \$y48;
 node 181 \$x20 \$y0;

 #considero asse trave
 node 182 \$x20 \$y1;

 #Colonna 2 node 171 \$x9 \$y0; node 172 \$x9 \$y1; #considero asse trave

#node 1750 \$x9 \$v48; #considero asse trave node 183 \$x20 \$y2; node 184 \$x20 \$v3: #node 185 \$x20 \$y4; #considero asse trave

 node 172 \$x\$ \$y\$;
 node 186 \$x20 \$y5;

 node 173 \$x9 \$y2;
 node 186 \$x20 \$y5;

 node 174 \$x9 \$y3;
 node 187 \$x20 \$y55;

 #node 175 \$x9 \$y4;
 node 188 \$x20 \$y6;

 #considero asse trave
 node 189 \$x20 \$y7;

 #node 1810 \$x20 \$y8;
 node 1810 \$x20 \$y8;

 node 161 \$x00 \$y0;
 #considero asse trave
 #node 1810 \$x20 \$y8;

 node 162 \$x00 \$y1;
 mode 176 \$x9 \$y5;
 #considero asse trave

 node 163 \$x00 \$y2;
 node 176 \$x9 \$y5;
 #considero asse trave

 node 164 \$x00 \$y3;
 node 177 \$x9 \$y55;
 #considero asse trave

 #node 165 \$x00 \$y4;
 node 178 \$x9 \$y6;
 node 1811 \$x20 \$y9;

 #considero asse trave
 node 179 \$x9 \$y7;
 node 1812 \$x20 \$y10;

 #node 166 \$x00 \$y5;
 #considero asse trave
 node 1813 \$x20 \$y12;

 #node 166 \$x00 \$y5;
 #considero asse trave
 node 1814 \$x20 \$y12;

 #considero asse trave #node 1815 \$x20 \$y13; #considero asse trave #node 1820 \$x20 \$y18; #considero asse trave node 1821 \$x20 \$y19; node 1822 \$x20 \$y20; node 1822 \$x20 \$y20, node 1823 \$x20 \$y21; node 1824 \$x20 \$y22; #node 1825 \$x20 \$y22; "considero asse trave

 node 1617 \$x00 \$y15;
 node 1721 \$x9 \$y19;
 #considero asse trave

 node 1618 \$x00 \$y16;
 node 1721 \$x9 \$y19;
 #considero asse trave

 node 1619 \$x00 \$y17;
 node 1722 \$x9 \$y20;
 node 1826 \$x20 \$y24;

 #node 1620 \$x00 \$y18;
 node 1723 \$x9 \$y21;
 node 1826 \$x20 \$y24;

 #considero asse trave
 node 1724 \$x9 \$y22;
 node 1827 \$x20 \$y25;

 #node 1621 \$x00 \$y19;
 #considero asse trave
 node 1829 \$x20 \$y26;

 mode 1621 \$x00 \$y19;
 #considero asse trave
 node 1829 \$x20 \$y27;

 #considero asse trave node 1621 \$x00 \$y19; node 1622 \$x00 \$y20; node 1623 \$x00 \$y21; node 1726 \$x9 \$y24; #considero asse trave #node 1625 \$x00 \$y22; #node 1727 \$x9 \$y25; #considero asse trave node 1729 \$x9 \$y26; node 1831 \$x20 \$y29; #node 1729 \$x9 \$y27; mode 1832 \$x20 \$y30; #node 1730 \$x9 \$y28; mode 1833 \$x20 \$y31; #considero asse trave node 1834 \$x20 \$y32; #node 1835 \$x20 \$y33; mode 1835 \$x20 \$y33; #node 1835 \$x20 \$y33; #node 1835 \$x20 \$y33; mode 1835 \$x20 \$y33; #node 1835 \$x20 \$y33; mode 1835 \$x20 \$y33; #node 1835 \$x20 \$y35; #node 1835 \$x20 #node 1830 \$x20 \$y28; #considero asse trave #node 1835 \$x20 \$y33;

 mode 1731 \$x9 \$y29;
 #node 1833 \$x20 \$y33

 node 1731 \$x9 \$y30;
 #considero asse trave

 node 1732 \$x9 \$y31;
 node 1836 \$x20 \$y34;

 node 1734 \$x9 \$y32;
 node 1837 \$x20 \$y35;

 #node 1735 \$x9 \$y33;
 node 1838 \$x20 \$y36;

 #considero asse trave
 node 1839 \$x20 \$y37;

 #considero asse trave node 1736 \$x9 \$y34; node 1737 \$x9 \$y35; i, node 1738 \$x9 \$y36; e node 1739 \$x9 \$y37; #node 1740 \$x9 \$y38; mode 1841 \$x20 \$y39; node 1842 \$x20 \$y40; #node 1740 \$x9 \$y38; mode 1843 \$x20 \$y41; #considero asse trave node 1844 \$x20 \$y42; #node 1845 \$x20 \$y42; #node 1845 \$x20 \$y43; mode 1845 \$x20 \$y42; #node 1845 \$x20 \$y43; #node 1845 \$x20 \$y45; #node 1845 \$y20 \$y45; #node 1845 \$y20 \$y20 \$y5; #node 1845 \$y20 \$y20 \$y20; #node 1845 \$y20 \$y20 \$y20; #node 1845 \$y20 \$y20 \$y20 \$y20; #node 1845 \$y20 #node 1840 \$x20 \$y38; #considero asse trave #node 1845 \$x20 \$v43: #considero asse trave

#Colonna 4 # node 191 \$x31 \$y0; # node 192 \$x31 \$y1;

 # node 192 \$x31 \$y1;

 # node 193 \$x31 \$y2;

 # node 193 \$x31 \$y2;

 # node 194 \$x31 \$y3;

 # node 195 \$x31 \$y4;

 # node 195 \$x31 \$y4;

 # node 209 \$x42 \$y55;

 # node 195 \$x31 \$y4;

 # node 209 \$x42 \$y7;

 # node 2010 \$x42 \$y7;

 node 196 \$x31 \$y5; node 197 \$x31 \$y555;

 node 197 \$x31 \$y6;
 node 2011 \$x42 \$y9;

 node 199 \$x31 \$y7;
 node 2012 \$x42 \$y10;

 #node 1910 \$x31 \$y8;
 node 2013 \$x42 \$y11;

 #considero asse trave
 node 2014 \$x42 \$y12;

 #node 2015 \$x42 \$y13;

 node 198 \$x31 \$y6; node 199 \$x31 \$y7; node 1911 \$x31 \$y9; node 1912 \$x31 \$y10;

 node 1913 \$x31 \$y11;
 node 2016 \$x42 \$y14;

 node 1914 \$x31 \$y12;
 node 2017 \$x42 \$y15;

 #node 1915 \$x31 \$y13;
 node 2018 \$x42 \$y16;

 #considero asse trave
 node 2019 \$x42 \$y17;

 #node 2020 \$x42 \$y18;
 #node 2020 \$x42 \$y18;

 node 1916 \$x31 \$y14; node 1917 \$x31 \$y15; node 1918 \$x31 \$y16; node 1921 \$x31 \$y19; node 1922 \$x31 \$y20; node 1923 \$x31 \$y21; node 1924 \$x31 \$y22; #node 1925 \$x31 \$y22; #considero asse trave node 1926 \$x31 \$y24; node 1927 \$x31 \$y25;

 node 1927 (x31 (y22))

 node 1928 \$x31 \$y26;

 node 1929 \$x31 \$y27;

 node 1930 \$x31 \$y27;

 #node 1930 \$x31 \$y28;

 mode 2033 \$x42 \$y31;

 #considero asse trave

 #node 2034 \$x42 \$y32;

 #node 2035 \$x42 \$y33:

 node 1931 \$x31 \$y29; node 1932 \$x31 \$y30; node 1933 \$x31 \$y31; node 1934 \$x31 \$y32; #node 1935 \$x31 \$y33; #considero asse trave node 1936 \$x31 \$y34; node 1937 \$x31 \$y35; node 1938 \$x31 \$v36; node 1939 \$x31 \$y37; #node 1940 \$x31 \$y38; #considero asse trave node 1941 \$x31 \$y39; node 1942 \$x31 \$y40; node 1943 \$x31 \$y41; node 1944 \$x31 \$v42; #node 1945 \$x31 \$y43; #considero asse trave node 1946 \$x31 \$y44; node 1947 \$x31 \$y45; node 1948 \$x31 \$y46; node 1949 \$x31 \$y47; #node 1950 \$x31 \$y48; #considero asse trave #Colonna 5

#node 1850 \$x20 \$y48; node 201 \$x42 \$y0; #considero asse trave node 202 \$x42 \$y1; node 203 \$x42 \$y2; node 204 \$x42 \$y3; node 204 \$x42 \$y3; #node 205 \$x42 \$y4; #considero asse trave
 node 2019 \$x42 \$y;;
 node 2111 \$x53 \$y10;

 #node 2010 \$x42 \$y8;
 node 2112 \$x53 \$y10;

 #considero asse trave
 node 2113 \$x53 \$y11;

 node 2114 \$x53 \$y12;
 #considero asse trave #node 2020 \$x42 \$y18; #considero asse trave node 2021 \$x42 \$y19; node 2022 \$x42 \$y20; node 2023 \$x42 \$y21; node 2024 \$x42 \$y22; #node 2025 \$x42 \$y23;
#considero asse trave node 2026 \$x42 \$y24; node 2027 \$x42 \$y25; node 2028 \$x42 \$y26; node 2029 \$x42 \$y27; #node 2030 \$x42 \$y28; #considero asse trave #node 2035 \$x42 \$y33; #considero asse trave node 2036 \$x42 \$y34; node 2037 \$x42 \$y35; node 2038 \$x42 \$y36; node 2039 \$x42 \$y37; #pode 2040 \$x42 \$y37; #node 2040 \$x42 \$y38; #considero asse trave node 2041 \$x42 \$y39; node 2042 \$x42 \$y40; node 2043 \$x42 \$y41; node 2044 \$x42 \$y42; #node 2045 \$x42 \$y42; #node 2045 \$x42 \$y43; #considero asse trave node 2046 \$x42 \$y44; node 2047 \$x42 \$y45; node 2048 \$x42 \$y46; node 2049 \$x42 \$y47; #node 2050 \$x42 \$y48; #considero asse trave #Colonna 6 node 211 \$x53 \$y0; node 212 \$x53 \$y1; node 213 \$x53 \$y2; node 214 \$x53 \$y3;

#node 215 \$x53 \$y4; #considero asse trave node 216 \$x53 \$y5; node 217 \$x53 \$y555; node 218 \$x53 \$y6; node 219 \$x53 \$y7; #node 2110 \$x53 \$y8; #considero asse trave node 2111 \$x53 \$y9; #node 2115 \$x53 \$y13; #node 2110 yave ','
#considero asse trave node 2116 \$x53 \$y14; node 2117 \$x53 \$y15; node 2118 \$x53 \$y16; node 2119 \$x53 \$y17; #node 2120 \$x53 \$y18; #considero asse trave node 2121 \$x53 \$y19; node 2122 \$x53 \$y20; node 2123 \$x53 \$y21; node 2124 \$x53 \$y22; #node 2125 \$x53 \$y23; #considero asse trave node 2126 \$x53 \$y24; node 2127 \$x53 \$y25; node 2128 \$x53 \$y26; node 2129 \$x53 \$y27; node 2129 \$x53 \$y27; #node 2130 \$x53 \$y28; #considero asse trave node 2131 \$x53 \$y29; node 2131 \$x53 \$y29; node 2132 \$x53 \$y30; node 2133 \$x53 \$y31; node 2134 \$x53 \$y32; #node 2135 \$x53 \$y33; #considero asse trave node 2136 \$x53 \$y34; node 2137 \$x53 \$y35; node 2138 \$x53 \$y36; node 2139 \$x53 \$y37; #node 2140 \$x53 \$y38; #considero asse trave node 2141 \$x53 \$y39; node 2142 \$x53 \$y40; node 2143 \$x53 \$y41; node 2144 \$x53 \$y42; #node 2145 \$x53 \$v43; #considero asse trave node 2146 \$x53 \$y44; node 2147 \$x53 \$y45; node 2148 \$x53 \$y46; node 2149 \$x53 \$y47; #node 2150 \$x53 \$y48; #considero asse trave #Colonna 7 node 221 \$x64 \$y0; node 222 \$x64 \$v1; node 223 \$x64 \$y2; node 224 \$x64 \$y3; #node 225 \$x64 \$y4; #considero asse trave node 226 \$x64 \$y5; node 227 \$x64 \$y555;

node 2236 \$x64 \$y34; node 2237 \$x64 \$y35; node 2238 \$x64 \$y36; node 2239 \$x64 \$y37; node 2222 \$x64 \$y20; node 2223 \$x64 \$y21; node 2224 \$x64 \$y22; node 228 \$x64 \$y6; node 229 \$x64 \$y7; #node 2210 \$x64 \$y8; #node 2225 \$x64 \$y23;
#considero asse trave #considero asse trave #node 2240 \$x64 \$y38; node 2211 \$x64 \$y9; #considero asse trave node 2226 \$x64 \$y24; node 2227 \$x64 \$y25; node 2228 \$x64 \$y26; node 2229 \$x64 \$y27; #node 2230 \$x64 \$y28; node 2212 \$x64 \$y10; node 2213 \$x64 \$y11; node 2241 \$x64 \$y39; node 2214 \$x64 \$y12; node 2243 \$x64 \$y40; node 2243 \$x64 \$y41; node 2244 6 6 node 2242 \$x64 \$y40; #node 2215 \$x64 \$y13; #considero asse trave #considero asse trave #node 2245 \$x64 \$v43: node 2216 \$x64 \$v14; #considero asse trave node 2231 \$x64 \$y29; node 2232 \$x64 \$y30; node 2233 \$x64 \$y31; node 2217 \$x64 \$y15; node 2246 \$x64 \$y44; node 2247 \$x64 \$y45; node 2218 \$x64 \$y16; node 2219 \$x64 \$y17; #node 2220 \$x64 \$y18; node 2248 \$x64 \$y46; node 2234 \$x64 \$y32; #considero asse trave #node 2235 \$x64 \$y33; node 2249 \$x64 \$y47; #node 2250 \$x64 \$y48; #considero asse trave #considero asse trave node 2221 \$x64 \$v19; #Condizioni di vincolo fix 161 1 1 1; #vincolo base pilastri fix 171 1 1 1: fix 181 1 1 1; fix 201 1 1 1; fix 211 1 1 1; fix 221 1 1 1; # Define materials #TRAVE SEZIONE 1 passo 110 mm # tag fpc epsc0 fpcu epsU lambda ft Ets uniaxialMaterial Concrete02 1 -45.94 -0.0031 -9.19 -0.017 0.1 2 1500 #TRAVE SEZIONE 2 passo 210 mm tag fpc epsc0 fpcu epsU lambda ft Ets uniaxialMaterial Concrete02 2 -43.97 -0.0027 -8.79 -0.0125 0.1 2 1500 # COLONNA SEZIONE 3 passo 80 mm # COLONNA SEZIONE 3 passo 80 mm
tag fpc epsc0 fpcu epsU lambda ft Ets
uniaxialMaterial Concrete02 3 -50.41 -0.0042 -10.08 -0.014 0.1 2 2 1500 # COLONNA SEZIONE 4 passo 170 mm # tag fpc epsc0 fpcu epsU lambda ft Ets uniaxialMaterial Concrete02 4 -46.13 -0.0032 -9.23 -0.01 0.1 2 1500 # TRAVE E COLONNA SEZIONE NON CONFINATO # tag fpc epsc0 fpcu epsU lambda ft Ets uniaxialMaterial Concrete02 5 -41.2 -0.002 -8.24 -0.010 0.1 2 1500 # TRAVE SEZIONE 1 passo 110 mm phi 16 # uniaxialMaterial Hysteretic \$matTag \$s1p \$e1p \$s2p \$e2p <\$s3p \$e3p> \$s1n \$e1n \$s2n \$e2n <\$s3n \$e3n> \$pinchX \$pinchY \$damage1 \$damage2 <\$beta> uniaxialMaterial Hysteretic 6 450 0.002 540 0.12 0 0.121 -450 -0.002 -202.11 -0.04 -90 -0.07 1 1 0 0 # TRAVE SEZIONE 2 passo 220 mm (per Dhakal 150) phi 16 # uniaxialMaterial Hysteretic \$matTag \$s1p \$e1p \$s2p \$e2p <\$s3p \$e3p> \$s1n \$e1n \$s2n \$e2n <\$s3n \$e3n> \$pinchX \$pinchY \$damage1 \$damage2 <\$beta> uniaxialMaterial Hysteretic 7 450 0.002 540 0.12 0 0.121 -450 -0.002 -92.33 -0.02 -90 -0.04 1 1 0 0 # COLONNA SEZIONE 3 passo 80 mm phi 16 # uniaxialMaterial Hysteretic \$matTag \$s1p \$e1p \$s2p \$e2p <\$s3p \$e3p> \$s1n \$e1n \$s2n \$e2n <\$s3n \$e3n> \$pinchX \$pinchY \$damage1 \$damage2 <\$beta> uniaxialMaterial Hysteretic 8 450 0.002 540 0.12 0 0.121 -450 -0.002 -284.44 -0.06 -90 -0.09 1 1 0 0 # COLONNA SEZIONE 4 passo 170 mm (per Dhakal 150) phi 16 # uniaxialMaterial Hysteretic \$matTag \$s1p \$e1p \$s2p \$e2p <\$s3p \$e3p> \$s1n \$e1n \$s2n \$e2n <\$s3n \$e3n> \$pinchX \$pinchY \$damage1 \$damage2 <\$beta> uniaxialMaterial Hysteretic 9 450 0.002 540 0.12 0 0.121 -450 -0.002 -92.33 -0.02 -90 -0.04 1 1 0 0 #Materiale Bielle

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#tamponamento lambda ft	E+		Tag	fc	epsc0	fcu	epscu	
uniaxialMaterial 0	Concrete02	10	-1.8	-0.0013	-0.8	-0.0074	0.10 0	
uniaxialMaterial 0 0	Concrete02	11	-8.66	-0.0015	-2.5	-0.008	0.10	
uniaxialMaterial 0 0	Concrete02	12	-1.24	-0.0018	-0.25	-0.009	0.10	

SEZIONE PILASTRO 1 30x72 tutti f16 Ζ # ^

SEZIONE TRAVE 2 30x50 tutti f16 IMPALCATO 1 # Z

SEZIONE TRAVE 3 30x50 tutti f16 IMPALCATO 2 Z

y=B, z=H set y1pilastro 400;#base=800 set z1pilastro 200;#altezza=400 set zlpilastrocent1 31.8; #fila di armature nel pilastro in basso

```
set zlpilastrocent 53; #fila di armature nei pilastri
set yltrave 150;#base=300
set zltrave 250;#altezza=500
set cover 25.0;
                    # copriferro
set As16 201.06;
                   # area of 1 fi16
# TRAVE IMPALCATO 1 SEZIONE 1 passo 110 mm
section Fiber 1 {
    # Create the concrete core fibers
       # VA DATA PRIMA LA COORDINATA Z !!!!!!
                  materiale fibrez fibrey
                                                              Ζi
                                                                                     уi
       #
zk
                        yk
                    1
                                               [expr -$z1trave+$cover] [expr -$y1trave+$cover]
       patch rect
                                20
                                        20
[expr $zltrave-$cover] [expr $yltrave-$cover]
       # Create the concrete cover fibers
       patch rect 5 10 10 [expr $zltrave-$cover] [expr -$yltrave] $zltrave $yltrave
    patch rect 5 10 10
                        [expr -$zltrave] [expr -$yltrave] [expr -$zltrave+$cover] $yltrave
    patch rect 5 10 10
                        [expr -$z1trave+$cover] [expr -$y1trave] [expr $z1trave-$cover] [expr
-$v1trave+$cover]
   patch rect 5 10 10 [expr -$zltrave+$cover] [expr $yltrave-$cover] [expr $zltrave-
$cover] $y1trave
       # Create the reinforcing fibers (top, middle, bottom)
    # VA DATA PRIMA LA COORDINATA Z !!!!!!
       # material number.bar Aindividualbar inizio inizio fine fine
layer straight 6 7 $As16 [expr $zltrave-$cover] [expr -$yltrave+$cover] [expr
$zltrave-$cover] [expr $yltrave-$cover]
       layer straight 6 5 $As16 [expr -$z1trave+$cover] [expr -$y1trave+$cover] [expr -
$zltrave+$cover] [expr $yltrave-$cover]
}
# TRAVE IMPALCATO 1 SEZIONE 13 passo 220 mm
section Fiber 13 {
    # Create the concrete core fibers
       # VA DATA PRIMA LA COORDINATA Z !!!!!!
                 PRIMA LA COORDINAIA 2 .....
materiale fibrez fibrey zi yi zk y:
2 20 20 [expr -$zltrave+$cover] [expr -$yltrave+$cover]
       #
       patch rect 2
[expr $zltrave-$cover] [expr $yltrave-$cover]
        # Create the concrete cover fibers
       patch rect 5 10 10 [expr $zltrave-$cover] [expr -$yltrave] $zltrave $yltrave
   patch rect 5 10 10 [expr -$z1trave] [expr -$y1trave] [expr -$z1trave+$cover] $y1trave
patch rect 5 10 10 [expr -$z1trave+$cover] [expr -$y1trave] [expr $z1trave-$cover] [expr
-$v1trave+$cover]
   patch rect 5 10 10
                        [expr -$z1trave+$cover] [expr $y1trave-$cover] [expr $z1trave-
$cover] $y1trave
       # Create the reinforcing fibers (top, middle, bottom)
    # VA DATA PRIMA LA COORDINATA Z !!!!!!
                  material number.bar Aindividualbar inizio inizio fine fine
       #
       layer straight 7 7 $As16 [expr $z1trave-$cover] [expr -$y1trave+$cover] [expr
$zltrave-$cover] [expr $yltrave-$cover]
      layer straight 7 5 $As16 [expr -$z1trave+$cover] [expr -$y1trave+$cover] [expr -
$zltrave+$cover] [expr $yltrave-$cover]
# TRAVE IMPALCATO 1-2-3 SEZIONE 2 passo 220 mm
section Fiber 2 {
    # Create the concrete core fibers
       # VA DATA PRIMA LA COORDINATA Z !!!!!!
                  materiale fibrez fibrey zi
                                                              vi
                                                                           zk
                                                                                        yk
                                                [expr -$z1trave+$cover] [expr -$y1trave+$cover]
       patch rect 2
                               20 20
[expr $zltrave-$cover] [expr $yltrave-$cover]
        # Create the concrete cover fibers
       patch rect 5 10 10 [expr $zltrave-$cover] [expr -$yltrave] $zltrave $yltrave
   patch rect 5 10 10 [expr -$z1trave] [expr -$y1trave] [expr -$z1trave+$cover] $y1trave
patch rect 5 10 10 [expr -$z1trave+$cover] [expr -$y1trave] [expr $z1trave-$cover] [expr
-$y1trave+$cover]
   patch rect 5 10 10
                        [expr -$z1trave+$cover] [expr $y1trave-$cover] [expr $z1trave-
$cover] $y1trave
       # Create the reinforcing fibers (top, middle, bottom)
    # VA DATA PRIMA LA COORDINATA Z !!!!!!
                  material number.bar Aindividualbar inizio inizio fine
        #
                                                                                     fine
       layer straight 7 5 $As16 [expr $z1trave-$cover] [expr -$y1trave+$cover] [expr
$zltrave-$cover] [expr $yltrave-$cover]
       layer straight 7 4 $As16 [expr -$zltrave+$cover] [expr -$yltrave+$cover] [expr -
$zltrave+$cover] [expr $yltrave-$cover]
}
```

TRAVE IMPALCATO 4-5-6-7 SEZIONE 17 passo 220 mm section Fiber 17 { # Create the concrete core fibers # VA DATA PRIMA LA COORDINATA Z !!!!!! materialefibrezfibreyziyizkykz2020[expr -\$zltrave+\$cover][expr -\$yltrave+\$cover] # patch rect [expr \$zltrave-\$cover] [expr \$yltrave-\$cover] # Create the concrete cover fibers patch rect 5 10 10 [expr \$z1trave-\$cover] [expr -\$y1trave] \$z1trave \$y1trave patch rect 5 10 10 [expr -\$zltrave] [expr -\$yltrave] [expr -\$zltrave+\$cover] \$yltrave patch rect 5 10 10 [expr -\$zltrave+\$cover] [expr -\$yltrave] [expr \$zltrave-\$cover] [expr -\$v1trave+\$cover] patch rect 5 10 10 [expr -\$zltrave+\$cover] [expr \$yltrave-\$cover] [expr \$zltrave-\$cover] \$y1trave # Create the reinforcing fibers (top, middle, bottom) # VA DATA PRIMA LA COORDINATA Z !!!!!! material number.bar Aindividualbar inizio inizio fine # fine layer straight 7 4 \$As16 [expr \$z1trave-\$cover] [expr -\$y1trave+\$cover] [expr \$zltrave-\$cover] [expr \$yltrave-\$cover] layer straight 7 3 \$As16 [expr -\$z1trave+\$cover] [expr -\$y1trave+\$cover] [expr -\$z1trave+\$cover] [expr \$y1trave-\$cover] # TRAVE IMPALCATO 1-2 SEZIONE 3 passo 110 mm section Fiber 3 { # Create the concrete core fibers # VA DATA PRIMA LA COORDINATA Z !!!!!! zi materiale fibrez fibrey yi zk # yk patch rect 1 20 20 [expr -\$z1trave+\$cover] [expr -\$y1trave+\$cover] [expr \$zltrave-\$cover] [expr \$yltrave-\$cover] # Create the concrete cover fibers patch rect 5 10 10 [expr \$zltrave-\$cover] [expr -\$yltrave] \$zltrave \$yltrave patch rect 5 10 10 [expr -\$zltrave] [expr -\$yltrave] [expr -\$zltrave+\$cover] \$yltrave patch rect 5 10 10 [expr -\$zltrave+\$cover] [expr -\$yltrave] [expr \$zltrave-\$cover] [expr -\$v1trave+\$cover] patch rect 5 10 10 [expr -\$zltrave+\$cover] [expr \$yltrave-\$cover] [expr \$zltrave-\$cover] \$y1trave # Create the reinforcing fibers (top, middle, bottom) # VA DATA PRIMA LA COORDINATA Z !!!!!! material number.bar Aindividualbar inizio inizio fine fine layer straight 6 8 \$As16 [expr \$z1trave-\$cover] [expr -\$y1trave+\$cover] [expr \$z1trave-\$cover] [expr \$y1trave-\$cover] layer straight 6 4 \$As16 [expr -\$z1trave+\$cover] [expr -\$y1trave+\$cover] [expr -\$zltrave+\$cover] [expr \$yltrave-\$cover] # TRAVE IMPALCATO 1-2 SEZIONE 3 passo 220 mm section Fiber 14 { # Create the concrete core fibers # VA DATA PRIMA LA COORDINATA Z !!!!!! zi # materiale fibrez fibrey yi zk yk patch rect 2 [expr -\$z1trave+\$cover] [expr -\$y1trave+\$cover] 20 20 [expr \$zltrave-\$cover] [expr \$yltrave-\$cover] # Create the concrete cover fibers patch rect 5 10 10 [expr \$z1trave-\$cover] [expr -\$y1trave] \$z1trave \$y1trave patch rect 5 10 10 [expr -\$z1trave] [expr -\$y1trave] [expr -\$z1trave+\$cover] \$y1trave patch rect 5 10 10 [expr -\$z1trave+\$cover] [expr -\$y1trave] [expr \$z1trave-\$cover] [expr -\$y1trave+\$cover] patch rect 5 10 10 [expr -\$z1trave+\$cover] [expr \$y1trave-\$cover] [expr \$z1trave-\$cover] \$y1trave # Create the reinforcing fibers (top, middle, bottom) # VA DATA PRIMA LA COORDINATA Z !!!!! material number.bar Aindividualbar inizio inizio fine fine # layer straight 7 8 \$As16 [expr \$z1trave-\$cover] [expr -\$y1trave+\$cover] [expr \$z1trave-\$cover] [expr \$y1trave-\$cover] # layer straight 6 3 \$As16 0.0 [expr -\$yltrave+\$cover] 0.0 [expr \$yltrave-\$cover] layer straight 7 4 \$As16 [expr -\$zltrave+\$cover] [expr -\$yltrave+\$cover] [expr -\$z1trave+\$cover] [expr \$y1trave-\$cover] # TRAVE IMPALCATO 2-3-4 SEZIONE 4 passo 110 mm section Fiber 4 { # Create the concrete core fibers # VA DATA PRIMA LA COORDINATA Z !!!!!! # materiale fibrez fibrey zi yi zk vk [expr -\$zltrave+\$cover] [expr -\$yltrave+\$cover] patch rect 1 20 20 [expr \$zltrave-\$cover] [expr \$yltrave-\$cover] # Create the concrete cover fibers patch rect 5 10 10 [expr \$zltrave-\$cover] [expr -\$yltrave] \$zltrave \$yltrave patch rect 5 10 10 [expr -\$zltrave] [expr -\$yltrave] [expr -\$zltrave+\$cover] \$yltrave

patch rect 5 10 10 [expr -\$z1trave+\$cover] [expr -\$y1trave] [expr \$z1trave-\$cover] [expr -\$v1trave+\$cover] patch rect 5 10 10 [expr -\$z1trave+\$cover] [expr \$y1trave-\$cover] [expr \$z1trave-\$cover] \$y1trave # Create the reinforcing fibers (top, middle, bottom) # VA DATA PRIMA LA COORDINATA Z !!!!!! material number.bar Aindividualbar inizio inizio fine fine layer straight 6 7 \$As16 [expr \$z1trave-\$cover] [expr -\$y1trave+\$cover] [expr \$z1trave-\$cover] [expr \$y1trave-\$cover] layer straight 6 4 \$As16 [expr -\$z1trave+\$cover] [expr -\$y1trave+\$cover] [expr -\$zltrave+\$cover] [expr \$yltrave-\$cover] # TRAVE IMPALCATO 2-3-4 SEZIONE 15 passo 220 mm section Fiber 15 { # Create the concrete core fibers # VA DATA PRIMA LA COORDINATA Z !!!!!! zi materiale fibrez fibrey # yi zk vk [expr -\$z1trave+\$cover] [expr -\$y1trave+\$cover] patch rect 2 20 2.0 [expr \$zltrave-\$cover] [expr \$yltrave-\$cover] # Create the concrete cover fibers patch rect 5 10 10 [expr \$zltrave-\$cover] [expr -\$yltrave] \$zltrave \$yltrave patch rect 5 10 10 [expr -\$z1trave] [expr -\$y1trave] [expr -\$z1trave+\$cover] \$y1trave [expr -\$zltrave+\$cover] [expr -\$yltrave] [expr \$zltrave-\$cover] [expr patch rect 5 10 10 -\$y1trave+\$cover] patch rect 5 10 10 [expr -\$z1trave+\$cover] [expr \$y1trave-\$cover] [expr \$z1trave-\$cover] \$y1trave # Create the reinforcing fibers (top, middle, bottom) # VA DATA PRIMA LA COORDINATA Z !!!!!! material number.bar Aindividualbar inizio inizio fine fine # layer straight 7 7 \$As16 [expr \$z1trave-\$cover] [expr -\$y1trave+\$cover] [expr \$z1trave-\$cover] [expr \$y1trave-\$cover] layer straight 7 4 \$As16 [expr -\$z1trave+\$cover] [expr -\$y1trave+\$cover] [expr -\$zltrave+\$cover] [expr \$yltrave-\$cover] # TRAVE IMPALCATO 4-5 SEZIONE 5 passo 110 mm section Fiber 5 { # Create the concrete core fibers # VA DATA PRIMA LA COORDINATA Z !!!!!! # materiale fibrez fibrey zi yi zk vk [expr -\$zltrave+\$cover] [expr -\$yltrave+\$cover] patch rect 1 20 20 [expr \$z1trave-\$cover] [expr \$y1trave-\$cover] # Create the concrete cover fibers patch rect 5 10 10 [expr \$zltrave-\$cover] [expr -\$yltrave] \$zltrave \$yltrave patch rect 5 10 10 [expr -\$zltrave] [expr -\$yltrave] [expr -\$zltrave+\$cover] \$yltrave patch rect 5 10 10 [expr -\$z1trave+\$cover] [expr -\$y1trave] [expr \$z1trave-\$cover] [expr -\$y1trave+\$cover] patch rect 5 10 10 [expr -\$z1trave+\$cover] [expr \$y1trave-\$cover] [expr \$z1trave-\$cover] \$y1trave # Create the reinforcing fibers (top, middle, bottom) # VA DATA PRIMA LA COORDINATA Z !!!!!! material number.bar Aindividualbar inizio inizio fine fine # layer straight 6 6 \$As16 [expr \$z1trave-\$cover] [expr -\$y1trave+\$cover] [expr \$zltrave-\$cover] [expr \$yltrave-\$cover] layer straight 6 3 \$As16 [expr -\$z1trave+\$cover] [expr -\$y1trave+\$cover] [expr -\$zltrave+\$cover] [expr \$yltrave-\$cover] # TRAVE IMPALCATO 4-5 SEZIONE 16 passo 220 mm section Fiber 16 { # Create the concrete core fibers # VA DATA PRIMA LA COORDINATA Z !!!!!! zi yk # materiale fibrez fibrey yi zk 20 20 [expr -\$zltrave+\$cover] [expr -\$yltrave+\$cover] patch rect 2 [expr \$zltrave-\$cover] [expr \$yltrave-\$cover] # Create the concrete cover fibers patch rect 5 10 10 [expr \$zltrave-\$cover] [expr -\$yltrave] \$zltrave \$yltrave patch rect 5 10 10 [expr -\$z1trave] [expr -\$y1trave] [expr -\$z1trave+\$cover] \$y1trave patch rect 5 10 10 [expr -\$z1trave+\$cover] [expr -\$y1trave] [expr \$z1trave-\$cover] [expr -\$v1trave+\$cover] patch rect 5 10 10 [expr -\$zltrave+\$cover] [expr \$yltrave-\$cover] [expr \$zltrave-\$cover] \$yltrave # Create the reinforcing fibers (top, middle, bottom) # VA DATA PRIMA LA COORDINATA Z !!!!!! material number.bar Aindividualbar inizio inizio fine # fine layer straight 7 6 \$As16 [expr \$z1trave-\$cover] [expr -\$y1trave+\$cover] [expr \$zltrave-\$cover] [expr \$yltrave-\$cover] layer straight 7 3 \$As16 [expr -\$z1trave+\$cover] [expr -\$y1trave+\$cover] [expr -\$zltrave+\$cover] [expr \$yltrave-\$cover]

TRAVE IMPALCATO 6-7 SEZIONE 6 passo 110 mm section Fiber 6 { # Create the concrete core fibers # VA DATA PRIMA LA COORDINATA Z !!!!!! materiale fibrez fibrey zi # vi zk vk [expr -\$z1trave+\$cover] [expr -\$y1trave+\$cover] patch rect 1 20 2.0 [expr \$zltrave-\$cover] [expr \$yltrave-\$cover] # Create the concrete cover fibers patch rect 5 10 10 [expr \$z1trave-\$cover] [expr -\$y1trave] \$z1trave \$v1trave patch rect 5 10 10 [expr -\$zltrave] [expr -\$yltrave] [expr -\$zltrave+\$cover] \$yltrave patch rect 5 10 10 [expr -\$zltrave+\$cover] [expr -\$yltrave] [expr \$zltrave-\$cover] [expr -\$v1trave+\$cover1 patch rect 5 10 10 [expr -\$z1trave+\$cover] [expr \$y1trave-\$cover] [expr \$z1trave-\$cover] \$y1trave # Create the reinforcing fibers (top, middle, bottom) # VA DATA PRIMA LA COORDINATA Z !!!!!! material number.bar Aindividualbar inizio inizio fine fine layer straight 6 5 \$As16 [expr \$z1trave-\$cover] [expr -\$y1trave+\$cover] [expr \$zltrave-\$cover] [expr \$yltrave-\$cover] layer straight 6 3 \$As16 [expr -\$z1trave+\$cover] [expr -\$y1trave+\$cover] [expr -\$zltrave+\$cover] [expr \$yltrave-\$cover] # TRAVE IMPALCATO 6-7 SEZIONE 18 passo 220 mm section Fiber 18 { # Create the concrete core fibers # VA DATA PRIMA LA COORDINATA Z !!!!!! zi # materiale fibrez fibrey yi zk vk [expr -\$z1trave+\$cover] [expr -\$y1trave+\$cover] patch rect 2 20 20 [expr \$zltrave-\$cover] [expr \$yltrave-\$cover] # Create the concrete cover fibers patch rect 5 10 10 [expr \$zltrave-\$cover] [expr -\$yltrave] \$zltrave \$yltrave patch rect 5 10 10 [expr -\$z1trave] [expr -\$y1trave] [expr -\$z1trave+\$cover] \$y1trave patch rect 5 10 10 [expr -\$z1trave+\$cover] [expr -\$y1trave] [expr \$z1trave-\$cover] [expr -\$y1trave+\$cover] patch rect 5 10 10 [expr -\$z1trave+\$cover] [expr \$y1trave-\$cover] [expr \$z1trave-\$cover] \$y1trave # Create the reinforcing fibers (top, middle, bottom) # VA DATA PRIMA LA COORDINATA Z !!!!!! material number.bar Aindividualbar inizio inizio fine fine # layer straight 7 5 \$As16 [expr \$z1trave-\$cover] [expr -\$y1trave+\$cover] [expr \$zltrave-\$cover] [expr \$yltrave-\$cover] layer straight 7 3 \$As16 [expr -\$z1trave+\$cover] [expr -\$y1trave+\$cover] [expr -\$zltrave+\$cover] [expr \$yltrave-\$cover] # TRAVE IMPALCATO 8 SEZIONE 7 passo 110 mm section Fiber 7 { # Create the concrete core fibers # VA DATA PRIMA LA COORDINATA Z !!!!!! # materiale fibrez fibrey zi yi zk vk [expr -\$z1trave+\$cover] [expr -\$y1trave+\$cover] 20 patch rect 1 20 [expr \$z1trave-\$cover] [expr \$y1trave-\$cover] # Create the concrete cover fibers patch rect 5 10 10 [expr \$zltrave-\$cover] [expr -\$yltrave] \$zltrave \$yltrave patch rect 5 10 10 [expr -\$zltrave] [expr -\$yltrave] [expr -\$zltrave+\$cover] \$yltrave patch rect 5 10 10 [expr -\$zltrave+\$cover] [expr -\$yltrave] [expr \$zltrave-\$cover] [expr -\$y1trave+\$cover] patch rect 5 10 10 [expr -\$zltrave+\$cover] [expr \$yltrave-\$cover] [expr \$zltrave-\$cover] \$v1trave # Create the reinforcing fibers (top, middle, bottom) # VA DATA PRIMA LA COORDINATA Z !!!!!! material number.bar Aindividualbar inizio inizio fine fine layer straight 6 4 \$As16 [expr \$z1trave-\$cover] [expr -\$y1trave+\$cover] [expr \$zltrave-\$cover] [expr \$yltrave-\$cover] layer straight 6 3 \$As16 [expr -\$z1trave+\$cover] [expr -\$y1trave+\$cover] [expr -\$zltrave+\$cover] [expr \$yltrave-\$cover] # TRAVE IMPALCATO 9-10 SEZIONE 8 passo 110 mm section Fiber 8 { # Create the concrete core fibers # VA DATA PRIMA LA COORDINATA Z !!!!!! # materiale fibrez fibrey zi yi zk vk [expr -\$z1trave+\$cover] [expr -\$y1trave+\$cover] patch rect 1 20 20 [expr \$zltrave-\$cover] [expr \$yltrave-\$cover] # Create the concrete cover fibers patch rect 5 10 10 [expr \$zltrave-\$cover] [expr -\$yltrave] \$zltrave \$yltrave patch rect 5 10 10 [expr -\$zltrave] [expr -\$yltrave] [expr -\$zltrave+\$cover] \$yltrave

patch rect 5 10 10 [expr -\$z1trave+\$cover] [expr -\$y1trave] [expr \$z1trave-\$cover] [expr -\$v1trave+\$cover] patch rect 5 10 10 [expr -\$z1trave+\$cover] [expr \$y1trave-\$cover] [expr \$z1trave-\$cover] \$y1trave # Create the reinforcing fibers (top, middle, bottom) # VA DATA PRIMA LA COORDINATA Z !!!!!! material number.bar Aindividualbar inizio inizio fine fine layer straight 6 3 \$As16 [expr \$z1trave-\$cover] [expr -\$y1trave+\$cover] [expr \$z1trave-\$cover] [expr \$y1trave-\$cover] # layer straight 6 3 \$As16 0.0 [expr -\$yltrave+\$cover] 0.0 [expr \$yltrave-\$cover] layer straight 6 3 \$As16 [expr -\$z1trave+\$cover] [expr -\$y1trave+\$cover] [expr -\$z1trave+\$cover] [expr \$y1trave-\$cover] # TRAVE IMPALCATO 9-10 SEZIONE 19 passo 220 mm section Fiber 19 { # Create the concrete core fibers # VA DATA PRIMA LA COORDINATA Z !!!!!! zi yi zk yk [expr -\$zltrave+\$cover] [expr -\$yltrave+\$cover] materiale fibrez fibrey # patch rect 2 20 20 [expr \$zltrave-\$cover] [expr \$yltrave-\$cover] # Create the concrete cover fibers patch rect 5 10 10 [expr \$zltrave-\$cover] [expr -\$yltrave] \$zltrave \$yltrave patch rect 5 10 10 [expr -\$z1trave] [expr -\$y1trave] [expr -\$z1trave+\$cover] \$y1trave patch rect 5 10 10 [expr -\$z1trave+\$cover] [expr -\$y1trave] [expr \$z1trave-\$cover] [expr -\$v1trave+\$cover1 patch rect 5 10 10 [expr -\$z1trave+\$cover] [expr \$y1trave-\$cover] [expr \$z1trave-\$cover] \$yltrave # Create the reinforcing fibers (top, middle, bottom) # VA DATA PRIMA LA COORDINATA Z !!!!!! # material number.bar Aindividualbar inizio inizio fine fine layer straight 7 3 \$As16 [expr \$zltrave-\$cover] [expr -\$yltrave+\$cover] [expr \$zltrave-\$cover] [expr \$yltrave-\$cover] # layer straight 6 3 \$As16 0.0 [expr -\$yltrave+\$cover] 0.0 [expr \$yltrave-\$cover] layer straight 7 3 \$As16 [expr -\$z1trave+\$cover] [expr -\$y1trave+\$cover] [expr -\$zltrave+\$cover] [expr \$yltrave-\$cover] # PILASTRO SEZIONE 9 passo 80 mm piano terra section Fiber 9 { # Create the concrete core fibers # VA DATA PRIMA LA COORDINATA Z !!!!!! materiale fibrez fibrey zi zk vk # vi patch rect 2.0 2.0 [expr -\$z1pilastro+\$cover] [expr -3 \$y1pilastro+\$cover] [expr \$z1pilastro-\$cover] [expr \$y1pilastro-\$cover] # Create the concrete cover fibers patch rect 5 10 10 [expr \$z1pilastro-\$cover] [expr -\$y1pilastro] \$z1pilastro \$y1pilastro patch rect 5 10 10 [expr -\$z1pilastro] [expr -\$y1pilastro] [expr -\$z1pilastro+\$cover] \$y1pilastro patch rect 5 10 10 [expr -\$z1pilastro+\$cover] [expr -\$y1pilastro] [expr \$z1pilastro-\$cover] [expr -\$y1pilastro+\$cover] patch rect 5 10 10 [expr -\$z1pilastro+\$cover] [expr \$y1pilastro-\$cover] [expr \$z1pilastro-\$cover] \$y1pilastro # Create the reinforcing fibers (top, middle, bottom) # VA DATA PRIMA LA COORDINATA Z !!!!!! material number.bar Aindividualbar inizio inizio fine fine # layer straight 8 8 \$As16 [expr \$z1pilastro-\$cover] [expr -\$y1pilastro+\$cover] [expr \$z1pilastro-\$cover] [expr \$y1pilastro-\$cover] layer straight 8 2 \$As16 [expr 3*\$z1pilastrocent1] [expr -\$y1pilastro+\$cover] [expr 3*\$z1pilastrocent1] [expr \$y1pilastro-\$cover] layer straight 8 2 \$As16 \$z1pilastrocent1 [expr -\$y1pilastro+\$cover] \$z1pilastrocent1 [expr \$y1pilastro-\$cover] layer straight 8 2 \$As16 -\$z1pilastrocent1 [expr -\$y1pilastro+\$cover] -\$z1pilastrocent1 [expr \$y1pilastro-\$cover] layer straight 8 2 \$As16 [expr -3*\$z1pilastrocent1] [expr -\$y1pilastro+\$cover] [expr -3*\$z1pilastrocent1] [expr \$y1pilastro-\$cover] layer straight 8 8 \$As16 [expr -\$z1pilastro+\$cover] [expr -\$y1pilastro+\$cover] [expr -\$z1pilastro+\$cover] [expr \$y1pilastro-\$cover] # PILASTRO SEZIONE 10 passo 170 mm piano terra section Fiber 10 { # Create the concrete core fibers # VA DATA PRIMA LA COORDINATA Z !!!!!! materiale fibrez fibrey zi yi # zk yk 20 20 [expr -\$z1pilastro+\$cover] [expr patch rect 4 \$y1pilastro+\$cover] [expr \$z1pilastro-\$cover] [expr \$y1pilastro-\$cover] # Create the concrete cover fibers

patch rect 5 10 10 [expr \$z1pilastro-\$cover] [expr -\$y1pilastro] \$z1pilastro \$y1pilastro patch rect 5 10 10 [expr -\$z1pilastro] [expr -\$y1pilastro] [expr -\$z1pilastro+\$cover] \$y1pilastro patch rect 5 10 10 [expr -\$z1pilastro+\$cover] [expr -\$y1pilastro] [expr \$z1pilastro-\$cover] [expr -\$y1pilastro+\$cover] patch rect 5 10 10 [expr -\$z1pilastro+\$cover] [expr \$y1pilastro-\$cover] [expr \$z1pilastro-\$cover] \$y1pilastro # Create the reinforcing fibers (top, middle, bottom) # VA DATA PRIMA LA COORDINATA Z !!!!!! material number.bar Aindividualbar inizio inizio fine fine layer straight 9 6 \$As16 [expr \$z1pilastro-\$cover] [expr -\$y1pilastro+\$cover] [expr \$z1pilastro-\$cover] [expr \$y1pilastro-\$cover] layer straight 9 2 \$As16 [expr 3*\$z1pilastrocent1] [expr -\$y1pilastro+\$cover] [expr 3*\$z1pilastrocent1] [expr \$y1pilastro-\$cover] layer straight 9 2 \$As16 \$z1pilastrocent1 [expr -\$y1pilastro+\$cover] \$z1pilastrocent1 [expr \$y1pilastro-\$cover] layer straight 9 2 \$As16 -\$z1pilastrocent1 [expr -\$y1pilastro+\$cover] -\$z1pilastrocent1 [expr \$y1pilastro-\$cover] layer straight 9 2 \$As16 [expr -3*\$z1pilastrocent1] [expr -\$y1pilastro+\$cover] [expr -3*\$z1pilastrocent1] [expr \$y1pilastro-\$cover] layer straight 9 6 \$As16 [expr -\$z1pilastro+\$cover] [expr -\$y1pilastro+\$cover] [expr -\$z1pilastro+\$cover] [expr \$y1pilastro-\$cover] # PILASTRO SEZIONE 11 passo 80 mm piano terra section Fiber 11 { # Create the concrete core fibers # VA DATA PRIMA LA COORDINATA Z !!!!!! materiale fibrez fibrey zi yi zk 3 20 20 [expr -\$z1pilastro+\$cover] [expr -# vk patch rect 3 \$y1pilastro+\$cover] [expr \$z1pilastro-\$cover] [expr \$y1pilastro-\$cover] # Create the concrete cover fibers patch rect 5 10 10 [expr \$z1pilastro-\$cover] [expr -\$y1pilastro] \$z1pilastro \$y1pilastro patch rect 5 10 10 [expr -\$z1pilastro] [expr -\$y1pilastro] [expr -\$z1pilastro+\$cover] \$v1pilastro patch rect 5 10 10 [expr -\$z1pilastro+\$cover] [expr -\$y1pilastro] [expr \$z1pilastro-\$cover] [expr -\$y1pilastro+\$cover] patch rect 5 10 10 [expr -\$z1pilastro+\$cover] [expr \$y1pilastro-\$cover] [expr \$z1pilastro-\$cover] \$y1pilastro # Create the reinforcing fibers (top, middle, bottom) # VA DATA PRIMA LA COORDINATA Z !!!!!! material number.bar Aindividualbar inizio inizio fine fine layer straight 8 8 \$As16 [expr \$z1pilastro-\$cover] [expr -\$y1pilastro+\$cover] [expr # \$z1pilastro-\$cover] [expr \$y1pilastro-\$cover] layer straight 8 2 \$As16 [expr 3*\$z1pilastrocent] [expr -\$y1pilastro+\$cover] [expr 3*\$z1pilastrocent] [expr \$y1pilastro-\$cover] layer straight 8 2 \$As16 \$z1pilastrocent [expr -\$y1pilastro+\$cover] \$z1pilastrocent [expr \$y1pilastro-\$cover] layer straight 8 2 \$As16 -\$z1pilastrocent [expr -\$y1pilastro+\$cover] -\$z1pilastrocent [expr \$y1pilastro-\$cover] layer straight 8 2 \$As16 [expr -3*\$z1pilastrocent] [expr -\$y1pilastro+\$cover] [expr -3*\$z1pilastrocent] [expr \$y1pilastro-\$cover] layer straight 8 8 \$As16 [expr -\$z1pilastro+\$cover] [expr -\$y1pilastro+\$cover] [expr -\$z1pilastro+\$cover] [expr \$y1pilastro-\$cover] # PILASTRO SEZIONE 12 passo 170 mm piani superiori section Fiber 12 { # Create the concrete core fibers # VA DATA PRIMA LA COORDINATA Z !!!!!! yi yk # materiale fibrez fibrey zi zk 20 20 [expr -\$z1pilastro+\$cover] [expr patch rect 4 \$y1pilastro+\$cover] [expr \$z1pilastro-\$cover] [expr \$y1pilastro-\$cover] # Create the concrete cover fibers patch rect 5 10 10 [expr \$z1pilastro-\$cover] [expr -\$y1pilastro] \$z1pilastro \$y1pilastro patch rect 5 10 10 [expr -\$z1pilastro] [expr -\$y1pilastro] [expr -\$z1pilastro+\$cover] \$y1pilastro patch rect 5 10 10 [expr -\$z1pilastro+\$cover] [expr -\$y1pilastro] [expr \$z1pilastro-\$cover] [expr -\$y1pilastro+\$cover] patch rect 5 10 10 [expr -\$z1pilastro+\$cover] [expr \$y1pilastro-\$cover] [expr \$z1pilastro-\$cover] \$y1pilastro # Create the reinforcing fibers (top, middle, bottom) # VA DATA PRIMA LA COORDINATA Z !!!!!! material number.bar Aindividualbar inizio inizio fine # fine layer straight 9 6 \$As16 [expr \$z1pilastro-\$cover] [expr -\$y1pilastro+\$cover] [expr \$z1pilastro-\$cover] [expr \$y1pilastro-\$cover]

layer straight 9 2 \$As16 [expr 3*\$z1pilastrocent] [expr -\$y1pilastro+\$cover] [expr 3*\$z1pilastrocent] [expr \$y1pilastro-\$cover] layer straight 9 2 \$As16 \$z1pilastrocent [expr -\$y1pilastro+\$cover] \$z1pilastrocent [expr \$y1pilastro-\$cover] layer straight 9 2 \$As16 -\$z1pilastrocent [expr -\$y1pilastro+\$cover] -\$z1pilastrocent [expr \$y1pilastro-\$cover] layer straight 9 2 \$As16 [expr -3*\$z1pilastrocent] [expr -\$y1pilastro+\$cover] [expr -3*\$z1pilastrocent] [expr \$y1pilastro-\$cover] layer straight 9 6 \$As16 [expr -\$z1pilastro+\$cover] [expr -\$y1pilastro+\$cover] [expr -\$z1pilastro+\$cover] [expr \$y1pilastro-\$cover] } geomTransf Corotational 1; # beams and columns # geomTransf PDelta 2; #columns # ELEMENTS -----set numIntgrPts 5; # number of integration points for force-based element #IMPALCATO 1 element dispBeamColumn 1 1 2 \$numIntgrPts 1 1 element dispBeamColumn 2 2 3 \$numIntgrPts 1 1 1 element dispBeamColumn 3 3 4 \$numIntgrPts 1 13 element dispBeamColumn 4 4 5 5 \$numIntgrPts 1 element dispBeamColumn 5 6 \$numIntgrPts 13 1 element dispBeamColumn 6 7 \$numIntgrPts 2 6 1 \$numIntgrPts 14 \$numIntgrPts 14 element dispBeamColumn 7 7 8 1 element dispBeamColumn 8 8 9 1 10 11 \$numIntgrPts 3 \$numIntgrPts 3 element dispBeamColumn 9 9 1 element dispBeamColumn 10 10 1 \$numIntgrPts 3 element dispBeamColumn 11 11 12 1 element dispBeamColumn 21 12 13 \$numIntgrPts 3 1 13 14 element dispBeamColumn 22 \$numIntgrPts 3 1 element dispBeamColumn 23 14 15 \$numIntgrPts 3 1 \$numIntgrPts 14 15 element dispBeamColumn 24 16 1 \$numIntgrPts 14 \$numIntgrPts 2 16 17 element dispBeamColumn 25 17 1 element dispBeamColumn 26 18 \$numIntgrPts 1 element dispBeamColumn 27 18 19 \$numIntgrPts 14 1 element dispBeamColumn 28 19 20 \$numIntgrPts 14 1 element dispBeamColumn 29 \$numIntgrPts 3 20 21 1 \$numIntgrPts 3 \$numIntgrPts 3 21 element dispBeamColumn 210 2.2 1 element dispBeamColumn 211 22 23 \$numIntgrPts 1 element dispBeamColumn 31 23 24 \$numIntgrPts 3 1 3 2.5 element dispBeamColumn 32 2.4 \$numIntgrPts 1 element dispBeamColumn 33 25 2.6 \$numIntgrPts 3 1 element dispBeamColumn 34 26 27 \$numIntgrPts 14 1 \$numIntgrPts 14 element dispBeamColumn 35 27 28 1 element dispBeamColumn 36 2 14 28 29 \$numIntgrPts 1 11129 \$numIntgrPts element dispBeamColumn 37 29 1 element dispBeamColumn 111137 11129 30 \$numIntgrPts 14 1 element dispBeamColumn 38 31 30 \$numIntgrPts 14 1 element dispBeamColumn 39 \$numIntgrPts 3 31 32 1 element dispBeamColumn 310 3 3 32 33 \$numIntgrPts 1 element dispBeamColumn 311 33 34 \$numIntgrPts 1 element dispBeamColumn 41 34 35 \$numIntgrPts 3 1 \$numIntgrPts 3 element dispBeamColumn 42 35 36 1 3 element dispBeamColumn 43 36 37 \$numIntgrPts 1 element dispBeamColumn 44 37 38 \$numIntgrPts 14 1 11138 \$numIntgrPts 14 element dispBeamColumn 45 38 1 element dispBeamColumn 11145 11138 39 \$numIntgrPts 14 1 39 element dispBeamColumn 46 40 \$numIntgrPts 2 1 14 element dispBeamColumn 47 40 41 \$numIntgrPts 1 element dispBeamColumn 48 41 42 \$numIntgrPts 14 1 3 element dispBeamColumn 49 42 43 \$numIntgrPts 1 element dispBeamColumn 410 \$numIntgrPts 43 44 3 3 1 element dispBeamColumn 411 44 45 \$numIntgrPts 1 element dispBeamColumn 51 45 46 \$numIntgrPts 3 1 3 element dispBeamColumn 52 46 47 \$numIntgrPts 1 3 element dispBeamColumn 53 47 48 \$numIntgrPts 1 element dispBeamColumn 54 48 49 \$numIntgrPts 14 1 element dispBeamColumn 55 49 50 \$numIntgrPts 14 1 element dispBeamColumn 56 50 51 \$numIntgrPts 2 1

element dispBeamColumn element dispBeamColumn	57 58 59 510 511 61 62 63 64 65 66 67 68 69 610 611	51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66	52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	14 14 3 3 3 3 14 14 2 13 13 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#IMPALCATO 2						
element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	71 72 73 74 75 76 77 78 79 710 711	71 72 73 74 75 76 77 78 79 710 711	72 73 74 75 \$n 76 77 78 79 710 711 712	<pre>\$numIntgrPts \$numIntgrPts umIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	4 4 15 15 2 14 14 3 3 3	1 1 1 1 1 1 1 1 1 1
element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	81 82 83 84 85 86 87 88 88 89 810 811	712 713 714 715 716 717 718 719 720 721 722	713 714 715 716 717 718 719 720 721 722 723	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	3 3 14 14 2 14 14 3 3 3	1 1 1 1 1 1 1 1 1 1
element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	91 92 93 94 95 96 97 11197 98 99 910 911	723 724 725 726 727 728 729 7729 730 731 732 733	724 725 726 727 728 729 7729 730 731 732 733 733 734	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	3 3 14 14 2 14 14 14 3 3 3	1 1 1 1 1 1 1 1 1 1 1
element dispBeamColumn element dispBeamColumn	101 102 103 104 105 111105 106 107 108 109 1010 74 1011 74	734 735 736 737 738 7738 739 740 741 742 3 744 4 745	735 736 737 738 7738 739 740 741 742 743 \$numIntg \$numIntg	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts 3 rrPts 3</pre>	3 3 14 14 14 2 14 14 3 1 1	1 1 1 1 1 1 1 1 1
element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	111 112 113 114 115 116	745 746 747 748 749 750	746 747 748 749 750 751	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	3 3 14 14 2	1 1 1 1 1

element element element element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	117 118 119 1110 1111	751 752 753 754 755 755 756	752 753 754 \$numIntgr \$numIntgr	\$numInt \$numInt \$numInt Pts Pts	grPts grPts grPts 3 3	14 14 3 1 1	1 1 1
element	dispBeamColumn	121	756	757	\$numInt	grPts	3	1
element	dispBeamColumn	122	757	758	\$numInt	grPts	3	1
element	dispBeamColumn	123	758	759	\$numInt	grPts	3	1
element	dispBeamColumn	124	759	760	\$numInt	grPts	14	1
element	dispBeamColumn	125	760	761	\$numInt \$numTnt	grPts grDto	24	1
element	dispBeamColumn	127	762	763	\$numTnt	arPts	15	1
element	dispBeamColumn	12.8	763	764	\$numTnt.	arPts	15	1
element	dispBeamColumn	129	764	765	\$numInt	grPts	4	1
element	dispBeamColumn	1210	765 766	\$numIntgr	Pts	4	1	
element	dispBeamColumn	1211	766 767	\$numIntgr	Pts	4	1	
#IMPALC	ato 3							
element	dispBeamColumn	131	81	82	\$numInt	grPts	4	1
element	dispBeamColumn	132	82	83	\$numInt	grPts	4	1
element	dispBeamColumn	133	83	84	\$numInt	grPts	4	1
element	dispBeamColumn	134	84	85	\$num1nt	grPts	15	1
element	dispBeamColumn	135	85	86	\$numint	grPts grDtc	15	1
olomont	dispBeamColumn	137	87	07 88	\$numTnt	girts ar¤ts	2 15	⊥ 1
element	dispBeamColumn	1.3.8	88	89	\$numTnt.	arPts	15	1
element	dispBeamColumn	139	89	810	\$numInt	grPts	4	1
element	dispBeamColumn	1310	810 811	\$numIntgr	Pts	4	1	
element	dispBeamColumn	1311	811 812	\$numIntgr	Pts	4	1	
element	dispBeamColumn	141	812	813	\$numInt	grPts	4	1
element	dispBeamColumn	142	813	814	\$numInt	grPts	4	1
element	dispBeamColumn	143	814	815	\$numInt	grPts	4	1
element	dispBeamColumn	144	815	816	\$numInt	grPts	15	1
element	dispBeamColumn	145	816	817	\$numInt	grPts	15	1
element	dispBeamColumn	140	81.8	818 819	\$numInt \$numTnt	grPts ar¤te	Z 15	1 1
element	dispBeamColumn	148	819	820	\$numTnt	arPts	15	1
element	dispBeamColumn	149	820	821	\$numInt	grPts	4	1
element	dispBeamColumn	1410	821 822	\$numIntgr	Pts	4	1	
element	dispBeamColumn	1411	822 823	\$numIntgr	Pts	4	1	
element	dispBeamColumn	151	823	824	\$numInt	grPts	4	1
element	dispBeamColumn	152	824	825	\$numInt	grPts	4	1
element	dispBeamColumn	153	825	826	\$numInt	grPts	4	1
element	dispBeamColumn	154	826	827	\$numInt	grPts crDtc	15	1
olomont	dispBeamColumn	155	027 828	020 829	\$numTnt	girts ar¤ts	2	⊥ 1
element	dispBeamColumn	157	829	830	\$numInt	arPts	15	1
element	dispBeamColumn	158	830	831	\$numInt	grPts	15	1
element	dispBeamColumn	159	831	832	\$numInt	grPts	4	1
element	dispBeamColumn	1510	832 833	\$numIntgr	Pts	4	1	
element	dispBeamColumn	1511	833 834	\$numIntgr	Pts	4	1	
element	dispBeamColumn	161	834	835	\$numInt	grPts	4	1
element	dispBeamColumn	162	835	836	\$numInt	grPts	4	1
element	dispBeamColumn	163	836	837	\$numInt	grPts	4	1
element	dispBeamColumn	164	837	838	\$numint	grPts grDtc	15	1
element	dispBeamColumn	166	839	840	\$numTnt	arPts	2	1
element	dispBeamColumn	167	840	841	\$numInt	grPts	15	1
element	dispBeamColumn	168	841	842	\$numInt	grPts	15	1
element	dispBeamColumn	169	842	843	\$numInt	grPts	4	1
element element	dispBeamColumn dispBeamColumn	1610 1611	843 844 844 845	\$numIntgr \$numIntgr	Pts Pts	4 4	1 1	
element.	dispBeamColumn	171	845	846	\$numInt	qrPts	4	1
element	dispBeamColumn	172	846	847	\$numInt	grPts	4	1
element	dispBeamColumn	173	847	848	\$numInt	grPts	4	1
element	dispBeamColumn	174	848	849	\$numInt	grPts	15	1
element	dispBeamColumn	175	849	850	\$numInt	grPts	15	1
element	dispBcomColumn	⊥/6 177	85U 051	851 852	≎numint Snumint	yrrts gr¤tc	∠ 15	⊥ 1
element	dispBeamColumn	⊥// 178	001 852	002 853	Şııulıl⊥fi⊂ Snum⊤n+	y⊥rus arPts	15	⊥ 1
	<u>.</u> = 0.000 ± 0.001		002			00		-

element	dispBeamColumn	179 1710	853	854 SpumInter	\$numInt	grPts	4	1
element	dispBeamColumn	1711	855 856	\$numIntgr	Pts	4	1	
			05.0	0.5.5				_
element	dispBeamColumn dispBeamColumn	181 182	856 857	857 858	\$numlnt \$numInt	grPts arPts	4	1 1
element	dispBeamColumn	183	858	859	\$numInt	grPts	4	1
element	dispBeamColumn	184	859	860	\$numInt	grPts	15	1
element	dispBeamColumn	185	860	861	\$numInt	grPts	15	1
element	dispBeamColumn	186 197	861 862	862	\$numInt	grPts	2	1
element	dispBeamColumn	188	863	864	\$numTnt	arPts	15	1
element	dispBeamColumn	189	864	865	\$numInt	grPts	4	1
element	dispBeamColumn	1810	865 866	\$numIntgr	Pts	4	1	
element	dispBeamColumn	1811	866 867	\$numIntgr	Pts	4	1	
#IMPALC	ATO 4							
element	dispBeamColumn	191	91	92	\$numInt	arPts	5	1
element	dispBeamColumn	192	92	93	\$numInt	grPts	5	1
element	dispBeamColumn	193	93	94	\$numInt	grPts	5	1
element	dispBeamColumn	194	94	95	\$numInt	grPts	16	1
element	dispBeamColumn	195	95	96	\$numInt	grPts	16 17	1
element	dispBeamColumn	190	90	97	\$numInt \$numTnt	grPts arPts	16	⊥ 1
element	dispBeamColumn	198	98	99	\$numInt	grPts	16	1
element	dispBeamColumn	199	99	910	\$numInt	grPts	5	1
element	dispBeamColumn	1910	910 911	\$numIntgr	Pts	5	1	
element	dispBeamColumn	1911	911 912	\$numIntgr	Pts	5	1	
element	dispBeamColumn	201	912	913	\$numInt	grPts	5	1
element	dispBeamColumn	202	913	914	\$numInt	grPts	5	1
element	dispBeamColumn	203	914 915	915	\$numint \$numint	grPts arPts	5 16	1 1
element	dispBeamColumn	205	916	917	\$numInt	arPts	16	1
element	dispBeamColumn	206	917	918	\$numInt	grPts	17	1
element	dispBeamColumn	207	918	919	\$numInt	grPts	16	1
element	dispBeamColumn	208	919	920	\$numInt	grPts	16	1
element	dispBeamColumn	209	920	921	\$numInt	grPts	5	1
element	dispBeamColumn dispBeamColumn	2010	921 922 922 923	\$numIntgr \$numIntgr	Pts Pts	5	1	
alomant	dianPoamColumn	0011	023 021	\$numTn+ ar	Dt c	5	1	
element	dispBeamColumn	212	924	925	\$numInt	arPts	5	1
element	dispBeamColumn	213	925	926	\$numInt	grPts	5	1
element	dispBeamColumn	214	926	927	\$numInt	grPts	16	1
element	dispBeamColumn	215	927	928	\$numInt	grPts	16	1
element	dispBeamColumn	216	928	929	\$numInt	grPts	17	1
element	dispBeamColumn	218	929 930	930	\$numTnt	arPts	15	⊥ 1
element	dispBeamColumn	219	931	932	\$numInt	grPts	4	1
element	dispBeamColumn	2110	932 933	\$numIntgr	Pts	4	1	
element	dispBeamColumn	2111	933 934	\$numIntgr	Pts	4	1	
element	dispBeamColumn	221	934	935	\$numInt	grPts	4	1
element	dispBeamColumn	222	935	936	\$numInt	grPts	4	1
element	dispBeamColumn	223	936	937	\$numInt	grPts	4	1
element	dispBeamColumn	224	937	938	\$numInt	grPts	15 15	1
element	dispBeamColumn	225	939	940	\$numTnt	arPts	17	1
element	dispBeamColumn	227	940	941	\$numInt	grPts	16	1
element	dispBeamColumn	228	941	942	\$numInt	grPts	16	1
element	dispBeamColumn	229	942	943	\$numInt	grPts	5	1
element	dispBeamColumn	2210	943 944	ŞnumIntgr	Pts	5	1	
element	dispBeamColumn	2211	944 945	Şnumintgr	Pts	5	Ţ	
element	dispBeamColumn	231	945	946	\$numInt	grPts	5	1
element	dispBeamColumn	232 233	946 947	947 948	şnum⊥nt Snum⊺r+	yrrts arPte	ວ 5	⊥ 1
element	dispBeamColumn	234	948	949	\$numInt	grPts	16	1
element	dispBeamColumn	235	949	950	\$numInt	- grPts	16	1
element	dispBeamColumn	236	950	951	\$numInt	grPts	17	1
element	dispBeamColumn	237	951	952 0F2	\$numInt	grPts	16 16	1
element	dispBeamColumn	∠30 239	95∠ 953	953 954	Şııum⊥nt Snum⊺r+	yrrts arPts	10 5	⊥ 1
element	dispBeamColumn	2310	954 955	\$numIntgr	Pts	5	1	-

element	dispBeamColumn	2311	955	956	\$n	umIntgr	Pts	5	1	
element	dispBeamColumn	241	9	56		957	\$numInt	arPts	5	1
element	dispBeamColumn	2.4.2	9	57		958	\$numTnt.	arPts	5	1
element	dispBeamColumn	243	9	58		959	\$numTnt	arPts	5	1
alement	dispBeamColumn	244	9	59		960	\$numInt	arPts	16	1
element	dispBeamColumn	245	g	60		961	SnumTnt	arPts	16	1
element	dispBeamColumn	245	2 0	61		962	\$numTnt	grits grDtg	17	1
erement		240	9	61		962	¢	grets	10	1
element	dispBeamColumn	247	9	62		963	\$numint	grPts	16	T
element	dispBeamColumn	248	9	63		964	Şnumlnt	grPts	16	T
element	dispBeamColumn	249	9	64		965	\$numInt	grPts	5	1
element	dispBeamColumn	2410	965	966	\$n	umIntgr	Pts	5	1	
element	dispBeamColumn	2411	966	967	\$n	umIntgr	Pts	5	1	
#IMPALC	ATO 5									
element	dispBeamColumn	251	1	01		102	\$numInt	grPts	5	1
element	dispBeamColumn	252	1	02		103	\$numInt	arPts	5	1
element	dispBeamColumn	253	1	03		104	\$numTnt	arPts	5	1
element	dispBeamColumn	254	1	04		105	ŚnumInt	arPts	16	1
element	dispBeamColumn	255	1	05		106	\$numTn+	gri co ar¤te	16	1
element	diapDeamColumn	255	1	05		107	¢numInt ¢numTnt	gii ta grDta	17	1
element		250	1	00		107	¢mum Tet	grets wwDta	10	1
erement	dispBeamcolumn	257	1	07		108	\$numint	grets	10	1
element	dispBeamColumn	258	1	08		109	Şnumint	grPts	16	1
element	dispBeamColumn	259	1	09		1010 Şnı	ımIntgrH	Pts	5	1
element	dispBeamColumn	2510	1010) 101	1	\$numInt	grPts	5	1	
element	dispBeamColumn	2511	1011	L 101	2	\$numInt	grPts	5	1	
element	dispBeamColumn	261	1	012		1013	\$numInt	grPts	5	1
element	dispBeamColumn	262	1	013		1014	\$numInt	grPts	5	1
element	dispBeamColumn	263	1	014		1015	\$numInt	qrPts	5	1
element	dispBeamColumn	264	1	015		1016	\$numInt	arPts	16	1
element	dispBeamColumn	265	1	016		1017	SnumTnt	arPts	16	1
element	dispBeamColumn	266	1	017		1018	ŚnumInt	arPts	17	1
clomont	dispBoamColumn	267	1	010		1010	\$numTnt	gri co gr¤ta	16	1
erement		207	1	010		1019	¢	yrrts 	10	1
element	dispBeamColumn	268	T	019		1020	\$numint	grPts	10	1
element	dispBeamColumn	269	1	020		1021	Şnumlnt	grPts	5	1
element	dispBeamColumn	2610	1021	L		1022	\$numInt	grPts	5	1
element	dispBeamColumn	2611	1022	2		1023	\$numInt	grPts	5	1
element	dispBeamColumn	271	1	023		1024	\$numInt	arPts	5	1
element	dispBeamColumn	272	1	024		1025	\$numTnt	arPts	5	1
element	dispBeamColumn	273	1	025		1026	ŚnumInt	arPts	5	1
olomont	dispBoamColumn	271	1	026		1020	\$numInt	gri co ar¤te	16	1
element	dispBeamColumn	275	1	020		1027	\$numTnt	grits grDtg	16	1
element	dispBeanColumn	275	1	027		1020	¢numint ¢num	yirts wwDta	17	1
element	dispBeamColumn	270	1	028		1029	\$numint	grets	1/	1
element	dispBeamColumn	211	1	029		1030	Şnumint	grPts	16	1
element	dispBeamColumn	278	1	030		1031	ŞnumInt	grPts	16	1
element	dispBeamColumn	279	1	031		1032	\$numInt	grPts	5	1
element	dispBeamColumn	2710	1032	2		1033	\$numInt	grPts	5	1
element	dispBeamColumn	2711	1033	3		1034	\$numInt	grPts	5	1
element.	dispBeamColumn	281	1	0.34		1035	\$numTnt	arPts	5	1
element	dispBeamColumn	282	1	035		1036	\$numTnt	arPts	5	1
olomont	dispBeamColumn	283	1	036		1037	\$numInt	gri co ar¤te	5	1
clomont	dispBoamColumn	203	1	030		1030	\$numTnt	gri co gr¤ta	16	1
element	dispbeancolumn	204	1	037		1020	¢numint ¢num	yirts wwDta	10	1
erement	dispBeamcolumn	285	1	038		1039	\$numint	grets	10	1
element	dispBeamColumn	286	T	039		1040	Şnumlnt	grPts	17	T
element	dispBeamColumn	287	1	040		1041	\$numInt	grPts	16	1
element	dispBeamColumn	288	1	041		1042	\$numInt	grPts	16	1
element	dispBeamColumn	289	1	042		1043	\$numInt	grPts	5	1
element	dispBeamColumn	2810	1043	3		1044	\$numInt	grPts	5	1
element	dispBeamColumn	2811	1044	1		1045	\$numInt	grPts	5	1
olomon+	dienBoamColumn	201	1	015		1046	\$num⊺n+	arDto	5	1
	diapPopmColumn	202	1	016		1047	¢numTn+	yrrus arDta	5	⊥ 1
erement	dispeancolumn	292	1	040		1040	γπum⊥nt ¢mm : τ	YIFLS	J	1
e⊥ement	ulspBeamColumn	293	1	04/		1048	⇒numint	yrrts D	J	1
e⊥ement	alspBeamColumn	294	1	048		1049	şnumInt	gr⊦ts	10	Ţ
element	dispBeamColumn	295	1	049		1050	şnumInt	grPts	16	1
element	dispBeamColumn	296	1	050		1051	\$numInt	grPts	17	1
element	dispBeamColumn	297	1	051		1052	\$numInt	grPts	16	1
element	dispBeamColumn	298	1	052		1053	\$numInt	grPts	16	1
element	dispBeamColumn	299	1	053		1054	\$numInt	grPts	5	1
element	dispBeamColumn	2910	1054	1		1055	\$numInt	grPts	5	1
element	dispBeamColumn	2911	1055	5		1056	\$numInt	grPts	5	1

element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	301 302 303 304 305 306 307 308 309 3010 3011	1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066	1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	5 5 16 16 17 16 5 5 5	1 1 1 1 1 1 1 1 1 1 1 1 1
#IMPALCATO 6						
element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	8311 312 313 314 315 316 317 318 319 3110 3111	111 112 \$1 112 113 114 115 116 117 118 119 1110 1111 1111 1112	numIntgr 113 114 115 116 117 118 119 1110 \$n \$numInt \$numInt	Pts 6 \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts umIntgrPts umIntgrPts umIntgrPts umIntgrPts 0 0 0 0 0 0 0 0 0 0 0 0 0	1 6 18 18 17 18 6 1 1	1 1 1 1 1 1 1 1 1
element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	321 322 323 324 325 326 327 328 329 3210 3211	1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122	1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	6 6 18 18 17 18 18 6 6 6	1 1 1 1 1 1 1 1 1 1 1 1
element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	331 332 333 334 335 336 337 338 339 3310 3311	1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133	1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	6 6 18 17 18 18 6 6	1 1 1 1 1 1 1 1 1 1 1 1
element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	341 342 343 344 345 346 347 348 349 3410 3411	1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144	1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145	<pre>\$numIntgrPts \$numIntgrPts }</pre>	6 6 18 18 17 18 18 6 6 6	1 1 1 1 1 1 1 1 1 1 1
element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	351 352 353 354 355 356 357 358 359 3510 3511	1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155	1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	6 6 18 18 17 18 18 6 6 6	1 1 1 1 1 1 1 1 1 1 1 1 1
element dispBeamColumn element dispBeamColumn	361 362	1156 1157	1157 1158	\$numIntgrPts \$numIntgrPts	6 6	1 1

element dispBeamColumn element dispBeamColumn	363 364	1158 1159	1159 1160	\$numIntgrPts \$numIntgrPts	6 18	1 1
element dispBeamColumn	365	1160	1161	\$numIntgrPts	18	1
element dispBeamColumn	366	1161	1162	ŞnumIntgrPts	17	1
element dispBeamColumn	367	1162	1163	ŞnumIntgrPts	18	1
element dispBeamColumn	368	1163	1164	\$numIntgrPts	18	1
element dispBeamColumn	369	1164	1165	\$numIntgrPts	6	1
element dispBeamColumn	3610	1165	1166	ŞnumIntgrPts	6	1
element dispBeamColumn	3611	1166	1167	ŞnumIntgrPts	6	1
#IMPALCATO 7						
element dispBeamColumn	371	121	122	\$numIntgrPts	7	1
element dispBeamColumn	372	122	123	\$numIntgrPts	7	1
element dispBeamColumn	373	123	124	\$numIntgrPts	7	1
element dispBeamColumn	374	124	125	\$numIntgrPts	17	1
element dispBeamColumn	375	125	126	\$numIntgrPts	17	1
element dispBeamColumn	376	126	127	\$numIntgrPts	17	1
element dispBeamColumn	377	127	128	\$numIntgrPts	18	1
element dispBeamColumn	378	128	129	\$numIntgrPts	18	1
element dispBeamColumn	379	129	1210	\$numIntgrPts	6	1
element dispBeamColumn	3710	1210	1211	SnumIntgrPts	6	1
element dispBeamColumn	3/11	1211	1212	ŞnumintgrPts	6	Ţ
element dispBeamColumn	381	1212	1213	\$numIntgrPts	6	1
element dispBeamColumn	382	1213	1214	\$numIntgrPts	6	1
element dispBeamColumn	383	1214	1215	\$numIntgrPts	6	1
element dispBeamColumn	384	1215	1216	\$numIntgrPts	18	1
element dispBeamColumn	385	1216	1217	\$numIntgrPts	18	1
element dispBeamColumn	386	1217	1218	ŞnumIntgrPts	17	1
element dispBeamColumn	387	1218	1219	ŞnumIntgrPts	18	1
element dispBeamColumn	388	1219	1220	SnumIntgrPts	18	1
element dispBeamColumn	389	1220	1221	SnumIntgrPts	6	1
element dispBeamColumn	3810	1221	1222	SnumIntgrPts	6	1
element dispBeamColumn	3811	1222	1223	ŞnumintgrPts	6	T
element dispBeamColumn	391	1223	1224	\$numIntgrPts	6	1
element dispBeamColumn	392	1224	1225	\$numIntgrPts	6	1
element dispBeamColumn	393	1225	1226	\$numIntgrPts	6	1
element dispBeamColumn	394	1226	1227	\$numIntgrPts	18	1
element dispBeamColumn	395	1227	1228	\$numIntgrPts	18	1
element dispBeamColumn	396	1228	1229	\$numIntgrPts	17	1
element dispBeamColumn	397	1229	1230	\$numIntgrPts	18	1
element dispBeamColumn	398	1230	1231	ŞnumIntgrPts	18	1
element dispBeamColumn	399	1231	1232	ŞnumIntgrPts	6	1
element dispBeamColumn	3910	1232	1233	\$numIntgrPts	6	1
element dispBeamColumn	3911	1233	1234	ŞnumlntgrPts	6	Ţ
element dispBeamColumn	401	1234	1235	\$numIntgrPts	6	1
element dispBeamColumn	402	1235	1236	\$numIntgrPts	6	1
element dispBeamColumn	403	1236	1237	\$numIntgrPts	6	1
element dispBeamColumn	404	1237	1238	\$numIntgrPts	18	1
element dispBeamColumn	405	1238	1239	\$numIntgrPts	18	1
element dispBeamColumn	406	1239	1240	\$numIntgrPts	17	1
element dispBeamColumn	407	1240	1241	\$numIntgrPts	18	1
element dispBeamColumn	408	1241	1242	\$numIntgrPts	18	1
element dispBeamColumn	409	1242	1243	ŞnumIntgrPts	6	1
element dispBeamColumn	4010	1243	1244	\$numIntgrPts	6	1
element dispBeamColumn	4011	1244	1245	ŞnumIntgrPts	6	1
element dispBeamColumn	8411	1245	1246	\$numIntgrPts	6	1
element dispBeamColumn	412	1246	1247	\$numIntgrPts	6	1
element dispBeamColumn	413	1247	1248	\$numIntgrPts	6	1
element dispBeamColumn	414	1248	1249	\$numIntgrPts	18	1
element dispBeamColumn	415	1249	1250	\$numIntgrPts	18	1
element dispBeamColumn	416	1250	1251	\$numIntgrPts	17	1
element dispBeamColumn	417	1251	1252	\$numIntgrPts	18	1
element dispBeamColumn	418	1252	1253	\$numIntgrPts	18	1
element dispBeamColumn	419	1253	1254	\$numIntgrPts	6	1
element dispBeamColumn	4110	1254	1255	ŞnumIntgrPts	6	1
element dispBeamColumn	4111	1255	1256	ŞnumIntgrPts	6	1
element dispBeamColumn	421	1256	1257	\$numIntgrPts	6	1
element dispBeamColumn	422	1257	1258	\$numIntgrPts	6	1
element dispBeamColumn	423	1258	1259	\$numIntgrPts	6	1
element dispBeamColumn	424	1259	1260	\$numIntgrPts	18	1

element dispBeamColumn	425	1260	1261	\$numIntgrPts	18	1
element dispBeamColumn	426	1261	1262	\$numIntgrPts	17	1
element dispBeamColumn	427	1262	1263	SnumIntarPts	17	1
element dispBeamColumn	428	1263	1264	ŚnumIntarPts	17	1
element dispBeamcolumn	120	1260	1265	\$numIntgrIts	7	1
element dispBeamColumn	429	1204	1205	¢numinityirus ¢num TatamDta	7	1
element dispBeamColumn	4210	1265	1266	SnumintgrPts	/	1
element dispBeamColumn	4211	1266	1267	ŞnumlntgrPts		1
#IMPALCATO 8						
element dispBeamColumn	431	131	132	\$numIntgrPts	7	1
element dispBeamColumn	432	132	133	\$numIntgrPts	7	1
element dispBeamColumn	433	133	134	\$numIntgrPts	7	1
element dispBeamColumn	434	134	135	ŚnumIntarPts	17	1
element dispBeamColumn	135	135	136	\$numIntgrPtc	17	1
erement dispbeamcorumn	435	100	107	Quantine grees	17	1
element dispBeamColumn	436	136	137	Shuminigreis	17	1
element dispBeamColumn	43/	137	138	SnumintgrPts	1 /	1
element dispBeamColumn	438	138	139	\$numIntgrPts	17	1
element dispBeamColumn	439	139	1310	\$numIntgrPts	7	1
element dispBeamColumn	4310	1310	1311	\$numIntgrPts	7	1
element dispBeamColumn	4311	1311	1312	\$numIntgrPts	7	1
				,		
element dispBeamColumn	441	1312	1313	ŚnumIntarPts	7	1
element dispBeamColumn	112	1313	1317	\$numIntgrDtc	7	1
erement dispbeamcorumn	442	1014	1015	Quantine gri es	7	1
element dispBeamColumn	443	1314	1315	Shuminigreis	/	1
element dispBeamColumn	444	1315	1316	ŞnumlntgrPts	Τ./	1
element dispBeamColumn	445	1316	1317	\$numIntgrPts	17	1
element dispBeamColumn	446	1317	1318	\$numIntgrPts	17	1
element dispBeamColumn	447	1318	1319	\$numIntgrPts	17	1
element dispBeamColumn	448	1319	1320	\$numIntgrPts	17	1
element dispBeamColumn	449	1320	1321	ŚnumIntarPts	7	1
element dispBeamColumn	4410	1321	1322	ŚnumIntarPts	7	1
element dispBeamcolumn	1110	1322	1322	\$numIntgrIts	7	1
erement drspbeamcorumn	4411	1922	1929	ynunitiitgri to	7	1
alamant dianBaamCalumn	151	1222	1 2 2 4	¢numTn+ anD+ a	7	1
element dispBeamcolumn	451	1323	1324	\$numintgrPts	7	1
element dispBeamColumn	452	1324	1325	ŞnumlntgrPts	1	1
element dispBeamColumn	453	1325	1326	\$numIntgrPts	7	1
element dispBeamColumn	454	1326	1327	\$numIntgrPts	17	1
element dispBeamColumn	455	1327	1328	\$numIntgrPts	17	1
element dispBeamColumn	456	1328	1329	\$numIntgrPts	17	1
element dispBeamColumn	457	1329	1330	ŚnumIntarPts	17	1
element dispBeamColumn	158	1330	1331	ŚpumIntarPte	17	1
element displeancolumn	450	1221	1222	¢numIntgrits	7	1
element dispBeamColumn	455	1222	1222	¢numinityirus ¢num TatamDta	7	1
element dispBeamColumn	4510	1332	1333	\$numintgrPts	/	1
element dispBeamColumn	4511	1333	1334	SnumIntgrPts	/	1
	1.61	1004	1005	A	-	-
element dispBeamColumn	461	1334	1335	SnumintgrPts	/	1
element dispBeamColumn	462	1335	1336	\$numIntgrPts	7	1
element dispBeamColumn	463	1336	1337	\$numIntgrPts	7	1
element dispBeamColumn	464	1337	1338	\$numIntgrPts	17	1
element dispBeamColumn	465	1338	1339	\$numIntgrPts	17	1
element dispBeamColumn	466	1339	1340	\$numIntgrPts	17	1
element dispBeamColumn	467	1340	1341	ŚnumIntarPts	17	1
element dispBeamColumn	168	13/1	1342	\$numIntgrPtc	17	1
erement dispbeamcorumn	400	1241	1242	Quantine grees	1/	1
element dispBeamColumn	469	1342	1343	Shuminigreis	/	1
element dispBeamColumn	4610	1343	1344	ŞnumlntgrPts	1	1
element dispBeamColumn	4611	1344	1345	\$numIntgrPts	7	1
element dispBeamColumn	471	1345	1346	\$numIntgrPts	7	1
element dispBeamColumn	472	1346	1347	\$numIntgrPts	7	1
element dispBeamColumn	473	1347	1348	\$numIntgrPts	7	1
element dispBeamColumn	474	1348	1349	ŚnumIntarPts	17	1
element dispBeamColumn	475	1349	1350	ŚnumIntarPts	17	1
element dispRoproclums	476	1350	1351	ŚnumIntarDta	17	1
alament disperancorunni	177	1051	1050	Quiumitiitytrus	± / 1 つ	1
erement displeamColumn	4//	1050	1052	≎numintgrPts	17	1
element dispBeamColumn	4/8	1352	1353	şnum⊥ntgrPts	1 /	1
element dispBeamColumn	479	1353	1354	ŞnumIntgrPts	.1	1
element dispBeamColumn	4710	1354	1355	\$numIntgrPts	7	1
element dispBeamColumn	4711	1355	1356	\$numIntgrPts	7	1
element dispBeamColumn	481	1356	1357	\$numIntgrPts	7	1
element dispBeamColumn	482	1357	1358	\$numIntgrPts	7	1
element dispBeamColumn	483	1358	1359	\$numIntgrPts	7	1
element dispBeamColumn	484	1359	1360	\$numIntarPts	17	1
element dispReamColumn	485	1360	1361	ŚnumIntarDte	 17	1
olomont digrace Column	105	1361	1360	¢numilityiftð ÉnumIntamDta	± / 1 7	1
erement arshbediiiCotullili	100	TOCT	1 J U Z	YHUMLINCYLEUS	± /	1

element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	487 488 489 4810 4811	1362 1363 1364 1365 1366	1363 1364 1365 1366 1367	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	17 17 7 7 7	1 1 1 1
#IMPALCATO 9						
element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	491 492 493 494 495 496 497	141 142 143 144 145 146 147	142 143 144 145 146 147 148	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	7 7 17 17 19 19	1 1 1 1 1 1
element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	498 499 4910 4911	148 149 1410 1411	149 1410 1411 1412	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	19 8 8 8	1 1 1 1
element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	501 502 503 504 505 506 507 508 509 5010 5011	1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422	1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	8 8 19 19 19 17 17 7 7 7	1 1 1 1 1 1 1 1
element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	8511 512 513 514 515 55515 516 517 518 519 5110 5111	1423 1424 1425 1426 1427 111427 1428 1429 1430 1431 1432 1433	1424 1425 1426 1427 111427 1428 1429 1430 1431 1432 1433 1434	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	7 7 17 17 17 19 19 8 8 8	1 1 1 1 1 1 1 1 1 1
element dispBeamColumn element dispBeamColumn	521 522 523 524 525 526 527 55527 528 529 5210 5211	1434 1435 1436 1437 1438 1439 1440 111440 1441 1442 1443 1444	1435 1436 1437 1438 1439 1440 111440 1441 1442 1443 1444 1445	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	8 8 19 19 19 17 17 17 7 7 7	1 1 1 1 1 1 1 1 1 1 1
element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	531 532 533 534 535 536 537 538 539 5310 5311	1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455	1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456	<pre>\$numIntgrPts \$numIntgrPts }</pre>	7 7 17 17 19 19 19 8 8 8	1 1 1 1 1 1 1 1
element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	541 542 543 544 545 546	1456 1457 1458 1459 1460 1461	1457 1458 1459 1460 1461 1462	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	8 8 19 19 19	1 1 1 1 1

element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	547 548 549 5410 5411	1462 1463 1464 1465 1466	1463 1464 1465 1466 1467	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	17 17 7 7 7	1 1 1 1
#PIANO IU						
element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	551 552 553 554 555 556 557 558 559 559 5510	151 152 153 154 155 156 157 158 159 1510	152 153 154 155 156 157 158 159 1510 1511	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	8 8 19 19 19 19 19 19 8 8	1 1 1 1 1 1 1 1 1 1 1
element dispBeamColumn	5511	1511	1512	\$numIntgrPts	8	1
element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	561 562 563 564 565 566 567 568 569 5610 5611	1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522	1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	8 8 19 19 19 19 19 19 8 8 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1
element dispReamColumn	571	1523	1527	ŚpumTptgrDtg	8	1
element dispBeamColumn element dispBeamColumn	572 573 574 575 55575 576 577 578 579 5710 5711 581 582 583	1524 1525 1526 1527 111527 1528 1529 1530 1531 1532 1533 1534 1535 1536	1525 1526 1527 111527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	8 8 19 19 19 19 19 19 19 8 8 8 8 8 8 8 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1
element dispBeamColumn	584	1537	1538	\$numIntgrPts	19	1
element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	585 586 587 55587 588 589 5810 5811	1538 1539 1540 111540 1541 1542 1543 1544	1539 1540 111540 1541 1542 1543 1544 1545	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	19 19 19 19 19 8 8 8	1 1 1 1 1 1 1 1 1
element dispBeamColumn	591 592	1545	1546	\$numIntgrPts	8	1
element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	592 593 594 595 596 597 598 599 5910 5911	1546 1547 1548 1549 1550 1551 1552 1553 1554 1555	1547 1548 1549 1550 1551 1552 1553 1554 1555 1556	<pre>>numintgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	8 19 19 19 19 19 19 8 8 8 8	1 1 1 1 1 1 1 1 1 1 1
element dispBeamColumn	601	1556	1557	\$numIntgrPts	8	1
element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	602 603 604 605 606	1557 1558 1559 1560 1561	1558 1559 1560 1561 1562	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	8 8 19 19 19	1 1 1 1 1

element dispBeamColumn	607	1562	1563	\$numIntgrPts	19	1
element dispBeamColumn	608	1563	1564	\$numIntgrPts	19	1
element dispBeamColumn	609	1564	1565	\$numIntgrPts	8	1
element dispBeamColumn	6010	1565	1566	\$numIntgrPts	8	1
element dispBeamColumn	6011	1566	1567	ŚnumIntarPts	8	1
# COLONNA 1						
# COTOMINA I						
alement dianDeamCalumn	0611	161	160	¢num Tht gmDt g	0 1	
element displeancolumn	0011	101	162	ŞIIUIIIIIIUGIPUS	9 I 10	1
element dispBeamColumn	612	162	163	ŞnumintgrPts	10	1
element dispBeamColumn	613	163	164	ŞnumlntgrPts	9	T
element dispBeamColumn	614	164	1	\$numIntgrPts	9	1
element dispBeamColumn	615	1	166	\$numIntgrPts	11	1
element dispBeamColumn	616	166	167	\$numIntgrPts	11	1
element dispBeamColumn	617	167	168	\$numIntgrPts	12	1
element dispBeamColumn	618	168	169	ŚnumIntarPts	11	1
element dispBeamColumn	619	169	71	\$numIntgrDtc	11	1
erement arspbeamcorumn	019	105	/ 1	ŞITUMITIC YEL CS	T T	+
alamant diampaanCalumn	C110	71	1 (1 1	Če um Techeno Dhee	1 1	1
element dispBeamColumn	6110	11	1611	ŞnumintgrPts	11	T
element dispBeamColumn	6111	1011	1612	SnumintgrPts	11	T
element dispBeamColumn	6121	1612	1613	ŞnumIntgrPts	12	1
element dispBeamColumn	6122	1613	1614	\$numIntgrPts	11	1
element dispBeamColumn	6123	1614	81	\$numIntgrPts	11	1
element dispBeamColumn	6124	81	1616	\$numIntgrPts	11	1
element dispBeamColumn	6125	1616	1617	ŚnumIntarPts	11	1
element dispBeamColumn	6126	1617	1618	ŚnumIntarPts	12	1
clement dispBeamColumn	6127	1619	1610	\$numIntgrits	11	1
	6127	1010	1019	șiiuminicgiris	11	1
element dispBeamColumn	6128	1619	91	ŞnumlntgrPts	ΤT	T
element dispBeamColumn	6129	91	1621	\$numIntgrPts	11	1
element dispBeamColumn	61210	1621	1622	\$numIntgrPts	11	1
element dispBeamColumn	61211	1622	1623	\$numIntgrPts	12	1
element dispBeamColumn	6131	1623	1624	\$numIntgrPts	11	1
element dispBeamColumn	6132	1624	101	ŚnumIntarPts	11	1
	0101	1001	101	+11411111091100		-
element dispBeamColumn	6133	101	1626	ŚpumIntarPte	11	1
element dispBeamColumn	0133	101	1020	¢numinityirus ¢numinityirus	11	1
	6134	1626	1627	șiiumiincgrets	11	1
element dispBeamColumn	6135	1627	1628	SnumintgrPts	12	T
element dispBeamColumn	6136	1628	1629	\$numIntgrPts	11	1
element dispBeamColumn	6137	1629	111	\$numIntgrPts	11	1
element dispBeamColumn	6138	111	1631	\$numIntgrPts	11	1
element dispBeamColumn	6139	1631	1632	\$numIntgrPts	11	1
element dispBeamColumn	61310	1632	1633	ŚnumIntarPts	12	1
element dispBeamColumn	61311	1633	1634	ŚnumIntarPts	11	1
clement dispBeamColumn	6141	1634	101	\$numIntgrits	11	1
erement arspbeamcorumn	0141	1034	121	SHUIILIILGIELS	ΤT	Ŧ
	61.40	101	1 6 9 6	A		-
element dispBeamColumn	6142	121	1636	ŞnumintgrPts	11	T
element dispBeamColumn	6143	1636	1637	ŞnumIntgrPts	11	1
element dispBeamColumn	6144	1637	1638	\$numIntgrPts	12	1
element dispBeamColumn	6145	1638	1639	\$numIntgrPts	11	1
element dispBeamColumn	6146	1639	131	\$numIntgrPts	11	1
-				-		
element dispBeamColumn	6147	131	1641	ŚnumIntarPts	11	1
element dispBeamColumn	6148	1641	1642	ŚnumIntarPts	11	1
clement dispBeamColumn	6140	1642	1642	¢numIntgil to	10	1
element dispBeamColumn	0145	1042	1045	¢numinityirus ¢numinityirus	11	1
element dispBeamColumn	61410	1643	1644	ŞnumintgrPts	11	T
element dispBeamColumn	61411	1644	141	ŞnumlntgrPts	ΤT	T
element dispBeamColumn	6151	141	1646	\$numIntgrPts	11	1
element dispBeamColumn	6152	1646	1647	\$numIntgrPts	11	1
element dispBeamColumn	6153	1647	1648	\$numIntgrPts	12	1
element dispBeamColumn	6154	1648	1649	\$numIntarPts	11	1
element dispBeamColumn	6155	1649	151	SnumIntarPts	11	1
eremente aroppeaneorullili	0 <u>1</u> 0 0	1010	1 U 1	TIGHTICYTECS	± ±	+
# COLONNA 2						
# COLUNNA Z						
				· · · ·		
element dispBeamColumn	621	1/1	172	ŞnumIntgrPts	9	1
e⊥ement dispBeamColumn	622	172	173	ŞnumIntgrPts	10	1
element dispBeamColumn	623	173	174	\$numIntgrPts	9	1
element dispBeamColumn	624	174	12	\$numIntgrPts	9	1

element dispBeamColumn	625	12	176	\$numIntgrPts	11	1
	c) c	170	177	Course Tools and Date	11	1
erement arspeamcorumn	020	1/0	1//	ŞIIUIIITILGEPUS	ΤT	Ŧ
element dispBeamColumn	627	177	178	\$numIntgrPts	12	1
element dispBeamColumn	62.8	178	179	ŚnumIntarPts	11	1
alamant diappaamCalumn	620	170	710	¢num Int grDt g	11	1
erement arspbeamcorumn	029	1/9	112	ŞIIUIIITICGIFCS	ΤT	Ŧ
element dispBeamColumn	6210	712	1711	\$numIntarPts	11	1
alamant diappaamCalumn	6011	1711	1710	¢num Int grDt g	11	1
erement arspreamcorumn	6211	$\perp / \perp \perp$	1/12	Snuminigreis	ΤT	Ŧ
element dispBeamColumn	6221	1712	1713	\$numIntgrPts	12	1
element dispReamColumn	6222	1713	1714	ŚnumIntarPts	11	1
	0222	1713	1/14	șiiulii iicgii cs	11	1
element dispBeamColumn	6223	1714	812	ŞnumIntgrPts	11	1
element dispBeamColumn	6224	812	1716	ŚpumTptgrPts	11	1
	0224	012	1710	șiiulii încări că	1 I I	-
element dispBeamColumn	6225	1716	1717	ŞnumIntgrPts	11	1
element dispBeamColumn	62.2.6	1717	1718	ŚnumIntarPts	12	1
alamant diappaamCalumn	6007	1710	1710	¢num Int grDt g	11	1
erement drspbeamcorumn	0227	1/10	1119	SIIUIIITICGIECS	ΤT	Ŧ
element dispBeamColumn	6228	1719	912	ŞnumIntgrPts	11	1
alamant dianBaamCalumn	6220	012	1721	\$pumTptgrDtg	11	1
erement arspeamcorumn	0229	912	1/21	ŞIIUIIITILGEPUS	ΤT	Ŧ
element dispBeamColumn	62210	1721	1722	\$numIntgrPts	11	1
element dispBeamColumn	62211	1722	1723	ŚnumIntarPts	12	1
clement dispocancertann	02211	1700	1704	¢naminegireb	11	1
element dispBeamColumn	6Z31	1/23	1/24	SnumintgrPts	ΤT	T
element dispBeamColumn	6232	1724	1012	\$numIntgrPts	11	1
-				2		
	()))	1010	1700	Óm mar trainin an train	1 1	1
erement dispBeamColumn	8233	TUTZ	1/26	⊋num⊥ntgrPts	$\perp \perp$	T
element dispBeamColumn	6234	1726	1727	\$numIntgrPts	11	1
alamant diappaamCalumn	6235	1727	1720	\$numTnt grDt g	10	1
	0233	1/2/	1/20	SHUILIICGIFCS	12	1
element dispBeamColumn	6236	1728	1729	ŞnumIntgrPts	11	1
element dispBeamColumn	6237	1729	1112	ŚnumIntarPts	11	1
				,		
element dispBeamColumn	6238	1112	1731	ŞnumIntgrPts	11	1
element dispBeamColumn	6239	1731	1732	ŚnumIntarPts	11	1
cionone aioppeaneorianni	6200	1701	1702	¢	10	1
erement arspreamcorumn	62310	1/32	1/33	Snuminigreis	12	Ŧ
element dispBeamColumn	62311	1733	1734	\$numIntgrPts	11	1
element dispBeamColumn	6241	1734	1212	ŚnumIntarPts	11	1
eremente aroppeamoorami	0211	1,01	1010	onuminegri eb	± ±	-
element dispBeamColumn	6242	1212	1736	\$numIntgrPts	11	1
element dispReamColumn	6243	1736	1737	ŚnumIntarPts	11	1
	0245	1700	1700	¢numinegri es	10	-
element dispBeamColumn	6244	1/3/	1/38	SnumintgrPts	12	T
element dispBeamColumn	6245	1738	1739	\$numIntgrPts	11	1
element dispReamColumn	6246	1739	1312	ŚnumIntarPts	11	1
erement drspbeamcordim	0240	1/3/	1012	çıluminegin es	T T	+
element dispBeamColumn	6247	1312	1741	\$numIntgrPts	11	1
alomont diapPoamCalumn	6210	17/1	1742	\$numTntgrDtg	11	1
	0240	1/41	1/42	șiiulii iicgii cs	11	1
element dispBeamColumn	6249	1742	1743	ŞnumlntgrPts	12	T
element dispBeamColumn	62410	1743	1744	\$numIntgrPts	11	1
element dispBeamColumn	62/11	1744	1/12	\$numTntgrPts	11	1
erement arspbeamcorumn	02411	1/44	1412	ŞIIUIIIIIII ÜĞLI ÜĞ	1 1 1	+
element dispBeamColumn	6251	1412	1746	\$numIntgrPts	11	1
alomont diapPoamCalumn	6252	1746	1747	\$numTntgrDtg	11	1
	02.52	1740	1/4/	șiiulii iicgii cs	11	1
element dispBeamColumn	6253	1747	1748	ŞnumlntgrPts	12	T
element dispBeamColumn	6254	1748	1749	\$numIntgrPts	11	1
element dispBeamColumn	6255	17/9	1512	\$numTntgrPts	11	1
erement arspbeamcorumn	0255	1/4/	1012	ŞIIUIIIIIII ÜĞLI ÜĞ	1 1 1	+
# COLONNA 3						
	C 2 1	101	100	Óm mar trainin an train	0	1
element dispBeamColumn	631	181	182	ŞnumlntgrPts	9	Ŧ
element dispBeamColumn	632	182	183	\$numIntgrPts	10	1
element dispBeamColumn	633	1 8 3	18/	\$numTntgrPts	a	1
	055	105	104	șiiulii încgri că	2	-
element dispBeamColumn	634	184	23	ŞnumIntgrPts	9	1
element disnBeamColumn	635	23	186	ŚnumIntar¤te	11	1
	600	100	100	A	1 1	-
element dispBeamColumn	636	тдρ	T8 /	şnumintgrPts	$\perp \perp$	T
element dispBeamColumn	637	187	188	\$numIntgrPts	12	1
element disnBeamColumn	638	188	189	ŚnumIntarPte	11	1
	600	100	-02	~u	+ + 4 4	1
element dispBeamColumn	639	T83	123	ŞnumintgrPts	$\perp \perp$	1
element disnReamColumn	6310	723	1811	ŚnumIntarPte	11	1
	CO11	1011	1010	A	1 1	-
element dispBeamColumn	bJTT	TRTT	1815	şnum⊥ntgrPts	$\perp \perp$	T
element dispBeamColumn	6321	1812	1813	\$numIntgrPts	12	1
element dispReamColumn	6322	1813	1814	ŚnumIntarPte	11	1
	6362	1010	- 0 - 7 ·	A	1 1	-
element dispBeamColumn	6323	1814	823	ŞnumintgrPts	$\perp \perp$	1
element dispBeamColumn	6324	823	1816	ŚnumIntarPts	11	1
alomont diarDeerCel	6335	1010	1017	ChumTht	 11	- 1
erement arspeamcorumn	0525	TOTO	TOT /	YIIUIIITIILYIPLS	1 1 1 1	1
element dispBeamColumn	6326	1817	1818	ŞnumIntgrPts	12	1
			1010	A		1
element dispBeamColumn	6327	1818	1818	ŞnumintarPts	$\perp \perp$	1

element	dispBeamColumn	6328	1819	923	\$numInt	grPts	11	1
element	dispBeamColumn	6329	923	1821	ŚnumInto	arPts	11	1
alement	dispBeamColumn	63210	1821	1822	\$numTnt	arPte	11	1
element	diapDeamColumn	62210	1021	1022	\$numTnt.	yıı tə mpta	10	1
erement		63211	1022	1023	șiiuiii iiu	JIPLS	12	1
element	dispBeamColumn	6331	1823	1824	\$numint	grPts	11	1
element	dispBeamColumn	6332	1824	1023	\$numInt	grPts	11	1
element	dispBeamColumn	6333	1023	1826	ŚnumInte	arPts	11	1
olomont	dispBeamColumn	6334	1826	1827	\$numInt/	grDte	11	1
clement	diapDeamColumn	6225	1020	1020	¢numTnt.	gii CS mmD+ a	10	1
erement		6335	1027	1020	șiiuiii iiu	JIPLS	12	1
element	dispBeamColumn	6336	1828	1829	Snumint	grPts	11	1
element	dispBeamColumn	6337	1829	1123	ŞnumInt	grPts	11	1
element	dispBeamColumn	6338	1123	1831	\$numInt(arPts	11	1
element	dispBeamColumn	6339	1831	1832	ŚnumInto	arPts	11	1
alement	dispBeamColumn	63310	1832	1833	\$numTnt/	arPte	12	1
clomont	dispBeamColumn	63311	1032	1031	\$numTnt;	gri to grDta	11	1
erement		63311	1033	1034	șiiuiii iiu	JIPLS	11	1
element	dispBeamColumn	6341	1834	1223	\$num1nt	grPts	11	T
element	dispBeamColumn	6342	1223	1836	\$numInt(arPts	11	1
element	dispBeamColumn	6343	1836	1837	SnumTnte	arPts	11	1
alement	dispBeamColumn	6344	1837	1838	\$numTnt/	arPte	12	1
clement	diapDeamColumn	6245	1020	1020	¢numTnt.	gii CS mmD+ a	11	1
erement		6345	1030	1009	șiiuiii iiu	JIPLS	11	1
element	dispBeamColumn	6346	1839	1323	\$num1nt	grPts	11	T
element	dispBeamColumn	6347	1323	1841	\$numInt(arPts	11	1
element	dispBeamColumn	6348	1841	1842	SnumTnte	arPts	11	1
olomont	dispBeamColumn	6319	18/2	18/3	\$numInt/	grDte	12	1
element	dispbeancolumn	(2410	1042	1043	¢num Tec	gii US	11	1
erement		63410	1043	1044	șiiuiii iiu	JIPLS	11	1
element	dispBeamColumn	63411	1844	1423	Snumint	grPts	11	T
element	dispBeamColumn	6351	1423	1846	\$numInt	qrPts	11	1
element	dispBeamColumn	6352	1846	1847	\$numTnt.	arPts	11	1
element	dispBeamColumn	6353	1847	1848	SnumTnte	arPts	12	1
olomont	dispBeamColumn	6354	18/18	18/9	\$numInt,	gri CD grDte	11	1
erement	dispbeancorunni	0001	1040	1090	¢ i u T i l	JIIUS	11	1
erement	alspBeamcolumn	0333	1849	1923	şnuminte	grets	11	T
# COLON	NA 4							
		~ 3	<i></i>			·		
# eleme	nt dispBea	mCo⊥umn	641	191	192	SnumInt	grPts	9
# eleme	nt dispBea	mColumn	642	192	193	\$numInt	grPts	10
# eleme	nt dispBea	mColumn	643	193	194	\$numInt	grPts	9
# eleme	nt dispBea	mColumn	644	194	34	\$numInt	grPts	9
	1	CAE	2.4					1
element	dispBeamColumn	6 / 5	2 /1		<u>е</u>		1 1	
element		045	34	196	\$numInt	grPts	11	-
element	dispBeamColumn	646	196	196 197	\$numInto \$numInto	grPts grPts	11 11	1
	dispBeamColumn dispBeamColumn	646 647	196 197	196 197 198	\$numInt \$numInt \$numInt	grPts grPts grPts	11 11 12	1 1
element	dispBeamColumn dispBeamColumn dispBeamColumn	646 647 648	196 197 198	196 197 198 199	\$numInt \$numInt \$numInt \$numInt	grPts grPts grPts grPts	11 11 12 11	1 1 1
element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	645 646 647 648 649	196 197 198 199	196 197 198 199 734	<pre>\$numInt(\$numInt() \$numInt() \$numInt()</pre>	grPts grPts grPts grPts grPts	11 11 12 11 11	1 1 1 1
element	dispBeamColumn dispBeamColumn dispBeamColumn	646 647 648 649	196 197 198 199	196 197 198 199 734	<pre>\$numInto \$numInto \$numInto \$numInto \$numInto</pre>	grPts grPts grPts grPts grPts	11 11 12 11 11	1 1 1 1 1 1
element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	646 647 648 649 6410	196 197 198 199 734	196 197 198 199 734 1911	<pre>\$numInto \$numInto \$numInto \$numInto \$numInto</pre>	grPts grPts grPts grPts grPts grPts	11 11 12 11 11 11	1 1 1 1
element element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	646 647 648 649 6410 6411	196 197 198 199 734 1911	196 197 198 199 734 1911 1912	<pre>\$numInto \$numInto \$numInto \$numInto \$numInto</pre>	grPts grPts grPts grPts grPts grPts	11 11 12 11 11 11	1 1 1 1 1
element element element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	646 647 648 649 6410 6411 6421	196 197 198 199 734 1911 1912	196 197 198 199 734 1911 1912 1913	<pre>\$numInto \$numInto \$numInto \$numInto \$numInto \$numInto \$numInto \$numInto</pre>	grPts grPts grPts grPts grPts grPts grPts grPts	11 11 12 11 11 11 11 12	1 1 1 1 1 1
element element element element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	645 647 648 649 6410 6411 6421 6422	 34 196 197 198 199 734 1911 1912 1913 	196 197 198 199 734 1911 1912 1913 1914	<pre>\$numInto \$numInto \$numInto \$numInto \$numInto \$numInto \$numInto \$numInto</pre>	grPts grPts grPts grPts grPts grPts grPts grPts grPts	11 11 12 11 11 11 11 12 11	1 1 1 1 1 1 1 1
element element element element element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	645 647 648 649 6410 6411 6421 6422 6423	 34 196 197 198 199 734 1911 1912 1913 1914 	196 197 198 199 734 1911 1912 1913 1914 834	<pre>\$numInto \$numInto \$numInto \$numInto \$numInto \$numInto \$numInto \$numInto \$numInto \$numInto</pre>	grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts	11 11 12 11 11 11 11 12 11 11	1 1 1 1 1 1 1 1 1 1
element element element element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	646 647 648 649 6410 6411 6421 6422 6423	 34 196 197 198 199 734 1911 1912 1913 1914 934 	196 197 198 199 734 1911 1912 1913 1914 834	\$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta	grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts	11 11 12 11 11 11 11 12 11 11	1 1 1 1 1 1 1 1 1 1
element element element element element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	645 646 647 648 649 6410 6411 6421 6422 6423 6424	 34 196 197 198 199 734 1911 1912 1913 1914 834 	196 197 198 199 734 1911 1912 1913 1914 834	<pre>\$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta</pre>	grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts	11 11 12 11 11 11 11 12 11 11	1 1 1 1 1 1 1 1 1 1
element element element element element element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	646 647 648 649 6410 6411 6421 6422 6423 6423 6424 6425	 34 196 197 198 199 734 1911 1912 1913 1914 834 1916 	196 197 198 199 734 1911 1912 1913 1914 834 1916 1917	<pre>\$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta</pre>	grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts	11 11 12 11 11 11 11 12 11 11	1 1 1 1 1 1 1 1 1 1 1
element element element element element element element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	646 647 648 649 6410 6411 6421 6422 6423 6424 6425 6426	 34 196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 	196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918	<pre>\$numInto \$numInto \$numInto \$numInto \$numInto \$numInto \$numInto \$numInto \$numInto \$numInto \$numInto \$numInto \$numInto</pre>	grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts	11 11 12 11 11 11 11 11 11 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
element element element element element element element element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	643 644 647 648 649 6410 6411 6421 6422 6423 6423 6424 6425 6426 6427	 34 196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 	196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919	<pre>\$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta</pre>	grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts	11 11 12 11 11 11 11 11 11 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
element element element element element element element element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	646 647 648 649 6410 6411 6421 6422 6423 6424 6425 6426 6427 6428	 34 196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 	196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934	<pre>\$numInto \$numInto</pre>	grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts	11 11 12 11 11 11 11 11 11 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
element element element element element element element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	646 647 648 649 6410 6411 6421 6422 6423 6424 6425 6426 6427 6428	 34 196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 224 	196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934	<pre>\$numInto \$numInt</pre>	grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts	11 11 12 11 11 11 11 11 11 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
element element element element element element element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	646 647 648 649 6410 6411 6421 6422 6423 6424 6425 6426 6427 6428 6429	 34 196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 	196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934	<pre>\$numInts \$numInts \$numInt</pre>	grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts	11 11 12 11 11 11 11 11 11 11	
element element element element element element element element element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	643 644 647 648 649 6410 6411 6421 6422 6423 6424 6425 6425 6426 6427 6428 6429 64210	 34 196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 	196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 1922	<pre>\$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta</pre>	grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts	11 11 12 11 11 11 11 11 11 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
element element element element element element element element element element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	646 647 648 649 6410 6411 6421 6422 6423 6423 6424 6425 6426 6427 6428 6429 64210 64211	 34 196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 1922 	196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 1922 1923	<pre>\$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta</pre>	grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts	11 11 12 11 11 11 11 12 11 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
element element element element element element element element element element element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	646 647 648 649 6410 6411 6421 6422 6423 6424 6425 6426 6427 6428 6429 64210 64211 6431	 34 196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 1922 1923 	196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 1922 1923 1924	<pre>\$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta \$numInta</pre>	grPts grPts	11 11 12 11 11 11 11 11 11 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
element element element element element element element element element element element element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	646 647 648 649 6410 6411 6421 6422 6423 6424 6425 6426 6427 6428 6429 64210 64211 6431 6432	 34 196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 1922 1923 1924 	196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 1922 1923 1924 1034	<pre>\$numInta \$numInta</pre>	grPts grPts	11 11 12 11 11 11 11 12 11 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
element element element element element element element element element element element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	646 647 648 649 6410 6411 6421 6422 6423 6424 6425 6426 6427 6428 6429 64210 64211 6431 6432	 34 196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 1922 1923 1924 	196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 1922 1923 1924 1034	<pre>\$numInta \$numInta</pre>	grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts grPts	11 11 12 11 11 11 11 11 11 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
element element element element element element element element element element element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	646 647 648 649 6410 6411 6421 6422 6423 6424 6425 6426 6427 6428 6429 64210 64211 6431 6432	34 196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1921 1922 1923 1924 1034	196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 1922 1923 1924 1034	<pre>\$numInto \$numInto</pre>	grPts grPts	11 11 12 11 11 11 11 11 11 11	
element element element element element element element element element element element element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	646 647 648 649 6410 6411 6421 6422 6423 6424 6425 6426 6427 6428 6429 64210 64211 6431 6432 6433 6434	 34 196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 1922 1923 1924 1034 1926 	196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 1922 1923 1924 1034 1926 1927	<pre>\$numInts \$numInt</pre>	grPts grPts	11 11 12 11 11 11 11 11 11 11	
element element element element element element element element element element element element element element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	643 644 647 648 649 6410 6411 6421 6422 6423 6424 6425 6426 6427 6428 6429 64210 64211 6431 6432 6433 6434 6435	 34 196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 1922 1923 1924 1034 1926 1927 	196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 1922 1923 1924 1034 1926 1927 1928	<pre>\$numInta \$numInt</pre>	grPts grPts	11 11 12 11 11 11 11 11 11 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
element element element element element element element element element element element element element element element element element	dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn dispBeamColumn	646 647 648 649 6410 6411 6421 6422 6423 6424 6425 6426 6427 6428 6429 64210 64211 6431 6432 6433 6434 6435 6436	 34 196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 1922 1923 1924 1034 1926 1927 1928 	196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 1922 1923 1924 1034 1926 1927 1928 1929	<pre>\$numInta \$numInta</pre>	grPts grPts	11 11 12 11 11 11 11 11 11 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1
element element element element element element element element element element element element element element element element element element	dispBeamColumn dispBeamColumn	646 647 648 649 6410 6411 6421 6422 6423 6422 6423 6424 6425 6426 6427 6428 6429 64210 64211 6431 6432 6433 6434 6435 6436 6437	 34 196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 1922 1923 1924 1034 1926 1927 1928 1929 	196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 1922 1923 1924 1034 1926 1927 1928 1929 1134	<pre>\$numInta \$numInta</pre>	grPts grPts	11 11 12 11 11 11 11 11 11 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1
element element element element element element element element element element element element element element element	dispBeamColumn dispBeamColumn	646 647 648 649 6410 6411 6421 6422 6423 6424 6425 6426 6427 6428 6429 64210 64211 6431 6432 6433 6434 6435 6436 6437	 34 196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 1922 1923 1924 1034 1926 1927 1928 1929 1924 	196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 1922 1923 1924 1034 1926 1927 1928 1929 1134	<pre>\$numInta \$numInt</pre>	grPts grPts	11 11 12 11 11 11 11 11 11 11	
element element element element element element element element element element element element element element element element element	dispBeamColumn dispBeamColumn	646 647 648 649 6410 6411 6421 6422 6423 6423 6424 6425 6426 6427 6428 6429 64210 64211 6431 6432 6433 6434 6435 6436 6437 6438	 34 196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 1922 1923 1924 1034 1926 1927 1928 1929 1134 	196 197 198 199 734 1911 1912 1913 1914 834 1916 1917 1918 1919 934 1921 1922 1923 1924 1034 1926 1927 1928 1929 1134	<pre>\$numInta \$numInta</pre>	grPts grPts	11 11 12 11 11 11 11 11 11 11	

element dispBeamColumn element dispBeamColumn element dispBeamColumn	64310 64311 6441	1932 1933 1934	1933 1934 1234	\$numIntgrPts \$numIntgrPts \$numIntgrPts	12 11 11	1 1 1
element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	6442 6443 6444 6445	1234 1936 1937 1938	1936 1937 1938 1939	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	11 11 12 11	1 1 1 1
element dispBeamColumn	6446	1939	1334	\$numIntgrPts	11	1
element dispBeamColumn	6448	1941	1942	\$numIntgrPts	11	1
element dispBeamColumn	6449	1942	1943	\$numIntgrPts	12	1
element dispBeamColumn element dispBeamColumn	64410 64411	1943 1944	1944 1434	\$numIntgrPts \$numIntgrPts	11 11	1 1
element dispBeamColumn	6451	1434	1946	\$numIntgrPts	11	1
element dispBeamColumn	6452 6453	1946	1947	\$numIntgrPts	12	1
element dispBeamColumn	6454	1948	1949	ŚnumIntarPts	11	1
element dispBeamColumn	6455	1949	1534	\$numIntgrPts	11	1
# COLONNA 5						
element dispBeamColumn	651	201	202	\$numIntgrPts	9	1
element dispBeamColumn	652 653	202	203	\$numIntgrPts	10	1
element dispBeamColumn	654	203	45	\$numIntgrPts	9	1
element dispBeamColumn	655	45	206	\$numIntgrPts	11	1
element dispBeamColumn	656	206	207	\$numIntgrPts	11	1
element dispBeamColumn	657	207	208	\$numIntgrPts	12	1
element dispBeamColumn	659	208	209 745	\$numIntgrPts \$numIntgrPts	11	1
element dispBeamColumn	6510	745	2011	\$numIntgrPts	11	1
$\verb+elementdispBeamColumn+$	6511	2011	2012	\$numIntgrPts	11	1
element dispBeamColumn	6521	2012	2013	\$numIntgrPts	12	1
element dispBeamColumn element dispBeamColumn	6522 6523	2013 2014	2014 845	\$numIntgrPts \$numIntgrPts	11 11	1 1
element dispBeamColumn	6524	845	2016	\$numIntgrPts	11	1
$\verb+elementdispBeamColumn+$	6525	2016	2017	\$numIntgrPts	11	1
element dispBeamColumn	6526	2017	2018	\$numIntgrPts	12	1
element dispBeamColumn	6528	2018 2019	2019 945	\$numIntgrPts \$numIntgrPts	11	1
element dispBeamColumn	6529	945	2021	\$numIntgrPts	11	1
element dispBeamColumn	65210	2021	2022	\$numIntgrPts	11	1
element dispBeamColumn	65211	2022	2023	\$numIntgrPts	12	1
element dispBeamColumn	6531 6532	2023	2024	\$numIntgrPts \$numIntgrPts	11 11	1 1
element dispBeamColumn	6533	1045	2026	ŚnumIntarPts	11	1
element dispBeamColumn	6534	2026	2027	\$numIntgrPts	11	1
element dispBeamColumn	6535	2027	2028	\$numIntgrPts	12	1
element dispBeamColumn element dispBeamColumn	6536 6537	2028 2029	2029 1145	\$numIntgrPts \$numIntgrPts	11 11	1 1
element dispBeamColumn	6538	1145	2031	\$numIntgrPts	11	1
element dispBeamColumn	6539	2031	2032	\$numIntgrPts	11	1
element dispBeamColumn	65310 65311	2032	2033	\$numIntgrPts \$numIntgrPts	11	1
element dispBeamColumn	6541	2033	1245	\$numIntgrPts	11	1
element dispBeamColumn	6542	1245	2036	\$numIntgrPts	11	1
element dispBeamColumn	6543 6544	2036	2037	\$numIntgrPts	11	1
element dispBeamColumn	6545	2037	2030 2039	\$numintarPts	11	⊥ 1
element dispBeamColumn	6546	2039	1345	\$numIntgrPts	11	1
element dispBeamColumn	6547	1345	2041	\$numIntgrPts	11	1
element dispBeamColumn	6548	2041	2042	\$numIntgrPts	11	1
element dispBeamColumn	v⊃49 65410	2042 2043	∠∪43 2044	şnumintgrPts SnumIntarPts	⊥∠ 11	⊥ 1
element dispBeamColumn	65411	2044	1445	\$numIntgrPts	11	1

element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn element dispBeamColumn	6551 6552 6553 6554 6555	1445 2046 2047 2048 2049	2046 2047 2048 2049 1545	<pre>\$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts \$numIntgrPts</pre>	11 11 12 11 11	1 1 1 1
# COLONNA 6						
element dispBeamColumn	661	211	212	\$numIntgrPts	9	1
element dispBeamColumn	662	212	213	\$numIntgrPts	10	1
element dispBeamColumn	663 664	213	214 56	\$numIntgrPts \$numIntgrPts	9	1
	1004	214	50	șiiulii iicgii co	5	T
element dispBeamColumn	665	56	216	\$numIntgrPts	11	1
element dispBeamColumn	666	216	217	\$numIntgrPts	11	1
element dispBeamColumn	668	217	218 219	SnumIntgrPts SnumIntgrPts	12	⊥ 1
element dispBeamColumn	669	219	756	\$numIntgrPts	11	1
						_
element dispBeamColumn	6610 6611	756	2111	\$numIntgrPts	11	1
element dispBeamColumn	6621	2112	2112	\$numIntgrPts	12	1
element dispBeamColumn	6622	2113	2114	\$numIntgrPts	11	1
element dispBeamColumn	6623	2114	856	\$numIntgrPts	11	1
element dispBeamColumn	6624	856	2116	ŚnumIntarPts	11	1
element dispBeamColumn	6625	2116	2117	\$numIntgrPts	11	1
element dispBeamColumn	6626	2117	2118	\$numIntgrPts	12	1
element dispBeamColumn	6627	2118	2119	\$numIntgrPts	11	1
element dispBeamColumn	6628	2119	956	ŞnumintgrPts	ΙI	T
element dispBeamColumn	6629	956	2121	\$numIntgrPts	11	1
element dispBeamColumn	66210	2121	2122	\$numIntgrPts	11	1
element dispBeamColumn	66211	2122	2123	\$numIntgrPts	12	1
element dispBeamColumn	6632	2123	2124	SnumIntgrPts	11 11	⊥ 1
	0032	2121	1050	çındıki meğir es	± ±	-
element dispBeamColumn	6633	1056	2126	\$numIntgrPts	11	1
element dispBeamColumn	6635	2120	2127	\$numIntgrPts	12	⊥ 1
element dispBeamColumn	6636	2128	2129	\$numIntgrPts	11	1
element dispBeamColumn	6637	2129	1156	\$numIntgrPts	11	1
element dispBeamColumn	6638	1156	2131	\$numIntgrPts	11	1
element dispBeamColumn	6639	2131	2132	\$numIntgrPts	11	1
element dispBeamColumn	66310	2132	2133	\$numIntgrPts	12	1
element dispBeamColumn	66311	2133	2134	\$numIntgrPts	11	1
	0041	2134	1230	SHUMITHUGTEUS	ΤT	T
element dispBeamColumn	6642	1256	2136	\$numIntgrPts	11	1
element dispBeamColumn	6643	2136	2137	\$numIntgrPts	11	1
element dispBeamColumn	6644 6645	2137	2138	\$numIntgrPts \$numIntgrPts	12	1
element dispBeamColumn	6646	2130	1356	\$numIntgrPts	11	1
-				2		
element dispBeamColumn	6647	1356	2141	\$numIntgrPts	11	1
element dispBeamColumn	6648 6649	2141 2142	2142 2143	\$numintgrPts \$numintgrPts	11 12	⊥ 1
element dispBeamColumn	66410	2143	2143	\$numIntgrPts	11	1
element dispBeamColumn	66411	2144	1456	\$numIntgrPts	11	1
element dispBeamColumn	6651	1456	2146	\$numIntgrPts	11	1
element dispBeamColumn	6652	2146	2147	\$numIntgrPts	11	1
element dispBeamColumn	6653	2147	2148	\$numIntgrPts	12	1
element dispBeamColumn	6654 6655	2148	2149 1556	\$numIntgrPts	11 11	1
erement arspBeamColumn	CCOU	2149	0001	, numinigrets	ΤT	T
# COLONNA 7						
element dispBeamColumn	671	221	222	\$numIntgrPts	9	1
element dispBeamColumn	672	222	223	\$numIntgrPts	10	1
element dispBeamColumn	677 677	223	224 67	\$numIntgrPts	9 9	⊥ 1
	U 1 I	227	57	YIIUMITIICYTT CO	2	+
element dispBeamColumn	675 676	67 226	226	\$numIntgrPts	11 11	1
crement arspoediicordiiii	570	220		TIUNITICATE CO	± ±	1

element dispBeamColumn	677	227	228	\$numIntgrPts	12	1
element dispBeamColumn	678	228	229	\$numIntgrPts	11	1
element dispBeamColumn	679	229	767	\$numIntgrPts	11	1
-				-		
element dispBeamColumn	6710	767	2211	\$numIntgrPts	11	1
element dispBeamColumn	6711	2211	2212	\$numIntgrPts	11	1
element dispBeamColumn	6721	2212	2213	\$numIntgrPts	12	1
element dispBeamColumn	6722	2213	2214	\$numIntarPts	11	1
element dispBeamColumn	6723	2214	867	ŚnumIntarPts	11	1
element dispBeamColumn	6724	867	2216	\$numIntarPts	11	1
element dispBeamColumn	6725	2216	2217	\$numIntarPts	11	1
element dispBeamColumn	6726	2217	2218	\$numIntarPts	12	1
element dispBeamColumn	6727	2218	2219	ŚnumIntarPts	11	1
element dispBeamColumn	6728	2219	967	ŚnumIntarPts	11	1
				·		_
element dispBeamColumn	6729	967	2221	ŚnumIntarPts	11	1
element dispBeamColumn	67210	2221	2222	ŚnumIntarPts	11	1
element dispBeamColumn	67211	2222	2223	ŚnumIntarPts	12	1
element dispBeamColumn	6731	2223	2224	ŚnumIntarPts	11	1
element dispBeamColumn	6732	2223	1067	\$numIntarPts	11	1
стещене атэрьсансотанн	0152	2221	1007	çıluminegir co	T T	+
element dispBeamColumn	6733	1067	2226	ŚnumIntarPts	11	1
element dispBeamColumn	6734	2226	2220	\$numIntarPts	11	1
element dispBeamColumn	6735	2220	22227	\$numIntarPts	12	1
element dispBeamColumn	6736	2227	2220	\$numIntgrI c5	11	1
element dispBeamColumn	6737	2220	1167	\$numIntgrI t3	11	1
erement drspbeamcorumn	0131	2229	110/	SIIUIIITIICGTECS	11	Ŧ
element dispBeamColumn	6738	1167	2231	ŚnumIntarPts	11	1
element dispBeamColumn	6739	2231	2232	ŚnumIntarPts	11	1
element dispBeamColumn	67310	2232	2232	ŚnumIntarPts	12	1
element dispBeamColumn	67311	2232	2234	\$numIntarPts	11	1
element dispBeamColumn	6741	2233	1267	\$numIntarPts	11	1
стещене атэрьсансотанн	0/11	2231	1207	çıluminegir co	T T	+
element dispBeamColumn	6742	1267	2236	ŚnumIntarPts	11	1
element dispBeamColumn	6743	2236	2237	ŚnumIntarPts	11	1
element dispBeamColumn	6744	2237	2238	ŚnumIntarPts	12	1
element dispBeamColumn	6745	2238	2239	ŚnumIntarPts	11	1
element dispBeamColumn	6746	2239	1367	ŚnumIntarPts	11	1
	0,10	2200	1007	viidiniiiiegii co	± ±	-
element dispBeamColumn	6747	1367	2241	ŚnumIntarPts	11	1
element dispBeamColumn	6748	2241	2242	ŚnumIntarPts	11	1
element dispBeamColumn	6749	2242	2243	ŚnumIntarPts	12	1
element dispBeamColumn	67410	2243	2244	ŚnumIntarPts	11	1
element dispBeamColumn	67411	2244	1467	ŚnumIntarPts	11	1
eremente aroppeameorumni	0/111	6611	T 10/	YIIMIILIICYLL CO	± ±	+
element dispBeamColumn	6751	1467	2246	ŚnumIntarPts	11	1
element dispBeamColumn	6752	2246	2247	\$numIntarPts	11	1
element dispBeamColumn	6753	2247	2248	ŚnumIntarPta	12	1
element dispBeamColumn	6754	2248	2249	ŚnumIntarPta	11	1
element dispBeamColumn	6755	2249	1567	ŚnumIntarPte	 11	1
STORETIC ATOPDCAROOTAR	0,00	/		THAMTTICATT CO	<u> </u>	-

#

Bielle					element	truss	6690	12	723
					303219	10			
#ELEMENT	I TRUSS				element	truss	6691	712	823
#	t	tag	nodoiniz	nodofin	303219	10			
area(w*t	z) ma	at			element	truss	6692	812	923
element	truss	6681	1	712	303219	10			
303219	10				element	truss	66693	912	1023
element	truss	6682	71	812	303219	10			
303219	10	D			element	truss	66694	1012	1123
element	truss	6683	81	912	303219	10			
303219	10				element	truss	6695	1112	1223
element	truss	6684	91	1012	303219	10			
303219	10				element	truss	6696	1212	1323
element	truss	6685	101	1112	303219	10			
303219	10				element	truss	6697	1312	1423
element	truss	6686	111	1212	303219	10			
303219	10				element	truss	6698	1412	1523
element	truss	6687	121	1312	303219	10			
303219	10				element	truss	6699	67	756
element	truss	6688	131	1412	303219	10			
303219	10				element	truss	7700	767	856
element	truss	6689	141	1512	303219	10			
303219	10				element	truss	7701	867	956
					303219	10			

element 303219	truss 10	7702	967	1056	eleme: 30321	nt t 9	russ 10	7743	1050	5 1167
element 303219	truss 10	7703	1067	1156	eleme: 30321	nt t 9	russ 10	7744	1150	5 1267
element 303219	truss 10	7704	1167	1256	eleme: 30321	nt t 9	russ 10	7745	1250	5 1367
element	truss	7705	1267	1356	eleme: 30321	nt t 9	russ 10	7756	1356	1467
element	truss	7706	1367	1456	eleme: 30321	nt t a	russ	7757	1450	5 1567
element	truss	7707	1467	1556	eleme:	nt t	russ	7758	45	756
element	truss	7708	56	745	eleme:	9 nt t 0	russ	7759	745	856
element	truss	7709	756	845	eleme:	9 nt t 0	russ	7760	845	956
element	truss	7710	856	945	eleme:	9 nt t 0	russ	7761	945	1056
303219 element	truss	7711	956	1045	30321 eleme:	9 nt t	russ	7762	1045	1156
303219 element	10 truss	7712	1056	1145	30321 eleme	9 nt t	10 russ	7763	1145	5 1256
303219 element	10 truss	7713	1156	1245	30321 eleme:	9 nt t	10 russ	7764	1245	5 1356
303219 element	10 truss	7714	1256	1345	30321 eleme:	9 nt t	10 russ	7765	1345	1456
303219 element	10 truss	7715	1356	1445	30321 eleme	9 nt t	10 russ	7766	1445	1556
303219 element	10 truss	7716	1456	1545	30321	9	10			
303219	10				eleme: 30321	nt t 9	russ 10	77759	161	12
#FLEMEN'	T TRUSS				eleme: 30321	nt t 9	russ 10	77760	171	L 1
element 303219	truss 10	7721	12	71	eleme: 30321	nt t 9	russ 10	77761	171	L 23
element	truss 10	7722	712	81	eleme: 30321	nt t a	russ	77762	181	12
element	truss	7723	812	91	eleme: 30321	nt t a	russ	77763	201	L 56
element	truss	7724	912	101	eleme:	nt t	russ	77764	211	L 45
element	truss	7725	1012	111	eleme:	9 nt t 0	russ	77765	211	67
303219 element	10 truss	7726	1112	121	30321 eleme:	9 nt t	russ	77766	221	56
303219 element	10 truss	7727	1212	131	30321	9	10			
303219 element	10 truss	7728	1312	141	#ELEM	ENT	TRUSS	(metod	lo nuovo)	
303219 element	10 truss	7729	1412	151	#BIEL #	LE E	3 t	ag	nodoiniz	nodofin
303219 element	10 truss	7730	23	712	area(eleme	w*t) nt t	ma russ	at 7771	23	724
303219 element	10 truss	7731	723	812	31088 eleme:	6 nt t	11 russ	7772	724	824
303219 element	10 truss	7732	823	912	31088 eleme:	6 nt t	11 russ	7773	824	925
303219 element	10 truss	7733	923	1012	31088 eleme:	6 nt t	11 russ	7774	925	1026
303219 element	10 truss	7734	1023	1112	31088 eleme:	6 nt t	11 russ	7775	1026	1126
303219 element	10 truss	7735	1123	1212	31088 eleme	6 nt.t	11 russ	7776	1126	1227
303219 element	10 truss	7736	1223	1312	31088 eleme	6 nt t	11 russ	7777	1227	1327
303219	10	7737	1323	1412	31088 eleme	6 nt t	11	7778	1327	111427
303219	10	0277	1423	1510	31088	6 6	11	7770	111/27	111527
303219	10	7720	1425	1012	31088	6 6	11	1119	111427	111327
element 303219	truss 10	7739	00	/6/	eleme	nt t	russ	7780	11129	7729
element 303219	truss 10	7740	/56	867	31088 eleme:	6 nt t	11 russ	7781	7729	830
element 303219	truss 10	7741	856	967	31088 eleme:	6 nt t	11 russ	7782	830	930
element 303219	truss 10	7742	956	1067	31088	6	11			

element	truss	7783	930	1031	element	truss 8805	1341	111440
element	truss	7784	1031	1131	element	truss 8806	111440	111540
310886	11	7705	1121	1000	310886	11		
310886	11	1100	1131	1232				
element	truss	7786	1232	1333	# #ELEMI #	ENT TRUSS	nodoiniz	nodofin
element	truss	7787	1333	1433	area(w*	t) mat	1100011112	
310886 element	11 truss	7788	1433	1534	element 769559	truss 8811 12	23	7729
310886	11				element 769559	truss 8812 12	724	830
element 310886	truss 11	7789	11138	7738	element 769559	truss 8813	824	930
element	truss	7790	7738	838	element	truss 8814	925	1031
element	truss	7791	838	938	element	truss 8815	1026	1131
310886 element	11 truss	7792	938	1037	769559 element	12 truss 8816	1126	1232
310886	11				769559	12		
element 310886	truss 11	7793	1037	1137	element 769559	truss 8817 12	1227	1333
element 310886	truss 11	7794	1137	1236	element 769559	truss 8818 12	1327	1433
element	truss	7795	1236	1335	element	truss 8819	111427	1534
element	truss	7796	1335	1435	/69559	12		
310886	11	7707	1/25	1524	element	truss 8810	45	7738
310886	LIUSS 11	1191	1433	1004	element	truss 8821	744	838
					769559	12		
element 310886	truss 11	7798	45	744	element 769559	truss 8822 12	844	938
element	truss	7799	744	844	element 769559	truss 8823	943	1037
element	truss	8800	844	943	element	truss 8824	1042	1137
310886 element	11 truss	8801	943	1042	769559 element	12 truss 8825	1142	1236
310886	. 11	0000	1040	1110	769559	12	1041	1005
element 310886	truss 11	8802	1042	1142	element 769559	truss 8826 12	1241	1335
element 310886	truss 11	8803	1142	1241	element 769559	truss 8827 12	1341	1435
element	truss	8804	1241	1341	element	truss 8828	111440	1534
310886	11				769559	12		
#				-				
# Start #	of ana	lysis ge 	eneration	-				
# Create system 1	e the s BandGen	ystem of eral	equation,	a sparse solver	with part	ial pivoting		
- # Create the constraint handler, the transformation method								
constraints Transformation								
# Create the DOF numberer, the reverse Cuthill-McKee algorithm numberer RCM								
# Create the convergence test test NormDispIncr 1.0e0 3000 3								
# Create the solution algorithm, a Newton-Raphson algorithm algorithm								
# Create the integration scheme, the LoadControl scheme using steps of 0.05 integrator LoadControl 0.1								
# Create the analysis object analysis Static								
щ								
# End of #	f analy	sis gene	ration	-				

```
# Finally perform the analysis
# ------
# perform the gravity load analysis, requires 20 steps to reach the load level
analyze 10
# ------ maintain constant gravity loads and reset
time to zero
loadConst -time 0.0
puts "Model Built"
```

Script dell'analisi pushover

```
source et10.tcl
loadConst -time 0.0
puts "Gravity Analysis Completed"
puts "Cyclic Analysis Completed"
\# {\tt display}\ {\tt displacement}\ {\tt shape}\ {\tt of}\ {\tt the}\ {\tt column}
recorder display "Displaced shape2" 450 100 500 500 -wipe
prp 300. 200. 1;
vup 0 1 0;
vpn 0 0 1;
display 1 5 40
# vup 0 0 1
# vpn 1 0 0 ----> vista Y-Z
# vup 0 1 0
# vpn 0 0 1 ----> vista X-Y
# vup 0 0 1
# vpn 0 1 0 ----> vista X-Z
\ensuremath{\texttt{\#}} Set the gravity loads to be constant & reset the time in the domain
loadConst -time 0.0
# _____
# End of Model Generation & Initial Gravity Analysis
# _____
# _____
# Start of additional modelling for lateral loads
# ---
    # Define lateral loads
# _____
# Set some parameters
set P1 1000.0; # Vertical load 1kN
set dof 2
set nodo 1534
#Set vertical load pattern with a Linear TimeSeries
pattern Plain 2 "Linear" {
    #Create nodal loads at nodes 3 & 4
       #nd FX FY MZ
       load 1534 0.0 -$P1 0.0
}
#
      _____
# Start of modifications to analysis for push over
# _____
```

```
# Set some parameters
set dU -0.1;
                  # Displacement increment
             # Displacement increment
# Change the integration scheme to be displacement control
                          node dof init Jd min max
integrator DisplacementControl $nodo $dof
                                       $dU 1 $dU $dU
# _____
# End of modifications to analysis for push over
# ______
                                          _____
# _____
# Start of recorder generation
# --
# Stop the old recorders by destroying them
# remove recorders
nodeDisp 34 2
# Create a recorder to monitor nodal displacements
file mkdir Grafici
recorder Node -file Grafici/DISPVet10.out -node 34 -dof 2 disp
file mkdir Grafici
recorder Node -file Grafici/Vreacet10.out -node 161 171 181 201 211 221 -dof 2 reaction
# recorder Element -file Biella.out -ele 137 section 3 fiber 0 0 11 stressStrain
# End of recorder generation
# ------
                         _____
# ------
# Finally perform the analysis
# _____
# Set some parameters
set maxU 1000;
                   # Max displacement
set currentDisp 0.0;
set ok 0
while {$ok == 0 && $currentDisp < $maxU} {</pre>
      set ok [analyze 1]
      # if the analysis fails try initial tangent iteration
      if {$ok != 0} {
          puts "regular newton failed .. lets try an initial stiffness for this step"
          test NormDispIncr 1.0e1 3000
          algorithm ModifiedNewton
            #-initial
          set ok [analyze 1]
          if {$ok == 0} {puts "that worked .. back to regular newton"}
          test NormDispIncr 1.0e1 3000
          algorithm Newton
      }
 set currentDisp [nodeDisp $nodo $dof]
}
if {$ok == 0} {
 puts "Pushover analysis completed SUCCESSFULLY";
} else {
 puts "Pushover analysis FAILED";
```


PIANO 1

