
POLITECNICO DI TORINO

Master’s Degree Course in Communications and Computer Networks
Engineering

Summary

Designing a Blockchain Network
of Universities

Supervisors
Prof. Maurizio Morisio
Dr. Luca Ardito

Candidate
Javad Malek Shahkoohi
S224309

Academic year 2018-2019

Summary

The blockchain technology is going to be the next decade technology for most of
the business are interested to use and apply it in their daily works and applications.
These sorts of use cases are required to customize some basics for themselves such
as having a model of data encryption or deciding to use the application as a public
or semi-public tool based on their level of transparency.

Since the universities as a place that all the students after their graduation must
have a document that proofs they are already graduated and finished their courses,
this case study is a good candidate for building a service incorporate with blockchain.
This service can be developed like a shared blockchain network between universities
(nodes of the network) and it could provide an authorization service for the graduate
students to propose their certification id wherever is interested, instead of showing
a physical certification.

This thesis tries to build a blockchain network for a bunch of universities and
providing a way of communication between them via blockchain technology. The
aim is that everybody can refer to the public block explorer and start querying for
a student and retrieving the student graduation certification which is secured and
trustable. Therefore, to achieve this goal, a semi-public blockchain designed in two
main sections. The first one is building a decentralized network for decision making
and controlling their network management and the second section is applying the
blockchain technology for data management. hence, a set of steps are followed to
cover all the demands such as doing global research for proof of concept that it is
possible to build a network of universities and etc.

At the end of this step, we found that there should be a decentralized network
infrastructure where all the university nodes are exactly the same in all aspects.
besides than that there should be a data structure for a chain that provides the
customized model of the blockchain. Also, at the second step of this thesis, we
investigate the different sorts of development tools and frameworks have already
existed for building an application to support the blockchain technology.

At the final implementation, we built two different APIs one is for building a
decentralized blockchain network and another one for rest of user interactions are

ii

off the network like sign up/in. With respect to the stack of development in the
backend, part NodeJS is used as a programming language and IPFS applied for
blockchain file storage and MongoDB is used for off-blockchain data. Besides, the
frontend developed mainly by javascript (REACTJS) and HTML.

For software development of authorization of graduate students, this thesis tried to
provide minimum requirements like unit tests spacially for decentralized blockchain
network API and block explorer endpoints. Also, a group of sequences defined like
how to register a mark by a professor, how to mine a block, how to broadcast a mined
block through the entire network, how to handle the pending transactions before
mining and many others. these sequences are covered by different functionalities of
the blockchain.

In the conclusion of this thesis since blockchain is used in different sectors and
they allow people to secure their digital relationships more than it was before, data
is being disclosed, secured and recorded differently. This concept is changing digi-
tal relationships, creating the ability for them to be automated in code via smart
contracts and etc.

As a result, It is possible to authorize the certification of graduated stu-
dents by blockchain technology. it means for different universities to share their
public data together by creating a decentralized blockchain network of universities
and sharing some services and databases together that would be also possible to
make them available for the public.

Also, this thesis showed that It is possible to expand this case study for
other sectors. It which means not only the student certification even though all the
other sorts of a document can be stored and verified by using blockchain technology.
Some services such as declaration letters or any other documents that somebody
needs to verify a piece of information could be a fitted candidate service to publish
via a block explorer of a blockchain.

with respect to data storage, do not store all the data in chain. it means by
storing some data off the chain, mainly low and second-order priority information.
it would help to reduce the complexity of the application and it would make the
development process to be faster and easier, meanwhile, it would not have a signif-
icant effect in security and losing data. it is like a trade-off but a good option for
productivity enhancements.

As future tasks, implementing the same functionalities or services in other sections
would help people to improve the performance of their workflows in universities or
any other organizations. It would right task to work more on adding more function-
alities and enhancing the capabilities of developed application mainly in terms of
data security and network security. Also, the recalling the network or application is

iii

challenging transitions period especially in blockchain because it would produce a
huge amount of data and not easy to maintain then working in this area would be
a good candidate for future works.

iv

Acknowledgements

Thanks to everybody that who is helped me specially my family, my brother and
my girl friend.

v

Contents

List of Tables viii

List of Figures ix

1 Chapter One: Introducing the Blockchain Technology 1
1.1 What is blockchain and basic concepts 1
1.2 Blockchain data structure . 4
1.3 Types of Blockchain . 5
1.4 Decentralizations and blockchain . 6
1.5 Introducing Bitcoin . 8
1.6 Transactions and mining . 10
1.7 Smart contract . 11
1.8 Use cases of blockchain . 11
1.9 Summary . 13

2 Chapter Two: Blockchain Development Frameworks and Tools 15
2.1 Hyperledger . 15
2.2 Ethereum Platform . 16
2.3 BigchainDB Platform . 17
2.4 Chain Core Platform . 18
2.5 Corda Platform . 19
2.6 Domus-Tower Platform . 20
2.7 Elements Blockchain Platform . 20
2.8 Monax Platform (Erisdb) . 21
2.9 Openchain Platform . 22
2.10 Similar works . 23
2.11 Summary . 24

3 Chapter Three: Problem Definitions and Software Design 25
3.1 Problem Definition . 25
3.2 Software Design and Software Architecture 25
3.3 Block of Data . 27

vi

3.4 Genesis Block of Chain . 29
3.5 Functionalities of University Blockchain 30

4 Chapter Four: Application Development 37
4.1 Development Strategy . 37
4.2 Stack of Technology . 38
4.3 Blockchain and Network Functionalities 38
4.4 Backend Functionalities . 40

4.4.1 Decentralized Blockchain Networking API 40
4.4.2 Platform and Authentication API 44
4.4.3 Testing Endpoints . 45

4.5 Frontend Functionalities . 46
4.5.1 Developing the Layout Components 47
4.5.2 Block Explorer Components 49

4.6 Error Handling . 49

5 Conclusions and Future works 51

A Coding Style and Review 53

Bibliography 57

vii

List of Tables

2.1 Table to compare Blockchain Frameworks 24

viii

List of Figures

1.1 Bockchain works in simple word. 4
3.1 Software Architecture and API Layers. 26
4.1 Registering and Broadcasting a new node to a decentralized network

of universities. 42
4.2 Broadcasting a new Mark Transaction through the entire Network. . 43
A.1 Application and Network Execution Scripts. 53
A.2 High Priorities JS Functionalities and Coding Style Rules. 56

ix

Chapter 1

Chapter One: Introducing the
Blockchain Technology

This chapter contains an introduction of blockchain and would review different prop-
erties of that as a new growing technology.

The first section is dedicated to fundamental concepts and definitions of the
blockchain. The second section would focus on decentralization and how is it used
in the blockchain. The third section would talk about a brief introduction of Bitcoin,
which is the most famous application of blockchain. At the end of this chapter, a
list of potential industries is prepared. Those can use the technology of blockchain
to develop their own applications

1.1 What is blockchain and basic concepts
In 2008 an unknown person or group of people known by the pseudonym Satoshi
Nakamoto introduced Bitcoin which is a simpler implementation of blockchain tech-
nology as a digital currency. Bitcoin became one of the first digital currencies to use
peer-to-peer technology to facilitate instant payments. Also, it introduces the term
chain of blocks.

Blockchain definitions
There is two famous definition of blockchain in technical and informal ways [1, 2].

• Layman’s Definition:

The blockchain is an every growing, secure, shared record keeping system in
which each user of the data holds a copy of all records. The point is that the
system can be only modified if all partners of a transaction agree to update

1

1 – Chapter One: Introducing the Blockchain Technology

• Technical Definition:

The blockchain is a peer-to-peer, distributed ledger that is cryptographically-
secure, append-only, immutable (extremely hard to change), and updatable
only via consensus or agreement among peers.

Blockchain Principles
In this section, we present the main principles behind the blockchain technology as
well as cutting edge applications [6, 9].

Peer to peer network: It is a decentralized a network such that all nodes can
communicate to each other directly whiteout any third-party. By this feature, it is
possible to exchange the transactions through the network whiteout using a bank
transaction.

Distributed ledger: The distributed ledger database is spread across several
nodes on a peer-to-peer network, where each replicates and saves an identical copy
of the ledger and updates itself independently.

cryptographically-secure: the cryptography is applied to make sure that the
data of ledger is secure. This also provides data integrity, data authentication, and
non-reputation.

Append only: This property means that data can just only be added in se-
quential order to the chain and would never change. This can be considered as
immutable. While in cases the change is acceptable and re-mining should happen
and would take a lot of time.

Updatable via consensus: Applying a right and practical consensus algorithm
could be a critical bottleneck such that all the security of the ledger must be guaran-
teed then peer-to-peer network provides the decentralization for an application. As
soon as all the nodes of the network confirm the transaction then consensus would
be reached between all them then can update their local ledger.

Blockchain Myths
There are a bunch of common blockchain myths make misunderstanding about the
advantage and disadvantage of blockchain technology [8].

2

1.1 – What is blockchain and basic concepts

• Blockchain is Bitcoin Bitcoin is just a one cryptocurrency application
which made base on blockchain technology. while Blockchain is a general
concept such that much different application can use it for their development.

• Trdeitional databases would be replaced by blockchain because is
better there is a trade-off between using traditional databases or blockchain
because traditional databases still perform better. while blockchain is more
practical in applications with low-trust environments where there are no in-
termediary organizations.

• is blockchain immutable or changing the way of exposing since the
blockchain must be appended only, there is no way to change the stored data.
it is possible to be tampered by using a large amount of computing power.

• blockchain is 100% secure enviroument By using the immutable data
structure to protect data and encrypt all the transactions and blocks, it satis-
fies the level of safety and security of the system. in general blockchain system,
secure depends on the other cooperating applications are interacting together
the reason is these partner application can be attacked and hacked.

• Blockchain is trust machine Blockchain verifies all the transactions before
storing them and data become part of a chain. also, blockchain cannot provide
the input assessment and must be done out of blockchain.

How blockchain works
As a brief explanation the way that blockchain works, it can be said that, generally,
a node in a network starts a transaction that includes the processes of the creation
and encryption of a transaction. Each transaction has a small portion of value
that depends on the purpose of blockchain development, for example, in this study
the marks of students are carried by transactions. At the next step, the transaction
should be broadcasted to all peers of the network by a clear communication protocol
between them through a secure network.

At the moment that a peer node receives a new transaction from network, it
would start to validate the new transaction. Afterward, this transaction would be
added to the block and it would consider as confirmed transaction. the point is
still this transaction is not stored because it is in pending state until a node starts
the mining process. when the mining is done that data is untouchable and saved
for ever. Also, all the recently created blocks become part of the ledger and linked
together via a cryptographically hash value. In the end, pending transactions are
ready to be mined by a node and stored in the ledger.

Expelling how does blockchain works in simple way 1.1.

3

1 – Chapter One: Introducing the Blockchain Technology

Figure 1.1: Bockchain works in simple word.

1.2 Blockchain data structure
The blockchain data structure is a one-way link list as a back-linked record of blocks
of transactions, where all the blocks are recorded in an ordered based on their
creation index number. The ledger can be saved in a file or in a plain database
which depends on the application case study. Also, the structure of blockchain
depends on a case study that aimed to be applied. In general, a couple of attributes
must be always there as essential attributes like address, timestamp, genesis block,
nonce, Markle root and block body that contains the transactions. Let’s first look at
each term more closely [1, 6].

• A Block is a bundle of transactions which are logically organized and con-
nected to previous block’s hash pointer.

• A Transaction is a record of an event like the event of transferring cash (or
assigning a mark to a student like our use case) from a sender to a recipient.
Then transaction the smallest unit of blockchain and every block made up of
a set of transactions. the number of transactions can be different based on the
type and design of blockchain.

• A Genesis Block, every block has a reference to the previous block except
the Genesis Block which is the first block of chain and mostly has hardcoded
values at the time that chain is created.

• An Address is a unique identifier which is used in a transaction to denote its
sender and recipient. Also, can be generated by a public key.

• A Nonce is a generated number which used only once and popular in all the
cryptography methods. blockchain uses that for proof of work of consensus
algorithm.

4

1.3 – Types of Blockchain

• TheMarkle Root is the hash of all nodes of Markle tree that used to validate
the large-scale data structure.

The data structure of blockchain discussed more in details with sample data of
implementation in chapter three.

1.3 Types of Blockchain
There are different types of blockchain in the market from technical and business
point of views such that they use various sort of architectures and data management
techniques. At the following you would see a general introduction of a bunch of
them [2,3]:

Distributed ledgers and distributed ledger technology (DLT)
first of all, the distributed ledger is a wide term and covers all sort of shared databases
therefore all the blockchains are distributed ledger but not all the distributed ledgers
are blockchain. The main difference is that distributed ledger does not necessarily
consist of blocks of transactions to grow the ledger. While blockchain is a sort
of shared database which is built by blocks of transactions. The DLT is a model
of the distributed ledger that mainly used in the financial sector. the people in
this sector believed that the DLTs are permissioned blockchains which are shared
between different nodes of a network. besides, the point is, DLT is a shared database
between all participants ,hence, they knew and verified.

Public and private blockchains (and semi-private) blockchains
The distinction between public and private blockchain is related to who is allowed to
participate in the network, execute the consensus protocol and maintain the shared
ledger. A public blockchain network is completely open and anyone can join and
participate in the network. While the private blockchain network is open only for
the authorized group to participate there [10]. Besides, there is another version
which is a hybrid model of both public and private chains such that some parts are
public and anybody can cooperate there but some other parts are private and only
special group access there.

Permissioned ledger
Permissioned ledger is a blockchain that participants are known and it does not
need to use the consensus mechanism just an agreement protocol is enough for that.
While participants need special permissions to read, access, and write information

5

1 – Chapter One: Introducing the Blockchain Technology

on chain. The intrinsic configuration of such blockchains controls the participants’
transactions and defines their roles in which each participant can access and con-
tribute to the blockchain. It may also include maintaining the identity of each
blockchain participant on the network. Such blockchains are called permissioned
blockchains.

Tokenized and tokenless blockchains
Tokenized blockchains are a standard version of blockchain that create a cryptocur-
rency as a result of a consensuses process via mining or initial distribution. with
respect to token, fewer blockchains are used when there is nothing to be transferred.
There also other sorts of blockchains are discussed [2, 3].

In this thesis, we are going to use the semi-private version of blockchain for
final implementation. It is a hybrid version of public and private blockchains such
that the accessibility of participants to some parts like registration of students and
registration of exam’s marks is closed only for a private group of users have access
to them. On the other side, the data retrieval is free and available for everybody
that who wants to read data from blockchain. You can read more in chapter three,
where the different aspects of desire model are explained.

1.4 Decentralizations and blockchain
Decentralization is the core benefit and main service provided by blockchain tech-
nology. It distributes the decision making through the network and all the users
would confirm everything [2–4]. A decentralized system is a type of network where
nodes are not independent on a single master node, instead of that control is dis-
tributed among many nodes of the network. This is a reason that every department
is in charge of its own database and has independent power from a central server.
In between a significant innovation in the decentralized system is the decentralized
consensus. This mechanism is introduced by Bitcoin.

Methods of decentralization
Two main methods can be applied to reach a decentralized system, which is dis-
intermediation and competition. When you need a concept at the middle of your
transaction to confirm a transaction, it would be great to get ride this intermediate
entity and transfer to the destination directly. This method called disintermediation
and can be used mainly in the financial sector. While in competition method you
can remove this intermediary concept by using blockchain. Like participating dif-
ferent service providers for the same service. In blockchain technology, a system can

6

1.4 – Decentralizations and blockchain

use smart contracts or can choose an external data provider from a large number of
providers based on their criteria score, reputation, and other params.

Blockchain decentralization eco-system
Blockchain decentralization includes contains many items are cooperating together
to serve different aspects of the application such as storage, network communications,
and others. these items are discussed below:

Data Storage

Data can be stored in blockchain and achieve the decentralized architecture but the
point is that it is not possible to store a large amount of data in chain because of
overhead cost and network data balance. There are a couple of alternative ways to
store data of blockchain like,

• Distributed Hash Table (DHT), which is popular for peer-to-peer file sharing
systems.

• Interplanetary File System (IPFS), which would be used when links are stable
it means data should be ready when required and the link must be available.

There are other alternative ways like Filecoin, Bitwasp, Ethereum Swarm, Storj
and MaidSafe. Based on the use-case and application policies, selecting a method for
data storage can different, for example, in this thesis Distributed Hash Table is used
and each node has a copy of all data of mark transactions, while the authentication
data are stored in off-chain..

Communications

The communications of nodes can be provided by different network protocols. For
this thesis, the HTTP protocol is used for data transmission between nodes and API
layers. The network is built virtually by simulating the different nodes to be exactly
the same as each other and communicating with each other through different ports
number. Also, it is possible to add a new node to a network that explained in the
next chapters

Smart contracts

Smart contracts are a decentralized program that can be executed even without a
blockchain. It usually contains some business logic and a limited amount of data [1].
The point is the business logic would be executed if the specific criteria are specified
in the smart contract are met. In this thesis, the smart contract concept would be
implemented inside the blockchain structure not separately.

7

1 – Chapter One: Introducing the Blockchain Technology

Computing power

Decentralized computation and processing power consummation are the main issues
that are required for executing smart contracts with a specific logic. In this thesis,
it is not a big issue and ignored.

Decentralized applications

Decentralized applications (dApps) are applications that run on a P2P network of
computers rather than a single computer. Decentralized applications don’t neces-
sarily need to run on top of a blockchain network. The applications like BitTorrent,
Popcorn Time, BitMessage, Tor, are traditional dApps that run on a P2P net-
work [5].

Regarding the blockchain dApps, for an application to be considered a dApp in
the context of Blockchain, it must meet the following criteria:

• The application must be completely open-source. It must operate autonomously
and with no entity controlling of the majority of its tokens. The application
may adapt its protocol in response to proposed improvements and market
feedback, but the consensus of its users must decide all changes.

• Application’s data and records of operation must be cryptographically stored
in a public, decentralized blockchain in order to avoid any central points of
failure.

• The application must use a cryptographic token, (Bitcoin or a token native
to its system) which is necessary for access to the application and any con-
tribution of value from miners. It should be rewarded with the application’s
tokens.

• The application must generate tokens. according to a standard cryptographic
algorithm acting as a proof of the value, nodes are contributing to the appli-
cation (Bitcoin uses the Proof of Work Algorithm).

1.5 Introducing Bitcoin
Bitcoin is the first and popular application of blockchain technology that everybody
at least must read and know about it. Here is an introduction to it that most people
believe that everybody in this field has to know about Bitcoin.

Bitcoin is a consensus network that enables a new payment system and com-
pletely digital money. It is the first decentralized peer-to-peer payment network
that is powered by its users with no central authority or middlemen. From a user
perspective, Bitcoin is pretty much like cash for the Internet that can be used in

8

1.5 – Introducing Bitcoin

different applications and websites for their payments and financial transactions [6].
This section tried to talk about a bunch of most popular questions nearby Bitcoin
and its technology.

Who created Bitcoin?
Bitcoin is the first implementation of a concept called "crypto-currency", which was
first described in 1998 by Wei Dai on the cypherpunks mailing list, suggesting the
idea of a new form of money that uses cryptography to control its creation and
transactions, rather than a central authority. The first Bitcoin specification and
proof of concept were published in 2009 in a cryptography mailing list by Satoshi
Nakamoto.

Who controls the Bitcoin network?
Nobody owns the Bitcoin network much like no one owns the technology behind
email. Bitcoin is controlled by all Bitcoin users around the world. While developers
are improving the software, they can’t force a change in the Bitcoin protocol because
all users are free to choose what software and version they use. In order to stay
compatible with each other, all users need to use software complying with the same
rules. Bitcoin can only work correctly with a complete consensus among all users.
Therefore, all users and developers have a strong incentive to protect this consensus.

What are the main components of Bitcoin?
Based on the white paper of Bitcoins its key elements are:

• Private Digital keys are given to every cryptocurrency holder to allow them
to be able to authenticate their identity and this is what allows them to ex-
change units.

• Addresses

• Transactions

• Blockchain of a cryptocurrency is essentially a method of recording data
and acts as a digital leger that keeps track of all contracts, agreements and
transactions that take place. As the block chain keeps track of the entire
history of a cryptocurrency’s transactions, it increases in length over time and
is finite.

• Miners are important to the life cycle of the Bitcoin as they act as the indirect
influencers on the cryptocurrencies’ value and work as record keepers for cryp-
tocurrency communities. Miners use huge amounts of computer power and

9

1 – Chapter One: Introducing the Blockchain Technology

technical skill to check the security, accuracy and completeness of currencies
like the Bitcoin’s block chains

• The Bitcoin networks

• Wallets which is another component of cryptocurrencies is that users are re-
quired to have their own wallets that include unique and highly user specific
information that confirms their ownership of the wallet and their cryptocur-
rency unit ownership.

More information is provided in Bitcoin.com as a main reference [6].

1.6 Transactions and mining
The transaction is the smallest unit in blockchain and it should be customized based
on the target application. It defines a life cycle for blockchain to make clear what
should be transferred between nodes and how must be done.

A possible life cycle of the transaction can be as following [1]:

• A user as a sender of a transaction sends a request to a node.

• Node signs and confirms the transaction then it would add the new transaction
into it is local pending transactions list.

• The transaction should be broadcasted through the network by a flooding
algorithm.

• Each receiver node would confirm and update its own pending transactions
list and reply Ack to the source of the request.

• Each node or a group of nodes can do mining. During the mining process, all
pending transactions are removed and encrypted to be a new block. At this
point, the miner would flash the pending list to be ready for next block.

• After mining the all the nodes have a new mined block and abort if they were
doing mining at the simultaneously.

Besides, in some applications, there is a fee for each transaction and mining
reward for miners. In this thesis use case, there is no reward and fee for transactions.
While as further feature, it is suggested to have a transaction fee to make a prime
account for universities. But it is skipped for this thesis application.

10

1.7 – Smart contract

1.7 Smart contract
Definition of the smart contract says that [2,5], a smart contract is an unstoppable
and secure programming code is running on top of a blockchain containing. It carries
a set of interacting rules that all the participants of the network are agreed on them.
Therefore, when all or part of the rules is satisfied then there would be an automatic
agreement between them.

There are a couple of features that the code of smart contract code should provide
for transactions of blockchain such as it must be automatically executable without
and manual interactions, it must be enforceable, and it must be secure and unstop-
pable. The first two features are minimum requirements that every smart contract
should provide and the third one is an optional feature that mostly depends on an
application case study.

1.8 Use cases of blockchain
A look at some real-world uses of blockchain in the enterprise and the various ap-
plications of blockchain that can help revolutionize industries. Here are some of
the most compelling blockchain use cases from different industries that they used
blockchain technology in their daily routine.

Supply chain management: There is a lack of transparency between suppli-
ers. Hence, increasing accountability for all the middlemen is a priority. With
blockchain’s distributed ledgers, this issue can be resolved. Blockchain allows mul-
tiple people to access the same database which will increase transparency in the
supply chains. Blockchain ledgers are immutable and all the valid transactions are
appended with a timestamp which can help in auditing and stop theft and coun-
terfeits. This use case can improve regulatory compliance, reduce paperwork and
help cut cost significantly. Examples of projects working on this include Vechain
and Origin Trail.

Protecting digital identity: Identity theft has become very common today and
improvements in digital security haven’t been able to provide a definitive solution to
the ever-growing need for Internet security. With blockchain’s immutable ledgers,
users can store their personal data securely. Due to its decentralized network, data
on blockchain is not vulnerable to hacking. A sovereign user ID can help users access
their data without any hassle. Examples of projects include Civic and Uport.

Smarter predictive analysis: With all the transaction data stored on the
blockchain ledgers, these ledgers can help excavate huge amounts of data and in-
sights. Blockchain-based artificial intelligence can help make accurate forecasts.

11

1 – Chapter One: Introducing the Blockchain Technology

Endor, a blockchain-based AI, uses natural language processing to answer questions
in real time. With its help, businesses can make use of blockchain data in their
projects, privately.

Health care: Currently, people’s medical history and records are not properly
documented. The data sits on legacy silos, which leads to restrictions in sharing of
data instantly. With the help of blockchain, the medical history of an individual
can be stored securely on the distributed ledgers. This data will be easy to access
when the need arises. Different stakeholders can have conditional access to the
distributed ledger. Blockchain will help keep an audit trail on individual’s medical
history through time stamp. Users will also be able to monetize on their medical
data for research purposes. Examples of healthcare data exchange platforms include
Medicalchain.

Energy: Blockchain provides a compelling solution for the energy market. By
recording people’s utility in a ledger, the data can help people deal with energy like
any other commodity. Currently, large corporations sell energy at fixed prices, but
with the implementation of this use case, the energy market will be forced to follow
supply and demand in a particular region. Examples of peer to peer energy trading
include Power Ledger and Grid+.

Land title registration: Frauds are common in property registration. However,
using blockchain ledgers, the record keeping will be efficient and the chances of fraud
will be reduced significantly. Blockchain’s solution will also help reduce labor and
lessen paperwork. This use case has seen some serious traction in recent years where
countries after countries are joining in and tying up with blockchain based startups
to implement it.

12

1.9 – Summary

1.9 Summary
The blockchain is a distributed database system that means, instead of storing files
on a single node, information is stored across many nodes through a network. In
the other hand, as the name of Blockchain says it is a chain of different blocks that
are linked together one after the other. All nodes on the network have the same and
full replication of all transactions that have taken place on the blockchain ever since
the genesis block is mined. Based on the type of blockchain the distributed ledger
can be open and the transaction between users or members will be displayed on the
ledger for the whole the users might have access to see them. The transactions are
encrypted by using a cryptographically encryption method and the same would be
done to encrypt the next block.

The blockchain is used in different sectors and mainly in the finance market
and all of the applications are developed by blockchain are allowing people to secure
their digital relationships more than it was before. Data is being disclosed differently,
secured differently and recorded differently. This is changing digital relationships,
creating the ability for them to be automated in code via ‘smart contracts’.

13

14

Chapter 2

Chapter Two: Blockchain
Development Frameworks and
Tools

This chapter talks about popular frameworks and techniques for developing decen-
tralized applications and blockchain. It would also try to introduce a bunch of
practical tools can be used for application development. in the last part, the similar
works are mentioned and would talk about the similarities and differences in the
range of various aspects.

2.1 Hyperledger
Hyperledger is a consortium of communities which works on two different levels [7].
These levels are related projects and working groups. Projects focus on implemen-
tations of blockchain frameworks, tools, and modules. While working groups focus
on different aspects, typically independent of any specific implementation.

Hyperledger projects
• BURROW Permissioned Ethereum smart-contract blockchain and its state

currently is in Incubation state.

• FABRIC Distributed ledger in Golang and its state currently is in Active

• INDY Distributed ledger purpose-built for decentralized identity and its state
currently is in Incubation state.

• IROHA Distributed ledger in C++ and its state currently is in Active state.

15

2 – Chapter Two: Blockchain Development Frameworks and Tools

• SAWTOOTH Distributed ledger with Multi-Language Support and its state
currently is in Active state.

Hyperledger Tools
Hyperledger has a set of tools to cooperate with projects and already existed blockchains:

• CALIPER Blockchain benchmark framework which allows users to mea-
sure the performance of a specific blockchain implementation with a set of
predefined use cases. It supports Fabric, Sawtooth, Iroha.

• CELLO Blockchain management/operation. It supports Fabric,Explorer
(Sawtooth, Iroha, Composer)

• COMNPOSER Development framework/tools for building Blockchain busi-
ness networks. It supports Fabric, (Sawtooth, Iroha) Blockchain Web UI. It
supports Fabric, (Sawtooth, Iroha)

• EXPLORER An interoperability solution for blockchains, DLTs and other
types of ledgers

• QUILET A shared cryptographic library that would enable people (and
projects) to avoid duplicating other cryptographic work and hopefully increase
security in the process.

in this thesis no one of them used and its mentioned here as an information.

2.2 Ethereum Platform
Ethereum is a decentralized platform that runs smart contracts exactly as pro-
grammed without any possibility of downtime, censorship, fraud or third-party in-
terference [11]. These apps run on a custom built blockchain, a powerful shared
global infrastructure that can move value around and represent the ownership of
property. This enables developers to create markets, store registries of debts or
promises, move funds in accordance with instructions given long in the past (like a
will or a futures contract) and many other things that have not been invented yet,
all without a middleman or counterparty risk.

Key Features of Ethereum Platform:

• Smart money, smart wallet: The Ethereum Wallet is a gateway to decentral-
ized applications on the Ethereum blockchain. It allows you to hold and secure
ether and other crypto-assets built on Ethereum, as well as write, deploy and
use smart contracts.

16

2.3 – BigchainDB Platform

• Developing, Design and issue a cryptocurrency

• Creation of democratic autonomous organizations (DAOs)

• Building the decentralized application

• Command line tools built in Go, C++, Python, Java etc.

2.3 BigchainDB Platform
BigchainDB is a scalable blockchain database. That is, it’s a “big data” database
with some blockchain characteristics added, including decentralization, immutabil-
ity and native support for assets. At a high level, one can communicate with a
BigchainDB cluster (set of nodes) using the BigchainDB Client-Server HTTP API,
or a wrapper for that API, such as the BigchainDB Python Driver. Each BigchainDB
node runs BigchainDB Server and various other software [12].

Main Features of BigchainDB:

• Native Support of Multiassets: With no native currency on BigchainDB,
any asset, token or currency can be issued.

• Customizable: Design your own private network with custom assets, trans-
actions, permissions and transparency.

• Rich Permissioning: Set permissions at transaction level to ensure a clear
separation of duties and enforce selective access.

• Federation Consensus Model: Decentralized control via a federation of
voting nodes makes for a super-peer P2P network.

• Open Source: Open sourced to the community so that everyone can use it
and build their own applications on top of it.

• Public or Private: Roll out your own public or private networks for specific
industry use cases.

• Query: Leverage efficient big data query capabilities out of the box.

• Petabytes Capacity Coming soon: Store arbitrary asset and transaction
metadata right in BigchainDB, not elsewhere.

• Linear Scaling Coming soon: The more nodes added, the higher the
throughput and the higher the storage capacity.

17

2 – Chapter Two: Blockchain Development Frameworks and Tools

2.4 Chain Core Platform
Chain Core is enterprise-grade blockchain infrastructure that enables organizations
to build better financial services. Chain proposed an open-source protocol, The
Chain Protocol defines how assets are issued, transferred, and controlled on a
blockchain network. It allows a single entity or a group of organizations to operate
a network, supports the coexistence of multiple types of assets, and is inter-operable
with other independent networks [13].

Chain Core Features for Financial activities:

• Native digital assets: A new medium for currencies, securities, and other
issued financial instruments.

• Permissioned network access: Role-based permissions for operating, ac-
cessing, and participating in a network.

• An immutable ledger: A perfectly auditable record of transaction activity
that cannot be forged or altered.

• Multi-signature accounts: Secure, multi-asset account management for
individuals, businesses, and institutions.

• Full-stack security: HSM integration, stable cryptographic primitives, and
an auditable, open source stack.

• Instant settlement: Federated consensus that allows for immediate trans-
action confirmation with absolute finality.

• Smart contracts: Programmatic transactions, facilitating complex agree-
ments with automatic enforcement and no counterparty risk.

• Transaction privacy: Only the parties involved in a transaction (as well as
those they authorize) can view transaction details.

• Reference data: Assets definitions, compliance data, and arbitrary anno-
tations are included directly in the transaction structure

Features for developers:

• Developer dashboard: The Chain Core dashboard provides a powerful
interface for building applications and exploring blockchain data.

• Intelligent queries: The Chain Core APIs enable intelligent queries on any
part of a transaction, from account aliases, to asset IDs, to arbitrary reference
data.

18

2.5 – Corda Platform

• Multi-language support: SDKs are available in several languages, includ-
ing Java, Ruby, and Node.JS.

Chain Core Developer Edition is free while the Chain Core Enterprise Edition is
a commercial product. Chain Core proposed Sequence which is a secure, cloud-based
ledger service for managing balances. Sequence lets software teams focus on shipping
and scaling their product instead of building and maintaining ledger infrastructure.
It does this by combining the convenience of SaaS with the security of cryptographic
transaction signing. Also, Sequence can serve as a system of record for applications
like mobile wallets, lending platforms, sharing economy apps, exchanges, payment
services, funding sites, asset managers, and more. Any application that has a balance
is well suited.

2.5 Corda Platform
Corda is an open source blockchain project, designed for business from the start.
Only Corda allows you to build interoperable blockchain networks that transact
in strict privacy. Corda’s smart contract technology allows businesses to transact
directly, with value [14]. In another word, Corda is a decentralised database system
in which nodes trust each other as little as possible.

Codra’s main Features:

• Smart contracts that can be written in Java and other JVM languages

• Flow framework to manage communication and negotiation between partici-
pants

• Peer-to-peer network of nodes

• "Notary" infrastructure to validate uniqueness and sequencing of transactions
without global broadcast. A notary is a network service that provides unique-
ness consensus by attesting that, for a given transaction, it has not already
signed other transactions that consumes any of the proposed transaction’s
input states.

• Enables the development and deployment of distributed apps called CorDapps

• Written in Kotlin, targeting the JVM

Also a set of tools are provided by Corda team for developers are going to build
applications based on Corda Platform such as Network Simulator, Demo Bench,
Node Explorer, Building a Corda Network on Azure Marketplace, Load testing, and
Next/Previous Block.

19

2 – Chapter Two: Blockchain Development Frameworks and Tools

2.6 Domus-Tower Platform
Domus Tower Blockchain is an interesting solution that has been designed for reg-
ulated environments such as securities trading where participants know each other
and can independently decide whom to trust [15].

Domus Tower Blockchain’s key features include:

• Creation of linked blockchains where the assets of an account on one blockchain
must match the liabilities on the account of another blockchain.

• Capability of recording a high rate of transactions in a scalable manner.

• Recording of double-entry balance sheet that tracks credits and debits.

• Consensus mechanism: Any agent that has write access to a blockchain has
100

2.7 Elements Blockchain Platform
As open source, protocol-level technology, developers can use Elements to extend
the functionality of Bitcoin and explore new applications of the Blockchain [16].

Features of the Elements blockchain platform:

• Asset Issuance: Create new assets on a sidechain, with optional confiden-
tiality.

• Confidential Transactions: Preserve security while simultaneously obscur-
ing transaction values.

• Segregated Witness: Reduce the required space for transactions in a block
by a factor of 4.

• Relative Lock Time: Allows a transaction to be time-locked, preventing
its use in a new transaction until a relative time change is achieved.

• Schnorr Signature Validation: A new way of constructing signatures for
transactions, both improving efficiency of validating a transaction and offering
new modes of multi-signature.

• New Opcodes: Introduces DETERMINISTICRANDOM and CHECK-
SIGFROMSTACK, in addition to re-enabling several scripts previously en-
abled in Bitcoin.

20

2.8 – Monax Platform (Erisdb)

• Signature Covers Value: This allows the signature on a transaction to
be invalidated if the inputs have been spent, making it faster and easier to
validate a transaction, simply by checking its signature.

• Deterministic Pegs: Deterministic Pegs allow cross-chain transactions to
be constructed in a decentralized fashion. Tokens can be moved from one
blockchain to another.

• Signed Blocks: Blocks can be cryptographically signed, allowing the creator
of the block to verify their identity in the future.

• Bitmask Sighash Modes: Allow arbitrary, miner-rewritable bitmasks of
transaction inputs and outputs.

Compared to Bitcoin itself, it adds a couple of new features such as Confiden-
tial Assets, Confidential Transactions, Additional opcodes, Deterministic Peg, and
Signed Blocks. It is possible for a developer to develop a sidechain and attach to the
platform. Sidechains are extensions to existing blockchains, enhancing their privacy
and functionality by adding features like smart contracts and confidential transac-
tions. Sidechains can be used to test new features for Bitcoin, change network and
security properties, and even stand alone as production networks.

2.8 Monax Platform (Erisdb)
The Monax platform is an open platform for developers and DevOps to build, ship,
and run blockchain-based applications for business ecosystems [17]. The Monax
platform is for building, testing, maintaining, and operating ecosystem applications
with a blockchain backend. Wrangling the dragons of smart contract blockchains
has never been easier.

Available paid SDKs and Add-On Modules:

• Base SDK: The Base SDK contains all the smart contracts that help to set up
permissions, authorizations, organization structure and manage the lifecycle
of any ecosystem application developed on the Monax platform.

• Finance SDK: contains all the smart contracts included in the Base SDK
as well as financial account management and simple asset lifecycle contracts
which help with clearing, netting, and other necessities.

• Insurance SDK: contains all the smart contracts included in the Base SDK
as well as insurance account management and simple risk instrument lifecycle
contracts which help with sufficiently understanding risk profiles.

21

2 – Chapter Two: Blockchain Development Frameworks and Tools

• Logistics SDK: contains all the smart contracts included in the Base SDK
as well as logistics account and vendor management along with simple asset
tracking contracts.

Burrow
burrow is Monax’s blockchain node. It is a controllable (permissionable), smart
contract-enabled, proof-of-stake based blockchain design. burrow can be configured
to work with a wide variety of individual blockchain networks. Its Key Features are:

• Consensus: burrow uses the Tendermint consensus engine, a deposit based
proof of stake protocol which is much more environmentally friendly, decen-
tralisable, speedy, and final than proof of work.

• Interface: burrow comes with a range of interfaces from CLI tooling to
RPCs.

• Virtual Machine: burrow comes with a built-to-specification Ethereum
Virtual Machine. It runs any contract which has been compiled with the
compilers or any of Ethereum’s compilers.

• Permission Layer: Permissioning your blockchains is more than simply
running them behind a gated VPN if one is running burrow.

2.9 Openchain Platform
Openchain is an open source distributed ledger technology. It is suited for organi-
zations wishing to issue and manage digital assets in a robust, secure and scalable
way. The consensus mechanism used by Openchain differs from other Bitcoin-based
systems, it uses Partionned Consensus [18].

The key features of Openchain Platform are:

• The platform allows anyone to spin up a new Openchain instance within sec-
onds.

• End-users can exchange value on the ledger as per those rules.

• The administrator of an Openchain instance defines the rules of the ledger.

• Every single transaction on the ledger is digitally

22

2.10 – Similar works

2.10 Similar works
All the explained frameworks or tools can be the similar to in terms of creating
a decentralized network or they may use another partner program to provide all
the development requirements. while in this thesis objective is to have a two layers
Blockchain to make it semi-public and be private for universities.

on the other hand, the building an application for authorizing the graduated
students form different universities might be similar to other thesis that [21]. while
there a big differences between them as follows:

• The first difference is that in this thesis instead of using an already existed
framework for Blockchain, whole the blockchain architecture implemented
which contains all main features of Blockchain and defining its own data struc-
ture.

• The second difference is that a dedicated decentralized network is built by
flexible node network instead of using a network simulator such as MetaMask.

• Architecture design As it is explained in chapter three and four, two differ-
ent REST-API for two different purposes are developed one for blockchain
networking another one is for website management and intercommunications.
While Yokubov used a framework for everything. for optimization of applica-
tion MongoDB is used for blockchain off data to avoid storing a lot of unwanted
transactions in a chain. as software development method, in this thesis Test
Driven Development is used and providing the automation test for BE part.

• multi-tenant management. We both have three levels of users are Administra-
tion, Professors, and students. While their capabilities are different.

• Block explorer The block explorer is available for everybody to open and search
for whatever is looking for and there is no limitation for extracting data

23

2 – Chapter Two: Blockchain Development Frameworks and Tools

2.11 Summary
Blockchain is a new concept for modern and secure application development and

it is still not well matured. This fact is true even for its development tools whereas
a lot of different companies and groups already started or built some tools and
frameworks for that. but all are in competition with together. Among all of them,
Ethereum is the most popular and trending framework for blockchain application
development nowadays.

The point is these tools are mainly needed to be compatible to cooperate with
other sorts of aside tools that all are built in different languages that makes a bit
hard to prepare a fully reliable environment. In this thesis, an overview of a bunch
of them provided and tried to build its own blockchain and not using them while
applying their strong points. after then that an application of universities developed
based on that.

The table 2.1 shows a comparison between different frameworks for blockchain
development.

Framework or
Tools

Application Language Data
Model

Consensus Al-
gorithm

Hyperledger Smart contracts Java,
GoLang

Account-
basedn

PBFT

Ethereum Crypto curence
and smart con-
tracts

Solidity,
LLL

Account-
basedn

PoW

Corda Smart contracts Kotlin,
Java

Account-
basedn

Raft

Ripple Crypto curence
and smart con-
tracts

- UTXO PoS

Eris-DB Smart contracts
and operating
ecosystem

Solidity Account-
basedn

BFT

ChainCore Crypto curence Java,
NodeJS

UTXO PoW

Table 2.1: Table to compare Blockchain Frameworks

24

Chapter 3

Chapter Three: Problem
Definitions and Software Design

The third chapter would focus on the problem definition such that the first section
is dedicated to the technical approach and software design. the second part digs
more in details and explains how the development process would it be and talks
more about front-end and back-end communications.

3.1 Problem Definition
The aim of this thesis is to Design a Blockchain Network of Universities.
It breaks done to create a blockchain in which all the transactions represent the
university exams passed by the students and their grades. Transactions must only be
created by authorized personnel. Students read their career history, administrative
staff and professors can record grades.

Regarding the described goal, at the first step, a distributed network should be
created which would provide also the blockchain data structure and functionalities.
After then that a distributed application should be developed and executed over the
distributed network. in the end, all the universities functionalities would be added
to the application.

3.2 Software Design and Software Architecture
In this section, the architecture of software and all the required software engineering
diagrams would be explained.

The software is designed in three main services are participating with together
to provide the main application by dividing the tasks between themselves. On the
bottom layer, the blockchain and its file storage have existed then in the middle

25

3 – Chapter Three: Problem Definitions and Software Design

layer the platform is placed to handle the incoming and outgoing requests. The top
layer is a user interface for interacting and exploring data.

• Blockchain micro service: At the bottom level of design, there is a network
layer that connects different nodes to each other and they would be synched
and manage the blockchain ledger by an API layer which is placed on top of
the network layer.

• Platform and Security micro service: at the bottom is a database for general
information and accounting then an API layer is existed in between to connect
to security layer. the security level generates token for each account and
approves the authentication for the main functionalities of the blockchain.

• UI/UX: a user interface for different sort of users to explore the blocks and
eligible users could execute a couple of comments through the chain.

Networking and Application Architecture of blockchain 3.1.

Figure 3.1: Software Architecture and API Layers.

26

3.3 – Block of Data

3.3 Block of Data
The data block format mainly divided into two parts the first one that every differ-
ent blockchain have is some basic information like index and nonce (are explained
in chapter one). The second part is dedicated to using case of blockchain and cus-
tomized by desire application.

Here is the proposed and applied data structure for student application such that
every block of the chain has the same format and stored after mining by a node.

• Transaction
A transaction is the tiniest entity in the blockchain and when it stores it would
never change. This entity would carry some key information that depends on
the desired application. In this thesis, each transaction has one recipient that
who is the student, one sender who is the professor of a specific course. Course
id and mark are assigned to the student.

– Student (Recipient): It shows the student that who is involved.
– Professor (Sender): It shows the professor that who has registered

the mark for a student and couldn’t change it.
– Course Id: It shows the course that evaluated for a student.
– Mark: It shows the final mark of student and would never change.

All the transactions of implemented blockchain in this thesis have the above
data format and other functionalities are implemented based on this basic data
model.

• PendingTransactions [Transaction]
List of all transactions which are arrived and established through the network
since the last block was mined. This list of transactions is called pending
transactions. When a node starts to mine a new block, it would fetch all the
transactions one by one from the pending list then generate the hash value and
broadcast the new block. At this point that all the partner confirms the new
block then the pending list of all nodes of the network would become empty.
After that, the chain is ready for new incoming transactions.
Besides, in this thesis, all the pending list of all nodes are always the same
and updated continuously to prevent the unwanted data errors.

• Chain [Block]:
A chain is a list of blocks are linked as one-way backward link list such that
every node just has a hash value of the previous block.

27

3 – Chapter Three: Problem Definitions and Software Design

• Block:
Block of data contains a couple of values are evaluated when the mining process
done by a node.

– Index: This attribute indicates the index of a block in the chain and
it is just once used and a unique and ordered value, which is allocated
locally by a node during mining of block. Since it is possible for different
nodes to start and finish mining at the same time, there is a concurrency
problem between them to allocate this unique and ordered value.
The applied technique to deal with concurrent mining is like a FIFO
queue, for example, when a node wants to start a mining process, it would
use its own chain and get the length of chain and increase it by one. Then
it would finish the mining process at this point it must broadcast the new
mined block through the network to all other partner nodes. When a new
block arrives, the node would start to sort the nodes based on its index
and drop the older one and just accept the lower index. In meanwhile
the consensus algorithm should confirm the arrival block.
is accepting and dropping based on their second attribute that called
timestamp. after broadcasting the block to all partners.

– Timestamp: Each block contains a unique time timestamp. During
the implementation of the application, this value would be generated by
a miner node after finishing the mining process and it would be attached
to rest of block data as root level value.
Besides, since this unique value suggested to be used in the encryption
of data as a source of variation for the block hash, which makes it more
difficult for an adversary to manipulate the blockchain.

– Nonce: A nonce is a number used just once for a single block that serves
to secure the chain. this means that the same encrypted value can’t be
submitted to the server again. Even with the same data, the server from
any source of the sender or target recipient will expect a distinct value
due to the modification made by the nonce. In this case, if an attacker
can get the nonce it still only works for a single block so it prevents replay
attacks.
The once used to be started with 0000 and randomly reproduced by
a random generator. The way of using the nonce in this thesis more
explained in proof of work.

– Hash: it is the hashed value of the block. in another word, all the
transactions are put in a single hashed string. In this thesis, the hash
value is generated by a function that receives a block of data and converts
to a fixed length hashed string and it looks like as a random string.

28

3.4 – Genesis Block of Chain

The applied hashing function is SHA256, which takes a string and convert
to another hashed string. It does two functionalities for each hash value.
First, it gives a different hash string for different values and second, it
gives a unique string for every input string.

– PreviousBlockHash It shows the hash value of the previous block then
current block knows where does it come from. Every block is linked to
the previous one until reaching the genesis block. That a way to seek
over the chain and make sure all the data are stored and not changed.
As it is explained before for Hash property, the hashed value is generated
by SHA256 and used in the next block to make a link between two blocks
of the chain.

– Transactions [Transaction]: List of all transactions which are mined
be a miner node and established in this block. In this thesis transaction
is a mark registration for a student that is clear who is the professor and
who is the student and what is the mark. After mining a block there is
no way to change on it.

• NetworkNodes [Node IP Address]: it is an array of node URLs which
are participating in the network. In this thesis, it is a list of all universities
are going to share their data together. The new node can be added to this
list during working time of blockchain and it would automatically get all the
information to have the same chain as others.

3.4 Genesis Block of Chain
Genesis Block is the first block in a chain. Every blockchain must have one and start
off with this bloc. This specific Block has some initial values that make it different
than others like 0 as block value, 0 as a previous link and etc.

Besides, this block is created by every node locally and it would never broadcast
through the network the reason is all the node should use the same values to create
a genesis block then they would have the same block. the only value that is different
is the Timestamp of creation. while this block is just checked point to understand
the starting point of the chain, the time difference does not matter.

Therefore, the following data format is used for the genesis block of the chain in
this case, which contains arbitrary values:

• Nonce: 100 , while for the other blocks would start with four zeros as prefix.

• PreviousBlockHash: 0 , the reason is that there is no other block before
than that. Also, this value helps to check that is the current block is the first
block or not.

29

3 – Chapter Three: Problem Definitions and Software Design

• Hash: 0 , the hash value of genesis blocks it does not matter then just a fake
value assigned to that.

• Timestamp , generating time, it is the time that the first block is generated
and might be different from one node to another one.

3.5 Functionalities of University Blockchain
The university blockchain has a bunch of dedicated functionalities is developt only
for it. while they would be consistent with the base model of the standard blockchain.

Proof of Work
Proof of works method is a very important and essential method for blockchain
technology and because of a good implementation of that bitcoin and others are
very secure. For making a blockchain to be sure that the data stored well and
established transactions would never change, this aim will be achieved by the proof
of work.

But what is it actually is used in this thesis? it takes the current block of
data and previous block hash and generates a specific hashed string. The following
method is used for proof of work for final implementation:

• Results want to have a hash which has 0000 at the beginning then for reaching
that function would start with nonce=0 and increment to reach the point

• Using current block data for hashing, even though the previous block hash is
used

• Continuously changing the nonce value until it finds the correct hash

• Return to use the nonce value that creates the correct hash

Above rules consuming a lot of time and energy because it has a huge amount
of computations. then if somebody wants to back to blockchain and tries to change
a block or adding some data in that block, it needs to use a lot of calculations and
energy to create the correct hash. trying to coming back and recreating some of the
already existing blocks or trying to mind with its own fake data is not feasible.

Besides, since proof of work receives the previous block hash value and mixes
with the current data block, all the block hashed values are linked with each other
by their data. consider that after mining this block, all the next block must be
recreated which need an incredible amount of energy. this is the reason that the
blockchain technology is so secure.

30

3.5 – Functionalities of University Blockchain

Adding a New University node to network
In this thesis, a university has the same meaning like a node of network such that
every node has a unique address. With respect to implementation, the assumption
is that there is already a network of connected nodes and every node has a copy
of the chain and would try to keep them always the same. Every node has its
own Genesis Block which is created by a node locally. The Genesis Block has the
same data structure and values as other blocks, with special values to be able to
distinguishable. it can be used for some security checks and always should be careful
about these parameters to prevent unwanted errors.

From data point of view, in the root of blockchain data structure, there is an
array of network addresses that is the same for all nodes(universities). This array
would be always updated, for example, when a new node joins to the network a new
instance would be added to the array.

The sequence of adding a node would be started by the blockchain administrator,
who is the only one that can add a new node to the network. The administrator
could sign into the platform controller by passing an authentication process. After
that, it would send the address of the new node with a secured request to the
blockchain network API. The network-API endpoint would validate the incoming
request by request header and checking the JSON web token. In the end, it would
insert the new address an array of network addresses. As it is mentioned before, the
array of nodes (universities) presents in the root of data structure and it is called
networkNodes. More details about processes are in chapter four.

Broadcasting a Mark Transaction through Network
The main idea of the chain is to store the marks of students and would generate a
certification for them automatically.

The process of mark registration would be started by professors. Every professor
would be created by the administrator. Then they could sign into the platform and
search for a student by name or student id. After that professor would select the
desired student and fill up a form that contains the course and mark value.

When the professor submits the form an XHR request would be created and
posted to network API. This request contains the form values and token authen-
tication of professor, and it would be validated before broadcasting through the
network.

At the end of the journey, when the request enters to the endpoint, it would
create a transaction by form data and store it in its local chain. After that, it would
broadcast through the network to all the other nodes and they would update their
own chain when consensus algorithm confirms the transaction. More details about
implementation are in chapter four.

31

3 – Chapter Three: Problem Definitions and Software Design

Handling a Pending Transactions
All the transactions of the network before mining and storing in the chain, they
would be collected in a list pending transaction. These transactions are valid until
one node decides to do mining then it would clear the pending list.

Every pending transaction is the same data format as the mined transaction has.
The only difference is that they are mined and stored and would not be missed.

Consensus Algorithm
Every node in the network must ensure that the next block in a blockchain is truth
version of the block, and it protects against unwanted changes and successfully
forking the chain.

In this implementation of the blockchain, the longest chain method has been
chosen to confirm the truth chain. the longest chain considers the longest chain
as the right version and would replace the current when with longest one. this
algorithm sends a request to all nodes in the network and asks for their copy of
blockchain to compare them with the one in the current node. The theory is that
if a group of miners is working simultaneously on the same chain, then only one
will grow fastest or finish. Everyone that who is mining faster will be the longest
and most trustable version of the chain. More details in chapter four are about the
endpoint and how the communications are done.

Mining a New Node
The creation of a block called Mining block and all the pending transactions of a
network should settle down. the point is that after creating(mining) a block all the
pending transactions of blockchain would be removed to be prepared for the next
block. Besides, all the nodes of the network should be pinged and synchronized with
each other to be sure that they received the new block and update their ledgers.

At the first implementation this ability was allocated only to admin and then it
extended to nodes (universities) to able to mine a new block. The node would call an
endpoint via a secure and valid XHR request and network-API would authorize the
request after that it starts to mine the pending transactions and encrypt them via
SH256. When the mining process finished, the mined block would be broadcasted
through the network and everybody would use the consensus algorithm to update
its own chain by longest chain logic.

Exploring a Certification
The platform layer provides the user interface for the blockchain. In this thesis,
this part called public area, which is a place that administrator, teachers and other

32

3.5 – Functionalities of University Blockchain

users can communicate with the main chain over the network. For simplicity in
environments management, different nodes forwarded to a specific port number.

All the public users can work with platform layer by a REACT interface. For
exploring a certification of a user, the user could open the home page of platform
application and there is a text box as a search keyword. This search keyword would
post to platform layer to find the matched students. After selecting the matched
student another request would contain by the student id and post them to a network
layer. This request can be sent to any one of nodes (universities) because all of them
have the same copy of chain. In response to the second request, if that student has
any sort of transactions, there are marks of a student in different courses. It would
receive all the transaction that recipient is that specific id. Then a layout is de4signed
to show all of this information in certification format, which contains all the student
information and his/her marks.

Security and Authorizations
In terms of security in this implementation, two main aspects are considered and
tried to be covered.

First one is related to REST-APIs Authentications. Since there are two API
layers one for a platform and one for networking, all the XHR requests are want to
write some data over chain must contain two tokens in its header. One is a JSON
web token for user authentication, which is generated during the sign-up process
and stored in the platform layer database and is valid for 356 days. Another one is
for networking takes, which is an encrypted version of the first one with a private
key. this token is valid only for 1 minute after that would be expired.

With respect to the private key, the IP address of the source of the request
considered to play the role of a private key and the user JWT is encrypted by
private key by an encryption algorithm. All the nodes of networks are aware of that
algorithm.

The second aspect that covered in this implementation is encrypting the previous
hash block by SHA256 Algorithm. Every block must have a link to last mined block
of chain this link must be secure to protect the chain against unwanted attacks. The
hashing algorithm would receive the last block of chain and converting all data to
a long-hashed string. This hash value is assigned to the link parameter of a new
block which is called PreviousBlockHash. This algorithm is called during the mining
process and the complexity of that would have a more secure chain.

Security and Authorizations
In terms of security in this implementation, two main aspects are considered and
tried to be covered.

33

3 – Chapter Three: Problem Definitions and Software Design

First one is related to REST-APIs Authentications. Since there are two API
layers one for a platform and one for networking, all the XHR requests are want to
write some data over chain must contain two tokens in its header. One is a JSON
web token for user authentication, which is generated during the sign-up process
and stored in the platform layer database and is valid for 356 days. Another one is
for networking takes, which is an encrypted version of the first one with a private
key. this token is valid only for 1 minute after that would be expired.

With respect to the private key, the IP address of the source of the request
considered to play the role of a private key and the user JWT is encrypted by
private key by an encryption algorithm. All the nodes of networks are aware of that
algorithm.

The second aspect that covered in this implementation is encrypting the previous
hash block by SHA256 Algorithm. Every block must have a link to last mined block
of chain this link must be secure to protect the chain against unwanted attacks. The
hashing algorithm would receive the last block of chain and converting all data to
a long-hashed string. This hash value is assigned to the link parameter of a new
block which is called PreviousBlockHash. This algorithm is called during the mining
process and the complexity of that would have a more secure chain.

34

3.5 – Functionalities of University Blockchain

Summary
In this chapter, the main goals of the thesis and the journey to achieve them are

explained. As it is described, the objective is to Design a Blockchain Network of
Universities such that all the transactions represent the university exams passed by
the students and their grades. Transactions must only be created by authorized
personnel. Students read their career history, administrative staff and professors
can record and change grades. Besides, different aspects of development regarding
networking, sending and receiving the transactions of students or professors, or how
to extract data from blockchain and etc, all are discussed.

35

36

Chapter 4

Chapter Four: Application
Development

The aim of this to describe the implementation of a full blockchain prototype, which
is hosted on a decentralized BC network. Explaining how to implement a whole net-
work for a blockchain such that a couple of nodes are distributed through a network
and they would be able to synchronize themselves and manage their ledgers.

4.1 Development Strategy
Implementation and coding of the final application divided into three main steps
are done almost simultaneously. Two steps are related to backend tasks and one for
frontend tasks.

The plan is to keep only the mark information in blockchain and keep the rest
of the information of students of the blockchain data structure. The reason is that
this policy would reduce the amount of data is going to be carried by the chain and
reduce the size of the block. Also, it would have a significant effect on computation
time of mining. There was another solution like keep other information in another
chain and keep a mapping between these two chains or using hieratical chains. Since
the rest of the information is not critical and possible store in a simple database and
just reveal them when they are required, then the second layer of backend added to
manage these pieces of stuff. This cover the risk of losing data and missing some
portion of them.

Based on the above strategy, the backend part has two independent APIs one for
networking and communications between nodes of blockchain and another one are
dedicated to the blockchain-off call to actions like tokens generation. More details
would come later.

Frontend part mainly provides a block explorer for users to communicate with
chain and a user interface for administrator and professors to do their actions. In

37

4 – Chapter Four: Application Development

next sections would see that some actions like submitting a mark are available only
for administrator and some actions are available for administrators like adding a
new node to the network.

Development steps are as following:

• Defining a data structure for BC

• Build a REST-Full API for BC

– Building a decentralized BC network
– Defining and Implementing a network consensus algorithm

• Building REST-Full API for platform layer

– Database communications
– Authentications
– Blockchain synchronizations

• Building a block explorer application (UI/UX)

4.2 Stack of Technology
The stack of technology in frontend includes REACT-JS which is a JavaScript ex-
tension and ES6 version are applied. In backend side, the development language
is Node-JS which is a JavaScript language for server side. Node-JS used for both
layers (Platform and Networking functionalities via HTTP). As a data storage in
the platform layer, MongoDB is used for blockchain-off data and Inter Planetary
File System (IPFS) used for blockchain data management.

With respect to version control, the GIT is used with Bitbucket which provides
a practical tool for communications and controls different versions of the software.
The number of branches from the master branch is 30 (still might be increased).

4.3 Blockchain and Network Functionalities
The blockchain data structure is explained in details in the previous chapter and
here mostly focused on implementations and functionalities. Each Block carries
some values and all of them are linked to each other. All the required information
for a block covered by creation process of a block. also, they are categorized into
three different:

• Block Related Values like the index of a block, link to previous block and
creation timestamp.

38

4.3 – Blockchain and Network Functionalities

• Pending Transactions are all transactions since the last block is mined. in
other word, start to over the new transactions for the new upcoming block
(stores only new transactions for the next block)

• Hash Value which refers to the security information like hash value and nonce.

Creation of a block and communicating with chain and rest of blocks are provided
by a bunch of functions like below, which are covering from creation and mining and
other actions.

• function Blockchain(): Defining the blockchain data strucutre.

• createNewBlock = function (nonce, previousBlockHash, hash): cre-
ating a block for Blockchain by using a prototype function that receives three
parameters nonce, previousBlockHash, hash. All the required information for
every block should be provided here and preparing for the next/previous link
through the chain.

• getLastBlock = function (): Returns the last block of chain

• createNewTransaction = function (mark, sender, recipient): Creat-
ing a new transaction for blockchain has three parameters mark: how much
would be sent by this transaction, sender’s and recipient’s address then all the
transactions in this blockchain would have this information

• addTransactionToPendingTransactions = function (transactionObj):
all the people in blockchain would have transactions to send and receive a
mark. all the new transactions are pushed into a list of new transactions of
blockchain but they are not really recorded, they would be recorded when the
new block mined. besides, flash out the array to be ready for the next block.

• hashBlock = function (previousBlockHash, currentBlockData, nonce):
a function that receives a block of data and converts to a fixed length hashed
string and it looks like as a random string. hashing function sha256, which
takes a string and hash it to a string. it does two things, first it gives a dif-
ferent hash string for different values and second, it gives a unique string for
every input

• proofOfWork = function (previousBlockHash, currentBlockData):
the implemention of proof of work that explained in data architucture chapter.

• chainIsValid = function (blockchain): Since each block has hash value
of itself and previous block, to make sure that the chain is valid, this function
would iterate through all blocks of chain.

39

4 – Chapter Four: Application Development

• getBlock = function (blockHash): returns a block by its hash value.

• getTransaction = function (transactionId): returns a transaction by
its transaction id.

• getAddressData = function (address): returns the content of a block
with all information by its address.

4.4 Backend Functionalities
The backend part is in charge of all functionalities and communications are required
to happen. These functionalities are splatted into two main sectors to reduce the
complexity and amount of works. The first part is platform API which has to pro-
vides the user authentications and all sorts of interactions between the blockchain
and different users. The second one is mainly dealing with the blockchain of univer-
sities.

Implementation notes:

• All the requests and responses are sent/receive by request-promise package.

• The body of requests is passed in the JSON data format and parsed by the
body-parser package.

• Database Schema, Regarding the database storage in platform layer,
there are three (it might be increased later) different database schemas are
implement to cover the main database interactions. These are related to users,
professors (called teachers), and students. more details about the attributes
and inline functionalities are available in code.

In the next section a bunch of important endpoints are defined and implemented for
each API as it is mentioned.

4.4.1 Decentralized Blockchain Networking API
The networking API provides a bunch of endpoints with three main purposes such
as block creation, networking communications, and data retrieval. The assumption
is that there is a network of connected nodes and every node has a copy of the chain
and would try to keep them always the same.

Since each node creates its instance locally then its Genesis Block has the same
data structure and values as other, except timestamp then always should be careful
about this parameter to prevent unwanted errors.

40

4.4 – Backend Functionalities

Intra Node communication endpoints

The first step is that a node should be able to communicate with its own local
blockchain. The following endpoints are proposed for primitive tasks:

• get(/blockchain): It would send back the entire blockchain with whole
information about all blocks, block transactions and chain information like
pending transactions and network address.

• post(/transaction): It would post or create a new transaction. the body of
the request must carry transaction information of professor id(sender), student
Id (receiver), course Id and mark. when the new transaction is created. it
should be inserted into the list of pending transactions of its local chain by
calling addTransactionToPendingTransactions(newTransaction).

• get(/mine): It would mine a block for chain and give a reward to the node.

For mining of a block, first of all, the current node has to get the last mined
block of chain to know that who is the previous block and it would make a link to
it. This functionality is provided by getLastBlock() , after that a new block should
be created with all the currently pending requests. The important point is related
to proof of work which guarantees the security of blockchain and makes sure that
nobody can touch it. When a block is created the current node should prepare a
request to aware all the other nodes of the network to update their local chain with
a new block.

In this section all the details about Building a Decentralized BC Network API
endpoints are categorized in four different types and explained how they are com-
municating with each other. therefore, to reach to this aim a set of nodes in different
places are connected to each other through a network and all of them has the same
copy of a blockchain and locally doing some activities then synchronizing together
to be exactly the same. While there is no centralized point to manage the net-
work and all the nodes have the same capabilities. API’s endpoints for creating a
decentralized network divided into node and block synchronization.

Node synchronization endpoints

• post(/register-and-broadcast-node): every new node should be regis-
tered and then broadcasted through the entire network then all nodes would
be aware that a new node is added and should upgrade their network rout-
ing address (node URLs) by hiring /register-node and /register-nodes-bulk
endpoints.

41

4 – Chapter Four: Application Development

• post(/register-node): all the already existed nodes should register in the
local chain of the recently broadcasted node. In the figure 4.1 it is shown how
to add a new node and broadcast it for building a Decentralized Network of
universities.

Figure 4.1: Registering and Broadcasting a new node to a decentralized network of
universities.

• post(/register-nodes-bulk): It would register multiple nodes all at the
same time in the network if a node does not already exist and it is not the
current node.

There might be a question like “how to register a new local node in the decen-
tralized network”. The local node should hit a node at the network (any node of the
network) to register-and-broadcast-node. Then the targeted node should send the
URL of the new node as the body then all the other nodes of the network will receive
a broadcast message on their /register-node endpoint and they should register the
new node. also, the receiver nodes don’t need to broadcast it again. in the end, the
node who did broadcast should send the URLs of other nodes to the new node and
hit the /register-nodes-bulk.

(broadcast-a-node.4-1.png)

Block and transactions synchronization endpoints

• post(/transaction/broadcast): It would be hired whenever, it supposed to
create a new transaction. First, it creates a new transaction with specifications

42

4.4 – Backend Functionalities

and then will broadcast the transaction through the network for all the other
nodes

• post(/receive-new-block): it would save the new broadcast block through
the entire network and would check that the block is fine.

the image 4.2 shows how broadcast a new transaction through the network to
make sure that all the nodes have the same list of transactions.

Figure 4.2: Broadcasting a new Mark Transaction through the entire Network.

Defining and Implementing a network Consensus Algorithm

Every node in the network must ensure that the next block in a blockchain is a
truth version of the block, and it protects against unwanted changes and successfully
forking the chain.

In this implementation the longest chain method has been chosen to confirm
the truth chain. the longest chain considers the longest chain as right version and
would replace the current when with longest one. this algorithm sends a request
to all nodes in the network and asks for their copy of blockchain to compare them
with the one in the current node. When it found the longest one can replace. More
details are in previous chapter and implementation verion of consensus algorithm is
available through an endpoint:

• get(/consensus): It asks a copy of the block from all nodes of the network
and compare them with itself and clone the longest one.

43

4 – Chapter Four: Application Development

Building a block explorer application (UI/UX)

The block explorer is a user interface just to display the entire network to make it
possible to retrieve the data and check the blockchain.

• get(/block/:blockHash): It sends a block hash to retrieve the entire block.

• get(/transaction/:transactionId): It sends a transaction id and expects
to receive the correspond transaction id.

• get(/address/:address): It sends an address and expect to receive the
correspond transactions of that address and some more data.

• get(/block-explorer): It sends back the html file to render the interface.

4.4.2 Platform and Authentication API
The endpoints of the platform are designed to support three different types of re-
quests and these requests are working with blockchain-off data that doesn’t need
to be stored in blockchain and would reduce the complexity of implementation and
reduce the amount of data over the network. To serve the user sign up and sign in
and sign up the following endpoints are used.

• post(’/users/signup’, function (req, res)): receives the sign up infor-
mation and store in MongoDB.

• post(’/users/signin’, function (req, res)): receives a request that carries
the email as username and a password. Also, and simultaneously creates the
token and send back to source.

To serve the activities related to students interactions interface the following
endpoints are used.

• post(’/student/create’, passport.authenticate(’jwt’, session: false
), function (req, res): receive the information of a student and would
create it. The point is the request must carry a valid JWT-Token to pass the
authentications.

• get(’/student/get-list’, passport.authenticate(’jwt’, session: false),
function (req, res) returns the list of all students. it is mandatory to carry
the JWT.

• post(’/student/search’, passport.authenticate(’jwt’, session: false
), function (req, res): receive a keyword that can be name or an Id then
sea4ch through the database and returns it.. it is mandatory to carry the
JWT.

44

4.4 – Backend Functionalities

• post(’/student/search-public’, function (req, res): same as previous
one without authentication. It would return limited amount of information.

To serve the professors interactions interface the following endpoints are used.

• post(’/teacher/create’, passport.authenticate(’jwt’, session: false
), function (req, res): creates a professor with required parameters and
authentication is mandatory.

• get(’/teacher/get-list’, passport.authenticate(’jwt’, session: false),
function (req, res): returns the list of professors and authentication is
mandatory.

As a quick note, the data validation is implemented in MongoDB and mainly sup-
ported by that.

4.4.3 Testing Endpoints
In this thesis, it has been tried to develop the blockchain and platform features
based on the test and delivery. the testing framework is Mocha Chai which is quite
famous and suite for test developments.

The following tests are developed for blockchain and its networking functions:

• Test-chain-validation: testing the chain validation to have a right data
structure by sending a mock data of a sample chain to chainIsValid(BC1.chain)
function. it expects to receive an error in case of wrong data or confirmation
in case of right data.

• Test-creating-a-block: testing the creation of a block by passing an object
of mock data with all the block requirements to createNewBlock(obj) function.
It expected to receive a built block if all the required data are sent correctly
otherwise it would receive an error.

• Test-creating-a-transaction(test-adding-mark): testing the creation of
a transaction. it creates a block first then would call the createNewTransac-
tion function for a couple of times and checking to have a bunch of correct
transactions there.

• Test-genesis-block: testing the genesis block by tacking an instance of
blockchain that would create a genesis block by itself.

• Test-hash-function-sha256: testing the hash function of sha256 by cre-
ating a block with a bunch of transactions and then testing the hashBlock
function.

45

4 – Chapter Four: Application Development

• Test-proof-of-works: testing the proof of works by creating a new block
and calling the proofOfWork function and passing the current block and hash
value of the previous block.

The following tests are designed for the platform layer:

• Test-sign-up: it does test the signup of administrator by passing email,
password and telephone number.

• Test-sign-in: it does test the sign in bypassing the email and password and
in response would receive a token if the sign in was successful or would get an
error in case of failure.

• Test-reload-blockchain: it is one of two-step XHR tests that first call the
platfor4m layer then it would call the blockchain layer to get the whole block.

• Test-adding-node: this test tries to add a new node to the network by
sending an IP address of new node if the new address does exist and respond
then it would be successfully added to the network otherwise it would get an
error. This test, also, is done to step because it required to connect to the
blockchain layer as well.

• Test-adding-student: testing the platform endpoint to add a new student.

• Test-adding-teacher: testing the adding teacher endpoint.

• Test-search-student: testing the student search by passing a keyword to
backend and rec receiving list of matched students.

• Test-geting-certifaction: testing the platform and blockchain with two
steps request and expected to receive the marks of student from blockchain
and build certification from platform endpoint.

4.5 Frontend Functionalities
The frontend of application is designed by REACT-JS. Every feature has been de-
veloped based on the atomic and container component design approach, which de-
pends on its complexity and functionalities. In total around 46 components are
implemented to cover almost all around the project. Also, Based on the tasks that
each component does the frontend components can be divided into three categories
first is Layout components which are mainly providing the layout of pages for public
pages and logged in page. the second one is related to Error handling components
which are handling the server page errors and some exceptional errors. the last
category is Block explorer components which are a list of components to interact
with blockchain and providing the user interface for it.

46

4.5 – Frontend Functionalities

4.5.1 Developing the Layout Components
The application is designed to have three different layouts which are based on the
users and their actions such as Administrator layout, Professors layout, and Public
layout. All of them and their most important functionalities are explained in the
following section.

Administrator layout components: the platform and chain administrator
can sign in with their email and password by passing a valid token to the sign in
endpoint. the following actions are provided for administration control panel:

• Adding a new node to network, only the administration has access to
add a new now node. This form has one text field to write the IP address of
new node then it would submit the request via HTTP with a valid token of an
administrator. This request would be validated at the platform layer. After
than that, it would send a request to networking API to add and broadcast
the node. The point is to test on a local machine with simulating the network
by NGNIX every node should be mapped into different ports and this port is
part of IP address and must be posted to the endpoint.

• Adding a new professor, is another main functionality that the adminis-
trator can do it. It has a form that the administrator has to fill it up with
the information of the professor and then send it to the endpoint. As a quick
note, at the begging the software designed to have one more use as a university
employee. It is not applied because for too many users and high amount of
complexity and fewer functionalities then the employee is removed and this
function, adding a new professor, assigned to the administrator.

• Adding a new student, is a post form that gets the information of a student
and then sends them to endpoint in the platform layer. If the incoming data
pass the validation it would be added to the list of already existed students and
available for the professor to search and add a new mark or in block explorer
to search for a certification. The point here is, the student id is a hash value
which is generated automatically when the student created and it is a unique
value.

• Mining a block, the administrator can execute a mining process over a
specific node. By sending the request to network and firing and mining end-
point. The IP address of the source of the request is mentioned in the body of
request and mining would be done by that node. In local just mapping over
the NGINX is enough while in the real network the request from desire source
node would be broadcasted.

47

4 – Chapter Four: Application Development

Professors layout components: the professor who is the only one can register
a mark for a student and all the other parts of the platform would be able just to
use them. The point is there is no chance to modify the number after registering
the mark then the professor must be so sure when he/she is going to submit a mark
for a student.

• Search for a student, which is the basic function for a professor that wants
to register a mark. The professor can search by the name or student id. The
list of matched students with search criteria would be displayed in a table.

• Adding a mark for a student, when the list of students displayed on the
table, there is a call to action link for each student that the professor can click
over it and a modal of mark registration would be open. After than that, the
professor id, student id is already filled up and the professor can select the
course and enter the mark value. In the end, it can submit the form to save
the transaction over the blockchain.

Public layout components: the public part of the platform is an interface for
visitors to come over there and use the block explorer for querying. in terms of
development approach all the public components are developed exactly the same as
other parts with one big difference which is there are no token and authentications
on its requests.

• Search for student which is generally the same as explained in the profes-
sor’s layout while it does not send the token in it has access to request the
read-only endpoints, for example, it is possible to fetch a certification of a
student. also, it is impossible to register a mark via search in the public area.

• Viewing the list of marks of a student when the search request processed
and responded by the server, this response contains a list of marks for a student
who is matched. this list of marks is displayed in a table of course as a part of
certifications. besides, each course is displayed by a name and mark for each
row.

• Viewing the certification of a student which is a mock-up template that
shows that the searched student is graduated or not and to which university
does he/she belongs. also, by using the previous section, it is possible to figure
out what are the list of courses which are passed or not passed. the point is
this certification is generated based on the block information of a blockchain
which is not possible to change them.

• Sing In the Administrator and professors can sign into the platform. this
process is provided by sign in component which takes the user name and

48

4.6 – Error Handling

password ans send them to the server. then it waits for a response from server
to verify the authentication request or to reject it.

Every one of the layouts has a bunch of other small functionalities which are not
mentioned above while they are available in the final code and design.

4.5.2 Block Explorer Components
The most of the components are mentioned in public layout that they work with
blockchain to retrieve data. While any of them can be categorized as block explorer
components. The reason is that these components fetching data from blockchain
and displaying on the screen. also, there is a group of components that they work
in between to serve other requests as follows:

• Reloading the chain, It is a function that reloads the chain to get the
last updated version of data and display in a proper way on the screen. This
function would call an endpoint without any authentication and that endpoint
replies by a JSON message that contains all the blocks of the chain, list of
pending transactions, and chain configuration.

• Transaction explorer, Since every transaction carries information of a reg-
istered mark for a student, there should be a small function that retrieves only
this small data. this job is done by Transaction Explorer that get an Id, or
name of student or course name then returns the transaction information.

Besides, a bunch of other functionalities is developed that is not mentioned here
and for more details about them, you can see in the code.

4.6 Error Handling
The error handling is managed in fronted and backend in a similar way with a bit
of difference. for example, the validation error is provided by data models while in
meanwhile the frontend tried to prevent sending the wrong format of data as much
as possible. therefore, errors are divided into three main categories such as

• Throwing Exceptions: an error (predefined or user-defined) can be raised
using the throw statement. it is used when the error is happening in a critical
section.

• Exception Handling: which is accomplished with a try...catch statement.
it is applied in most of places to avoid the crash of application.

• Customised Errors: showing the error message based on the runtime like
404, 504 and others. In this case, the error message is customized based on
the targeted event by using throw a new error.

49

4 – Chapter Four: Application Development

Regarding the HTTP requests, the promises package is used which gives us a
cleaner way to handle errors. Instead of having to handle errors for every single
operation, it is possible to clean up this code by doing it at the end of multiple
operations. it also provides the HTTP error handler for many promise-based routes.
when there are two HTTP routes that are just basic CRUD operations over our
database. because instead of handling all errors independently, the application wants
to handle all errors in one single function. in the end, this error handler used in the
routes to have a single global error handler, so all error handling logic will live in
the same place.

50

Chapter 5

Conclusions and Future works

The blockchain is used in different sectors and mainly in the finance market and
all sorts of the applications which are developed by blockchain are allowing people
to secure their digital relationships more than it was before. Data is being disclosed
differently, secured differently and recorded differently. This concept is changing
digital relationships, creating the ability for them to be automated in code via
smart contracts and etc.

At the end of this implementation of thesis we got the following results:

• It is possible to authorize the certification of graduated stu-dents by
blockchain technology

it means for different universities to share their public data together by creating
a decentralized blockchain network of universities and sharing some services
and databases together that would be also possible to make them available for
the public.

• It is possible to expand this case study for other sectors

it means not only the student certification even though all the other sorts of
a document can be stored and verified by using blockchain technology. Some
services such as declaration letters or any other documents that somebody
needs to verify a piece of information could be a fitted candidate service to
publish via a block explorer of a blockchain.

• Do not store all the data in chain

it means by storing some data off the chain, mainly low and second-order
priority information. it would help to reduce the complexity of the application
and it would make the development process to be faster and easier, meanwhile,
it would not have a significant effect in security and losing data. it is like a
trade-off but a good option for productivity enhancements.

51

5 – Conclusions and Future works

Future Works
As future tasks, implementing the same functionalities or services in other sections
would help people to improve the performance of their workflows in universities or
any other organizations. It would right task to work more on expanding the func-
tionalities and enhancing the capabilities of developed application mainly in terms
of data security and network security management. Also, the recalling the network
or application is challenging transitions period especially in blockchain because it
would produce a huge amount of data and not easy to maintain then working in
this area would be a good candidate for future works.

52

Appendix A

Coding Style and Review

Execution Scripts
A bunch of scripts is provided that by executing them in a proper place, it would
be possible to run the application and use it in the right way. In the backend side,
two scripts are provided one for executing the application test and another one is
for launching a new node. Blockchain Network and Application Execution Script
A.1.

1 " s c r i p t s " : {
2 " t e s t " : " mocha dev/ t e s t " ,
3 " node_platform " : " nodemon −−watch dev −e j s dev/app . j s 9000 http ://

l o c a l h o s t : 9 0 0 0 " ,
4 " node_1 " : " nodemon −−watch dev −e j s dev/app . j s 3001 http :// l o c a l h o s t

: 3 0 0 1 " ,
5 " node_2 " : " nodemon −−watch dev −e j s dev/app . j s 3002 http :// l o c a l h o s t

: 3 0 0 2 " ,
6 " node_3 " : " nodemon −−watch dev −e j s dev/app . j s 3003 http :// l o c a l h o s t

: 3 0 0 3 " ,
7 " node_4 " : " nodemon −−watch dev −e j s dev/app . j s 3004 http :// l o c a l h o s t

: 3 0 0 4 " ,
8 " node_5 " : " nodemon −−watch dev −e j s dev/app . j s 3005 http :// l o c a l h o s t

: 3005 "
9 } ,

Figure A.1: Application and Network Execution Scripts.

In frontend side just one script for running the frontend of application is provided.

• run: "npm start"

53

A – Coding Style and Review

Styling of components
The styling of components can be done in different ways like inline CSS, developing
by SASS language or pure CSS in a separate file. At this thesis implementation,
a combination of pure CSS and building a set of styled components are used to
reduce the complexity of the project in the frontend side. The following criteria are
considered for implementation:

• BEM (Block, Element, and Modifier) mythology is applied wherever a
sort of style was required to have a style for a component. This methodology
helps to have a clear name convention and understanding of component layout.

• Building Styled Components a couple of components are atomic and
completely independent are developed as styled components.

• Styling File Managements In this implementation all the CSS selectors
are defined in a separate file and then imported in component. The advantage
is that few amounts of global CSS are attached to page and error handling is
easier and faster.

Context API and state management
Context is a new React feature that allows you to share state between components.
It provides the access to the context regardless of whether the component is a direct
child of the context. While Context is used for global state [19].

Why is Context API used in this thesis?
First of all, it was a trade-off for considering whether to use Context or Redux.
Based on the following resaons, the Context API which provides a lot of the same
functionality as Redux with some additional benefits, the context API is choosen to
be used for state management of application.

• Complexity Redux is a powerful tool, but here is only needed a simple
shared state such as application alerts or a logged-in user, context is a simpler
place to start. The application set state uses a simple setState function rather
than a web of actions and reducers.

• Testability Since context is built in to the React API, it is easy to test.
Also, it will render components using the real ReactDOM API rather than
attempting to mock out context.

54

A – Coding Style and Review

• Readability Because context uses render props instead of a higher-order
function, it is easier to see which props are getting passed in to our components,
and where they are coming from.

Codde Linter Configuration
ESLint is an open source JavaScript linting utility originally created by Nicholas
C. Zakas in June 2013 [20]. Code linting is a type of static analysis that is fre-
quently used to find problematic patterns or code that doesn’t adhere to certain
style guidelines.

The primary reason ESLint was used in this thesis was to allow us to apply
our own linting rules completely pluggable and following the same pattern during
the development process. It used for both frontend and backend parts of the code.
Coding Linter Configurations and reasons to use them A.2.

55

A – Coding Style and Review

1 {
2 " extends " : " e s l i n t : recommended " ,
3 " r u l e s " : {
4 " eqeqeq " : " e r r o r " , // Require === and !== (eqeqeq)
5 " camelcase " : [" e r r o r " , { " p r o p e r t i e s " : " always " }] , // e n f o r c e s

camelcase s t y l e f o r property names (variableName)
6 " no−var " : " e r r o r " ,
7 " semi " : [2 , " always "] , // r e q u i r e s semico lons at the end o f

statements
8 " no−undef " : " e r r o r " ,
9 " no−undef ined " : " e r r o r " , // Disa l low Use o f undef ined Var iab le

10 " no−unused−vars " : " e r r o r " ,
11 " no−conso l e " : " e r r o r " , // Aviod conso l e . l og / e r r o r /warn to be in

code
12 " no−constant−cond i t i on " : [" e r r o r " , { " checkLoops " : f a l s e }] , //

Avoids the loops becasue o f f i x e d cond i t i on l i k e i f (t rue) . . .
13 " no−dupe−args " : " e r r o r " , // input args o f func t i on
14 " no−dupe−keys " : " e r r o r " , // keys i n s i d e an ob j e c t
15 " use−i snan " : " e r r o r " , // use isNaN (foo) to check the value
16 " no−eq−n u l l " : " e r r o r " ,
17 " no−extra−semi " : " e r r o r " ,
18 " no−empty " : " e r r o r " , // No empty block
19 " no−unreachable " : " e r r o r " , // de t e c t the unreachable code
20 " array−ca l lback −re turn " : " e r r o r " , // Enforces re turn statements in

c a l l b a c k s o f a r r a y s methods
21 " block−scoped−var " : " e r r o r " , // This r u l e aims to reduce the usage

o f v a r i a b l e s ou t s i d e o f t h e i r b inding context and emulate
t r a d i t i o n a l b lock scope from other languages .

22 " i n i t −d e c l a r a t i o n s " : [" e r r o r " , " always "] ,
23 " ca l lback −re turn " : " e r r o r " , // Enforce Return After Cal lback
24 " handle−ca l lback −e r r " : " e r r o r " ,
25 " no−unused−e x p r e s s i o n s " : " e r r o r " ,
26 " no−u s e l e s s −con s t ruc to r " : " e r r o r " ,
27 " no−u s e l e s s −concat " : " e r r o r " , // Disa l low unnecessary concatenat ion

o f s t r i n g s
28 "max−statements−per−l i n e " : [" e r r o r " , { "max " : 1 }] ,
29 " no−th i s −before −super " : " e r r o r " ,
30 " no−r e d e c l a r e " : " e r r o r " , // d i s a l l o w v a r i a b l e re−d e c l a r a t i o n
31 " no−dup l i ca te −imports " : " e r r o r " ,
32 "comma−dangle " : [" e r r o r " , " never "] , // r e q u i r e or d i s a l l o w t r a i l i n g

commas
33 " indent " : [" e r r o r " , 2] , // Space d i s t ance o f each l i n e from l e f t =

2 spaces a tab
34 " semi−spac ing " : [" e r r o r " , {" be f o r e " : f a l s e , " a f t e r " : t rue }] ,
35 " no−extra−parens " : " e r r o r " , // unnecessary parenthese s
36 " arrow−spac ing " : [" e r r o r " , { " be f o r e " : true , " a f t e r " : t rue }] ,
37 " arrow−parens " : [" e r r o r " , " as−needed "] ,
38 " arrow−body−s t y l e " : [" e r r o r " , " as−needed "] ,
39 " eo l −l a s t " : [" e r r o r " , " always "] , // r e q u i r e or d i s a l l o w newl ine at

the end o f f i l e s
40 " space−before −funct ion −paren " : [" e r r o r " , {" anonymous " : " always " , "

named " : " never " , " asyncArrow " : " never " }] , // Require a space
be f o r e func t i on p a r e n t h e s i s

41 "comma−spac ing " : [" e r r o r " , { " be f o r e " : f a l s e , " a f t e r " : t rue }]
42 }
43 }

Figure A.2: High Priorities JS Functionalities and Coding Style Rules.

56

Bibliography

[1] I. Bashir, Mastering Blockchain, second edition, 2018.
[2] B. Brakeville, Sloane; Perepa, Bhargav, Blockchain basics introduction to dis-

tributed ledgers, IBM Developer. IBM. Retrieved 25 Sep 2018.
[3] D. David Mills, K. Kathy Wang, B. Brendan Malone, A. Anjana Ravi,

Distributed Ledger Technology in Payments, Clearing, and Settlement, FEDS
Working Paper No. 2016-095.

[4] Y. Guo, C. Liang, Blockchain application and outlook in the banking industry,
Financial Innovation, Springer, 2016.

[5] B. BlockchainHub, Blockchain Explained - Intro for Beginners Guide to
Blockchain, blockchainhub.net, 2019.

[6] S. Satoshi Nakamoto, Bitcoin white paper: A Peer-to-Peer Electronic Cash
System, www.bitcoin.org, 2008.

[7] M. Piekarska, Hyperledger Blockchain Technology for Business , Hyperledger
Wiki, wiki.hyperledger.org, Feb, 2019.

[8] B. Carson, M. Higginson., Blockchain explained: What it is and isn’t, and why
it matters, McKinsey Insights, 2019.

[9] X. Olleros, M. Zhegu, Research Handbook on Digital Transformations , Chel-
tenham 2016.

[10] G. Gabsion, Policy Considerations for the Blockchain Technology Public and
Private Applications , 19 SMU Sci. Tech. L. Rev. 327, 2016.

[11] S. Tabrizi , A Next-Generation Smart Contract and Decentralized Application
Platform , Ethereum white paper, ethereum.org, 2016.

[12] B. BigchainDB GmbH , BigchainDB 2.0 , The Blockchain Database,
BigchainDB white paper, Berlin, Germany, Paper version 1.0, May 2018.

[13] C. Chain Inc., Chain Protocol Whitepaper, version 1.2, 2019.
[14] R. Gendal Brown , The Corda Platform: An Introduction, Corda white paper,

May, 2018.
[15] R. Creighton , Domus Tower Blockchain (DRAFT), Domus Tower white paper,

Domus Tower Inc. San Francisco CA, USA, March 28, 2016.
[16] Blockstream , Elements Blockchain or Sidechain solution, Elements Project

website, 2019.

57

Bibliography

[17] C. Kuhlman, B. Bollen, Hyperledger Burrow (formerly eris-db), HIP identifier
Burrow, the permissionable smart contract machine, 2017.

[18] Coinprism, Inc., Openchain Documentation, Revision 49adcb2a, 2015.
[19] Facebook Inc., REACTJS Context API Management, A JavaScript library for

building user interfaces, 2019.
[20] N. C. Zakas, JS Foundation, ESLinter Documentation, A pluggable linting

utility for JavaScript, 2013.
[21] B. Yokubov, Blockchain based storage of students career, Blockchain based

storage of students career, 2019.

58

	List of Tables
	List of Figures
	Chapter One: Introducing the Blockchain Technology
	What is blockchain and basic concepts
	Blockchain data structure
	Types of Blockchain
	Decentralizations and blockchain
	Introducing Bitcoin
	Transactions and mining
	Smart contract
	Use cases of blockchain
	Summary

	Chapter Two: Blockchain Development Frameworks and Tools
	Hyperledger
	Ethereum Platform
	BigchainDB Platform
	Chain Core Platform
	Corda Platform
	Domus-Tower Platform
	Elements Blockchain Platform
	Monax Platform (Erisdb)
	Openchain Platform
	Similar works
	Summary

	Chapter Three: Problem Definitions and Software Design
	Problem Definition
	Software Design and Software Architecture
	Block of Data
	Genesis Block of Chain
	Functionalities of University Blockchain

	Chapter Four: Application Development
	Development Strategy
	Stack of Technology
	Blockchain and Network Functionalities
	Backend Functionalities
	Decentralized Blockchain Networking API
	Platform and Authentication API
	Testing Endpoints

	Frontend Functionalities
	Developing the Layout Components
	Block Explorer Components

	Error Handling

	Conclusions and Future works
	Coding Style and Review
	Bibliography

