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Summary

Hyperspectral Imaging is acquisition of variety of wavelengths spectral response
per each pixel in an image. For example, human eye perceives visible light as a
three band signal of low frequencies (red), medium frequencies (green), and high
frequencies (blue). Beyond these three spectrum, hyperspectral images include vast
number of spectral bands, result in a large volumetric data set. Similarly to video
data signals from the 3D nature prospect, it is very important to encode efficiently
hyperspectral images from the storage and transmission point of view as they are
usually transmitted over space links or must be generated, processed, and stored
in devices with limited resources.

In general, lossy coding of hyperspectral images is divided into two categories of
fixed transforms, and content-aware adaptive transforms. These lossy compression
methods are mostly transform coding based that means the input data is reversibly
transformed in a new domain such that data content is more accurately reflects and
also signal/data energy is more concentrated. Comparing to different conventional
coding schemes, codding data based on Graph Signal Processing is a leveraging
field of compression methods that has been shown to easily outperform traditional
methods, but the overhead of graph transmission also outweigh the coding efficiency
benefit.

Today’s challenging data types being eligible to be represented on a graph, such
as Hyperspectral images, Video, wireless sensor network, and social media data are
growing increasingly and in this thesis, it is attempted to evaluate samples of hy-
perspectral images from the scratch to find the strongest correlation direction and
signal sets to uncorrelate using Graph Signal Processing algorithms, and coming
up with a sparse representation of image data on graph based on a graph structure
which meets the trade of between sparseness-off image graph representation and
final coding efficiency considering the transform graph to be transmitted as side-
information to decoder.

Based on recent literature and research, from the set of Graph Signal Process-
ing tool, Graph wavelet and a combination of it with Karhunen–Loève transform
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(KLT) and JPEG2000 has been applied with good performance on hyperspectral
images. In this thesis, Graph Fourier Transform(GFT) is used as transform in
graph domain and a spectral vector created based on mean value of each spatial
plane is used to learn the graph transform. Coding performance is determined in
terms of rate-distortion and edge weigh metric performance as percentage of re-
trieved energy and PSNR of decoded image.

In this thesis, basic evaluations are done on a spectral vector GFT. To exploit
correlation of data in both spatial and spectral dimensions, a 3D graph structure
is proposed, and 2 different coding schemes based on this 3D structure are intro-
duced and evaluated. 3D versions of the coder differ in updating spatial transform
strategy and segmentation of water and sand areas spectral signature.

Based on the evaluations, using the given vector graph structure, rate-distortion
is approximated based on bitplane entropy and it is shown how this scheme out-
performs other schemes applied on the same dataset, if sufficient number of GFT
coefficients are taken. in 3D mode with water area segmentation, taking more than
80 percent of coefficients, it outperforms all existing coding schemes and taking
60-75% of coefficients, it gradually degrades to the same performance of coding
schemes based on GraphBior, KLT, DWT, and their combinations. However, pro-
posed low-complexity 3D-GFT behaves very stable and has an acceptable compet-
itive performance in low and high bitrate setting.
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Chapter 1

Introduction

1.1 Motivation
Coding of huge volumetric data has always been on demand for different data

types. There is a vast majority of data types being eligible to be represented, pro-
cessed and consecutively compressed using GSP methods. These data types are
not only becoming more popular due to increasing amount of data generated by
wireless sensors, social networks, videos and satellites with vast application in agri-
culture, eye care, food processing, mineralogy, surveillance, astronomy, chemical
imaging, and environment also very important to transmit and store in an efficient
way. Considering a spectroscopy application of a fairly small map area, or transmit-
ting or locally storing hyperspectral images on satellite links, compression of these
images using a method providing random access and excellent coding performance
with low complexity, considerably reduces the power consumption of space links
and satellites.
In general, when a GFT is to be considered as transform, two key problems arise
to be measured for such a compression scheme. Side information overhead intro-
duced by graph transform and complexity of transform. A GFT of a line graph is
equivalent to 1D DCT, and 2D DCT is one possible transform matrix for 2D GFT.
Complexity of the encoder strongly relays on the number of individual GFT matri-
ces to be calculated. Therefore, a constant effort is always made by researchers to
find a sparse light transform graph which preserves image quality using a reason-
able bitrate.
Moreover, since GFT and other GSP transform has been shown to preserve dis-
continuities better than conventional codding schemes, graph based compression is
well received by researchers. On 2D images, it has been proved [11] that predictive
GFT compression outperforms other compression methods. There it drives the
motivation to test and implement GFT compression scheme for 3D hyperspectral
images as well, and check how good it performs with a reasonable compromise on
complexity and transform graph structure.
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1 – Introduction

It is worthy to mention that in this thesis, basic implementation of GFT on hy-
perspectral images is assessed and mixing GFT with other sophisticated coding
schemes on different dimensionality like in [23] to improve compression performance
is neglected for the first parts where vector spectral graphs are taken as signals to
decorrelate. On the other hand, a 3D GFT graph structure and 2 different coding
schemes are proposed and evaluated to exploit correlation in both spectral and spa-
tial dimensions. 3D coders benefit from coupling with JPEG2000 compression for
some parts where integrity and SNR of reference layers are important .These differ-
ent approaches to select a sparse transform graph and corresponding compression
performance in terms of rate-distortion metric are finally evaluated.

1.2 Objective
Goal of this thesis is to evaluate the coding performance of GFT on hyperspectral

images. It has been shown in many cases that GFT benefits from the better sparse
representation of discontinuities and therefore very sparse representation of image
on a graph signal structure. Although, the transform graph coding and its trans-
mission to decoder side, cannot be neglected, since it introduces a large amount of
overhead and easily outweighs the coding efficiency. In addition, to the best of our
knowledge, a simple GFT has not been tested to compress hyperspectral images
up to the date of publishing this thesis. Accordingly, there exists no knowledge
about the complication of choosing a good graph transform in this type of images,
coding performance on natural and piece-wise smooth images, and compression per-
formance of simple GFT coder on hyperspectral images without segmentation of
image in spectral or spatial dimension. In figure 1.1 naming of different dimensions
and processing directions are shown which are going to be used in this thesis.

2



1.3 – Thesis outline

Figure 1.1: Naming of hyperspectral image dimensions scanning.
Source: https://en.wikipedia.org/wiki/File:AcquisitionTechniques.jpg

During the implementation of GFT for hyperspectral images, a fast bitplane
encoder is developed to estimate the corresponding bitrate for different coding
schemes.

1.3 Thesis outline
This thesis is written in 5 chapters. In chapter 2, background of the subject is

given in two main section. First, Graph signal processing and specifically Graph
Fourier Transform is introduced. It follows with a section on Hyperspectral image
basics and hyperspectral image compression.

In chapter 3, firstly correlation of hyperspectral image samples in different di-
mensions are evaluated. Then relation and change trend of correlation in different
directions are discussed. This correlation evaluation is specially important to choose
a direction of a vector/matrix as a basis to learn the graph transform. Also, pro-
posed approach to produce the transform graph and use it to find a sparse graph
representation of hyperspectral images are developed.
Also, some intermediate calculations regarding the coding efficiency and perfor-
mance of coding schemes are done in terms of edge weigh metric performance as
percentage of retrieved energy and PSNR.
In addition, Cauchy weight function is compared regarding the edge weight metrics
to Gaussian Function. At the end of this chapter, a 3D graph structure is proposed
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1 – Introduction

which is followed by 2 coding schemes to exploit this 3D transform for the sake of
exploiting correlation on both spectral and spatial dimensions.

In chapter 4, result of discussed coding schemes in chapter 3 are reported re-
garding the compression performance. This is basically determined in terms of
rate-distortion corresponding to different selection of transform graph and different
percentage of codded coefficients taken into account as a metric to control amount
of lossyness. These results are reported separately for vector GFT and 3D GFT
transform coders.

In the last chapter 5, conclusion and a general comparison made between the
compression scheme proposed in this thesis and other recent compression performed
by other researchers on the same dataset.
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Chapter 2

Background

2.1 Graph transforms
Field of Signal Processing on Graphs founded in 2013 [20] and since then, well

received by researchers and industries due to interesting capability of handling high-
dimensional data. Nowadays, crazing increase in the number of high-dimensional
data where naturally rise the capacity to be represented on vertices and nodes of
a weighted graph demands to investigate the application of GSP such as GFT and
Graph wavelet transform on eligible datasets and discover the possible potential
use cases. Application of Graph Signal Processing has still been warmly welcomed
and catch interests as it has been deeply discussed in [17]. Ability of transform-
ing high-dimensional data to a sparse graph representation using Graph Transform
tools is also considered by original authors [20] in a survey on recent transform
based compression schemes [19].
Since we are addressing lossy compression, transform coding is used to transform
data in new sparse representation domain. According to vast application of Fourier
Transform in time domain, this transform is also introduced in graph domain and
called GFT.
A graph is composed of nodes (vertices) and Edges. Let us set Graph G = (V, E)
where |V | = N is a set of nodes and E ⊂ V × V is the set of corresponding edges
between these nodes. Each edge of this graph can be associated with a weight
which describes the similarity and connection between two end nodes of this edge.
Therefore, an image as a 2D signal, can be represented on a 2D graph assuming
that each pixel of the image is a node of the graph which is connected to its 4
neighbours. Edge weight of the graph is calculated based on the similarity of the
neighbour pixels (nodes) using either Cauchy function 2.1 or Gaussian function 2.2

Cauchy function:ωij = 1
1 + (dij

α
)2

(2.1)
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2 – Background

Gaussian function:ωij = e−
d2

ij

σ2 (2.2)

where dij is the Euclidean distance between pixel i and j (dij = |fi − fj|) and α
and σ are parameter to set weight sensitivity to intensity difference as explained in
[5].

W ∈ ℜN×N is the matrix of all weights called adjacency matrix. Therefore, a
graph and an image can be represented using its adjacency matrix where ωij repre-
sents the weight of the edge between nodes i and j and ωij = 0 if there is no edge
(connection) between to nodes.
The graph Laplacian is defined as L = D − W where D is a diagonal matrix called
degree matrix. The ith diagonal element di in D is the sum of all edges incident to
node i. Accordingly, signal f : V → ℜ on N nodes of graph, can be represented by
vector f ∈ ℜN where the ith component of vector f stands for signal value at the
ith position vertex in V .

In graph domain, equivalent of Fourier Transform in time domain is called Graph
Fourier Transform. GFT ˆ︁f of given signal f ∈ ℜN is defined as:

ˆ︁f = U f (2.3)

where U is the matrix whose rows are eigenvectors of the graph Laplacian L.
Inverse graph Fourier Transform is also given as:

f = UTˆ︁f (2.4)

It is worthy to mention that if λis are eigenvalues and uis are eigenvectors of
the Laplacian matrix L, those can be consequently assumed as frequencies and
variation across the graph. The set {λ0, λ1, ..., λN−1} is the spectrum of Laplacian
graph.

2.2 Compression of hyperspectral images
In general, coding of hyperspectral images [22, 9, 18, 10, 24, 7, 8, 23] is divided

into two categories of content-aware adaptive compressions and fixed methods.
First, coding schemes that are not content aware and the transform basis is fixed
like Discrete Wavelet Transform (DWT). This category of coders do not adapt
the transform basis to the nature of input signal and regardless of the signal they
use a same transform. These category of compression methods can typically be

6



2.2 – Compression of hyperspectral images

implemented in low complexity. On the other hand, there are signal adaptive com-
pression methods that adapt transform basis to get a sparser representation of the
signal like Karhunen–Loève transform (KLT). This category basically suffers from
computation complexity introduced by adaptivity ability.

In graph domain, compression schemes using GSP proposed like in [23] where
graph wavelet transform mixture with KLT and JPEG2000 is used on different
pair selection of dimensions to achieve good rate-distortion. In the same manner,
GFT can be exploited in compression of hyperspectral images which additionally
benefits from the adaptivity to the input signal nature referring to the production
of transform matrix basis. If Fourier Transform matrix/vector is selected per input
signal, maximum adaptivity is then employed.

Given that the correlation in spectral direction is more than spatial frames, It
is important to select the signal chunks and transform (uncorrelate) them in this
direction. Although, there is an option to perform separate coding in spectral
and spatial direction when talking about hyperspectral images. For example, a
1D transform can be applied in spectral dimension and then a 2D transform can
be used to uncorrelate spatial data. It is important, to always exploit the better
(signal-adaptive here) compression method in the direction carries bigger correla-
tion (spectral dimension here), and let the other directions being encoded using
simpler coding schemes. However, in this thesis avoiding complexity of separate
compression on different dimensions, a GFT is applied on the spectral dimension
as it is proved in following chapters, that correlation is more significant in spectral
dimension.

Apart from exclusive effort made on lossless compression of data in order to pre-
serve their exact quality, a lossy compression method allows for higher compression
ratio and more flexibility to use transform based compression approaches to make
a scalable compression method.

So far, it has been shown that using variations of KLT in spectral domain cou-
pled with JPEG2000 [13] or other simple compression techniques achieve best rate-
distortion on hyperspectral images. In order to reduce KLT complexity, many
other variations of KLT like spatially sub-sampled KLT [18], low complexity KLT
[12], spectrally sub-sampled KLT [7, 8], and also specially crafted transform [2] are
proposed and shown to have an acceptable compression performance as transform
based lossy compression methods. In addition, substituting KLT with DWT [3, 16,
14], or DCT [1, 15] followed by spatial compression is investigated.

In all mentioned compression schemes, it is well determined, how smooth is hy-
perspectral image in different regions. A piecewise smooth image allows for a clever

7



2 – Background

selection of shared adapted transform basis in case that the transform is content-
aware. To perceive the regions of smoothness, a correlation discovery amongst
spectral dimension can be done. Additionally, in spatial domain a simple segmen-
tation procedure must be taken to segment areas with similar or the same material
wavelength.

In the following chapter, we firstly investigate the correlation of hyperspectral
images in different directions spatially and spectrally. The correlation and changes
in correlation is being discussed to gain a better understanding of image nature.
Then a graph Fourier Transform is applied on the selection of image data. Then
amount of de-correlation will be examined by calculating the correlation in the
same direction on encoded image. De-correlated image then undergoes three exam-
ination of percentage of preserved energy with reference to original image, PSNR,
and bitrate. As a handle to scale the lossyness, a percentage of GFT coefficients
will be taken from encoded data and the rest is cut away (set to zero). There-
fore, aforementioned metrics are evaluated in function of percentage of taken GFT
coefficients. AT final stage, a quick approximation of bitrate is made on coded
data to predict the achievable bitrate using an optimal entropy codding scheme.
Results are then related to former PSNR evaluations and a rate-distortion curve
will be calculated. The coding performance of this scheme will be finally compared
to other known schemes applied on the same scene.

For the sake of better comparison and well standardization, all evaluations in
this thesis are performed on scenes from AVIRIS scene 0 and scene 9 of Yellowstone
National Park in USA.

8



Chapter 3

Proposed approach

In this chapter, Firstly a GFT using a concatenation of eigenvectors of Laplacian
matrix is implemented. Laplacian matrix is learned per each signal in this run and
it is used uniquely for each signal to perform the GFT to achieve the sparsest rep-
resentation in Graph Fourier domain. The GFT is applied on each spectral vector
given all spatial pixel indices.
Images under experiment, are sc0raw and airs9 which are originally in 16-bit un-
signed format. The correlation between different pairs of vectors and frames, before
and after applying GFT are going to determined.

Then, we discuss a bit about different possible metrics to asses correlation be-
tween image signals. Since, it is crucial to know the amount of correlation remained
between image data after applying our transform based compression method, to de-
cide about the compensation could made in terms of transform matrix to lower the
overhead of its transmission, in expense of worse SNR.

In section 3.7, impact of taking dedicated Gaussian Laplacian vectors per each
spectral vector x(i, j, :) is going to be assessed, where i and j are spacial indices.
Although, it is obvious in advanced that it is not making sense to take individual
GL-Vectors1 since then all GL-Vectors must be handed in(included) to decoder for
decoding process as side-information.
In the next section 3.8, we take one more step toward quantization of coded data
and decide which data must be quantized and which not. The effect of quantization
on coded images using shared mean GL-vector and dedicated GL-vectors will be
evaluated in terms of codding performance.

In continue, a short evaluation of using Cauchy weight function instead of Gaus-
sian on a sample image is done and results are compared accordingly. At the end

1Gaussian Laplacian vectors

9



3 – Proposed approach

of this chapter, final 3D graph structure which exploits both spectral and spatial
correlation of data is introduced. This is followed by explanation of 2 proposed
encoding and decoding schemes for 3D GFT transform coder. 3D versions of the
coder differ in the sense of updating spatial transform strategy and segmentation
of water and sand areas spectral signature.

3.1 Metric explanation
Basically, there are 3 possible correlation related metrics for image signals:

1. Correlation

2. Normalized correlation

3. Structural Similarity Index (SSIM)

3.1.1 Correlation:

Rxy(m) = E{xn+m.y⋆
n} (3.1)

Rxy(m) Is cross-correlation of two discrete-time sequences, x and y. Cross-
correlation measures the similarity between x and shifted (lagged) copies of y as a
function of the lag. Since, we are looking for similarity of two instance of still images
(either vector or frame), the lag zero is only important. Because, other lag values
stand for similarities for shifted versions of two signals in different directions over
each other. Typically, for 2D data, xcorr2 MATLAB command is used, which can
shift in X and Y directions independently. But here, it is not useful since we only
want to calculate correlation at zero lag. The fastest way, would be using xcorr
MATLAB function with lag limited to zero only and vectorize our 2D data using
data(:) syntax. So, for both 2D and vector data we use syntax: xcorr(x(:), y(:))
to compute correlation. The following figure, shows the correlations between every
two consecutive spectral bands of a hyper-spectral image. These frame bands can
be shown as x(:, :, i) and y(:, :, i + 1) in hyper-spectral indexing.
In this thesis, all correlations are evaluated using MATLAB command xcorr(x(:
), y(:),0) which returns cross-correlation of two vector signals x and y with lag zero.
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3.1 – Metric explanation

Figure 3.1: Cross correlation of two spectral bands in lag=0.

3.1.2 Normalized correlation:

Rxy,coeff (m) = Rxy(m)√︂
Rxx(0)Ryy(0)

(3.2)

Normalized correlation, normalizes the sequence (for different lags) so that the
auto-correlations at zero lag equals to 1. Being known also as correlation coeffi-
cients which lies between normalized range of zero to one. It is useful to normalize
the correlation values because it is derived by products of signal element ampli-
tudes. Which is, generally not known for every signal without having a look at
original range of signal values. But, one must take care when wants to compare
to cross correlations. Because, each cross correlation is normalized using zero lag
value of itself, and comparing them in normalized span does not make sense. For
example, one cross correlation could be in range hundreds but other one may be
in range thousands, and after normalization, both are in range zero to one. The
figure below, demonstrates normalized cross correlation of two consecutive spec-
tral bands of a hyper-spectral image. Although, they look similarly, The difference
around band number 200, arises due to the normalization factor described before.
It means, that correlation values were considerably less in comparison to other val-
ues in those bands, but after normalization, since their auto-correlations were less
as well, they have been divided by smaller normalization factor and look larger
in normalized domain. This is the reason to not using normalized/coefficients for
comparison applications.
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Figure 3.2: Normalized cross correlation of two spectral bands in lag=0.

3.1.3 Structural Similarity Index (SSIM):
It is basically introduced for measuring image quality after applying transforms

and filters. But, it could be useful in our context to have a look at it. because, due
to its mathematical definition, it returns normalized results similar to normalized
correlation, but these values are comparable to each other. It is due to a gener-
ally meaningful normalization factor being used to evaluate SSIM. The MATLAB
command ssim is used to calculate similarity factor between signals. However, it
is not completely reasonable metric to reveal similarities between different signal
values. Because it is more a structural based measure, but because of having a
normalized-easy to compare measure metric, this metric is going to be used too.
SSIM is based on the computation of three terms, namely the luminance term,
the contrast term and the structural term. The overall index is a multiplicative
combination of the three terms.

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2)

(3.3)

Where, µx, µy, σx, σy, and σxy are the local means, standard deviations, and
cross-covariance for images x, and y. The figure below, shows the similarity index
for two consecutive spectral bands. Note that, it is following the correlation values
like in figure 3.1, but does not have the normalization problem, like normalized
cross correlation.
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Figure 3.3: Similarity index of two consecutive spectral bands.

3.2 Correlations evaluation
In this section, the correlation between different parts of hyper-spectral image

described in bellow scenarios are evaluated.

1. Correlation between two consecutive spectral bands. 3.2.1
These bands are shown as x(:, :, i) and x(:, :, i+1) in MATLAB hyper-spectral
matrix indexing, where i stands for index of spectral band. So, we call it
spectral correlation from now on since it has been taken between two spectral
bands.

2. Correlation between every spectral band and first spectral band.3.2.2
This means correlation of each spectral band x(:, :, i) vs first spectral band
x(:, : ,1) is evaluated.

3. Correlation between consecutive spatial column frames.3.2.3
It means, correlation is calculated between consecutive spatial columns x(:, i, :)
and x(:, i + 1, :) where i is the index of column in spatial domain.

4. Correlation between consecutive spatial row frames.3.2.4
It means, correlation is calculated between consecutive spatial rows x(i, :, :)
and x(i + 1, :, :) where i is index of row in spatial domain.
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5. Correlation between random spectral vectors.3.2.5
It means that random number of spectral vectors, shown as x(i, j, :) in MAT-
LAB hyper-spectral indexing, are taken. Indices, i, j stand for spatial index in
horizontal and vertical coordinates. Then, correlation between all these vectors
were calculated. Number of random vectors are 50, accordingly C50

2 = 1225
correlations were calculated between all spectral random vectors.

6. Correlation between random spectral vectors and their vicinities.3.2.6
The same as previous scenario, but correlation is calculated between spectral
vectors x(i, j, :) and their spatial vicinity of size 32 by 32. It means,in spatial
indexing domain x(i ± 16, j ± 16, :) responds to a rectangular vicinity of 32
by 32. Number of 332 = 1089 correlations for every one of 50 random vectors
are calculates. It is 33 to the power of two because there are 2 ∗ 16 + 1 = 33
row and column on each rectangular vicinity, where given spectral vector as
reference, lies in center of rectangle.

3.2.1 Correlation between two consecutive spectral bands
The correlation of consecutive spectral bands for coded and uncoded image of

sc0raw is demonstrated in figure 3.4a. The same values for airs9 represented in fig-
ure 3.4b.These bands are shown x(:, :, i) and x(:, :, i+1) in MATLAB hyper-spectral
matrix indexing. Applying GFT have reduced correlation by factor of 10 in sc0raw
and by factor of 17 in airs9. But still, considerable amount of correlation remained.
It is noticeable that for both coded and uncoded images, correlation decreases in
second half of spectral bands. This degradation is more noticeable in coded data.
Although, the average correlation for sc0raw after GFT is in terms of 7.3 ∗ 1011 and
6.3 ∗ 1010 for airs9, which is still noticeable correlation leftover.
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(a) sc0raw.

(b) airs9.

Figure 3.4: Correlation of two consecutive spectral bands for both coded and uncoded images

To clarify the amount of similarity in coded and uncoded images,similarity in-
dex for both sc0raw and airs9 are present below. Similarity of uncoded consecutive
spectral bands for sc0raw in figure 3.5a, similarity of uncoded consecutive spectral
bands for airs9 in figure 3.5b are shown. Structurally, these bands were so similar
initially, but the similarity can be said to be vanished significantly after applying
GFT for both cases.
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(a) sc0raw.

(b) airs9.

Figure 3.5: Similarity of two consecutive spectral bands for both coded and uncoded images

3.2.2 Correlation between every spectral band and first
spectral band

The correlation of spectral bands with respect to 1st spectral band, demon-
strated for both images in coded and uncoded state. This means correlation of
each spectral band x(:, :, i) vs first spectral band x(:, : ,1) is evaluated. As ex-
pected, increasing the index of spectral band, the amount of correlation dropped,
while increasing the band number, similarity is decreasing. Correlation for sc0raw
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presents in figure 3.6a and for airs9 in figure 3.6b. Correlation after applying GFT
dropped by factor of 304 for sc0raw and equals to 9.84∗109 in average, and dropped
by factor of 5377 for airs9 and it is −1.63 ∗ 107 after applying GFT in average.

(a) sc0raw.

(b) airs9.

Figure 3.6: Correlation of spectral bands and first spectral band for both coded and uncoded images.

Similarity index metrics, are also available below for both images. Figure 3.7a
for sc0raw and figure 3.7b for airs9. Apparently, it is less than consecutive case, but
for images airs9 it is too less in average around 0.02 for both coded and uncoded
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images. Expected drop by getting far from 1st band occurred in first half of both
images, but it recovered in second half which is a sign for similarity of far bands
from 1st band. It can be advantageous, because it means relying on first half bands
for learning transfer matrix, could be enough in these cases.

(a) sc0raw.

(b) airs9.

Figure 3.7: Similarity of spectral bands and first spectral band for both coded and uncoded images.
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3.2.3 Correlation between every spatial column frames
In this section, correlation is calculated between consecutive spatial column vec-

tors for both coded and uncoded images. This correlation is calculated between
consecutive spatial column frames x(:, i, :) and x(:, i+1, :) where i is index of column
in spatial domain. For sc0raw figure 3.8a, uncoded image, in average correlation is
2.4 ∗ 1012 and after applying GFT it decreased to 1.9 ∗ 1011. So, it dropped by
factor of 12.6 which is comparable with case of consecutive spectral bands, but not
considerable with case of spectral bands vs 1st band. For airs9 figure 3.8b, mean
correlation before coding is 1.01 ∗ 1012 and drops to 3.89 ∗ 1010 by factor of 26. In
total, correlation and de-correlation factor is a bit smaller in this direction.
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(a) sc0raw.

(b) airs9.

Figure 3.8: Correlation of two consecutive spatial columns for both coded and uncoded images.

Similarity index metrics, are also available below for both images. Figure 3.9a
for sc0raw and figure 3.9b for airs9. Similarity index for uncoded images is around
0.9 for both images, but drops to almost zero after de-correlation.
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(a) sc0raw.

(b) airs9.

Figure 3.9: Similarity of two consecutive spatial columns for both coded and uncoded images.

3.2.4 Correlation between every spatial row frames
In this section, correlation is being calculated between consecutive spatial rows

x(i, :, :) and x(i + 1, :, :) where i is index of row in spatial domain for both cod-
ded and uncoded images. For sc0raw uncoded image, correlation is 2.4 ∗ 1012 being
dropped to 1.9 ∗ 1011 by factor of 12.6, demonstrated in figure 3.10b. For airs9
uncoded image, correlation is 6.7 ∗ 1011 being dropped to 2.6 ∗ 1010 by factor of 26,
available in figure 3.10b. However, correlations are smaller in this direction, but
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de-correlation factors are slightly bigger.

(a) sc0raw.

(b) airs9.

Figure 3.10: Correlation of two consecutive spatial rows for both coded and uncoded images.

Similarity index metrics, are also available below for both images. Figure 3.11a
for sc0raw and figure 3.11b for airs9. Similarity index for uncoded images are
around 0.7 and 0.9 for sc0raw and airs9 respectively, but drop to almost zero after
de-correlation.
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(a) sc0raw.

(b) airs9.

Figure 3.11: Similarity of two consecutive spatial rows for both coded and uncoded images.

3.2.5 Correlation between random spectral vectors
In this section, correlation between random number of spectral vectors, shown

as x(i, j, :) in MATLAB hyper-spectral indexing, are calculated. Indices, i, and
j stand for spatial indices in horizontal and vertical coordinates. i, j derived
from a uniform distribution over span of horizontal and vertical spatial indices.
i ⊂ U(1 : size(image,1)) and j ⊂ U(1 : size(image,2)). This can be the most im-
portant scenario in our decision making, because correlations are computed between
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random spectral vectors which is the same direction as we applied our GFT. For
sc0raw uncoded image, correlation is 4.3 ∗ 109 in average and dropped to 1.01 ∗ 108

by factor of 42.5 which present in figure 3.12a. For airs9, correlation is 7.3 ∗ 109

in uncoded image and dropped to 9.3 ∗ 107 after de-correlation by factor of 78.4
visible in figure 3.12b. Given that it is the same direction of applying GFT, still
de-correlation factor for spectral frames versus 1st spectrum band is highest.

(a) sc0raw.

(b) airs9.

Figure 3.12: Correlation of two random spectral vectors for both coded and uncoded images.
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3.2.6 Correlation between random spectral vectors and their
vicinities

In this section, correlation is computed between random spectral vectors x(i, j, :)
and spatial vectors in their spatial vicinity shown as spatial indexing domain
x(i ± 16, j ± 16, :) corresponds to a rectangular vicinity of 32 by 32. It is a 3D
surface consist of 50 items in x coordinates which are 50 random spectral vec-
tors(as reference) same as previous scenario shown as x(i, j, :), where i, j stand
for spatial indices in horizontal and vertical coordinates. In y coordinate, 1089
elements exist, per each row, which are spectral vectors in 32 by 32 vicinity of
random vectors. These vectors are sorted ascending based on Euclidean distance
from center vector. So, it is expected that by increasing the index in y coordinate
up to 1089, correlation decrease per each row (represents vicinity spectral vectors).
Euclidean distance inside spatial vicinity for two vectors x(i′, j′, :) as neighbour
spectral vector where i′ ⊂ [i − 16 : i + 16] and j′ ⊂ [j − 16 : j + 16] and y(i, j, :) as
reference random spectral vector is defined as:

Dist(x, y) =
√︂

(i′ − i)2 + (j′ − j)2

Almost always, first element of each row which is the auto-correlation of cen-
ter spectral vector, gets maximum value. Correlations for uncoded sc0raw presents
in figure 3.13a and coded sc0raw in figure 3.13b. Correlations for uncoded airs9
presents in figure 3.14a and coded one in figure 3.14b. Obviously, after coding,
correlations drop significantly for vectors in vicinity than auto-correlations which
remains constant. For example, correlation of vectors in rectangular vicinity of
image sc0raw on uncoded ones is 4.56 ∗ 109 in average while drops to 2.09 ∗ 108 in
average after codding, so dropped by factor of 21.8. These values respectively, are
4.58 ∗ 109 in average for uncoded image while drops to 1.96 ∗ 108 in average after
codding, so dropped by factor of 23.3 for image airs9.
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(a) Uncoded images.

(b) Coded image.

Figure 3.13: Correlation of random spectral vectors and their vicinity of image sc0raw.
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(a) Uncoded image .

(b) coded image.

Figure 3.14: Correlation of random spectral vectors and their vicinity of image airs9.
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3.3 Differences of coded spectral vectors
Finally, differences are evaluated between intensity of all coded random spectral

vectors shown as x(i, j, :) where i, and j stand for spatial indices in horizontal and
vertical coordinates. It is evaluated using equation: difference_coded_spectral_vector =
x(i, j, :)−x(i′, j′, :) After calculating differences, I account for number of bits needed
to store these data. This is driven by equation

Bits = floor(logmax_data
2 )

where max_data is:

max(difference_coded_spectral_vector(:, :, :))

which is maximum value of differences between all coded spectral vector intensities.
For both images sc0raw and airs9, after 100 runs with different seeds for selecting
50 random spectral vectors, revealed that in average still 16 bits are required to
store these differences. It means, that the largest difference after applying GFT is
still big in range of uncoded intensities.

3.4 Discussion on changing trends of correlation
in different directions

The changing trend of spectral correlation, between spectral frames x(:, :, i)
which is the ith spectral frame and first frame x(:, : ,1) will be discussed. It will be
assessed whether environmental factors and natural properties of the scene affect
these correlations, and in how extend it is possible to elaborate this effect. Then
we will come up with the best metric which can represent the expected trend for
this correlations and visualize the results. In section 3.6, we go forward toward the
compression aspect of using GFT method in compression of hyper-spectral images.
We first establish the compression approach and graph structure which is going to
be used during the assessment, then the performance of codding is examined by
means of preserved percentage energy of encoded and then decoded signal in terms
of percentage of GFT coefficients used in encoding. And also, PSNR of compressed
image in terms of percentage of GTF coefficients being used in encoding phase.

3.5 Looking for decreasing trend in spectral di-
rection

As we have already discussed in previous sections, the relevance of cross-correlation
value, correlation coefficient (provided by xcorr(x,y,0,’coeff’)) at lag zero), and
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structural similarity index to the comparison made for different cases and sets of
signals spectrally and spatially selected, none of them could satisfy the decreasing
trend which is expected when we calculate the correlation of a signal with respect
to first signal from that batch. In the signal selection set, except those with con-
secutive pairs of signals, others compared correlation of a signal either spatial or
spectral with respect to first signal from that environment. In such a set, it is
expected that the trend constantly decrease as signal goes far in the selection con-
text. It means, for instance for a pair of spectral signals consist of x(:, : ,1) and
x(:, :, i) where i is the spectral band index, correlation should be higher or equal
than correlation for a pair consists of x(:, : 1) and x(:, :, j) where i < j. It must be
true since the ith signal is closer to first signal x(:, :, i) than jth.

3.5.1 Possible reasons
Among the three metrics being discussed, correlation coefficient, and structural

similarity index are both normalized and cross correlation value is not. For a
not normalized value it could not be expected that the decreasing slope shows up.
Since, the correlation is evaluated numerically out of multiplication and summation
of correspondent signal values. These values are obtained in different environmental
status like if consider in visual context and a regular camera, pixels being acquired
in different illumination, brightness and even with different camera cells character-
istics, could not have meaningfully comparable correlations. It is due to the direct
impact of these factors on the signal values which alter correlation value. There are
two possible ways to ignore this difference and make the correlation comparable:

• Remove environmental effect from the signal before calculating correlation

• Normalize in a way that was globally meaningful

Remove environmental effect from the signal before calculating correla-
tion

Two possible methods to elaborate difference in environmental, camera cell, and
signal intensities could be to divide each signal by its mean, or subtract norm and
then calculate the correlation. Well, this is already done in calculation of correla-
tion in MATLAB commands.
There is also another possibility that apart form the effect of environmental fac-
tors, if either the object or the hyper-spectral camera had been moving, then the
maximum correlation which is trustworthy for comparison between spectral signals
is not located in lag zero. Because, taking lag zero in this case, is based on the as-
sumption that those two frames matched with all spatial property kept identical. If
it was the case, with the study of 2D cross-correlation for all pair of spectral frames
x(:, : ,1) and x(:, :, i) where i is the spectral band, there should be considerable
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shifts where the maximum value for the 2D cross-correlation lies with reference to
spatial center of the image. In figure 3.15 the result of 2D correlation for an image
of Sc0raw is demonstrated.

Figure 3.15: 2D spectral Cross-correlation shift from center, image for Sc0raw

The code snippet used to generate the green line showing the position of maxi-
mum cross-correlation in function of spatial position is as below:

2Dcorrelations=xcorr2(x,y);
[maxValue,MaxIndices] = max(2Dcorrelations(:));
[I_row, I_col] = ind2sub(size(2Dcorrelations),MaxIndices);

Listing 3.1: Code snippet used to extract maximum 2D cross-correlation

Where Irow and Icol are row and column index of maximum correlation in each
spectral frame.
As is shown, only in two points, a slight deviation of 1,2 pixel(s) in Y spatial
direction were found. For the all other points (lags), the maximum is located at
the center of spatial frames. Therefore, this could not be the reason that dropping
trend in the cross-correlation of spectral frames is not derived using exact cross-
correlation values.

Normalize in a way that was globally meaningful

This time, we evaluate Pearson correlation coefficient [21] and compare it with
the normalized correlation coefficient already calculated using xcorr(x,y,0,’coeff’)).
The results are show in figure 3.16 and figure 3.17. It is finally figured out that the
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normalization done by Pearson is the best which preserves characteristics of the
signal but eliminates environmental effects the best. The xcorr command gives a
normalized value, but the point is that based on equation 3.4, it normalizes each
cross-correlation so that the auto-correlations at zero lag equal 1.

Rxy,coeff (m) = Rxy(m)√︂
Rxx(0)Ryy(0)

(3.4)

Figure 3.16: Correlation coefficient of spectral bands with reference to 1st band
using xcorr command

But this implies that regardless of the real actual value of correlation, the auto-
correlation of signal are normalized to have value one in zero lag and this is exactly
where the value and worthiness for the comparison is lost for this metric. On the
other hand, using Pearson correlation coefficient, with equation 3.5 it standardizes
signal values by changing their mean and variance to fixed values.

ρxy = COV (x, y)
σx × σy

(3.5)
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Figure 3.17: Pearson Correlation Coefficient of spectral bands with reference to 1st
band

Using this standardization, one could claim that for any signal, signal values
would be first normalized in the identical extent without loosing their characteris-
tics, then a meaningful normalized correlation value is calculated which does not
carry any environmental information and solely stands for signal characteristic.

3.5.2 Conclusion on decreasing trend of spectral correla-
tions in reference to 1st band

With the results form Pearson Correlation Coefficient, it could be claimed that
this metric is good-to-know, and qualifies for the aim of comparison where the trend
of correlation changes is needed to be studied. Otherwise, the cross correlation
value without any kind of normalization or standardization, must be used when a
judgement in terms of compression cost and worthiness should be done.

3.6 Edge weight metric performance
After all, in this section the performance of GFT compression method in terms

of number of GFT coefficients being taken into account to reconstruct (decode)
the encoded image will be studied. Moreover, PSNR of an image passing through
encoding and decoding using different number of GFT coefficients will be studied.
Since the GFT mimics Fourier Transform in the Graph Signal representation do-
main, the very end coefficients stand for details and in expense of loosing some
details, a portion of them could be cut out from the end of coefficient vectors.
To construct the graph, each spectral vector denoted as x(c, r, :) is taken where
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c is the column in spatial domain, r is the row in spatial domain, and the third
index is all spectrum span, this spectral vectors are taken as signals to de-correlate
since we are interested in de-correlating in the direction which carries most if the
correlation. Nodes of our line graph are pixels in these spectral vectors and edge
values are calculated using the Gaussian function as follow:

ωij = e−
d2

ij

σ2 (3.6)

where dij = |fi − fj| is the Euclidean Distance between pixels i and j, and σ is
defined as in [6]. Since the graph should be transferred as side information to the
decoder which increases the information volume to almost as twice times bigger than
original image, a quantization or compromise should be seen to lighten the graph
size. In this evaluation, we used a single identical graph structure for all signals
to be encoded. This unique graph, is composed of means of every spectral frame
x(:, :, i) and then those values composed a line graph which is used to calculate the
adjacency matrix W and the Gaussian Laplacian Matrix L. From the eigenvectors
of this matrix L, transform matrix U is taken to calculate the GFT using f̂ = Uf
equation. The code snippet below is used to generate the average vector stands for
whole image to construct the graph:

for i=1:spectralIndex
mean_Signal(i,1)= mean(mean(image(:,:,i)));

end

Listing 3.2: Code snippet used to construct the mean signal on graph

3.6.1 Percentage of energy, in function of percentage of re-
tained coefficients

In the figure 3.18, an image from Sc0raw is codded and decoded using differ-
ent percentage of GFT coefficients and the resulting preserved energy of decoded
image is calculated and divided by the energy of original image and is reported in
percentage. The weights are not quantized in this evaluation. The graph Fourier
Transform is learned from the mentioned mean spectral vector.
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Figure 3.18: Percentage of energy, in function of percentage of retained unquantized
coefficients using mean spectral vector to learn GFT matrix

The code snippet which is used to calculate the signal energy is given in below,
and it calculates the energy by multiplying Fourier Transform of the signal by its
conjugate Fourier Transform and sums up all signal energies in the image.

function energyImg =signalEnergy(img)
F = fft(img);
pow = F.*conj(F);
energyImg=sum(sum(sum(pow)));
end

Listing 3.3: Code snippet used to calculate signal energy

The performance in function of percentage of the GFT coefficients retained is
very acceptable, since they carried close to 100 percent of the original signal energy
by only 60 percent of the coefficients. And it decrease gradually to almost 5 percent
taking less percentage of coefficients into account.

3.6.2 PSNR in function of percentage of retained coeffi-
cients

The more strict metric to evaluate the de-correlation performance is peak signal
to noise ratio (PSNR). It is evaluated in the function of different percentage of
GFT coefficients taken into account in the encoding and decoding phases. From
the described graph structure, the PSNR is evaluated in range of 2 to 98 percent
of GFT coefficients cutting from the tail of coefficient vectors. The weights are not
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quantized in this evaluation.

Figure 3.19: PSNR in function of percentage of retained unquantized coefficients
using mean spectral vector to learn GFT matrix

The psnr internal function of MATLAB is used to calculate PSNR values. It is
very satisfying since to achieve around 45dB PSNR, only 65 percent of coefficients
are enough and it could be a good point in the next decisions to perform final steps
of compression and obtain the performance in function of bitrate. In a very lossy
manner, by retaining only 2 percent of coefficients, almost 25dB is achieved.

3.7 Dedicated GL-Vectors
So far the coding performance was demonstrated in terms of PSNR and percent-

age of retained energy of decoded image in reference to original image both versus
difference percentages of coefficients. In the previous evaluations due to decrease of
side-information and based on intermediate correlation examinations, an identical
GL-Vector was used for all spectral vectors in the encoding stage. This GL-vector
was created based on mean of each spectrum plane mean(mean(x(:, :, i))) where i
is the plane index in image context and it is element index in shared GL-vector. It
is worthy to clarify, due to smaller size of the vector that this shared GL-vector is
calculated from, the mean spectral vector itself is transferred as side-information,
and in the decoder side, GL-vector is calculated based on this sample mean vector.
Therefore the sample mean spectral line graph has a known shape and structure in
the decoder side and it has the size of 1 by d where d is the length of each vector
being encoded, in this case number of spectral vectors in the hyper-spectrum im-
age.
In this section though, an individual dedicated GL-vector is taken for encoding.
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This vector is the same spectral vector under encoding, represented in graph struc-
ture and Gaussian-Laplacian is calculated based on these dedicated vectors.
In figure 3.20, the PSNR versus percentage of coefficients is demonstrated for the
case of taking dedicated GL-vectors.

Figure 3.20: PSNR vs percentages of coefficients using dedicated GL-vectors for
scene0 Yellowstone uncalibrated

In the figure 3.21, the percentage retained energy versus percentage of coefficients
is demonstrated for the case of taking dedicated GL-vectors.
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Figure 3.21: Percentage retained energy vs percentages of coefficients using dedi-
cated GL-vectors for scene0 Yellowstone uncalibrated

Based on PSNR metric, dedicated GL-vectors as it is expected improve the
PSNR when 100 percent of coefficients taken into account. However, between 50 to
80 percent of coefficients taken, shared mean GL-vectors outperforms the dedicated
ones and in other parts, there is not a noticeable improvements between shared and
dedicated GL-vectors. According to percentage of retained energy after encoding
and decoding, one can hardly find a considerable advantage of taking all dedicated
GL-vectors over the shared vectors used for compression. Overall, considering that
each GL-vector is a square matrix of size d ∗ d where d is the length of each vector
being encoded, in this case number of spectral vectors in the hyper-spectrum image.
So, for example in scene0 of Yellowstone uncalibrated, there exist 224 spectrum
planes which leads to 224 by 224 square metrics per each GL-vector. It is even
bigger than the size of image itself and makes no sense to continue with dedicated
GL-vectors either based on gain it brings or side-information size.

3.8 Quantization of coded coefficients
Up to this section, all the encoded images using GFT in this thesis, were stored

in double precision format due to not lose of data. But, since the original images
were 16-bit unsigned images, and based on the scale of encoded coefficients after
applying GFT, coefficients will be rounded to closest integer number and stored as
int16 format. The effect of quantization on dedicated GL-vectors will be determined
first, and then evaluation of PSNR and retained energy percentage in function of
percentage of coefficients taken into account will be done. Note that, due to Fourier
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Transform like inherit of encoding, coefficients are sorted decreasingly from the
beginning of each encoded vector. So the percentage of coefficients are taken from
the beginning of each vector and the rest is set to zero. Therefore, we make sure
than coefficient with higher energy and bigger values are taken when a cut is made
on coefficients. The code snippet below is used for this purpose.

function cutedImage =Cut_Image_Tail_Percentage(img,percentageOfCoeff)

w=size(img,2);
h=size(img,1);
d=size(img,3);
CoeffFraction=(100/percentageOfCoeff);

indexToCut =floor(d/CoeffFraction);
cutedImage = img;
cutedImage(:,:,indexToCut:end)=0;
end

Listing 3.4: Code snippet used to take section percentage of coefficients

In the figure 3.22, effect of quantization of coded image is visualized in term of
PSNR compared to non-quantized coded image taking dedicated GL-vectors. Also,
in the figure 3.23, this effect is demonstrated in term of percentage energy retained
for dedicated GL-vectors both in function of percentage of taken coded coefficients.

Figure 3.22: PSNR of quantized coded image using dedicated GL-vectors for scene0
Yellowstone uncalibrated
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Figure 3.23: Percentage retained energy of quantized coded image using dedicated
GL-vectors for scene0 Yellowstone uncalibrated

Based on figure 3.23 the amount of energy is almost halved in the right side
of graph where still good percentage of coefficients exist. Although, it does not
resemble a reasonable PSNR in the decoded image based on figure 3.22 as the
PSNR is constantly dropped to 23 dB.

The same evaluation is however done in the case that shared mean GL-vector is
taken for encoding all spectral vectors. Surprisingly, quantization does not have an
impact on the retained energy of decoded image as is visualized in figure 3.25. And
PSNR only drops 20 to 10 dB in the right side of graph based on figure 3.24. From
60 percent of coefficients down, there is no impact due to quantization on PSNR of
decoded image compared to full precision coded image.
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Figure 3.24: PSNR of quantized coded image using shared GL-vectors for scene0
Yellowstone uncalibrated

Figure 3.25: Percentage retained energy of quantized coded image using shared
GL-vectors for scene0 Yellowstone uncalibrated

According to these results, the quantized coded images based on shared mean
GL-vector is going to be assessed for the final section of rate distortion performance.
Still one question remains regarding the side information. This side information
which is to be transferred to decoder in extra, is a d big vector of doubles (64 bit
per value) where d = size(HyperSpectralImage,3) as number of spectrum planes
in the image. In continue, the impact of quantizing this GL-vector (actually the
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graph vector which this Gaussian-Laplacian is calculated from) on the performance
of coding is evaluated.

3.8.1 Quantization of shared GL-vector
In this part, the base vector in which shared mean GL-vector is calculated from,

is going to be quantized using uint16 (fractional parts were missed). The effect of
this quantification can be seen in the figure 3.26 in terms of PSNR and in the figure
3.27 in terms of energy retained form decoded image.

Figure 3.26: PSNR of quantized coded image and GL-vector using shared GL-
vectors for scene0 Yellowstone uncalibrated

For this cases the same as the case where dedicated quantized GL-vectors where
used, the energy is almost halved and PSNR respectively decreased to 23dB. There-
fore, the quantization of shared GL-vector is too greedy and it is better to be
transferred in double precision.
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Figure 3.27: Percentage retained energy of quantized coded image and GL-vector
using shared GL-vectors for scene0 Yellowstone uncalibrated

Note that a sophisticated quantization matrix/vector is not applied on the cod-
ded image data since the simple rounding to signed integer sounds enough for early
evaluation of the codding performance.

3.9 Cauchy weight function
In [11] it is shown that to calculate graph weighs, Cauchy weight function 2.1

outperform the Gaussian function 2.2 as it better preserves energy of original sig-
nal. To test this statement, considering transform coding is applied on sample
image AVIRIS scene0 of Yellowstone National Park USA using GFT on spectral
vectors. Then, PSNR and percentage of preserved energy are computed in function
of percentage of taken coefficients and compared to previous results using Gaus-
sian function. PSNR and amount of preserved energy for a complete coding and
decoding vector GFT are demonstrated consecutively in figure 3.28 and 3.29.
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Figure 3.28: PSNR in function of percentage of retained coefficients using Cauchy
and Gaussian weighting function

Figure 3.29: Percentage of energy in function of percentage of retained coefficients
using Cauchy and Gaussian weighting function

It is shown that Cauchy function brings some improvement in both metrics. But,
it is not going to be used in the rest of this thesis as main weighting function, since
weight values of Cauchy equation are very small and they require high resolution
of presentation, or sophisticated quantization to be used and stored.

3.10 Proposed 3D graph structure
In this section, structure of the 3D graph is introduces to achieve a sparse rep-

resentation of the image signal applying GFT on the graph domain. Let us assume
that x is given hyperspectral image of K spectral bands and spatial dimension of M.
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xi,k indicates the intensity of i-th pixel in k-th spectral band where i ∈ {1, ..., M}
and k ∈ {1, ..., K}. A graph then is represented by its vertices and links between
these vertices. A link can be spacial S or spectral F in which S ∪ F includes all
graph links and they do not have link in common.

For spatial and spectral connection of links, consider the figure 3.30. In this
structure, spectral bands are grouped every 8 bands and called group of bands
(GOB) to gain better random access and apply block-wise standard 3D-transform.

Figure 3.30: 3D graph structure

Inside each band spatially 4 connections are considered per pixel. To the left,
right, up and down sides. Considering spatial band t, weight of the link between
pixel i and j is calculated based on Gaussian function. Since spatial correlation
is almost the same amongst spectral direction, for all the band in a GOB, same
spatial edges are used to form the transform basis. On the other hand, on spectral
dimension we perform similarly to the case of spectral vector GFT and per each
pixel in first band, a spectral vector graph based on x(r, c, :) is shaped where r,c
are spacial indices. This vector is called spectral signature. Spectral weight are
calculated based on Gaussian function on this vector structure and transform basis
is also learned from a mean spectral vector similarly to previous cases of spectral
vector GFT.
It is worthy to mention, that spatial and spectral signatures which transform basis
is going to be learned from, must be sent to decoder as overhead side-information.

3.11 Encoding and decoding schemes
Based on the explained graph structure, 2 different coding schemes are proposed,

one with lower complexity and other one with higher complexity. Complexity is
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determined in sense of demand to re-calculate and update GFT transform basis as
it requires to calculate eigenvector and many multiplication operations. In both
approaches, spatial and spectral GFT basis are learned separately, then they are
coupled as a 3D transform graph basis and used to transform and de-correlate
image signal on the graph.

3.11.1 Low complexity mode
In low complexity mode, whole first band is used as reference spatial signature

to learn spatial edge weights of transform. Therefore, this first band is compressed
using JPEG2000 compression with quality factor 1, since signatures are very sensi-
ble regarding reconstruction errors and this error could lead to big performance loss
in GFT. Having first band compressed using JPEG2000, it is transferred to decoder
as side-information and its size is added to final bit per pixel per band(bpppb). For
this particular case of scene0 AVIRIS Yellow Stone, it adds a bias of 0.0221 to final
bpppb due to transition of first band. Similarly to the case of spectral vector GFT
which is used for all basic evaluation in the thesis, an average spectral vector is cal-
culated and used to learn spectral transform basis. Then, having the 3D transform
basis, picture is divided into 8x8x8 blocks and transform is applied per each block
of image. Figure shows how 3D transform low complexity is designed.
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Figure 3.31: Low complexity 3D graph coding scheme

In this scheme, first band is uniquely used to learn transform basis of GFT for
all spatial edge weights. It means, that in the time of coding or decoding each
block, spatial area in the first band corresponds to the projection of the undergoing
block transform, is taken as spatial signature to learn the spatial transform basis.
Therefore, spatial edge weight for edge between pixels i and j both in band t is
calculated based on following equation.

wS
t (i, j) = exp(−(x̂1,i − ̂x1,j)2

σ2 ) (3.7)

Where x̂1,i and ̂x1,j are corresponding pixel projections on the first band.
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In the same way, corresponding projection part of the block on average spectral
signature β is taken as reference to learn spectral transform basis. Therefore,
spectral edge weight for edge between pixels i in consecutive bands with indices k
and k + 1 is given using following equation.

wF
i (k, k + 1) = exp(−(β(k + 1) − β(k))2

σ2 ) (3.8)

where β(k + 1) and β(k) are corresponding pixels to the projection of block to
average spectral signature.

3.11.2 High complexity mode
In high complexity, there are two addition differences to make transform ba-

sis more adaptive to the input signal with almost no cost regarding the side-
information. First, when GOBs progress in spectral direction, next GOBs which
are located in preceding spectral indices, they have the chance to use their previous
spatial GOB decoded data as reference to learn spatial transform weights. In this
way, reference if learn is closer to the band and probably is more correlated to the
undergoing band transform. Based on figure 3.32, it is demonstrated that only first
layer of GOBs use JPEG2000 decoded first band as reference to learn edge weights,
but preceding ones, use their corresponding spatial area of last frame in previous
GOB.
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Figure 3.32: High complexity 3D graph coding scheme

Therefore, spatial edge weight for edge between pixels i and j both in band k
inside GOBg if g is not the first spectral group, is re-calculated based on following
equation.

wS
k (i, j) = exp(−(x̂t,i − x̂t,j)2

σ2 ) (3.9)

Where x̂t,i and x̂t,j are corresponding pixel projections on band t which is the
last band in previous GOBg−1 and all spectral weights are the same inside each
GOB.

Second improvement is related to spectral signature. Based on figure 3.33, ex-
amining two random samples of sand and water pixel spectral signature, it is found
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that they have very low correlation which is also cited in [23]. There fore a sepa-
ration is made between pixels of water and sand where spectral edge weights are
calculated. Examining band 50, using the thresholding on value 2200 and Canny
edge detector on Binary image, water areas are detected. Additional average spec-
tral signature vector is calculated for only water areas, based on pixels in water
areas of all bands only, called βp where p = 1 for water area and p = 0 for other
area which we call sand area from now on.

Figure 3.33: Difference spectral signature sand and water

Consequently, spectral edge weights are calculated based on projection to the
correct spectral average signature vector based on the location of pixel inside or
outside water contours using following formula.

wF
i (k, k + 1) = exp(−(βp(k + 1) − βp(k))2

σ2 ) (3.10)

where βp(k + 1) and βp(k) are corresponding pixels to the projection of block to
average spectral signature whether P == 1 or P == 0 then is consequently uses
water and sand spectral signature vector to learn spectral weights. In this case of
Scene0 AVIRIS Yellow Stone Park ,this adds 2.1e − 5 to the final bpppb as cost of
transmitting additional spectral signature.

The given graph structure leads to an acceptable weight performance for Graph
Fourier Transform on the Hyper-spectral images. It is due to the high correlation
and similarity of spectral and spatial frames. To bring the actual compression
performance of this method, it is required to quantize the coefficient values and
perform all possible entropy encoding and measure bitrate and evaluate the PSNR
in function of bitrate. To avoid difficulty of further compression efforts, a mapping
to bit plane could be used to estimate the bitrate based on the entropy of this bit
planes.
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Chapter 4

Results

In section 4.1, the approach to approximate the bitrate for coded images using
spectral vector GFT coder is introduced and then bitrate for different selections
of coefficient percentages will be examined. This will relate bitrate to the lately
calculated PSNR and Percent Energy retained in reference to original image. The
performance of codding is also compared to recent coding schemes offered in liter-
ature related to the same dataset.

4.1 Rate-distortion performance spectral vector
GFT

Last but not least, according to all evaluations, a signed integer quantized coded
image using shared mean GL-vector is going to be examined in terms of bitrate (bits
per pixel per band 1) versus PSNR to come up with the distortion rate of coding
scheme using GFT with mentioned arrangement.
To this end, the entropy is considered only and an approximation is used based
on mapping the coded image data to bitplane. The corresponding bitplane, then
evaluated for entropy of whole planes and this entropy is considered as approxi-
mation of an optimal entropy coder. This is an approach used to perform scalable
compression [25] and rate-controlled entropy coding of 3D video compression [4].
The snippet code below is used to shape 16bit bitplanes and add one plane layer
as 17th layer for sign since coded images are signed integers.

if(signed)
signs=img>=0;
img=abs(img);

1bpppb
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coded_data(:,:,:,1)=logical(signs);
for k=1:d

coded_data(:,:,k,2:q_bits)=reshape(logical(de2bi(img(:,:,k),
num_planes-1)),[h,w,num_planes-1]);

totalbits=totalbits+16*h*w;
end

else
for k=1:d

coded_data(:,:,k,:)=reshape(logical(de2bi(img(:,:,k),num_planes))
,[h,w,num_planes]);

totalbits=totalbits+16*h*w;
end

end

Listing 4.1: Code snippet used to create bitplane

As first insight, bitrate is shown in figure 4.1 as a function of percentage of
coefficient retained from coded image.

Figure 4.1: Bitrate VS Percentage coefficient using quantized coded image and
shared GL-vectors for scene0 Yellowstone uncalibrated

For a better comparison, this result is related to the former correspondence of
same arrangement from percentage of coefficients retained to PSNR and Percent-
age energy retained for shared GL-vector and quantized coded image. The Rate
distortion for scene 0 of Yellowstone uncalibrated is shown in figure 4.2 and bitrate
versus percentage of energy retained is shown in figure 4.3.
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Figure 4.2: Bitrate VS PSNR using quantized coded image and shared GL-vectors
for scene0 Yellowstone uncalibrated

Figure 4.3: Bitrate VS Percentage energy retained using quantized coded image
and shared GL-vectors for scene0 Yellowstone uncalibrated

4.2 Performance of 3D-GFT schemes
For proposed 3D coding schemes using water segmentation and without it, edge

weight metrics including percent preserved energy, and PSNR are calculated in
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function of percent taken coefficients. Figure 4.4 shows the comparison of preserved
energy in function of percent coefficients for GFT spectral vector, 3D low and high
complexity.

Figure 4.4: Percent preserved energy VS percent coefficients for 3D and vector GFT
coding schemes

Surprisingly, adding water segmentation does not help to retrieve energy and in
low quality factors, it results in destructive effect in reconstruction of coefficients.
So far, 3D GFT+JPEG2000 sounds very good in terms of energy.

Figure 4.5 shows the comparison of PSNR in function of percent coefficients for
GFT spectral vector, 3D low and high complexity. It seems that again without
water segmentation and spatial reference update, 3D GFT does a better job and
reaches a compromise in high number of taken coefficients to achieve acceptable
PSNR and stays steady loosing number of coefficients.
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Figure 4.5: PSNR VS percent coefficients for 3D and vector GFT coding schemes

Figure 4.6 shows the comparison of rate-distortions for GFT spectral vector,
3D low and high complexity. Although, 3D GFT with water segmentation has the
best rate in high section of quality factor, but it loses its performance in lower parts
which makes it not practical. More steady behaviour of low complexity 3D GFT
looks more like an acceptable transform coder.

Figure 4.6: Rate-distortion for 3D and vector GFT coding schemes
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Chapter 5

Conclusions

Here presents the rate-distortion result of vector spectral GFT being compared
to other coding schemes applied on Hyper-spectral images [23] on the same scene.
The result of comparison is demonstrated in figure 5.1

Figure 5.1: Comparison of GFT with shared mean GL-vector with other coding
schemes on scene0 Yellowstone uncalibrated

For the sake of comparison, if more than 80 percent of coded coefficients are
taken, the coding performance based on rate distortion results is competitive to
other schemes. Taking over 85 percent of coefficients, it easily outperforms all
coding schemes. However, when the percentage of coefficients decreases, PSNR
drops dramatically which makes this scheme not suitable for greedy lossy com-
pression. It may be rooted in the fact, that more sophisticated selection is not
made for GL-vectors. Maybe, with a content-aware algorithm spectral vectors
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been de-correlated better and results in more spars coded data and better coding
performance. Also, one may exploit correlation exists in spatial domain and apply
a separate 2D-transform on spatial domain data to decorrelate and improve this
compression scheme using GFT on spectral direction of hyperspectral images.

Finally, rate-distortion is evaluated for both offered 3D coding schemes and
compared to results of the same scene in figure 5.2.

Figure 5.2: Comparison of 3D GFT coders with other coding schemes on scene0
Yellowstone uncalibrated

As is demonstrated, amongst introduced coding schemes, low complexity 3D
GFT simulates an acceptable behaviour in low and high bitrate and stays steady
during degradation of coefficients. It outperforms, JPEG2000 and GraphBior with-
out spectral edges. The reason of unsuccessful performance of high complexity 3D
GFT, could be destructive effect of taking badly decoded spatial signatures from
previously decoded GOBs. Also specially in scene0 of Yellow stone, there are some
band which are totally ruined by noise. Taking these band as spatial signature can
ruin the PSNR for next spectral band of GOBs and significantly degrades image
quality. For further attempts, one could check the quality of band before taking it
as spatial signature and in case of high noise, take fist band alternatively, which
is detectable in decoder side without extra transmission of side-information. Also,
effect of updating spatial signature to last decoded band is not evaluated separately
than taking individual spectral signature for water regions which could be assessed
to extract and take off the destructive one and keep the advantageous technique
instead.
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Chapter 6

Important code Snippets

Here are some important code snippets ranging from general encoding and de-
coding algorithm, to how graph is shaped and Gaussian-Laplacian weights are cal-
culated.

Build Gaussian-Laplacian Matrix code snippet

function [L]=build_gaussian_laplacian(I,blk_size,sigma)
l1=size(I,1);
l2=size(I,2);
W=zeros(l1*l2);

I=double(I);
%4-regular grid
for c=1:l2 %columns

for r=1:l1 %rows
if r<l1 %vertical connections

W(r+blk_size*(c-1),r+1+blk_size*(c-1))=exp(-(I(r,c)-I(r+1,c))
^2/(2*sigma^2));

W(r+1+blk_size*(c-1),r+blk_size*(c-1))=W(r+blk_size*(c-1),r+1+
blk_size*(c-1));

end
if c<l2 %horizontal connections

W(r+blk_size*(c-1),r+blk_size*(c))=exp(-(I(r,c)-I(r,c+1))
^2/(2*sigma^2));

W(r+blk_size*(c),r+blk_size*(c-1))=W(r+blk_size*(c-1),r+
blk_size*(c));

end
end
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end

L=weight_laplacian(W);

Listing 6.1: Code snippet used to create Gaussian-Laplacian Matrix

Laplacian Weights calculation

function m = weight_laplacian(W,s)
% laplacian(W) --- get the Laplacian matrix of g, with matrix weight W
% equal to D-A where A is the adjacency matrix and D is a diagonal matrix
% of the degrees of the vertices.
% laplacian(W,’normalized’) --- get the normalized Laplacian of g

n = size(W,1);
d = W*ones(n,1);
D = -W;
% create diagonal matrix
for k=1:n

D(k,k) = d(k);
end

if nargin>1
S = zeros(n);
for v=1:n

if (d(v)>0)
S(v,v) = 1/sqrt(d(v));

else
S(v,v) = 0;

end
end
D = S*D*S;

end

m=D;

Listing 6.2: Code snippet used to create Laplacian Weights
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Encoding section

for i=1:h
for j=1:w

sample_blk(:,:,1)=img(i,j,1:blk_size);
% imagesc(sample_blk);
I_vec=sample_blk(:);
L=build_gaussian_laplacian(sample_blk,blk_size,sigma);
[V, D]=eig(L);
coef=V’*I_vec;

coded_img(i,j,:)=coef;

end
end

Listing 6.3: Code snippet used to encode whole image called "img"

Decoding section

for i=1:h
for j=1:w

coef_rec=zeros(size(coef));
coef_rec(1:floor(blk_size/1))=coef(1:floor(blk_size/1)); %we take only

the first xx% of the coefficients
I_blk_rec=V*coef_rec;
I_blk_rec=reshape(I_blk_rec,blk_size,blk_size);

end
end

Listing 6.4: Code snippet used to decode a complete image
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