
1 
 

POLITECNICO DI TORINO 
 

Master Course in Computer Engineering 

 

 

 

Master Thesis 

Machine Learning based Classification System to detect 

tampered Big Data in the context of a Simulated 

Aqueduct 

 

 

 

 

 

 

Advisor 
Prof. Paolo Ernesto Prinetto 

Candidate 
Marco Zanobini 

 

 

 

ACADEMIC YEAR 2018/2019 



2 
 

  



3 
 

Table Of Contents 
Table Of Contents ................................................................................................................................ 3 

Abstract ................................................................................................................................................ 5 

Setup .................................................................................................................................................... 6 

Cyber Range Simulated Aqueduct .................................................................................................... 6 

The Tanks ...................................................................................................................................... 6 

Pipes .............................................................................................................................................. 7 

Valves ............................................................................................................................................ 7 

Rasperry Pi 3 ................................................................................................................................. 7 

Software Requirements.................................................................................................................... 8 

SciKit-Learn Overview ................................................................................................................... 8 

Tensorflow Overview .................................................................................................................... 9 

Keras Overview ............................................................................................................................. 9 

Preliminary Analysis ....................................................................................................................... 10 

Data Collection ............................................................................................................................... 10 

Code ............................................................................................................................................ 11 

Test Client ....................................................................................................................................... 13 

Code ............................................................................................................................................ 13 

Best Practices ................................................................................................................................. 14 

Binary Check ............................................................................................................................... 14 

Model Checkpoint ....................................................................................................................... 14 

Additional Arguments ................................................................................................................. 14 

Machine Learning ............................................................................................................................... 15 

Introduction .................................................................................................................................... 15 

A deep dive into the Training Phase .............................................................................................. 15 

Data Sets ......................................................................................................................................... 16 

Classification ................................................................................................................................... 18 

F1 Score....................................................................................................................................... 19 

AUC (Area Under Curve) ............................................................................................................. 20 

First Model: Logistic Regression ........................................................................................................ 21 

Loss function for Logistic Regression ............................................................................................. 21 

Code ................................................................................................................................................ 21 

Results ............................................................................................................................................ 37 

Second Model: SVM ........................................................................................................................... 38 



4 
 

Code ................................................................................................................................................ 38 

Results ............................................................................................................................................ 46 

Third Model: Local Outlier Factor ...................................................................................................... 47 

Code ................................................................................................................................................ 48 

Results ............................................................................................................................................ 55 

Fourth Model: AutoEncoder .............................................................................................................. 56 

Basics on Neural Networks ............................................................................................................. 56 

Sigmoid Function ........................................................................................................................ 56 

Tanh Function .............................................................................................................................. 57 

ReLu ............................................................................................................................................ 57 

AutoEncoder ................................................................................................................................... 58 

Code ............................................................................................................................................ 59 

Results ......................................................................................................................................... 66 

Hybrid Autoencoder with KDE ....................................................................................................... 68 

Code ............................................................................................................................................ 70 

Results ......................................................................................................................................... 79 

Conclusions ........................................................................................................................................ 80 

Table of Figures .................................................................................................................................. 83 

References.......................................................................................................................................... 84 

Ringraziamenti ................................................................................................................................... 86 

 

  



5 
 

Abstract 
In order to secure data of an Aqueduct, a simulated environment has been developed inside the 

Cyber Range in “Superior Institute Mario Boella” located in Turin. The object of this thesis is to 

create and compare Classification algorithms based on Machine Learning which best fits the 

proposed model. This Classifier, trained only using "true" class data, should recognize tampered 

data caused by anomalies or malevolent attackers. 

To be perfectly suitable with the simulation environment all the code has been developed in 

Python taking advantage of the most widely used libraries for Machine Learning. To maintain a 

high level of abstraction, usability and portability Keras has been adopted as a framework to 

interact to Tensorflow backend. 

Tensorflow is an open source library created by Google and designed to provide different toolkits 

at different levels of abstraction, from Estimators (High level, object-oriented API) to Python 

Tensorflow which wraps C++ Kernel (lower level API). 

The most common alternative is Scikit-learn which provides a smaller amount of possibilities 

regarding the number of different models to adopt, in particular it lacks all the part of deep 

learning but it has some algorithms that perfectly fit the study case. 

Both supervised and unsupervised approaches offer good performances after a correct 

parameters’ tuning. Due to the fact that all the data used for training belong to the same class the 

problem could be located under the labels of “One Class Classification” and 

“Anomaly/Outlier/Novelty Detection”.  

The first attempt to develop the correct Machine Learning algorithm uses one of the most intuitive 

models, the Logistic Regressor, which is the common choice for a Classifier. Obviously this model 

does not fit perfectly the study case background and it’s not considered as more than a first draft 

by this study. For that reason, its structure is maintained with the following model but due to the 

inconsistency of its prediction it is not considered as a real model and suitable for a comparison 

with others. 

After the comparison both the SVM and the simple Autoencoder register exactly the same result, 

even if the first one is much faster, correctly classifying nearly the 86% of the examples. Better 

performance for the Local Outlier Factor algorithm, with just 1 misprediction its result is quite 

impressive considering the speed for training. Despite the absence of particular drawbacks in 

these models another algorithm takes the lead with 100% accuracy and F1 score equal to 1. 

The AEKDE model outstands the others, correctly recognizing all the samples and having the 

lowest need for the user to interacts with them fulfilling the basic goals of a Machine Learning 

system. 

  



6 
 

Setup 

Cyber Range Simulated Aqueduct 

 

Figure 1. Scheme of the Aqueduct Simulated Model 

The Tanks 

There are 4 water tanks equipped with a pump to let the water flow to the next destination and an 

ultrasonic sensor to measure the distance expressed in centimetres from the top of the tank to the 

water level. Moreover, the “Purifier Tank” has another sensor plunged in the water to measure 

temperature in Celsius degrees. 



7 
 

 

Figure 2. Temperature Sensor 

Pipes 

The gum pipes which connect the tanks have a flow binary sensor to measures if the water is 

flowing through the pipes 

 

Figure 3. Flow Sensor 

Valves 

Located between “Clean Water Tank” and “House Tank” there are 2 valves: 1 manual and the 

other controlled electronically. The electronic valve can be unlocked by an electronic input sent by 

the Raspberry anytime a precise magnetic card is read by a RFID Card Reader. 

 

Figure 4. Electronic Valve 

Rasperry Pi 3 

Raspberry Pi 3 is a low-cost, single-board mini computer developed for teaching purpose which is 

spreading for its great capability and versatility at a very cheap price. 



8 
 

This system is controlled by a network composed by 5 Raspberry Pis: 1 master and 4 slaves. The 

master will act as a central server on which our solution will be developed while the slaves will 

send all the data recorded by the sensors to the master where the database is stored. 

 

 

Figure 5. Raspberry Pi 3 Model B 

Specifications 

• Quad Core 1.2GHz Broadcom BCM2837 64bit CPU 

• 1GB RAM 

• BCM43438 wireless LAN and Bluetooth Low Energy (BLE) on board 

• 100 Base Ethernet 

• 40-pin extended GPIO 

• 4 USB2 ports 

• 4 Pole stereo output and composite video port 

• Full size HDMI 

• CSI camera port for connecting a Raspberry Pi camera 

• DSI display port for connecting a Raspberry Pi touchscreen display 

• Micro SD port for loading your operating system and storing data 

• Upgraded switched Micro USB power source up to 2.5A 

 

Software Requirements 

• Python 3.5.2 
• Virtualenv 16.1.0 
• Pip 18.1.0 
• Tensorflow 1.12.0 
• Keras 2.2.4 
• Scikit learn 0.20.1 

SciKit-Learn Overview 

SciKit-Learn was initially developed for Google Summer of Code project in 2007 but it was largely 

adopted for its simplicity in implementing Machine Learning inside a system. Based upon the SciPy 

stack, composed by several libraries for scientific and mathematical manipulation such as NumPy, 

Pandas and Matplotlib this library offers both supervised and unsupervised learning algorithms via 



9 
 

a consistent interface in Python. One of the main drawbacks is that none of the models use a 

Neural Network making the library incomplete to be used exclusively for this project. 

Scikit-Learn is characterized by a clean, uniform, and streamlined API, as well as by very useful and 

complete online documentation which are the main reasons for its fast and wide adoption. 

Tensorflow Overview 

Tensorflow is a free and open-source library created by the Google Brain team to support the 

production of machine learning algorithm at first internally at Google and in a second time release 

to the public. TensorFlow is available on 64-bit Linux, macOS, Windows, and mobile computing 

platforms including Android and iOS. Its front-end API provides a user-friendly interface using 

Python to build applications with the framework which will be then executed in high-performance 

C++.  

TensorFlow allows developers to create dataflow graphs, that are structures which describe the 

movement of the data through the graph, or a series of processing nodes. Each node in the graph 

represents a mathematical operation, and each connection or edge between nodes is a 

multidimensional data array, or tensor. While all the nodes and tensors are Python objects, 

provided with high-level of programming abstraction, actual math operations are performed 

through libraries of transformation written in C++ in the lowest level. 

One interesting benefit of this framework is the TensorBoard visualization suite, it lets the 

developer inspect and profile the way graphs run by way of an interactive, web-based dashboard. 

That offers a full view of your model, showing graphs and stats with all the customized metrics 

defined in addition to the complete dataflow representation.  

 

Figure 6. Tensorboard 

Keras Overview 

Keras is a high-level neural networks API written in Python and supporting multiple back-end 

neural network computation engines such as Tensorflow and Theano. It was created to be user 



10 
 

friendly, modular, easy to extend, and to work with Python. The API was “designed for human 

beings, not machines,” and “follows best practices for reducing cognitive load.” 

Since the interface is backed primarily by Google, Tensorflow can be used at different levels of 

abstraction integrating the model provided by the API to the fully customizable of the lowest level 

creating an algorithm totally adaptive. 

Preliminary Analysis 

Developing a Machine Learning model starting from the creation of the system in a supervised 

environment grants the truthfulness of the data, all of it is real and no malfunctions or attacks 

should be registered in it. Nevertheless, robustness should be adopted by the model to avoid 

improper training and compromise the entire decision process. 

Talking about feature engineering no evident correlation between the features could be revealed. 

Despite that, some logic constraints could be introduced to check data trustworthiness prior 

inference phase, increasing speed and granting reliability to the prediction. Even if many features, 

as for example temperature, could be bounded following common sense, in this research they will 

not restricted due to their “too specific” nature. A limit on binary numbers would be a solid choice 

due to its great versatility and to the fact that it will straightforward to configure it and check it. 

Anyway, this improvement will be implemented in a second time to not influence the comparative 

among all the models studied.  

Data Collection 

The data from all the different sensor is collected and merged on the base of the timestamp in a 

unique csv file named Database.csv which will be used in the following machine learning models. 

This file will contain the following fields: 

• timestamp: time of data insertion in the db in the format yyyy-dd-mm hh:mm:ss 

• lake_dist: distance of the water level from the sensor (positioned on the top of the 

lake tank) 

• purifier_dist: distance of the water level from the sensor (positioned on the top of 

the purifier tank) 

• clean_dist: distance of the water level from the sensor (positioned on the top of the 

clean water tank) 

• house_dist: distance of the water level from the sensor (positioned on the top of the 

house tank) 

• lake_pump: binary describing if the lake pump is working (1) or not (0) 

• purifier_pump: binary describing if the purifier pump is working (1) or not (0) 

• house_pump: binary describing if the house pump is working (1) or not (0) 

• purifier_temp: temperature expressed in Celsius degrees of the water in the purifier 

tank 

• clean_valve: binary describing if the clean valve is open (1) or not (0) 



11 
 

 

Code 
---------------------------------------- dbfetch.py --------------------------

------------------ 

#!/usr/bin/python3 

import PyMySQL 

import csv 

  

# Open database connection 

db = 

PyMySQL.connect("localhost","cpswminf_pandey1","CINI2017","cpswminf_project" ) 

 

# prepare a cursor object using cursor() method 

cursor = db.cursor() 

 

tables = ["DISTANCE", "PUMPSTATUS", "TEMPERATURE", "VALVESTATUS"] 

headers = [["timestamp", "lake_dist", "purifier_dist", "clean_dist", 

"house_dist"], ["timestamp", "lake", "purifier", "house"], ["timestamp", 

"purifier"], ["timestamp", "clean"]] 

 

for i in range(len(tables)): 

 print ("Downloading "+tables[i]+" database...") 

 # Prepare SQL query to INSERT a record into the database. 

 sql = "SELECT * FROM '%s'" % (tables[i]) 

 try: 

  # Execute the SQL command 

  cursor.execute(sql) 

  # Fetch all the rows in a list of lists. 

  results = cursor.fetchall() 

 

  with open(tables[i]+'.csv', 'wb') as csvfile: 

   filewriter = csv.writer(csvfile, delimiter=',', 

        quotechar='|', 

quoting=csv.QUOTE_MINIMAL) 

   if len(headers[i]) == 1: 

    filewriter.writeheaders[i](headers[i][0]) 

   elif len(headers[i]) == 2: 



12 
 

    filewriter.writeheaders[i](headers[i][0], 

headers[i][1]) 

   elif len(headers[i]) == 3: 

    filewriter.writeheaders[i](headers[i][0], 

headers[i][1], headers[i][2]) 

   elif len(headers[i]) == 4: 

    filewriter.writeheaders[i](headers[i][0], 

headers[i][1], headers[i][2], headers[i][3]) 

   elif len(headers[i]) == 5: 

    filewriter.writeheaders[i](headers[i][0], 

headers[i][1], headers[i][2], headers[i][3], headers[i][4]) 

   else: 

    print("Headers uncorrectly defined in "+tables[i]) 

   for row in results: 

    if len(row) == 1: 

     filewriter.writerow(row[0]) 

    elif len(row) == 2: 

     filewriter.writerow(row[0], row[1]) 

    elif len(row) == 3: 

     filewriter.writerow(row[0], row[1], row[2]) 

    elif len(row) == 4: 

     filewriter.writerow(row[0], row[1], row[2], 

row[3]) 

    elif len(row) == 5: 

     filewriter.writerow(row[0], row[1], row[2], 

row[3], row[4]) 

    else: 

     print("No Data Found in "+tables[i]) 

 except: 

  print ("Error: unable to fetch data") 

 

# disconnect from server 

db.close() 

 

  



13 
 

Test Client 

To test our system a client is implemented for testing purpose, it will request an input vector or a 

csv file composed by rows containing a vector each (excluding the first row, expected to be the 

header), it opens a connection through a socket with the server and sends this vector as a simple 

string. 

Then it loops until the user press the termination command (the ‘q’ key ). 

Code 
import socket, os.path, datetime, sys, argparse, csv 
 
parser = argparse.ArgumentParser(description='Linear Classifier Client: for testing purpose.') 
parser.add_argument('-hn','--host', dest='host', action='store', metavar='HOSTNAME', 
                    default='127.0.0.1',help='server hostname (default: 127.0.0.1)') 
parser.add_argument('-p','--port', dest='port', action='store', metavar='PORT', type=int, 
                    default=50001,help='server port number (default: 50001)') 
 
args = parser.parse_args() 
 
host = args.host 
port = args.port 
 
def socket_exchange(msg): 
  s = socket.socket() 
  s.connect((host, port)) 
  s.send(msg.encode('utf-8')) 
  s.shutdown(socket.SHUT_WR) 
  data = s.recv(1024).decode('utf-8') 
  print(data) 
  s.close() 
 
print("\nCommands:\n  _ data vector (Syntax: n,n,n,n,n,n,n,n,n)\n  _ 'xxxx.csv' file containing 
inputs\n  _ 'h' to print this help\n  _ 'q' to quit\n") 
#Prediction Phase 
while True: 
    i = input("Enter command: ") 
    if not i: 
        print("No input. Please retry\n") 
        continue 
    elif len(str(i)) == 1: 
      if ord(str(i)) == 113: 
        break 
      elif ord(str(i)) == ord('h'): 
        print("\nCommands:\n  _ data vector (Syntax: n,n,n,n,n,n,n,n,n)\n  _ 'xxxx.csv' file containing 
inputs\n  _ 'h' to print this help\n  _ 'q' to quit\n") 
    elif i[-4:] == ".csv": 
      with open(i, "r") as f: 
        for row in list(csv.reader(f, delimiter=','))[1:]: 
          msg = "" 
          first = True 
          for field in row[:-1]: 



14 
 

            if not first: 
              msg += "," 
            msg += str(field) 
            first = False 
          socket_exchange(msg) 
    else: 
      socket_exchange(i) 
print("Client shutdown correctly. Bye Bye") 

 

Best Practices 

All the models created are provided with different functionalities common for anyone to improve 

performances of the model granting more usability, speed and accuracy. Most notable are: 

• Binary Check 

• Model Checkpoint 

• Additional Arguments 

Binary Check 

Adding a check for binary value could prevent malicious attacks and anomalies very dangerous for 

the integrity of the system and easy to create. This issue is easily resolved applying a binary 

constraint on the value of selected features using an array initialized at the top of the program. 

Valves are typical examples of values on which this check could be applied, binary perfectly 

describe their state “on/off”. Implementing this check will prevent uses of the trained model 

intercepting the request upstream of it, reducing overhead. 

Model Checkpoint 

Some models could have long training time and that should be repeated every time the program 

stops running. That can happen voluntarily or not, which is the worst case due to its 

unpredictability. Training many times in a short period could be terrible for performance especially 

in a real-time background where responses should be given instantly. To solve this issue granting 

durability and speed a checkpoint is created right after the training to avoid the restart of this 

process on every start up. Checkpoint could be overwritten by the user, which can be a good 

option to train on more examples giving more precision and accuracy at the price of a little time 

waste. 

Additional Arguments 

A lot of extra options can be specified by the use of arguments while executing the Python code. 

This is realized using the argparse library, which intuitively implements a parser for the extra 

arguments of the function invocation. Among the multiple options some are common to every 

piece of code: the help (-h) to show every option, the warning (-w) to activate extra messages and 

graphs invisible in normal execution and the overwrite (-ow) for the model checkpoint. Other 

remarkable options are the ones to specify server ip/port address useful in test phase to run 

multiple instances of the server. 

  



15 
 

Machine Learning 

Introduction 

“Machine learning (ML) is the scientific study of algorithms and statistical models that computer 

systems use to effectively perform a specific task without using explicit instructions, relying on 

models and inference instead.” (Wikipedia, the free enciclopedia, n.d.) 

Machine Learning is a subfield of Artificial Intelligence used to fit data inside a mathematical model 

which will, in a second moment, predict the output or making a decision on a set of data 

“autonomously” applying a label on it. The main difference from traditional computational approach 

used in computer science is the ability to generate the algorithm in a second time using data already 

collected, this offers the possibility to make easier life to programmers by creating the algorithm 

and recognizing patterns and correlation among data not always clear. 

By convention in machine learning, you'll write the equation for a model slightly differently but most 
of the time it can be reduced to: 

𝑦′ = 𝑏 + 𝑤𝑛𝑥𝑛 

where: 

• 𝑦′ is the predicted label (a desired output). 

• 𝑏 is the bias (the y-intercept), sometimes referred to as w0. 

• 𝑤𝑛 is a n-dimension weight  vector of features. Weight is the same concept as the 

"slope" m in the traditional equation of a line. 

• 𝑥𝑛 is the vector of the features (a known input). 

Let's highlight two phases of a model's life: 

• Training a model simply means learning (determining) good values for all the weights and 

the bias from labelled examples. 

• Inference means applying the trained model to unlabelled examples. That is, you use the 

trained model to make useful predictions (𝑦′).  

Two of the most widely adopted machine learning methods are supervised learning which trains 

algorithms based on example input and output data that is labelled by humans, and unsupervised 

learning which provides the algorithm with no labelled data in order to allow it to find structure 

within its input data. 

A deep dive into the Training Phase 

In supervised learning, a machine learning algorithm builds a model by examining many examples 

and attempting to find a model that minimizes loss; this process is called empirical risk 

minimization. 

Loss is the penalty for a bad prediction. That is, loss is a number indicating how bad the model's 

prediction was on a single example. If the model's prediction is perfect, the loss is zero; otherwise, 



16 
 

the loss is greater. The goal of training a model is to find a set of weights and biases that 

have low loss, on average, across all examples. 

One of the most popular and widely used algorithms for machine learning models is gradient 

descent. This is an iterative approach, the purpose of which is to find the minimum of the loss by 

proceeding step by step inspecting the gradient (or derivative) of different points and taking the 

next step in the direction of the negative gradient. More precisely the gradient vector has both 

magnitude and direction, to find the next point the algorithm multiplies a scalar factor known as 

learning rate (or step size) by the gradient. 

 

Figure 7. Gradient Descent Algorithm 

The total number of examples used to calculate the gradient is called a batch. Obviously using all 

the examples contained in the database (full-batch) could bring the computational time for each 

iteration to a very long time. The stochastic gradient descent (SGD) resolves it in a very extreme 

way reducing the batch to just 1 example chosen at random. 

One less drastic way to resolve the time issue is to adopt the mini-batch SGD which is a 

compromise between the previous methods, using generally from 10 to 1000 examples taken 

randomly this method reduces noise as in full batch but in a much lower time. 

Therefore, good performances of the model are not always related to how much training is done 

and that’s why even training should be correctly balanced. Stepping further too much with training 

will cause overfitting, which will occur when the model fits too well to the training data. When 

that happens, the model loses its ability to generalize to new examples and starts mispredicting 

lowering severely its accuracy. 

Nevertheless, decreasing under a certain limit training will cause the opposite, the model without 

enough data to train on will not be able to create a function to associate correctly input to targets 

remaining too generic and nearly useless. This phenomenon is known as underfitting. 

Data Sets 

The data should be correctly split into different sets to guarantee the best result. 
Usually data is divided in 2: training set and test set. Training set obviously is the largest and it’s 
used to fit data inside the model while test set is used to verify the performances according to 
different metrics useful to tweak the model and reach its goals after some loops. 



17 
 

 

 
Figure 8. Training with two sets (Google, n.d.) 

 
It’s good practice to add a third set of data called validation set with the same function of the test 

set, leaving to the latter the task to confirm the model and avoiding overfitting. 

The new training lifecycle will resemble to this: 

 

Figure 9. Training with 3 sets (Google, n.d.) 

Obviously in our study case both the train and the validation set will contain data belonging only to 

the “ham”/”not spam” class while the test set will contain both classes. Since many instruments we 

are going to use will just consider the approach with just train and test set, in the code the validation 

set could be referred as test set and vice versa. 

 



18 
 

 

Figure 10. Dataset containing only class 0 ("no spam") 

Classification 

A Classification problem subsists when there is a bunch of classes and each input should be 

located into one or more of this classes. Considering our study case as a binary problem there are 

only 4 possible outcomes: 

A true positive (TP) is an outcome where the model correctly predicts the positive class. Similarly, 
a true negative (TN) is an outcome where the model correctly predicts the negative class. 

A false positive (FP) is an outcome where the model incorrectly predicts the positive class. And 
a false negative (FN) is an outcome where the model incorrectly predicts the negative class. 

These results are commonly displayed in a table layout called confusion matrix, a 2x2 matrix with 
one axis containing the predicted results (“True” and “False”) and the expected results in the other 
axis (“True” and “False”). The cells belonging to the table exactly represent the 4 outcomes 
previously presented, more precisely the number of true positives/negatives and false 
positives/negatives. 



19 
 

 

Figure 11. Confusion Matrix 

One of the main metrics to evaluate model “goodness” is accuracy, that is defined as follow: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
# 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
  =  

𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
  

Accuracy alone doesn't tell the full story when you're working with a class-imbalanced data set 

where there is a significant disparity between the number of positive and negative labels. 

Other useful measurements are: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
  

 

F1 Score 

Our model would be easier to judge if we have one single scalar instead of Precision and Recall, It's 
given by the following formula: 

 
 

F1 Score keeps a balance between Precision and Recall. We use it if there is uneven class 
distribution, as precision and recall may give misleading results! 
So we use F1 Score as a comparison indicator between Precision and Recall Numbers! 

https://i.stack.imgur.com/8uiwI.png


20 
 

AUC (Area Under Curve) 

The area measured under the ROC curve gives a scale-invariant and classification-threshold-

invariant measure of how good a model is. This because the ROC plots 2 parameters at every 

possible decision threshold: True Positive Rate (TPR) vs. False Positive Rate (FPR). 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
              𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃+𝑇𝑁
 

 

 

Figure 12. ROC Curve (Google, n.d.) 

The evident drawback of this metric is given by its threshold-invariance, in fact the AUC results to 

be an average among all possible threshold and it will not give a specific judgement of our case. 

  



21 
 

First Model: Logistic Regression 
 

Many problems require a probability estimate as output. Logistic regression is an extremely 

efficient mechanism for calculating probabilities. Practically speaking, you can use the returned 

probability in either of the following two ways: 

• "As is" 

• Converted to a binary category. 

In order to map a logistic regression value to a binary category, you must define a classification 

threshold (also called the decision threshold). A value above that threshold indicates "spam"; a 

value below indicates "not spam" or “ham”. 

You might be wondering how a logistic regression model can ensure output that always falls 

between 0 and 1. As it happens, a sigmoid function, defined as follows, produces output having 

those same characteristics: 

𝑦’ =
1

1 + 𝑒−𝑧
 

where: 

• 𝑦′ is the output of the logistic regression model for a particular example. 

• 𝑧 is b + w1x1 + w2x2 + ... wNxN  (output of the linear layer of a model trained with logistic 

regression) 

 

Loss function for Logistic Regression 

The loss function for linear regression is squared loss. The loss function for logistic regression 

is Log Loss, which is defined as follows: 

𝐿𝑜𝑔 𝐿𝑜𝑠𝑠 = ∑ −𝑦 𝑙𝑜𝑔(𝑦′) − (1 − 𝑦) 𝑙𝑜𝑔(1 − 𝑦′)

(𝑥,𝑦)∈𝐷

 

where: 

• (𝑥, 𝑦) ∈ 𝐷 is the data set containing many labelled examples, which are (𝑥, 𝑦) pairs. 

• 𝑦 is the label in a labeled example. Since this is logistic regression, every value of 𝑦 must 

either be 0 or 1. 

• 𝑦′ is the predicted value (somewhere between 0 and 1), given the set of features in 𝑥. 

 

Code 

from __future__ import print_function 

import math 



22 
 

from IPython import display 

from matplotlib import cm 

from matplotlib import gridspec 

from matplotlib import pyplot as plt 

import numpy as np 

import pandas as pd 

from sklearn import metrics 

import tensorflow as tf 

from tensorflow.python.data import Dataset 

import csv 

import time 

import os 

from sklearn.decomposition import PCA 

from sklearn.metrics import f1_score 

from sklearn import preprocessing 

import argparse 

import socket 

import sys 

import itertools 

 

parser = argparse.ArgumentParser(description='Activate a Linear Classifier.') 

parser.add_argument('-d','--delayed', dest='delayed', action='store_true', 

                    help='activate delayed mode') 

parser.add_argument('-c','--check', dest='check_mode', action='store_true', 

                    help='start check mode') 

parser.add_argument('-w','--warn', dest='warning', action='store_true', 

                    help='activate warnings') 

parser.add_argument('--chk_file', dest='chk_fp', action='store', 

metavar='NAME', 

                    default='class_checkpoint',help='used to specify 

checkpoint class name') 

parser.add_argument('-hn','--host', dest='host', action='store', 

metavar='HOSTNAME', 

                    default='127.0.0.1',help='server hostname (default: 

127.0.0.1)') 

parser.add_argument('-p','--port', dest='port', action='store', 

metavar='PORT', type=int, 

                    default=50001,help='server port number (default: 50001)') 



23 
 

 

args = parser.parse_args() 

 

 

tf.logging.set_verbosity(tf.logging.ERROR) 

pd.options.display.max_rows = 10 

pd.options.display.float_format = '{:.1f}'.format 

columns = ["lake_dist", 

     "purifier_dist", 

     "clean_dist", 

     "house_dist", 

     "lake_pump", 

     "purifier_pump", 

     "house_pump", 

     "purifier_temp", 

     "clean_valve"] 

 

delayed = args.delayed 

check_mode = args.check_mode 

show_warnings = args.warning 

 

# Server Address 

host = args.host 

port = args.port 

 

# Checkpoint folder 

filepath = args.chk_fp 

 

# Delayed mode checklist file 

chk_fname = "delayed_check.csv" 

 

aqueduct_dataframe = pd.read_csv("Database.csv", sep=",") 

 

aqueduct_dataframe = aqueduct_dataframe.reindex( 

    np.random.permutation(aqueduct_dataframe.index)) 

 

def preprocess_features(aqueduct_dataframe): 

  """Prepares input features from California housing data set. 



24 
 

 

  Args: 

    aqueduct_dataframe: A Pandas DataFrame expected to contain data 

      from the California housing data set. 

  Returns: 

    A DataFrame that contains the features to be used for the model, including 

    synthetic features. 

  """ 

  selected_features = aqueduct_dataframe[columns] 

  processed_features = selected_features.copy() 

  return processed_features 

 

def preprocess_targets(aqueduct_dataframe): 

  """Prepares target features (i.e., labels) from California housing data set. 

 

  Args: 

    aqueduct_dataframe: A Pandas DataFrame expected to contain data 

      from the California housing data set. 

  Returns: 

    A DataFrame that contains the target feature. 

  """ 

  output_targets = pd.DataFrame() 

  # Create a boolean categorical feature representing whether the 

  # median_house_value is above a set threshold. 

  output_targets["is_it_spam"] = aqueduct_dataframe["is_it_spam"] 

  return output_targets 

 

# Count total row number 

row_count = len(aqueduct_dataframe) 

training_set_count = (int)(row_count * 7 / 100) #real value is '/10' 

 

# Choose the first 7% examples for training. 

training_examples = 

preprocess_features(aqueduct_dataframe.head(training_set_count)) 

training_targets = 

preprocess_targets(aqueduct_dataframe.head(training_set_count)) 

 

# Choose the last 3% examples for validation. 



25 
 

#validation_examples = preprocess_features(aqueduct_dataframe.tail(row_count - 

training_set_count)) 

#validation_targets = preprocess_targets(aqueduct_dataframe.tail(row_count - 

training_set_count)) 

 

validation_examples = 

preprocess_features(aqueduct_dataframe.tail(int(row_count/10) - 

training_set_count)) 

validation_targets = 

preprocess_targets(aqueduct_dataframe.tail(int(row_count/10) - 

training_set_count)) 

 

if show_warnings: 

  # Double-check that we've done the right thing. 

  print("Training examples summary:") 

  display.display(training_examples.describe()) 

  print("Validation examples summary:") 

  display.display(validation_examples.describe()) 

 

  print("Training targets summary:") 

  display.display(training_targets.describe()) 

  print("Validation targets summary:") 

  display.display(validation_targets.describe()) 

 

############################################### 

################### PCA ####################### 

 

training_examples_scaled = 

preprocessing.scale(training_examples.astype(float)) 

if show_warnings: 

  pca = PCA(2) 

  pca.fit(training_examples_scaled) 

  X_pca = pca.transform(training_examples_scaled) 

  plt.scatter(X_pca[:,0], X_pca[:,1]) 

  plt.show() 

training_examples_scaled = pd.DataFrame(training_examples_scaled, 

columns=columns) 

 



26 
 

validation_examples_scaled = 

preprocessing.scale(validation_examples.astype(float)) 

if show_warnings: 

  pca.fit(training_examples_scaled) 

  X_pca = pca.transform(validation_examples_scaled) 

  plt.scatter(X_pca[:,0], X_pca[:,1]) 

  plt.show() 

validation_examples_scaled = pd.DataFrame(validation_examples_scaled, 

columns=columns) 

 

################################################# 

#################################################2 

 

def construct_feature_columns(input_features): 

  """Construct the TensorFlow Feature Columns. 

 

  Args: 

    input_features: The names of the numerical input features to use. 

  Returns: 

    A set of feature columns 

  """ 

  return set([tf.feature_column.numeric_column(my_feature) 

              for my_feature in input_features]) 

 

def my_input_fn(features, targets, batch_size=1, shuffle=True, 

num_epochs=None): 

    """Trains a linear regression model. 

 

    Args: 

      features: pandas DataFrame of features 

      targets: pandas DataFrame of targets 

      batch_size: Size of batches to be passed to the model 

      shuffle: True or False. Whether to shuffle the data. 

      num_epochs: Number of epochs for which data should be repeated. None = 

repeat indefinitely 

    Returns: 

      Tuple of (features, labels) for next data batch 

    """ 



27 
 

 

    # Convert pandas data into a dict of np arrays. 

    features = {key:np.array(value) for key,value in dict(features).items()} 

 

    # Construct a dataset, and configure batching/repeating. 

    ds = Dataset.from_tensor_slices((features,targets)) # warning: 2GB limit 

    ds = ds.batch(batch_size).repeat(num_epochs) 

 

    # Shuffle the data, if specified. 

    if shuffle: 

      ds = ds.shuffle(10000) 

 

    # Return the next batch of data. 

    features, labels = ds.make_one_shot_iterator().get_next() 

    return features, labels 

 

def train_linear_classifier_model( 

    learning_rate, 

    steps, 

    batch_size, 

    training_examples, 

    training_targets, 

    validation_examples, 

    validation_targets): 

  """Trains a linear regression model. 

 

  In addition to training, this function also prints training progress 

information, 

  as well as a plot of the training and validation loss over time. 

 

  Args: 

    learning_rate: A `float`, the learning rate. 

    steps: A non-zero `int`, the total number of training steps. A training 

step 

      consists of a forward and backward pass using a single batch. 

    batch_size: A non-zero `int`, the batch size. 

    training_examples: A `DataFrame` containing one or more columns from 

      `aqueduct_dataframe` to use as input features for training. 



28 
 

    training_targets: A `DataFrame` containing exactly one column from 

      `aqueduct_dataframe` to use as target for training. 

    validation_examples: A `DataFrame` containing one or more columns from 

      `aqueduct_dataframe` to use as input features for validation. 

    validation_targets: A `DataFrame` containing exactly one column from 

      `aqueduct_dataframe` to use as target for validation. 

 

  Returns: 

    A `LinearRegressor` object trained on the training data. 

  """ 

 

  periods = 10 

  steps_per_period = steps / periods 

 

  # Checkpoint Strategy configuration 

  run_config = tf.contrib.learn.RunConfig( 

    model_dir=filepath, 

    keep_checkpoint_max=1) 

 

  # Create a linear classifier object. 

  my_optimizer = 

tf.train.GradientDescentOptimizer(learning_rate=learning_rate)#, 

l1_regularization_strength=0.1) 

  my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 

5.0) 

  linear_classifier = tf.estimator.LinearClassifier( 

      feature_columns=construct_feature_columns(training_examples), 

      optimizer=my_optimizer, 

      config=run_config, 

      #metric_ops=  

  ) 

  if not tf.train.checkpoint_exists(filepath): 

    # Create input functions. 

    training_input_fn = lambda: my_input_fn(training_examples, 

                                            training_targets["is_it_spam"], 

                                            batch_size=batch_size) 

    predict_training_input_fn = lambda: my_input_fn(training_examples, 



29 
 

                                                    

training_targets["is_it_spam"], 

                                                    num_epochs=1, 

                                                    shuffle=False) 

    predict_validation_input_fn = lambda: my_input_fn(validation_examples, 

                                                      

validation_targets["is_it_spam"], 

                                                      num_epochs=1, 

                                                      shuffle=False) 

 

    # Train the model, but do so inside a loop so that we can periodically 

assess 

    # loss metrics. 

    print("Training model...") 

    print("LogLoss (on training data):") 

    training_log_losses = [] 

    validation_log_losses = [] 

    for period in range (0, periods): 

      # Train the model, starting from the prior state. 

      linear_classifier.train( 

          input_fn=training_input_fn, 

          steps=steps_per_period 

      ) 

      # Take a break and compute predictions.     

      training_probabilities = 

linear_classifier.predict(input_fn=predict_training_input_fn) 

      training_probabilities, training_predictions = 

itertools.tee(training_probabilities) 

      training_predictions = np.array([item['classes'][0] for item in 

training_predictions], dtype=int) 

      training_probabilities = np.array([item['probabilities'] for item in 

training_probabilities]) 

     

      validation_probabilities = 

linear_classifier.predict(input_fn=predict_validation_input_fn) 

      validation_probabilities = np.array([item['probabilities'] for item in 

validation_probabilities]) 

     



30 
 

      training_log_loss = metrics.log_loss(training_targets, 

training_probabilities, labels=[0,1]) 

      validation_log_loss = metrics.log_loss(validation_targets, 

validation_probabilities, labels=[0,1]) 

#      training_f1_score, train_update_op = 

tf.contrib.metrics.f1_score(training_targets, np.array([item[1] for item in 

training_probabilities])) 

      # Occasionally print the current loss. 

      print("  period %02d : LogLoss=%0.2f f1=%0.2f" % (period, 

training_log_loss, f1_score(training_targets, training_predictions, 

labels=[0,1]))) 

      # Add the loss metrics from this period to our list. 

      training_log_losses.append(training_log_loss) 

      validation_log_losses.append(validation_log_loss) 

    print("Model training finished.") 

   

    # Output a graph of loss metrics over periods. 

    plt.ylabel("LogLoss") 

    plt.xlabel("Periods") 

    plt.title("LogLoss vs. Periods") 

    plt.tight_layout() 

    plt.plot(training_log_losses, label="training") 

    plt.plot(validation_log_losses, label="validation") 

    plt.legend() 

 

  return linear_classifier 

 

def is_it_binary(df_col): 

  for elem in df_col: 

#    if not(math.isclose(elem,float(0)) or math.isclose(elem,float(1))): #for 

floats 

    if elem!=0 and elem!=1: 

      return False 

  return True 

 

# Returns an array of positions of the suspicious values (evaluating 

local/global boundaries) 

def new_vulnerability_test(timestamp, input_record): 



31 
 

  clean_df = aqueduct_dataframe[aqueduct_dataframe["is_it_spam"]==0] 

  past_years = clean_df[clean_df["timestamp"].str[5:7]==str(timestamp)[7:9]] 

  # if there is data of the same month (even in different years) 

  if len(past_years)!=0: 

    examined_df = past_years 

  else: 

    examined_df = clean_df 

 

  bad_data = list() 

  # First we check for non binary values 

  for i in range(len(columns)): 

    if is_it_binary(examined_df[columns[i]]) and (input_record[i]!=0 and 

input_record[i]!=1): 

      if len(bad_data)==0: 

        bad_data.append([-1]) 

      bad_data.append([i]) 

   

  if len(bad_data)==0: 

    for i in range(len(columns)): 

      col_df = examined_df[columns[i]] 

#      print(columns[i]+" max:"+str(col_df.max())+" min:"+str(col_df.min())+" 

avg:"+str(col_df.mean())+" std:"+str(col_df.std())+" 

bin:"+str(is_it_binary(col_df))) 

      if input_record[i]>round(col_df.mean()+col_df.std()) or 

input_record[i]<round(col_df.mean()-col_df.std()): 

        if len(bad_data)==0: 

          bad_data.append([1]) 

        bad_data.append([i, col_df.max(), col_df.min()]) 

  return bad_data 

 

def check_new_data(): 

  if os.path.isfile(chk_fname): 

    with open(chk_fname, "r") as f: 

      for row in list(csv.reader(f, delimiter=','))[1:]: 

        timestamp = 

row[0].replace("[","").replace("]","").replace("'","").strip() 



32 
 

        cols = 

row[1].replace("[","").replace("]","").replace("'","").replace(" 

","").split(",") 

        vals = 

row[2].replace("[","").replace("]","").replace("'","").replace(" 

","").split(",") 

        maxs = 

row[3].replace("[","").replace("]","").replace("'","").replace(" 

","").split(",") 

        mins = 

row[4].replace("[","").replace("]","").replace("'","").replace(" 

","").split(",") 

        new_record = 

np.asarray(np.array(row[5].replace("[","").replace("]","").replace("'","").rep

lace(" ","").split(",")), np.int) 

        print("ALERT! "+str(len(cols))+" suspicious data detected!\n") 

        for i in range(len(cols)): 

          print(cols[i]+"   curr_val: "+vals[i]+" [max:"+maxs[i]+", 

min:"+mins[i]+"]") 

        i = input("\nDigit (A)ccept to mark data as good or anything else to 

mark it as spam: ") 

        if str(i)=="Accept" or str(i)=="accept" or (len(str(i))==1 and 

(ord(str(i)) == ord("A") or ord(str(i)) == ord("a"))): 

          spam_detected = 0 

          print("Data saved as NO SPAM\n") 

        else: 

          spam_detected = 1 

          print("Data saved as SPAM\n") 

        new_train(new_record, spam_detected, timestamp) 

    os.remove(chk_fname) 

  else: 

    print("No data to examine\n") 

 

def new_train(new_record, spam_detected, timestamp): 

  global aqueduct_dataframe 

  global linear_classifier 

  ts = [timestamp] 

  df1 = preprocess_features(pd.DataFrame([new_record], columns=columns))[:1] 



33 
 

  df1.loc[0,"timestamp"] = timestamp 

  df1.loc[0,"is_it_spam"] = spam_detected 

  aqueduct_dataframe = aqueduct_dataframe.append(df1, sort=True) 

  training_examples = preprocess_features(aqueduct_dataframe.tail(20)) 

  training_targets = preprocess_targets(aqueduct_dataframe.tail(20)) 

   

   

  if show_warnings: 

    print(df) 

    print(spam_detected) 

  training_input_fn = lambda: my_input_fn(training_examples, 

                                          training_targets, 

                                          batch_size=20) 

  linear_classifier = linear_classifier.train( 

        input_fn=training_input_fn, 

        steps=20 

  ) 

 

  new_record = new_record.tolist() 

  new_record.append(spam_detected) 

  ts.extend(new_record) 

  with open('Database.csv', 'a') as csvfile: 

    filewriter = csv.writer(csvfile, delimiter=',', quotechar='|', 

quoting=csv.QUOTE_NONE) 

    filewriter.writerow(ts) 

 

def insert_record (new_record): 

 

  global linear_classifier 

  global aqueduct_dataframe 

 

  test_input = preprocess_features(pd.DataFrame([new_record], 

columns=columns)) 

  df = test_input[:1] 

  predict_input_fn = tf.estimator.inputs.pandas_input_fn(x=df, shuffle=False) 

 

  predict_results = linear_classifier.predict(input_fn=predict_input_fn) 

  # Print the prediction results. 



34 
 

  print("\nPrediction results:") 

  for i, prediction in enumerate(predict_results): 

    if show_warnings: 

      print(prediction) 

    print(str(int(prediction['classes'][0]))+"\n") 

  spam_detected = int(prediction['classes'][0]) 

 

  # Add the prediction to the csv file and train on it 

  # Create the timestamp 

  ts = time.gmtime() 

  row = [time.strftime("%Y-%m-%d %H:%M:%S", ts)] 

  bad_data = [] 

 

  if spam_detected == 0: 

    bad_data = new_vulnerability_test(row, new_record) 

    if show_warnings: 

      print(bad_data) 

    if len(bad_data)!=0: 

      spam_detected = bad_data[0][0] 

         

  if spam_detected == -1: 

    # if value not binary in binary field 

    spam_detected = 1 

    print("Binary value not respected. Data saved as SPAM\n") 

 

  elif spam_detected == 1: 

    if len(bad_data) == 0: 

      print("Data saved as SPAM") 

    else: 

      print("ALERT! "+str(len(bad_data)-1)+" suspicious data detected!\n") 

      if delayed: 

        # Save new suspicious data to file 

        exists = os.path.isfile(chk_fname) 

        with open(chk_fname, "a") as csv_file: 

          filewriter = csv.writer(csv_file, delimiter=',') 

          cols = [] 

          vals = [] 

          maxs = [] 



35 
 

          mins = [] 

          if not exists: 

            filewriter.writerow(["timestamp", "column", "curr_val", "max", 

"min", "record"]) 

          for pos in bad_data[1:]: 

            cols.append(columns[pos[0]]) 

            vals.append(new_record[pos[0]]) 

            maxs.append(pos[1]) 

            mins.append(pos[2]) 

             

          check_row = [row, cols, vals, maxs, mins, new_record.tolist()] 

          filewriter.writerow(check_row) 

             

        print("Data saved in "+chk_fname+" for delayed check\n") 

        return "Suspicious data, further analysis requested\n" 

      for pos in bad_data[1:]: 

        print(str(columns[pos[0]])+"   curr_val: "+str(new_record[pos[0]])+" 

[max:"+str(pos[1])+", min:"+str(pos[2])+"]") 

      i = input("\nDigit (A)ccept to mark data as good or anything else to 

mark it as spam: ") 

      if str(i)=="Accept" or str(i)=="accept" or (len(str(i))==1 and 

(ord(str(i)) == ord("A") or ord(str(i)) == ord("a"))): 

        spam_detected = 0 

        print("Data saved as NO SPAM\n") 

      else: 

        print("Data saved as SPAM\n") 

 

  new_train(new_record, spam_detected, row) 

  if spam_detected == 1: 

    return "Data saved as SPAM\n" 

  else: 

    return "Data saved as NO SPAM\n" 

 

# Create classifier and start training 

linear_classifier = train_linear_classifier_model( 

    learning_rate=0.01, 

    steps=200, 

    batch_size=20, 



36 
 

    training_examples=training_examples_scaled, 

    training_targets=training_targets, 

    validation_examples=validation_examples_scaled, 

    validation_targets=validation_targets) 

 

# Check suspicious data delayed 

if(check_mode): 

  check_new_data() 

# Else start the server 

else: 

  s = socket.socket() 

  s.bind((host,port)) 

  print("Server Started") 

  s.listen(1) 

  while True: 

    print("Waiting for incoming connections...") 

    c, addr = s.accept() 

    print("Connection from: " + str(addr)) 

    array = '' 

    msg = '' 

    while True: 

      data = c.recv(1024).decode('utf-8') 

      if not data: 

        break 

      array += data 

    try: 

      new_record = np.asarray(np.array(array.split(",")), np.int)     

      print(new_record) 

      msg = insert_record(new_record) 

    except ValueError: 

      msg = "Incorrect Syntax. Retry\n" 

      print(msg) 

      c.send(msg.encode('utf-8')) 

      c.shutdown(socket.SHUT_WR) 

      c.close() 

      continue 

    if new_record.size != len(columns): 

      msg = "Wrong # of values. Retry\n" 



37 
 

      print(msg) 

    c.send(msg.encode('utf-8')) 

    c.shutdown(socket.SHUT_WR) 

    c.close() 

Results 

As expected, training the Linear Classifier on just one class brings the model to predict always 0 (“no 

spam”) on every input. To overcome this problem, a sort of filter is implemented to recognize 

“abnormal” data even when it is not recognized by our system. This filter simply checks if the 

features of the input lie in the range between maximum and minimum recorded with a margin of 

error equal to the standard deviation, if not, suspicious results are analysed by a supervisor in real 

time or saved in a separate file for further analysis, leaving the decision to the human. In that way 

is possible to start collecting some tampered data on which the model can be trained resolving the 

problem at the price of involving the assistance of a supervisor, losing some of the advantages 

gained by a machine learning approach. Moreover, in not-delayed mode, since the system needs a 

human supervisor to check real time data this inevitably results in a slow down or even in a deadlock. 

Condition which can be resolved using a multi-threading environment keeping an eye on 

concurrency. 

  



38 
 

Second Model: SVM 
In machine learning, support-vector machines (SVMs, also support-vector networks) are supervised 

learning models with associated learning algorithms that analyse data used for classification and 

regression analysis. Given a set of training examples, each marked as belonging to one or the other 

of two categories, an SVM training algorithm builds a model that assigns new examples to one 

category or the other, making it a non-probabilistic binary linear. An SVM model is a representation 

of the examples as points in space, mapped so that the examples of the separate categories are 

divided by a clear gap that is as wide as possible. New examples are then mapped into that same 

space and predicted to belong to a category based on which side of the gap they fall. 

It is easy to visualize it in 2 or 3 dimensions, obviously each dimension represents a feature (it will 

be a 9-dimensions space in the studied case). Objective of the SVM is to find a hyperplane between 

the 2 classes to maximize the gap between them 

 

Figure 13. Representation of a Hyperplane in different dimensions (Gandhi, 2018) 

Most essential parameters to tune are the kernel which is left to the default value “rbf” (good also 

for non-linear hyperplanes) and gamma which controls how exactly the model fits the training data. 

Obviously values too high of gamma could reflect in model overfitting. 

 

Figure 14. Gamma parameter influence (Ray, 2017) 

This could be practically helpful in this case where we need a One-Class Classifier (OCC), a classifier 

that will be trained on just one class and recognizing data as “spam” or “not spam”. 

Code 



39 
 

import numpy as np   

import pandas as pd   

from sklearn import utils   

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

from sklearn import svm 

from sklearn import metrics   

import os, csv, argparse, socket, sys, time 

from sklearn.externals import joblib   

 

parser = argparse.ArgumentParser(description='Activate a Linear Classifier.') 

parser.add_argument('-w','--warn', dest='warning', action='store_true', 

                    help='activate warnings') 

parser.add_argument('--chk_file', dest='chk_fp', action='store', 

metavar='NAME', 

                    default='occ_svm.model',help='used to specify checkpoint 

model name') 

parser.add_argument('-ow','--overwrite', dest='ow', action='store_true', 

                    help='train again and overwrite the model') 

parser.add_argument('-hn','--host', dest='host', action='store', 

metavar='HOSTNAME', 

                    default='127.0.0.1',help='server hostname (default: 

127.0.0.1)') 

parser.add_argument('-p','--port', dest='port', action='store', 

metavar='PORT', type=int, 

                    default=50001,help='server port number (default: 50001)') 

 

args = parser.parse_args() 

 

 

pd.options.display.max_rows = 10 

pd.options.display.float_format = '{:.1f}'.format 

columns = ["lake_dist", 

     "purifier_dist", 

     "clean_dist", 

     "house_dist", 

     "lake_pump", 

     "purifier_pump", 



40 
 

     "house_pump", 

     "purifier_temp", 

     "clean_valve"] 

 

show_warnings = args.warning 

 

# Server Address 

host = args.host 

port = args.port 

 

# Checkpoint folder 

filepath = args.chk_fp 

overwrite = args.ow 

 

# import the CSV from Database.csv file 

# this will return a pandas dataframe. 

aqueduct_dataframe = pd.read_csv("Database.csv", sep=",", low_memory=False) 

 

# let's take a look at the types of attack labels are present in the data. 

aqueduct_dataframe["is_it_spam"].value_counts().plot(kind='bar')   

plt.show() 

 

# we're using a one-class SVM, so we need.. a single class. the dataset 

'label' 

# column contains multiple different categories of attacks, so to make use of  

# this data in a one-class system we need to convert the attacks into 

# class 1 (no_spam) and class -1 (spam) 

aqueduct_dataframe.loc[aqueduct_dataframe['is_it_spam'] != 0, "is_it_spam"] = 

-1 

aqueduct_dataframe.loc[aqueduct_dataframe['is_it_spam'] == 0, "is_it_spam"] = 

1 

 

 

def preprocess_features(aqueduct_dataframe): 

  """Prepares input features from personal data set. 

 

  Args: 

    aqueduct_dataframe: A Pandas DataFrame expected to contain data 



41 
 

      from the personal aqueduct data set. 

  Returns: 

    A DataFrame that contains the features to be used for the model, including 

    synthetic features. 

  """ 

  selected_features = aqueduct_dataframe[columns] 

  processed_features = selected_features.copy() 

  return processed_features 

 

def preprocess_targets(aqueduct_dataframe): 

  """Prepares target features (i.e., labels) from Aqueduct data set. 

 

  Args: 

    aqueduct_dataframe: A Pandas DataFrame expected to contain data 

      from the California housing data set. 

  Returns: 

    A DataFrame that contains the target feature. 

  """ 

  output_targets = pd.DataFrame() 

  # Create a boolean categorical feature representing whether the 

  # median_house_value is above a set threshold. 

  output_targets["is_it_spam"] = aqueduct_dataframe["is_it_spam"] 

  return output_targets 

 

def new_train(new_record, prediction, timestamp): 

  global features 

  global target 

  global model 

  ts = timestamp 

  df1 = preprocess_features(pd.DataFrame([new_record], columns=columns))[:1] 

  df1.loc[0,"timestamp"] = timestamp 

  df1.loc[0,"is_it_spam"] = prediction 

  training_ex = preprocess_features(df1) 

  features = features.append(training_ex, sort=True) 

  training_target = preprocess_targets(df1) 

  target = target.append(training_target, sort=True) 

   

  if show_warnings: 



42 
 

    print(df1) 

    print(prediction) 

 

  model = model.fit(training_ex) 

 

  spam_detected = 0 

  if prediction == -1: 

    spam_detected = 1 

  new_record = new_record.tolist() 

  new_record.append(spam_detected) 

  ts.extend(new_record) 

  print(ts) 

  with open('Database.csv', 'a') as csvfile: 

    filewriter = csv.writer(csvfile, delimiter=',', quotechar='|', 

quoting=csv.QUOTE_NONE) 

    filewriter.writerow(ts) 

  joblib.dump(model, filepath, compress=9) 

 

def insert_record (new_record): 

 

  global model 

  global aqueduct_dataframe 

 

  test_input = preprocess_features(pd.DataFrame([new_record], 

columns=columns)) 

  df = test_input[:1] 

 

  pred = model.predict(df) 

  # Print the prediction results. 

  print("\nPrediction result: "+str(pred)) 

 

  # Add the prediction to the csv file and train on it 

  # Create the timestamp 

  ts = time.gmtime() 

  row = [time.strftime("%Y-%m-%d %H:%M:%S", ts)] 

 

  new_train(new_record, pred, row) 

  if pred == 1: 



43 
 

    return "Data saved as NO SPAM\n" 

  else: 

    return "Data saved as SPAM\n" 

 

# grab out the is_it_spam value as the target for training and testing. since 

we're 

# only selecting a single column from the `aqueduct_dataframe` dataframe, 

we'll just get a 

# series, not a new dataframe 

target = preprocess_targets(aqueduct_dataframe) 

 

# find the proportion of outliers we expect (aka where `is_it_spam == -1`). 

because  

# target is a series, we just compare against itself rather than a column. 

outliers = target[target['is_it_spam'] == -1]   

if show_warnings: 

  print("outliers.shape", outliers.shape)   

  print("outlier fraction", outliers.shape[0]/target.shape[0]) 

 

# drop label columns from the dataframe. we're doing this so we can do  

# unsupervised training with unlabelled data. we've already copied the label 

# out into the target series so we can compare against it later. 

#aqueduct_dataframe.drop("timestamp", axis=1, inplace=True) 

#aqueduct_dataframe.drop("is_it_spam", axis=1, inplace=True) 

features = preprocess_features(aqueduct_dataframe) 

 

# check the shape for sanity checking. 

if show_warnings: 

  print(features.shape) 

 

#Divide train and test data 

#train_data, test_data, train_target, test_target = train_test_split(features, 

target, train_size = 0.8) 

train_data = features 

train_target = target   

 

# set nu (which should be the proportion of outliers in our dataset) 

if outliers.shape[0] != 0: 



44 
 

  nu = outliers.shape[0] / target.shape[0]   

else: 

  nu = 0.05 

if show_warnings: 

  print("nu", nu, "\n") 

 

if os.path.isfile(filepath) and not overwrite: 

  model = joblib.load(filepath) 

else: 

  model = svm.OneClassSVM(nu=nu, kernel='rbf', gamma=0.00005)   

  model.fit(train_data) 

 

  joblib.dump(model, filepath, compress=9)   

 

if show_warnings: 

  preds = model.predict(train_data)   

  targs = train_target 

 

  print("Training:") 

  print("accuracy: ", metrics.accuracy_score(targs, preds))   

  print("precision: ", metrics.precision_score(targs, preds))   

  print("recall: ", metrics.recall_score(targs, preds))   

  print("f1: ", metrics.f1_score(targs, preds))   

#  print("area under curve (auc): ", metrics.roc_auc_score(targs, preds)) 

  print() 

 

  with open('test_input.csv', 'r') as csvfile: 

    readCSV = csv.reader(csvfile, delimiter=',') 

    test_data = list(readCSV) 

  new_cols = columns.copy() 

  new_cols.append("is_it_spam") 

  test = pd.DataFrame(test_data[1:], columns=new_cols) 

  # Converting all objects to float and dropping incomplete rows 

  test = test.replace(r'^\s*$', np.nan, regex=True).apply(lambda x: 

pd.to_numeric(x, errors='coerce')).dropna() 

  test.loc[test['is_it_spam'] != 0, "is_it_spam"] = -1 

  test.loc[test['is_it_spam'] == 0, "is_it_spam"] = 1 

  preds = model.predict(preprocess_features(test)) 



45 
 

  targs = preprocess_targets(test) 

 

  missing = set(targs['is_it_spam']) - set(preds) 

  print("Testing:") 

  if len(missing) > 0: 

    print("Value "+str(missing)+" not present. Can not calculate metrics.") 

  else: 

    print("accuracy: ", metrics.accuracy_score(targs, preds))   

    print("precision: ", metrics.precision_score(targs, preds))   

    print("recall: ", metrics.recall_score(targs, preds))   

    print("f1: ", metrics.f1_score(targs, preds))   

    print("area under curve (auc): ", metrics.roc_auc_score(targs, preds)) 

 

 

# Start the server 

s = socket.socket() 

s.bind((host,port)) 

print("Server Started (CTRL+C to exit)") 

s.listen(1) 

try: 

  while True: 

    print("Waiting for incoming connections...") 

    c, addr = s.accept() 

    print("Connection from: " + str(addr)) 

    array = '' 

    msg = '' 

    while True: 

      data = c.recv(1024).decode('utf-8') 

      if not data: 

        break 

      array += data 

    try: 

      new_record = np.asarray(np.array(array.split(",")), np.int)     

      print(new_record) 

      if new_record.size != len(columns): 

        msg = "Wrong # of values. Retry\n" 

        print(msg) 

      else: 



46 
 

        msg = insert_record(new_record) 

    except ValueError: 

      msg = "Incorrect Syntax. Retry\n" 

      print(msg) 

      c.send(msg.encode('utf-8')) 

      c.shutdown(socket.SHUT_WR) 

      c.close() 

      continue 

    c.send(msg.encode('utf-8')) 

    c.shutdown(socket.SHUT_WR) 

    c.close() 

except KeyboardInterrupt: 

  s.shutdown(socket.SHUT_RDWR) 

  s.close() 

  print ("\nServer shutdown correctly. Bye Bye") 

Results 

 

Figure 15. SVM Results 

Tweaking the hyperparameters of the model the best result obtained has an f1 score of 0.9 on the 

data set. It has discovered 4 out of 5 spam and misclassified just 1 of the “good” data.  

After the results obtained with Logistic Regression, SVM gives pretty good advantages correctly 

classifying a wide percentage of data without human intervention. This algorithm confirms the 

expectations as the most used for One Class Classification among supervised methods.  



47 
 

Third Model: Local Outlier Factor 
Exploring the unsupervised algorithms this option seems the first natural step to follow, it is still 

intuitive because of its classification which is based on a multidimensional representation of the 

input as points in this space as the SVM. The main difference involves how the outliers are 

identified, while the SVM uses distance this uses density. 

The Local Outlier Factor (LOF) algorithm is an anomaly detection method which computes the 

local density of each point based on its nearest neighbours. 

All the algorithm can be schematized in 3 points: 

• Defined 𝑘 as the number of neighbours specified by parameter and k-distance as the 

distance between the chosen point and its 𝑘𝑡ℎ nearest neighbour calculate, for each point, 

the reachability distance with any other point. This is defined as the maximum between 

the k-distance of the point and the distance to the point selected. 

𝑟𝑒𝑎𝑐ℎ_𝑑𝑖𝑠𝑡(𝑎, 𝑏) =   max (𝑘_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑏), 𝑑𝑖𝑠𝑡(𝑎, 𝑏)) 

 

Figure 16. K-distance of a point with k=3 (Wenig, 2018) 

• To get the local reachability distance for a point a, we will first calculate the reachability 

distance of a to all its 𝑘 nearest neighbors and take the average of that number. The lrd is 

then simply the inverse of that average. 

𝑙𝑟𝑑(𝑎) =
𝑘

∑ 𝑟𝑒𝑎𝑐ℎ_𝑑𝑖𝑠𝑡(𝑎, 𝑛)𝑘
𝑛=0

 

 

• Finally, the LOF is calculated as an average among the lrd of the point and the lrd of its 𝑘 

neighbours. If the density of a point is much smaller than the densities of its neighbours 

(LOF ≫1), the point is far from dense areas and, hence, an outlier. 



48 
 

 

Figure 17. Outlier has big distance compared to the neighbors (k=4) (Wenig, 2018) 

Code 

import numpy as np   

import pandas as pd   

from sklearn import utils   

import matplotlib.pyplot as plt 

from sklearn.model_selection import train_test_split 

from sklearn.neighbors import LocalOutlierFactor 

from sklearn import metrics   

import os, csv, argparse, socket, sys, time 

from sklearn.externals import joblib   

 

parser = argparse.ArgumentParser(description='Activate a Linear Classifier.') 

parser.add_argument('-w','--warn', dest='warning', action='store_true', 

                    help='activate warnings') 

parser.add_argument('--chk_file', dest='chk_fp', action='store', 

metavar='NAME', 

                    default='occ_iso.model',help='used to specify checkpoint 

model name') 

parser.add_argument('-ow','--overwrite', dest='ow', action='store_true', 

                    help='train again and overwrite the model') 

parser.add_argument('-hn','--host', dest='host', action='store', 

metavar='HOSTNAME', 



49 
 

                    default='127.0.0.1',help='server hostname (default: 

127.0.0.1)') 

parser.add_argument('-p','--port', dest='port', action='store', 

metavar='PORT', type=int, 

                    default=50001,help='server port number (default: 50001)') 

 

args = parser.parse_args() 

 

 

pd.options.display.max_rows = 10 

pd.options.display.float_format = '{:.1f}'.format 

columns = ["lake_dist", 

     "purifier_dist", 

     "clean_dist", 

     "house_dist", 

     "lake_pump", 

     "purifier_pump", 

     "house_pump", 

     "purifier_temp", 

     "clean_valve"] 

 

show_warnings = args.warning 

 

# Server Address 

host = args.host 

port = args.port 

 

# Checkpoint folder 

filepath = args.chk_fp 

overwrite = args.ow 

 

# import the CSV from Database.csv file 

# this will return a pandas dataframe. 

aqueduct_dataframe = pd.read_csv("Database.csv", sep=",", low_memory=False) 

 

# let's take a look at the types of attack labels are present in the data. 

aqueduct_dataframe["is_it_spam"].value_counts().plot(kind='bar')   

plt.show() 



50 
 

 

# we're using a one-class SVM, so we need.. a single class. the dataset 

'label' 

# column contains multiple different categories of attacks, so to make use of  

# this data in a one-class system we need to convert the attacks into 

# class 1 (no_spam) and class -1 (spam) 

aqueduct_dataframe.loc[aqueduct_dataframe['is_it_spam'] != 0, "is_it_spam"] = 

-1 

aqueduct_dataframe.loc[aqueduct_dataframe['is_it_spam'] == 0, "is_it_spam"] = 

1 

 

 

def preprocess_features(aqueduct_dataframe): 

  """Prepares input features from personal data set. 

 

  Args: 

    aqueduct_dataframe: A Pandas DataFrame expected to contain data 

      from the personal aqueduct data set. 

  Returns: 

    A DataFrame that contains the features to be used for the model, including 

    synthetic features. 

  """ 

  selected_features = aqueduct_dataframe[columns] 

  processed_features = selected_features.copy() 

  return processed_features 

 

def preprocess_targets(aqueduct_dataframe): 

  """Prepares target features (i.e., labels) from Aqueduct data set. 

 

  Args: 

    aqueduct_dataframe: A Pandas DataFrame expected to contain data 

      from the California housing data set. 

  Returns: 

    A DataFrame that contains the target feature. 

  """ 

  output_targets = pd.DataFrame() 

  # Create a boolean categorical feature representing whether the 

  # median_house_value is above a set threshold. 



51 
 

  output_targets["is_it_spam"] = aqueduct_dataframe["is_it_spam"] 

  return output_targets 

 

def new_train(new_record, prediction, timestamp): 

  global features 

  global target 

  global model 

  ts = timestamp 

  df1 = preprocess_features(pd.DataFrame([new_record], columns=columns))[:1] 

  df1.loc[0,"timestamp"] = timestamp 

  df1.loc[0,"is_it_spam"] = prediction 

  training_ex = preprocess_features(df1) 

  features = features.append(training_ex, sort=True) 

  training_target = preprocess_targets(df1) 

  target = target.append(training_target, sort=True) 

   

  if show_warnings: 

    print(df1) 

    print(prediction) 

 

  model = model.fit(training_ex) 

 

  spam_detected = 0 

  if prediction == -1: 

    spam_detected = 1 

  new_record = new_record.tolist() 

  new_record.append(spam_detected) 

  ts.extend(new_record) 

  print(ts) 

  with open('Database.csv', 'a') as csvfile: 

    filewriter = csv.writer(csvfile, delimiter=',', quotechar='|', 

quoting=csv.QUOTE_NONE) 

    filewriter.writerow(ts) 

  joblib.dump(model, filepath, compress=9) 

 

def insert_record (new_record): 

 

  global model 



52 
 

  global aqueduct_dataframe 

 

  test_input = preprocess_features(pd.DataFrame([new_record], 

columns=columns)) 

  df = test_input[:1] 

 

  pred = model.predict(df) 

  # Print the prediction results. 

  print("\nPrediction result: "+str(pred)) 

 

  # Add the prediction to the csv file and train on it 

  # Create the timestamp 

  ts = time.gmtime() 

  row = [time.strftime("%Y-%m-%d %H:%M:%S", ts)] 

 

  new_train(new_record, pred, row) 

  if pred == 1: 

    return "Data saved as NO SPAM\n" 

  else: 

    return "Data saved as SPAM\n" 

 

# grab out the is_it_spam value as the target for training and testing. since 

we're 

# only selecting a single column from the `aqueduct_dataframe` dataframe, 

we'll just get a 

# series, not a new dataframe 

target = preprocess_targets(aqueduct_dataframe) 

 

# find the proportion of outliers we expect (aka where `is_it_spam == -1`). 

because  

# target is a series, we just compare against itself rather than a column. 

outliers = target[target['is_it_spam'] == -1]   

if show_warnings: 

  print("outliers.shape", outliers.shape)   

  print("outlier fraction", outliers.shape[0]/target.shape[0]) 

 

# drop label columns from the dataframe. we're doing this so we can do  

# unsupervised training with unlabelled data. we've already copied the label 



53 
 

# out into the target series so we can compare against it later. 

#aqueduct_dataframe.drop("timestamp", axis=1, inplace=True) 

#aqueduct_dataframe.drop("is_it_spam", axis=1, inplace=True) 

features = preprocess_features(aqueduct_dataframe) 

 

# check the shape for sanity checking. 

if show_warnings: 

  print(features.shape) 

 

#Divide train and test data 

train_data, test_data, train_target, test_target = train_test_split(features, 

target, train_size = 0.8) 

#train_data = features 

#train_target = target   

 

if os.path.isfile(filepath) and not overwrite: 

  model = joblib.load(filepath) 

else: 

  model = LocalOutlierFactor(n_neighbors=10, novelty=True, contamination=0.1) 

  model.fit(train_data) 

 

  joblib.dump(model, filepath, compress=9)   

 

if show_warnings: 

  preds = model.predict(train_data)   

  targs = train_target 

 

  with open('test_input.csv', 'r') as csvfile: 

    readCSV = csv.reader(csvfile, delimiter=',') 

    test_data = list(readCSV) 

  new_cols = columns.copy() 

  new_cols.append("is_it_spam") 

  test = pd.DataFrame(test_data[1:], columns=new_cols) 

  # Converting all objects to float and dropping incomplete rows 

  test = test.replace(r'^\s*$', np.nan, regex=True).apply(lambda x: 

pd.to_numeric(x, errors='coerce')).dropna() 

  test.loc[test['is_it_spam'] != 0, "is_it_spam"] = -1 



54 
 

  test.loc[test['is_it_spam'] == 0, "is_it_spam"] = 1 

  preds = model.predict(preprocess_features(test)) 

  targs = preprocess_targets(test) 

 

  missing = set(targs['is_it_spam']) - set(preds) 

  print("Validation:") 

  if len(missing) > 0: 

    print("Value "+str(missing)+" not present. Can not calculate metrics.") 

  else: 

    print("TARGS: ",np.asarray(targs["is_it_spam"], np.int)) 

    print("PREDS: ",preds) 

 

    print("accuracy: ", metrics.accuracy_score(targs, preds))   

    print("precision: ", metrics.precision_score(targs, preds))   

    print("recall: ", metrics.recall_score(targs, preds))   

    print("f1: ", metrics.f1_score(targs, preds))   

    print("area under curve (auc): ", metrics.roc_auc_score(targs, preds)) 

 

 

# Start the server 

s = socket.socket() 

s.bind((host,port)) 

print("Server Started (CTRL+C to exit)") 

s.listen(1) 

try: 

  while True: 

    print("Waiting for incoming connections...") 

    c, addr = s.accept() 

    print("Connection from: " + str(addr)) 

    array = '' 

    msg = '' 

    while True: 

      data = c.recv(1024).decode('utf-8') 

      if not data: 

        break 

      array += data 

    try: 

      new_record = np.asarray(np.array(array.split(",")), np.int)     



55 
 

      print(new_record) 

      if new_record.size != len(columns): 

        msg = "Wrong # of values. Retry\n" 

        print(msg) 

      else: 

        msg = insert_record(new_record) 

    except ValueError: 

      msg = "Incorrect Syntax. Retry\n" 

      print(msg) 

      c.send(msg.encode('utf-8')) 

      c.shutdown(socket.SHUT_WR) 

      c.close() 

      continue 

    c.send(msg.encode('utf-8')) 

    c.shutdown(socket.SHUT_WR) 

    c.close() 

except KeyboardInterrupt: 

  s.shutdown(socket.SHUT_RDWR) 

  s.close() 

  print ("\nServer shutdown correctly. Bye Bye") 

Results 

 

Figure 18. LOF Results 

This algorithm scores incredibly well recognizing correctly all the examples except for one. The 

tuning of the parameters could be trivial, in particular for the contamination parameter which is 

used to set the decision threshold during the training phase. The n_neighbors specifies the 𝑘 

parameter already discussed and could be relevant for a proper work of the algorithm: too small 

and could be erroneous in a noisy environment, too big and it can miss local outliers.  



56 
 

Fourth Model: AutoEncoder 
Despite models seen since this point, the following will be the first attempt to use a Neural 

Network which is an unsupervised approach inspired to the human body and considering the fast 

diffusion of these in all sort of environment will be worth to analyse this advanced kind of 

technology for our purpose. 

Basics on Neural Networks 

“An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the 

way biological nervous systems, such as the brain, process information. The key element of this 

paradigm is the novel structure of the information processing system. It is composed of a large 

number of highly interconnected processing elements (neurones) working in unison to solve specific 

problems. ANNs, like people, learn by example. An ANN is configured for a specific application, 

such as pattern recognition or data classification, through a learning process. Learning in biological 

systems involves adjustments to the synaptic connections that exist between the neurones. This is 

true of ANNs as well.” (Stergiou & Siganos, n.d.)  

Exactly as in biology, neurons fire or activate depending on some factors, for the Artificial Neural 

Networks that is based on a function called activation function which map the input to an output 

in a range proper of the function. This could be linear or non-linear but we only consider the 

second type because of the many problems of the first like the propagation of the linearity 

through the layers reducing all the network to a single-layer perceptron. 

In the following a brief introduction to the most widely used activation functions is presented. 

Sigmoid Function 

Already presented in the Logistic Regression section the Sigmoid function is often used in model 

where the output is a probability because of the output included in the interval [0,1].  

 

 

Figure 19. Sigmoid Function (Avinash, 2017) 

 



57 
 

Tanh Function 

Another activation function that is vastly used is the tanh function. 

 

Figure 20. Tanh Function (Avinash, 2017) 

 

Hm. This looks very similar to sigmoid. In fact, it is a scaled sigmoid function! 

 

Like sigmoid it is nonlinear in nature, so it resolves the problem of stacking layers. It is bound to 
range (-1, 1) so no worries of activations blowing up. One point to mention is that the gradient is 
stronger for tanh than sigmoid ( derivatives are steeper). 

Tanh is a common choice for binary classification, the fact it stands between -1 and 1 makes easier 
the classification identifying one class with negative values and the other with positive values. 

ReLu 

The following rectified linear unit activation function (or ReLU, for short) often works a little 
better than a smooth function like the sigmoid, while also being significantly easier to compute. 

𝐹(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

The superiority of ReLU is based on empirical findings, probably driven by ReLU having a more 
useful range of responsiveness. A sigmoid's responsiveness falls off relatively quickly on both 
sides. 



58 
 

 

Figure 21. ReLU Function (Avinash, 2017) 

 

AutoEncoder 

The final attempt was to pass from a supervised model to an unsupervised one through an ANN, 

the most appropriate and widely accepted choice seems to be using an autoencoder. 

An autoencoder is a neural network with the same number of inputs and output and one or more 

hidden layer between them with less neurons that will create a sort of bottleneck. This model is 

constituted by an Encoder with the purpose of including the same information in less data with a 

minimal loss and a Decoder with the purpose of reconstructing the input data from the 

compressed one with a minimal loss. 

 

Figure 22. AutoEncoder Model 

Training the autoencoder with just “ham” data will create a model minimizing the reconstruction 

error for that class. During inference the classification will be based on a threshold applied on the 

reconstruction error, a big value could be a symptom of a “spam” data, different from anyone 

seen during the training phase. Most of the time choose the right threshold is very trivial, 

especially in this case where we train on just one class and the reconstructed error of the other 

class is not known a priori.  

In the proposed network both the encoder and the decoder are formed by two layers: the first 

one with a Tanh as activation function while the second one (hidden layer) with a ReLu. The 



59 
 

external layers have full dimension (equal to the number of features), the internal ones have half 

dimension.  

 

Figure 23. AutoEncoder internal structure (Ellison, 2018) 

Code 
# import packages 

# matplotlib inline 

import pandas as pd 

import numpy as np 

from scipy import stats 

import tensorflow as tf 

import matplotlib.pyplot as plt 

import seaborn as sns 

import pickle 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import confusion_matrix, precision_recall_curve 

from sklearn.metrics import recall_score, classification_report, auc, 

roc_curve 

from sklearn.metrics import precision_recall_fscore_support, f1_score 

from sklearn.preprocessing import StandardScaler 

from pylab import rcParams 

from keras.models import Model, load_model 

from keras.layers import Input, Dense 

from keras.callbacks import ModelCheckpoint, TensorBoard 



60 
 

from keras import regularizers 

import keras.backend as K 

 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.neighbors.kde import KernelDensity 

 

#set random seed and percentage of test data 

RANDOM_SEED = 314 #used to help randomly select the data points 

TEST_PCT = 0.2 # 20% of the data 

 

#set up graphic style in this case I am using the color scheme from xkcd.com 

rcParams['figure.figsize'] = 14, 8.7 # Golden Mean 

LABELS = ["Normal","Fraud"] 

col_list = ["cerulean","scarlet"]# https://xkcd.com/color/rgb/ 

sns.set(style='white', font_scale=1.75, palette=sns.xkcd_palette(col_list), 

color_codes=False) 

 

df = pd.read_csv("Database.csv") #unzip and read in data downloaded to the 

local directory 

df.head(n=5) #just to check you imported the dataset properly 

 

columns = ["lake_dist", 

     "purifier_dist", 

     "clean_dist", 

     "house_dist", 

     "lake_pump", 

     "purifier_pump", 

     "house_pump", 

     "purifier_temp", 

     "clean_valve"] 

 

def preprocess_features(aqueduct_dataframe): 

  """Prepares input features from personal data set. 

 

  Args: 

    aqueduct_dataframe: A Pandas DataFrame expected to contain data 

      from the personal aqueduct data set. 

  Returns: 



61 
 

    A DataFrame that contains the features to be used for the model, including 

    synthetic features. 

  """ 

  selected_features = aqueduct_dataframe[columns] 

  processed_features = selected_features.copy() 

  return processed_features 

 

def preprocess_targets(aqueduct_dataframe): 

  """Prepares target features (i.e., labels) from Aqueduct data set. 

 

  Args: 

    aqueduct_dataframe: A Pandas DataFrame expected to contain data 

      from the California housing data set. 

  Returns: 

    A DataFrame that contains the target feature. 

  """ 

  output_targets = pd.DataFrame() 

  # Create a boolean categorical feature representing whether the 

  # median_house_value is above a set threshold. 

  output_targets["is_it_spam"] = aqueduct_dataframe["is_it_spam"] 

  return output_targets 

 

def print_metrics(y_true, y_pred): 

    tot_spam = np.sum(np.array(y_true)==1, axis=0) #true neg 

    indices = [i for i in range(len(y_pred)) if y_pred[i]==1] #predicted neg 

    pos = len(y_pred)-len(indices) #predicted pos 

    tn = len([i for i in indices if np.asarray(y_true, np.int)[i] == 1]) 

    fn = len(indices)-tn 

    fp = tot_spam-tn 

    tp = pos-fp 

    acc = (tn+tp)/len(y_pred) 

    precision = tp/(tp+fp) 

    recall = tp/(tp+fn) 

    f1_score = 2*tp/(2*tp+(len(indices)-tn)+fp) 

    print("Accuracy: {0: .3f}".format(acc)) 

    print("Precision: {0: .3f}".format(precision)) 

    print("Recall: {0: .3f}".format(recall)) 

    print("F1-score: {0: .3f}".format(f1_score)) 



62 
 

 

print(pd.value_counts(df['is_it_spam'], sort = True)) #class comparison 

0=Normal 1=Fraud 

 

 

#if you don't have an intuitive sense of how imbalanced these two classes are, 

let's go visual 

count_classes = pd.value_counts(df['is_it_spam'], sort = True) 

count_classes.plot(kind = 'bar', rot=0) 

plt.xticks(range(2), LABELS) 

plt.title("Frequency by observation number") 

plt.xlabel("Class") 

plt.ylabel("Number of Observations"); 

plt.show() 

 

normal_df = df[df.is_it_spam == 0] #save normal_df observations into a 

separate df 

fraud_df = df[df.is_it_spam == 1] #do the same for frauds 

df_norm = df 

df_norm = df_norm.drop(['timestamp'], axis=1) 

 

 

train_x, test_x = train_test_split(df_norm, test_size=TEST_PCT, 

random_state=RANDOM_SEED) 

train_x = train_x[train_x.is_it_spam == 0] #where normal transactions 

train_x = train_x.drop(['is_it_spam'], axis=1) #drop the class column 

 

 

test_y = test_x['is_it_spam'] #save the class column for the test set 

test_x = test_x.drop(['is_it_spam'], axis=1) #drop the class column 

 

train_x = train_x.values #transform to ndarray 

test_x = test_x.values 

 

# Normalize Data (Experimental) 

#scaler = MinMaxScaler() 

#train_x_scaled = scaler.fit_transform(train_x) 

#test_x_scaled  = scaler.transform(test_x) 



63 
 

train_x_scaled = train_x 

test_x_scaled  = test_x 

 

 

nb_epoch = 150 

batch_size = 50   #128 

input_dim = train_x.shape[1] #num of columns, 9 

encoding_dim = 9 

hidden_dim = int(encoding_dim / 2)+2 #i.e. 4 

learning_rate = 1e-3 

 

input_layer = Input(shape=(input_dim, )) 

encoder = Dense(encoding_dim, activation="tanh", 

activity_regularizer=regularizers.l1(learning_rate), 

name="encoder")(input_layer) 

encoder = Dense(hidden_dim, activation="relu")(encoder) 

decoder = Dense(hidden_dim, activation='tanh')(encoder) 

decoder = Dense(input_dim, activation='relu')(decoder) 

autoencoder = Model(inputs=input_layer, outputs=decoder) 

 

autoencoder.compile(metrics=['accuracy'], 

                    loss='mean_squared_error', 

                    optimizer='adam') 

 

cp = ModelCheckpoint(filepath="autoencoder_fraud.h5", 

                               save_best_only=True, 

                               verbose=0) 

 

tb = TensorBoard(log_dir='./logs', 

                histogram_freq=0, 

                write_graph=True, 

                write_images=True) 

 

history = autoencoder.fit(train_x_scaled, train_x_scaled, 

                    epochs=nb_epoch, 

                    batch_size=batch_size, 

                    shuffle=True, 

                    validation_data=(test_x_scaled, test_x_scaled), 



64 
 

                    verbose=1, 

                    callbacks=[cp, tb]).history 

 

 

plt.plot(history['loss'], linewidth=2, label='Train') 

plt.plot(history['val_loss'], linewidth=2, label='Test') 

plt.legend(loc='upper right') 

plt.title('Model loss') 

plt.ylabel('Loss') 

plt.xlabel('Epoch') 

#plt.ylim(ymin=0.70,ymax=1) 

plt.show() 

 

pred = autoencoder.predict(test_x_scaled) 

 

mse = np.mean(np.power(test_x_scaled - pred, 2), axis=1) 

error_df = pd.DataFrame({'Reconstruction_error': mse, 

                         'True_class': test_y}) 

 

threshold_fixed = 5 # default is 0 

#step = 1 

#requested_pool = 97 # es. 80% 

#ex_true = 0 # examples gotten 

#print(error_df['Reconstruction_error']) 

#while ex_true < requested_pool: 

#    threshold_fixed += step 

#    trues = [1 for elem in error_df['Reconstruction_error'] if 

elem<threshold_fixed] 

#    ex_true = 100*sum(trues)/len(error_df['Reconstruction_error']) 

print("Threshold: "+str(threshold_fixed)) 

 

groups = error_df.groupby('True_class') 

fig, ax = plt.subplots() 

 

for name, group in groups: 

    ax.plot(group.index, group.Reconstruction_error, marker='o', ms=3.5, 

linestyle='', 

            label= "Fraud" if name == 1 else "Normal") 



65 
 

ax.hlines(threshold_fixed, ax.get_xlim()[0], ax.get_xlim()[1], colors="r", 

zorder=100, label='Threshold') 

ax.legend() 

plt.title("Reconstruction error for different classes") 

plt.ylabel("Reconstruction error") 

plt.xlabel("Data point index") 

plt.show(); 

 

validation_df = pd.read_csv("test_input.csv") 

new_cols = columns.copy() 

new_cols.append("is_it_spam") 

test_input = pd.DataFrame(validation_df, columns=new_cols) 

test_input = test_input.replace(r'^\s*$', np.nan, regex=True).apply(lambda x: 

pd.to_numeric(x, errors='coerce')).dropna() 

 

feat = preprocess_features(test_input) 

pred = autoencoder.predict(feat) 

targ = preprocess_targets(test_input) 

 

 

mse = np.mean(np.power(feat - pred, 2), axis=1) 

error_df = pd.DataFrame({'Reconstruction_error': mse, 

                         'True_class': targ['is_it_spam']}) 

print(error_df.describe()) 

 

false_pos_rate, true_pos_rate, thresholds = roc_curve(error_df.True_class, 

error_df.Reconstruction_error) 

roc_auc = auc(false_pos_rate, true_pos_rate,) 

 

plt.plot(false_pos_rate, true_pos_rate, linewidth=5, label='AUC = %0.3f'% 

roc_auc) 

plt.plot([0,1],[0,1], linewidth=5) 

 

plt.xlim([-0.01, 1]) 

plt.ylim([0, 1.01]) 

plt.legend(loc='lower right') 

plt.title('Receiver operating characteristic curve (ROC)') 

plt.ylabel('True Positive Rate') 



66 
 

plt.xlabel('False Positive Rate') 

plt.show() 

 

precision_rt, recall_rt, threshold_rt = 

precision_recall_curve(error_df.True_class, error_df.Reconstruction_error) 

plt.plot(recall_rt, precision_rt, linewidth=5, label='Precision-Recall curve') 

plt.title('Recall vs Precision') 

plt.xlabel('Recall') 

plt.ylabel('Precision') 

plt.show() 

 

plt.plot(threshold_rt, precision_rt[1:], label="Precision",linewidth=5) 

plt.plot(threshold_rt, recall_rt[1:], label="Recall",linewidth=5) 

plt.title('Precision and recall for different threshold values') 

plt.xlabel('Threshold') 

plt.ylabel('Precision/Recall') 

plt.legend() 

plt.show() 

 

 

pred_y = [1 if e > threshold_fixed else 0 for e in 

error_df.Reconstruction_error.values] 

conf_matrix = confusion_matrix(error_df.True_class, pred_y) 

 

plt.figure(figsize=(12, 12)) 

sns.heatmap(conf_matrix, xticklabels=LABELS, yticklabels=LABELS, annot=True, 

fmt="d"); 

plt.title("Confusion matrix") 

plt.ylabel('True class') 

plt.xlabel('Predicted class') 

plt.show() 

 

print_metrics(error_df.True_class, pred_y) 

Results 

 

Figure 24. AutoEncoder Results 



67 
 

The autoencoder has a performance nearly identical to the SVM on the test set measured by the 

F1 score. Unfortunately, it seems much more slower in training probably due to the 

encode/decode process and the consequently map of neural connections during each step. 

Analysing the ROC we can notice that this model has an overall better performance for every 

possible threshold. That data, compared to the outcome shows some incongruity: due to the fact 

that the AUC tells an overall value created among all the threshold and in this model is so high that 

means that the chosen threshold was not an optimal one. This was proved by other runs, even if it 

results really hard to choose arbitrarily a threshold and apply it to every iteration, selecting it 

manually shows great outcomes near to the ones of the LOF. However, due to the unpredictability 

of the settings and the strong automatic component of the model we are searching for, the 

adoption of this algorithm is discouraged as too dependant of user supervision. 

 

Figure 25. AutoEncoder AUC 

Nevertheless, the autoencoder does not stands out of the crowd on average, not bringing useful 

advantages compared to the LOF model but opening the path to a new kind of models. Neural 

Networks, anyway, prove to be very adaptable to different situations and it’s worth to better 

investigate with other models of this class searching for one which better fits our case.  



68 
 

Hybrid Autoencoder with KDE 

After reading a paper entitled “A Hybrid Autoencoder and Density Estimation Model for Anomaly 

Detection” I decided to take a step further and compare this new model to the classical 

autoencoder to improve my results. 

This system take advantage of an autoencoder during the train phase as previous but it uses its 

compressed data, right after encoding, applying on them a kernel density estimation (KDE). 

 

 

Figure 26. AEKDE Model 

 

KDE is a non-parametric method of estimating probability density given a sample. Let 

𝑥1, 𝑥2, . . . . , 𝑥𝑛 be a set of d-dimensional samples in ℝd drawn from an unknown distribution with 

density function 𝑝(𝑥). An estimate �̂�(𝑥) of the density at 𝑥 can be calculated using 

�̂�(𝑥)  =  
1

𝑛
∑ 𝐾ℎ (𝑥 − 𝑥𝑖)

𝑛

𝑖=1

 

where 𝐾ℎ ∶ ℝ𝑑 → ℝ is a kernel function with a parameter ℎ called bandwidth. 

The Gaussian kernel is common in applications and it is the one used in this model. As illustrated in 

Fig. 1(b) in KDE each point contributes a small “bump” to the overall density, with its shape 

controlled by the kernel and bandwidth. The bandwidth parameter ℎ controls the trade-off 

between bias of the estimator and its variance. 

𝐾ℎ(𝑥)  =  𝑒𝑥𝑝(−
𝑥2

2ℎ2
) 

 



69 
 

 

Figure 27. (a) An Autoencoder. (b) Density Estimated with KDE 

 

KDE could be explained in a simpler way thinking at each value in input as a point on the x axis, for 

each occurrence a new point will be placed on the top of the other creating a graph that will look 

like this: 

 

 

Figure 28. KDE 

 

The blue dot represents the value of the Kernel Density function (blue line) for a specified input, 

this measure is defined applying a weight function to an interval of neighbours of the point. This 

function is represented by the red line, also called kernel function, which establish the contribute 

of every input to the current value. How much the dot influences the KDE is represented by its 

brightness, the more is lit the more will be the contribute to the function and that’s why dots out 

of the interval of the kernel functions are completely dark. 



70 
 

The chosen type of kernel and bandwidth value influence the shape and the width/amplitude of 

the curve as it can be clear from the following figures. 

  

 
Figure 29. KDE with High Bandwidth 

 
Figure 30. KDE with Low Bandwidth 

 

Code 
# import packages 

# matplotlib inline 

import pandas as pd 

import numpy as np 

from scipy import stats 

import tensorflow as tf 

import matplotlib.pyplot as plt 

import seaborn as sns 

import pickle 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import confusion_matrix, precision_recall_curve 

from sklearn.metrics import recall_score, classification_report, auc, 

roc_curve 

from sklearn.metrics import precision_recall_fscore_support, f1_score 

from sklearn.preprocessing import StandardScaler 

from pylab import rcParams 

from keras.models import Model, load_model 

from keras.layers import Input, Dense 

from keras.callbacks import ModelCheckpoint, TensorBoard 

from keras import regularizers 



71 
 

import keras.backend as K 

from sklearn.neighbors.kde import KernelDensity 

import argparse 

import socket 

import time 

import csv 

import os 

 

#set random seed and percentage of test data 

RANDOM_SEED = 314 #used to help randomly select the data points 

TEST_PCT = 0.2 # 20% of the data 

 

#set up graphic style in this case I am using the color scheme from xkcd.com 

rcParams['figure.figsize'] = 14, 8.7 # Golden Mean 

LABELS = ["Normal","Fraud"] 

col_list = ["cerulean","scarlet"]# https://xkcd.com/color/rgb/ 

sns.set(style='white', font_scale=1.75, palette=sns.xkcd_palette(col_list), 

color_codes=False) 

 

parser = argparse.ArgumentParser(description='Activate a Linear Classifier.') 

parser.add_argument('-w','--warn', dest='warning', action='store_true', 

                    help='activate warnings') 

parser.add_argument('--ae_chk', dest='ae_chk_fp', action='store', 

metavar='NAME', 

                    default='autoencoder_fraud.h5',help='used to specify 

autoencoder checkpoint name') 

parser.add_argument('-ow','--overwrite', dest='ow', action='store_true', 

                    help='train again and overwrite the model') 

parser.add_argument('-hn','--host', dest='host', action='store', 

metavar='HOSTNAME', 

                    default='127.0.0.1',help='server hostname (default: 

127.0.0.1)') 

parser.add_argument('-p','--port', dest='port', action='store', 

metavar='PORT', type=int, 

                    default=50001,help='server port number (default: 50001)') 

 

args = parser.parse_args() 

 



72 
 

 

pd.options.display.max_rows = 10 

pd.options.display.float_format = '{:.1f}'.format 

columns = ["lake_dist", 

     "purifier_dist", 

     "clean_dist", 

     "house_dist", 

     "lake_pump", 

     "purifier_pump", 

     "house_pump", 

     "purifier_temp", 

     "clean_valve"] 

known_binary_cols = ["lake_pump","purifier_pump","house_pump","clean_valve"] 

 

show_warnings = args.warning 

 

# Server Address 

host = args.host 

port = args.port 

 

# Checkpoint folder 

ae_filepath = args.ae_chk_fp 

overwrite = args.ow 

 

df = pd.read_csv("Database.csv") #unzip and read in data downloaded to the 

local directory 

 

if show_warnings: 

  print(pd.value_counts(df['is_it_spam'], sort = True)) #class comparison 

0=Normal 1=Fraud 

 

  #if you don't have an intuitive sense of how imbalanced these two classes 

are, let's go visual 

  count_classes = pd.value_counts(df['is_it_spam'], sort = True) 

  count_classes.plot(kind = 'bar', rot=0) 

  plt.xticks(range(2), LABELS) 

  plt.title("Frequency by observation number") 

  plt.xlabel("Class") 



73 
 

  plt.ylabel("Number of Observations"); 

  plt.show() 

 

 

def preprocess_features(aqueduct_dataframe): 

  """Prepares input features from personal data set. 

 

  Args: 

    aqueduct_dataframe: A Pandas DataFrame expected to contain data 

      from the personal aqueduct data set. 

  Returns: 

    A DataFrame that contains the features to be used for the model, including 

    synthetic features. 

  """ 

  selected_features = aqueduct_dataframe[columns] 

  processed_features = selected_features.copy() 

  return processed_features 

 

def preprocess_targets(aqueduct_dataframe): 

  """Prepares target features (i.e., labels) from Aqueduct data set. 

 

  Args: 

    aqueduct_dataframe: A Pandas DataFrame expected to contain data 

      from the California housing data set. 

  Returns: 

    A DataFrame that contains the target feature. 

  """ 

  output_targets = pd.DataFrame() 

  # Create a boolean categorical feature representing whether the 

  # median_house_value is above a set threshold. 

  output_targets["is_it_spam"] = aqueduct_dataframe["is_it_spam"] 

  return output_targets 

 

def binary_check(data): 

  # Returns True if at least one binary constraint is violated 

  for col in known_binary_cols: 

    if data[col]!=0 and data[col]!=1: 

      return True 



74 
 

  return False 

 

def insert_record (new_record): 

 

  global kde 

  global cpencoder 

 

  test_input = preprocess_features(pd.DataFrame([new_record], 

columns=columns)) 

  data = test_input.squeeze() 

  # Preliminary binary check 

  if binary_check(data): 

    pred = 1 

  else: 

    # Prediction using trained model 

    log = kde.score_samples(cpencoder.predict(test_input)) 

    pred = int(log<0) 

  # Print the prediction results. 

  print("\nPrediction result: "+str(pred)) 

 

  # Add the prediction to the csv file and train on it 

  # Create the timestamp 

  ts = time.gmtime() 

  row = [time.strftime("%Y-%m-%d %H:%M:%S", ts)] 

 

  new_record = new_record.tolist() 

  new_record.append(pred) 

  row.extend(new_record) 

  with open('Database.csv', 'a') as csvfile: 

    filewriter = csv.writer(csvfile, delimiter=',', quotechar='|', 

quoting=csv.QUOTE_NONE) 

    filewriter.writerow(row)   

  if pred == 1: 

    return "Data saved as SPAM\n" 

  else: 

    return "Data saved as NO SPAM\n" 

 

def print_metrics(y_true, y_pred): 



75 
 

    tot_spam = np.sum(np.array(y_true)==1, axis=0) #true neg 

    indices = [i for i in range(len(y_pred)) if y_pred[i]==1] #predicted neg 

    pos = len(y_pred)-len(indices) #predicted pos 

    tn = len([i for i in indices if np.asarray(y_true, np.int)[i] == 1]) 

    fn = len(indices)-tn 

    fp = tot_spam-tn 

    tp = pos-fp 

    acc = (tn+tp)/len(y_pred) 

    precision = tp/(tp+fp) 

    recall = tp/(tp+fn) 

    f1_score = 2*tp/(2*tp+(len(indices)-tn)+fp) 

    print("Accuracy: {0: .3f}".format(acc)) 

    print("Precision: {0: .3f}".format(precision)) 

    print("Recall: {0: .3f}".format(recall)) 

    print("F1-score: {0: .3f}".format(f1_score)) 

 

#data = df.drop(['Time'], axis=1) #if you think the var is unimportant 

df_norm = df 

#df_norm['Time'] = 

StandardScaler().fit_transform(df_norm['Time'].values.reshape(-1, 1)) 

#df_norm['Amount'] = 

StandardScaler().fit_transform(df_norm['Amount'].values.reshape(-1, 1)) 

df_norm = df_norm.drop(['timestamp'], axis=1) 

 

 

train_x, test_x = train_test_split(df_norm, test_size=TEST_PCT, 

random_state=RANDOM_SEED) 

train_x = train_x[train_x.is_it_spam == 0] #where normal transactions 

train_x = train_x.drop(['is_it_spam'], axis=1) #drop the class column 

 

 

test_y = test_x['is_it_spam'] #save the class column for the test set 

test_x = test_x.drop(['is_it_spam'], axis=1) #drop the class column 

 

train_x = train_x.values #transform to ndarray 

test_x = test_x.values 

 

if not os.path.isfile(ae_filepath) or overwrite: 



76 
 

  # Training Specification 

  nb_epoch = 200 

  batch_size = 50   #128 

  input_dim = train_x.shape[1] #num of columns, 9 

  encoding_dim = input_dim 

  hidden_dim = int(encoding_dim / 2)+1 #i.e. 4 

  learning_rate = 1e-3 

 

  # AutoEncoder Shape 

  input_layer = Input(shape=(input_dim, )) 

  encoder = Dense(encoding_dim, activation="tanh", 

activity_regularizer=regularizers.l1(learning_rate))(input_layer) 

  encoder = Dense(hidden_dim, activation="relu", name="encoder")(encoder) 

  decoder = Dense(hidden_dim, activation='tanh')(encoder) 

  decoder = Dense(input_dim, activation='relu')(decoder) 

  autoencoder = Model(inputs=input_layer, outputs=decoder) 

 

  autoencoder.compile(metrics=['accuracy'], 

                      loss='mean_squared_error', 

                      optimizer='adam') 

 

  cp = ModelCheckpoint(filepath=ae_filepath, 

                               save_best_only=True, 

                               verbose=0) 

 

  tb = TensorBoard(log_dir='./logs', 

                  histogram_freq=0, 

                  write_graph=True, 

                  write_images=True) 

 

  history = autoencoder.fit(train_x, train_x, 

                      epochs=nb_epoch, 

                      batch_size=batch_size, 

                      shuffle=True, 

                      validation_data=(test_x, test_x), 

                      verbose=1, 

                      callbacks=[cp, tb]).history 

 



77 
 

else: 

  autoencoder = load_model(ae_filepath) 

 

cpautoencoder = autoencoder 

 

cpencoder = Model(inputs=cpautoencoder.input, 

                        outputs=cpautoencoder.get_layer('encoder').output) 

 

encoded_train_preds = cpencoder.predict(train_x) 

 

kde = KernelDensity(kernel='gaussian', bandwidth=0.01) 

kde.fit(encoded_train_preds) 

 

validation_df = pd.read_csv("test_input.csv") 

new_cols = columns.copy() 

new_cols.append("is_it_spam") 

test_input = pd.DataFrame(validation_df, columns=new_cols) 

test_input = test_input.replace(r'^\s*$', np.nan, regex=True).apply(lambda x: 

pd.to_numeric(x, errors='coerce')).dropna() 

feat = preprocess_features(test_input) 

encoded_preds = cpencoder.predict(feat) 

log = kde.score_samples(encoded_preds) 

if show_warnings: 

  print("Kernel Density Estimation:") 

  print(np.exp(log)) 

  plt.bar(np.arange(1,len(log)+1),np.exp(log),align='center') 

  plt.title("Kernel Density Estimation") 

  plt.xlabel("Test Case") 

  plt.xticks(np.arange(1,len(log)+1)) 

  plt.show() 

pred = np.asarray((log<0), np.int) 

i = 0 

for index,row in feat.iterrows(): 

    if binary_check(row): 

        pred[i] = 1 

    i+=1     

targ = preprocess_targets(test_input) 

true = np.asarray(targ['is_it_spam'], np.int) 



78 
 

print("Pred: ",pred) 

print("TRUTH: ",true) 

 

#pred_y = [1 if den<0 else 0 for den in logs] 

if show_warnings: 

    print_metrics(true, pred) 

 

# Start the server 

s = socket.socket() 

s.bind((host,port)) 

print("Server Started (CTRL+C to exit)") 

s.listen(1) 

try: 

  while True: 

    print("Waiting for incoming connections...") 

    c, addr = s.accept() 

    print("Connection from: " + str(addr)) 

    array = '' 

    msg = '' 

    while True: 

      data = c.recv(1024).decode('utf-8') 

      if not data: 

        break 

      array += data 

    try: 

      new_record = np.asarray(np.array(array.split(",")), np.int)     

      print(new_record) 

      if new_record.size != len(columns): 

        msg = "Wrong # of values. Retry\n" 

        print(msg) 

      else: 

        msg = insert_record(new_record) 

    except ValueError: 

      msg = "Incorrect Syntax. Retry\n" 

      print(msg) 

      c.send(msg.encode('utf-8')) 

      c.shutdown(socket.SHUT_WR) 

      c.close() 



79 
 

      continue    

    c.send(msg.encode('utf-8')) 

    c.shutdown(socket.SHUT_WR) 

    c.close() 

except KeyboardInterrupt: 

  s.shutdown(socket.SHUT_RDWR) 

  s.close() 

  print ("\nServer shutdown correctly. Bye Bye") 

Results 

 

Figure 31. AEKDE Results 

This model has the best possible results predicting all the test data correctly. The decision 

threshold was set to 0 on the 𝑙𝑜𝑔(𝑘𝑑𝑒_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛), marking all the data with density between 0 

and 𝑒 as “spam” ( 𝑙𝑜𝑔(𝑘𝑑𝑒_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) ≤ 0 ∀𝑘𝑑𝑒_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∈ [0, 𝑒] ). Using a low-value 

bandwidth the following chart shows the test density estimated: 

 

Figure 32. Density Estimation on Test Set 

Compared to the simple autoencoder there is a great divergence between ham and spam data 

respect to the classification metric facilitating the threshold choice. 

  



80 
 

Conclusions 
 

Due to the supervised nature of this algorithm, which grants it a labelled pool of input, the SVM 

was naturally seen as the most efficient algorithm among the ones taken in consideration. 

Surprisingly the best recorded results are the ones of the hybrid model between an Autoencoder 

and a Kernel Density Estimator, which is a Neural Network, therefore, provided with unsupervised 

learning.  

 

 

Figure 33. Model Comparison 

As shown in the previous graph the AEKDE obtains the best result for each metric registering 

perfection for this study case. To score the others we give precedence to F1 score, as previously 

described, then we consider accuracy and in the end the AUC. The LOF takes the second place 

both for the overall scores registered and for the speed necessary for training which should be 

considered anyway. It is essential to concentrate for a moment on the autoencoder, that seems to 

have lowest performance but it is important to remember that this depends on the threshold 

choice and as the AUC shows it has potential to have slightly better results. Anyway, the 

autoencoder has been declassed due to the nature, too variable, of the threshold choice. 

The victory of an unsupervised learning algorithm over supervised ones, as much astonishing it can 

appear, could make sense due to the nature of the initial dataset and its belonging to the same 

class. In fact, even if unsupervised learning appears to be more incomplete because of its lack of 

labels, in this circumstance the label can be taken for granted due to the nature of OCC problems 

flattening the differences between these classes. 

Much more than that could be essential the method used to create the test set which is composed 

by randomly chosen data of the training set with variations on some of them to create 

“spam/anomalies”.  

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

AEKDE

Autoencoder

LOF

SVM

Model Comparison

F1 Score Accuracy AUC



81 
 

Using this approach rises some interrogatives on the model, as for example “is the model good or 

it is really strict so that each result not yet encountered is considered a threat?”. Unfortunately, at 

the moment real malicious data in the simulated environment is not yet generated but it could in 

a near future confirm our thesis. 

Maintaining a high grade of generalization should grant our system the ability to adapt to nearly 

any context where there is a small number of features and a binary One-Class Classification. The 

increasing use of machine learning in automation and in a wide range of smart objects could be 

the perfect background to use the algorithm for anomaly detection.  



82 
 

  



83 
 

Table of Figures 
Figure 1. Scheme of the Aqueduct Simulated Model .......................................................................... 6 

Figure 2. Temperature Sensor ............................................................................................................. 7 

Figure 3. Flow Sensor ........................................................................................................................... 7 

Figure 4. Electronic Valve ..................................................................................................................... 7 

Figure 5. Raspberry Pi 3 Model B ......................................................................................................... 8 

Figure 6. Tensorboard .......................................................................................................................... 9 

Figure 7. Gradient Descent Algorithm ............................................................................................... 16 

Figure 8. Training with two sets (Google, n.d.) .................................................................................. 17 

Figure 9. Training with 3 sets (Google, n.d.) ...................................................................................... 17 

Figure 10. Dataset containing only class 0 ("no spam") .................................................................... 18 

Figure 11. Confusion Matrix ............................................................................................................... 19 

Figure 12. ROC Curve (Google, n.d.) .................................................................................................. 20 

Figure 13. Representation of a Hyperplane in different dimensions (Gandhi, 2018) ....................... 38 

Figure 14. Gamma parameter influence (Ray, 2017) ......................................................................... 38 

Figure 15. SVM Results ....................................................................................................................... 46 

Figure 16. K-distance of a point with k=3 (Wenig, 2018)................................................................... 47 

Figure 17. Outlier has big distance compared to the neighbors (k=4) (Wenig, 2018) ...................... 48 

Figure 18. LOF Results ........................................................................................................................ 55 

Figure 19. Sigmoid Function (Avinash, 2017)..................................................................................... 56 

Figure 20. Tanh Function (Avinash, 2017) ......................................................................................... 57 

Figure 21. ReLU Function (Avinash, 2017) ......................................................................................... 58 

Figure 22. AutoEncoder Model .......................................................................................................... 58 

Figure 23. AutoEncoder internal structure (Ellison, 2018) ................................................................ 59 

Figure 24. AutoEncoder Results ......................................................................................................... 66 

Figure 25. AutoEncoder AUC.............................................................................................................. 67 

Figure 26. AEKDE Model .................................................................................................................... 68 

Figure 27. (a) An Autoencoder. (b) Density Estimated with KDE ....................................................... 69 

Figure 28. KDE .................................................................................................................................... 69 

Figure 29. KDE with High Bandwidth ................................................................................................. 70 

Figure 30. KDE with Low Bandwidth .................................................................................................. 70 

Figure 31. AEKDE Results ................................................................................................................... 79 

Figure 32. Density Estimation on Test Set ......................................................................................... 79 

Figure 33. Model Comparison ............................................................................................................ 80 

  



84 
 

References  
Avinash, S. V. (2017, March 30). Understanding Activation Functions in Neural Networks. Retrieved 

from https://medium.com/the-theory-of-everything/understanding-activation-functions-

in-neural-networks-9491262884e0 

Ellison, D. (2018, August 8). Fraud Detection Using Autoencoders in Keras with a TensorFlow 

Backend. Retrieved from https://www.datascience.com/blog/fraud-detection-with-

tensorflow 

Gandhi, R. (2018, June 7). Support Vector Machine — Introduction to Machine Learning Algorithms. 

Retrieved from https://towardsdatascience.com/support-vector-machine-introduction-to-

machine-learning-algorithms-934a444fca47 

Google. (n.d.). Machine Learning Crash Course. Retrieved from 

https://developers.google.com/machine-learning/crash-course/ 

Ray, S. (2017, September 13). Understanding Support Vector Machine algorithm from examples. 

Retrieved from https://www.analyticsvidhya.com/blog/2017/09/understaing-support-

vector-machine-example-code/ 

Stergiou, C., & Siganos, D. (n.d.). Neural Networks. Retrieved from 

https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html 

Wikipedia, the free enciclopedia. (n.d.). Retrieved from Wikipedia: 

https://en.wikipedia.org/wiki/Machine_learning 

 Van Loi Cao, Nicolau M., McDermott J.  (2016) A Hybrid Autoencoder and Density Estimation 

Model for Anomaly Detection 
 

 

  



85 
 

  



86 
 

Ringraziamenti 
 

Dopo più di 3 anni a Torino sento il bisogno di ringraziare le persone che sono stati importanti per 

me e che mi hanno aiutato a raggiungere questo traguardo che segna un punto di partenza per 

una nuova fase della mia vita. 

Ringrazio prima di tutto il professor Prinetto e Giuseppe che mi hanno aiutato nella realizzazione 

di questa tesi, cercando di supportarmi al meglio con grande premura e interesse. 

Ovviamente questa esperienza torinese non sarebbe stata possibile senza la mia famiglia che ha 

deciso di assecondare questa mia scelta dandomi pieno supporto andando incontro ai sacrifici che 

ne sono conseguiti. Grazie per la fiducia riposta in me, è stato importante. 

Voglio poi passare a tutte le persone che ho incontrato a Torino, partendo dal mio primo 

coinquilino Renato che poi mi ha fatto conoscere tutto il resto della mia nuova “famiglia” torinese, 

grazie ragazzi per tutti i momenti passati insieme. Senza di voi sarebbe stata insostenibile, quelli 

fra di voi che studiano al Politecnico lo sapranno. 

Ovviamente voglio ringraziare tutti quelli conosciuti fra le pareti dell’università e fuori, che con me 

hanno condiviso i momenti più disparati fra i banchi di scuola e chi come Teuz e Dado ne hanno 

creati anche al di fuori. 

Ringrazio gli amici di una vita che purtroppo erano lontani ma che ogni volta che li rivedevo mi 

facevano sentire di nuovo a casa e dimenticare delle ansie e frustrazioni, per voi le parole non 

servono tanto lo sapete già. 

Infine a chiunque non si sia sentito citato fra nessuno di questi, vi ringrazio perché anche se non 

me la sento di citarvi uno ad uno mi avete accompagnato per un periodo piccolo o grande che 

fosse in questo percorso che mi ha condotto in questo punto. 

Per concludere grazie a tutti! Grazie grazie grazie! 


