Politecnico di Torino

Ingegneria Informatica(Computer Engineering)

Tesi di Laurea Magistrale

Development of a Cross-Platform Mobile
Application and an Image Cloud Storage for an
IoT System

Advisors

Prof. Daniele Trinchero

Ing. Giovanni Paolo Colucci

Ana Laura TULA

APRIL 2018

Summary

The iXemWine platform, developed by the research group from the iXem
Laboratory, uses wireless technology applied to precision agriculture in rural areas
that allows wine producers to monitor their vineyards through a web application.

Given the widespread use of smartphones, there was a need to create a mobile
application to help the visualization the data collected from different sensors in a
meaningful way. The two main mobile operating systems, Android and iOS, uses
both distinct languages to create native applications which are fast and optimized,
but this leads to a duplication of the code base. There are cross-platform solutions
aim to simplify this problem by using a single programming language for developing
applications that are targeted for multiple platforms.

The main goal of this project is to develop a cross-platform mobile application
with a focus on the Android operating system using React Native, a JavaScript
framework for writing natively rendering mobile applications for iOS and Android.

The goal of the second part of the project is to investigate the different options
for cloud storage service and develop a possible solution to store the pictures taken
by the sensor’s camera and visualize them in the application.

Acknowledgment

I would like to thank my family, for their unconditional support, for guiding me, for
their infinite patience and for allowing me to find my path in life. This thesis is the
culmination of a long journey that has certainly not been easy one, and would not
have been possible without them.

To my mother, for being my role model and pushing me to be better and what a
better way to thank you that writing this thesis in English.

To my father, who has shaped the person I am today and who took me to my first
computer lesson as a kid without knowing I would follow that course.

To my siblings, for putting up with me and always having my back.
To my grandmother, mi nona, who is always with me.

To my aunt, mi tia Ester, Juana and mi late grandmother, mi nona Clara, who were
a big part of my life growing up and always showed their support.

To my lifelong friends who, despite the time and distance, are always present and to
the new ones, my family during these years, with whom I shared this experience and
have unforgettable memories.

At last but not least, I would like to thank the whole iXem Laboratory team,
specially my thesis Advisors, Prof. Trinchero and Ing. Giovanni Colucci, for their
guidance throughout the development of the thesis.

ii

Table of Contents

L B3N e Yo 1T i 3 (o) o PP PPRRTRN 1
B0 B 0N o 6 L0 U1 o) 4 H PRSP 1
1.2 ThesiS GOALS....ciiiiie e e e e e et e e e aans 1
1.3 General overview of the iXemWine Platform...........cccoooooooii 1

2 Cross-platform vs Native.......oooiiiiiii e 3
D R\ = 5 4 PP UPPPRPPRN 3

Ty 1Y) 1 PP 3
DI AWDACKS. ..ttt aaanas 3
2.2 Cross-Platforim.......coooiiiii e 3
DI AWDACKS. ..ttt aanas 4
Ty T 1 PP 4

S JAVASCTIPE ¢ttt et e eaas 5)
3.1 ECMASCIID e 5
3.2 TTANSPILETS. .. et et 5
3.3 POLYTlL e e 6
B4 MOAUILES. ...t e et e e e et e e e e e e aa e 6
3.5 BUNAING. ..o 7
B I I\ Y 0BT 1 (o) s PSPPSR 7
3.7 JavaScript environments...........oooiiiiiiiiiiiii e 7

B TR T o e [PTPR 8
B 3R < T\ 11 o PP UPPTRPN 9
3.8.1 The Journey to a Bundle............oooiiiiiiiiiii e 9

O R T Yl TSP PPN 11
4.1 The DOM. ..ot 11
S R T Xt PPN 11

4.2. 7 COMPONEIIT. ..ttt e ettt e e ettt e e e e e et et e e e eai e eees 12
4.2.2 Component Lifecycle.........oooiiiiii 13
A 1) 032 PPN 14
DA, ¢t et 14
L0500 0T 101 2 RPNt 14
A.2.3 RELS. e 14
Creating Refs. 15
Accessing Refs...coooiiiiiii 15
4.2.4 Higher-Order Components.cooiiiiiiiiiiiiiie e 16
4.2.5 ReCONCIHATION. «...ettiiiie e 16

D REACH NABIVE. .ottt e e et e e e e e 18

ST B N 1<) 0T 1 PSPPSR 18
5.1.1 Threading Model.............iiiiiiiiiii e 18
5102 BIIAZe. et 19
5.1.3 JavaScript Environment............oooooiiiiiiiiiiiii e 19
5.1.4 JavaScript Syntax Transformers and Pollyfills................o.oo 19

5.2 Differences with React Web........ooooiii 20

il

5.3 Components and APIS.......coooiiiiiiiiiiii e 20

5.3.1 Basic COMPONENTS.iiiiiiiiiiiiiiiiiiee e e et e e e e e e e e e erenens 20
5.3.2 USer INTEITACE. ...ceeeiiiiiiiiiiiie e e 22
5.3.3 LISt VIS ittt 22
5.3.3. 1 FLALAST. ..ttt 22
5.3.3.2 SeCtIONLIST...ceiiiiiiiiiiiie e 23
5.3.4 10S/Android SPECIfiC......c.cuieriiiiiiiiiiiiii it 23
D35 OBROTS oottt et 24
5.3.5.1 ANIMAted.....cooiiiiiiiiiiiiee e 24

| H0 71 00) K211 10) s U UPPPP 25
Handling gestures and other events.........cc.ccueiiiiiiiiiiiiini e, 25

T N T v < TP 25
5.3.7 Direct Manipulation.........coooiiiiiiiiiiiiiie e 26
5.3.8 INSEAIlAtIONuiiiiiii e 26
5.3.8.1 DEPENAEINICIES. ...uuneeiiiiieeet e et e e e 26
5.3.9 React Native CLI Commands.............uuuiiiieeriiiiiiiiiiiiiiee e 28
5.3.10 The CLIcciiiiiiiiiiiiiiiiiiiiii e 30
5.3. 11 DEDUGEING. ... eeeiiiiiiiiiie e 30
5.3.12 Linking IIDTATIES.uoiieiiiiiiiiiiii e 30

6 Data Visualization. ..o 32
6.1 Scalable Vector Graphics (SVG)......cociiiiiiiiiiiiiiiiiiiicceccc e, 32
5.2 D3 S ettt et 33
0.2.1 D3-SCALES. ettt 33
6.2.2 D3-Shape..ccceeiieiiiii e 33
6.2.3 DIB-ATTAY ettt ettt 33

T IMPlemMENATION. . oeeeiie e e 34
7.1 Actors of the SYSTEML.......uuuuiiiiiiiiiiiiiiiii e 34
711 COMIMMUINIEY . ceeiiiiiiiiiiiiiiii e 35
7.2 FUunctionaliby ..o 35
T.2.1 AURENTICATE. ..coeeiiiiiiiiii e 36
7.2.2 Visualize the list of Vineyards..........ccccoooiiiiiiiiiiiiiccccii e 37
7.2.3 Visualize the Nodes and Cameras inside a Vineyard...........ccccccvvvvvnnnnnennn. 38
7.2.4 Visualize the Sensors data in Charts...........coeovviiiiiiiiiniiiiiineie e, 39
7.2.5 Visualize the pictures taken by a Camera...........oooeeevieiiiiiiiiniiiiiii 42
7.2.6 Search for vineyards in the Community...........ccccoeiiiiiiiiiini 43
7.2.7 Edit preferences ans see the profile..........cccoceeviiiiiiiiiiiiiiiii e, 44

8 ApPlication Navigationeeeeeei ittt et e e e e e e eeebia e e e eeeaeees 46
8.1 React Navigation..........uiiiiiiiiiiiiiiiii e 46
8.1 1 NAVIZATOT ...t te ittt 46
8.1.2 Authentication floW..........ooiiiiiiiiiiiii e 46
8.1.3 APD CONMBAIMETS. ..uuiiieeeeiiiiiiii e et e e e et e e e e e e eaaan e 47
8.1.4 Navigation Prop..........cooiiiiiiiiiii e 47
8.1.5 Passing parameters t0 TOUES.......ccooiiiiiiiiiiiiiiiiiiiiiiiie e 48
8.1.6 Handling State..........uuuiiiiiiiiiiii e 48
8.1.7 Navigation Hfecycle. 48
8.1.8 Application NavIgation.............uuiiiiieriiiiiiiiiiiee e 49

iv

TR N L 1 5 PRSPPI 51
0.2 RBAUK ettt e e aaas 52
9.2.1 Combining RedUtCers.......ccooiiiiiiiiiiiiiii e 53
9.2.2 REACH-TEAUK ..uueeeeiiie ettt e et e e e e e e 54
9.2.3 ASYNC ReqUESTS...ciiiiiiiiiiiiiii 54
9.2.4 Redux ThumnK.......oiiiie et 54
9.2.5 PersiSting STATE. .. .uuuuiiiiiiiiiiiiiiiiiiii e 55
9.2.6 ApPPLCation StAte.......uuuuiiiiieiiii e 55

10 WED SEIVICES...eeiiiiiieeeeee et e e e et e e e e e e e e e et eeeeeeeeeeesssnnnnens 58
8O 5 01101 T = PRSP 58
10.1.2 ASYNC/AWALL...eetiiiiiiiiii et 58
10.1.3 JSON WeD TOKEN....cciiiiiiiiiiiieeeeee et e e e 59
10104 MOIMENT.ceeiiieiiiie e et e e e e e e et et e e e e e e e est e e eeannaeeaes 60
10.1.5 Data Transformations.........coooeveeiiiiiiiiiiiiiie e 61

L1 DEPLOY ettt e 62
11.1 Generating Signed APK........cccooiiiiii e, 62
11.2 Generate the release APK ... 62
12 TmMAage ClOUd SEOTAGE. ... e ettt eeeeeees 63
12.1 Own cloud infrastructure(In-house-servers)..........ccocccrvieriiiniiiiiniiiicinieeee 63
12.2 Amazon CloUd SEIVICE.uiiieiiiiiiiiiiiiee e et e e e e e eeeeees 63
12.3 Functionalities tO0 provide........ooouuiiiiiiiiiiieiiii e 64
12.3.1 Authentication........ooiiiiiiiiiiiie e 65

12.4 FIASK .o aaans 66
ROUBIIIE. e 66
HTTP mMeEthOAS. .o eieiiieeieie et e e 66

The ResSponse ODJECh......cciiiiiiiiiiiii e 67

12.5 SQLAICHEINLY ...ttt 68
12.6 Amazon Simple Storage ServiCe........cooviiiiiiiiiiiiiiiiiii e, 68
12.7 AWS Command Line Interface...........coooviiiiiiiiiiiiiiiiiiiee e 69
12.8 BOt03 .ot aaans 69
Creating CENTS......ooii it 69
12.8.1.1 Upload & File....oiiiiiiiiiiiiie e 70
12.8.1.2 Generate a pre-signed URL.........cccccviiiiiiiiiiiii, 70

12.9 Proposed SOIUTION.uuuiieiiiiiiii et e e e e e 71
R I 010 el 11153 (o) s PP PPPRT 72
13,1 FUUTE WOTK.eeviiiie i e e e e e e 72
14 RETETEIICES. .. v eeeee et e e e e e e et e e e e e e e ea e e e aaaeeeeaens 73

Index of Illustrations

Mlustration 1.3.1: Overview of the Application...........coeeiiiiiiiiiiiiiieieiiiiiiiiee e, 2
Mustration 4.2.1: Lifecycle diagrami.......coooeeeeeeeiieeioeeieeeeeeee e 13
Mustration 4.2.2: Commonly used lifecycle methods............ccoooiiiiiiiiiiiiiiiii, 13
IMustration 4.2.3: High Order Component...........cccoeeiiiiiiiiiiiii e, 16
Illustration 5.1.1: The Threads and the Bridge............cccoviiiiiiiiiiiii . 18
Mustration 5.3.1: SCrOIIVIEW PATtS.....cceiiiiiiiiiiiiiieeeee et 21
Mlustration 5.3.2: Android platforms installed.............cccooeeiiiiiiiiiiiiiiii e, 27
Iustration 5.3.3: Project Structure.........ooociiiiiiiiiiiiiiii e 28
Ilustration 5.3.4: Options for commands available in the current Project................ 30
[llustration 7.1.1: Representation of a user’s data.........ccccceeveeeeiiiiiiiiieiiiiineeiee e, 35
THUSETAtion 7.2.1: USE CaASES. ..uuuuuuuniii e e e e 36
Mustration 7.2.2: LoginScreen: Authentication of the user..........ccccoooeiiiiini. 37
Iustration 7.2.3: Visualization of the list of vineyards..........cccccccciiiiiiinn. 38
Iustration 7.2.4: Visualization of sensors and cameras in a vineyard...................... 39
Illustration 7.2.5: Visualization of the temperature and the dew point of a
Temperature-Humidity SenSOT..........uuuiiiiiiiiiiiiiiiiiiiiiii e 41
Mlustration 7.2.6: Visualization of the humidity of a Temperature-Humidity Sensor
... 41
Ilustration 7.2.7: Visualization of a Two Layer Leaf Wetness Sensor...................... 42
Ilustration 7.2.8: Photo grid visualization of the pictures taken by a camera.......... 43
Ilustration 7.2.9: Search and visualization of the vineyard's position....................... 44
Iustration 7.2.10: User's profile and language change screen............cooeeveeeeeieennnnnn. 45
Mlustration 8.1.1: Application Navigation..........cccoeeeeiiiiiiiiiiiiiiiieeee e 50
Iustration 9.1.1: Flux achitecture...........ocooiiiiiiiiiiiiii e 52
Mustration 9.2.1: Redux flow........ooooiiiiiii, 53
Mustration 9.2.2: Application State.......ccoeeeeeiiiiiiiiiiiiiee e 56
IMustration 9.2.3: Actions and SCTEENS..........cciiiiiiiiiiiiiiiiiie 57
Iustration 10.1: Token-based Authentication............ccooooeiiiiiiiiiiiiiii, 60
Mustration 12.2.1: Camera backend architecture..........cooooeveiiiiiiiiiiin e 64
Iustration 12.5.1: Database for Cloud Image System...............uevuuviiiiiiiiiiiieiiiiiiiennnn. 68
Mustration 12.9.1: Proposed Solution for Cloud Image System...........ccccccevvieeeennn. 71

vi

Index of Tables
Table 4.2.1: Types of React Components

Table 5.3.1: Main properties of Flex........

Table 12.3.1: Backend functionalities......

vii

Index of Listings

Listing 4.2-1: AccesS & Ruuuiiiiiiiiiiiiiiiiii 15
Listing 5.3-1: React Native CLI installation...........cccccciiiiiiiiiii e, 28
Listing 5.3-2: Creation of a new React Native Project.........cccccceeeviiiiiiiiiiiiiiiinnnn. 28
Listing 5.3-3: Launch the application in an Android device or emulator................... 29
Listing 5.3-4: Launch the application in iOS device or emulator.............cccceeeeeeeennnn. 29
Listing 5.3-5: Command to verify the connected smartphones..................ooooiin.e. 29
Listing 5.3-6: Linking a native lIbrary..........cccccoiiiiiiii e, 31
Listing 8.1-1: Navigate to a another screen and pass parameters............ccceeeeeevenneeens 48
Listing 8.1-2: Read & parameter.........coouuuuuuiiiiiiiiiiiiiiiiiiie et 48
Listing 9.2-1: Function prototype for a middleware..........cccccccccvviiiiiiii. 54
Listing 10-1: Pseudo code for calculating the signature..............ccccccciiiiiiiinnn 59
Listing 10-2: Getting current date and time.............cccceiii . 60
Listing 10-3: Initialization with specific date...........ccccciiiii . 60

Listing 11.2-1:
Listing 12.4-1:
Listing 12.4-2:
Listing 12.4-3:
Listing 12.4-4:
Listing 12.8-1:
Listing 12.8-2:
Listing 12.8-3:

Commands to generate the APK. ..., 62
Minimal Flask application.............oveeiiiiiiiiiiiiiiiieiiie e 66
Example of GET and POST method..........ccooiiiiiiiiiiii 67
Example of query String........cccccviiiiiiiiiiiiiiii e 67
make_TeSPONnSe eXAIMNPIE......uuiiiiiiiieeiiiiie e 67
Create a CHENb. ... 69
UpLoad @ file....uuueieeeeiiie e 70
Generate a presigned URL to return to the client..............ccccoooeeeio. 70

viii

ix

Politecnico di Torino TULA Ana Laura

1 Introduction

1.1 Introduction

The Internet of Things (IoT)[1] provides efficient resource utilization while reducing
the human intervention to increase the productivity. Within an IoT system a
wireless sensor network (WSN)[2] can be used. A WSN is a network of devices that
can communicate the information gathered from a monitored field through wireless
links. The data is then forwarded through multiple nodes, and with a gateway, the
data is at last forwarded to a Server, which exposes a RESTful API for the clients to
use.

The aim of the iXemWine[3]| platform is collecting data from the crops for precision
agriculture. This allows wine producers to benefit from the advantages of IoT and to
monitor their vineyards through a web application.

Given the widespread use of smartphones, there was a need to create a mobile
application to help the visualization the data collected from different sensors in a
meaningful way.

1.2 Thesis Goals

The main goal of this project is to develop a cross-platform mobile application with a
focus on the Android operating system using React Native[4], a JavaScript[5]
framework for writing natively rendering mobile applications for iOS[6] and
Android[7].

The goal of the second part of the project is to investigate the different options for
cloud storage service and develop a possible solution to store the pictures taken by
the sensor’s camera and visualize them in the application.

1.3 General overview of the iXemWine Platform

The platform iXemWine is a Low-Power Wide-Area Network[8], with sensors able to
transmit information over long distances, even in non-line of sight, by means of

unlicensed frequencies.

When data is received by Gateways, it is sequentially forwarded to the Network
Server using standard TCP /IP[9] connections.

Politecnico di Torino TULA Ana Laura

The application Server, written in Python[10], receives data by the Network Server
using the MQTT[11] protocol. The server also provides a RESTFul[12] API[13], as
shown in Hlustration 1.3.1, that can be used to retrieve all the information by means
of HTTP[14] requests.

The REST API returns data in a language-independent format that clients can easily
consume, this allows the interaction with many interfaces and a consistent user

experience.

(") (t))

SENSORS

=
SERVER

APIREST

N

| ; |
== -
28T

Illustration
1.3.1: Overview
of the

Application

Politecnico di Torino TULA Ana Laura

2 Cross-platform vs Native

2.1 Native

Native applications are the ones that are developed exclusively for a specific platform
and its Operating System in a language compatible with them, for example, the iOS
devices use Objective-C[15] or Swift[16] while the Android devices uses Java[l7] or
Kotlin[18].

Benefits

* Developed for the specific platform, they are fast and responsive.

* The platform’s software development kit (SDK) allows access to all the device
APIs.

* Platform comes with familiar and original user interface (UI) components.
* Allows use of device-specific functionalities.

* Android and iOS have large communities behind them. If there’s a frequent
problem, it is highly likely to find a ready-made solution in the form of a
third-party library or an API.

Drawbacks

* Requires separate development processes for every platform, since the code for
one platform only works for that platform.

* With different code bases, it is always difficult to release same features on all
platforms at the same time.

* The cost of development and maintenance of the mobile application is high.

2.2 Cross-platform

Cross-platform mobile applications are developed using an intermediate language
that is not native to the device’s operating system. This means that some, or all, of
the code can be shared across platforms — for instance, across both iOS and Android.
To build mobile applications, the cross-platform frameworks provides a platform-
independent API that uses a programming language, like JavaScript that the
developers use to build the mobile application, including the user interface, data
persistence and business logic.

Politecnico di Torino TULA Ana Laura

Those solutions can be split into two categories:

HTML5 based (PhoneGap[19], Apache Cordova|20], Ionic[21]): Developers
create mobile applications using web technology, they load a mobile browser
in the application and perform all logic operations within that browser,
offering also added functionalities that traditional web technology does not.

Native Widget based (React Native): Developers can use JavaScript to
construct their application from components that are subsequently mapped
into the platform specific widgets. In order to use native widgets, the
JavaScript part of the application has to communicate with the native part
through a “bridge”.

Drawbacks

Not as many third-party components, also some of them might behave
differently than expected. A lot of components have small communities behind
them, and the creators can’t always update them frequently.

Not as efficient as a native application.

Limited device API access.

Benefits

React Native provides nearly identical performance to native.

React Native actually renders using its host platform’s standard rendering
APIs, which enables it to stand out from most existing methods of cross-
platform application development.

Currently popular among mobile application developers.
Its ecosystem is expanding rapidly every day along with new features.

The development effort is lower since there is a high percentage of the code
that can be reused.

Taken into account all of this, a decision was reached to choose a cross-platform

approach using the React Native framework for the development of the iXemWine

mobile application.

Politecnico di Torino TULA Ana Laura

3 Javascript

JavaScript is a high-level, interpreted programming language that conforms to the
ECMAScript specification. It is characterized as dynamic, weakly typed, prototype-
based and multi-paradigm. JavaScript is primarily a client-side language.

The vast majority of websites uses JavaScript, major web browsers have different
dedicated JavaScript engines to interpret and execute the code (or uses some sort of
lazy compilation), for example:

* Chrome|[22] and Node[23]: V8[24]

* Firefox[25]: SpiderMonkey|[26]

» Safari[27]: JavaScriptCore|[28]

* Microsoft Edge[29]/IE[30]: Chakra[31]

They each implement the ECMAScript standard, but may differ for anything not
defined by it.

3.1 ECMAScript

ECMAScript is the standard upon which JavaScript is based. ECMAScript 2015[32],
also known as ES6, is a fundamental version of the standard. Since a long time
passed between the previous release, this release is full of important new features and
major changes in suggested best practices in developing JavaScript programs.

This update adds significant new syntax for writing complex applications, including
classes and modules, which simplifies the defining of complex objects with their own
prototypes. Other new features include iterators and for/op loops, Python-style
generators, arrow functions, binary data, typed arrays, collections (maps, sets and
weak maps), promises, number and math enhancements, reflection, proxies (meta-

programming for virtual objects and wrappers) and template literals.

3.2 Transpilers

Transpilers, or source-to-source compilers, are tools that read source code written in
one programming language, and produce the equivalent code in another language.

As stated previously, every browser uses a different JavaScript engine and each one,
has:

Politecnico di Torino TULA Ana Laura

» different performance characteristics
* implements a different subset of ES2015 features
* is approaching full compliance with the spec at different rates.

That means that, some features works fine for those users running the most recent
Chrome, Firefox, or Safari, but it won't work for users running older versions, or for

anyone using Internet Explorer.

Kangax[33] created an ES6 compatibility table where developers can track the
support of various ES6 features on various JavaScript engines, the ES6 compatibility
table[34] shows that there was a clear progress, but it is not quite time to write ES6
directly. Instead, developers write source code in ES6, and let a transpiler translate it
to plain ES5 that works in every browser.

One of the most popular tools is Babel[35], a tool-chain mainly used to convert
ECMAScript 2015 code into a backwards compatible version of JavaScript that

works both in current and older browsers or environments.

Babel also has plugins available to provide specific conversions used in web
development. For example, developers working with React[36], can use Babel to
convert JSX[37] (JavaScript eXtension) markup into JavaScript using the Babel
preset "react".

3.3 Polyfill

When Babel compiles the code, is taking the syntax and running it through various
syntax transforms in order to get browser compatible syntax. But it is not adding
any new properties needed to the browser’s global namespace or any JavaScript
primitive. This can be achieved by using a polyfill.

A polyfill is code that defines a new object or method in browsers that don’t support
them natively. A polyfill can be used to implement various browser features other
than ECMAScript standards, for example SVG[38], Canvas, Web Storage (local
storage/session storage) among others.

3.4 Modules

Almost every language has a concept of modules — a way to include functionality
declared in one file within another. Typically, a developer creates an encapsulated
library of code responsible for handling related tasks. That library can be referenced
by applications or other modules.

Politecnico di Torino TULA Ana Laura

The benefits of using modules:
* code can be split into smaller files of self-contained functionality.
* The same modules can be shared across any number of applications.

* Code referencing a module understands it’s a dependency. If the module file is
changed or moved, the problem is immediately obvious.

* Module code helps eradicate naming conflicts.

ES6 introduced built-in modules that offers up a variety of alternatives for importing
and exporting modules.

3.5 Bundling

Bundling is the process of following imported files and merging them into a single
file: a “bundle”. In web development the bundling, or the “concatenation” of all the
files into one big file (or a couple files as the case may be) is in order to reduce the
number of requests. This is referred as the “build step” or “build process”.

3.6 Minification

Minification is the process of removing all unnecessary characters from the source
codes of interpreted programming languages or markup languages without changing
their functionality. These unnecessary characters usually include white space
characters, new line characters, comments, and sometimes block delimiters, which are
used to add readability to the code but are not required for it to execute.
Minification reduces the size of the source code, making its transmission over a
network more efficient.

3.7 JavaScript environments

Nowadays, there can be considered mainly three types of JavaScript environments:

1) Client-side browser JavaScript: Scripts written in JavaScript that are
embedded in a web page's HTML and run client-side by a JavaScript engine
in the user's web browser.

2) Client-side native JavaScript: Most devices can have a JavaScript run-time,
therefore, developers can ship JavaScript files with Android/iOS/Desktop
applications and then run them there. These engines also support adding

Politecnico di Torino TULA Ana Laura

“hooks” from JavaScript into the native code, and that's how React Native
provide its API.

3) Server-side JavaScript: Server-side JavaScript refers to JavaScript that runs
on server-side and is therefore not downloaded to the browser. Server
generally has two meanings:

o A piece of software that listens for network requests and then responds to
them.

© A computer running such a piece of software.

Node is a tool that can be either of those, and also allows to use JavaScript for non-
server and non-web purposes.

3.7.1 Node

Node is a JavaScript run-time environment built on Chrome’s V8 Javascript engine.

Generally, the server itself is run directly from Node (e.g. with the HTTP built-in
module) rather than being embedded in another server like Apache[39] (as is most
common for PHP[40]). In this case, a browser doesn't need to be involved at all. If
one is, then it will probably be one acting as a client and making a request to the

server.
A fourth case can be added to the previous environments:
4) Build-scripts running on runtines like Node

Developers can use JavaScript to generate JavaScript files, that is, to build and
combine several JavaScript files into a single file, and transpile it if needed. This
process is how to bundle the files for (1) and (2) and maybe also (3).

Metro is a server-side build-script (which runs on Node) that is used by React Native
to work as a:

* Development Server: Start a server that serves JavaScript code as a web page
would (1 & 3). During the development stage it allows to iterate quickly on a
device by connecting to the development server running on the machine.

* Bundler: Bundle all the JavaScript code in a native application that later can
be installed on a mobile device (2).

Politecnico di Torino TULA Ana Laura

3.8 Metro

Metro[41] is the development platform for React Native, it does that by exposing a
HTTP server so clients, in this case, emulators or connected devices can
communicate with it and it also exposes a Websocket[42] server so it can push
updates into them.

In development, the bundle will come from the the development server. That way if
the code is changed, the server will send a request to the client, through the
Websocket, to download the new code or update the code on the fly. So, the bundle
is dynamically generated from the source code.

In production, an offline bundle is used since the code is already on the device and
does not need to be downloaded.

Metro is a JavaScript bundler. It takes in options, an entry file, and the output is a
JavaScript file including all JavaScript files back.

Metro has three separate stages in its bundling process:

* Resolution: Metro needs to build a graph of all the modules that are required
from the entry point. To find which file is required from another file, Metro
uses a resolver. In reality this stage happens in parallel with the

transformation stage.

* Transformation: All modules go through a transformer. A transformer is
responsible for converting (transpiling) a module to a format that is
understandable by the target platform (eg. React Native). Transformation of
modules happens in parallel based on the amount of cores availables.

* Serialization: As soon as all the modules have been transformed they will be
serialized. A serializer combines the modules to generate one or multiple
bundles. A bundle is literally a bundle of modules combined into a single
JavaScript file.

3.8.1 The Journey to a Bundle

Metro is itself a package that is run on Node and that is the reason Node is a
dependency of React Native. The main task is to build JavaScrip code, and that also
entails:

* Monitoring all the files in the project: Using the module jest-haste-map[43]
from another project called Jest[44] gives the ability of monitoring the file
system and emitting changes every time it detects changes. In order to achieve

Politecnico di Torino TULA Ana Laura

this, it uses watchman[45] if it is installed. Watchman is an open source
project from Facebook which monitor the file system as a daemon process so
it reduces the start-up time. However if not installed, it falls back to
fs.watch[46], this has a start-up overhead but after that is the same as using
watchman.

* Transform the source code: Metro does what any other bundler do, which is to
use Babel, the difference is the way it is executed. Transpilation is a very
expensive process, most bundlers have a main process and execute the
transpilation process one file after the other. Metro uses a different approach,
the main process doesn't transform any file, but it spawns a set of child
processes that are called workers. Files are sent in parallel to each of these
workers, so the transpilation happens at the same time and then return the
result back. Usually it spawns one worker per core.

* Store cache artifacts: Metro ships with an internal multi-layer cache located
inside the Main process. If the file was never transpiled, it will transpile the
file and save it in the cache.

* Build bundles: Metro produces bundles through serializers, which receive the
graph and can manipulate them in any way.

¢ Execute code on devices.

10

Politecnico di Torino TULA Ana Laura

4 React

4.1 The DOM

Browsers render HTML to a web page, before this happens they create a Document
Object Model[47] of the page. The DOM is an object-oriented tree-like structure
representation of the web page, constructed in memory, which can be modified with
a scripting language such as JavaScript.

A HTML document can have encapsulated HTML content inside of other HTML
content. The browser when loading the HTML document interrupts and parses this
hierarchy to create a tree of node objects that simulates how the markup is
encapsulated.

The problem with the DOM is that it is not optimized for dynamic applications. So,
updating it slows the application when there are a several things to be changed; as
the browser has to reapply all styles and render new HTML elements.

4.2 React

React is an open source JavaScript library created by Facebook for building user
interfaces[48]. It introduces a declarative approach for building Uls that allows
developers to:

* write declarative views that “react” to changes in data
* abstract complex problems into smaller modules called components

React is declarative, in the sense that allows developers to declare what they want
and the library will take care of the DOM manipulation efficiently, without working
directly with the browser API.

To minimize the number of costly DOM operations required to update the UI, React
builds and maintains an internal representation of the rendered UIl. It includes the
React elements returned from the components. This representation lets React avoid
creating DOM nodes and accessing existing ones beyond necessity, as that can be

slower than operations on JavaScript objects. Sometimes it is referred to as a
“virtual DOM”.

11

Politecnico di Torino TULA Ana Laura

4.2.1 Component

Components are JavaScript functions or classes that returns a node (something
React can render, e.g. a <div/>) and receives an object of the properties that are
passed to the element.

These object, called props, are passed to a component and used to compute the
returned node. Changes in these props will cause a re-computation of the returned
node, which means a re-render. Unlike in HTML, these can be any JavaScript value.

During the development stage, React can validate the types of component props at
runtime. This allows developers to ensure the correct passing of props and help
document the component’s APIs.

There are two main types of components in React: Class Components and Stateless
Functional Components. The most obvious reason is that Class components are ES6
classes while Functional Components are functions. Additional differences are listed
in the following Table 4.2.1:

Stateless Functional Component Class Component

(SFC) (React.Component)

e An abstract class that can be
extended to behave the way

. | ‘
e Simplest component: use when a developers need

state is not needed. * Have additional features that
* A function that takes props and SFCs do not:

returns a node. o Have instances
* Should be “pure” (it should not © Maintain their own state

have any side effects like setting o Have lifecycle methods
values, updating arrays, etc.) (similar to hooks or event
* Any change in props will cause the handlers) that are

function to be re-invoked. automatically invoked

* Rendering becomes a function of
props and class properties.

Table 4.2.1: Types of React Components

12

Politecnico di Torino TULA Ana Laura

Class Components can have a state which adds an internally-managed storage to a
component. State is a class property on the component instance, this.state, and can
only be updated by invoking this.setState() and passing it an object to be merged, or
a function of previous state. The calls to setState() calls are batched and run
asynchronously.

Components are units containing both the rendering logic and the UI logic and
instead of separating them, Rect puts markup in JavaScript. So, writing React
means writing JSX, an XML-like syntax extension of JavaScript that transpiles to
JavaScript, where lowercase tags are treated as HTML/SVG tags and uppercase are
treated as custom components. Using JSX allows to write concise HTML/XML-like
structures (e.g., DOM like tree structures) in the same file where is the JavaScript
code, then Babel will transform these expressions into actual JavaScript code.

4.2.2 Component Lifecycle

The component lifecycle contains three major phases: mounting, updating and

unmouting.

Illustration 4.2.1: Lifecycle diagram

The Illustration 4.2.2 [49] shows the order in which the most common lifecycle

methods are called:

Mounting Updating Unmounting

N S

‘ constructor | New praps setState() forceUpdate()
'

' ' '

‘ render

i || |
React updates DOM and refs

componentDidMount componentDidUpdate componentWillUnmount

Illustration 4.2.2: Commonly used lifecycle methods

13

Politecnico di Torino TULA Ana Laura

Mount

Since class-based components are classes, the first method that runs is the
constructor method. Typically, is the place to initialize the component’s state, or
other class properties, bound methods, etc.

The render() method is the most used lifecycle method. It is in all React classes, this
is because render() is the only required method within a class component. As the
name suggests it handles the rendering of the component to the UI. It happens
during the mounting and updating of the component.

React requires that the render() is pure. Pure functions are those that do not have
any side-effects and will always return the same output when the same inputs are
passed. This means that it is not possible to setState() within a render().

Now that the component has been mounted and is ready, componentDidMount() is
called. This is the place to initiate API calls, if data needs to be loaded from a
remote endpoint. Unlike the render() method, componentDidMount() allows the use
of setState(). Calling the setState() here will update state and cause another
rendering but it will happen before the browser updates the UIL. This is to ensure
that the user will not see any UI updates with the double rendering.

Update

This phase is triggered every time the state or props changes, which cause a re
render. The method componentDidUpdate() can do anything that isn’t needed for UI
(network requests, etc.). In this lifecycle, setState() can be used, but it has to be
wrapped it in a condition to check for state or prop changes from previous state.
Incorrect usage of setState() can lead to an infinite loop.

Unmount

The unmounting phase is the last stage of the component lifecycle, so when a
component is removed from the DOM, React invokes componentWillUnmount()
right before it gets removed. This method is used to clean up any open connections
such as WebSockets or intervals, remove event listeners. This component will never
be re-rendered and because of that it doesn’t make sense to call setState() during
this lifecycle method.

4.2.3 Refs

Refs[50] provide a way to access DOM nodes or React elements created in the render
method. In the typical React data flow, props are the only way that parent
components interact with their children. To modify a child, re-render it with new

14

Politecnico di Torino TULA Ana Laura

props. However, there are a few cases when modify a child outside of the typical
dataflow, for example managing focus and text selection.

Creating Refs

Refs are created using React.createRef() and attached to React elements via the ref
attribute. As Listing 4.2-1 shows, Refs are commonly assigned to an instance
property when a component is constructed so they can be referenced throughout the
component.

class MyComponent extends
React.Component {
constructor (props) {

super (props) ;

this.myRef = React.createRef();
}
render() {

return <div ref={this.myRef} />;
}

}
Drawing 4.2.1: Create a Ref

Accessing Refs

When a ref is passed to an element in render, a reference to the node becomes
accessible at the current attribute of the ref:

const node = this.myRef.current;
Listing 4.2-1: Access a Ref

The value of the ref differs depending on the type of the node:

* When the ref attribute is used on an HTML element, the ref created in the
constructor with React.createRef() receives the underlying DOM element as
its current property.

* When the ref attribute is used on a custom class component, the ref object
receives the mounted instance of the component as its current.

15

Politecnico di Torino TULA Ana Laura

* Function components can not use the ref attribute because they don’t have

instances.

4.2.4 Higher-Order Components

A higher-order component[51] (HOC) is an advanced technique in React for reusing
component logic. They are a pattern that emerges from React’s compositional

nature.

Concretely, a higher-order component is a function that takes a component and
returns a new component. Since it returns a new component, it adds an extra layer
of abstraction. In this layer can be added state, behavior, or even style, as shown in
the Illustration 4.2.3.

New State,
Behaviour

<HigherOrderComponent /> —— andstyle

<InnerComponent />

Hllustration 4.2.3: High Order Component

Whereas a component transforms props into UI, a higher-order component
transforms a component into another component. HOCs are common in third-party
React libraries, such as Redux’s connect().

4.2.5 Reconciliation

Reconciliation[52] is the process by which React syncs changes in the application
state to the DOM, so it:

¢ Reconstructs the virtual DOM
* Diffs the virtual DOM against the DOM

* Only makes the changes needed

16

Politecnico di Torino TULA Ana Laura

When a component’s props or state change, React decides whether an actual DOM
update is necessary by comparing the newly returned element with the previously
rendered one. When they are not equal, React will update the DOM.

17

Politecnico di Torino TULA Ana Laura

5 React Native

A framework that relies on React for writing real, natively rendering mobile
applications for iOS and Android using JavaScript. The fact that it actually renders
using its host platform’s standard rendering API enables it to stand out from most
existing methods of cross-platform application development.

There are separate threads for UI, layout and JavaScript that communicate
asynchronously through a “bridge”. The JavaScript thread can request Ul elements
to be shown and if is blocked, the UI will still work.

5.1 Internals

5.1.1 Threading Model

There are two important threads running in each React Native application. One of
them is the main thread, which also runs in each standard native application. It
handles displaying the elements of the user interface and processes user gestures. The
other one is specific to React Native, its task is to execute the JavaScript code in a
separate JavaScript engine. The JavaScript thread deals with the business logic of
the application. It also defines the structure and the functionalities of the user
interface. These two threads never communicate directly and never block each other.
If the application accesses any native API, it is done on a separate native module
thread. For example - Animations are handled in React Native by a separate native
thread to offload the work from the JavaScript thread.

Main Bridge JavaScript

Illustration 5.1.1: The Threads and the
Bridge

18

Politecnico di Torino TULA Ana Laura

5.1.2 Bridge

Between the two threads there is the bridge, which is the core of React Native. The
bridge has three important characteristics[53], it is:

e Asynchronous. It enables asynchronous communication between the threads.
This ensures that they never block each other.

* Batched. It transfers messages from one thread to the other in an optimized

way.

* Serializable. The two threads never share or operate with the same data.
Instead, they exchange serialized messages.

5.1.3 JavaScript Environment

When using React Native, JavaScript code will run in two environments:

* In most cases, React Native will use JavaScriptCore, the JavaScript engine
that powers Safari.

* When using Chrome debugging, all JavaScript code runs within Chrome itself,
communicating with native code via WebSockets. Chrome uses V8 as its
JavaScript engine.

While both environments are very similar, there may end up hitting some
inconsistencies.

5.1.4 JavaScript Syntax Transformers and Pollyfills

React Native ships with the Babel JavaScript compiler. A full list of React Native's
enabled transformations can be found in metro-react-native-babel-preset, for
example. It provides ES5 and ES6 transformations like arrow functions, classes,
spread operator, modules and async/await, template literals, etc. Also, specific
transformations like JSX and Flow.

Many standards functions are also available on all the supported JavaScript runtimes
by means of pollyfills.

19

Politecnico di Torino TULA Ana Laura

5.2 Differences with React Web

Both uses JSX for defining components but React Native has a separate set of
tags, some base components for defining user interface for mobile.

React-Native is not made from web elements and can’t be styled in the same

way.

No browser APIs: CSS animations, Canvas, SVG, etc., but some have been
polyfilled (fetch, timers, console, etc.)

Navigation: In a web browser, links to different pages are possible using the
anchor (<a>) tag. When a user clicks on a link, the URL is pushed to the
browser history stack. When the user presses the back button, the browser
pops the item from the top of the history stack, so the active page is now the
previously visited page. React Native doesn't have a built-in idea of a global
history stack like a web browser does.

Event handling: Unlike web, not every component has every interaction, there
are only a few “touchable” components, like Button and TouchableOpacity.
Web handlers will receive the event as an argument, but React Native
handlers often receive different arguments.

React Native’s components are not globally in scope like React web
components.

o Import from 'react-native'

The div tag in web corresponds to the View tag and the span tag to Text tag
in React Native. All text must be wrapped by a <Text /> tag.

5.3 Components and APIs

React Native provides a number of built-in components, the following are the most

important ones used in the application:

5.3.1 Basic Components

View: The most fundamental component for building a UL It is a container
that supports layout with flexbox, style, and touch handling, and accessibility
controls. View is designed to be nested inside other views and can have 0 to
many children of any type.

20

Politecnico di Torino TULA Ana Laura

* Text: A component for displaying text.

e Image: A component for displaying images. There are two ways to load the
blob data, the first approach loads the image data from the network by
passing an object with a uri property to source. The other way is using a local
image file, by calling require() and passing the result to source.

* TextInput: A component for inputting text via a keyboard.

e ScrollView: Provides a scrolling container that can host multiple components
and views. Is a special kind of View that has two parts, as shown in
[llustration 5.3.1:

o Container (the grey box), it's the outside View, its height can't exceed
100% of the window height

NS e,
ScrollView

Illustration
5.3.1:
ScrollView
parts
o Content (marked in blue) is the inner part, it can be higher than the

window height, it's what's moving inside the container.

ScrollView’s style defines the outer container of the ScrollView, e.g its height
and relations to siblings elements while contentContainerStyle defines the
style of the inner container of it, e.g items alignments, padding, etc.

By default, ScrollView is laid out vertically. In order to scroll the content

horizontally, the prop horizontal must set to true.

21

Politecnico di Torino TULA Ana Laura

5.3.2 User Interface

* Button: A basic button component for handling touches that render
accordingly on any platform. There are other components that allow a
developer to customize “touchable” components.

5.3.3 List Views

React Native provides components for presenting lists of data, the most important is
FlatList since it is used to show the user’s vineyards and the grid of pictures taken
by a camera. There is also SectionList, a component with additional support for
sections, it is used to display the Nodes and Cameras from a vineyard. Both of these
components are performant. In detail:

5.3.3.1 FlatList

The Flatlist[54] component displays a scrolling list of changing, but similarly
structured, data. It works well for long lists of data, where the number of items
might change over time. Unlike the ScrollView, the it only renders elements that are
currently showing on the screen, not all the elements at once. The component
requires two props:

* data: source of information for the list. Array of data used to create the list,
typically an array of objects.

e renderltem: takes one item from the source and returns a formatted
component to render. function that will take an individual element of the data

array and render a component for it.

Each item of the list must have a unique key, that allows the VirtualizedList (which
is what FlatList is built on) to track items and aids in the efficiency of the list. The
prop keyExtractor can be use to specify which piece of data should be used as the
key.

Is fully cross-platform and provides:
* Optional horizontal mode.
* Configurable view-ability callbacks.
* Header support.

* Footer support.

22

Politecnico di Torino TULA Ana Laura

Separator support.

Pull to Refresh.

Scroll loading.

ScrollTolndex support.

5.3.3.2 SectionList

SectionList[55] is like FlatList but with additional support for sections. It requires a
renderSectionHeader function prop for section headers and instead of the data prop,
it define sections where each section:

* has its own data array

e can override the renderltem function with their own custom renderer

5.3.4 i0S/Android specific
DatePickerAndroid: Opens the standard Android date picker dialog.

The available keys for the options object are:
* date (Date object or timestamp in milliseconds): date to show by default

* minDate (Date or timestamp in milliseconds): minimum date that can be
selected

* maxDate (Date object or timestamp in milliseconds): maximum date that can
be selected

* mode (enum('calendar', 'spinner', 'default')): to set the date-picker mode to
calendar/spinner/default

o 'calendar': Show a date picker in calendar mode.
o 'spinner': Show a date picker in spinner mode.

o 'default': Show a default native date picker(spinner/calendar) based on

android versions.

It provides the open() method, that returns a Promise which will be invoked an
object containing action, year, month (0-11), day if the user picked a date.

23

Politecnico di Torino TULA Ana Laura

This component is used to give the user the option to display the data of the sensor
on that selected date.

5.3.5 Others
5.3.5.1 Animated

Animation can be defined as manipulating images or objects to appear as moving.
React Native provides the Animated library for creating animations, it allows to
declare a computation in JavaScript and compute it on the native thread and not on
the JavaScript thread, so if the JavaScript thread is blocked, the animation will still

run.
The steps are usually as follows:

1) Create a new Animated instance and define the starting value or the starting
location of the animation in reference to the exact X, Y coordinates on the screen.
The X, Y coordinates always start at the top-left corner of the screen.

2) Define the end value or ending location of the animation. Animated has built-in
types to use to get from the starting location or value to our ending location or
value. Each animation type provides a particular animation curve that controls how
the values animate:

* Decay: starts with an initial velocity and gradually slows to a stop.
* Spring: provides a simple spring physics model.
* Timing: animates a value over time using easing functions.

3) Define which element to animate. React Native provides four components. These
components do the binding of the animated values to the properties, and do targeted
native updates to avoid the cost of the react render and reconciliation process on
every frame.

* Animated.Image
¢ Animated.ScrollView
e Animated.Text

* Animated.View

24

Politecnico di Torino TULA Ana Laura

Interpolation

Interpolate() is a method that is available to be called on any animated value, it
interpolates the value before updating the property, e.g. mapping 0-1 to 0-10. Allows
input ranges to map to different output ranges.

Handling gestures and other events

Gestures, like panning or scrolling, and other events can map directly to animated
values using Animated.event(). The animated events help to extract the values from
complex event objects.

5.3.6 Style

React Native uses JavaScript objects for styling, where object keys are based on CSS
properties. Every component accepts a “style” prop where these are defined. The
style prop can take an array of styles.

Additionally, React Native provides the StyleSheet functionally, which is the same as
creating the objects for style, but have an additional optimization: only sends IDs
over the bridge.

A component can specify the layout of its children using the Flexbox algorithm.
Flexbox is designed to provide a consistent layout on different screen sizes.

Flexbox works the same way in React Native as it does in CSS on the web, with a
few exceptions. The defaults are different, with flexDirection defaulting to column
instead of row, and the flex parameter only supporting a single unit-less number.

To achieve the desired layout, Flexbox offers three main properties:

25

Politecnico di Torino TULA Ana Laura

Property Values Description

o , o Used to specify if elements will be
flexDirection column', 'row . .)
aligned vertically or horizontally.

, O . . Used to determine how should
center', 'flex-start', 'flex-end', 'space-

justifyContent o , elements be distributed inside the
around', 'space-between .
container.
Used to determine how should
. 'center’', 'flex-start', 'flex-end’, elements be distributed inside the
alignltems , , .)
stretched container along the secondary axis

(opposite of flexDirection).

Table 5.3.1: Main properties of Flex

5.3.7 Direct Manipulation

It is sometimes necessary to make changes directly to a component without using
state or props to trigger a re-render. setNativeProps is the React Native equivalent
to setting properties directly on a DOM node.

5.3.8 Installation

5.3.8.1 Dependencies

Depending on the development OS and the target OS, the dependencies vary. For
example, a Mac computer is required to build projects with native code for iOS. In
this project the target OS is Android, so the requirements are:

* Node (8.3 or newer)

* Watchman (optional)

* The React Native Command Line Interface (React Native CLI)
. A JDK (JDK 8)

* Android Studio (or just the Command Line Tools)

26

Politecnico di Torino TULA Ana Laura

Node comes with Node Packager Manager[56] (npm) which will be used to install not
only React Native, but all of the application’s dependencies. Instead of npm, yarn
can also be used.

The first requirement when developing Android applications is an up-to-date version
of JDK (Java SE Development Kit), at the moment JDK 8.

Android Studio installs the latest Android SDK by default. Building a React Native
application with native code, however, requires a specific Android SDK, at the
beginning of the project it was Android SDK Platform for API Level 23 (6.0
Marshmallow). Additional Android SDKs can be installed through the SDK
Manager.

&« T 1 | 4k ana Android

My Computer

android-23 android-27 android-28

Illustration 5.3.2: Android platforms installed

Additionally, the developer must install:
* Google APIs
* Intel x86 Atom_64 System Image

It is important to set up the Android and Java environment variables. For this
project, the versions of the dependencies installed are:

* Development OS: Linux Mint 19 Tara
* npm: 6.5.0

* Node: v8.11.3

* Yarn: 1.12.3

* Watchman: 4.9.0

27

Politecnico di Torino TULA Ana Laura

5.3.9 React Native CLI Commands
To install the React Native CLI:

npm install -g react-native-cli

Listing 5.3-1: React Native CLI
installation

This will create a new folder in the current directory and create a React Native
project inside of it.

react-native init <project name>

Listing 5.3-2: Creation of a new React
Native Project

As the Illustration 5.3.3 shows, the Android and iOS folders contain Objective-C and
Java code for iOS and Android native parts. The node_modules directory contains all
installed npm packages. In the root folder there are various configuration files for
Babel, Flow[57], Git[58], Watchman and Yarn[59]. There is also an index JavaScript
file, called index.js, that serves as an entry point of the application.

4 IXEMWINEMOBILE

b
b
L [
b
b

Illustration 5.3.3:
Project structure
28

Politecnico di Torino TULA Ana Laura

To run and build the application, in the case of Android/iOS case:

react-native run-android

Listing 5.3-3: Launch the application in
an Android device or emulator

react-native run-ios

Listing 5.3-4: Launch the application in
i0S device or emulator

The instructions build the native .app or .apk using the iOS or Android toolchains,
starts the Metro Bundler, which minifies and serves the JSX and other assets such as
images over to the device. On Android, it starts the adb server to push the .apk with
all the native libraries included onto the device (with USB debugging enabled).

The react-native CLI will run the packager, which is in charge of bundling the
JavaScript files and launch the emulator on the physical device.

The packager need to be running at all times while developing, the code changes will
be reflected in the application by enabling hot reloading.

Metro server is configured to start on port 8081 by default. Once the application is
launched in the simulator/device, a request is sent to the server for the bundle. The
server then downloads all the required dependencies, bundles the JavaScript code
and sends it back to the application. After this step, the application start working.

The development was done using a physical Android smartphone, running Android
8.0.0. To verify if the device is connected the command in Listing 5.3-5 can be used
in the command line:

adb devices

Listing 5.3-5: Command to verify the
connected smartphones

29

Politecnico di Torino TULA Ana Laura

To run the application in a device, the developer must authorize the mobile device
and enable USB debugging the following must be actions must be followed: “Settings
> Developer Options > USB debugging”.

5.3.10 The CLI

The react-native-cli, installed by means of npm as a separate module, is a shell for
accessing the CLI embedded in the React Native of each project. The commands and
their effects are dependent on the version of the module of react-native in the
context of the project.

Running react-native -help from inside a React Native project will list all of the

current commands, as shown in Illustration 5.3.4:
$ react-native --\

$ react-native --help
t-native [options] [command]

output the version number
output i

app and on it r

Illustration 5.3.4: Options for commands available in the current Project

5.3.11 Debugging

From the device’s developer menu, it is possible to tap on “Debug JS Remotely.”
This will launch Google Chrome and run the JavaScript in the browser instead of
running it on the device. React Native will set up a Websocket connection between
the device and the browser that allows the developer to use Chrome’s developer

console.

5.3.12 Linking libraries

Some React Native modules include native code for Android and/or iOS in addition
to JavaScript. There are some extra steps to connect it with the native parts of the
application.

30

Politecnico di Torino TULA Ana Laura

In the case of Android, if there is the need to use native code, there are two ways to
use Java with the Android SDK in a React Native project:

* put the Java code directly into the existing app by adding Java classes to
android/app/src/main/* folder and use them from
MainActivity/MainApplication.

e create an Android Library, which is the way any npm react-native packages
(that go beyond JavaScript) work. The benefit is that it is reusable.

So, to link a library first install the component, using npm like a normal module, and
then link it with the command listed in Listing 5.3-6:

react-native link <dependency-name>

Listing 5.3-6: Linking a native library

It is an automatic way for installing native dependencies and to avoid manually
linking all the dependencies in the project. It works for both Android and iOS.
However, the linking process of the libraries can vary, so it is important to check the
installation steps for each of them.

31

Politecnico di Torino TULA Ana Laura

6 Data Visualization

6.1 Scalable Vector Graphics (SVG)

SVG[60] is a language for describing 2D-graphics and graphical applications in XML
which is then rendered using the SVG viewer. Most modern browsers support SVG
and can display them as an images just like a regular JPG.

SVG drawings are created using a wide array of elements. For this project the
following elements are used:

* <svg>: is a container that defines a new coordinate system and the viewing
area where the SVG will be visible . It is used as the outermost element of any
SVG document but it can also be used to embed a SVG fragment inside any
SVG or HTML document.

* <g>: is a container used to group other SVG elements. Transformations
applied to the <g> element are performed on all of its child elements, and
any of its attributes are inherited by its child elements.

* <line>: basic shape used to create a line connecting two points.

* <text>: defines a graphics element consisting of text. It's possible to apply a
gradient, pattern, clipping path, mask, or filter to <text>, just like any other
SVG graphics element.

* <path>: generic element to define a shape. All the basic shapes can be
created with a path element.

SVG support in React Native is via react-native-svg/61]. It provides SVG support to
React Native on iOS and Android, and a compatibility layer for the web. This
library contain native code and must be linked as explained in Linking libraries and
reading the instruction provided in the library’s instructions.

The library svg-path-properties[62] is a pure Javascript library used to obtain the
functions getPointAtLength(t) and getTotalLength() needed to do some calculations
for plotting the chart.

32

Politecnico di Torino TULA Ana Laura

6.2 D3.js

D3.js[63] is a JavaScript library that exploits all the benefits provided by the DOM
to visualize data using HTML, CSS and SVG. D3 manages the complexities of web
standards and provides capabilities to browsers by combining powerful visualization
components along with a data-driven approach. The library consists of many useful
features including scaling, transformations, axes creation and many others.

D3, in its 4™ version, is presented as a collection of modules developers can use
independently, with minimal dependency between them, all neatly isolated in their
own repository. The following modules are used in this project.

6.2.1 D3-scales

D3-scales[64] provides the encodings that map abstract data to visual representation.
Every dataset has values within a domain and though the domains can vary
drastically, one thing remains constant; the number of pixels available on the screen.
These different domains needs to be mapped onto this output range. This is handled
by D3-Scales property that maps the input domain to the output range. Once D3
scale function is defined by providing it with input domain and output range of
pixels, the scale function can be called by passing the input value and it returns a
scaled output value. D3 provides different types of scales such as linear, ordinal,
logarithmic, square root. In the project, only the linear scale is used.

6.2.2 D3-shape

D3-shape[65] provides graphical primitives for visualization, such as lines and areas.
This module supply a variety of shape generators. As with other aspects of D3, these
shapes are driven by data: each shape generator exposes accessors that control how
the input data are mapped to a visual representation.

6.2.3 D3-array

D3-array[66] provides array manipulation, ordering, searching, summarizing, among
other things. Data in JavaScript is often represented by an iterable (such as an
array, set or generator), and so iterable manipulation is a common task when

analyzing or visualizing data.

33

Politecnico di Torino TULA Ana Laura

7 Implementation

The development of the application was using an incremental approach, each
functionality was implemented and tested incrementally until the application covered
the most important use cases.

Two important matters are the Application State and the Application Navigation,
those topics are described in the following chapters.

Another topic is the interaction of the application with the server through its API,
covered in Web Services.

7.1 Actors of the system

The iXemWine is a community formed by the a network of public sensors in
vineyards located in municipalities or farms distributed throughout Italy. Anyone
can register and have access to it.

A user represents someone who can log into the iXemWine application. In addition
to the basic information, has credentials that enables them to log in to the system.
Each user has roles, assigned to them, that defines permissions to perform a group of
tasks.

An user administrator can perform additional actions, like adding a camera sensor to
a vineyard.

A vineyard is represented as an object with a unique identification and a name. It
has information associated with it, like the its creation date and the city it is located
in, in addition to the latitude and longitude.

A vineyard can have nodes and cameras associated with it. A node has sensors, a
type, a alias, creation date and other configuration parameters. Each node’s sensor
has a channel in which it handles the actual monitoring data.

A wuser can own one, several or any vineyards, as shown in Illustration 7.2.1. In
addition, a vineyard can be shared with other users. Both the shared and owned
vineyards must be displayed in the application. In the case of a vineyard that is not
owned and nor shared with the user, then only a limited view of that vineyard is

shown.

34

Politecnico di Torino

TULA Ana Laura

Node T

— Vineyard

Node T

User — |

Node [

——| Vineyard

Sensor

Sensor

Sensor

Sensor

Sensor

Sensor

Sensor

Sensor

] e

Sensor

Camera

Illustration 7.2.1: Representation

of a user’s data

7.2 Functionality

The main functionalities of the application are described in the Illustration 7.2.2 and

then described in detail in the following sections.

Visualize the list of
vineyards

Visualize the nodes
and cameras inside
a vineyard

Visualize the
sensors data in
charts

Visualize the
pictures taken by a

User camera

Search for
vineyards in the
community

Edit preferences
and see the profile

Illustration 7.2.2: Use Cases

7.2.1 Authenticate

Authenticate

The first screen of the application is where the user enters its credentials to login to
the application. Once the user press the login button, it sends a HTTP POST

35

Politecnico di Torino TULA Ana Laura

request to the iXemWine backend Authentication Server with the credentials and as
a response it sends the token that will be used by the user on all the subsequent
requests.

There only complication when developing this screen was that when the user pressed
to type the username and password, the virtual keyboard showed up and covered
text inputs fields.

For this reason, React Native provides the built-in KeyboardAvoidingView
component but the documentation is vague, e.g., “Android and iOS both interact
with this prop differently. Android may behave better when given no behavior prop
at all, whereas iOS is the opposite” .[67]

To avoid the use of a third-party libraries and also to have a cross-platform solution,
an alternative solution was reached using:

* the Keyboard module to control keyboard events [68]. Keyboard is a built-in
React Native component that provide a couple of methods to listen for the
virtual keyboard showing and hiding.

* animations, specifically transform/translateY to move the elements of the
view vertically when the virtual keyboard shows/hide.

* the Dimensions[69] built-in API to obtain the width and height of the screen

* the currently focused field (and thus its position on the screen) in order to
calculate the value to translate vertically the elements.

The result is the login screen, shown in Ilustration 7.2.3:

36

Politecnico di Torino TULA Ana Laura

1 WIND @ N © @ il @00 08:18

,,,,,

Illustration 7.2.3:
LoginScreen:
Authentication of the
user

7.2.2 Visualize the list of Vineyards

To visualize the list of vineyards a user owns or has been shared with, a component
named List was created, it is based on the FlatList, built-in component previously
discussed.

The List component displays a Row component for each item. A Row component has
a title, details and the function callback when an item is selected. When the user
presses on one of the items, it navigates to another screen that shows the detail of
that vineyard.

The list of vineyards a user owns and the ones shared with him are obtained once the
user successfully login to the application and redirected to the first screen, which is
the home.

In the Illustration 7.2.4 the Home screen is shown, it displays a Panel component
that shows the number of vineyard owned, the shared ones and the total number of
nodes of the user.

37

Politecnico di Torino TULA Ana Laura

1WIND ¢ DN @ & Ll (9614 18:28
iXemWine
Vigneti Condivisi Sensori
Casa
Torino - iXemLab
Friuli
Corno - iXemTest
Laboratorio
orino - iXem Test
Oddero_Test
Castiglione Tinella - Poderi Oddero
(]
A <] n (-

Ho! Condivis! Comunita

Illustration 7.2.4:

Visualization of the list
of vineyards

3
B

The other place where the List component is shown is in the tab Shared
(“Condivisi”) but, in this case it only displays the List component.

7.2.3 Visualize the Nodes and Cameras inside a Vineyard

As stated previously, a vineyard can have nodes and cameras and to show them, the
built-in SectionList component is used. The difference to FlatList is that it allows to
separate the data in sections. Each section has its data source, its render function
and a title.

In this case, the Camera and Nodes are two sections, as shown in Illustration 7.2.5
and the header of the screen is the vineyard’s name. When the user selects one of
them it navigates to the specific node or camera.

38

Politecnico di Torino TULA Ana Laura

IWINDS © ® @'$ N O @ Ll (4204 12:30

< Laboratorio

Sensori

Aria - Temperatura e Umidita
Nodo virtuale

Aria - Temperatura e Umidita
T/H Test - Paolo

Fotocamere

CameraHD1

J

9 o o |
Illustration 7.2.5:
Visualization of sensors
and cameras in a
vineyard

3
B

7.2.4 Visualize the Sensors data in Charts

Sensors data are visualized by means of a line charts. The chart configuration
depends on the sensor’s type, because in most of the cases the chart can have more
than one data set to allow the user to contrast two physical quantities, like
temperature and the dew point[70], across time.

There weren’t many alternatives, it was hard to find a suitable library that met the
functional and design needs at the same time. Only one library met the
requirements, victory-native[71] but unfortunately it had known performance
issue[72]. So, for this functionality there was a time overhead of learning and
implementing the chart from scratch.

To build the chart, D3 was used. The first thing to do with the data set is to scale
(using d3-scales) the x and y domain to the width and height of the chart, and then
used the curve function, from the d3-shape library, to have a linear curve for the
points.

The screen of the smartphones are small, so the proposed solution was to plot the
chart without using the “traditional” scrolling, instead, a ScrollView component was

39

Politecnico di Torino TULA Ana Laura

used on top of the chart so the user can slide a cursor over the line and to show a
sliding label that acts as a x-axis.

To get the length of the line, the function getTotalLength of the svg-path-properties
library was used.

The ticks of the y-axis can be fixed and be passed as a prop or they can be variable
and change according to the data set.

The lines are plotted by means of the SVG path element, while the y-axis use the
text element for showing the tick value and the line element for plotting the dashed
lines.

To be able to slide throughout the chart line, the only consideration is that the
ScrollView’s width attribute needs to be greater than the width of the screen and at
least the size of the line length, since the “scrolling” is what enables to move from
one end of the line to the other.

Another thing is listening to the onScroll event to get the scrolling value at any
point, and with that value get the x and y coordinates (using svg-path-properties’s
getPointAtLength function), and move the cursor along the graph using
setNativeProps in order to do it without triggering a new rendering.

To allow the sliding movement of the label that shows the values at that specific
point, an interpolation is performed where the input range is the selected line length
and output range is the width of the screen (minus the label width). A TextInput
component is used to be able to update the label value using again the
setNativeProps method. To display the proper label value at a particular point the
function scale.invert, from D3-scales, is used to revert from the y and x coordinates
values to the original values.

To be able to plot the two data sets in the same chart, in the chart component’s
state is stored a selectedLine, which is the line selected at a particular moment.

The chart component receives the mandatory dataset and the socondary one, the
selection to where to place the cursor between them is performed by a boolean called
selectedMandatory. When that boolean prop is true, the mandatory lineLength is
selected otherwise the secondary is. If there is no secondary provided, there can not
be any toggling.

The chart component is encapsulated within a component called ChartWithLabels
that add the Label functionality, showing a label for each data set, and the toggling
between them represented as switching a radio button.

40

Politecnico di Torino TULA Ana Laura

One more level of abstraction is created for each type of node, since each Node type
has different icons, colors and constants.

The figure Illustration 7.2.6 and Illustration 7.2.7 shows an example of this
functionality where the node type is a Temperature-Humidity sensor, so there are

two charts, one for the temperature versus the dew point and the other with just the
humidity:

IWIND® ¥ @' N © @ Yl (261419:26 @0t O @ Ll @ 12:56

€& Aria - Temperatura e Umidita Aria - Temperatura e Umidita

m 16/01/2019 ﬁ 16/01/2019
@225% §243°C 120
UMIDITA TEMPERATURA
TEMPERATURA [°C] UMIDITA [%]
® TEMPERATURA PUNTO DI RUGIADA ©UMIDITA

o .

T T .

-90 20
-100 10
-110
0 °)
6/0123:52 -40.0°C 16/01 23:52 0.0%

= - = 2 A 8 N 3
Illustration 7.2.6: Illustration 7.2.7:
Visualization of the Visualization of the
temperature and the humidity of a
dew point of a Temperature-Humidity
Temperature-Humidity Sensor
Sensor

Another type of sensor is the Two Layer Leaf Wetness sensor, that shows a top and
a bottom humidity, but in this case to visualize the data only one chart is needed
since the two data set refer to the same scale, as the Illustration 7.2.8 below shows:

41

Politecnico di Torino TULA Ana Laura

I WIND® @10 @ & Ll (@04 12:57

Bagnatura Fogliare HD

ﬁ 18/03/2019
20% @0 %
LATO SUPERIORE LATO INFERIORE
UMIDITA [%]
(@ LATO SUPERIORE O LATO INFERIORE
100
90
80
70
60
50
40
30
20
10
@ O

18/03 23:59 0.0%

A (<]])
Hom

< o o |
Illustration 7.2.8:
Visualization of a Two
Layer Leaf Wetness
Sensor

In addition to the chart, at the top of the screen, there is a Panel that shows the
latest corresponding sensor’s value acquired.

7.2.5 Visualize the pictures taken by a Camera

The pictures taken by the camera are shown in a grid, Illustration 7.2.9, sort of
Gallery using a FlatList component that is set to render the pictures in columns.

The backend returns an array of objects that contain the URL of the pictures taken
by the particular camera on the date selected. The pictures shown at the start by
default are the ones taken that particular day.

The user can see the details of a picture by selecting it, which navigates to a
different screen where the user can zoom-in and zoom-out the picture to see it in
detail.

42

Politecnico di Torino TULA Ana Laura

IWIND® & @' BN @ @ Ll (214 12:30

< CameraHD1

ﬁ 31/03/2019
ry] -

Illustration 7.2.9:
Photo grid
visualization of the
pictures taken by a
camera

7.2.6 Search for vineyards in the Community

The search for vineyards is by means of a map, as shown in Illustration 7.2.10, the
positions of the vineyards are displayed as markers.

The only reliable way to use maps in React Native applications is to install the
third-party react-native-maps|73| package.

The MapView component from that package is the main tool used and provides a
declarative approach to control features on the map where they are specified as
children of a MapView.

Each vineyard is represented by means of a Marker that is rendered on top of the
map. A callout is displayed with the vineyard’s basic information when the user
presses on the marker. Then, if the user press on the callout, the user is redirected to
a screen, which shows information of the selected vineyard.

To add the functionality of maps clustering the library react-native-maps-super-
cluster[74] is used. It provides a ClusteredMapView component that receives the
same children as a MapView but add the extra functionality for cluster rendering.

43

Politecnico di Torino TULA Ana Laura

| WIND ¢ AN B Sl (5714 18:29

Comunita

Repubblica
. Ceca
Monaco “\\ . s
diBaviera Vienna Slovac
< ® p
Sy . _{Budape
~\J Austria > ®
[svizzera bR Y L R Ungt
@Ailgno Slovenlg ©Zagabria’{_
< Croazia /"~
g *\ Bosniaed,
9 Erzegovina
Monaco \ B
Italia Monteneg
o
Podgorica |
Noaropyia

Albal

@®Roma

Mar Tirreno

seri Tunisi
llasa oD
> 7 e

2 Mar
" Tunisia Mediterraneo

& (< n &

Home Condivisi Comuni ita te

Google

Illustration 7.2.10:
Search and

visualization of the
vineyard's position

7.2.7 Edit preferences ans see the profile

The user can visualize its profile and change some preferences of the application. In
this case, the language. The available languages are english and italian. The library
i18n-js[75] is used, a plain popular JavaScript library which supports features such as
date/time localization, number localization, locale fallback, etc.

Internationalization (i18n for short) is the process of adapting an application to work
with different languages. The internationalization is done by having two files, en.json
and it.json, containing strings in a flat JSON format. Both language files will contain
key-value pairs with the same keys at any point in time containing the translations
of the headers, texts messages, errors, etc. The different screens will import those
strings from one of these files depending on the current language selected.

In order to configure some parameters, like the default language, the file i18n.js is
created. Besides configuring i18n, it also exports a translate function and some other
utility functions, for example to get or set the language.

To change the application’s language there is a button in the User screen that shows
the current language and when pressed it toggles the languages.

44

Politecnico di Torino TULA Ana Laura

The language, stored in the Redux store, is always in sync with the language in the
i18n.js file, and when the user changes the language an action is dispatched which
changes the language in both i18n module and Redux store.

The navigator’s header text and bottom tab labels have to be re-rendered on
language change. The navigation library allows to pass props to the navigators, this
props will be passed to each navigator instance and perform the re render when a
language change occurs since it is connected to the Redux store.

The Illustration 7.2.11 shows the user’s profile information and the functionality to

change the language.

IWIND® ® @' BN @ @ Ll @4 12:31

Utente

Mattia Poletti

mattia.poletti@polito.it

Premium Users

@ Lingua: it

LOG ouT

A <] [&
Jtent

Home Condivis! Comunita Utente

Illustration 7.2.11:

User's profile and
language change screen

More of Redux and navigation will be addressed on the following chapters.

45

Politecnico di Torino TULA Ana Laura

8 Application Navigation

8.1 React Navigation

React Navigation[76] is used to move between screens in the application. It provides
different types of navigation patterns, like a “stack of screens” or “tabs”. It’s a
solution backed by the React Native community[77] that works with the native
navigation components of both Android and iOS.

8.1.1 Navigator

A navigator is a component that implements a navigation pattern. Each navigator
must have one or more routes. Each route must have a name and a screen
component. The screen component is a React component that is rendered when the

route is active.

A screen can also be another navigator, since they are components, so they can be
nested. The result is that the application is a combination of these different
navigators.

There are three types of built-in navigators used in the project are:

* SwitchNavigator: Only show one screen at a time. When navigate, it reset

screen immediately without animation.

* StackNavigator: Contains screens as a stack. Each of the screens gets mounted
only when navigating to that particular screen and gets un-mounted only
when going back or manually reset the navigation state.

* TabNavigator: Contains tabs that the user can swipe. The tab screens get
mounted all at once.

8.1.2 Authentication flow

Most applications require that a user authenticates in some way to have access to
data associated with that user or other private content. Typically the flow looks like
this:

* The user opens the application.

46

Politecnico di Torino TULA Ana Laura

The application loads some authentication state from persistent storage. The user is
presented with either the authentication screen or the main application, depending
on whether valid authentication state was loaded.

When the user signs out, the authentication state is cleared and is sent back to

authentication screens.

The purpose of SwitchNavigator is to only ever show one screen at a time. By
default, it does not handle back actions and it resets routes to their default state
when the user switch away. This is the exact behavior wanted from the
authentication flow: when the users sign in, the state of the authentication flow is
thrown away and unmount all of the screens, and the user press the hardware back
button he can not go back to the authentication flow.

To switch between routes in the SwitchNavigator, the navigate action can be used.

The initial route name is set to be the screen that will fetch the user’s authentication
state from the persistent storage.

8.1.3 App containers

Containers are responsible for managing the application’s state and linking the top-
level navigator to the application environment. It must be created in the root of the
application and use it to wrap the root navigator.

The app container, is a higher-order-component that maintains the navigation state
of the application and handles interacting with the outside world to turn linking

events into navigation actions and so on.

8.1.4 Navigation Prop

This prop will be passed into all screens, and it provides the following:
* dispatch(), will send an action up to the router
* state, is the current route for the screen
* getParam(), is a helper to access a parameter that may be on the route

* navigate(), used to navigate to another screen. It allows to pass parameters as

well.

47

Politecnico di Torino TULA Ana Laura

8.1.5 Passing parameters to routes

After creating a stack navigator with some routes, it is possible to navigate between
those routes and to pass data to routes when navigating to them.

There are two pieces to this:

1. Pass parameters to a route by putting them in an object as a second
parameter to the navigation.navigate function:

this.props.navigation.navigate(‘RouteName’, { /*params go here*/})

Listing 8.1-1: Navigate to a another screen and pass parameters

2. Read the parameters in the screen component:

this.props.navigation.getParam(paramName, defaultValue)

Listing 8.1-2: Read a parameter

8.1.6 Handling state

ScreenProps allows to provide any data to all the screens, in this case to pass state
data down to the screen components. This is done in the top level navigator, which
is also connected with Redux, so any changes in the state will cause a change of
props pass to the screens as well.

So, if a prop is passed to the navigation component, it's accessible via the
screenProps property and if a value is passed to the screen via navigator.navigate(),
it's accessible by calling navigator.getParam().

In this project, the only props that is passed is the Language since the UI (header
and tab labels) needs to be updated dynamically when the user changes the
language.

8.1.7 Navigation lifecycle

Consider a stack navigator with screens A and B. After navigating to A, its
componentDidMount is called. When pushing B, its componentDidMount is also
called, but A remains mounted on the stack and its componentWillUnmount is
therefore not called. When going back from B to A, componentWillUnmount of B is

48

Politecnico di Torino TULA Ana Laura

called, but componentDidMount of A is not because A remained mounted the whole

time.

When, in combination with other navigators, like in this project where there is a Tab
navigator with four tabs, where each tab is a Stack navigator. The initial screen is
set to the HomeScreen and if the user navigate to a VineyardScreen. Then the user
use the tab bar to switch to the SharedScreens and navigate to a shared
VineyardScreen. After this sequence of operations is done, all 4 of the screens are
mounted. If the user use the tab bar to switch back to the HomeStack, the user will
be presented with the screen he left on before switching tabs, so the navigation state
of the HomeStack has been preserved.

8.1.8 Application navigation

The application’s navigation is accomplished by nesting different types of navigators.
As the Illustration 8.1.1 shows, the SwitchNavigator performs the authentication
flow.

Once the user is logged in, a Bottom Tab Navigator show four the tabs available:
Home, Shared, Community and User. Each of them is a Stack Navigator.

Each tab being a navigator, allow the user to navigate to the different screens, for
example in the case of the first tab it starts with the list of vineyards, then to the list
of nodes and cameras that are inside the vineyard and finally arriving to the the
particular sensor or camera and see the data displayed for a particular day.

49

Politecnico di Torino

TULA Ana Laura

Initial
Route

LoginScreen

Ask for
credentials

No
token

Yes

navigate

Main

Bottom
Tab
Navigator

navigate

Initial
Route

v

’_I:

Home Tab

Push

Stack
Navigator

’_I:

Shared Tab

Push

Stack
Navigator

’_I:

SwitchNavigator

Community
Tab

Stack
Navigator

’_I:

User
Tab

Stack
Navigator

Illustration 8.1.1: Application Navigation

In the case of the Community tab, the navigation actions depend on the selected

vineyard. If the selected vineyard :

* is owned by the user, push a new screen to Home tab.

* is shared with the user, push a new screen to Shared tab.

* is one from the Community, then it navigates to another screen in the same

stack allowing the user only a partial view of that vineyard.

50

Politecnico di Torino TULA Ana Laura

9 Application State

State is an important concept in any React application because it controls what the
user can see and interact with.

Various pieces of state are persisted for different amounts of time and can be
categorized into:

* Short: data that will change rapidly, for example the characters that a user
types in an input text field. This type of data can be handled using the
component’s state.

* Medium: data that has to persist throughout the user navigation of the
application, for example, the data returned from the server needs to be stored
and will be used by the different screens. If that data is stored in some global
location, it will be easier to access it. Such type of use cases fits Redux.

* Long: data that should be persisted when the user closes and re opens the
application. This type of data should be stored somewhere else, for example
the AsyncStorage provided by React Native.

9.1 Flux

In order to scale complexity and control the data flow, Facebook created an
information architecture called Flux[78]. Thought for React, it utilizes a
unidirectional data flow, where:

* the views react to changes in some number of “stores”.

the only thing that can update data in a store is a “dispatcher”

the only way to trigger the dispatcher is by invoking “actions”

* actions are triggered from the views

ol

Politecnico di Torino TULA Ana Laura

Hlustration 9.1.1: Flux achitecture

From the Flux documentation[link], Flux applications have three major parts: the
dispatcher, the stores, and the views (React components). The store is an abstract
concept that holds application state. The actions are simple objects containing the
new data and an identifying type property.

The dispatcher is the central hub that manages all data flow in a Flux application. It
is essentially a registry of callbacks into the stores and has no real intelligence of its
own — it is a simple mechanism for distributing the actions to the stores. Each store
registers itself and provides a callback. When an action creator provides the
dispatcher with a new action, all stores in the application receive the action via the
callbacks in the registry.

When a user interacts with a React view, the view propagates an action through a
central dispatcher, to the various stores that hold the application's data and business
logic, which updates all of the views that are affected.

9.2 Redux

Redux[79] is a data management library inspired by Flux, the only difference is that
it only has a single source of truth for data. Presented as “a predictable state
container for JavaScript apps. It helps you write applications that behave
consistently, run in different environments (client, server, and native), and are easy
to test. On top of that, it provides a great developer experience.”[80]

The classic MVC (model-view-controller) behavior, in large-scale applications, has
issues: the flow of data is bidirectional, which means that one change (a user input or
APT response) can affect the state of an application and many places in the Ul and
that can be hard to maintain and debug. The ability to represent the entire
application state in a single object simplifies the developer experience since it
becomes easier to think through the application flow, predict the outcome of new
actions, and debug issues produced by any given action.

52

Politecnico di Torino TULA Ana Laura

Redux flow is shown in Illustration 9.2.1 and has the following core concepts:

State: The application’s state described as a plain object.

Actions: Object that contains the information required to make a state
update, usually objects with a type key and a payload containing the
information to be updated. The functions that create them are called action
creators. Actions must be dispatched in order to affect the state.

Reducer: function to tie state and actions together. The reducer takes the
previous state and the action, then it applies the update. It should be a pure
function, a function that doesn't alter input data, doesn't depend on external
state and consistently provides the same output for the same input. So it
result is deterministic and determined exclusively by arguments and also it
must not have no side effects. It should be immutable, which means that it
always return a new state object.

Store: The store contains the global state for the entire application. It is
responsible for maintaining the state. The store exposes a getter via
getState(), can only be updated by using dispatch() and can add listeners that
get invoked when state changes.

dispatch(action) (previousState, action)

| |
Action Creators Store —— Reducer

newState

state

User interaction

(e.g press of a button) Component

Hllustration 9.2.1: Redux flow

9.2.1 Combining Reducers

As the application grows more complex, it is important to split the reducing function

into

separate functions, each managing independent parts of the state. The

combineReducers()[81] helper function turns an object whose values are the different

reducing functions into a single reducing function to pass to the createStore[82]

method. The resulting reducer calls every child reducer, and gathers their results into

53

Politecnico di Torino TULA Ana Laura

a single state object. The state produced by combineReducers() namespaces the
states of each reducer under their keys as passed to combineReducers().

9.2.2 React-redux

React-redux[83] This library has the official React’s bindings for Redux. It lets React
components read data from a Redux store, and dispatch actions to the store to
update data, it does that using the following:

* Connect(): Higher-order component that helps subscribe to any subset of the
store and bind the action creators. This function has two important
arguments:

o the mapStateToProps function: connects a part of the Redux state to the
props of a React component, so it will have access to the exact part of the
store it needs.

o mapDispatchToProps function: connects the actions to the props of a
React component, so the component will be able to dispatch actions.

* Provider: Gives children access to the Redux store. The Provider component
is used to wrap the top-level component of the application. This will ensure
that Redux store data is available to all the components.

9.2.3 Async Requests

A middleware is piece of code that sits between the actions and the reducers.
Basically, takes the actions does something to it before passing it down to the
reducer. This allows to extend Redux without having to touch the implementation.

Any function with this prototype can be middleware:

({getState, dispatch}) => next => action => void

Listing 9.2-1: Function prototype for a middleware

9.2.4 Redux Thunk

In order use Redux’s synchronous action creators we defined earlier together with
network requests is to use the Redux Thunk middleware[84]. It comes in a separate
package called redux-thunk[85]. By using this specific middleware, an action creator

o4

Politecnico di Torino TULA Ana Laura

can return a function instead of an action object. This way, the action creator
becomes a thunk.

“A thunk is a function that wraps an expression to delay its evaluation” [86]

When an action creator returns a function, that function will get executed by the
Redux Thunk middleware. This function doesn't need to be pure; it is thus allowed
to have side effects, including executing asynchronous API calls. The function can
also dispatch actions—Ilike those synchronous actions we defined earlier.

9.2.5 Persisting State

Redux-Persist[87] takes the Redux’s state object and saves it to persisted storage.
Then, when the application launches it retrieves this persisted state and saves it back
to Redux.

The steps are as following according to the The Definitive Guide to Redux Persist
[88]: when creating the Redux store, pass to the createStore function a
persistReducer that wraps the application’s root reducer. Once the store is created,
pass it to the persistStore function, which ensures the Redux state is saved to
persisted storage whenever it changes. At last, wrap the root component with
PersistGate which delays the rendering of the application’s Ul until the persisted
state has been retrieved and saved to Redux.

9.2.6 Application State

In the following Illustration 9.2.2, the state are represented by the rectangles and
inside each of them there is the initial state objects. As explain in section 9.2.1, the
state is namespaced.

The Cameras and Node are linked by the id stored inside each Vineyard.

The vineyards, the nodes and cameras are stored inside an objects called myld
following the guide “Designing a Normalized State” in Redux’s official
documentation[89]. This state structure is much flatter overall.

95

Politecnico di Torino

TULA Ana Laura

State {
{ loaded: false,
error: '' fetching: false,
fetching: A h error: '',
false, ut information: {}, User
token: '' roles: [],
} Language: getCurrentLocale(),
nodeCount: 0,
{ }
byId: {
“vineyardId”: {
nodes: [nodeldl, nodeld2], {
Cameras: [cameraldl, loaded: false,
cameraId?] fetching: false, Nodes
} error: ''
. . byld: {},
iitds: (1, Vineyard)
ownedIds: [],
sharedIds: [], (
e L loaded: false,
LEEGEEl SENeRy, fetching: false,
fetching: false, error: ' Cameras
error: '', byId: {},
. }

Illustration 9.2.2: Application State

In each part of the application that has to perform an asynchronous request in the
state there are three values fetching, loaded and error.

The Illustration 9.2.3 shows the actions involved in each screen. Everything starts
when the user logs in, after that it is redirected to the home screen, where the action
FETCH_USER_REQUEST to get the user’s data is dispatched. When the user’s data
is retrieved the reducers update the state and set the loaded flag to true to enable
showing the data in the component. The nodes and Cameras are fetched by using the
actions FETCH_NODES REQUEST and FETCH_CAMERAS REQUEST. When a
user access a Node or Camera, the reducers add it in the correspondent reducer’s
state and also update the Node or Camera in the Vineyards object. The
FETCH_NODE_DATA REQUEST and FETCH_ CAMERA DATA REQUEST fetch
the specific sensor data for a particular day.

56

Politecnico di Torino

TULA Ana Laura

‘ FETCH_NODE_DATA_REQUEST ‘

‘ LOG_IN_REQUEST ‘ ‘

FETCH_USER_REQUEST

FETCH_NODES_REQUEST

TR

Aria - Temperatura e Umnidita

(=

mattia poletti@politoit

WD

iXemWine

Casa

=

Laboratorio

Sensori

Asia - Temperatura e Umidita

Asia - Temperatura e Umidita

Fotocamere

CameraHD1

FETCH_CAMERAS_REQUEST ‘ }>

Illustration 9.2.3: Actions and Screens

57

P225% 8243°C
uMDITA TEMPERATURA

TEMPERATURA ['C]

FETCH_CAMERA_DATA_REQUEST

Politecnico di Torino TULA Ana Laura

10 Web Services

Any application that wants to rely on information not computed within itself needs

to get it from somewhere and therefore, communicate with other resources using an
API.

The user’s information, its vineyards, the sensors and their data must be fetched
from the server by making network requests.

The function to make request, fetch(), is polyfilled by React Native. That means that
it is not natively part of JavaScript, but it is implemented to match the usage of the
browser’s fetch(). The function expects an URL and optionally some configuration.
Fetch() returns a Promise, which is fulfilled with a Response object.

In React Native project it is possible to use the proposed ES2017 async/await syntax
[90]. Both Promises and Async/Await described briefly below.

10.1.1 Promises:

* Allows writing asynchronous, non-blocking code
* Allows chaining callbacks and/or error handlers
o .then() - executed after the previous Promise block returns

o .catch() - executed if the previous Promise block errors

10.1.2 Async/Await

* Allows writing asynchronous code as if it were synchronous
o Still non-blocking
* A function can be marked as async, and it will return a Promise

* Within an async function, it is possible to wait the value of another async

function or Promise

* Use try/catch to handle errors

58

Politecnico di Torino TULA Ana Laura

10.1.3 JSON Web Token

A JSON Web Token (JWT) is a JSON object that is defined in RFC 7519[91] as a
safe way to represent a set of information between two parties. The token is
composed of a:

* Header: Contains information about how the JWT signature should be
computed.

* Payload: Stores data inside the JWT referred to as the “claims” of the JWT.
In this case, the authentication server creates a JWT with the user
information stored inside of it, for example user’s ID. There can be many
claims. There are several different standard claims for the JWT payload, such
as “iss” the issuer, “sub” the subject, and “exp” the expiration time. In this
case, the “sub” claim stores the user ID needed to identity the user and fetch
its data.

* Signature: The signature is computed using the following Listing 10-1:

data = base64urlEncode(header) + “.” 4+ base64urlEncode(payload)

hashedData = hash(data, secret)

signature = base64urlEncode(hashedData)

Listing 10-1: Pseudo code for calculating the signature

Since JWT are only signed and encoded, not encrypted, JWT do not guarantee any
security for sensitive data.

As shown the Illustration 10.1[92], the user first send its credentials using a POST
request, if they are correct, the server will provide the JWT. With the JW'T, the user
can then safely communicate with the application by sending it with each request.

59

Politecnico di Torino TULA Ana Laura

A
A

Illustration 10.1: Token-based
Authentication

The library used to decode the token is jwt-decode [93]. A small browser library that
helps decoding JW'T's token which are Base64Url encoded.

10.1.4 Moment

The Moment.js library[94] is used for managing dates in JavaScript.

To get the current date and time:

const date = moment ()

Listing 10-2: Getting current
date and time

And to parse a date, a moment object can be initialized with a date by passing it a

string:

const date = moment(string)

Listing 10-3: Initialization with
specific date

It accepts any string, parsed according to (in order):
« ISO 8601[95]
* The RFC 2822 Date Time format[96]

* the formats accepted by the Date object[97]

60

Politecnico di Torino TULA Ana Laura

10.1.5 Data Transformations

When asking for the sensors data, the time handling is important because. The when
asking for a node’s data it returns the stats, minimum, maximum and average values
of the dataset, the values, the acquisition’s timestamp in UTC[98] time using ISO-
8601 and the timezone. So, using the timezone provides the acquisition time must be
localized and for that is used moment-timezones[99], an add-on to the moment

library.

61

Politecnico di Torino TULA Ana Laura

11 Deploy

Android requires that all applications are digitally signed with a certificate before
they can be installed, so to distribute the Android application via Google Play store,
it is necessary two steps[100]:

* Generate a signed release APK

* Package the JavaScript bundle

11.1 Generating Signed APK

Generate a private signing key using keytool. This command prompts for passwords
for the keystore and key and for the Distinguished Name fields for the key. It then
generates the keystore as a file.

The file must be placed under the android/app directory. Some gradle variables must
be set along with editing the application’s gradle configuration to add the signing

configuration.

11.2 Generate the release APK

Simply run the following in a terminal:

$ cd android
$./gradlew assembleRelease

Listing 11.2-1: Commands to
generate the APK

Gradle's assembleRelease will bundle all the JavaScript needed to run the application
into the APK. The generated APK can be found under
android /app/build /outputs/apk /release.

62

Politecnico di Torino TULA Ana Laura

12 Image Cloud Storage

Camera sensors allows the remote monitoring of the crop to check their status, show
the growth of plant and store the history of it.

The cameras, located in the vineyards, are capable of taking high-resolution photos
at regular intervals that are then sent using a GSM connection.

This second part of the thesis focus on adding the functionality of a image cloud
storage and for that three alternatives where taken into account[101] of where to

store the pictures.

12.1 Own cloud infrastructure(In-house-servers)

Benefits:
* Have physical control over the backup
* Keeps critical data in-house. No third party has access to the information
* No need to rely on an Internet connection for access to data
* Needed dedicated IT support.
Drawbacks:
* Requires a capital investment in hardware and infrastructure

* No up-time or recovery time guarantees.

12.2 Amazon cloud service
Benefits

* Storage can be added as needed. Solutions are often on-demand.
* Backup and restore can be initiated from anywhere.
* A service like Amazon S3[102] is not expensive.
Drawbacks
* Not owning the data.

* If the Internet goes down or the cloud provider’s is down, there is no way to

access to any of the information.

63

Politecnico di Torino

TULA Ana Laura

Between those options, the chosen one was Amazon Simple Storage Service, that will

be discuss in the following sections. Basically the backend acts as a liaison between

the users and cameras and the cloud, as depicted in Illustration 12.2.1:

1. Register
2. Create Picture
N S
Camera -
Upload/Download
Camera S3
Backend Bucket
User
1
1. Fetch all cameras from a vineyard
2. Fetch Picture from a vineyard on a
specific date
Illustration 12.2.1: Camera backend architecture
12.3 Functionalities to provide
The Table 12.3.1 show what the backend provides:
URL Endpoint Function | HTTP Data Token’s Validate
Method | Provided |scope check | Signature
with
/camera Create a Alias,
camera Vineyard
SECRET
POST |ID ADMIN -
08 . HUMAN
Latitude,
Longitude
ict Creat SECRET
/picture HeC R T POST | The picture | CAMERA -
picture M2M
/loginCamera Get a API key,
camera POST - -
Camera ID
token
/camera? Get the GET USER |SECRET.

64

Politecnico di Torino TULA Ana Laura

vineyard=<vineyardID> |list of
F:ameras HUMAN
in a
vineyard
/picture? Get the
camera=<cameralD> pictures
&month=<month> | &KeR BY SECRET
a camera | GET USER HUM AN_
&year=<year> in a
&day=<day> specific
day.

Table 12.3.1: Backend functionalities

12.3.1 Authentication

The authentication of the users is still be handled by the iXemWine backend, which
is the one in charge of giving the tokens to the users. Those tokens are generated
with the constant SECRET HUMAN.

The Camera backend need to know the SECRET HUMAN in order to decode and
validate the token received. If the token is valid, the next step is to check the scope
of the user’s decoded identity. If the user scope is an ADMIN, and the data needed
to create a Camera exists, the new camera will be created in the data base, assigning
it a random public ID and a API key.

Once the user ADMIN has created a Camera, it will provide the camera sensor with
the API key and the public ID. When the Camera wants to send a picture it needs
to obtain a camera token first, it must provide those two values in the body, If they
are correct a token is returned for the camera.

That token then can be used when sending a picture, it has to have the CAMERA
scope. The Camera’s ID, extracted from the token when decoding, will be stored in
the data base along with the generated ID, date and name of the picture.

For the last two endpoints, any regular user can use, are the ones that will be used
in the mobile application to:

* obtain the list of Cameras that are in a specific vineyard

* obtain a list of URLs of the pictures taken by a particular camera on a

particular day.

65

Politecnico di Torino TULA Ana Laura

12.4 Flask

The web framework Flask[103] was chosen for this project because of its simplicity

and some previous experience with the framework.

Flask is a framework for developing web applications in Python. Its goal is to be
minimal without compromising functionality. It is extensible and flexible, so
components like database and form validation can be chosen by the developer. The
minimal nature of Flask makes it possible to write a web page in a very small
amount of code. The following program, see Listing 12.4-1, creates a web server that
serves a “Hello World!” page on the root.

from flask import Flask
app = Flask(__name__)

@app.route('/")
def hello_world():
return 'Hello, World!'
Listing 12.4-1: Minimal Flask application

The Flask framework is imported and a function is defined with the app.route
decorator which tells the framework where to serve the page. The function returns
the string “Hello World!” which is shown on the web page.

The following will present the Flask functionality that will be used in this part of the
project.

Routing

The app.route decorator is used to bind a function to a URL. The parameter
provided binds the function to the relative path.

HTTP methods

Another parameter for the app.route decorator is the methods allowed. This
parameter enables other HTTP methods than the default GET. An example of
enabling the POST method can be seen on Listing 12.4-2:

66

Politecnico di Torino TULA Ana Laura

Q@app.route ('/login', methods =['GET', 'POST'])
def login ():
if request.method == 'POST':
perform_the_login()
else :
show_the_login_form()

Listing 12.4-2: Example of GET and POST method

Requests Interaction with the incoming request happens through the request object.
This object contains all attributes of the request such as arguments from the query
string, form data from POST requests and uploaded files.

Listing 12.4-3 shows a very simple use of the query string. The query string 'param1’
is retrieved with the default value ’default’ and assigned to param, which is then
returned to the user

@app.route ('/query_param')

def query_param():
param = request.args.get('paraml' , 'default')
return param

Listing 12.4-3: Example of query string

The Response object

To get hold of the response before sending it to the client the make_response()
method is used. make_response() returns a response object and takes a parameter for
setting the status code, so creating the custom 404 handler just renders a template
and sets the error code to 404. For example, the Listing 12.4-4 shows a 401 response
to the client because the token was not present or can not be verified.

if not token:
return make_response('Could not
verify', 401, {'WWW-Authenticate':
'Basic realm="Login required"'}

)

Listing 12.4-4: make response example

67

Politecnico di Torino TULA Ana Laura

12.5 SQLAlchemy

SQL Alchemy|[104] is a toolkit for operating on SQL databases directly from Python.
Its goal is to provide efficient and high performing database access, adapted into a
simple and Pythonic domain language. The URI of the database is provided to the
config attribute of the flask application, and a database object is created. This object
contains a Model class that can be used to declare the model. In the project, there
are two models is declared, Camera and Picture.

The created database is shown in Illustration 12.5.1:

MName Type
- = Tables (2)
- = camera
22 id INTEGER
[=) public_id VARCHAR(50)
2 alias VARCHAR(50)
[=] vineyard VARCHAR(50)
2 lat FLOAT
= lon FLOAT
2 api_key VARCHAR(50)
[2 created DATETIME
- |=] picture
[id INTEGER
[2] name VARCHAR(50)
[=] date DATETIME
kol camera INTEGER
Illustration 12.5.1: Database for Cloud Image
System

To populate the tables. When Cameras and Pictures are created, they are inserted
into the database. And then to retrieve them it is possible to query the tables.

12.6 Amazon Simple Storage Service

Amazon S3 is an acronym for Amazon Simple Storage Service. It’s a typical web
service that lets users store and retrieve data in an object store via an API reachable
over HTTPS.

The service offers unlimited storage space and stores the data in a highly available
and durable way. Any kind of data can be stored, such as images, documents, and
binaries, as long as the size of a single object doesn’t exceed 5 TB. The user pay for

68

Politecnico di Torino TULA Ana Laura

every GB stored in S3, and also incur in minor costs for every request and
transferred data.

S3 uses buckets to group objects. A bucket is a container for objects with a globally
unique name, the bucket name chosen can not be the used by any other AWS

customer in any other region.

The user can access S3 via HT'TPS using the Management Console, AWS Command
Line Interface or depending the programming language the SDK, in this case Python
(Boto3) to upload and download objects.

12.7 AWS Command Line Interface

The AWS Command Line Interface[105] (AWS CLI) is a unified tool that provides
an interface for interacting with all parts of AWS. After the installation, can install
via pip, run the command aws configure in the console and the CLI will prompt the
necessary steps in order to fill in a few items including the keys and the region.
When finished, the credentials will be stored in the home directory .aws/credentials.

12.8 Boto3

Given that the Camera backend uses Python, Boto3 is used to access the AWS
features.

“Boto3 is the Amazon Web Services (AWS) SDK for Python. It enables Python
developers to create, configure, and manage AWS services, such as FEC2 and S3.
Boto provides an easy to use, object-oriented API, as well as low-level access to
AWS services”[106].

Installation is done via pip[l107]. To interact with Amazon S3 through Boto3, the
credentials must be set, as explained in the previous section using AWS CLI.

Creating Clients

Client[108] provide a low-level interface to AWS whose methods map close to 1:1
with service APIs. To construct a client to interact with S3, use the following Listing
12.8-1:

import boto3

Create a low-level client with the service name
s3 = boto3.client('s3")
Listing 12.8-1: Create a client

69

Politecnico di Torino TULA Ana Laura

After importing the boto3 library and constructing a client to interact with S3, the
following two operations are needed:

12.8.1.1 Upload a File
To upload a file to an S3 object, the function upload_file[109] is provided. Usage:

s3.upload_file(Filename, Bucket, Key, ExtraArgs)

Listing 12.58-2: Upload a file

Parameters:
* Filename (str) -- The path to the file to upload.
* Bucket (str) -- The name of the bucket to upload to.
* Key (str) -- The name of the key to upload to.

* ExtraArgs (dict) -- Extra arguments that may be passed to the client
operation.

12.8.1.2 Generate a pre-signed URL

A pre-signed S3 URLs provides a secure, temporary access to objects in a S3 bucket.
It provide temporary read access to the pictures stored in the bucket. It is obtained
by means of the function generate presigned_url[110]. The Listing 12.8-3 shows how
to generate a pre-signed S3 URL that will allow the GetObject API call on the
object:

url = s3.generate_presigned_url(
'get_object',
Params = {
'Bucket': 'bucket-name’,
'Key': 'picture-name'
}7
ExpiresIn = 3600

)

Listing 12.8-3: Generate a presigned URL to return to the
client

70

Politecnico di Torino TULA Ana Laura

12.9 Proposed Solution

The proposed solution is to add a Camera Service backend to the already existing
iXemWine backend, where each maintain a separate environment, dependencies and
database.

The environment for the Camera Service includes the tools discussed in this chapter:
Flask, SQLAlchemy, AWS CLI and Boto3.

The only thing they share is the secret keys in order to decode and verify the users.
The iXemWine backend will still work as the default Authentication server for the

clients.
D 5
=

iXemWine
Backend

Camera Service

Secret

Env Env

Illustration 12.9.1: Proposed Solution for
Cloud Image System

71

Politecnico di Torino TULA Ana Laura

13 Conclusion

The thesis engaged in creating a mobile application to allow the users to visualize the
vineyard data in a meaningful way structuring the application using lists, seeing
positions in the map, their sensors data in charts and pictures.

Firstly, the background for the project was examined, including important
JavaScript and React concepts. The new acquired knowledge of React Native for the
project was then described.

The application was implemented with the aim of being reusable, in the sense that
developing a version for iOS would not require having to do major changes.

Regarding the second part, for the camera service some web concepts regarding
Flask, SQLAlchemy and some Python were needed, because of the Boto3. The use of
Amazon Web Services required some time to learn.

Overall it was a positive experience throughout the development of the application,
it required a lot of new knowledge specially tools like Redux that have a learning
curve and added some complexity.

13.1 Future work

It was covered only that which was of relevant to the app originally set out to create.
Of course there are features that can be added in the future, for example:

* Having an iOS version of the application
* Create a notification system and set up remote push notifications

* Allow to to change other user’s preference like theme

72

Politecnico di Torino TULA Ana Laura

14 References

1] IoT Definition. https://en.wikipedia.org/wiki/Internet_of things

2] WSN Definitions and its applications.
https://www.elprocus.com/introduction-to-wireless-sensor-networks-types-and-

applications/
3] iXemWine. https://ixem.wine/
[4] React Native. https://facebook.github.io/react-native/
5] JavaScript. https://www.javascript.com/
6] iOS. Apple’s mobile operating system. https://developer.apple.com /ios/

[7] Android. Google’s mobile operating system. https://www.android.com/
8] LPWAN Definition. https://en.wikipedia.org/wiki/TLPWAN

[9] TCP/IP Protocol Suite.
https://en.wikipedia.org/wiki/Internet_protocol suite

[10] Python. https://www.python.org/

[11] MQTT Protocol. http://mqtt.org/

[12] Restful Software Architecture.
https://en.wikipedia.org/wiki/Representational state_transfer

[13] API definition.
https://en.wikipedia.or

[14] HTTP. https://www.w3.org/Protocols/HTTP/1.1/rfc2616bis/draft-lafon-
rfc2616bis-03.html

[15] Objective-C.https://developer.apple.com/library/archive/documentation

Cocoa/Conceptual /ProgrammingWithObjectiveC/Introduction /

Introduction.html

[16] Swift. https://docs.swift.org/

[17] Java. https://www.java.com/

[18] Kotlin. https://kotlinlang.org/

73

https://kotlinlang.org/
https://www.java.com/
https://docs.swift.org/swift-book/
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://www.w3.org/Protocols/HTTP/1.1/rfc2616bis/draft-lafon-rfc2616bis-03.html
https://www.w3.org/Protocols/HTTP/1.1/rfc2616bis/draft-lafon-rfc2616bis-03.html
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Representational_state_transfer
http://mqtt.org/
https://www.python.org/
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/LPWAN
https://www.android.com/
https://developer.apple.com/ios/
https://www.javascript.com/
https://facebook.github.io/react-native/
https://ixem.wine/
https://www.elprocus.com/introduction-to-wireless-sensor-networks-types-and-applications/
https://www.elprocus.com/introduction-to-wireless-sensor-networks-types-and-applications/
https://en.wikipedia.org/wiki/Internet_of_things

Politecnico di Torino TULA Ana Laura

[19] PhoneGap. https://phonegap.com/

[20] Apache Cordova. https://cordova.apache.org/

[21] Tonic. https://ionicframework.com/

[22] Google Chrome. https://www.google.com/chrome/
[23] Node.js. https://nodejs.org/

[24] V8 JavaScript Engine. https://v8.dev/

[25] Morzilla Firefox. https://www.mozilla.org/en-US /firefox /
[26] SpiderMonkey.

https://developer.mozilla.org/en-US /docs/Movzilla/Projects /SpiderMonke
[27] Safari. https://www.apple.com/lae/safari/

[28] JavaScriptCore.
https://developer.apple.com/documentation /javascriptcore

[29] Microsoft Edge. https://www.microsoft.com/en-us/windows/microsoft-
edge

[30] Internet Explorer. https://www.microsoft.com/en-us/download/internet-
explorer.aspx

[31] Chakra. https://github.com/Microsoft/ChakraCore

[32] ECMAScript® 2015 Language Specification. https://www.ecma-

international.org/ecma-262/6.0/
[33] Kangax. https://kangax.github.io/
[34] ES6 compatibility table. https://kangax.github.io/compat-table/es6/
[35] Babel. https://babeljs.io/

[36] React. https://reactjs.org/

[37] JSX. https://reactjs.org/docs/introducing-jsx.html

[38] SVG. https://www.w3.org/TR/SVG2/

[39] Apache. https://httpd.apache.org/
[40] PHP. https://php.net/
[41] Metro. https://facebook.github.io/metro/

74

https://facebook.github.io/metro/
https://php.net/
https://httpd.apache.org/
https://www.w3.org/TR/SVG2/
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/
https://babeljs.io/
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/
https://www.ecma-international.org/ecma-262/6.0/
https://www.ecma-international.org/ecma-262/6.0/
https://github.com/Microsoft/ChakraCore
https://www.microsoft.com/en-us/download/internet-explorer.aspx
https://www.microsoft.com/en-us/download/internet-explorer.aspx
https://www.microsoft.com/en-us/windows/microsoft-edge
https://www.microsoft.com/en-us/windows/microsoft-edge
https://developer.apple.com/documentation/javascriptcore
https://www.apple.com/lae/safari/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://www.mozilla.org/en-US/firefox/
https://v8.dev/
https://nodejs.org/
https://www.google.com/chrome/
https://ionicframework.com/
https://cordova.apache.org/
https://phonegap.com/

Politecnico di Torino TULA Ana Laura

[42] WebSocket.
https://developer.mozilla.org/en-US /docs/Web /API/WebSocket

[43] jest-haste-map.
https://github.com /facebook/jest /tree /master /packages/jest-haste-ma

[44] Jest. https://jestjs.io/

[45] Watchman. https://facebook.github.io/watchman/

[46] fs.watch. https://nodejs.org/docs/latest /api/fs.html

[47] DOM. Document Object Model (DOM) Technical Reports.
https://www.w3.org/DOM/DOMTR

[48] Harvard University.(2018). Mobile App Development with React Native.
Produced by Jordan Hayashi and David J. Malan.
https://cs50.github.io/mobile

[49] React lifecycle methods diagram. http://projects.wojtekmaj.pl/react-
lifecycle-methods-diagram /

[50] Refs and the DOM. https://reactjs.org/docs/refs-and-the-dom.html

[51] High Order Component. https://reactjs.org/docs/higher-order-
components.html

[52] Reconciliation. https://reactjs.org/docs/reconciliation.html

[53] React Native: What it is and how it works. https://medium.com/we-talk-
it /react-native-what-it-is-and-how-it-works-e2182d008f5e

[54] FlatList. https://facebook.github.io/react-native/docs/flatlist.html

[55] SectionList. https://facebook.github.io/react-native/docs/sectionlist.html

[56] NPM. Node Packager Manager. https://www.npmjs.com/

[57] Flow. https://flow.org/en/docs/react/
[58] GIT. Open Source Distributed Version Control System. https://git-
scm.com/

[59] Yarn. Fast, reliable, and secure dependency management.
https://varnpkg.com

[60] SVG. https://www.w3.org/Graphics/SVG

75

https://www.w3.org/Graphics/SVG/
https://yarnpkg.com/
https://git-scm.com/
https://git-scm.com/
https://flow.org/en/docs/react/
https://www.npmjs.com/
https://facebook.github.io/react-native/docs/sectionlist.html
https://facebook.github.io/react-native/docs/flatlist.html
https://medium.com/we-talk-it/react-native-what-it-is-and-how-it-works-e2182d008f5e
https://medium.com/we-talk-it/react-native-what-it-is-and-how-it-works-e2182d008f5e
https://reactjs.org/docs/reconciliation.html
https://reactjs.org/docs/higher-order-components.html
https://reactjs.org/docs/higher-order-components.html
https://reactjs.org/docs/refs-and-the-dom.html
http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/
http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/
https://cs50.github.io/mobile/
https://www.w3.org/DOM/DOMTR
https://nodejs.org/docs/latest/api/fs.html
https://facebook.github.io/watchman/
https://jestjs.io/
https://github.com/facebook/jest/tree/master/packages/jest-haste-map
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket

Politecnico di Torino TULA Ana Laura

[61] React-Native-SVG. https://github.com/react-native-community/react-
native-svg

[62] Svg-path-properties. https://github.com/rveciana/svg-path-properties
[63] D3. Data-Driven Document. https://d3js.org/

[64] D3-scale. https://github.com/d3/d3-scale

[65] D3-shape . https://github.com/d3/d3-shape

[66] D3-array. https://github.com/d3/d3-array

[67] KeyboardAvoidingView.
https: //facebook.github.io /react-native/docs/kevboardavoidingview#behavior

[68] Keyboard events. https://facebook.github.io/react-native/docs/keyboard

[69] Dimensions. https://facebook.github.io/react-native/docs/dimensions.html

[70] Dew Point Concept. https://en.wikipedia.org/wiki/Dew_point

[71] Victory Native. https://github.com/FormidableLabs/victory-native

[72] Victory Native performance issue.
https://github.com/FormidableLabs/victory-native/issues/369

[73] React-native-maps. https://github.com/react-native-community/react-

native-maps

[74] React-native-maps-super-cluster. https://github.com/novalabio/react-

native-maps-super-cluster
[75] i18n Translations for Javascript. https://github.com/fnando/i18n-js
[76] React Navigation. https://reactnavigation.org/
[77] React-native-community. https://github.com/react-native-communit
[78] Flux, https://facebook.github.io/flux/

[79] Redux, https://redux.js.org/

[80] Redux, Getting Started with Redux,
https://redux.js.org/introduction /getting-started

[81] Combine Reducers. https://redux.js.org/api/combinereducers
[82] Create Store. https://redux.js.org/api/createstore

76

https://redux.js.org/api/createstore
https://redux.js.org/api/combinereducers
https://redux.js.org/introduction/getting-started
https://redux.js.org/
https://facebook.github.io/flux/
https://github.com/react-native-community
https://reactnavigation.org/
https://github.com/fnando/i18n-js
https://github.com/novalabio/react-native-maps-super-cluster
https://github.com/novalabio/react-native-maps-super-cluster
https://github.com/react-native-community/react-native-maps
https://github.com/react-native-community/react-native-maps
https://github.com/FormidableLabs/victory-native/issues/369
https://github.com/FormidableLabs/victory-native
https://en.wikipedia.org/wiki/Dew_point
https://facebook.github.io/react-native/docs/dimensions.html
https://facebook.github.io/react-native/docs/keyboard
https://facebook.github.io/react-native/docs/keyboardavoidingview#behavior
https://github.com/d3/d3-array
https://github.com/d3/d3-shape
https://github.com/d3/d3-scale
https://d3js.org/
https://github.com/rveciana/svg-path-properties
https://github.com/react-native-community/react-native-svg
https://github.com/react-native-community/react-native-svg

Politecnico di Torino TULA Ana Laura

[83] React-redux, Official React bindings for Redux. https://react-

redux.js.org/

[84] Redux Middleware, https://redux.js.org/advanced /middleware

[85] Redux Thunk. https://github.com /reduxjs/redux-thunk

[86] What is a thunk?. https://github.com/reduxjs/redux-thunk#whats-a-
thunk

[87] Redux-persist, https://github.com /rt2zz/redux-persist

[88] The Definitive Guide to Redux Persist,
https://blog.reactnativecoach.com /the-definitive-
84738167975

[89] Normalizing State Shape. https://redux.js.org/recipes/structuring-
reducers/normalizing-state-shape

[90] React Native. Network: fetch and async/await.
https:/ /facebook.github.io /react-native /docs/network

[91] JSON Web Tokens. https://jwt.io/

[92] Image for token based authentication. https://stormpath.com/blog/token-
authentication-scalable-user-mgmt

[93] Jwt-decode library. https://github.com/auth0/jwt-decode

[94] Moment.js Documentation. https://momentjs.com/docs/

[95] ISO 8601. https://en.wikipedia.org/wiki/ISO_8601

[96] RFC 2822 Date Time Format.
https://tools.ietf.org /html/rfc2822#section-3.3

[97] Date object.
https://developer.mozilla.org/en/docs/Web/JavaScript /Reference/Global _Obj

ects/Date

98] UTC. https://en.wikipedia.org/wiki/Coordinated_Universal Time

[99] Moment Timezone. https://momentjs.com/timezone/

[100] Generating a signed APK.
https:/ /facebook.github.io /react-native/docs/signed-apk-android

[101] Cloud vs In-house-servers. https://sysgen.ca/cloud-vs-in-house-servers/

(s

https://sysgen.ca/cloud-vs-in-house-servers/
https://facebook.github.io/react-native/docs/signed-apk-android
https://momentjs.com/timezone/
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date
https://tools.ietf.org/html/rfc2822#section-3.3
https://en.wikipedia.org/wiki/ISO_8601
https://momentjs.com/docs/
https://github.com/auth0/jwt-decode
https://stormpath.com/blog/token-authentication-scalable-user-mgmt
https://stormpath.com/blog/token-authentication-scalable-user-mgmt
https://jwt.io/
https://facebook.github.io/react-native/docs/network
https://redux.js.org/recipes/structuring-reducers/normalizing-state-shape
https://redux.js.org/recipes/structuring-reducers/normalizing-state-shape
https://blog.reactnativecoach.com/the-definitive-guide-to-redux-persist-84738167975
https://blog.reactnativecoach.com/the-definitive-guide-to-redux-persist-84738167975
https://github.com/rt2zz/redux-persist
https://github.com/reduxjs/redux-thunk#whats-a-thunk
https://github.com/reduxjs/redux-thunk#whats-a-thunk
https://github.com/reduxjs/redux-thunk
https://redux.js.org/advanced/middleware
https://react-redux.js.org/
https://react-redux.js.org/

Politecnico di Torino TULA Ana Laura

[102] Amazon Simple Storage Service (Amazon S3).

https://aws.amazon.com/s3

[103] Flask. http://flask.pocoo.org/
[104] SQL Alchemy. https://www.sqlalchemy.org/
[105] AWS-CLI. https://docs.aws.amazon.com/cli/index.html

[106] Boto 3 documentation. https://boto3d.amazonaws.com/vl/documentation/
api/latest /index.html#

[107] Pip. Package-management System. https://pypi.org/project/pip/

[108] Boto3 S3 client.
https://boto3.amazonaws.com/v1/documentation /api/latest /reference

services/s3.html#id201

[109] Boto3 upload_file function.
https://boto3d.amazonaws.com/v1 /documentation/api/latest /reference

services/s3.html#S3.Client.upload_file

[110] Boto3 generate-presigned_url.
https://boto3.amazonaws.com /vl /documentation /api/latest /reference

services/s3.html#S3.Client.generate_presigned_url

78

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.generate_presigned_url
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.generate_presigned_url
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.upload_file
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.upload_file
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#id201
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#id201
https://pypi.org/project/pip/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/cli/index.html
https://www.sqlalchemy.org/
http://flask.pocoo.org/
https://aws.amazon.com/s3/

	1 Introduction
	1.1 Introduction
	1.2 Thesis Goals
	1.3 General overview of the iXemWine Platform

	2 Cross-platform vs Native
	2.1 Native
	Benefits
	Drawbacks

	2.2 Cross-platform
	Drawbacks
	Benefits

	3 Javascript
	3.1 ECMAScript
	3.2 Transpilers
	3.3 Polyfill
	3.4 Modules
	3.5 Bundling
	3.6 Minification
	3.7 JavaScript environments
	3.7.1 Node

	3.8 Metro
	3.8.1 The Journey to a Bundle

	4 React
	4.1 The DOM
	4.2 React
	4.2.1 Component
	4.2.2 Component Lifecycle
	Mount
	Update
	Unmount

	4.2.3 Refs
	Creating Refs
	Accessing Refs

	4.2.4 Higher-Order Components
	4.2.5 Reconciliation

	5 React Native
	5.1 Internals
	5.1.1 Threading Model
	5.1.2 Bridge
	5.1.3 JavaScript Environment
	5.1.4 JavaScript Syntax Transformers and Pollyfills

	5.2 Differences with React Web
	5.3 Components and APIs
	5.3.1 Basic Components
	5.3.2 User Interface
	5.3.3 List Views
	5.3.3.1 FlatList
	5.3.3.2 SectionList

	5.3.4 iOS/Android specific
	5.3.5 Others
	5.3.5.1 Animated
	Interpolation
	Handling gestures and other events

	5.3.6 Style
	5.3.7 Direct Manipulation
	5.3.8 Installation
	5.3.8.1 Dependencies

	5.3.9 React Native CLI Commands
	5.3.10 The CLI
	5.3.11 Debugging
	5.3.12 Linking libraries

	6 Data Visualization
	6.1 Scalable Vector Graphics (SVG)
	6.2 D3.js
	6.2.1 D3-scales
	6.2.2 D3-shape
	6.2.3 D3-array

	7 Implementation
	7.1 Actors of the system
	7.2 Functionality
	7.2.1 Authenticate
	7.2.2 Visualize the list of Vineyards
	7.2.3 Visualize the Nodes and Cameras inside a Vineyard
	7.2.4 Visualize the Sensors data in Charts
	7.2.5 Visualize the pictures taken by a Camera
	7.2.6 Search for vineyards in the Community
	7.2.7 Edit preferences ans see the profile

	8 Application Navigation
	8.1 React Navigation
	8.1.1 Navigator
	8.1.2 Authentication flow
	8.1.3 App containers
	8.1.4 Navigation Prop
	8.1.5 Passing parameters to routes
	8.1.6 Handling state
	8.1.7 Navigation lifecycle
	8.1.8 Application navigation

	9 Application State
	9.1 Flux
	9.2 Redux
	9.2.1 Combining Reducers
	9.2.2 React-redux
	9.2.3 Async Requests
	9.2.4 Redux Thunk
	9.2.5 Persisting State
	9.2.6 Application State

	10 Web Services
	10.1.1 Promises:
	10.1.2 Async/Await
	10.1.3 JSON Web Token
	10.1.4 Moment
	10.1.5 Data Transformations

	11 Deploy
	11.1 Generating Signed APK
	11.2 Generate the release APK

	12 Image Cloud Storage
	12.1 Own cloud infrastructure(In-house-servers)
	12.2 Amazon cloud service
	12.3 Functionalities to provide
	12.3.1 Authentication

	12.4 Flask
	Routing
	HTTP methods
	The Response object

	12.5 SQLAlchemy
	12.6 Amazon Simple Storage Service
	12.7 AWS Command Line Interface
	12.8 Boto3
	Creating Clients
	12.8.1.1 Upload a File
	12.8.1.2 Generate a pre-signed URL

	12.9 Proposed Solution

	13 Conclusion
	13.1 Future work

	14 References

