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Abstract

Cryptocurrency markets are highly volatile due to their lack of regulation and their always-
open nature. This gives rise to the need to develop systems that can help investors limit
the risks and improve the gains from the market, particularly in a downward trend. More-
over, due to the volatility of the market, it is very important for traders to act on trade
signals as soon as possible, which further increases the need to an automatic system. A
system was developed that analyses data from one of the biggest cryptocurrency exchanges
by transactions and simulates a trader’s transactions on the exchange. The system devel-
oped finds the optimal set of parameters needed to increase the return on investment for
a trader.

Keywords:— cryptocurrencies, bitcoin, litecoin, etherum, finance, machine learning, data min-
ing, trading, technical analysis, automatic trading system, financial data mining, high return
investment.
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Chapter 1

Introduction

1.1 Overview
Cryptocurrency markets are very volatile due to being an always-open market; as such it is
very difficult for traders to follow the markets 24/7 to trade profitably. This increases the
importance of an automatic trading system that can react in a timely manner to market
changes and reduce any losses incurred. This became more evident after the Bitcoin (BTC)
market crash in December 2017.

In this thesis, a system of simple automatic trading was developed to outperform the
market; that is to have higher return on investment (ROI) with respect to a simple buy-
hold-sell strategy. The system was enhanced using machine learning techniques to predict
certain actions given different cryptocurrencies and market conditions.

The proposed solution consists of finding an optimal artificial intelligence classification
model that is trained on a subset of the data set. Each model is trained to predict a short,
a long or a hold signal class label. The training set consists of features such as the closing
price as a time series or the technical indicators of the time period considered. At the end
of the training, the solution predicts new signals on the test set and then simulates them.
The result of the simulation is the balance of the trading account, which when compared
to its initial amount, the return on investment can be computed. This result is stored for
comparison with other experiments varying the model parameters and features.

The data set was classified into three main classes: long (buy), short (sell), hold (no
action). Moreover, it was aggregated into larger time intervals than the base of 1-minute
granularity. Then the dataset was split into two main groups: training set and test set. The
training set was used for training different machine learning algorithms; such as decision
tree and k-nearest neighbour. While the test set was used to perform the predictions. In
addition to these parameters, the stop loss and take profit constraints were implemented
to limit losses and assure a minimum gain.

Three different feature sets were considered. One set is composed of the most common
technical indicators and a times series of the market volume. Another set consisted of the
closing price as time series as features of the model. And finally, a set with both the closing
price and volume as time series was constructed. These three feature sets were chosen to
test which set would produce the highest returns for the cryptocurrency market considered.
The feature set containing the technical indicators was included as it is typically used for
analysing foreign exchange currencies (FOREX) and commodity futures markets. While
on the other hand, the other two feature sets, consisting of the closing price and the market
volume as time series to be compared to the technical analysis one in this automatic trading
system. All feature sets were then compared to the simple buy-hold-sell strategy that they
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1 – Introduction

exceeded.
Five main artificial learning algorithms were chosen to classify the data: k-nearest

neighbour (kNN), decision tree (DT), random forest (RF), stochastic gradient descent
(SGD), and passive aggressive (PA) classifiers. For each model, a subset of parameters
were selected to be optimised.

A grid search was performed to evaluate the different parameters’ importance. The grid
explored consisted of about 70K experiments, which required that the grid be parallelised
to speed up the process. The results of the grid search were analysed by choosing a model
that produces the highest ROI for the different cryptocurrencies considered and for different
thresholds.

1.2 Related work
Financial data mining entails two main approaches: time-series data mining and the use
of technical analysis. Both approaches consider the past values of the securities analysed
with the main difference being the time-series one directly using the values of the previ-
ous market price while the technical analysis one performs processing on the input data.
Traders wanting to invest in cryptocurrencies should prefer investing for short periods due
to cryptocurrency’s high market volatility. (Abrol et al., 2016)

In Baralis et al. (2017), the authors describe a system that analyses the historical stock
data to find the best stocks for intraday trading, while this is important for a trader, in
this work only a single security was considered.

The technical analysis techniques that were used for this work, followed similar features
described by Teixeira and de Oliveira (2010) and Chen and Hao (2017) with the parame-
ters’ inputs adjusted to the ones used to analyse futures and commodity markets, as per
(Murphy, 1999, pp. 200-260). Moreover, the trading model implemented stop loss and take
profit limits with the take profit an optional limit, similarly to Teixeira and de Oliveira
(2010).

Many artificial intelligence models have been used to address stock financial markets
such as IF-THEN rules (Dymova et al., 2016, Kim et al., 2017), artificial neural networks
(Chang et al., 2009, Kara et al., 2011, Mostafa, 2010), decision trees (Chang et al., 2011,
Wang and Chan, 2006), support vector machines (Żbikowski, 2015), and random forest
(Laborda and Laborda, 2017, Patel et al., 2015). Moreover, some have explored the use of
ensemble learning (Kwon and Moon, 2007, Pulido et al., 2014, Tsai et al., 2011), however,
they mostly focused on neural networks or genetic algorithms. In this work other ensem-
ble methods have been explored, such as the stochastic gradient descent and the passive
aggressive algorithms.

While these research papers are able to obtain high return in the stock markets us-
ing technical indicators, this research considers both time-series and technical analysis to
address the cryptocurrency markets, which behave differently from stock or forex mar-
kets. Also apart from Dymova et al., few others have considered the currency markets
(FOREX).
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Chapter 2

Data model

In order to implement the system, the input data set must be processed first to obtain the
output necessary for our results; specifically, the return on investment. In this chapter the
assumptions, limitations and the processing of the input data are described. Initially the
raw data must be discretised into the three classes that the machine learning algorithms
will use for the training and prediction. Moreover, these models are combined with different
features that are better described in section 2.4.

2.1 Data collection
Datasets are collected using Coinbase’s API in JSON and stored in comma-separated value
(CSV) file format. The fields mentioned in section 2.1.2 are divided into columns and each
minute of granularity represents a row. When data aggregation is necessary, like in section
2.1.4, they are performed on-the-fly and as such they are not stored in files. This allows
for multiple different granularities to be used in parallel without the need to precompute
these combinations in advance.

2.1.1 Inputs
This work analyses the cryptocurrencies Bitcoin (BTC), Litecoin (LTC), Etherum (ETH)
and Bitcoin Cash (BCH) paired with the United States Dollar (USD) and the Euro fiat
currencies.

2.1.2 Data sources
Data was collected from Coinbase Pro’s (formally GDAX) servers using only historic data
with minimum granularity of 1 minute. The attributes collected:

• time

• close price

• open price

• volume

• high price

• low price

An example input data set looks like:

time low high open close volume
1 2018-03-20 12:36:00 6935.02 6935.03 6935.03 6935.03 1.67

3



2 – Data model

time low high open close volume
2 2018-03-20 12:37:00 6935.03 6935.03 6935.03 6935.03 0.27
3 2018-03-20 12:38:00 6935.02 6935.03 6935.02 6935.03 0.30
4 2018-03-20 12:39:00 6935.03 6935.04 6935.03 6935.04 0.05
5 2018-03-20 12:40:00 6935.04 6939.19 6935.04 6939.19 0.47
6 2018-03-20 12:41:00 6939.37 6939.38 6939.37 6939.38 0.68
7 2018-03-20 12:42:00 6939.37 6939.38 6939.38 6939.38 0.61
8 2018-03-20 12:43:00 6939.38 6945.00 6939.38 6941.07 1.41
9 2018-03-20 12:44:00 6941.07 6946.60 6941.07 6944.97 4.01
10 2018-03-20 12:45:00 6944.89 6948.00 6944.89 6948.00 2.03

Table 2.1: Example input data set

2.1.3 Data updating and cleaning
Coinbase’s API does not provide data for time periods when no trade occurs on the ex-
change (Coinbase will return an empty data set). These missing timestamps from the data
set are addressed by inserting them with not a number (NaNs) values. This ensures that
when aggregating the data sets the computations are correctly processed.

Moreover, in order to use recent data from Coinbase, it was necessary to update the
data files every so often. This ensures that the data that has already been collected is up
to date, but also that this data does not contain missing data points from network issues
or temporary API failures.

2.1.4 Aggregation
Data is grouped by a given granularity g by performing the following actions on the col-
lected attribute:

• time of the granularity: first time value in group

• close price: last closing price in group

• open price: first opening price in group

• volume: sum of all market volume values in group

• high price: maximum of all high prices in group

• low price: minimum of all low prices in group

An example of the aggregated data set with granularity set to 15 minutes for the pair
BTC-EUR looks like:

time low high open close volume
1 2018-03-20 12:00:00 6902.39 6931.17 6931.17 6920.58 22.44
2 2018-03-20 12:15:00 6920.57 6928.38 6920.57 6924.21 11.67
3 2018-03-20 12:30:00 6924.21 6946.60 6924.21 6944.97 17.41
4 2018-03-20 12:45:00 6944.89 7015.40 6944.89 6970.35 127.61
5 2018-03-20 13:00:00 6960.47 6993.10 6970.01 6985.46 48.93
6 2018-03-20 13:15:00 6931.28 6985.47 6985.47 6932.00 81.01
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time low high open close volume
7 2018-03-20 13:30:00 6931.38 6968.22 6932.00 6964.37 28.05
8 2018-03-20 13:45:00 6910.00 6964.36 6964.36 6910.44 27.79
9 2018-03-20 14:00:00 6920.00 6945.99 6921.86 6943.50 15.66
10 2018-03-20 14:15:00 6913.99 6943.00 6943.00 6931.79 17.30

Table 2.2: Example aggregated data set

2.2 Limitations and training and test sets
To simplify the model and taking into account the limitations of trading on the Coinbase
market, some considerations must be taken to account. The limits are taken into account
when preprocessing the signals for the simulation in section 3.2.

Trade size limitation The trade size of each action is set to 0.1 of the cryptocurrency
considered. This is a simplification as Coinbase does not provide historic data on the order
book and as such we cannot consider the spread for generating an appropriate trade size.

Volume limit protections In order to minimise the impact of the system on the market,
the system checks whether the transaction to be performed exceeds 10% of the current
market volume. This is required to reduce the possible effects of having a high trade volume
on the price of the market; in particular this is relevant when predicting future transactions
that should not affect the market. Otherwise evaluating the return on investment and the
computation of the ROI of the simple buy-hold-sell strategy becomes near impossible to
evaluate with low margins of error.

Other assumptions and simplifications The system assumes that the market allows
margin trading; that is having long and short contracts are possible. This assumption was
taken as this would increase the amount of signals generated by the system. Another reason
is due to some exchanges applying to allow for margin trading with regulators, however,
none have been successful so far. (Loder, 2018)

Training and testing sets split The training set is chosen by considering the first 80%
of the entire dataset with the remaining 20% being used for the prediction.

2.3 Discretisation
To classify data and generate the labels needed for the classification machine learning
algorithms, first the percentage change of the closing price is computed to determine the
immediate trend of the market. This was calculated using the following formula:

percf, period(t) = percent_changef,period(t) = ft+period − closet

closet+period
(2.1)

With the period is set to h · g, where h is the horizon in multiples of the granularity
(g) and the time t at which this formula is computed. In other words the percentage
change is computed over the last h · g rows of the input data set. In order to generate
the classes for discretisation, two thresholds are necessary; specifically long_threshold
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and short_threshold. Together they are used to assign values above and below them,
respectively, to discretise the percentage change value generating the two classes for “long"
and “short" signals. While the values of perc(t) not meeting the thresholds are given the
“hold" signal class. Formally this is represented by the following computation:

action(t) =

⎧⎪⎪⎨⎪⎪⎩
perc(t) ≤ short_threshold short

perc(t) ≥ long_threshold long

else hold

(2.2)

action(t) is the label used for training and prediction for the machine learning algo-
rithms.

2.4 Features

2.4.1 Base features
This consists of the open, close, low, high and volume at t = −h · g. That is the values at
the previous horizon.

2.4.2 Time-series based features
These features are the close and/or volume at every granularity set between t = 0 to
t = hist of every training datum. For example, for hist = 5 the following features would
be considered for the close:

• close(t)

• close(t + g)

• close(t + 2 · g)

• close(t + 3 · g)

• close(t + 4 · g)

• close(t + 5 · g) = close(t + hist · g)

That is to say that for a given t and hist we consider the time-series leading to t + hist.
This can be similarly performed for the volume.

2.4.3 Technical analysis features
Technical indicators are based on the hypotheses that “anything that could possibly affect
the price [of a security] is actually reflected in the price of that market," that the price
follows trends, and that previous trends would lead to similar future trends. (Murphy, pp.
2-4) As such by analysing and grouping the price of a security, one could study the market
direction; that is when the market is trending upwards or downwards where traders should
long or short a security, respectively. These indicators are split into two main categories:
trend following and oscillators. Trend following indicators are tools that present a trend
after it has been established in the market, while oscillators help address situations where
the market prices oscillate without any significant trend.

2.4.4 Simple moving average (SMA) features
The simple moving average follows the trend of a market. This is useful as an indicator
to be able to identify significant upward or downward market trends. The simple moving
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average can be computed:

SMAf (period) =
∑︁period

i=0 f(i)
period + 1 (2.3)

with period being a period over which the moving average is computed. A similar
computation can be performed for the volume as well.

2.4.5 Exponentially weighted moving average (EMA) features
Exponentially weighted moving average is another trend-following indicator similar to SMA
that addresses the main pitfalls of an SMA; namely it does not highlight the importance of
recent price changes. Formally, this is calculated by the following formula, which is based
on pandas’ EWM objects:

EWMf (period) =
∑︁period

i=0 w(i) · f(period− i)∑︁period
i=0 wperiod(i)

with

wperiod(i) =
(︃

1− 2
period + 1

)︃i

(2.4)

Where period represents the period over which the mean is computed.

2.4.6 Momentum features
The momentum indicator is an oscillator that measures the speed of price changes in the
market. This is useful in identifying overbought and oversold conditions. Formally, this
can be calculated as follows:

momentumf, period(t) = f(t)− f(t− period) (2.5)

Where period represents the period over which the momentum is computed.

2.4.7 Rate of change (ROC) features
The rate of change is similar to the momentum, however, it normalises the value between
0 and 1. This was implemented using the following:

ROCf, period(t) = f(t)− f(t− period)
f(t− period) (2.6)

With period representing the period over which the ROC is computed.

2.4.8 Relative strength index (RSI) features
The relative strength index is another oscillator similar to the momentum and ROC but
addresses the issues of those indicators being sensitive to sharp changes in the market.
Specifically, it counts the average number of days the market price increased and decreased
and then normalises the value between 0 and 100. Formally, this is computed as follows:

RSIf, period(t) = 100− 100
1 + RSf, period(t)

with

RSf, period(t) =
EWMfup(period)

EWMfdown
(period)

(2.7)
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fup represents the number of times the function f increased, with respect to its previous
value while fdown represents the number of times the f decreased. This can be formally
specified as follows:

fup =
period∑︂

t=0

(︄{︄
f(t)− f(t− 1) > 0 1
f(t)− f(t− 1) < 0 0

)︄
and

fdown =
period∑︂

t=0

(︄{︄
f(t)− f(t− 1) < 0 1
f(t)− f(t− 1) > 0 0

)︄ (2.8)

2.4.9 Moving average convergence/divergence (MACD) features
The MACD indicator is an oscillator that combines the difference between two moving
averages: a slow and a fast one, the moving average of that difference, and a histogram
to help with identifying the divergence between the previous two. This indicator is useful
in identifying market conditions that are about to change. For example when the price
is increasing but the MACD line is decreasing (i.e overbought conditions), the market
conditions will soon reverse (i.e. price will drop). These three sub-features are formally
described below:

MACD

MACD(periodfast, periodslow) = EWMclose(periodfast)− EWMclose(periodslow) (2.9)

The periodfast is typically 12 periods while the periodslow is typically 26 periods.

MACD signal line

MACDsignal(periodsmoothing) = EWMMACD(periodsmoothing) (2.10)

Here the periodsmoothing is usually 9 periods of the MACD value computed previously.

MACD histogram

MACDhistogram(periodfast, periodslow, periodsmoothing)
= MACD(periodfast, periodslow)−MACDsignal(periodsmoothing)

(2.11)

2.4.10 Feature set selection
In order to evaluate which set of features are better at generating higher returns on invest-
ment for the system designed, a combination of the features described earlier were selected
to be confronted with the tested models. Three distinct combinations were chosen.

Feature set 2 The parameters of the technical indicators were chosen similar to the
ones commonly used by traders when analysing future markets, as detailed by Murphy,
ch. 9-10. A sample of these computed features can be seen in table 2.3. Specifically, this
consists of the base features (see section 2.4.1), volume as time-series, and the following
technical analysis features:
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• SMA (see section 2.4.4)

– SMAclose(period=5)
– SMAclose(period=10)
– SMAclose(period=20)

• EMA (see section 2.4.5)

– EWMclose(period=5)
– EWMclose(period=10)
– EWMclose(period=20)

• ROC (see section 2.4.7)

– ROCclose(period=10)

• Momentum (see section 2.4.6)

– momentumclose(period=10)

• RSI (see section 2.4.8)

– RSIclose(period=7)
– RSIclose(period=9)
– RSIclose(period=14)

• MACD (see section 2.4.9)

– MACD(periodshort=12,
periodlong=26,
periodsmoothing=9)

Table 2.3: Example feature set 2

features t = 1 t = 2 t = 3 t = 4 t = 5
open 11 983.38 11 958.79 11 818.18 11 808.04 11 842.86
close 11 958.79 11 820.00 11 808.07 11 842.86 11 802.53
low 11 938.61 11 802.99 11 803.09 11 808.04 11 802.00
high 12 000.00 11 959.68 11 820.00 11 858.00 11 882.96

volume 9.57 14.59 11.69 11.06 10.73
close-5g-sma 12 003.61 11 952.76 11 908.58 11 882.61 11 846.45
close-10g-sma 12 025.05 12 016.23 11 990.50 11 965.78 11 937.60
close-20g-sma 11 945.41 11 941.68 11 943.98 11 950.15 11 949.35
close-5g-ema 11 992.73 11 935.15 11 892.79 11 876.15 11 851.61
close-10g-ema 11 993.78 11 962.15 11 934.12 11 917.52 11 896.60
close-20g-ema 11 962.32 11 948.35 11 934.61 11 925.65 11 913.66

close-7g-rsi 27.80 10.75 10.04 28.34 21.56
close-9g-rsi 34.96 16.49 15.60 29.42 23.78
close-14g-rsi 45.01 28.06 27.05 34.93 30.52
close-10g-roc 0.00 −0.02 −0.02 −0.02 −0.02

close-10g-momentum 15.87 −88.26 −257.30 −247.13 −281.85
close-macd-12g-26g 39.74 24.02 10.55 2.51 −6.86

close-macd-sign-12g-26g 48.90 43.33 36.15 28.93 21.36
close-macd-diff-12g-26g −9.16 −19.31 −25.61 −26.42 −28.21

volume+1 14.59 11.69 11.06 10.73 14.41
volume+2 11.69 11.06 10.73 14.41 14.76
volume+3 11.06 10.73 14.41 14.76 16.03
volume+4 10.73 14.41 14.76 16.03 17.73
volume+5 14.41 14.76 16.03 17.73 11.52
volume+6 14.76 16.03 17.73 11.52 19.22
volume+7 16.03 17.73 11.52 19.22 56.50
volume+8 17.73 11.52 19.22 56.50 38.45
volume+9 11.52 19.22 56.50 38.45 30.21
volume+10 19.22 56.50 38.45 30.21 17.59
volume+11 56.50 38.45 30.21 17.59 16.58
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Table 2.3: Example feature set 2 (continued)

features t = 1 t = 2 t = 3 t = 4 t = 5
volume+12 38.45 30.21 17.59 16.58 17.28
volume+13 30.21 17.59 16.58 17.28 15.98
volume+14 17.59 16.58 17.28 15.98 15.30
volume+15 16.58 17.28 15.98 15.30 27.63

Feature set 7 This consists of the base features (see section 2.4.1) and the closing price
as a time-series (see section 2.4.2). A sample of these features can be seen in table 2.4.

Table 2.4: Example feature set 7

features t = 1 t = 2 t = 3 t = 4 t = 5
open 12 139.01 12 052.14 11 934.99 11 899.41 11 812.00
close 12 052.15 11 935.00 11 899.42 11 812.00 11 755.31
low 12 051.33 11 900.56 11 888.01 11 805.23 11 725.81
high 12 139.01 12 052.14 11 940.00 11 945.00 11 855.35

volume 17.62 30.14 12.14 26.24 20.40
close+1 11 935.00 11 899.42 11 812.00 11 755.31 11 841.48
close+2 11 899.42 11 812.00 11 755.31 11 841.48 11 653.00
close+3 11 812.00 11 755.31 11 841.48 11 653.00 11 611.22
close+4 11 755.31 11 841.48 11 653.00 11 611.22 11 734.66
close+5 11 841.48 11 653.00 11 611.22 11 734.66 11 705.08
close+6 11 653.00 11 611.22 11 734.66 11 705.08 11 705.24
close+7 11 611.22 11 734.66 11 705.08 11 705.24 11 725.12
close+8 11 734.66 11 705.08 11 705.24 11 725.12 11 879.68
close+9 11 705.08 11 705.24 11 725.12 11 879.68 11 976.22
close+10 11 705.24 11 725.12 11 879.68 11 976.22 11 894.64
close+11 11 725.12 11 879.68 11 976.22 11 894.64 11 762.14
close+12 11 879.68 11 976.22 11 894.64 11 762.14 11 719.46
close+13 11 976.22 11 894.64 11 762.14 11 719.46 11 818.49
close+14 11 894.64 11 762.14 11 719.46 11 818.49 11 886.97
close+15 11 762.14 11 719.46 11 818.49 11 886.97 11 910.13

Feature set 8 This consists of the base features (see section 2.4.1), the closing price and
the volume as time-series (see section 2.4.2). A sample of these features can be seen in
table 2.5.

Table 2.5: Example feature set 8

features t = 1 t = 2 t = 3 t = 4 t = 5
open 12 139.01 12 052.14 11 934.99 11 899.41 11 812.00
close 12 052.15 11 935.00 11 899.42 11 812.00 11 755.31
low 12 051.33 11 900.56 11 888.01 11 805.23 11 725.81
high 12 139.01 12 052.14 11 940.00 11 945.00 11 855.35
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Table 2.5: Example feature set 8 (continued)

features t = 1 t = 2 t = 3 t = 4 t = 5
volume 17.62 30.14 12.14 26.24 20.40
close+1 11 935.00 11 899.42 11 812.00 11 755.31 11 841.48
close+2 11 899.42 11 812.00 11 755.31 11 841.48 11 653.00
close+3 11 812.00 11 755.31 11 841.48 11 653.00 11 611.22
close+4 11 755.31 11 841.48 11 653.00 11 611.22 11 734.66
close+5 11 841.48 11 653.00 11 611.22 11 734.66 11 705.08
close+6 11 653.00 11 611.22 11 734.66 11 705.08 11 705.24
close+7 11 611.22 11 734.66 11 705.08 11 705.24 11 725.12
close+8 11 734.66 11 705.08 11 705.24 11 725.12 11 879.68
close+9 11 705.08 11 705.24 11 725.12 11 879.68 11 976.22
close+10 11 705.24 11 725.12 11 879.68 11 976.22 11 894.64
close+11 11 725.12 11 879.68 11 976.22 11 894.64 11 762.14
close+12 11 879.68 11 976.22 11 894.64 11 762.14 11 719.46
close+13 11 976.22 11 894.64 11 762.14 11 719.46 11 818.49
close+14 11 894.64 11 762.14 11 719.46 11 818.49 11 886.97
close+15 11 762.14 11 719.46 11 818.49 11 886.97 11 910.13
volume+1 30.14 12.14 26.24 20.40 32.31
volume+2 12.14 26.24 20.40 32.31 24.95
volume+3 26.24 20.40 32.31 24.95 14.96
volume+4 20.40 32.31 24.95 14.96 11.95
volume+5 32.31 24.95 14.96 11.95 12.98
volume+6 24.95 14.96 11.95 12.98 26.59
volume+7 14.96 11.95 12.98 26.59 10.42
volume+8 11.95 12.98 26.59 10.42 11.81
volume+9 12.98 26.59 10.42 11.81 13.09
volume+10 26.59 10.42 11.81 13.09 11.62
volume+11 10.42 11.81 13.09 11.62 6.53
volume+12 11.81 13.09 11.62 6.53 4.04
volume+13 13.09 11.62 6.53 4.04 1.46
volume+14 11.62 6.53 4.04 1.46 4.61
volume+15 6.53 4.04 1.46 4.61 5.70
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Chapter 3

Portfolio simulation algorithm

After generating the test set using the data model described in chapter 2, the signals
produced by each machine learning algorithms are simulated by acting on every signal;
that is a short signal generates a short transaction, and for a long signal generates a long
transaction. Before simulation can occur, however, some preprocessing of the raw signals
must be performed to ensure the limits discussed previously in section 2.2.

3.1 Background

3.1.1 Implementation and technologies
Programming language choice and libraries Python was chosen due to being a
powerful programming language that is enriched with the multitude of libraries to support
different aspects and necessities. Such as Pandas, Numpy, and SciKit. Moreover multi-
threading can be easily leveraged due to Python’s convenient APIs. Each simulation was
run in parallel using different threads, which have their results stored in the database.

Database For storing the results of each experiment a SQLite database was used to
handle the locking, specifically for some of its ACID (Atomicity, Consistency, Isolation,
Durability) properties, and its portability so that the grid search can be run remotely.

3.1.2 Machine learning algorithms
Five main machine learning algorithms where considered. These algorithms’ parameters
were varied and is shown in the grid parameters list, in section 4.1.2.

K-Nearest Neighbour (kNN) is a pattern recognition classification algorithm which
limits the classification with a rejection factor k. It is useful when a data point is within the
range of two or more different classes; including this rejection factor will limit the possible
classes the label can take. (Hellman, 1970) The k value is the only parameter that was
varied in the grid search performed, the values tested are presented in section 4.1.2.

Decision Tree is a classifier that represents a set of actions with their results into a tree-
like structure; taking into account random events, cost and utility. They provide a set of
rules that can clearly represent the data set. The main metrics parameters (defined by the
criterion parameter) tested were the gini impurity and the information gain (i.e. entropy).
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3 – Portfolio simulation algorithm

The gini impurity uses the Classification and Regression Trees (CART) algorithm (Breiman
et al., 1984), while the information gain is used by the ID4.5 algorithm. (Quinlan, 1992)

Random Forest are an ensemble method for classification that improves upon deci-
sion trees’ overfitting issue by randomly setting the predictors of each tree of the forest.
(Breiman, 2001) The implementation used, diverges from the original publication by aver-
aging the probabilistic predictions of each class [21]. The estimators parameter represents
the number of trees in the forest, which was varied as shown in section 4.1.2.

Stochastic Gradient Descent (SGD) is an iterative algorithm for optimising a model
with each iteration improving on the previously obtained result. Three main types of
models were tested: linear models (i.e. support vector machines; “hinge" loss function),
logistic regression (i.e. “log" loss function), and smoothed logistic regression (i.e. “modi-
fied_huber" loss function). (Zhang, 2004) In addition to the base model, the regularisation
multiple “alpha" that is used to update the learning rate of each iteration was varied as
described in section 4.1.2.

Passive Aggressive it is an iterative linear algorithm similar to the linear SGD, however
it is faster to train with a regularisation parameter C and the stopping criterion (i.e.
tolerance), which were varied as per section 4.1.2. Moreover, the loss function used is
described by the PA-I algorithm. (Crammer et al., 2006)

3.1.3 Challenges with using Coinbase
Multiple issues were faced with the Coinbase ecosystem while developing this work. Mainly
the API to retrieve the raw data sets was not reliable, for example it did not always behave
as described in the documentation. Also, it changed multiple times without much advance
notice. This was compounded with the rebranding of the exchange from GDAX to Coinbase
Pro, where the original API endpoints stopped working soon after the announcement.
Another issue faced was the unclear method used by Coinbase to evaluate commissions
due. For example, initially the commissions were based on whether the transaction goes on
the order book or whether it was executed directly on the exchange. This was also modified
during the research to a fixed value, which helped simplify the model for simulation.

3.2 Preprocessing
Before simulating the transactions in the test set, some checks and protections must be
employed. Particularly, the balance and volume limits must not be exceeded. In addition
a stop loss should be applied to make sure that the system does not continue trading
when a certain transaction loses more than a certain limit. For example, if the value of a
“long" transaction goes below a certain threshold then this transaction must be closed as to
minimise risks. Optionally, a take profit criterion can be defined as being the complement
of the stop loss; that is transactions will be closed to guarantee a minimum gain on a
transaction.

3.2.1 Balance and volume checks
For every step of the simulation the balance is verified to be above zero; if less or equal
to zero the signal is replaced with a “hold" signal as this cannot be simulated (i.e. no
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trade occurs). Moreover, when the trade_size does not meet the volume limits discussed
in section 2.2 for “short" and “long" signals are replaced with “hold" signals.

3.2.2 Stop loss criterion
This is needed to prevent the system from keeping a transaction that has lost a significant
amount of its value.

Long signals Inject a “short” signal into the list of actions if the following condition is
met:

close(t) ≤ stop_loss · (1− close(t)) (3.1)

That is when the close(t) value goes below the stop loss (as a percentage) of the closing
price of the long position we generate a short signal.

Short signals Inject a “long” signal into the list of actions if the following condition is
met:

close(t) ≥ stop_loss · (1 + close(t)) (3.2)

That is when the close(t) value goes above the stop loss (as a percentage) of the closing
price of the short position we generate a long signal.

3.2.3 Take profit criterion
As a complement to the stop loss criterion discussed earlier in section 3.2.2 with the main
difference being that this criterion assures a minimum gain on a transaction as a precau-
tionary measure. For example, the system might be too slow in acting on transactions and
as such it is opportune to protect every transaction when trading in a volatile market.

Long signals Inject a “short” signal into the list of actions if the following condition is
met:

close(t) ≥ take_profit · (1 + close(t)) (3.3)

That is when the ticker(t) value goes above the take profit (as a percentage) of the
closing price of the long position we generate a short signal.

Short signals Inject a “long” signal into the list of actions if the following condition is
met:

close(t) ≤ take_profit · (1− close(t)) (3.4)

That is when the close(t) value goes below the take profit (as a percentage) of the
closing price of the short position we generate a long signal.

3.3 Simulation
Hold signals If a transaction has the “hold" signal class, then it is skipped. This helps
speed up the simulation and adhere to the limitations of the system.
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Short signals Check if a “long” position is open before the time of this “short” action.
If at least one is found, close this position (if same trade size otherwise partially close or
close multiple open “long” positions). If no open “long” positions are found, then open a
new “short” position.

Long signals Check if a “short” position is open before the time of this “long” action.
If at least one is found, close this position (if same trade size otherwise partially close or
close multiple open “short” positions). If no open “short” positions are found, then open
a new “long” position.

3.3.1 Commissions
In a market that allows for margin trading, two fees exist: one for the transaction and
one when “borrowing" from the exchange. For example, in the case of a short margin
transaction, the trader needs to borrow the security from the exchange; while in the case
of long margins, the trader does not borrow. This discrepancy between the two types
of transactions complicates the proper calculation of the commissions due and is highly
dependent from one exchange to another. However, since Coinbase Pro does not allow the
borrowing needed for margin trading, only the commissions on the transaction are needed
for calculation. This is formally described by:

Θ(t) = commissions(t) = transaction_cost · trade_size · close(t) (3.5)

Where t is the time at which the transaction is simulated.

3.3.2 Stopping criterion
If the unrealised balance before closing a position (or realised when we close a position)
is less than zero (i.e. initial balance exhausted), we don’t trade (emit “hold”). This is
implemented according to the following formula when opening or closing “long” positions:

balancestopping(t) = balancestopping(t− 1) + σ · trade_size · close(t)−Θ(t) (3.6)

with σ as defined by the formula 3.9 below. Instead when opening new “short” positions
instead we only consider the commissions created; that is:

balancestopping(t) = balancestopping(t− 1)−Θ(t) (3.7)

Finally when we close these “short” positions we need to take into consideration their
transaction value when they where created; that is:

balancestopping(t) = balancestopping(t− 1) + σ · (ω · close(t) + ω · close(topen))−Θ(t) (3.8)

σ =
{︄
−1 long

+1 short
(3.9)

With ω being the trade_size. This is necessary as “short” positions do not affect the
balance until they have been closed while “long” positions require the balance to have been
realised already before performing it.
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3.4 Evaluating gain/loss

Evaluating the return on investment requires the considerations of the realised gain and
loss and the balance at the end of the simulation. Moreover, the number of positions that
generated a gain or loss should be computed as the system should not generate too many
positions that generate a loss (i.e. the number of positions with a gain should be higher
than the ones with a loss).

3.4.1 Realised gain or loss

This is the gained or the lost amount for all closed positions at the end of the simulation.
However, it is important to take into consideration all the commissions due to any open
transaction. This can be computed as follows:

gainrealised =
∀closed positions∑︂

i

((valueclose(i)− valueopen(i)) · trade_size)−
∀positions∑︂

i

Θ(i)

(3.10)

3.4.2 Account balance

After simulating a transaction the account balance should be recomputed. This allows the
implementation of the balance checks described in section 3.2.1. The account balance is
computed by:

account_balancerealised = account_balance(t0) + gainrealised (3.11)

account_balance(t0) is the initial investment available to the system.

3.4.3 Unrealised gain or loss

This is the possible gained or lost amount for open positions at the end of the simulation.
As they represent the possible gains and/or losses, they are not included in the return on
investment computation. However, this is currently not being considered when evaluating
the model.

3.4.4 Evaluating return on investment (ROI)

The return on investment is computed as follows:

ROI = account_balancerealised(tend)− account_balance(t0)
account_balance(t0) × 100 (3.12)

Where t0 is the time at the beginning of the simulations and tend is the time at the end
of the simulation.
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3.4.5 Evaluation number of gaining and losing positions
To evaluate the number of positions that generated a gain and loss, the following was
performed:

ngain =
∀closed positions∑︂

i

[︂
(valueclose(i)− valueopen(i)) · trade_size−Θ(i) > 0

]︂

nloss =
∀closed positions∑︂

i

[︂
(valueclose(i)− valueopen(i)) · trade_size−Θ(i) < 0

]︂ (3.13)

Where valueopen is the value of the transaction when it was opened and valueclose is
the value at its close. Here [. . . ] are the Iverson brackets, which are:

[P ] =
{︄

1 if P is true;
0 otherwise

(3.14)

3.5 Model Evaluation
A model is profitable if its ROI is greater than zero. Moreover this is compared with the
simple buy-hold-sell described below.

3.5.1 Simple buy-hold-sell strategy
This strategy “buys” cryptocurrency at the beginning of the test period holds it and then
sells it at the end of the test period. This metric is useful to evaluate whether our trading
system can perform better than having no trading strategy. This can be represented by
the following:

simple_bhs = (close(tend)− close(t0)) · trade_size (3.15)

Where t0 being the beginning of the prediction set time and tend being the time at the
end of simulation.

3.5.2 Scaling ROI
To be able to compare different runs of the grid search, we must consider the ROI of the
model over the same test period or have the value scaled over a year. As considering the
same test period is not possible due the granularity and horizon being parameters of our
grid search, the latter method was selected. The scaled ROI is computed as such:

ROIscaled =
356days/year

(tend − tstart)days

·ROI (3.16)

3.5.3 Average gain per transaction
In order to be able to evaluate the strength of a model we must also consider models that
generate the highest gain per transaction. This can be computed as follows:

Γ = ROIscaled

positionsopen + 2 · positionsclosed
(3.17)
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3.6 Grid search
In order to test the multiple combinations of parameters of the system, a grid search was
performed to evaluate the different data models and simulations. Due to the size of the
grid, parallelisation of the different runs was necessary. This was implemented by storing
the results of every run in a database with the parameters of interest being the table’s
primary key. In addition to those parameters, the return on investment and some basic
statistics were stored. Finally, after the grid search has concluded, the database is analysed
to obtain an optimal model and simulation, better described in section 3.6.2.

3.6.1 Grid database parameters

The results of each experiment that were stored in the database can be split into three
groups of parameters: primary parameters, secondary parameters and statistical values.
The primary parameters are the parameters that are used to setup each experiment. Like-
wise, the secondary parameters are used to setup each simulation, however these parameters
were not varied in the grid search and were left as constants as to allow for future work
to explore them instead. Finally the statistical values are the results and statistics about
each run from the primary and secondary parameters. The specific primary parameters
used are presented in section 4.1.

Primary parameters

• machine learning model name and parameters (see section 3.1.2)

• currency pair being traded in the simulation

• feature set id

• granularity of the data set

• horizon used for the training and prediction sets

• time range being considered

• buy and sell thresholds used

• maximum stop loss and minimum take profit

Secondary parameters

• commissions per transactions (constant set to 0.3% of the transaction’s value)

• trade size of each transaction (constant set to 0.1 of the cryptocurrency)

• initial investment amount (constant set to 10000 in the fiat currency)

• initial cryptocurrency (constant set to 0)
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Statistical values and results

• predicted ROI during the considered time period

• simple buy-hold-sell strategy ROI during the considered time range

• number of transactions that generate a gain and/or a loss

• total number of transactions

• number of open and closed positions

• number of long and short positions

• time used by the computer for training and simulating the experiment

3.6.2 Choosing the optimal model
To be able to understand better the results generated from the grid search and find the
model parameters that are optimal, one must select a model that has the highest ROIscaled

among the different currency pairs and different time ranges. This is required as to ensure
that the selected model is not a local minima but more importantly that it is not overfitted
for that specific product or time range. Formally, this is implemented by the function
FindBestModel.

This can be applied on different groups to analyse variant parameters. This assumes
that the group has been grouped by model_type and feature_id as well as the other
parameters of interest. For example, a group could be created by grouping the data set by
granularity, horizon, buy_threshold and sell_threshold, and product_id.

Function FindBestModel(group)
Data: data_set = all data
Result: index of best model (in group) of data_set

1 set current_max←− 0;
2 for row ∈ group do
3 set mask1←− model = row.model and roi ≥ row.roi;
4 set mask2←− mask2 or product_id /= row.product_id;
5 set mask2←− mask2 or since /= row.since or until /= row.until;
6 set mask2←− mask2 or horizon /= row.horizon;
7 set mask2←− mask2 or granularity /= row.granularity;
8 set mask ←− mask1 and mask2;
9 set filtered_set←− data_set filtered by mask;

10 if filtered_set /= ∅ then
11 set first←− filtered_set[0];
12 if first.roi > current_max then
13 set current_max←− first.roi;
14 set index←− first.index;
15 end
16 end
17 return index
18 end
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Chapter 4

Results and conclusion

4.1 Grid search parameters used
The primary grid parameters consist of two different types of parameters: parameters con-
cerning the artificial intelligence algorithms used and parameters concerning the processing
of the data set before training and then for the simulation.

4.1.1 Data parameters
Currency pairs the cryptocurrencies tested were Bitcoin (BTC), Bitcoin Cash (BCH),
Etherum (ETH) and Litecoin (LTC) paired with USD and Euro.

• BTC-USD

• BTC-EUR

• BCH-USD

• BCH-EUR

• ETH-USD

• ETH-EUR

• LTC-USD

• LTC-EUR

Granularity of the data set in minutes.

• 30 • 60

Horizon as multiples of the granularity.

• 24 • 48 • 72

Buy Threshold as percentage change of the closing price.

• 1% • 3%

Sell Threshold as percentage change of the closing price.

• -1% • -3%

Max Stop Loss as percentage of the transaction value at position opening with respect
to the current closing price or disabled.

• 5%

Min Take Profit as percentage of the transaction value at position opening with respect
to the current closing price or disabled.
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• 10% • disabled

4.1.2 Machine learning models
For models requiring a random state for initial conditions this was set to 2018.

k-Nearest Neighbour (kNN)

• k: 3, 5, 6, 7, 9, 10, 11, 13, 15

Decision Tree

• criterion: gini, entropy

Random Forest

• estimators: 10, 20, 50, 70, 100, 130, 150

Stochastic Gradient Descent (SGD)

• alpha: 1× 10−5, 1× 10−4, 1× 10−3, 1× 10−2, 0.10

• loss function: hinge, log, modified huber

• max iterations: 1000

Passive Aggressive

• C factor: 0.1, 1, 10

• tolerance: 1× 10−5, 1× 10−4, 1× 10−3, 1× 10−2, 0.10

• max iterations: 1000

4.2 Performance analysis figures
After running the grid search, the collected results were analysed to find an optimal so-
lution. Such a solution must perform well for the different cryptocurrencies and during
different time periods. These analyses consider models with high returns in different mar-
ket behaviours, but also for different currency pairs which reduces the possibility of the
solution being an overfitted to a single currency or time range.

The analysis focused on comparing the different results of each model for the three main
feature sets considered. In order to further explore the different optimal data parameters
of the model, an analysis of the horizon, granularity and buy and sell thresholds were
examined overall and for each machine learning algorithm. For the different algorithms
considered, the higher values of the horizon represented the highest returns on the invest-
ment: > 200% and > 400% for feature sets 2 and 7 and 8, respectively. Conversely, the
granularity did not have a consistent value that performs well given the different models.
However, they were consistent for the same model for the different feature sets (eg. for PA
30 minutes). Finally, the buy and sell thresholds, favoured lower thresholds for obtaining
the highest returns; > 130%, > 660% and > 380% for feature sets 2, 7 and 8, respectively.

In addition to these analyses, the performance of each currency pair was considered
to check whether using a certain pair was more profitable than another pair; that is if
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the designed system is able to better predict the classes needed for high returns. Over-
all, Etherum (ETH) and Litecoin (LTC) produced consistently high gain, while Bitcoin
(BTC) and Bitcoin Cash (BCH) did not perform as well for some artificial models or with
some feature sets. Of particular note, is the feature set 2 for the pairs BTC-EUR and
BCH-EUR having negative ROI with the different algorithms used. Conversely, the other
cryptocurrencies, in general, have a better performance.

Figure 4.1: Performance by model type

In figure 4.1, the results where grouped by the model type for each feature set. From the
figure, the highest return on investment is generated by the kNN model using feature set 7.
This was the case when the k parameter was 3. Table 4.1, shows the overall performance
results. Note that ngain and nloss are the average of their respective values from all the
experiments having the same feature set, model and other parameters with differing time
periods and currency pairs.

Table 4.1: Overall performance

feat. set model h g buy sell ROIscaled BHS Γ ngain nloss

2 dt 24 60 1 % −3 % 42.05 −1.77 0.07 126.15 109.50
2 knn 72 30 3 % −3 % 50.68 −1.84 0.10 93.65 75.89
2 pa 24 60 1 % −3 % 145.18 −2.38 0.24 60.28 49.85
2 rf 48 60 3 % −1 % 125.64 −1.62 0.20 115.35 78.35
2 sgd 72 30 1 % −3 % 160.08 −2.38 0.25 78.61 55.52
7 dt 48 60 1 % −3 % 456.03 −1.77 1.06 93.57 67.32
7 knn 48 60 3 % −3 % 1109.03 −1.50 1.83 127.52 85.84
7 pa 48 60 1 % −3 % 487.54 −1.74 0.80 115.80 90.59
7 rf 24 30 1 % −3 % 371.56 −1.65 0.82 94.80 70.36
7 sgd 48 30 1 % −3 % 637.77 −1.83 1.03 125.64 94.32
8 dt 48 60 1 % −1 % 331.48 −1.76 0.70 96.94 77.13
8 knn 72 30 3 % −1 % 238.67 −1.77 0.44 101.30 85.17
8 pa 24 60 3 % −3 % 265.98 −1.74 0.50 96.02 77.68
8 rf 24 30 1 % −1 % 313.55 −1.66 0.74 79.13 59.01
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Table 4.1: Overall performance (continued)

feat. set model h g buy sell ROIscaled BHS Γ ngain nloss

8 sgd 48 60 3 % −3 % 508.79 −1.73 0.84 124.20 96.95

Grouping by the horizon, as in figure 4.2, one can see that the higher values for the
horizon perform better. Again, here the feature set 7 is the best performing one between
the three options. The best model is a kNN model with k = 3 as can be seen in table 4.2.

Figure 4.2: Performance by horizon

Table 4.2: Performance results by horizon

feat. set h model g buy sell ROIscaled BHS Γ ngain nloss

2 24 knn 30 1 % −3 % 67.47 −1.99 0.14 68.52 52.25
2 48 rf 60 3 % −1 % 63.74 −1.97 0.11 92.98 71.25
2 72 sgd 30 1 % −3 % 349.46 −2.70 0.41 103.11 79.62
7 24 rf 30 1 % −3 % 318.58 −2.37 0.65 93.11 73.66
7 48 knn 60 3 % −3 % 840.95 −1.43 1.38 128.67 90.13
7 72 knn 60 1 % −3 % 776.38 −1.30 1.20 130.84 97.35
8 24 pa 60 3 % −3 % 229.48 −2.54 0.49 86.83 71.88
8 48 sgd 60 3 % −3 % 338.04 −1.34 0.61 109.11 83.83
8 72 knn 30 3 % −1 % 503.55 −1.18 0.84 117.19 93.06

In the figure 4.3, the best currency-pairs that the system was able to predict for were
Etherum (ETH) and Litecoin (LTC) when paired with US Dollars (USD). This is most
likely due to the USD being more frequently traded on Coinbase, since it is based in the
United States of America. The overall best model obtained for LTC using feature set 7
was an SGD with alpha = 10−5, loss function “hinge", granularity 30 minutes, horizon 24
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hours (48 · granularity), and with buy and sell thresholds set to 1% and -3%, respectively.
This model had an incredible 2050% ROI. Note that the ROI for the pairs Bitcoin Cash
(BCH), Bitcoin (BTC) with Euro and BTC-USD with feature set 2 have an almost zero
ROI and as such they are not visible in the figure, but they are in table 4.3.
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Table 4.3: Performance results by currency pair

feat. set currency h g buy sell ROIscaled BHS Γ ngain nloss

2 BCH-EUR 48 30 1 % −1 % −2.00 −8.31 −0.01 7.17 7.19
2 BCH-USD 72 30 1 % −3 % 158.92 −4.36 0.34 87.71 73.99
2 BTC-EUR 72 60 3 % −1 % −0.38 −2.84 −0.00 12.18 12.43
2 BTC-USD 72 30 1 % −3 % 1.57 −5.24 0.01 7.45 5.78
2 ETH-EUR 24 60 3 % −3 % 126.32 0.50 0.15 139.81 87.86
2 ETH-USD 48 60 3 % −1 % 334.02 −0.55 0.62 98.17 85.95
2 LTC-EUR 72 30 3 % −3 % 96.10 0.01 0.11 173.48 109.42
2 LTC-USD 24 30 1 % −3 % 234.95 −0.23 0.36 100.87 109.36
7 BCH-EUR 24 60 1 % −3 % 9.91 −8.16 0.03 55.33 56.72
7 BCH-USD 72 60 1 % −1 % 238.48 −4.57 0.75 69.07 45.44
7 BTC-EUR 48 60 3 % −3 % 3.24 −3.01 0.00 264.46 271.33
7 BTC-USD 48 60 1 % −3 % 57.77 −4.96 0.12 97.16 82.01
7 ETH-EUR 48 30 3 % −3 % 129.42 0.87 0.15 153.44 114.56
7 ETH-USD 72 60 1 % −3 % 1280.66 −0.79 1.86 159.61 111.99
7 LTC-EUR 24 60 3 % −3 % 308.67 0.04 0.69 82.01 46.89
7 LTC-USD 48 30 1 % −3 % 2044.64 −0.29 5.50 90.24 56.84
8 BCH-EUR 24 60 3 % −3 % 9.12 −8.00 0.02 66.71 68.62
8 BCH-USD 48 30 3 % −3 % 229.36 −4.49 0.64 81.74 58.76
8 BTC-EUR 24 30 1 % −1 % 2.24 −2.91 0.00 216.50 223.68
8 BTC-USD 48 60 3 % −3 % 48.84 −4.89 0.09 97.36 84.38
8 ETH-EUR 72 30 3 % −1 % 125.95 0.88 0.15 146.39 108.94
8 ETH-USD 72 60 1 % −3 % 857.47 −0.79 1.50 129.20 95.27
8 LTC-EUR 48 30 3 % −3 % 208.43 0.04 0.53 70.91 46.36
8 LTC-USD 24 60 1 % −1 % 630.02 −0.30 2.96 47.34 38.85

Figure 4.4: Performance by granularity (in minutes)
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Table 4.4: Performance results by granularity

feat. set g model h buy sell ROIscaled BHS Γ ngain nloss

2 30 sgd 72 1 % −3 % 155.65 −2.21 0.22 103.78 77.13
2 60 rf 48 3 % −1 % 81.14 −2.02 0.18 65.48 52.62
7 30 rf 24 1 % −3 % 624.18 −1.50 0.89 142.29 103.27
7 60 knn 48 3 % −3 % 661.22 −1.97 1.54 86.50 66.71
8 30 knn 72 3 % −1 % 350.22 −1.56 0.52 129.72 100.97
8 60 pa 24 3 % −3 % 348.20 −1.94 0.95 70.41 58.84

Grouping by the granularity (figure 4.4), no clear granularity value that performs well
for all three feature sets. However, for feature set 2, the 30 minute granularity almost
double the ROI of the 60 minute one. The results are present in table 4.4.

Figure 4.5: Performance by buy/sell thresholds

When considering the buy and sell thresholds used for classification, the system is able
to have a positive and in most cases over 100% ROI, regardless of the thresholds, as seen
in figure 4.5 and table 4.5. This is important as it shows that the system is able to perform
even if the market conditions differ than the ones in the training period, which can be seen
in figures 4.12 and 4.13. In particular, the overall cryptocurrency market conditions were
bearish so lower and higher thresholds for sell and buy, respectively, will perform better.
On the other hand, with a bullish market conditions, the opposite is true.

Table 4.5: Performance results by buy/sell thresholds

feat. set buy sell model g h ROIscaled BHS Γ ngain nloss

2 1 % −3 % sgd 30 72 141.17 −2.02 0.24 90.44 62.94
2 1 % −1 % knn 60 48 141.39 −2.01 0.20 117.55 97.19
2 3 % −3 % knn 30 72 74.89 −2.23 0.17 59.33 47.76
2 3 % −1 % rf 60 48 120.31 −2.19 0.20 74.03 53.86

27



4 – Results and conclusion

Table 4.5: Performance results by buy/sell thresholds (continued)

feat. set buy sell model g h ROIscaled BHS Γ ngain nloss

7 1 % −3 % knn 60 72 853.83 −1.58 1.31 144.51 109.10
7 1 % −1 % knn 30 24 662.94 −1.49 1.16 121.86 87.49
7 3 % −3 % knn 60 48 646.75 −2.07 1.20 111.76 83.68
7 3 % −1 % rf 30 72 425.16 −1.69 0.76 93.78 69.40
8 1 % −3 % sgd 30 72 393.34 −1.57 0.67 120.50 97.98
8 1 % −1 % knn 30 24 385.35 −1.52 0.68 115.56 92.34
8 3 % −3 % pa 60 24 318.24 −2.05 0.68 92.12 74.41
8 3 % −1 % knn 30 72 304.34 −1.76 0.56 87.05 65.69

To further understand the results, we can group by the granularity and horizon for each
model type.
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Figure 4.7: Overall performance by horizon for each model

Again here having the highest horizon (72 multiples) has the best performance among
different model types and the different feature sets, as seen in figure 4.7. Furthermore, one
can split the data by each granularity tested; that is for granularities of 30 and 60 minutes,
the three horizon values are considered for each model, as seen in figure 4.6. The three
figures confirm that the highest horizon value is the one corresponding to the highest ROI.

Similar analysis can be performed for the granularity.
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Figure 4.9: Overall performance by granularity for each model

For granularity, on the other hand, there isn’t a clear optimal parameter when con-
sidering all the models, as in figure 4.9. In other words, the system based on different
parameters (eg. feature sets, thresholds, . . . ) will have a different optimal granularity.
This is also confirmed by the figure 4.8.

Moreover, one can analyse the performance of every single currency pair for each model.
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Figure 4.10: Performance by model type for BTC-EUR (top left), BTC-USD (top right),
BCH-EUR (bottom left) and BCH-USD (bottom right)

Figure 4.11: Performance by model type for ETH-EUR (top left), ETH-USD (top right),
LTC-EUR (bottom left) and LTC-USD (bottom right)

Overall and in general, from the figures 4.10 and 4.11 no significant distinctions can be
seen between the different feature sets; the performance is more or less the same. However,
with certain currency pairs, specifically BTC-EUR/BTC-USD and LTC-EUR/LTC-USD,
feature set 2 performs much worse than the time-series based features. Differences between
the same cryptocurrency with a fiat currency can be attributed to fluctuations in the fiat
markets. Moreover, in the case of the BCH-EUR pair due to having a lower number of
transactions in comparison to the BCH-USD pair the results are more susceptible to noise
factors. The noise can be reduced with the use of technical analysis, however, since the
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BCH market was bullish the feature sets based on the time-series alone had higher returns.

4.3 Closing prices
In order to be able to better understand the performance of the models presented, the
closing prices of the Bitcoin-Euro pair and Litecoin-Euro pair are shown in this section. The
time periods tested, 01/01/2017 - 01/06/2018 and 01/01/2018 - 01/06/2018, present both
bullish and bearish markets, which is important when evaluating the models as training
the models on only one of the market conditions cause the models to be overfitted to such
market conditions and would not perform well if they differ.
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4.4 Conclusion and future work
A system was developed to trade automatically to increase investors’ profits in the cryp-
tocurrency markets. The model was designed to compare different cryptocurrencies with
diverse set of machine learning techniques. The data analysed was aggregated from Coin-
base Pro’s market. Different feature sets were considered for classifying and analysing the
data; like closing price times-series and technical analysis. Moreover, different parameters
were used to implement data processing, such as the buy and sell thresholds for classifi-
cation and the granularity of the data set. The system then simulates the transactions
from the predicted data set to get the results of each experiment. To properly analyse the
results of the simulations performed, a method was developed to naturalise the results and
compare different models with each other, given different currency pairs and time ranges.

The combination of algorithms and parameters considered for finding the ideal param-
eters was limited to five algorithms (decision tree, kNN, passive aggressive, random forest,
and SGD). This was necessary as to limit the time needed to perform the grid search and as
such further work is necessary in the field to explore other models, like multilayer percep-
tron (MLP), in addition to testing more parameters; for example testing out a larger range
of thresholds for classification. Moreover, since the system expects that market supports
future-like contracts, future systems should explore markets that do not support contract
trading. Another improvement could be having the take profit and stop loss being a dy-
namic parameter; that is the percentage of the transaction is not fixed during the entire
experiment.

In conclusion, the results of the various experiments show that using the model described
earlier, the system was able to generate the highest return on investment margins when
using a simple closing price time-series over the more common techniques used by many
traders (i.e. technical analysis). In particular the model that has the best performance,
considering different currency pairs and different time ranges, was the kNN model with
k=3. The data parameters used to prepare the data sets to be analysed overall favoured
higher values for the horizon, specifically 48 and 72 multiples. On the other hand, the
results of the granularity parameter were inconclusive as to which of the two values tested
performed better. Given the bearish market conditions, the −3% sell threshold performs
better than the −1% threshold. However, even with symmetric buy and sell thresholds (i.e.
±1% and/or ±3%), the system still performs as well. The developed automatic trading
system was able to outperform the simple buy-hold-sell strategy by high margins.
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