
POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Vehicles detection and tracking
using Convolutional Neural
Networks on edge-computing

platforms

Supervisors
prof. Bartolomeo Montrucchio

Candidates
Alessandro Marchetti

matricola: 242374

Internship Tutor
CSP Innovazione nelle ICT

ing. Ferdinando Ricchiuti

Academic year 2018 – 2019

This work is subject to the Creative Commons Licence

Contents

List of Tables 6

List of Figures 7

1 Introduction 9
1.1 An edge computing approach to Object Detection and Classi-

fication . 9

2 Deep Learning and Computer Vision 11
2.1 Deep Learning algorithms as powerful feature extractors . . . 12
2.2 Convolutional Neural Networks 12

2.2.1 A standard architecture 13
2.3 CNN Architectures . 15

2.3.1 Towards precision . 16
2.3.2 Towards speed . 16

2.4 Object Detection through CNNs 17
2.4.1 Detection algorithms 17

3 Implementation details and choices 21
3.1 Edge deployment platform . 21
3.2 Neural Networks framework and Detection algorithms 24

3.2.1 Tensorflow Object Detection API 24
3.3 Software environment choices 26

3.3.1 Built from source . 27

4 Fine tuning the models 29
4.1 UA-DETRAC dataset . 30
4.2 The training process . 30

4.2.1 Adopted process . 32
4.3 Dataset preparation . 33

3

4.3.1 Defining train and validation sets for the UA-DETRAC
dataset . 33

4.3.2 Preparing the samples 34
4.3.3 Data augmentation . 36

4.4 Chosen models and hyperparameters 37
4.4.1 Training hyperparameters 37

4.5 Training evaluation . 38
4.5.1 Evaluation metrics . 38
4.5.2 Evaluation results . 42

5 Framework Implementation 47
5.1 Detpipe . 47

5.1.1 Architectural design 48
5.1.2 Running model . 50
5.1.3 Extensibility . 52

5.2 Detpipe modules . 53
5.2.1 Source module . 53
5.2.2 Object Detection module 54
5.2.3 Tracking module . 55
5.2.4 MQTT Client module 58
5.2.5 Video output module 58

5.3 REST API . 59
5.4 React Control Dashboard . 60
5.5 Integration with InfluxDB (or other) 62
5.6 Profiling . 62

6 Results 63
6.1 Test sequence annotation . 63
6.2 Benchmark . 66
6.3 Detection performance analysis 66

6.3.1 Checkpoints and performance metrics 66
6.3.2 Training evaluations revisited 68
6.3.3 CVAT evaluations . 69
6.3.4 Considerations on Turin results and Weighted mAP . . 70

6.4 Tracking analysis . 71
6.4.1 Testing strategy . 71
6.4.2 Detection performance impact on counting 72
6.4.3 FPS resistance . 73
6.4.4 Inception v2 tests . 75

4

6.5 Final considerations . 75

Bibliography 77

5

List of Tables

6

List of Figures
2.1 Example of a convolutional layer composed of 2 convolutional

kernels (without considering bias matrices) sliding with a stride=1.
The depth of the kernels matches the depth of the input vol-
ume and the number of kernels defines the depth of the output
volume . 14

2.2 Various non-linear activation functions, taken from [14] 15
3.1 NVIDIA Jetson TX2 - Module on the left, Development board

on the right . 23
3.2 Comparison between the various combinations of detection

meta-architectures and CNN backbones, from [6] 25
4.1 Frames of some of the sequences of the UA-DETRAC dataset,

showing vehicles classes, ignored regions, and truncation-ratios
as box colours. Taken from [18] 31

4.2 Schematic view of the training process and conditions 32
4.3 Summary of the chosen subdivision between train and valida-

tion sets . 33
4.4 Cutout of ignored regions in input samples 36
4.5 Visual representation of the IOU distance with some examples 39
5.1 A simple pipeline configuration for detecting vehicles from a

camera source module down to the output modules 48
5.2 Output box, score and class for detection i 55
6.1 Errors from the TF auto annotation step 64
6.2 Number of annotations, divided by class, in the annotated test

dataset . 65

7

8

Chapter 1

Introduction
Image classification and detection tasks have been approached in numerous
ways throughout the years. Traditional approaches used conventional ma-
chine learning techniques dealing with hand-crafted vectors of features which
had to be carefully extracted from the images with considerable domain-
expertise. Deep learning algorithms have overcome this limitation by pro-
viding architectures able to work on raw data while outperforming traditional
techniques. A deep learning architecture which proved to be very success-
ful in the context of computer vision is the Convolutional Neural Network,
an architecture able to achieve previously unreachable performances, mak-
ing it, nowadays, a de-facto standard in classification and detection tasks.
However, a drawback of deep learning architectures is their high compu-
tational footprint which has limited, until recently, their adoption only to
high-performance servers and workstations.

The availability of fast and efficient CNN models together with the release
of AI accelerating low-powered platforms has enabled the use of CNNs on the
edge, empowering a shift from a server-centric scenario to a fog scenario, low-
ering data bandwidth requirements for connected nodes and enabling smart
features on any connected device.

1.1 An edge computing approach to Object
Detection and Classification

This work addresses the design and implementation of a CNN based frame-
work for performing road traffic analysis through vehicles detection, classifi-
cation and tracking, able to efficiently run on a low-powered edge-computing

9

1 – Introduction

platform. The resulting platform can be positioned in close proximity to the
node, enabling these smart-features on any traditional IP camera.

The first efforts of this work went into selecting the most promising CNN
architectures and fine-tune them on a vehicles specific dataset, consisting
of around 5.5 hours of annotated videos, shot at various locations around
Beijing and Tianjin, in China.

In order to perform an in-depth evaluation and to validate the results on
a real use case, additional effort was put in producing a 15 minutes anno-
tated sequence, shot in Turin in c.so Castelfidardo with the company’s traffic
camera, with more than 16,000 frames and 88,000 vehicle annotations.

After having produced and identified an efficient CNN detector, the second
efforts went into the development of a tracking module that uses a very
lightweight association metric to track the vehicles detected by the CNN.
The obtained tracks can be used to enrich the road-traffic analysis with
flow information, and can be matched against multiple counting segments,
producing vehicles crossing counts for each of the available lanes.

With a strong and efficient model and the addition of tracking, the last
part of the thesis focused on wrapping all up by developing a modular and
extensible framework with three main components: a detection pipeline, a
REST server and a React web app.

The design of the detection pipeline, which is the main component of the
framework architecture, embraced the flow-based programming paradigm,
keeping a constant eye on modularity and extensibility and providing ex-
tendable plugin-like interfaces making it easily tailorable on any different
scenario.

The last two components were developed to control and interact with the
detection pipeline remotely and with a user-friendly GUI. The web appli-
cation is developed in React and runs as a single-page app on the client,
interacting with the REST server through AJAX calls. The REST server is
developed in Python as a lightweight app using Flask.

10

Chapter 2

Deep Learning and
Computer Vision

The navy last week demonstrated the embryo of an electronic com-
puter named Perceptron [...]. Dr. Frank Rosenblatt, [...], designer
of the Perceptron, conducted the demonstration. The machine, he
said, would be the first electronic device to think as the human brain.
Like humans, Perceptron will make mistakes at first, “but it will
grow wiser as it gains experience”, he said. [...] Later Perceptrons,
Dr. Rosenblatt said, will be able to recognize people and call out
their names. Printed pages, longhand letters and even speech com-
mands are at his reach.

– 1958, New York Times

This article is about the first attempt at synthesizing an artificial neural
network. Perceptron was composed of a linear single layer neural unit with
connected inputs with trainable weights, and, although the model was later
revised and applied successfully in adaptive signal filtering [19], it was still
far from achieving what the article mentioned. Nowadays, though, we’ve
reached a stage in which machine learning techniques, and deep learning
algorithms in particular, have outclassed previously used techniques and we
can finally affirm that these “later perceptron” are able to call out our names
by looking at us or even by just listening at our voices, or detect and recognize
hundreds of different objects, synthesize speech based on some samples, drive
cars, understand and write articles, and many other incredible things.

In the next paragraphs we will concentrate on machine learning tehcniques

11

2 – Deep Learning and Computer Vision

applied to Multiple Object Detection, a Computer Vision task in which Con-
volutional Neural Networks have proven to excel.

2.1 Deep Learning algorithms as powerful
feature extractors

For decades, conventional machine learning techniques were only able to deal
with hand-crafted vectors of features, carefully extracted from the data with
considerable domain-expertise; they were thus limited in their ability to deal
with raw data such as the pixels of an image [10]. A notable example of image
based hand-crafted features used in a detection task is from Viola and Jones
face detector in 2001 [17] where they used 4 types of subtractions of rectangle
sums of image pixel areas as input features for their cascade of classifiers.
The resulting number of features which could be extracted from a 24x24
window was huge, 160000, but only the most promising were selected for
further inspection. This features, combined with a clever intermediate image
representation called “integral image” which sped up their calculation and
a cascade of AdaBoost trained classifiers, made it possible to detect frontal
faces with a very high precision at 15fps, almost real-time, on a 700Mhz
Pentium 3.

Viola’s and Jones’s results were astounding at that time but what if we
wanted to detect not only faces, but tens, hundreds or even thousands of
different classes? Could we use Paul and Jones Haar-like features, or should
we use more modern HOG features, or should we extract a completely differ-
ent set of features from the image? And what about other kinds of data,
such as sound-waves or sentences? Deep learning algorithms, a class of
representation-learning algorithms, tried to solve the issue by learning how
to extract representative features with a deep hierarchical sequence of non-
linear modules which, starting from the raw input, proceed, module after
module, to produce higher and more abstract levels of representation able to
model very complex functions.

2.2 Convolutional Neural Networks
A deep-learning architecture that proved to be very successful in dealing with
images and that is now widely adopted by the computer vision community
is the Convolutional Neural Network, a feedforward network that is designed

12

2.2 – Convolutional Neural Networks

to process data presented in the form of multiple arrays, such as the three
2D arrays containing the pixel intensities of the three colour channels of an
image.

Convolutional Neural Networks have their roots in 1980’s Neocognitron
[2], a neural network model inspired by an earlier research on the cat’s visual
cortex [7], and their first practical use in computer vision dates back to 1990,
when Yann LeCun applied the backpropagation algorithm to train a CNN
to recognize handwritten digits. Nevertheless they became very popular in
computer vision only after Alex Krizhevsky, a PhD student at the university
of Toronto, won the 2012 ILSVRC (ImageNet Large Scale Visual Recognition
Challenge), one of the most important classification and detection challenges,
with a CNN which will later be known as AlexNet; his solution marked a
milestone, beating the second submission with a gap of 10% on the error
rate. In the following years many architectures emerged, further increasing
classification precision, and the most important ones will be later discussed.

2.2.1 A standard architecture

The basic blocks of a standard convolutional neural network are layers of
neurons that, not differently from a traditional neural network, start from
an input to which they apply a dot product, followed by a non-linearity
activation, some pooling and finally in the last layer, combine their output
with the outputs of other neurons of that same last layer, in a fully-connected
manner, contributing to the network output, a differentiable class score. The
difference lies in how those neurons are made and how they are connected
to the input, since CNNs are designed to work with images they exploit this
fact to overcome the limitations of fully connected neural networks in dealing
with such inputs. In a fully connected neural network we would have weights
for each connection between an input, in this case a single channel of a pixel,
and a neuron, which, for a 300x300x3 image would mean 270000 parameters
for each neuron of the network; this scenario obviously can not scale well so
convolutional neural networks borrow the concept of receptive field of brain
cells by having neurons look at a small portion of the image and slide across
it to calculate their output. These convolutional neurons are usually called
convolutional kernel, or filters, and they compose the convolutional layers of
a standard CNN architecture

13

2 – Deep Learning and Computer Vision

Convolutional layers

Convolutional layers are made up of convolutional neurons, usually called
kernels or filters, which are 3d arrays of weights that can be viewed as a
series of matrices, where the 1st and 2nd dimension define row and cols
while the 3rd dimension, the number of matrices, matches the depth of the
input. Common sizes for convolutional kernels range between 1× 1×Din to
5 × 5 ×Din, although they are rarely bigger than 3 × 3 ×Din. Each kernel
slides across the input and for each position it produces one single output
consisting of the sum of the products of the values times the weights on all
the input depth channels.

The following image 2.1 shows two convolutional layers (kernels) applied
to an input image with the three RGB channels, sliding by 1 position each
time, and producing a 3× 3× 2 output volume:

0 2 1 0 2

0

1

0

1

1 0 2 1

0 0 1 0

1 0 0 1

0 2 1 0

1 0 2 0 1

0

1

0

1

0 0 1 1

0 2 1 0

1 2 0 1

1 0 0 2

1 0 0 1 0

0

1

0

0

2 1 0 2

0 0 0 1

2 1 1 0

1 1 0 0

0 2 1 0 2

0

1

0

1

1 0 2 1

0 0 1 0

1 0 0 1

0 2 1 0

1 0 2 0 1

0

1

0

1

0 0 1 1

0 2 1 0

1 2 0 1

1 0 0 2

1 0 0 1 0

0

1

0

0

2 1 0 2

0 0 0 1

2 1 1 0

1 1 0 0

1 0 1

2

0

0 1

0 1

0 0 2

1

0

0 2

0 1

1 0 2

0

2

1 0

0 0

12

12 15

0 1 0

0

1

2 0

1 0

2 1 0

0

2

0 1

0 0

0 2 1

1

1

0 0

0 2

12 15 ...

...

...

... ...

... ...

12 15 ...

...

...

... ...

... ...

10

10 7

Kernel K1 Kernel K2

Figure 2.1. Example of a convolutional layer composed of 2 convolutional
kernels (without considering bias matrices) sliding with a stride=1. The
depth of the kernels matches the depth of the input volume and the number
of kernels defines the depth of the output volume

For simplicity, the image does not show nor consider the bias matrix in the
calculation, which is an additional matrix for each kernel with weights that
get added to the final output independently of the inputs (like the constant
terms in polynomials). The kernel weights will be learned during the training
process in order to extract the most distinctive features, with regard to the
function they have to model, from the input samples.

An example that may be useful to better understand how they work re-
gards the filters used in Computer vision. In fact, border extraction, sharp-
ening or blurring of an image can be obtained by convoluting special kernels
over the image.

14

2.3 – CNN Architectures

Activation Layers

Activation layers are usually placed after convolutional layers and they simply
apply a non-linear activation function to each unit of the output volume of
those layers. They are used to add non-linear properties to the network,
without which we would have a Linear Regression Model with limited ability
to model complex functions on the input distribution. Among the activation
functions, the one that’s more used is the ReLU and it’s derivatives, thanks
to its simplicity and computational efficiency and thanks to the fact that
it helps mitigating the problem of vanishing gradients, i.e., differently from
the sigmoid or the tanh, whose derivative tends to zero for high activation
values, ReLU’s derivative is always one for any value greater than 0.

Figure 2.2. Various non-linear activation functions, taken from [14]

2.3 CNN Architectures
This paragraph presents an overview of the popular convolutional neural net-
works models. This section is divided between models developed to achieve
the maximum precision and models developed to achieve good precision with
fast computational performance and small memory footprint.

15

2 – Deep Learning and Computer Vision

2.3.1 Towards precision

The various challenges with their metrics imposed a search for better and
better (improving) architectures, able to generalize better and score higher
than previous ones.

AlexNet

VGG

VGG (Visual Geometry Group, University of Oxford) and their very deep
architecture

Zeiler-Fergus

VGG similar results with a smaller footprint. Also interesting article on
visualizing CNNs

GoogleNet - Inception v1/v2

Going deeper with convolution [15]

ResNet

Residual connections between layers [6]

2.3.2 Towards speed

Achieving the highest possible precision is not always the main aim since in
specific cases, such as the case of this work, size of the model and speed of
detection are also an issue. Finding the right compromise between classifica-
tion performance and speed/size performance is not an easy task but some
research teams at Google came up with architectures that could outperform
previous models at a fraction of the cost.

16

2.4 – Object Detection through CNNs

SqueezeNet

MobileNet v1/v2

2.4 Object Detection through CNNs
Standard convolutional neural networks are used for classification problems
while detection needs a different, more complex approach. A typical ob-
ject detection algorithm needs to produce a vector of bounding boxes that
provide the location of detected objects and a vector of class scores for the
corresponding bounding boxes, which determines what kind of object was
detected.

To achieve such a result, the very first naive implementations were using
sliding windows of different sizes and ratios, performing a classification for
every extracted portion of the image, and such an approach was anything
but performant. Naturally reasearchers came up with algorithms that sped
up the detection process and in the following paragraph some of them will
be analyzed.

2.4.1 Detection algorithms
In this paragraph we will briefly analyze the key points of some of the most
used detection architectures which were considered for this thesis.

R-CNN

Regions with CNN features [5], this is the long name, is an object-detection
algorithm made up of three modules, a region proposal module, a CNN mod-
ule and a classifier module. The region proposal module uses selective search
[16], with shallow hand-crafted features, to propose a certain number of re-
gions, 2000 in the article, and passes these regions, warped to a fixed size,
to the CNN module. The CNN backbone, the one chosen in the article was
AlexNet [9], executes a forward pass for each proposed region and extract
a feature vector, which is handled to the third module, a series of linear
support vector machines, one for each class, that classify the correspond-
ing region (car? y/n - airplane? y/n - . . .). Finally, a class-specific linear
regression model is applied to each output to predict a more precise bound-
ing box. The results in object detection challenges were higher than other
contemporary approaches but the architecture had some disadvantages [3]:
firstly the training is a multistage process, since the CNN, the SVMs and

17

2 – Deep Learning and Computer Vision

the bounding-box regressors have to be trained individually, furthermore the
computational performances were not brilliant, not even close to something
usable on real-time video analysis.

Fast R-CNN

After less than a year, R. Girshick came up with an improved version of their
detection framework, simpler and faster to train and a lot faster at test time
[3]. Without delving into details, the two main improvements are the CNN
computation of only one shared feature vector instead of one feature vector for
each region proposal and the substitution of the N class-specific SVMs with a
single softmax classifier; the resulting architecture has a single stage training
and is, as the name suggests, faster. The single feature-vector from the CNN
forward pass is extracted from the whole image, max-pooled according to
the selected region, fed to two fully connected layer and finally to two final
sibling FC layers, one for the softmax classifier and one for the bounding-box
regressor. The article tested the architecture with different configurations
and different CNN backbones, including the very deep VGG16. Resulting
precision with the VGG16 is higher than the previous R-CNN architecture
and it’s also 9× faster at training and 213× faster at test-time

Faster R-CNN

The third incarnation of the R-CNN algorithm [13] further speeds up the
computation by substituting the selective search used for region proposal with
a Region Proposal Network, RPN for short, that shares the computational
layers with the main CNN. The idea is that the convolutional features may
be useful not only for the classification but also for the creation of the region
proposals. The RPN shares a part of the architecture with a part of the main
CNN and, on top of that, uses a mini-network which sildes on the feature
map and generates, for each position, the predicted coordinates for a number
k of anchors, at different scales and ratios, and their objectness score (the
probabilities of being objects or background), doing the work of both the box
regressors and the selective search from the previous model. The proposed
regions are then fed, as in the Fast R-CNN, to the final detection layers to
classify the detected objects.

18

2.4 – Object Detection through CNNs

YOLO - You Only Look Once

YOLO [12] stands for You Only Look Once and the algorithm takes its
name from the fact that the detection task is merely a forward pass of a
convolutional neural network, the CNN, indeed, predicts both the classes
and the precise bounding boxes without any additional processing. The
backbone is a custom model inspired by GoogLeNet [15]

19

20

Chapter 3

Implementation details
and choices
This thesis focuses on developing a framework which leverages an AI solution
to enable video analytics from a live camera, capable of running on a low
powered edge device. Many variables have to be considered, starting from
the hardware platform which has to be capable of handling the bilions of
operations required by a single forward pass of a CNN and with enough
memory to store the millions of weights, to all the software stack required
to develop and deploy the project, like the AI framework used to deploy the
neural network, the algorithms used for object detection and tracking, the
whole design, the communication methods, the control part, and many other
details.

Some frameworks that will be briefly introduced in this and the following
chapters were considered and tested in the first months, albeit later discarded,
due to the fact that the project started with a proposed hardware platform
which was changed during the course of this work.

3.1 Edge deployment platform
Convolutional neural networks models, even the smallest, require doing bil-
lions of floating-point operations for each frame they have to process and their
weights may need from several hundreds of MBs up to GBs to be loaded in
memory. A low-powered board with a general purpose processor can not
perform well in a similar scenario and this factor have been limiting the use
of AI on the edge until now. In fact, in the last few years new solutions arose

21

3 – Implementation details and choices

and among them, Nvidia created a family of products built exactly for this
purpose, the Nvidia Jetson.

The Nvidia Jetson is a family of products built to enable powerful AI
applications with a low power profile and relatively small form factor on the
edge, which makes them a perfect candidate, from a capabilities point of view,
for the project of this thesis. The Jetson family includes full development
boards and the corresponding modules for the final system, as shown in figure
3.1, but the thesis work concentrated on building a fully working prototype
on the development board.

The first solution - Nvidia Jetson TK1

The first selected deployment scenario consisted on developing the smart
framework for the Nvidia Jetson TK1, the first installment in the Nvidia
Jetson family, since the company had some units in house. The first months
of the development, thus, concentrated on testing frameworks which were
capable of performing object detection with a good precision a computational
performance but also compatible with the TK1 hardware and software stack.

The constraints were too stringent since the TK1 was released in April
2014 and Nvidia itself dropped support for the board and discontinued its
commercialization in April 2018. The situation was also worsened by the fact
that with the successive generation the architecture changed from arm32
to aarch64 so all the new Nvidia libraries were not retro-compatible with
the old hardware. This meant that CUDA stopped at v6 and modern NN
frameworks such as Tensorflow v1.0 onwards, Pytorch and Caffe2 could not
be used. A first solution was developed both with a fork of YOLOv2 [] (the
original framework and YOLOv3 weren’t working on the platform) and with
the original deprecated Caffe implementation of the FasterRCNN [13, 4],
and the results weren’t satisfactory. All these constraint led to evaluate a
platform-change in favour of the latest installment in the Jetson family, the
Nvidia Jetson TX2.

The final solution - Nvidia Jetson TX2

The final solution chosen for the project is the latest installment in the Nvidia
Jetson family, the Jetson TX2 development board and the hardware specs
are highlighted in the following table:

22

3.1 – Edge deployment platform

Hardware Specs

Processor: HMP Dual Denver 2/2 MB L2 + Quad
ARM A57/2 MB L2

Architecture: aarch64
Memory: LPDDR4 8 GB 128-bit 59,7 GB/s
GPU: NVIDIA Pascal, 256 CUDA cores
CUDA compute cap.: 6.2
Video Memory: Unified with main memory

This module was released in March 2017 and, differently from the TK1, it
is fully supported by Nvidia and it is compatible with all the latest libraries,
as shown in the following table:

Software Specs - as of Jetpack SDK v3.2.1
OS: Ubuntu 16.04 aarch64
CUDA support: v9.0
cuDNN: v7.0.5
TensorRT: v3.0

Gstreamer: v1.8.1 with HW enc/dec acceleration sup-
port

OpenCV:
v3.3.1 but the provided version does not
support HW video acceleration and it
needs to be rebuilt

Figure 3.1. NVIDIA Jetson TX2 - Module on the left, Development
board on the right

23

3 – Implementation details and choices

3.2 Neural Networks framework and Detec-
tion algorithms

An important choice regards the framework used to deploy the neural network
and it is linked not only to platform compatibility but also to the detection
algorithm and to the model chosen for the task, since different frameworks
provide different implementations and some algorithms may not be found
for certain frameworks. A key objective for analyzing live data is achieving
good detection performance by keeping the computational cost as low as
possible, and to achieve such a result single-pass detection algorithms such
as YOLO [12] and SSD [11] were favoured to more complex ones such as
Faster R-CNN [13] (for an overview of the key features of the state of the art
detection algorithms the reader can refer to section 2.4.1).

The first testing embryo of the detector was developed with Darknet [8]
for the first platform, the Nvidia Jetson TK1, but the official framework
was working only on the development laptop while it was outputting empty
detection vectors on the board. The only way it could work on the board was
by using a fork which only supported up to YOLOv2, but this solution was
later dropped in favour of a different framework, Tensorflow, offering more
flexibility and a better support.

3.2.1 Tensorflow Object Detection API
The final choice was to use Tensorflow, a more modern, flexible and robust
framework, developed and mantained by Google. A key point that led to the
adoption of Tensorflow was the availability of an Object Detection API [6]
developed by Tensorflow researchers which includes premade models combin-
ing some of the state-of-the-art detection algorithms with many of the main
CNN backbone models discussed in section 2.3.
The available detection algorithms are the following:

• SSD 300/600

• Faster R-CNN

• Mask R-CNN

• R-FCN

The available backbone architectures are the following:

24

3.2 – Neural Networks framework and Detection algorithms

• MobileNet v1/v2

• Inception v2/v3

• ResNet 50/101

• Inception Resnet v2

Pretrained models of the above combinations are available in the API
repository model-zoo. The provided models are trained on the MS COCO
dataset with 90 classes and can be downloaded to be used directly for in-
ference tasks or to be used as a starting-point for fine-tuning on different
datasets.

The authors of the API also provided a very neat chart which compares
the average detection precision, defined according to the COCO mAP metric
(a description of the metric can be found in section, against the inference
time (i.e. the time to produce the detections from a single frames) for many
of the provided combinations. Reproducing all these tests would be time-
consuming and not very useful so the graph will be reported as is from the
original article:

SSD w/MobileNet, Lo Res

R-FCN w/

ResNet, Hi Res,

100 Proposals

Faster R-CNN w/ResNet, Hi

Res, 50 Proposals

Faster R-CNN w/Incep. on

Resnet, Hi Res, 300

Proposals, Stride 8

SSD w/Incep. on V2, Lo Res

Figure 3.2. Comparison between the various combinations of detection
meta-architectures and CNN backbones, from [6]

25

3 – Implementation details and choices

As shown in the graph, there is a frontier, reported with a gray dashed
line, that marks the best trade-off between precision and inference time that
was achieved with some combinations by the research team and the models
trained, analyzed and used in this work have been chosen among them (refer
to section 4.4).

3.3 Software environment choices
The framework developed in this work is written in Python, due to the fact
that it permits rapid prototyping, compared to other languages like C, and
due to the fact that a large number of open source libraries that could aid
during the development process are available. This choice, though, doesn’t
come for free, in fact Python is slow compared to C, and in order to guarantee
almost real-time performance, there has been a high stress on the profiling
part, with heavy use of multiprocessing and numpy vectorized operations
whenever possible. The framework was profiled with cProfiler, first on the
development machine and then remotely on the card, in order to eliminate
almost all the bottlenecks that could harm performance.

Additional libraries and frameworks

For the development part of the work, some open source libraries have been
used:

• OpenCV has been used for any imaging function written for the frame-
work, from masking, to drawing boxes, polygons, texts or tracks. The
initially used box-drawing function used PIL and plain Python oper-
ations and was quite slow. The final version, rewritten using Numpy
operations for preprocessing and OpenCV for actual drawing, was 219x
faster than the first one.

• Protobuf has been used to provide a serialization mechanism between
the modules composing the framework. It’s a lot faster, compared to
serialization mechanisms such as Pickle.

• Supervisord has been used to provide a mechanism of process control.
As it will be shown in section 5.1.2, the modules of the framework run
in separate processes and supervisord is internally used to control their
running state.

26

3.3 – Software environment choices

• PyZMQ has been used to provide communications between the mod-
ules, providing, among others, Publisher/Subscriber and Request/Re-
sponse patterns through IP sockets or Unix sockets (the Unix ones were
used). The Publisher/Subscriber pattern, in particular, has been used
very useful for the framework design. One additional advantage of using
PyZMQ over plain Unix sockets is that it provides recovery mechanisms
for free, so if a module goes down and then gets relaunched, other con-
nected modules won’t notice a thing. The last note regards the frame-
work design being independent of this choice, in fact, PyZMQ sockets
are wrapped and modules use “Pipes” interfaces designed so that chang-
ing the underlying communication component could be done at almost
no cost.

• MQTT Paho

• CVAT

• Flask

• React

• Telegraf

• InfluxDB

• Grafana

3.3.1 Built from source
Some libraries had to be built from source for various reasons. Here are the
main ones

OpenCV

Nvidia JetPack 3.2.1 comes with OpenCV 3.3.1 directly built for the board
so everything seemed to be fine on this regard. Nonetheless, while testing
the 4K stream from the camera provided for this work some preformance
problems were encountered and one of the factors (though not the only one,
as it will be shown in the profiling section was that OpenCV was not using
hardware accelerated decoding. Surprisingly, the version that came prebuilt
with Nvidia SDK was not built with Gstreamer support for hardware accel-
eration, so it had to be rebuilt with its support. Moreover, two pipelines

27

3 – Implementation details and choices

had to be defined in order to make the interface work with OpenCV. More
details on the subject can be found in section 5.2.1.

Building OpenCV needs various requirements and the actual build may
greatly vary depending on the configuration that the user may set to cus-
tomize it. In order to ease the build and the installation processes a 400 lines
interactive script was written and provided with the project sources. As a
reference, the cmake build configuration will be provided here:
1 cmake \
2 −D CMAKE_BUILD_TYPE=Release \
3 −D BUILD_TESTS=OFF \
4 −D BUILD_PERF_TESTS=OFF \
5 −D BUILD_EXAMPLES=OFF \
6 −D WITH_FFMPEG=ON \
7 −D WITH_GSTREAMER=ON \
8 −D BUILD_opencv_java=OFF \
9 −D BUILD_opencv_python2=ON \

10 −D BUILD_opencv_python3=ON \
11 −D ENABLE_NEON=ON \
12 −D WITH_CUDA=ON \
13 −D CUDA_ARCH_BIN=" 6 .2 " \
14 −D CUDA_ARCH_PTX=" " \
15 −D WITH_CUBLAS=ON \
16 −D WITH_GTK=ON \
17 −D WITH_TBB=ON \
18 −D ENABLE_FAST_MATH=ON \
19 −D CUDA_FAST_MATH=ON \
20 −D WITH_LIBV4L=ON \
21 −D WITH_QT=ON \
22 −D WITH_OPENGL=ON \
23 −D INSTALL_C_EXAMPLES=ON \
24 −D INSTALL_TESTS=OFF \
25 −D OPENCV_EXTRA_MODULES_PATH=$SOURCE_DIR/ opencv_contrib /

modules \
26 $SOURCE_DIR/opencv_src

28

Chapter 4

Fine tuning the models

The pretrained models available in Tensorflow OD API model zoo are trained
on the MS COCO dataset, a dataset that includes more than 200000 anno-
tated images on over 80 classes, including cars and buses. The most sophis-
ticate models perform well on the vehicles detection task even out-of-the-box
but the main problem is that those sophisticated models have a very high
inference time and fail to provide the near real-time detection needed for the
tracking component of the project. When evaluating smaller and faster mod-
els such as MobileNet or Inception out-of-the-box, they fail to provide usable
detection performance and they need to be fine-tuned on datasets specialized
on the task. While for a “first-person” view, such as the one from an onboard
camera of an autonomous vehicles, there are many valid datasets, the only
large dataset that covers vehicle detection from a surveillance-camera point
of view, available for free but only for academic-purposes (a registration with
a valid academic e-mail or a valid proof of the status has to be provided), is
the UA-DETRAC dataset.

The term “fine tuning” indicates a typical workflow in which the weights
of the network to be trained are initialized from an existing model which was
already fit on a different dataset. Sometimes, the term “transfer learning” is
also used, although the latter usually indicates that the model was fit on a
dataset from a different field of application. The practices of fine tuning or
transfer learning, opposed to training the model from scratch with randomly
initialized weights, cut the training time from days to hours and can also
help overcome some problems while training models. For example, in R-
CNN [5], the weights are first trained on the ImageNet classification dataset
then, after the model converges, the final classification layer is substituted
with one for the final N+1 classes (+1 for the background) and the resulting

29

4 – Fine tuning the models

network is fine tuned on the detection dataset, granting a better mAP while
also reducing the risk of overfitting the smaller detection dataset.

4.1 UA-DETRAC dataset
The UA-DETRAC dataset [18] provides more than 10 hours of videos of
road traffic in multiple loaction of Beijing and Tianjin in China, captured
from a traffic surveillance camera point of view in multiple times of the day
and various weather conditions. The dataset provides annotations for four
different classes: cars, buses, vans and others (which include trucks or other
kinds of vehicles). The dataset provides other information for each detection,
such as scale, occlusion ratio and truncation ratio, that are not considered
in the proposed solution, neither for training nor for evaluation.

The dataset is is divided into a training set, composed of 60 sequences, and
a test set, composed of 40 sequences which present similar traffic conditions
but are shot from different locations. The organization that created and
maintains the dataset also hosts a challenge and uses the test set for the
challenge evaluation so, unfortunately, it does not provide the ground-truth
annotations for the test sequences. This means that only a maximum of 6
hours of videos are available for training purpose and, as it will be shown
later, the train data will be reduced even further since a part of this training
data will be used as a test set for the training process.

Figure 4.1 shows frames from some of the sequences in the dataset, with
the type of vehicles in the labels, the ignored non-annotated regions greyed
out and a box color indicating their occlusion ratios.

The resulting models have a minor tendency on confusing some detected
samples between cars and vans, this may be due to some correlation between
the training samples of the two classes.

4.2 The training process
A typical training process of a convolutional neural network is made up of two
alternating phases, the train phase and the validation phase, finally followed
by a third and last test phase, and these three phases are typically associated
to three different sets of the training data, the train-set, validation-set and
the test-set respectively.

The train phase is when the actual training is performed so, for each
training step, a batch of images if extracted from the train-set and used to

30

4.2 – The training process

Figure 4.1. Frames of some of the sequences of the UA-DETRAC
dataset, showing vehicles classes, ignored regions, and truncation-
ratios as box colours. Taken from [18]

update the weights through the backpropagation algorithm with stochastic
gradient descent. A train phase usually comprises a certain number of train
steps, after which the train process switches to the validation phase

After a number of train steps are performed, or after a certain time in the
train phase has passed, a rapid evaluation of the model is performed. This
phase outputs logs with selected measurements, such as the value of the loss
function and, in case of a detection network, AP values to measure the detec-
tion performance, that need to be tracked during the training process. The
samples used for this phase are taken from the validation set, which should
be different from the train set in order to highlight the generalization capa-
bilities of the model. The outputs of the validation phase are generally used
to evaluate the whole process and to select a promising model configuration
as a possible final model.

At the end of the training process, when a promising final model is selected,
a test phase is typically performed by evaluating the performances of the
selected models against a different, possibly uncorrelated, set of samples, the
test set. Since the models are chosen by selecting high performances on the
validation set, having a separated test sets is important to enable a more

31

4 – Fine tuning the models

precise evaluation of how a model will perform on unseen data.

4.2.1 Adopted process
The adopted process follows the structure that was just introduced, alter-
nating between a train phase and an evaluation phase until the detection
performance on the validation set seems to stop its ascent and keeps oscil-
lating around the a maximum value and, in parallel, the total loss function
seem to stop its descent and oscillate around a minimum value. The stop is
thus manual and the best checkpoint, i.e. the one with the higheast mAP
over the validation set, is then chosen. Note that a thorough evaluation on
the test set and on some additional test data is done and presented in the
results chapter.

The conditions that toggle the switch between the train and the evaluation
phases are the following:

• Train → Evaluation: when 10 minutes of training are passed

• Evaluation → Train: when the evaluation is complete (more on this
in the following paragraph)

Since, as it will be shown in section 4.3.1, the evaluation set is quite large,
consisting of 5 sequences for a total of 6246 images, a full evaluation every 10
minutes is unfeasible (the training would spend a lot more time evaluating
rather than fitting) so the evaluation configuration is set to perform the eval
step on 1 sample every 20 samples.

Image 4.2 depicts the process and summarizes what has been said in this
section.

Train
phase

Validation
phase

Stop
Training

After
10 mins

Stable mAP
and loss

Evaluation ends
(1/50 of set)

Stable mAP and loss

Figure 4.2. Schematic view of the training process and conditions

32

4.3 – Dataset preparation

4.3 Dataset preparation

4.3.1 Defining train and validation sets for the UA-
DETRAC dataset

As noted in the dataset description, the dataset comes with a train set of
60 sequences and a test set of 40 sequences but only the former comes with
ground-truth annotations files. Albeit the test set does not have ground
truth boxes, it can be used for evaluation with their provided toolkit, with
a limitation though: it evaluates detection performance of vehicles in gen-
eral, without discerning between classes. That’s why new test data will be
introduced in the results chapter. Another limitation of this subdivision is
that there is no explicit validation set so the validation sequences had to be
extracted from the train set. The chosen subdivision comprises 55 sequences
for the train set and 5 sequences for the validation set and it is shown in
figure 4.3.

Train set Validation set

Figure 4.3. Summary of the chosen subdivision between train and validation sets

33

4 – Fine tuning the models

The rationale behind the above 55-5 subdivision is to keep the train set
as large and diverse as possible in order to reduce the risk of overfitting,
considering that only 60% of the whole dataset (approximately 6 hours) is
annotated for the public and that the 60 sequences are not from 60 different
situations, with many sequences being just different clips from the same shots.
That’s why the clips extracted for the validation set only contain shots which
have direct siblings in the train set and no unique shot was extracted. It can
be a risk since having no unseen setting in the validation set will eventually
bias the evaluation results but keeping the most possible diverse train set
was preferred.

4.3.2 Preparing the samples
The annotated sequences are composed of a set of frames and an XML file
containing the annotations for the frames of the sequence, and they have to
be parsed in order to be used by the Tensorflow estimator (the API object
responsible for the training). An XML sample UA-DETRAC annotation file
follows this structure:
1 <sequence name="MVI_20011">
2 <sequence_attr ibute camera_state=" unstab le " sence_weather=

" sunny " />
3 <ignored_reg ion>
4 <box l e f t=" 778 .75 " top=" 24 .75 " width=" 181 .75 " he ight="

63 .5 " />
5 <!−− Poss ib ly other r e g i o n s . . . −−>
6 </ ignored_reg ion>
7 <frame dens i ty=" 7 " num=" 1 ">
8 <t a r g e t _ l i s t>
9 <ta r g e t id=" 1 ">

10 <box l e f t=" 592 .75 " top=" 378 .8 " width=" 160 .05 "
he ight=" 162 .2 " />

11 <a t t r i b u t e o r i e n t a t i o n=" 18 .488 " speed=" 6 .859 "
t r a j e c to ry_ l eng th=" 5 " t runcat i on_rat i o=" 0 .1 " veh ic l e_type=
" car " />

12 </ ta r g e t>
13 <!−− Other t a r g e t s in the frame . . . −−>
14 </ t a r g e t _ l i s t>
15 </frame>
16 <!−− Other frames o f the sequence . . . −−>
17 </ sequence>

The XML root is a sequence object which has the following children:

34

4.3 – Dataset preparation

a sequence_attribute child that specifies camera stats and weather, an ig-
nored_region child which contains boxes of regions that have not been an-
notated (i.e. far segments of a road, parking areas) and N frame children
that contain the annotations for each of the N images in the sequence. Each
frame object has a target_list with a series of target children, each contain-
ing a box with the coordinates of the rectangle that surrounds the object and
an attribute object with data like the category (car, bus, van or other) or the
speed of the vehicle. The objects in the annotations are tracked between the
frames and the target id can be seen as a track id which the object during
its passage in the scene.

The annotated data that has to be fed to the training process in Ten-
sorFlow needs to be parsed to n tfrecord files, where n is configurable and
corresponds to the number of shards. Each TFRecord file will contain a series
of Tensorflow Example objects, one for each frame sample, that contain not
only the annotations but also the encoded image data as JPEG. Setting the
number of shards to 1 produces 1 big tfrecord file containing the samples of
the whole dataset, while setting it to something greater than 1 will produce
multiple files, providing speed benefits by enabling concurrent readers and
facilitating the shuffling operations while reading the samples. A form of very
simple shuffling is performed during the write operations by simply iterating
through the record files while saving the frame samples. In this work, the
number of shards was set to 20.

Dealing with the ignored regions

A problem that has to be addressed is how to manage the ignored regions,
since Tensorflow od api doesn’t have a built-in way to manage them. Leaving
them be is not an option, since the loss function would penalize the network if
any detection in those non-annotated regions is found (they would be treated
as false positives), so the simple adopted solution was to mask them with a
uniform black overlay, as it can be seen in the following image.

A limit of this approach is that some context information is lost due to
the masking but it is also true that in the data augmentation step random
crops are performed so the loss should not be too noticeable. It would be
interesting to analyze the performance differences, if any, between masking
the image versus managing the ignored regions directly in the training process
but this would require modifications to the algorithm itself, which is why this
comparison was discarded. The mask solution was thus chosen since it works
out-of-the-box with accurate detection performance.

35

4 – Fine tuning the models

Ignored region

Ignored region

Ignored region

Ignored
region

Ignored Regions in XML Annotation Resulting Input Sample

Figure 4.4. Cutout of ignored regions in input samples

4.3.3 Data augmentation

The smaller the training dataset, the higher the risk to overfit it. A way of
dealing with the overfitting problem is to virtually enlarge the dataset by
creating new samples starting from the original ones; the process is typically
referred to as data augmentation. In this work data augmentation is done
online at training time by a preprocessor offered by the object detection api.
In this way, no additional input data has to be created and stored. The
preprocessor has been configured to mimic the augmentations done by the
Faster R-CNN and SSD papers.

For the Faster R-CNN architectures the input samples are just randomly
horizontally flipped, while for the SSD architectures the inputs are randomly
flipped and also randomly cropped. The random crop method follows the
one defined in the SSD paper, where the input sample is randomly processed
in one of the following ways:

1. Left as is

2. Cropped with a IOU threshold of 0.1, 0.3, 0.5, 0.7, or 0.9 with at least
one ground truth object

3. Cropped without caring of the above constraint (implemented by setting
IOU threshold to 0.0)

The image crop is eventually executed by keeping a random size between 0.1
and 1 of the original image size and an aspect ratio between 0.5 and 2.

36

4.4 – Chosen models and hyperparameters

4.4 Chosen models and hyperparameters
As seen in section 3.2.1, the Object Detection API offers a multitude of com-
binations of algorithms and models and the research team behind the project
produced a graph (figure 3.2) plotting the detection precision against the in-
ference speed. Four of what seemed to be the most promising combinations
of algorithms and models were chosen and fine tuned in this work:

• SSD with MobileNet v2 backbone

• SSD with MobileNet v2 backbone and small anchors

• SSD with Inception v2 backbone

• Faster R-CNN with ResNet-50 backbone

Three out of four combinations use the SSD algorithm since it appears
to give good results with a smaller computational cost, the Faster R-CNN,
instead, was fine tuned to provide a slow but more precise model and see
how it compares to the others.

4.4.1 Training hyperparameters
The training hyperparameters are all those parameters which are set before
the training and influence the outcome of the training process. Since this
work has a great emphasis on the framework development part, the hyper-
prarameters were set following the ones provided by the researchers behind
the Object Detection API and the only modification that has been done
regards the size of anchor boxes of the SSD MobileNet v2, thus the distinction
between SSD MobileNet v2 and SSD MobileNet v2 with small anchors.

The models were trained with stochastic gradient descent and mini-batches
of size 24, except for the Faster R-CNN with ResNet-50 for which the size
was set to 1 for memory reasons. The learning rate has been set to 0.004 for
the SSD models and to 0.0003 for the Faster R-CNN (it should counteract
the effects of the less precise weight updates due to the batch size of 1). The
optimizers choices follow the ones made by the research team to obtain their
results, so the RMSprop was used for the SSD models while Momentum was
used for the Faster R-CNN Resnet-50.

37

4 – Fine tuning the models

4.5 Training evaluation
As previously seen, the training phase is alternated, after a certain number
of training steps or time, to evaluation phases in which values of the loss
function (and it’s components) together with some measures on the model
detection precision are produced (the discussion on the evaluation metrics
will be presented in the next section). This continuous evaluation is useful
to assess the training performance and to provide a means to decide for an
early stopping of the training process (one can see when the loss function
and the detection performance seem to have settled on some values or even
if the precision starts decreasing due to overfitting on the training set).

The results of the evaluations regarding the detection precision use the
COCO mAP metric, where mAP stands for mean Average Precision, so the
next section will describe the metric and give a simplified description on how
it is calculated. Finally the evaluation results will be shown.

4.5.1 Evaluation metrics
Assessing the detection performance of a model is not a simple task, for
example some models might be better at classifying the detected objects,
some others might be more precise at localizing the object (i.e. they produce
a tighter bounding box), moreover, models could be biased and perform
better on some specific classes rather than others.

In order to quantify the detection precision the mAP, mean Average Pre-
cision, along with it’s variations, is the standard most used metric. In par-
ticular, the COCO mAP Detection evalutation metrics will be used. This
section will describe the metrics definitions and calculations, starting from
it’s basic concepts.

The first concept that will be introduced is the IOU which is used to cal-
culate the distance between two detection boxes to determine if the detection
is a hit or a miss. After the IOU, the concepts of Precision and Recall, which
are the components used to calculate the mAP, will be introduced. Finally,
the mAP and it’s variations will be described.

Intersection Over Union

IOU is an acronym that stands for Intersection Over Union and, as the name
suggests, it measures the similarity between two boxes as the area of the
intersection of two detection boxes with respect to the area of the union of

38

4.5 – Training evaluation

the two:
IOU(A,B) = Area(A ∩B)

Area(A ∪B)
A visual representation of the IOU is shown in figure 4.5.

IOU:

0.40 0.73 0.93

IOU
values:

Figure 4.5. Visual representation of the IOU distance with some examples

In the context of evaluation, it is used to match detections with ground-
truth objects. Models with precise localization, producing boxes which are
enclosing the ground-truth object more precisely than other models, will have
a higher IOU for their detected boxes and it will be seen that a specific set
of metrics (the COCO mAPs) favours this aspect.

The link between this metric and the evaluation will be explained in the
following paragraph.

Hit or Miss? Defining True and False Positives and False Negatives

How does the COCO mAP evaluation algorithm determine whether a detec-
tion is a hit or a miss?

Firstly let’s fix a few parameters to make things simpler. Let’s consider
one class for the detection task, let’s say cars, choose a IOU threshold, for
example a IOU threshold of 0.50, and a confidence threshold, let’s say 0.5
(the confidence is an output produced for each detection model that tells
how sure the model is that the detection is correct and regards the predicted
class, see figure 5.2).

Based on the three parameters considered above, the algorithm cycles all
the cars detections with a score greater than the confidence threshold (at
least 50% sure it’s a car) and tries to find the best ground-truth box of the
same class that can match that detection.

The best matching ground-truth box gtj is the one that has the highest
IOU score with the considered detection di:

BestMatch(di) = {gtj| max
gtj∈GTboxes

IOU(di, gtj)}, dj ∈ Dboxes

39

4 – Fine tuning the models

If the IOU between the detection di and the best match gtj is greater than
the considered IOU threshold, the detection is considered a hit, technically
called True Positive. Instead, if the best-match gtj has a IOU with di lower
than the threshold or if no matches are found (i.e. all IOUs between detec-
tion and ground truth boxes are zero), the detection is considered a miss,
technically called False Positive.

This process is carried on for all detections, removing ground truth boxes
while they are matched, and after all detections are processed the remain-
ing unmatched ground-truth boxes are considered as False Negatives (e.g.
undetected cars).

Precision and Recall

Precision and recall are the two main components of the detection evaluation.
They are strictly linked to the concepts of True Positives, TP for short, False
Positives, FP for short, and False Negatives, FN for short, as defined in the
previous paragraphs.

The precision measures how reliable are the model’s positive detections
and it’s defined as follows:

Precision = TruePositives

TruePositives+ FalsePositives

A model that produces a very low number of wrong detections, even if
the detections are few, will have a high precision. For example, a model that
detects only 2 cars out of 10 (2 TP) but does not produce any wrong detec-
tion (0 FP) will have a precision of 1.0, even if it left out many undetected
cars. Thus, in order to assess the detection performance a second metric is
introduced, it’s the recall.

The recall measures how good is the model at detecting ground-truth
objects and it’s defined as follow:

Recall = TruePositives

TruePositives+ FalseNegatives

A model that detects many ground-truth objects will have a high recall.
For example, a detector that detects 10 cars out of 10 but also detects 2
trees, 4 bushes and 2 patches of road as cars, would have a recall of 1.0.

To summarize, the first detector (2 out of 10 cars and no other detections)
would have a high precision but a low recall, the second detector (10 out of 10
cars but also trees, bushes, background detected as cars) would have a high
recall but a low precision, an optimal detector would have both precision and
recall at 1.0 (10 out of 10 cars and nothing else detected as car).

40

4.5 – Training evaluation

Average Precision

In the previous paragraphs, among the fixed parameters, the confidence
threshold was set to an arbitrary value of 0.5, but what happens if we change
that threshold? Let’s say we consider detections with a score threshold of
0.95, we would have few but possibly very precise detections, leading to a low
recall and a high precision. Instead, if we consider detections with a thresh-
old of 0.05, we would have tons of detections with a lot of errors, possibly
leading to a a high recall but a low precision.

Starting from a threshold value of 1.0, the more we move the threshold
towards low confidence values the more detections are included and this
should lead to an overall decrease of precision and increase of recall.

Technically, instead of moving the threshold, what it’s done is that the
detections for the class are ranked from most confident to least confident,
then precision and recall values are calculated on an increasing list of de-
tections, starting from a list containing only the first detection (the most
confident) down to the list that contains all detections. The couples of val-
ues (precision, recall)i obtained at each step are plotted (with an interpola-
tion algorithm not described here for brevity) in a curve like graph, and an
approximation of the area under the curve is taken as Average Precision.

COCO mAP @ 0.50 IOU (a.k.a. Pascal VOC metric)

The average precision, as described in the last paragraph, is the main metric
that defines the detector performance on a class of objects but a model usually
detects more than one class. The models trained on the DETRAC dataset
should also detect buses, vans and others. The mean average precision, mAP,
calculated with a IOU threshold of 0.50 (as defined in the “Hit or Miss”
paragraph), is the simple arithmetic mean of the APs over all the classes,
and assesses (though with some limitations that will be highlighted in the
results section) the general detection performance of the model. It is used in
Pascal VOC Challenges and it is one of the components of the COCO mAP
metric.

COCO mAP

The reason why the above metric has the “@ 0.50” part is that it is computed
by considering hits or misses while matching detections with ground-truth
boxes with a fixed IOU threshold of 0.50 between the two . Having a fixed
threshold does not assess the localization performance of the detectors and

41

4 – Fine tuning the models

that’s why the official COCO mAP metric considers the arithmetic mean of
the mAPs at all thresholds from 0.05 to 0.95 with a step of 0.05.

The COCO tools, together with the Tensorflow OD API, may produce the
mAP, the mAP@0.50 IOU, the mAP@0.75, for all classes and , with a slight
modification also for each single class.

4.5.2 Evaluation results
This section will show the results of the evaluation phases done during the
training process. The results are the values of the loss function and it’s
components and the mAP metrics, calculated on 1/20th of the DETRAC
eval set. For the sake of brevity only the total loss function and some of the
mAPs will be shown.

The results are plotted against the increasing training steps on the x-axis,
where each training step represents an update of the neural network’s weight
according to the batch of samples, thus steps and training time of the models
are proportional.

The evaluation runs every 10 minutes of training and each time an eval-
uation is run, the model, which has reached step k, is saved as a checkpoint
and the loss and mAPs are produced.

SSD with MobileNet v2

The following graphs show the evolution of the mAP, mAP at 0.50 IOU and
total loss of the SSD with MobileNet v2 model during the training steps:

0
20000

40000
60000

80000
100000

120000
140000

160000
180000

200000
220000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SSD + MobileNet v2 - mAP and mAP@0.50 IOU

mAP avg mAP MAP 0.50 avg mAP 0.50

42

4.5 – Training evaluation

0
20000

40000
60000

80000
100000

120000
140000

160000
180000

200000
220000

2

3

4

5

6

7

8

SSD + MobileNet v2 - Total Loss

Total Loss avg Total Loss

SSD with MobileNet v2 and small anchors

The following graphs show the evolution of the mAP, mAP at 0.50 IOU
and total loss of the SSD with MobileNet v2 model with small anchor boxes
during the training steps:

0
20000

40000
60000

80000
100000

120000
140000

160000
180000

200000
220000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SSD + MobileNet v2 with small anchors - mAP and mAP@0.50 IOU

mAP avg mAP MAP 0.50 avg mAP 0.50

43

4 – Fine tuning the models

0
20000

40000
60000

80000
100000

120000
140000

160000
180000

200000
220000

2

3

4

5

6

7

8

9

10

SSD + MobileNet v2 with small anchors - Total Loss

Total Loss avg Total Loss

SSD with Inception v2

The following graphs show the evolution of the mAP, mAP at 0.50 IOU and
total loss of the SSD with Inception v2 model during the training steps:

0
20000

40000
60000

80000
100000

120000
140000

160000
180000

200000
220000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SSD + Inception v2 - mAP and mAP@0.50 IOU

mAP avg mAP MAP 0.50 avg mAP 0.50

44

4.5 – Training evaluation

0
20000

40000
60000

80000
100000

120000
140000

160000
180000

200000
220000

2

3

4

5

6

7

8

9

10

11

SSD + inception v2 - Total Loss

Total Loss avg Total Loss

Faster R-CNN with ResNet-50

The following graphs show the evolution of the mAP, mAP at 0.50 IOU and
total loss of the Faster R-CNN with ResNet-50 model during the training
steps:

0
20000

40000
60000

80000
100000

120000
140000

160000
180000

200000
220000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Faster R-CNN + ResNet 50 - mAP and mAP@0.50 IOU

mAP avg mAP MAP 0.50 avg mAP 0.50

45

4 – Fine tuning the models

0
20000

40000
60000

80000
100000

120000
140000

160000
180000

200000
220000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Faster R-CNN + ResNet 50 - Total Loss

Total Loss avg Total Loss

46

Chapter 5

Framework
Implementation
This chapter focuses on the software products of this work. The second
part of the work in fact, possibly the most consistent, assessed the creation
of a framework to perform road traffic analysis using vehicle detection and
tracking data extracted from a connected IP camera’s live feed.

The development work, actually, goes beyond this described task since the
first idea of the company, as already mentioned in the introductory chapter,
was to create a prototype of “smart adapter”, i.e. a fully-configurable edge
platformized for many different scenarios, from road traffic analysis, to pedes-
trian counting, or industrial appliances. In order to pursue these principles,
the design of the framework follows the flow-programming paradigm with a
modular plugin architecture. The advantages of this architecture together
with a discussion on how this eases the shift between different scenarios will
be presented in the following sections. Nonetheless, for the sake of giving
a more thorough insight on the performance of the framework, the develop-
ment and the analysis focused on a single scenario and, as the company had
a live traffic camera available, the road traffic scenario was finally chosen.

5.1 Detpipe
Detpipe is the name chosen for the main component of the framework, the
detection pipeline. The framework, in fact, consists of three components, the
detection pipeline, a REST server and a dashboard web app, although the
two latter components act merely as a control interface for the pipeline itself.

47

5 – Framework Implementation

5.1.1 Architectural design
Detpipe’s design follows the flow-based programming paradigm and it’s in-
spired by frameworks like IBM’s Node-RED and Spotify’s Luigi. The first
is a JavaScript framework, mostly used in IoT, which provides a visual-
programming interface to connect hardware devices, APIs and online ser-
vices to perform real time data feeds collection and processing, the latter is a
Python framework that provides tools to manage big-data batch processing.
They differ in their structure and intent but they share the same principle,
they are both based on a pipeline to define the flow of operations applied to
the data.

In Detpipe, the data-flow is a sequence of frames extracted from one or
more connected cameras, that are processed with various modules in order
to output annotated frames and statistics such as vehicles classification and
counting. The operational configuration is represented by a JSON pipeline
file, which defines a series of modules and a series of connections between
them, called pipes. Source modules produce data that flows through pipes
through other processing modules up to some final sink modules that will
display frames or send statistics to a database.

VIDEO SRC
MODULE

Corso Mortara

WRITE
PORT
Image

CTRL PORT

MQTT CLIENT
MODULE

READ
PORT

Detect.

CTRL PORT

OBJECT
DETECTION

MODULE
Vehicles

READ
PORT
Image

CTRL PORT

WRITE
PORT
Detect.

TRACKING
MODULE

READ
PORT
Detect.

CTRL PORT

WRITE
PORT
Detect.

VIDEO OUT
MODULE

READ
PORT

Detect.

CTRL PORT

Figure 5.1. A simple pipeline configuration for detecting vehicles from a
camera source module down to the output modules

The above image shows a streamlined pipeline with two camera sources
connected to detection modules, tracking modules and finally two output
modules.

Modules

Modules are the building blocks of the pipeline, and are composed of a main
function block together with input and output ports. Depending on their
characteristics, the modules can be divided into three categories: source

48

5.1 – Detpipe

modules, such as a live camera feed, that only have output ports to which to
write fresh data; sink modules, such as a video output or a database client,
that have no output and simply show or collect the processed data; processing
modules, such as an object detector or a tracker, which have both types of
ports and will read data, apply come functions and forward the processed
data to a subsequent module. This categorization is presented only for the
sake of clarity since the framework sees all the modules the same way.

Ports

Every module can define i/o ports on which it will receive/send data. They
have to be defined in the module’s configuration file and, once the framework
is started, the relevant structures will be automatically created such that the
module will transparently call the provided read and write functions without
caring of the lower implementation. The ports are identified by a name,
used in the read and write functions in order to select from where to read
the data or to which port to write it, a port type, used to select the port
implementation (more details on the implementations will follow), a message
type and an encoding. The two latter fields are used to provide matching
between connected ports (in order to identify configuration problems before
the framework is started) and to automatically parse messages according to
a dynamically imported type. In the current version of the framework, the
message type refers to a Protobuf message class and the encoding can be
either BINARY or JSON, according to the respective encodings defined in
Protobuf library.

Pipes

In Detpipe, pipes indicate the connections between modules’ ports ad their
implementation depends on the port type parameter specified for the in/out
ports which they have to connect. The current version of the framework
supports only one type of port/pipes which is ZMQ/xxx type, based on the
ZMQ open source library, implemented in c++ with also a python interface,
which uses TCP/IP or UNIX sockets as the underlying implementation to
provide easy messaging between processes. In this specific case UNIX sockets
are being used due to their reduced communication overhead. Each pipe is
identified by an alphanumerical id which will be translated to a Unix socket
file in a folder specified in Detpipe’s main configuration file, according to a
template specified in the same config.

49

5 – Framework Implementation

The xxx part of the pipe type specifies the subtype, and the current ver-
sions of Detpipe supports three subtypes, a REQ subtype, a REP subtype
and a PUBSUB subtype, directly mapped to the corresponding ZMQ RE-
Q/REP and PUB/SUB socket types. REQ and REP pipes are bidirectional
pipes that support a server/client behaviour, they are used for modules’ con-
trol ports in the python control interface. A REP pipe acts like a server,
it binds to a specific socket and waits for requests from a REQ pipes, then
it replies to the requests and goes back to the listen state. A REQ pipe
acts like a client, sending requests to a REP pipes and reading the received
reply. Each REQ or REP pipe must alternate between reading and writing
otherwise an error is raised. A PUBSUB pipe will be mapped to a PUB pipe
if it’s requested as write-only or to a SUB pipe if it’s requested as read-only
(they can not be bidirectional). They provide an MQTT like behaviour, i.e.
a process writes to a PUB pipe and any connected SUB pipe receives the
message, and they are used to implement the connection between modules.
It’s important noticing that, differently from REQ/REP pipes, PUB and
SUB pipes are only non-blocking, so any message that is not read and that
overflows the buffer size specified in Detpipe configuration will be dropped.
This means that a source can inject frames in the pipeline and slower mod-
ules will not harm faster modules connected to the same PUB pipe but this
also limits the syncing ability between parallels modules.

5.1.2 Running model
In order to get the best performance a multi-process approach had to be
pursued and the following two solutions, which share in common the fact
that each module runs in a separate process, were evaluated:

1. Python multiprocessing: This solution implies having a single main
process launching child processes for the modules, and it was the first
considered option. Such a solution would enable the use of communica-
tions methods in the official multiprocessing Python library but it would
also require the implementation of a control mechanism in order to start
and stop modules, and to restore them in case of errors.

2. Separate processes + Supervisord: This solution implies having
separate completely independent processes, one for each modules, launched
and controlled by the external application Supervisord. The advantage
of this solution is that the all the process control is done by supervisord,
which also exposes a cmd line interface and an XML-RPC interface for

50

5.1 – Detpipe

starting stopping and interrogating the modules and a logging function
for the stdout and stderr of the modules.

The chosen solution is the second one, so the running model is built around
the use of supervisord. Supervisord requires the definition of what it calls
“programs”, i.e. the processes that need to be launched, in a configuration
file which lists the name of the program, which is mapped to the id of the
module in the pipeline, and the shell command which will be executed, which
is mapped to a script that loads the virtualenv and then launches a python
script with the module name and parameters. The supervisord configuration
file is written by the framework each time a new pipeline configuration is
loaded.

Once supervisord configuration is written and loaded, the modules can
be started, stopped and interrogated for the status from supervisorctl shell
interface, with supervisorctl utility, or directly in python with detpipe’s own
control interface which internally uses supervisord XML-RPC api.

Module options

Each module can define a set of options representing runtime parameters
such as the URI of a video and the crop and scale ratios for the video source
module, the CNN model for the detection module, the thresholds, params
and counter lines for the tracking module, and various other options. Each
option can be changed through the python interface or through the web app
and they can also be changed at runtime through the modules’ CTRL ports.

Pipeline initialization and start

When the pipeline is started, every module of the pipeline is initialized ac-
cording to the pipeline JSON file, which contains the definitions of the pipes
between the modules ports and the runtime options passed to each module.
Before starting the modules run functions, Detpipe first performs some val-
idation checks against connected pipes, checking if the ports connected by
each pipe have the same port type and msg type, and against the options,
which have to be parsable according to the types declared in the modules’
properties. The modules will start only after these checks are performed and
after the options have been parsed.

51

5 – Framework Implementation

Module stopping and signal handling

Each module runs in a separate daemon child thread and should perform it’s
functionality in a cycle, checking against the “self.stopped” variable. When-
ever the main threads receives a stop signal it sets the variable to False and
waits 10 seconds for the child thread to exit. If the child is still running, the
main thread exits and the child gets killed. Running the module’s main func-
tion in a child thread saves it from the problem of recovering from interrupted
function calls. Indeed, the signaling is managed by the parent.

5.1.3 Extensibility
Extensibility is a key component of the framework design, which provides
a plugin-like architecture which eases the creation and integration of new
modules or pipe types into the framework.

Modules

The framework already provides the modules needed for a full detection
pipeline but new modules can be easily built and plugged in thanks to a se-
ries of defined interfaces and configuration schemes. Any module in Detpipe
must extend a BaseModule class, which transparently provides all the base
functionality ranging from module initialization to i/o read/write and option
parsing, override a run function with the module’s main loop and eventually
override some control functions if advanced custom behaviour is needed. A
module also has to provide a configuration file defining input/output ports
and their respective types (pipes and port types will be discussed later), ac-
cepted options and their types. Finally, in order to be seen by the framework,
any module has to be defined in the main Detpipe configuration file, with a
section that defines the module’s name and its packages for dynamic import.

Pipes

Different pipes implementation can also be provided, they need to be regis-
tered by calling a register function provided by the framework and provide
a name with which they will be identified in the modules’ properties. Cur-
rently, the provided PyZMQ pipes are registered with types “ZMQ/PUB-
SUB’, “ZMQ/REQ”’ and “ZMQ/REP”, alternatives implementations will
have to provide the three basic pipe types implementations, some protobuf
encoder and decoders, and that’s all.

52

5.2 – Detpipe modules

5.2 Detpipe modules
5.2.1 Source module
The video source module is responsible for decoding the video stream and
injecting the frames into the pipeline. It supports RTSP live streams, such
as the stream coming from a connected IP camera, but it can also be used
with recorded video files for performance testing or debugging purposes. The
source module uses OpenCV VideoCapture object and can be set from the
main configuration to work in two different ways, with gstreamer support or
without it.

Gstreamer is a media applications framework, similar to the ffmpeg library,
which is used by OpenCV’s VideoCapture as an alternative backend library
to capture and decode the frames. It is used on the Jetson board to enable
the hardware accelerator for stream encoding and decoding, which is quite
important to get better speed performances. In order to use it, OpenCV
has to be built with gstreamer support and, although Nvidia L4T came
with hw accelerated gstreamer and prebuilt OpenCV, a manual build had to
be performed since, unexpectedly, the latter wasn’t built with the former’s
support.

Moreover, to use gstreamer hw acceleration the VideoCapture object has
to be initialized with a special syntax, a gstreamer pipeline, which is gstreamer’s
way of defining the flow of plugins that will produce the videoframes, starting
from a source down to OpenCV’s frame buffer. The pipeline templates used
for RTSP streams and files, located in Detpipe main configuration file for
easy modification and tweaking, are the following:
1 # Gstreamer r t sp p i p e l i n e
2 r t s p s r c l o c a t i o n={l o c a t i o n } la t ency =2000 pro to co l=

GST_RTSP_LOWER_TRANS_TCP ! rtph264depay ! h264parse !
omxh264dec ! nvvidconv { crop_str } ! v ideo /x−raw , format=(
s t r i n g)BGRx{ s c a l e _ s t r } ! v ideoconver t ! appsink

3 # Gstreamer f i l e p i p e l i n e
4 f i l e s r c l o c a t i o n={l o c a t i o n } ! qtdemux ! h264parse !

omxh264dec ! nvvidconv { crop_str } ! v ideo /x−raw , format=(
s t r i n g)BGRx{ s c a l e _ s t r } ! v ideoconver t ! appsink

The location will be filled with the stream’s URI or the file’s path, while
crop_str and scale_str will eventually contain the top, left, bottom, right
parameters if cropping is needed, and width and height if scaling is needed,
according to the runtime options passed to the module. Cropping is very
useful when the available stream has a very large field of view, like in the

53

5 – Framework Implementation

case of the stream provided for this work, and scaling can enhance speed
performance, as it will be seen, and performing the two operations directly
in gstreamer is more convenient.

In case gstreamer is not supported or it has been turned off in Detpipe con-
figuration, the standard VideoCapture is used, and the cropping and scaling,
whether defined as options, will be still applied programmatically.

5.2.2 Object Detection module
The object detection module is the core of the detection pipeline, it receives
non-annotated frames and adds annotations for all the objects it finds using
a neural network, called graph in Tensorflow, produced with the Tensorflow
OD API. The options accepted by the modules are presented in section ??.

The module loads the Tensorflow graph specified in the frozen_graph_path
option which is a .pb protobuf binary file, as per tensorflow specifications,
and also looks for a label map file named which specifies the mapping be-
tween the integer class indexes produced by the graph and the names of the
corresponding classes. Once the model is loaded, the module starts reading
frames, feeding the neural network, processing the outputs and sending them
to the next connected module.

The output of the graph is composed of 3 vectors, also called tensors: a
boxes vector, a scores vector and a classes vector. All the three vectors have
size N , where N indicates the number of detections, and for each detection
i there is a box, a score and a class from the correspondent vectors. The
box is itself a vector of with the 4 elements ymin, xmin, ymax and xmax, the
score indicates the confidence of the prediction while the class indicates the
type of object detected. The output for detection i is depicted in figure 5.2.

While experimenting, an attempt in using the TensorRT inference engine
included in Tensorflow was made and, although the memory footprint dou-
bled, the speed performance did not change. A possibile explanation is that
TensorRT scripts included in Tensorflow are a work in progress and since
Tensorflow 1.11 (the version used in this work) they have changed quite a
bit. Nonetheless the option to run the model with tensorrt engine has been
left.

The detection module also offers the possibility to select one or more ROIs.
They are passed as options in the form of a string of polygons. If the polygons
string is provided, the image is cropped down to exactly fit all the polygons
and, if mask_image is true, the regions outside of the polygons is filled with
a black mask. The resulting cropped and eventually masked image is then

54

5.2 – Detpipe modules

X-AxisX-Axis

Y-A
xis

Y-A
xis

Score: 0.98
Class: 1 (car)xm

a
x

ymax

xm
in

ymin

xm
a

x

ymax

xm
in

ymin

Figure 5.2. Output box, score and class for detection i

fed to the network which will produce the detections, which will be scaled
back to the original image size and written to the following module.

5.2.3 Tracking module
The tracking module is responsible for identifying detections by associating
boxes surrounding the same object from different frames throughout time.
The desired output of the tracker is a unique track_id for each object, from
when it enters the scene to when it leaves it. The tracker algorithm has to
perform in an online scenario so it should produce track_ids every time it
receives a frame, based solely on the current detections and on his past his-
tory. As usual, the configuration options of the tracker module are presented
in section ??.

The problems that an online tracking algorithm based on detections may
encounter are mainly due to poor detectors, occlusion, dense detections with
very close objects and missed detections between frames. Some online track-
ing algorithms, such as the algorithm used in this work, are also susceptible
to low framerates, since in an online scenario this would mean high disloca-
tion of the objects between a frame and the succeding one. Fortunately, for
the vehicles use case, having a high camera point of view helps to mitigate
the occlusion and dense detections problems, the other problems, instead,
are mitigated by using a fast and precise detector.

For the tracking module an implementation of the IOU tracking algorithm
[1], adapted to work in an online scenario, was developed. The IOU tracker
exploits the recent advancements in the detection field in order to favour
simplicity over complexity, granting results able to compete with the more

55

5 – Framework Implementation

sophisticated trackers at a fraction of the cost. The IOU tracker, in fact,
is highly dependent on the detector performance and, in order to give good
results, it needs precise detection at a relatively high framerate.

Since the framework has to run on a low powered edge-device, computa-
tional performance was one of the main factors that led to the choice of the
IOU tracking algorithm. One of the key elements that makes the tracker so
performant, in terms of computational footprint, is that it does not require
any kind of visual information from the image and performs the associations
based only on the set of detection boxes, on which a nearest neighbour search
with a very lightweight measure is performed. The distance between two
boxes is measured with their IOU distance, hence the name of the tracker,
and the definition is shown below.

The algorithm

Technically, the tracker simplicity stands in the fact that all it does when
it receives a new frame is to perform a nearest neighbour search between
the detections on the new frame and the last detections corresponding to
active tracks, based on the IOU distance (the concept of active tracks will
be clarified in the following paragraphs).

In the algorithm the first note regards the distinction between active tracks
Tact and final tracks Tfin. The set of active tracks contains all the tracks for
which the objects is supposed to be still in the scene, and it’s the set on which
the search is performed. Every time an active track can not be matched (i.e.
the closest detection found has a IOU lower than a configurable threshold
σIOU), a missed frames counter associated to the tracked is incremented.
If the counter is greater than a σmiss threshold, the active tracks is closed
and moved to the set of finalized tracks. A second note regards the tracks
themselves, since the tracker keeps a history of the detections of the track
(the history length is configurable) every time a search is made it is obviously
made on the last available detection in the track.

One of the limitations of the tracker is the fact that it uses a greedy heuris-
tic for the nearest neighbour search, other trackers like SORT [20] use the
Hungarian algorithm to perform the best set of associations. Another limita-
tion is that it does not consider the objects velocities to predict the position
to be matched. Albeit having these limitations, the tracking performance
proved to be satisfactory in the real world use case and having a simpler im-
plementation helps reducing the impact on the whole pipeline performance,
which is completely unnoticeable in the current version of the framework.

56

5.2 – Detpipe modules

Algorithm 1 Tracker module
1: Inputs:
2: Dnew = {d1, . . . , dn} . New frame’s detections
3: Tact = {t1, . . . , tm} . Active tracks
4:
5: Initialization:
6: Tact ← ∅
7: Tfin ← ∅
8:
9: function NewFrame(Dnew, Tact)

10: Df ← {di|di ∈ Dnew, di ≥ σl}
11: for ti ∈ Tact do
12: dlast ← lastdet(ti) . Last detection of the track
13: dbest ← d | IOU(d, dlast) = maxdj∈Df

IOU(dj, dlast)
14: if IOU(dbest, dlast) ≥ σIOU then
15: add dbest to ti
16: remove dbest from Df

17: else
18: missedti ← missedti + 1
19: if missedti ≥ σmiss then
20: move ti from Tact to Tfin

21: end if
22: end if
23: end for
24: for dk ∈ Df do . Add remaining dets to new tracks
25: tnew ← newtrack(dk)
26: add tnew to Tact

27: end for
28: return Tact

29: end function

Counters

The tracker module does not only generate track ids, it also implements
vehicles counting through counter segments. Each segment is represented by
two points and indicates a crossing line, producing two sets of counters, one
per direction, which keep track of the number of vehicles crossing in both
directions, both total and by class.

57

5 – Framework Implementation

5.2.4 MQTT Client module

A framework for performing road traffic analysis, or any other kind of analy-
sis, has to provide a means to store the produced analytic data but, in order
to keep the board as light as possible, it’s been decided to send the data to
an external database. In order to do so the framework includes a module
that sends messages with the relevant data to a server with a broker and a
database at regular intervals, using the MQTT protocol.

MQTT is a messaging protocol based on a publisher/subscriber pattern
where a publisher sends messages with a topic to an intermediary peer called
broker which, in turn, will forward the message to all the connected sub-
scriber peers who subscribed to the same topic. Here the module acts as the
publisher while a subscriber will read the data and store it on the database.

The behaviour of the module is quite simple, it parses and accumulates the
data received from the pipeline, including detected objects by class, counted
objects by class and by counter segment and performance data such as avg
detection and loop times, and, after a certain time has passed, it creates a
JSON message with all the cumulative data and sends it with a Paho MQTT
client library. The stack and the behaviour of the receiving side is described
in section 5.5. Obviously the publish time interval, broker address, topic and
other options are configurable and a list of the module options can be found
in section ??.

5.2.5 Video output module

The video output module has a double function, the first function regards
outputting the annotated video frames to a window, if a screen is connected
to the host, the second function regards the output of the same annotated
video on an RTP stream with an OpenCV VideoWriter using a Gstreamer
pipeline with a udpsink.

The drawing functions for the boxes and for the tracks use OpenCV and
numpy vectorized operations in order to run with an unnoticeable computa-
tional cost; for a comparison, the current box drawing functions runs more
than 294 times faster than the equivalent function in tensorflow object de-
tection api which uses PIL.

Regarding the UDP stream, it’s a push stream produced by an OpenCV
VideoWriter initialized with the gstreamer pipeline below. Since it’s a push
stream, where the framework directly sends UDP packets to the receiver,

58

5.3 – REST API

the stream can not be viewed if the receiver is behind a NAT, unless port-
forwarding is set.
1 # Gstreamer UDP stream p i p e l i n e
2 appsrc ! v ideoconver t ! omxh264enc ! mpegtsmux ! rtpmp2tpay !

udpsink host={host } port={port }

The UDP stream feature, though, is experimental since in the current
implementation each frame is pushed to the VideoWriter as soon as it arrives
while a proper final implementation would need a separate thread with queues
and a buffer, writing at a constant predefined framerate.

5.3 REST API
The REST API is built as a side project to provide an alternative control
interface to be used directly, through a browser and the built-in Swagger UI,
or indirectly through the dashboard web app. It’s written in Pyhton using
Flask and Flask-restplus, the latter being an open-source module to ease the
development of a REST API by offering some additional functionality and
decorators for the API docs. The choice of the framework used for the server
development was firstly constrained by the fact that detpipe’s control inter-
face is in Python so using the same language for the server would have been
easier and more straight-forward and finally constrained by the performance
factor, which, for a simple REST API, made the decision between the two
most used Python web frameworks, Flask and Django, easily fall to the first
one.

The Swagger-UI is a very nice addition provided by the Flask-restplus
library and consists of a web UI, accessible by navigating to the root of the
rest server, automatically mapped to all the REST resources methods, with
an easy Try it out - Execute interface which is helpful for debugging and for
performing simple tasks without going through the web app.

The REST Flask application can be run in two modes:

1. Debug mode: The REST API is run on aWerkzeug server instance, the
debug server distributed with Flask, and does not require any particular
configuration apart from selecting a port and running the main app.py
file. The debug deployment setting though is highly discouraged in a
production environment due to performance and security issues.

2. Deploy mode: The REST API is run with a WSGI entry point (Web
Server Gateway Interface is a protocol which describes communications

59

5 – Framework Implementation

between a server and a Python web application) on a supported server.
The current implementation uses uWSGI server, set to accept connec-
tions on a Unix socket and reversed-proxied through NginX, which is
configured to forward all HTTP requests on port 8080 to the socket on
which uWSGI is listening.

On the TX2, the REST API runs in deploy mode, and all the additional
software and configurations were put in place.

5.4 React Control Dashboard
One of the interests of the company was to have a web UI to control the detec-
tion framework in a user friendly way, so that a non-developer could modify
options such as the detection model, the camera source URI, the visualization
options and others in a form-like structure. This requirement collided with
the initial idea of developing a flow-based interface with automatically loaded
modules and options but the company preferred the user friendly interface
solution which led to the final version of the control dashboard.

The dashboard is written in JavaScrpipt ES6 with Facebook’s React frame-
work. The advantage of using React is that it uses a web programming
paradigm which is based on the concept of states, where each view of the
web app is linked to one or more state variable and gets automatically re-
rendered if a new state triggers a change in the relevant view. A simple
example might be the update of a : with traditional Javascript you
would have to select the ul and manually add or remove children whenever
you fetch an updated version of the list; with React, instead, you would have
to define a render method and link it to the component’s state (e.g. having
a javascript list in the state and outputting an for each member of the
list would do the trick), then simply substituting the state with a new state
with the updated list would automatically trigger an update of the
DOM element.

The web app is designed as a client side single page application with all
the necessary javascript modules automatically bundled during the build of
the deploy version. The app is downloaded by visiting the index page and
communicates asynchronously with the REST server using the Fetch API;
this, in contrast with a dynamic-pages approach, slightly reduces the burden
on the Jetson board (less requests) while offering a smoother user experience
on the client (no page loadings).

60

5.4 – React Control Dashboard

Flows

Implementing the dashboard on top of detpipe’s pipeline configuration re-
quired an additional level of abstraction, so the concept of flows is intro-
duced. A flow is a series of connected modules that identifies all the modules
of a detection stream, from the video source module through the detection
module, the tracking module and finally to the output modules like MQTT
and video output.

Each flow is identified by the camera source that feeds the flow, and this
is reflected in the dashboard design, where a side menu lists all the cam-
era streams in the pipeline. Selecting a camera screen loads the dashboard
body, which presents the options, divided into sections, where each section is
mapped to a module (source, detection, tracking, mqtt, window). The track-
ing, mqtt and video output functions can be disabled through the dashboard
and the REST application will trigger a modification in the flow, eliminating
the disabled modules and adjusting the pipe connections.

New flows can be added by clicking on the “Add new source” option in
the side menu and following a wizard which prompts for the options required
for the new source in a series of modals.

Dynamic dashboard

The dashboard body, with the sections and all the options, is actually a
controlled form and all the fields are dynamically generated based on a JSON
description which is downloaded when the app is loaded. The JSON object
that represents the dashboard is divided in sections and each section has a list
of options which get translated into inputs, check-boxes and drop-downs and
radio-groups based on their type property and provide defaults, placeholders
and tooltips based on other corresponding properties. The advantage of this
approach is that the interface can be changed instantly without having to
rebuild and redeploy the web application.

The dashboard JSON additionally passes through the Jinja templating
engine in order to dynamically populate the lists of models and files (more
info on this in the following paragraph).

Usability

The design aspect was not a requirement in this work but usability was
actually a main concern while developing the web app so some UI choices
were taken in order to enhance it.

61

5 – Framework Implementation

Firstly, a UI framework was used in order to provide UI elements with a
modern behaviour, as it would be expected by an end user, and the chosen
framework is Semantic UI React, especially thanks to it’s simplicity. Sim-
plicity, though, comes at a cost, in fact, some UI components used in the
dashboard had to be developed by creating new components extending the
behaviour of some Semantic UI simpler components. An example are the
modals used in the dashboard, which extend the provided modals by adding
multi-panel navigation, multiple-choice dialogs, loading screens that can not
be discarded and custom confirmation messages.

Secondly, since the end user is supposed to be a non-developer but a
developer might want to use the web app too, without resorting to the python
control interface, the options in the dashboard JSON can define advanced or
develop flags, which directly modify the way they are rendered in the dynamic
dashboard. Setting the advanced property to true for an option hides it from
the user, unless the advanced toggle in the dashboard is activated, while
setting the develop property to true hides it even if the advanced toggle is
set. To show all the options, including the development ones, the user can
load the app with the devel flag set in the query string.

Lastly, not all options might be clear so placeholder and tooltips properties
can be added in the dashboard JSON. The placeholder property can be
defined for options of type input and it’s showed if the text input is empty.
Tooltips, instead, can be defined for any option field and are shown whenever
the user hovers the corresponding elements with the mouse cursor.

5.5 Integration with InfluxDB (or other)

5.6 Profiling
Some words about the profiling work, the yappi profilers integrated and called
with custom messages (maybe citing the problems with udp source), the use
of numpy, the use of rewritten drawing function (first rewritten with opencv,
then rewritten with numpy)

62

Chapter 6

Results
This chapter will describe the results of this work, starting from the test
dataset annotation, following on to the testbed description, and closing with
the actual results in terms of speed, detection performance and tracking
performance on a real use case.

6.1 Test sequence annotation
In order to provide an insight on the real use case performance and to evaluate
the models on unseen samples with a very different setting from the training
data, a 15 minutes sequence was recorded and annotated using a combination
of tools, a script written for the purpose and almost two days of handwork.
The sequence is a 720p crop of a 4k stream from a CSP Hikvision camera on
c.so Castelfidardo, Turin. It was recorded on a Friday at 12:55pm.

The software used to annotate the sequence is CVAT, an open-source soft-
ware available as a docker application while the script used for the cleaning
step is written in Python and works on the XML annotations dumped from
CVAT.

The product of the annotation is a sequence of 16669 frames with a total
of 88439 annotated ground truth boxes, and the process followed three steps
that will be described hereafter.

Step 1: TensorFlow auto-annotation

The first step consisted of performing a TensorFlow auto annotation of the
video directly with CVAT. The model used for this first processing step is
a Faster R-CNN with Inception ResNet v2 Atrous backbone, trained on the

63

6 – Results

COCO dataset, coming from the Object Detection API Model Zoo. It’s a
very slow but very precise model but it is still not perfect. It produces a
considerable number of wrong detections and it’s predicting boxes for 80
different classes.

CARCAR

TRAINTRAIN

Duplicated Duplicated
annotationsannotations

Figure 6.1. Errors from the TF auto annotation step

Step 2: Cleaning script

Eliminating all wrong detections by hand on more than 16 thousands frames,
right after the auto annotation process, was too time-consuming so a script
to perform a cleaning step was written. The script parses the CVAT XML
annotations and execute three types of filtering. Firstly, it finds special
polygons called ignored regions and eliminates all detections inside those
regions (in this case it eliminates all parked cars from all 16669 frames).
Secondly, it also filters detections by label, eliminating unwanted class labels.
Lastly, it also cleans any annotation bigger than a certain area threshold.

Since the majority of vehicles are cars, any annotation which is not a car
was eliminated, even if labels regarded other vehicles (bus, trucks, etc.). This
really sped up the manual process since checking each annotation on each
frame against a multitude of vehicles classes was too time-consuming and
error-prone (for each detection in each frame, is that box a car, or did the
auto-annotation label it as a van or a truck or vice-versa?). There were very
big cars and other unwanted objects detected in the middle of some frames

64

6.1 – Test sequence annotation

and they were eliminated by this last step. The cleaned xml annotations
were then loaded back into CVAT for the final manual step.

Step 3: Manual corrections and annotations of non-cars

The output of the cleaning step is a video with annotations of cars only, with
remaining errors that had to be addressed manually. Errors regarded dupli-
cated and missing detections when cars were lining up, and this happened
quite often due to semaphores in close proximity, missing detections when
cars were partially covered by tree branches, other vehicles labeled as cars
and wrongly localized boxes. This manual last step took almost two days
and involved deleting all duplicated or wrong detections, correcting wrongly
localized boxes and adding annotations for undetected cars and for all the
remaining vehicles. More than 8000 boxes were deleted one by one by hand,
and almost 12000 boxes were added, partly by hand and partly with inter-
polation methods.

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Others

Buses

Vans

Cars

Figure 6.2. Number of annotations, divided by class, in the an-
notated test dataset

The resulting sequence has 88439 annotation boxes with 82418 annota-
tions of cars, 4063 annotations of vans, 437 annotations of buses and 1521
annotations of other (trucks, special vehicles and pickups). This imbalance
towards cars, which make up more than 93% of the whole traffic, led to the
adaptation of the COCO mAP metric used in the detection performance
evaluation, and it’s implication will be further analyzed in the following sec-
tions.

65

6 – Results

6.2 Benchmark
The following table shows the running speeds of the models on the Nvidia
Jetson TX2 board.

FPS of the models at two different resolutions
- 720p 300x300

Mobilenet v2 5.60 6.93
Inception v2 14.20 19.82
Faster Rcnn 0.6 0.7

6.3 Detection performance analysis
This section will concentrate on the performance side of the testing of the
models. It will analyze all the considered models and their evolution during
their training (more on this in the paragraphs below), resulting in an exten-
sive set of tests, the definition of a new metric, derived from the existing ones,
and the presentation of various consideration on some particular conditions
that were highlighted during the process.

The starting point is the set of evaluations presented in section 4.5.2. In
fact, during the training process the models were evaluated every 10 minutes
on 1/20th of DETRAC Eval dataset and the resulting precision metrics, the
mAPs, were produced and plotted. Those evaluations, though, were only
done on a fraction of an already small dataset. The eval dataset (described
in detail in section 4.3.1) contains only 6246 frames, few compared to the
16669 of the annotated test set, and 1/20th of it only comprises 312 frames.
An evaluation executed on only 312 frames is quite unattendable so a new
set of detection tests, both on 1/5th of the DETRAC eval set and on 1/5th
of the hand-annotated Turin sequence, was performed.

6.3.1 Checkpoints and performance metrics
Before getting right into the test results, with tables and graphs containing
step values, mAPs, mAPs @ 0.50 and weighted mAPs, a recap is definitely
in order. The first concept to be clarified is the one of checkpoints and steps.
It will then be followed by a recap on the used mAPs and some important
considerations about the ones used throughout the tests.

66

6.3 – Detection performance analysis

Checkpoints

During the training process the model’s weight and parameters are updated
at each training step and every time an evaluation is made (once every 10
minutes) the model is saved. Each save produces what in TensorFlow jar-
gon is called checkpoint which is a representation of the model’s state at the
training step at which it was produced. A final neural network model is sim-
ply one of the checkpoints, exported to a binary format used for Tensorflow
inference at runtime. Choosing one “best” checkpoint for all of the consid-
ered models is the final objective of the two analysis (detection and tracking)
presented in this chapter.

Checkpoints with larger steps represent the models after a longer training
time and one may think that they ought to be more precise. This is not the
case though, since, as seen in the charts in section 4.5.2, even if the values of
the moving average of the mAPs tend to stabilize, the exact values continue
to fluctuate with differences that can exceed 20 percentage points for very
close steps of some models (e.g. SSD + MobileNet v2 at step 156,476 has a
mAP of 0.33 while at step 157,236 has a mAP of 0.57). The fact that the
precision values have this high fluctuations is the main reason that motivated
a more extensive set of tests on the detection performance

Performance metrics

Throughout the tests, the COCO mAP metrics were used to quantify the
detection performance of the models’ checkpoints. The reader should famil-
iarize with the description of the metrics and the simplified overview of its
calculation provided in section 4.5.1, especially with the concept of IOU and
detections matching, since this paragraph will add some considerations and
also provide a new metric derived from the original ones.

The first consideration regards the IOU matching and the fact that the
so called COCO mAP@0.50 IOU is the main metric chosen to represent the
models performance throughout the tests. This metric, as described in the
metrics section, considers matchings at a fixed IOU threshold of 0.5 and the
reason why it is used in place of the standard COCO mAP is that localization
precision is not the main concern of this analysis. The main aim of this work
is to provide fast models to analyze and count traffic so calculating matchings
at IOUs greater than 0.50 is good enough. Additionally, matching against
stricter IOU thresholds would need very precise ground truth boxes around
the objects, which is true for the UA-DETRAC annotations and less true for
the annotated Castelfidardo sequence.

67

6 – Results

The second consideration regards the introduction of a weighted derived
metric, introduced due to the traffic bias towards cars and the fact that the
standard COCOmetrics consider the total mAP values as a simple arithmetic
means of the mAPs by class, without considering the numbers of samples on
which they are calculated:

mAP = mAPcar +mAPbus +mAPvan +mAPother

4

This means that if a specific model checkpoint has a very high mAP(@0.50)
on cars but lower mAP(@0.50) on buses, vans and others, it will still have
a low general mAP(@0.50), even if the cars represented the most numerous
class. Since 93% of the traffic in the 15 minutes of annotated sequence in
Turin was made up of cars, the counting performance should prioritize that
class.

The derived metric will be called Weighted COCO mAP and in the tests
will be called WmAP for short, and it considers the number of samples used
for the evaluation:

WmAP = mAPc × nc +mAPb × nb +mAPv × nv +mAPo × no

nc + nb + nv + no

6.3.2 Training evaluations revisited
As already said, the mAPs collected during the training process regard 1/20th

of the DETRAC-Eval set, consisting of only 312 samples, so the first exten-
sive evaluation tests were run on the same DETRAC-Eval set, this time
evaluating 1/5th of the dataset, in order to highlight differences, if any, on
mAPs evaluated on a bigger portion of the same data. The tests were run on
the Top 50 available checkpoints of the four models, according to the stan-
dard mAP evaluated during the training evaluations, and the Top 5 for SSD
+ MobileNet v2 and SSD + Inception v2 are reported here.

DETRAC 1/20th DETRAC 1/5th

Model name Step mAP mAP@0.5 mAP mAP@0.5
SSD + MobileNet v2 95078 0.591 0.825 0.459 0.727
SSD + MobileNet v2 90539 0.578 0.842 0.427 0.710
SSD + MobileNet v2 168256 0.566 0.825 0.402 0.668
SSD + MobileNet v2 98096 0.558 0.806 0.433 0.695
SSD + MobileNet v2 27412 0.542 0.844 0.415 0.676

68

6.3 – Detection performance analysis

DETRAC 1/20th DETRAC 1/5th

Model name Step mAP mAP@0.5 mAP mAP@0.5
SSD + Inception v2 126461 0.586 0.846 0.458 0.728
SSD + Inception v2 108932 0.559 0.841 0.472 0.762
SSD + Inception v2 99423 0.535 0.812 0.498 0.776
SSD + Inception v2 115686 0.532 0.820 0.479 0.766
SSD + Inception v2 125791 0.532 0.815 0.512 0.774

6.3.3 CVAT evaluations

It has just been shown that the training evaluation on 1/20th of DETRAC-
Eval have large gaps compared to the same evaluations run on the larger
dataset, so basing the choice of the best checkpoints solely on those evalua-
tions is not attendable. In this respect, the following evaluation tests were
performed on 1/5th of the annotated Turin-Castelfidardo sequence (a total
of 3,333 frames) for the same Top 50 checkpoints from the training phase.
As a side not, some smaller tests were performed for some checkpotins on
the whole Turin dataset (16,669 frames) and showed no difference with the
1/5th partition.

DETRAC 1/20th C.SO CASTELF.
Model name Step mAP mAP@0.5 mAP mAP@0.5

SSD + MobileNet v2 95078 0.591 0.825 0.189 0.358
SSD + MobileNet v2 90539 0.578 0.842 0.198 0.424
SSD + MobileNet v2 168256 0.566 0.825 0.218 0.427
SSD + MobileNet v2 98096 0.558 0.806 0.252 0.480
SSD + MobileNet v2 27412 0.542 0.844 0.257 0.551

DETRAC 1/20th TURIN C.so Castelf.
Model name Step mAP mAP@0.5 mAP mAP@0.5

SSD + Inception v2 126461 0.586 0.846 0.177 0.380
SSD + Inception v2 108932 0.559 0.841 0.183 0.351
SSD + Inception v2 99423 0.535 0.812 0.191 0.355
SSD + Inception v2 115686 0.532 0.820 0.141 0.343
SSD + Inception v2 125791 0.532 0.815 0.189 0.362

69

6 – Results

6.3.4 Considerations on Turin results and Weighted
mAP

The previous section, highlights very large gaps between the mAPs over the
DETRAC data and the Turin Castelfidardo data. Since the second part of
this testing chapter regards vehicles tracking and counting performance on
the c.so Castelfidardo camera, a new ordering for the checkpoint steps was
needed. In fact, the maximum mAP@0.50 IOU obtained on the Turin dataset
were quite higher than the ones showed for the Top 5 on DETRAC (e.g. the
top SSD + MobileNet v2 checkpoint on DETRAC, of step 95078, has an
mAP@0.50 over TURIN of 0.380 while the highest mAP@0.50 on TURIN
for the same model is 0.551, for checkpoint 27412)

Moreover, while in general the mAPs for bus, van and other were lower on
the Turin dataset compared to the DETRAC dataset, the mAPs for car were
higher. Following this consideration, the Weighted mAPs were calculated for
the models and will be showed in the following tables.

TURIN mAPs ALL and BY CLASS vs WEIGHTED

The next tables will show the Top 5 with respect to the mAP@0.50 IOU cal-
culated on the Turin Castelfidardo dataset, it will highlight the components
on the four vehicles classes, and will finally show the recalculated Weighted
mAP@0.50 IOU.

SSD + Mobilenet v2 - TURIN C.so CASTELF.
Step mAP.5all mAP.5car mAP.5bus mAP.5van mAP.5oth WmAP.5
27412 0.551 0.909 0.550 0.235 0.510 0.869
183045 0.532 0.901 0.464 0.298 0.467 0.863
169771 0.531 0.921 0.495 0.265 0.442 0.880
167118 0.527 0.927 0.663 0.290 0.229 0.884
72355 0.512 0.911 0.609 0.248 0.282 0.868

SSD + Inception v2 - TURIN C.so CASTELF.
Step mAP.5all mAP.5car mAP.5bus mAP.5van mAP.5oth WmAP.5

112344 0.444 0.926 0.209 0.332 0.307 0.885
131145 0.432 0.926 0.209 0.247 0.345 0.882
26467 0.422 0.945 0.336 0.316 0.093 0.898
18335 0.418 0.892 0.225 0.281 0.276 0.850
13317 0.408 0.892 0.379 0.226 0.134 0.846

70

6.4 – Tracking analysis

BEST WEIGHTED mAPs on TURIN (CVAT) FOR THE 4 MOD-
ELS

The Weighted mAP@0.50 IOU were calculated for all of the checkpoints
evaluated on the Turin Castelfidardo dataset, and those checkpoints were
finally ordered by the WmAP@0.50 in order to give the best candidates for
the tracking purpose (remembering here that 93% of the traffic are cars, it
seemed to be the best ordering).

The following tables presents the Top 5 checkpoints based on theWmAP@0.50
on the Turin sequence.

SSD + Mobilenet v2 - TURIN C.so CASTELF.
Step WmAP.5 mAP.5car mAP.5bus mAP.5van mAP.5oth mAP.5all

27412 0.551 0.909 0.550 0.235 0.510 0.869
183045 0.532 0.901 0.464 0.298 0.467 0.863
169771 0.531 0.921 0.495 0.265 0.442 0.880
167118 0.527 0.927 0.663 0.290 0.229 0.884
72355 0.512 0.911 0.609 0.248 0.282 0.868

SSD + Inception v2 - TURIN C.so CASTELF.
Step mAP.5all mAP.5car mAP.5bus mAP.5van mAP.5oth WmAP.5

112344 0.444 0.926 0.209 0.332 0.307 0.885
131145 0.432 0.926 0.209 0.247 0.345 0.882
26467 0.422 0.945 0.336 0.316 0.093 0.898
18335 0.418 0.892 0.225 0.281 0.276 0.850
13317 0.408 0.892 0.379 0.226 0.134 0.846

6.4 Tracking analysis
The preceding detection analysis was conducted on the Top 50 available
checkpoints, based on the training evaluation mAPs, for each model, even if
only the Top 5 for each of the analysis characteristics were actually showed.
Carrying on such an exhaustive testing strategy for the tracking evaluation
would be prohibitive in terms of resources and time. Indeed, the tests that
will be presented in the next sections will focus only on the Top and Worst
5 found in the previous detection performance analysis.

6.4.1 Testing strategy
The tracking tests evaluate the framework’s ability to count the vehicles
on the C.so Castelfidardo sequence, based on the selected detection model
checkpoint and on the detector speed performance.

71

6 – Results

Each individual test loads the checkpoint in a TensorFlow detector, pro-
duces detections, counts them on both directions based on the IOU tracker
and a middle counter line, then compares the produced vehicles counts, both
total and by class, with the ground truth value for the 15 minutes Turin
annotated sequence.

The ground truth countings for the vehicles on both directions of the Turin
sequence are:

• Vehicles count north direction: 191car + 1bus + 15van + 5oth = 212all

• Vechiles count south direction: 243car + 2bus + 31van + 3oth = 279all

The δis in the next tables are the average counting errors, defined as the
average of the two error components of the two directions. Each error com-
ponent, one for north direction and one for south direction, are the difference
between the ground truth counting and the checkpoint’s counting. The def-
initions are the following:

δi,north = Cgroundtruth,i,north − Cckpt,i,north

δi,south = Cgroundtruth,i,south − Cckpt,i,south

δi = Average(δi,north, δi,south)

δall =
∑

i

δi, i ∈ {car, van, bus, other}

6.4.2 Detection performance impact on counting
The previous section presented analysis on the detection performances of the
various considered checkpoints, but the correlation between those precision
metrics and the counting ability of the tracker are yet to be assessed, Thus,
the first set of tests were executed on the best and worst 5 checkpoints of the
SSD + MobileNet v2 architectures, ranked over the mAP@0.50 IOU metric.

SSD + MobileNet v2 - Best 5 on mAP 0.50
Step mAP@.5 δall δcar δbus δvan δoth

27412 0.551 15 7 0.5 9 -1.5
183045 0.532 -3.5 -25.5 -0.5 24 -1.5
169771 0.531 -7.5 2 -1 -7 -1.5
167118 0.527 -1 5 -0.5 -3.5 -2
72355 0.512 -4 -21.5 0.5 17 0

Avg Best 5 0.531 -0.2 -6.6 -0.2 7.9 -1.3

72

6.4 – Tracking analysis

SSD + MobileNet v2 - Worst 5 on mAP 0.50
Step mAP@.5 δall δcar δbus δvan δoth

83719 0.402 -3.5 0 -1 0.5 -3
164074 0.410 -36.5 -113.5 0 79.5 -2.5
58021 0.410 -16.5 -25.5 0 11 -2
73114 0.410 -3 3 -0.5 -4 -1.5
187606 0.415 -44.5 -74.5 0 34 -4

Avg Worst 5 0.409 -20.8 -42.1 -0.3 24.2 -2.6

0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56

-120

-100

-80

-60

-40

-20

0

20

40

Best 5 checkpoints Worst 5 checkpoints

As it can be seen from the tables and from the scatter plot, even though
two of the worst checkpoint obtain a very low error score, it’s easy to notice
that the lower is the mAP value, the more is the tracking of the vehicles
detection likely to fail. Indeed, the average counting error of the worst 5
checkpoints, that is -20.8 vehicles, is far from the clearly lower value of the
best 5 ones (-0.2 vehicles).

6.4.3 FPS resistance
The aim of the second set of tests, with a running time of more than 10
hours, is to asses the resistance of the tracking capabilities at lower detection
framerates. In fact, slower models like Inception v2, which runs on the Jetson
board at a limited framerate, miss detected frames when run on a live stream,
and produce distant detections, increasing the car displacement between two
consecutive frames. The tracker, as explained in the relevant section, uses a
metric that suffers from this situation.

These tests are run by simulating the missed frames due to lower fps
detections, ranging from 18 fps (same as the annotated source) down to 2

73

6 – Results

fps, with a step of 2fps, on both SSD + MobileNet v2 detector and Inception
v2 detector. At each fps step and for each model, the Top 5 detectors, ranked
this time by the Weighted mAP@0.50, were tested and the average error was
used for each fps step.

Mobilenet v2 Inception v2
FPS δall,top5 δall,top5
18 -4.6 -1.2
16 -5.2 -1.2
14 -5.4 -1.6
12 -5.6 -2.8
10 -6.1 -4.1
8 -11.7 -7.2
6 -18.5 -12.7
4 -37.3 -35.6
2 -160.4 -167.8

024681012141618

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

Tracking errors in relation to FPS change

Mobilenet v2 AVG Inception v2 AVG

Both the SSD + MobileNet v2 and the SSD + Inception v2 Top 5 check-
points appear to resist well all the way down to 10 FPS, with an error of
missed vehicles that rises exponentially passed that point.

It is worth noting that having used the WmAP@0.50 for the ranking of
the Top 5 checkpoints led to an average error for the Top 5 SSD + MobileNet
v2 checkpoints at 18 FPS (same as source so no frames are dropped) which
is higher than the one obtained by the Top 5 according to the standard
mAP@0.50 (-4.6 vs. 0.2), suggesting that the latter may finally be a better
metric for assessing the performance.

74

6.5 – Final considerations

6.4.4 Inception v2 tests
To complete the tracking testing section, a table with the results of the best 5
SSD + Inception v2 checkpoints at 18 and 5 FPS, ranked on the WmAP@0.50
IOU will be presented here. The reason why, among all the available steps,
the 5 FPS is chosen is that it mimics the running speed of the Inception v2
model on the Nvidia Jetson board, according to the Benchmark section, and
giving results that are pretty close to the ones that would be obtained by
using it instead of the MobileNet v2.

SSD + Inception v2 - Best 5 on WmAP@0.50 at 18 fps
Step WmAP@.5 δall δcar δbus δvan δoth

26467 0.422 -9.5 -5 4 -10.5 2
112344 0.444 -0.5 7.5 3 -9.5 -1.5
131145 0.432 1 3.5 4.5 -8.5 1.5
137177 0.361 -3 4.5 1.5 -8 -2.5
153566 0.407 6 17 2.5 -11 -2.5

Avg Best 5 0.413 -1.2 5.5 3.1 -9.5 -0.3

SSD + Inception v2 - Best 5 on WmAP@0.50 at 5 fps
Step WmAP@.5 δall δcar δbus δvan δoth

26467 0.422 -33.5 -25 3.5 -11 -1
112344 0.444 -9.5 -1 2 -8 -2.5
131145 0.432 -22 -15 2.5 -8.5 -1
137177 0.361 -25.5 -16.5 2 -8.5 -2.5
153566 0.407 -11 -1.5 3 -11 -1.5

Avg Best 5 0.413 -20.3 -11.8 2.6 -9.4 -1.7

It is worth noting that, since Inception v2 at

6.5 Final considerations
The results highlighted in this final chapter on the two apparently most
promising models combinations trained on the DETRAC dataset, the SSD
+ MobileNet v2 and SSD + Inception v2, showed that they share the same
detection performance on both the DETRAC-Eval and the Turin datasets.
It’s been also confirmed, as expected, that the mAP metrics are linked to
the counting performance of the tracker used in this work.

Both the models have a very low counting error at full speed but suffer
at decreased speeds and since Inception v2 runs at only 5 fps on the Nvidia
Jetson Board, it’s definitely discarded.

75

6 – Results

The best choice is in fact the SSD + MobileNet v2, which runs at 19
FPS on the board and provides a very low average counting error on the
test data. The checkpoint currently loaded on the board at the company’s
branch is 167118.

76

Bibliography

[1] E. Bochinski, V. Eiselein, and T. Sikora, High-Speed tracking-
by-detection without using image information, in 2017 14th IEEE Inter-
national Conference on Advanced Video and Signal Based Surveillance
(AVSS), IEEE, 8 2017, pp. 1–6.

[2] K. Fukushima and S. Miyake, Neocognitron: A Self-Organizing
Neural Network Model for a Mechanism of Visual Pattern Recognition,
Springer, Berlin, Heidelberg, 1982, pp. 267–285.

[3] R. Girshick, Fast R-CNN, in 2015 IEEE International Conference on
Computer Vision (ICCV), IEEE, 12 2015, pp. 1440–1448.

[4] , Python implementation of Faster-RCNN on Caffe.
https://github.com/rbgirshick/py-faster-rcnn, 2015.

[5] R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Fea-
ture Hierarchies for Accurate Object Detection and Semantic Segmenta-
tion, in 2014 IEEE Conference on Computer Vision and Pattern Recog-
nition, IEEE, 6 2014, pp. 580–587.

[6] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,
A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadarrama, and
K. Murphy, Speed/accuracy trade-offs for modern convolutional object
detectors, (2016).

[7] D. H. Hubel and T. N. Wiesel, Receptive fields, binocular interac-
tion and functional architecture in the cat’s visual cortex, The Journal
of Physiology, 160 (1962), pp. 106–154.

[8] Joseph Redmon, Darknet: Open Source Neural Networks in C, 2013.
[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet Clas-

sification with Deep Convolutional Neural Networks, in Advances in Neu-
ral Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, eds., Curran Associates, Inc., 2012,
pp. 1097–1105.

[10] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521

77

Bibliography

(2015), pp. 436–444.
[11] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.

Fu, and A. C. Berg, SSD: Single Shot MultiBox Detector, Springer,
Cham, 2016, pp. 21–37.

[12] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You Only
Look Once: Unified, Real-Time Object Detection, in 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), IEEE, 6
2016, pp. 779–788.

[13] S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: To-
wards Real-Time Object Detection with Region Proposal Networks, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 39 (2017),
pp. 1137–1149.

[14] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, Efficient Pro-
cessing of Deep Neural Networks: A Tutorial and Survey, Proceedings
of the IEEE, 105 (2017), pp. 2295–2329.

[15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,
Going Deeper with Convolutions, (2014).

[16] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and
A. W. M. Smeulders, Selective Search for Object Recognition, Inter-
national Journal of Computer Vision, 104 (2013), pp. 154–171.

[17] P. Viola and M. J. Jones, Robust Real-Time Face Detection, Inter-
national Journal of Computer Vision, 57 (2004), pp. 137–154.

[18] L. Wen, D. Du, Z. Cai, Z. Lei, M.-C. Chang, H. Qi, J. Lim, M.-
H. Yang, and S. Lyu, UA-DETRAC: A New Benchmark and Protocol
for Multi-Object Detection and Tracking, (2015).

[19] B. Widrow, D. E. Rumelhart, and M. A. Lehr, Neural networks:
applications in industry, business and science, Communications of the
ACM, 37 (1994), pp. 93–106.

[20] N. Wojke, A. Bewley, and D. Paulus, Simple online and realtime
tracking with a deep association metric, in 2017 IEEE International Con-
ference on Image Processing (ICIP), IEEE, 9 2017, pp. 3645–3649.

78

	List of Tables
	List of Figures
	Introduction
	An edge computing approach to Object Detection and Classification

	Deep Learning and Computer Vision
	Deep Learning algorithms as powerful feature extractors
	Convolutional Neural Networks
	A standard architecture

	CNN Architectures
	Towards precision
	Towards speed

	Object Detection through CNNs
	Detection algorithms

	Implementation details and choices
	Edge deployment platform
	Neural Networks framework and Detection algorithms
	Tensorflow Object Detection API

	Software environment choices
	Built from source

	Fine tuning the models
	UA-DETRAC dataset
	The training process
	Adopted process

	Dataset preparation
	Defining train and validation sets for the UA-DETRAC dataset
	Preparing the samples
	Data augmentation

	Chosen models and hyperparameters
	Training hyperparameters

	Training evaluation
	Evaluation metrics
	Evaluation results

	Framework Implementation
	Detpipe
	Architectural design
	Running model
	Extensibility

	Detpipe modules
	Source module
	Object Detection module
	Tracking module
	MQTT Client module
	Video output module

	REST API
	React Control Dashboard
	Integration with InfluxDB (or other)
	Profiling

	Results
	Test sequence annotation
	Benchmark
	Detection performance analysis
	Checkpoints and performance metrics
	Training evaluations revisited
	CVAT evaluations
	Considerations on Turin results and Weighted mAP

	Tracking analysis
	Testing strategy
	Detection performance impact on counting
	FPS resistance
	Inception v2 tests

	Final considerations

	Bibliography

