
Master Degree in Electronic
Engineering

VLSI architecture of a Multiple-Error-Correction
Polar-Codes decoder

Politecnico di Torino
Turin, Italy

Supervisor:
Prof. Maurizio Martina
Co-supervisor:
Prof. Guido Masera

Student:
Nicola Antonio Travaglini

April 4, 2019

Contents
1 Introduction 3

2 Literature Review 4
2.1 Successive Cancellation . 4
2.2 Error Propagation in SC decoding . 6
2.3 SC-Flip . 6
2.4 Progressive Bit Flipping . 7
2.5 SC Architecture Implementations . 7

3 Software Overview 9
3.1 SC Decoder Software Implementation 9

3.1.1 Main . 9
3.1.2 SC tools.c . 10
3.1.3 PC encoder . 10
3.1.4 Init CRC . 11
3.1.5 CRC function . 12
3.1.6 SC decoder . 12
3.1.7 LLR sorter . 15
3.1.8 SCF decoder . 16
3.1.9 Tools.c . 17
3.1.10 Results . 18

3.2 PBF Decoder Software Implementation 19
3.2.1 Main . 19
3.2.2 Custom types . 20
3.2.3 SCPBF decoder.c . 21
3.2.4 PBF tools . 22
3.2.5 Critical Set . 22
3.2.6 Metric qs . 24
3.2.7 E nochild and E noselect . 24
3.2.8 Results and Considerations 24

4 Simplified PBF Attempts 26
4.1 Progressive Bit Flipping Constrained 27

5 PBF-C Architecture 32
5.1 SC module . 33

5.1.1 SC Controller . 33
5.1.2 PSN Network . 36
5.1.3 LLR Memory . 46
5.1.4 LLR Memory-PEs Interface 49
5.1.5 Processing Element . 51
5.1.6 Channel Buffer . 52
5.1.7 Decisor . 54

1

5.2 CRC-16 Circuit . 57
5.3 Insertion Sorter . 59
5.4 PBF-C Level 0 . 62
5.5 PBF-C Level 1 . 65
5.6 PBF-C Level 2 . 73
5.7 Memory Resources Considerations . 76

6 Conclusion 77

2

1 Introduction
The information sent through a digital communication system is affected by the
noise introduced by the channel. As a consequence, channel encoding is exploited
to protect the message from the external interferences by using redundancy. This,
however, increases the complexity, the latency and the bandwidth required.
In 1948, Claude Shannon proved in [1] the existence of the so-called channel capac-
ity, a limit rate at which information can be reliably transmitted over an information
channel. Since then, several capacity achieving codes have been presented, like the
LDPC codes, however, none of them had an explicit construction. This went on
until 2009, when Arikan introduced in [2] the Polar Codes, which are the first codes
proved to achieve channel capacity when the code length tends to infinity and they
have been receiving attention since they have been chosen as an official channel
coding in the 5G standard.
The idea behind the Polar Codes is the channel polarization: a noisy channel is
transformed into two sets: one with a lower noise level, the other with a higher
noise level. By recursively applying this technique over the resulting channels, the
difference in reliability between good channels and bad channels gets deeper and
deeper. In the end, when the number of synthesized channels is enough large, al-
most all of them tend to two opposite ends: no-noise or noisy behaviour.
This scheme is exploited in the following way: information bits are sent over the
noiseless channels, while fixed bits (called frozen and usually set to zero) are as-
signed to the noisy ones. The positions of the frozen bits are known by the decoder
that, using the Successive Cancellation (SC) algorithm, is able to correct the
errors due to the channel noise.
Even if polar codes have, theoretically, many positive properties, their actual imple-
mentation presents some drawback: practical error rate values are achieved when
the code length is very large (e.g. 220) and the SC decoder will introduce high laten-
cies due to this. Moreover, SC decoders provide FER values inferior to other codes
with similar length.
Several techniques, like the SC-List [3], have been developed to reduce this per-
formance loss at the price of increased complexity. In [4], however, an alternative
approach was proposed based on the performing of many decoding attempts by
flipping the bits that turned out unreliable during the first decoding process. This
method is called Successive Cancellation Flip (SCF) and it keeps the low mem-
ory requirement of the original SC. A further evolution has been introduced in [5]
called Progressive Bit Flipping, where a set of unfrozen bits, that are more likely
responsible for the first error, is found and then used to correct multiple errors.
In this thesis, first the SC, SCF and PBF algorithm have been software implemented
via C code, then a new simplified method, called PBF-constrained, has been derived
from the PBF and finally a VLSI architecture, able to correct up to two errors, is
proposed for the PBF-C. The architecture presented in this thesis is the first one
proposed in literature (to the best of my knowledge) able to correct more than one
error with an SCF approach.

3

2 Literature Review
The generic digital communication system is composed of several elements as shown
in the figure below.

Figure 1: Digital communication system block scheme

At the beginning of the chain, a bit source sends a stream of K bits, then an en-
coder performs the channel encoding to limit the effect of the channel disturbances.
By doing so, the number of bits transmitted is increased from K to N, but the relia-
bility of the system is also increased. Therefore, while K bits contain the information
sent, the code length will be on N bits. The ratio between K and N is called code
ratio and it can be seen as a measurement of the redundancy introduced by the
encoder:

R = K

N
The lower the rate R is, the higher is the redundancy introduced and the error cor-
rection capability of the system.
The binary stream is then passed from the encoder to a modulator which adapts
the symbols to be transmitted over the communication channel. Many types of dis-
turbances occur over the channel, leading to the introduction of some noise over the
transmitted signal. The signal, then, undergoes the demodulator, which transforms
the received symbols into log-likelihood ratios (LLR). The LLRs represent the
logarithm of the ratio between the probability that a transmitted bit xi is 0 given
the received symbol yi, over the probability that the same transmitted bit is 1:

LLRi = log
A
P (yi|xi = 0)
P (yi|xi = 1)

B
The LLRs are then passed to the decoder which is able to provide the K received
bits, which should be a faithful representation of what was transmitted.

2.1 Successive Cancellation
As explained in [2], a polar code PC (N,K) of code length N = 2n, n ∈ Z+ and rate
R = K/N is a linear block code that divides N bit-channels in K reliable ones and

4

N −K unreliable ones. Information bits are transmitted on the reliable channels,
while fixed values, usually zero and known to both transmitter and receiver, are sent
on the unreliable channels.
The recursive process with which a total of N channels are obtained can be repre-
sented by a binary matrix multiplication as x = uG⊗n, where u = {u0, u1, ..., uN−1}
is the input vector, x = {x0, x1, ..., xN−1} is the codeword, and the generator matrix

G⊗n is the n-th Kronecker product of the polarization matrix G =
C
1 0
1 1

D
.

As an example, if the code length is N = 8, the generator matrix will be:

G⊗3 =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


The operations performed by the SC decoding algorithm can be seen as a binary

tree search, where the tree is explored from the highest stage S = n, with priority
given to the left branch. Fig.2 portrays an example of SC decoding tree, for a
PC(8,4).

𝛼

𝛽

𝛼𝑙 𝛼𝑟

𝛽𝑙 𝛽𝑟

𝑢̂0 𝑢̂1 𝑢̂2 𝑢̂3 𝑢̂4 𝑢̂5 𝑢̂6 𝑢̂7

Figure 2: SC decoding tree for a PC (8,4)

Let us consider the first node at the stage S=2. This node sends a vector of LLRs
α = {α0, α1, ..., α2S−1} to its left child. Then, the value of the stage is decreased
to S=1, the previous child node becomes the active one and sends to its left child
the message αl = {αl0, αl1, ..., αl2S−1−1}. At S=0, the node uses the vector received
to decode the first bit, âu0, then it sends this bit to its parent node at stage 1. Now
the active node will transmit αr = {αr0, αr1, ..., αr2S−1−1} to its right child which will
decode the second bit âu1. At this point, the first node at the stage S=2 will receive
a vector of partial sums from its left child and will use it to compute the vector αr
to be sent to the right child at stage 1.
To sum up, at the root node (in this example S=3) the LLRs are initialized as the

5

channel LLRs yN−1
0 , each node at stage S computes the left and right LLR vectors

to be sent to its child nodes as

αli = sgn(αi)sgn(αi+2S−1)min(|αi|, |αi+2S−1 |) (1)

and
αri = αi+2S−1 + (1− 2 · βli)αi (2)

Then, the nodes receive the partial sums from their left child node as:

βi =


βli ⊕ βri , if i ≤ 2S−1

βri , otherwise
(3)

where ⊕ is the bitwise XOR operation, and 0 ≤ i < 2S. At the leaf stage, the
values of the estimated bit vector âuN−1

0 are computed as:

βi =


0, when αi ≥ 0 or i ∈ F;

1, otherwise
(4)

where F represents the set of frozen bits.
The computational complexity of the SC decoding is O(N logN) since there

are N log(N + 1) nodes and each node only needs to be activated once, while the
memory complexity can be reduced to O(N).

2.2 Error Propagation in SC decoding
While infinite-length are capacity achieving, when the code length is finite, the
channels are nor completely noisy nor completely noise-free. Therefore, during the
SC decoding, errors can still happen. In particular, the wrong bit decisions can be
caused by channel noise or by error propagation due to a previous erroneous bit
decisions. However, it is possible to state that the first erroneous decision must be
caused by the channel noise, since no previous error is possible at that point, and it
leads to erroneous partial sums which can corrupt the internal LLR values computed
in the following stages.
In [4] it was shown that an SC-Oracle, avoiding all wrong decisions caused by the
channel, is able to strongly reduce the noise disturbances improving the SC decoding
performance. Moreover, it was also illustrated that a failed SC process is mostly
due to a just one erroneous decision caused by the channel noise.

2.3 SC-Flip
The goal of SC-Flip decoding [4] is to identify and correct the first error that occurs
during SC decoding without the aid of an oracle.
A cyclic redundancy check (CRC) code with a C-bit remainder is used to encode
the information bits. At the end of the SC decoding, the estimated codeword is

6

considered correct if the CRC check is successful, otherwise, if the CRC fails, a
number T of LLRs with the smallest magnitude, representing the bit estimations
with the lowest reliability, are stored and sorted. Then, the SC decoding is repeated,
but the bit associated with the smallest LLR is flipped. If the CRC fails again, a new
SC attempt is performed, flipping the index corresponding to the next smallest LLR.
The algorithm stops when the CRC gives a positive result or after T unsuccessful
attempts.
In the worst-case scenario, the latency of an SC-F decoder is T times the one of the
SC decoder.
The results in [4] show that the performance of the SC flip decoder with T = 32 is
almost identical to that of the SC list decoder with L = 2, but with half the memory
complexity.

2.4 Progressive Bit Flipping
The SC-Flip shows that the error correction capability of an SC-decoder can be
improved by correcting the first wrong bit-decision by flipping it. Other works, like
[6] improved the original SC-Flip algorithm by dynamically detecting the positions
to be flipped in order to correct even more than one error. However, the first flip is
taken from the Unfrozen set, which could be extremely large for long polar codes.
A new approach was proposed in [5], where the authors suggested that, by investi-
gating the distribution of the first erroneous bit decision during the SC decoding, it
is possible to narrow down the search scope of possible flips to an unfrozen subset
CS, called critical set, which is much smaller than the unfrozen set. As a conse-
quence, the decoder only needs to consider CS for the flipping position, and, since
there could be other errors besides the first one, the CS set method can be used to
identify the positions of the following errors. By correcting nested errors, the PBF
is able to compete with the SCL decoder.

2.5 SC Architecture Implementations
A first SC decoder implementation was described by Arikan in [2] with a butterfly
structure. Even if many aspects for the hardware implementation were not discussed,
like the control unit or the resource sharing, the author suggested that the decoder
could be implemented with Nlog2N processing elements with N registers to store
the partial results and other N registers would be used to store the channel LLRs.
A structure like this would require 2N − 2 clock cycles to complete the decoding of
one vector. Of course, this architecture can be optimized by increasing the resource
sharing, like the processing elements.
A first observation regards the fact that at stage S, only 2S processing elements
could be employed in order to get all the LLRs needed to be sent to the stage below.
With this idea, in [7] a tree architecture with the same throughput and scheduling
of the butterfly architecture, but employing a lower number of Pes and registers, is

7

introduced. Moreover, by noticing that the maximum number of Pes required to
be used concurrently is N/2, the authors propose a second architecture called line
decoder, similar to the tree one, but with a lower complexity due to the merging of
some PEs.
In a following article [8], the same authors exploit a second observation: since the
N/2 Pes of the line architecture are used all together only in two clock cycles, by using
a lower number of them it is possible to achieve a great reduction in complexity with
a small increase in the number of clock cycles required to complete the operation.
This architecture is called semi-parallel. In these schemes, the PEs implement the
hardware friendly functions (eq.1 and eq.2).
A limit of all these implementations is given by the partial sum unit, which requires
a large area and affects the maximum frequency. These problems grow with the
code length N.
In [9] a new scheme, HPPSN, was proposed that can be integrated with the semi-
parallel scheme without requiring extra clock cycles and providing area efficiency
since only the LLRs and partial sum memories dimension will depend on the code
length N.

8

3 Software Overview
The first step of the present study involved the derivation of a software implemen-
tation of the SC decoder.
This code is used in a template for the simulation of a transmitter and a receiver,
where the encoder and the decoder were originally missing. Many functions devel-
oped for the SC decoder software were then used to implement the PBF software.
The BER and FER curves obtained from the simulation of the decoders will be
shown after the overview of each code.

3.1 SC Decoder Software Implementation
3.1.1 Main

The Main code reads two text files to get the initial inputs: the first one (located
in the pccodes folder) contains the indexes to be used as the information set, sorted
based on their reliability from best to worst for a given noise standard deviation, the
second text file (input in the dat folder) stores other information like the number of
frames to be simulated, the initial SNR value and its step, the seed for the random
generators, and many other parameters.
Following the variables declaration, the first text file is opened and the value of N
(length of the code) is acquired. It is asked to the user to provide a value for K
(dimension of the information set I) and the decoding scheme to be used:

• 1: SC;

• 2: SC-OA;

• 3: SC-Flip.

In the case of SCF, the user has to give also the maximum number of tries T and
the length of the CRC CRC length.
At this point, the vector I is dynamically allocated and filled with the first K values
from the text file. As for the SCF, the following CRC length values are stored in
the vector R which will provide the indexes to store the remaining of the CRC
operation. Now, the text file is closed, the vector I (and eventually R) is sorted in
ascending way, the vector Frozen is filled with the indexes from 0 to N not included
in I (and R) and the init CRC function creates the polynomial for the CRC based
on CRC length.
At this point, the loop for the frame generation starts: a vector (with dimension K)
is generated through an LFSR. This vector represents the uncoded information and
it is passed to the PC encoder function that provides the encoded N-bit vector
(coded). The noise samples are generated from the function Gaussian, then coded
is BPSK modulated and summed to the noise samples multiplied by the standard
deviation. From this signal (received) the channel LLR parameters are obtained in
fixed point (with 2 bits for the decimal part). The SCF decoder stores in the

9

vector dec the K decoded bits. The following functions count the errors and save
the results in a text file.

3.1.2 SC tools.c

All the functions related to the SC decoding have been collected in the SC tools
library.

3.1.3 PC encoder

void* PC encoder(int* uncoded, int N, int* I, int K, int* input vector, int* poly,
int*R, int CRC length, int dec mode, int* coded)

• uncoded is the K-bit vector provided by the LFSR;

• N is the code length;

• I is the information set;

• K is the dimension of I;

• input vector is filled by this function, it has the value of uncoded in the infor-
mation indexes (and the remainder of the CRC in the next CRC length most
reliable indexes);

• poly is the (CRClength+ 1)-bit vector used in the CRC computation;

• R is the set containing the indexes related to the CRC remaining;

• CRC length is the dimension of R;

• dec mode specify the decoding scheme;

• coded is the encoded vector provided by this function. It is obtained multiply-
ing input vector and the Kronecker matrix G with dimensions NxN.

First, input vector is obtained from the uncoded vector. In case of SCF, the function
CRC function stores in it the remainder too. After this, the G matrix is initialized
as a NxN matrix filled with zeros and, then, its top left corner is assigned as T2 =C
1 0
1 1

D
. The idea is to cyclic fill the G matrix with 2 quadrants equal to the top

left corner and one equal to zero. The loop ends when the G matrix is completely
filled. An example of G for N = 8 is portrayed below, where the dark-blue quadrant
is copied into each of the two lighter-blue quadrants beneath it.

10

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

It is possible now to compute the j-th element of coded as the product between
input vector and the G matrix by summing the rows of a j-th column of G skipping
the rows i if input vector[i] = 0.

3.1.4 Init CRC

void init CRC(int* poly, int length)

• poly is passed as a zero vector, the function stores in it the bits to be used in
the CRC operation;

• length is the CRC length. poly has dimension length+1.

Based on the value of length, a case selects the polynomial value as a hexadecimal
number. A loop converts this number in binary and saves it in the poly vector
leaving its first bit empty. This first bit is later set to 1. As an example, if the
length of the CRC is 4, the corresponding polynomial value is 0x3 and the value
saved in poly by the function is 1 0 0 1 1.

11

3.1.5 CRC function

int CRC function(int* Signal, int* poly, int* I, int K, int* R, int length, int
encode or decode)

• Signal provides the vector on which the CRC is performed;

• poly is the polynomial used in the CRC operation;

• I is the information set;

• K is the dimension of I;

• R contains the indexes of the remainder bits;

• length is the length of the CRC and the dimension of R;

• encode or decode = 0→ encoder side: encode the remainder bits in the input -
vector (provided as Signal);

• encode or decode = 1 → decoder side: check if the CRC fails to retrieve the
remainder previously computed from u hat (which contains the N decoded bits
and it is provided as Signal).

When this function is called from the encoder (encode or decode= 0) it inserts the
remainder of the CRC in input vector, which is given as an input with the name
Signal.
First, the K information bits are taken from the vector and stored into an auxiliary
one called Signal copy which is padded with length 0s at the end (the dimension of
Signal copy is K+length). The CRC computation is implemented with a loop that
first skips sequences of zeros in the Signal copy, then, when a 1 is found, it stores
the result of the bitwise XOR between length+1 bits of Signal copy (starting from
the first index storing a 1) and the polynomial vector.
At the end of the loop, the remaining of the CRC (given by the last length bits of
Signal copy) is stored in the input vector in the indexes provided by the vector R.
When CRC function is called from the decoder, it takes the K information bits from
the hard decoded input (provided as Signal) and saves them in the first K slots of
Signal copy, then it extracts the remainder bits from Signal and stores them in the
last length positions of Signal copy.
In the end, it returns 0 if the CRC between Signal copy and the polynomial fails, 1
otherwise.

3.1.6 SC decoder

void* SC decoder(int N, int* Y, int* I, int* Frozen, int* reference, int* u hat, int*
alpha 0, int dec mode, int k, int max val int, int min val int)

• N is the length of the code;

12

• Y is the array containing the LLRs of the channel;

• I is the array containing the indexes corresponding to the location of informa-
tion bits;

• Frozen is the frozen set

• reference is the input vector (of length N) prior to the PC encoding;

• u hat is the hard decision vector (N elements)

• alpha0 contains the LLRs of the LEAF stage (stage 0). It passed to LLR -
sorter in SCF decoding;

• dec mode specifies the decoding mode: 1 for SC, 2 for SC-OA, 3 for SC-Flip;

• k is the position of the bit to be flipped (in the first call of the function, k = −1
to avoid flips);

• max val int and min val int are the maximum and minimum values of the
LLRs.

After some variable declarations, the highest stage is computed as S = logN
log2 and

some vectors and matrices are dynamically allocated:

alpha is a matrix with S+1 rows and N columns. It stores the soft LLRs of each
stage. Since αleft and αright are saved in the same slots, the top stage requires
N columns, the one below it requires N/2 columns, and so on until the stage
0 (leaf node) that requires just 1 bit.

beta is a matrix with S+1 rows and N/2 columns. It stores the hard LLR param-
eters of each stage;

flag is a vector with S+1 elements used to tell if a node at a certain stage has
already been visited arriving from the bottom of the tree.

To better understand how these matrices and vectors are used, let us consider the
example of the tree associated with a PC with N = 8.

13

alpha matrix
S=3
S=2
S=1
S=0

The first row of the alpha matrix (corresponding to
the root node A) is filled with the 8 LLRs received
from the channel (the input Y), then the node A
computes and propagates the 4 αleft to the node B
in the stage below. These parameters are saved in
the 4 slots provided by the second row of the alpha
matrix. When the root node is reached again and
it computes the 4 αrigth to be sent to the node
C, they are stored in the same slots where the 4
αleft of the second stage were saved. The soft LLRs
stored in the row corresponding to S = 0 (one slot)
are saved in the vector alpha 0, so that they can
be sorted in case of SC-F decoding.

beta matrix
S=3
S=2
S=1
S=0

Let us consider that the decoding process is now
arrived at the node C. Considering the hard-
decision bits with the lower case corresponding to
the leaf node that computed them (h is produced
by H and so on) the beta matrix is storing at this
point the following values:

S=3 h+i+l+m i+m l+m m
S=2 h+i i l+m m
S=1 l m
S=0 m

Table 1: Example of the content of the beta matrix

Since the stage 3 will not be reached a second time from the bottom of the tree,
there is no need to allocate memory to store its βright values (which will not be
computed). The values stored in the S = 0 row are saved in the u hat vector.

In the alpha and beta matrices, the white cells are allocated but not used.

About the flag vector, flag[S] stores 0 if the node has not been visited, while 1
means that the next node to be visited is in the stage above (if the decoder is in D
and flag[1] = 0, the next node will be I, otherwise B).

The SC decoder function is derived from the tree diagram and it is based on a
state machine with 4 states:

14

LEFT RIGHT

LEAF

 UP
𝑆 ≠ 0

𝑆 ≠ 0

𝑆 = 0 𝑆 = 0

𝑓𝑙𝑎𝑔[𝑆] = 1

𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐿𝐿𝑅𝑠

𝑢̂0
𝑁−1

Figure 3: FSM used in SC decoder

- LEFT: is the initial state. It computes and propagates αleft to the stage
below, then it decreases S by one unit. At this point, the next state will be
LEFT if S Ó= 0, LEAF if S = 0;

- RIGHT: computes and propagates αright to the stage below, then it decreases
S by one unit. The next state will be LEFT if S Ó= 0, LEAF if S = 0;

- LEAF: reached when S = 0. It computes the hard decision bits based on the
received soft LLRs, fills the row of the beta matrix corresponding to the first
stage and, in case of SC-OA or SCF, performs the bit-flips. The next state is
always UP;

- UP: increases S by one unit, then check the content of flag[S]. If it is 0, the
βleft values are computed and stored in the beta matrix and the next state is
set to RIGHT. If flag[S] is 1 the βright parameters are evaluated then the next
state is set to UP. The hard LLRs are evaluated only for the stages above 1
and the content of flag[S] is flipped after it has been checked.

When the N-th hard decision bit has been evaluated, the loop in which the FSM
evolves is stopped.

3.1.7 LLR sorter

void* LLR sorter(int* alpha, int* U, int T, int N, int K, int* I, int length, int*R)

15

• alpha is the vector containing the soft LLRs obtained at the leaf stage during
the SC decoding;

• U is the vector that will store the indexes of smallest soft LLRs corresponding
to information bits;

• T is the maximum number of tries in the SCF decoding. The dimension of U
is T;

• N is the length of the PC;

• K is the dimension of the information set;

• I is the information set;

• length is the length of the CRC;

• R is the set containing the indexes with the remainder of the CRC.

The function LLR sorter is used to sort the soft LLRs obtained by a previous SC
decoding.
A structure is defined with two fields:

alpha c: stores the copy of an LLR associated with an information (or remainder)
bit;

index: stores the index of the LLR parameter.

At this point, the absolute value of the LLRs are sorted in ascending order and their
index field is moved accordingly. In the end, the vector U is filled with the first T
indexes which refer to the smallest LLRs.

3.1.8 SCF decoder

void* SCF decoder(int N, int K, int* Y, int* I, int* Frozen, int*R, int*poly, int*
reference, int dec mode, int T, int CRC length, int* decoded, int max val int, int
min val int)

• N is the length of the code;

• K is the length of the information set I;

• Y is the array containing the LLRs of the channel;

• I is the array containing the indexes corresponding to the location of informa-
tion bits;

• Frozen is the frozen set;

• R is the set containing the indexes with the remainder of the CRC;

16

• poly is the polynomial used in the CRC computation;

• reference is the input vector (of length N) prior to the PC encoding;

• dec mode specifies the decoding mode: 1 for SC, 2 for SC-OA, 3 for SC-Flip;

• T is the maximum number of tries in the SCF decoding;

• CRC length is the length of the CRC;

• decoded will contain the K hard decision bits corresponding to the information
bits;

• max val int and min val int are the maximum and minimum values of the
LLRs.

This is the function called in the Main to obtain the decoded vector. First, it calls
the SC decoder function providing as flipping index k = −1, so to avoid flips in
the first call. Then, in case of SCF (dec mode = 3) the CRC function is called
comparing the reference (input vector) and the hard decision vector u hat obtained
from the SC decoder. If the CRC fails (and T > 0) the function LLR sorter is
called and stores the T smallest LLRs in the vector U. Then, the SC decoding is
repeated up to T times, flipping the bit obtained in the index k provided by the
vector U. After each decoding, the CRC operation is applied and if it succeeds the
loops of the T SC decoding is stopped.
In the end, the vector decoded is filled with the K hard decision bits corresponding
to the information bits.

3.1.9 Tools.c

The tools.c file contains some minor functions used to improve the readability of the
code:

• int min int(int A, int B)→ returns the minimum value among the integers A
and B;

• int sign int(int A) → returns the sign of the integer A;

• int boxplus(int a, int b) → represents the boxplus operator used to compute
αleft;

• void* quick sort(int sx, int dx, int* vector) → sort the vector. It is called
with sx = 0 and
dx = size of the vector − 1.

17

3.1.10 Results

The simulations have been carried out by using the fixed point format with 2 bits
to represent the radix part, 4 bits for the channel LLRs and 6 bits for the internal
LLRs. The following curves represent the results obtained by simulating 105 frames
with N = 1024 and K = 512.

1.5 2 2.5 3
Eb/N0 [dB]

10-5

10-4

10-3

10-2

10-1

100

BE
R

SC-F Decoder
BER

N=1024, K=512, CRC16, 105 frames

SC standard
SCF T = 10
SCF T = 32

Figure 4: BER curves of the SC and SCF decoders

18

1.5 2 2.5 3
Eb/N0 [dB]

10-4

10-3

10-2

10-1

100
FE

R

SC-F Decoder
FER

N=1024, K=512, CRC16, 105 frames

SC standard
SCF T = 10
SCF T = 32

Figure 5: FER curves of the SC and SCF decoders

3.2 PBF Decoder Software Implementation
The PBF algorithm described in [5] shows that by using the concept of critical
sets it is possible to locate and correct more than one error. Therefore, a software
implementation of this decoding scheme has been derived with a maximum depth
equal to four levels, which means that 4 errors are corrected at most.
Since most of the code includes parts developed for the SCF software, only the new
implementations will be discussed.

3.2.1 Main

As seen for the SCF software, the Main code requires to read two text files: the
first one contains the indexes to be used as the information set, the second text file
stores other information like the number of frames to be simulated, the initial SNR
value and its step, the seed for the random generators, and other parameters.
This time, the software asks to provide the number K of information bits, the max-
imum depth of the decoder (from 0 to 4) and the number of bits to be used for the
CRC computations. The only difference now is in the decoder function SCPBF -
decoder.

19

3.2.2 Custom types

In order to implement the PBF decoding, several types have been created. This
section explains their meaning and use.

• type flip: used to create arrays where the elements are arrays of 4 integers.
The idea is that one element of type type flip contains the flip for each level
to reach a certain node. As an example:
type flip vect = {7, 9, 12, /}
means that the decoder flips the seventh bit for the level 1, the ninth for
the second level and the twelfth for the third stage. The last element of the
example is undefined: it will contain the fourth and last flip allowed for this
implementation.

• type node: represents a node of the PBF decoding tree. It is a structure
with two fields: dimension, which tells how many children the node has, and
Child, an array of type flip. As an example let us consider the binary tree
corresponding to a 6/16 PC and the corresponding PBF tree:

𝑢7 𝑢9 𝑢12

Figure 6: Binary tree of a PC with N = 16

In the binary tree in fig.6, the black leaves represent unfrozen bits. A node in
a higher stage is black if its children are black. This is used to better identify
the critical set, which in this example is {7, 9, 12}. Therefore, as shown in
fig.7, the level 0 of the PBF tree is linked to three nodes and each of them has
its own critical set.

A

B C

D
D

E

F

7

9

12

9 12

G

E

F

13 14
12

Figure 7: PBF tree of a PC with N = 16

20

The level 0 is represented by just the node A, which is described as a type node
type in the following way:

Figure 8: Node A of the PBF tree

3.2.3 SCPBF decoder.c

This function implements the PBF decoding scheme.
After the variables declarations and the vectors allocations, a first standard SC
decoding is performed: if the CRC fails the PBF algorithm starts. First, a counter
used to keep track of the number of SC performed is increased. This variable is used
to compute the mean value of the LLRs required by the pruning functions Enochild
and Enoselect. To do so, the absolute values of the LLRs are accumulated in the
acc LLR vector by the Accumulate function, therefore, after the increasing of SC -
count variable, the LLRs are stored in acc LLR.
Now, the critical set is evaluated: the function Critical Set writes in the vector
C S the indexes belonging to the critical set. After this, the elements of C S are
properly stored in the member Child of the type node array Node. At level 0, this
array contains just one element (one node), like shown in fig.8.
The nodes are visited according to the U vector, which contains the sorted index of
the nodes according to a certain metric (ascending order of |LLRi|

µi
). At level 0, the

U vector contains just one index set to 0.
A variable (exit loop) to control the external while loop is set to 1: when a future
CRC succeeds or all the nodes of the maximum level have been evaluated with no
success, it is set to 0 to exit from the while loop.
After the declaration of the while loop, the level is increased, then, if this part is
reached by higher levels, the set of nodes and the U vector are updated for the new
level.
An external for loop is used to visit all the elements of the Nodes array (when this
loop is reached for the first time, there will be just one node), however, since we want
to visit the nodes of a certain level according to the metric previously explained, the
index of the loop is used to extract the index of the U vector associated with the
node with progressively increasing metric.
At this point, for each element of the Child member of the node selected, the SC
decoding is applied: however, the difference with the standard SC scheme, is that
now all the indexes provided by the Child member are flipped. As an example, if
the actual level is 2 the array Node provided by the previous level is:

Figure 9: type node array Node built in level 1

21

Then, the SC decoder function takes as an input one element of the Child mem-
ber of a node, e.g considering the first node of the array, it has two elements in the
Child field, so SC decoder will take the array {7, 9, /, /}, flips the seventh and ninth
bits, then, if the CRC fails, it will work with {7, 12, /, /}.
After each SC decoding, the SC count and the acc LLR vector are updated and the
CRC is performed. If it fails, before considering the following child node, the child
nodes for the next level must be created. In order to reduce the number of nodes
generated, the functions Enochild and Enotselect are used.
If the result of Enochild is false, the node is allowed to create child nodes, so the
Critical Set function is used on the visited node and its critical set is written in
the vector C S. With the Enotselect function, some vales from the C S vector are
discarded and the resulting critical set is saved in the new CS vector. Now, an aux-
iliary array of type node, Node aux is used to store these new nodes: the previous
flips are copied from the Node array, the new flip is taken by the new CS vector.
When all the nodes of a certain level have been visited, the algorithm copies Node -
aux in Node and frees the content of Node aux, then the level is increased and the
operations are done again. This continues until a CRC succeeds or all the elements
of the array Node have been visited on the maximum level.

3.2.4 PBF tools

This library contains a set of functions used by the PBF decoder.

3.2.5 Critical Set

• Node: pointer to a node;

• C S : vector in which the critical set of the node will be stored;

• N : length of the PC;

• Unfrozen: indexes corresponding to the unfrozen bits;

• level: actual level in the decoding process, it is used as an index to fill the
child member of the node;

• flip: index flipped in the previous SC, the critical set starts from the index
next to it.

This function fills dimension and child members of the node provided as input and
writes its critical set in the C S vector. Let us consider, as an example, the PC
code with rate R = 6/16 seen in fig.6. The idea to derive its critical set relies on
the possibility to discern its sub-blocks. To do so, the tree is represented as the
following table:

22

Figure 10: Binary tree sub-block representation

However, the implementation of this table has been done as a 1D array.
In order to fill this array, it is first allocated and set to store all zeros, then, an index
in the last row (stage 4 of the example) is filled with 1 if its index belongs to the
Unfrozen vector and if it is greater than the flip (in this way the indexes prior to
the flip are seen as frozen).

Figure 11: First step to fill the sub-block array

The void cells store a zero.
Now, this stage 4 row is analysed: a cell in the next row will store a 0 if the two cells
below it are different from each other, otherwise, it they both are equal to 1, the
cell will contain a 1. In the first case, the index associated with the 1 is saved in the
vector C S according to the formula: CS[z] = (cellindexmod(2Stage))·(2Stagemax−Stage)
where Stagemax is equal to the number of stages of the binary tree.

Figure 12: Second step to fill the sub-block array

This process is iterated until a row with all zeros is obtained (it must exist,
otherwise it means that all bits are unfrozen). Finally, the number of indexes written
in C S is provided as the return value.

23

3.2.6 Metric qs

This function simply sorts with the quick sort algorithm the metric vector U in
ascending order according to the member LLR over mean.

3.2.7 E nochild and E noselect

These two functions are used to prune some nodes (or some edges) in order to
keep down the number of possible flips to be performed. E nochildis computes N1
counting the number of bits, belonging to Unfrozen, between the flip index and N,
while N2 is the number of bits whose LLRs fail in achieving a certain threshold.
In both N1 and N2, the bits belonging to the critical set are excluded from the
counting. Then, if N2

N1 is below a threshold wlevel provided as an input, E nochild
returns 0, meaning that the node is allowed to generate child nodes.
If E nochild returns 0, E noselect is used to prune some edges. It considers the LLR
corresponding to the child: if it is above a certain threshold, the child is discarded.
The values used to compute the thresholds are provided in [5].

3.2.8 Results and Considerations

The performances, in terms of BER and FER, have been obtained for each level
of the PBF decoder and compared with the results of the SC and SCF decoding
schemes.

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
Eb/N0 [dB]

10-4

10-3

10-2

10-1

100

BE
R

Polar Codes decoders
BER curves

N=1024, K=512, CRC16, 105 frames

SC standard
SCF T = 32
PBF: LVmax =1

PBF: LVmax = 2

PBF: LVmax = 3

PBF: LVmax = 4

Figure 13: BER curves for the levels 1, 2, 3 and 4 of the PBF algorithm

24

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
Eb/N0 [dB]

10-4

10-3

10-2

10-1

100

FE
R

Polar Codes decoders
FER curves

N=1024, K=512, CRC16, 105 frames
SC standard
SCF T = 32
PBF: LVmax = 1

PBF: LVmax = 2

PBF: LVmax = 3

PBF: LVmax = 4

Figure 14: FER curves for the levels 1, 2, 3 and 4 of the PBF algorithm

The PBF gain over the SCF increases with the number of levels considered, since
these schemes are able to correct more than one error.
It is interesting to notice that the curve corresponding to the third level is very close
to the one obtained with a level 2 PBF.

25

4 Simplified PBF Attempts
The PBF has shown good performance, but the techniques used to prune the not
reliable nodes are quite complex, involving parameters depending on the mean val-
ues of the previously computed LLR, on the square root of such values, on the level
and even on the current value of SNR. Moreover, the value of the parameters to
be used in the thresholds Enochild and Enoselect were provided in[5] as numbers
for just some values of Eb

N0
, so that it was not possible to simulate the algorithm

past an SNR of 2.5 dB. Therefore, some attempts to simplify the metric have been
performed.
The results of the 1-level-PBF with the standard SCF seen in fig.14 shows that
the gain of the first algorithm over the latter is not too high. Moreover, that PBF
involved more than one hundred flips, while the SCF just 32. Therefore, the first
attempt to simplify the PBF was based on the assumption that if at level 1 the
algorithm is similar in performance to the SCF, then just T flip can be performed
at level 1 and each of those nodes can generate at most T children.
This revised PBF workes in the following way: during the level 0 (standard SC
decoding) the indexes corresponding to the LLR associated with the positions pro-
vided by the critical set are stored and sorted in ascending order. In case of failure
of the CRC, the level 1 is reached, where T attempts are made by flipping the in-
dexes corresponding to the smallest LLRs. During each of these attempts, the LLRs
associate with the critical set of the flip are sorted and the first T of them are stored.
If at the end of the T attempts of the level 1 the CRC still fails, the second level
starts: each previous attempt is rerun in the same order, but, this time, for each
try a new flip, taken from the sorted list created during the level 1, is added, so
that there are T try for each attempt done in the first level. Therefore, at most T 2

attempts are performed during this phase.
The scheme below illustrates this process.

O

1

1 2 T

2 T

1 T 1 T

…

… … …

LV 0

LV 1

LV 2

Figure 15: Simplified PBF scheme

However, the performance in terms of BER and FER are far from the ones shown
by the standard PBF, so this approach has been rejected.

26

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
Eb/N0 [dB]

10-4

10-3

10-2

10-1

100
FE

R
FER

N=1024, K=512, CRC16, 105 frames

SC standard
PBF-simplified T = 32
PBF LV2

Figure 16: FER curves for the standard PBF LV2 and for the simplified attempt of it

4.1 Progressive Bit Flipping Constrained
The following approach is very similar to the first one but, this time, it is only
applied on the second level. By using the critical set, a number dim CS of attempts
are performed in the first level and, during this, the T most unreliable positions,
taken from the critical set of the flip, are stored. If the decoding in the level 1 fails,
at level 2 at most T attempts are performed for each node of the upper level. With
this method, a maximum of dim CS ·T attempts are performed on the second level,
therefore the maximum latency, in the worst-case scenario, is dim CS · (T +1) times
the one of the standard SC.
Fig.17 portrays a graphical illustration of the proposed algorithm.

27

O

1

1 2 T

2

1 T 1 T

…

… … …

LV 0

LV 1

LV 2

Dim_CS

Figure 17: PBF-Constrained scheme

The following pseudo-code describes the software implementation:

28

Algorithm 1 PBF-C Algorithm
1: level = 0
2: ûN−1

0 ← SC(yN−1
0)

3: if CRC(ûN−1
0) then = failure

4: Generate CS 0
5: Sort indexes of CS based on the ascending order of |LLRi|
6: level + +
7: for (i = 0; i < dimCS; i+ +) do
8: ûN−1

0 ← SCF (yN−1
0 , CS 0[i])

9: if CRC(ûN−1
0) = failure then

10: Generate CS 1(ui)
11: Sort and store T indexes of CS 1(ui) in ascending order of |LLRi|
12: else break
13: end if
14: end for
15: i = 0
16: level + +
17: while (CRC(ûN−1

0) = failure OR i < dim CS) do
18: for (i = 0; i < dim CS; i+ +) do
19: for (j = 0; j < T ; j + +) do
20: ûN−1

0 ← SCF (yN−1
0 , CS 0[i], CS 1[j])

21: if (CRC(ûN−1
0) = success) then

22: break
23: end if
24: end for
25: end for
26: end while
27: end if

The performance of this second algorithm is shown in the figures below.

29

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
Eb/N0 [dB]

10-4

10-3

10-2

10-1

100

FE
R

Polar Codes decoders
FER curves

N=1024, K=512, CRC16, 105 frames

SC standard
PBFconstrained T = 16

PBFconstrained T = 32

PBF: LVmax = 2

Figure 18: FER curves for the standard PBF LV2 and for the PBF-C algorithm proposed

This time, the curves follow the results seen for the PBF scheme, with an accept-
able loss when the number of attempts is T=32. The name for this algorithm has
been chosen as PBF-Constrained since the nodes of the level 1 are constrained to
produce at most T children.
With respect to the standard PBF, the constrained version allows the pruning of
unreliable nodes without involving square roots, mean values of parameters, fixed
point arithmetic and it allowed to simulate the performance for values of SNR greater
than 2.5 dB as shown in fig.19.

30

1.8 2 2.2 2.4 2.6 2.8 3
Eb/N0 [dB]

10-5

10-4

10-3

10-2

10-1

100

FE
R

Polar Codes decoders
FER curves

N=1024, K=512, T=32, 105 frames

PBFconstrained T = 32 CRC16

PBFconstrained T = 32 CRC16

PBF: LVmax = 2 CRC16

PBF: LVmax = 2 CRC32

Figure 19: FER curves past 2.5dB

As a result, the PC decoder architecture proposed in this thesis will be based
the PBF-Constrained algorithm. It must be noted that this method is very close
to a work parallel to this one [10], where an Early Termination technique for the
PBF is introduced, but a different and more complex sorting metric is used and no
hardware implementation is proposed.

31

5 PBF-C Architecture
The architecture proposed for the PBF-Constrained decoder and shown in fig.20
is made of a Control Unit that manages the signals to be used based on the level
reached by the decoding, an SC module that is used to execute the SC decoding, a
CRC-16 block, that verifies the result of the decoder, two sorting networks, so that
the indexes to be flipped are organized based on the absolute value of their LLR, a
set of ROMs and RAMs to store the critical sets and four LUTs to get the proper
address of the memories.
The architecture has been designed for a codelength N=1024 with a number of
processing elements equal to M=64.

SC

CRC16

Sort
LV1

Sort
LV2

CS_ROM2

CNT
LV2

+

=

RAM_LV2

RAM_LV1 CNT
LV1

Flip2_index
L_flip2 S_flip2_index

S_Mode2

En_fromSC

Flip1_reg

Wen_RAM2

Addr_RAM2

Clear

S_Mode1

Wen_RAM1

CS_ROM1

Flip1_index

LUTs

Addr_ROM2

LV2 LV1

End_LV1

Addr_ROM2 /

Addr_RAM2

Reg1

LV2

S_flip1

S_flip1

S_flip2

Reg2

En_Work

=0

En_FF_Result

Result

T T

En_LV1

LV2

En_LV1

LV1

En_LV1

Addr_RAM1

En_LV2

Clear_S2

En_fromSC
En_CNT2

LV1

En_CNT1

En_fromSC

En_CNT1

En_fromSC

LV1 LV2

Addr_ROM1/

Addr_RAM1

Addr_ROM1

End_LV2

0 1

CRC_Shift

LV2

S_Mode2

En_fromSC

En_CNT2

LV1

S_flip1

S_flip2

Flip1

Ch_LLR Ready

SIPO_Out

Read_SIPO

Figure 20: PBF-C decoder architecture

The decoding process is divided into three phases:

• Level 0: while a standard SC decoding is being performed, the magnitude
of the LLRs belonging to the critical set of the level 0, stored in CS ROM1,
are sorted by the network Sort LV1. If the SC decoding fails, the next phase
starts;

• Level 1: considering dim CS the dimension of the critical set of the level 0,
a maximum number of dim CS decoding attempts are tried, during which one
bit is flipped and the T least reliable LLRs of the critical set of the bit being
flipped are sorted and stored by Sort LV2. At the start of each attempt, the
index to be flipped is provided by the first register of Sort LV1 and it is then

32

stored in RAM LV1. In this way, the level 1 phase can start as soon as the
level 0 phase ends, without waiting to store all the indexes into RAM LV1.
This, however, introduces the need of a second, smaller, sorting network. At
the end of each attempt, the content of the second sorting network is saved
into RAM LV2 while the CRC is computed (if T is equal to the CRC length
there is no need to wait for the end of the writing process);

• Level 2: after dim CS failed attempts in the level 1, each of them is repeated
a maximum of T times, flipping an additional index.

5.1 SC module
The SC module is composed of a controller and a datapath containing a memory
for storing the internal LLRs and M=64 processing elements (m=6) implementing
the semi-parallel architecture described in [8].

LLR
RAM

PE0 PE1 PE63

Bypass Register

Decisor

PSN network
PISO

Ch.

Buffer

1st word 64∙Q

2nd word 64∙Q

Ch.

LLR

 Q
64∙Q

64∙Q

 64

Q-1 |𝐿0
0 |

𝑢̃𝑖 1

𝐿0
0 Q

 Q Q Q

to Sort

network 1 En_Reg_in

 1 Remainder
 Info 1

 1 En

 Read

𝑢̂𝑖 1

to CRC

network

K

Load_phase

MU
X
I

MU
X
II

MUX III MUX III MUX III

64∙Q

 Q Q Q

 1
 l_r

Controller

 l_r

 p

 S

 i

En_work

64∙Q

i
(Q-1)+n

Figure 21: Scheme of the SC architecture

5.1.1 SC Controller

The SC Controller computes the control signals required by the SC module. These
signals are the number of decoded bits i (0 ≤ i < N), the current stage S (0 ≤
S < log2(N)), the current portion of stage p (0 ≤ p < 2S

M
) and a signal to issue the

computation of a left or right message l r (left if lr = 0, right if lr = 1).

33

Left_right
network

=(N-1)

New stage
network

FF

T
Clr

S
DOWN_CNT

Load
In

En

Out

p
UP_CNT

En

Clr

Out

i
UP_CNT
0 to N

En

Clr

Out

=0 p Stop

=

En_work

 work

 1

 S

log2ڿ 𝑛ۀ

 p

 ۀlog2𝑚ڿ

 i

 n

new_stage

(Input of S counter)

 l_r

 1

FF
End_SC

 1

Figure 22: Scheme of the SC Controller

The stage portion p is provided by an up-counter starting from 0. When the
output of this counter reaches the stop condition of p (2S

M
), the S counter is enabled.

The check of this condition is provided by a combinational circuit that first computes
2S

M
by left shifting p of S positions and then by right shifting the result by m = log2M

positions then, it compares this result with the actual value of p. If they are the
same, the p counter is cleared and S is updated (and, therefore, even the stop
condition of p).
The stage index S is provided by a down counter starting from log2(N) − 1, so, in
this case, from S = 9, activated whenever p reaches its stop condition. When S = 0,
the counter that provides the number of decoded i bits is enabled and the S counter
is updated with a new value that depends on i. In particular, the new stage is the
position of the first zero in the binary representation of i. As an example, let us
consider the following cases for N = 8 (n=3):

i = 2→ ibin = 010→ newstage = 0;

i = 3→ ibin = 011→ newstage = 2;

i = 5→ ibin = 101→ newstage = 1;

This index is obtained by the combinational circuit New stage network. This
obtains the position of the first zero with an AND operation between the negated
value of i (̄i) and the value i + 1. This produces a binary number with a 1 in the
position of the first 0 of the original number. Finally, with a log2 operation, the
index is retrieved.

ibin = 011→ ī = 100→ i+ 1 = 100→ ī & (i+ 1) = 100→ newstage = 2

The scheme of this circuit is shown below.

34

LUT

IN OUT

0 0

2 1

4 2

8 3

16 4

32 5

64 6

128 7

256 8

512, 1024 9

+1

LUT

0 0

i

n

n+1 n+1

⌈log2 𝑛⌉

new_stage

Figure 23: Scheme of the New stage network

As it can be seen in fig.23, the i signal is zero padded on the MSB side, so to
avoid overflow when i=N-1. Moreover, the log2 operation is implemented by the
means of a LUT, which also provides newstage = log2N − 1 when i = N − 1. The
LUT used in the main architecture with N=9 is shown in fig.24.

new_stage

⌈ log2n⌉

n+1n+1

n

i

00

LUT

+1

LUT

IN OUT

1 0

2 1

4 2

8 3

16 4

32 5

64 6

128 7

256 8

512,
1024

9

Figure 24: LUT in the New stage network

The last signal the controller provides is the l r signal, used by the PEs to
execute the computation of the left or the right message. This value is obtained by
computing the mod2 of i

2S .
All these operations are described in the following timing diagram.

35

clk

En_work

work

p 0 1 2 ... 7 0 1 2 3 0 1 0 1

p stop 7 3 1 0 1

S 9 8 7 6 ... 0 1

i 0 1 2

enS/clr_p

load

l_r

Figure 25: Timing diagram of the controller

When the Controller receives the pulse En work from the external CU, the FF
T commutes this pulse into a constant signal (work) that serves as an enabler for
the p Counter. When the value of p reaches its stop condition, a signal, acting as a
clear for the p counter and as an enable for the S counter, is issued. When S reaches
the value 0, i is updated and a load signal is brought high to let start the S counter
from the new stage value.

5.1.2 PSN Network

In [9] an efficient PSN to be integrated with the semi-parallel scheme is described.
This network can be divided into two parts, one to be used when S ≤ m (parallel
updated scheme), the other when S > m (serial updated scheme), and it is shown
in the figure below.

M

M

1

𝑢ො𝑖

 1

Parallel
PSN

PSN Memory
(serial PSN)

𝜋 M

M M

M
M

to PEs

Parallel PSN Serially updated PSN

Figure 26: PSN scheme proposed in [9]

When S ≤ m, all the PSN required by all the operations in the stage are com-
puted together by the Parallel PSN by multiplying the newly received decoded bit
ui with the output of a generator matrix. The result is saved in M 1-bit registers
(FFs) and provided to the PEs.

36

𝐺0 𝐺1 𝐺62 𝐺63

𝑅0 𝑅1 𝑅62 𝑅63

=0

FF

En_R

En_G

Generator
Matrix

PSN
Registers

S Clr_PSN

to 𝜋
network

𝑢̂𝑖

Figure 27: Parallel PSN scheme

Since the bits are decoded when S = 0, this condition is used to enable the
generator matrix and the output registers to compute the new partial sums. These
value, however, are not directly sent to the PEs, but they undergo the π network
that, based on the value of i and S, provide the right link between the registers and
the PEs. When i is equal to an integer multiple of M and p is equal to 1, the registers
and the generator matrix (which is also a set of M FFs) are cleared. For the sake of
simplicity, let us consider as an example a scenario with only 4 PEs and the partial
sums being represented by capital letters of the alphabet (e.g. A = u0, B = u1, ...),
the behaviour of the parallel PSN is shown in the following timing diagram.

37

clk

p 0 1 0

S 1 0 1 0 2 1

i 0 1 2 3 4

u{i} u{0} u{1} u{2} u{3}

G 0000 0001 0011 0101 1111 0000

R0 0 A A+B ABC ABCD 0

R1 0 B B+D 0

R2 0 C C+D 0

R3 0 D 0

En_G

En_R

l_r

a

b

P
S

N
 re

gi
st

er
s

Figure 28: Parallel PSN timing diagram

When u0 is being decoded, the generator matrix is enabled providing ”0001”
(the LSB is connected to Reg0). In the following clock cycle, u0 is sampled and
multiplied with the generator matrix, therefore only the first register (R0) will be
updated and its content is used to compute u1 (notice that during the computation
of u1, the signal l r is high). Then, the multiplication between the generator matrix,
now containing ”0011”, and the just decoded u1 will update R0 with ”A+B and
R1 with B. After the computation of u2, the first register, R0, contains the data
A+B+C which is never used in the SC decoding, however, it is sent to a PE which
is not used for the computation of u3, in fact, the PE designed to compute u3 will
receive only R2 containing the required value C. After the decoding of u3, all the
registers are updated, since the generator matrix contains ”1111” and their content
is sent to all the PEs to compute the internal LLRs. Moreover, these partial sums
are also sent to the serially-updated PSN. After this, the content of the matrix and
of the registers is cleared.

In the decoder architecture, when S ≤ m, the active PEs are the first 2S. There-
fore, the π connection logic block is used to provide the proper partial sum value
to the right PE. For N=1024 and M=64, the π network consists of 2 multiplexers
with 32 inputs (for PE0 and PE1), 2 multiplexers with 16 inputs (for PE2 and
PE3), 4 multiplexers with 8 inputs (for the PEs from 4 to 7), 8 multiplexers with 4

38

inputs (for the PEs from 8 to 15) and 16 2-to-1 multiplexers (for the PEs from 16
to 31). The inputs of the multiplexers are the content of the 64 registers containing
the partial sums in the parallel PSN, and are selected by a counter activated when
a particular bit of i changes. At the start and at the end of the 64 partial sums
computations, the counters output is equal to their max values. The remaining PEs
(from 32 to 63) are directly connected to the proper register.

PE0_interface

Edge detector

Edge detector

Edge detector

CNT

CNT

CNT

CNT

to PE0 1

to PE1 1

to PE2 1

to PE3 1

to PE4 1

to PE5 1

to PE6 1

to PE7 1

1 0𝑡ℎ bit (LSB)

1 1𝑠𝑡 bit

1 2𝑛𝑑 bit

1 3𝑟𝑑 bit

i n M

D_in
S

Figure 29: Scheme of the π circuit

In fig.29 the scheme of the π network is shown. The part regarding the connec-
tions for the PEs from 8 to 31 is not shown due to space constraints. The scheme of
the selectors of the multiplexers is the same for all the sets of multiplexers, with the
only exception being the selector for PE0, since, unlike the others, it has to provide
the same register more than once. As an example, the register R0 is provided to
PE0 every time i is a power of 2 (therefore there is an additional 2-to-1 multiplexer
in this scheme to simplify the selection logic). This is shown in fig.30, where the
value of S is used to select registers corresponding to a selector with a lower value
than the one provided by the counter (which is activated whenever the LSB of i is
1).

39

CNT
0 to 31

pow2
LUT

FF

𝑅0 𝑅2 𝑅4 𝑅6 𝑅62

𝑅0

S

-1

Register

0 1 2 3 31

1 0

Clip to 0

5 5

0𝑡ℎ bit (LSB)

 1

En

Sel_1

Sel_2

In2_sub

CNT_out

i

n n 1

1

to PE0

Figure 30: Interface between the parallel PSN and PE0

clk

S 1 0 1 0 2 1 0 1

i 0 1 2 3 4 5 6

u{i} u{0} u{1} u{2} u{3} u{4} u{5}

En

CNT 31 (max) 0 1 2

In2_sub 0 1 0

Sel_1 31 (max) 0 1 0 1 2

Rx R62 R0 R2 R0 R2 R4

Sel_2

Rout R0 R2 R0 R4

R0 0 A A+B ABC ABCD A..E

R2 0 C C+D

R4 0 E

l_r

a

z

R
eg

s
co

nt
en

t

Figure 31: Timing of interface between the parallel PSN and PE0

In the timing of fig.31 the values provided to the PE are enlightened and it
is possible to notice that the proper value is passed with the right timing (as an
example, the partial sum C is used to compute u3).
As for the other selectors, they share the same scheme, with the difference being
the number of multiplexers present, the dynamic of the counter and the bit whose
edge variation is used to activate it. The scheme in fig.32 shows the example of the
circuit for the interface between the parallel PSN and the PEs from 8 to 15.

40

CNT
0 to 3 FF

0 1 2 3
 MUX_PE8

𝑅1 𝑅2 𝑅33 𝑅4

0 1 2 3
 MUX_PE15

𝑅15 𝑅30 𝑅47 𝑅60

to PE8

to PE15

n i

1 4th bit
En

Rout_8

Rout_15

1

1

Sel

Figure 32: interface between the parallel PSN and PEs from 8 to 15

The timing of the interface for the PE8 in fig.33 shows how the variation of the
4th bit of i (the LSB is the 0th) is used as an enable for the counter. The value
provided in the beginning (R4) is not actually used by the PE.

clk

S 0 4 3 ... 0 5 4

i 15 16 31 32

i (bin) 0...001111 0...0010000 111110...0100000

4th bit

En

Sel 3 (max) 0 1

Rout_8 R4 R1 R33

a

z

Figure 33: Timing of interface between the parallel PSN and PE8

The PEi with 16 ≤ i ≤ 31 are respectively connected to the register Ri with i
2

when S=5 and with Ri when S=6. The inputs of the other multiplexers for the PEs
interface with the PSN network are shown in the appendix.

As for the serially-updated part, it is required to store a total of N/2 partial sums in
a memory element, since when i>N/2, the previously computed partial sums have
already been used. When i becomes a multiple of M, the content of the registers of
the parallel PSN is passed to the PEs and it is also saved as a word in the memory
of the serial scheme. Then, for the partial stages with p ≥ 1, the partial sums for
the PEs are obtained by reading and XOR-ing two words from the memory. In this
case, the interface towards the PEs is straightforward the first bit from the XOR

41

goes to PE0, the second to PE1, and so on. As for the memory structure, even if
[9] describes the use of a tri-port memory, in this thesis it has been designed as a
register bank to satisfy timing constraints. Therefore, each word of the memory is
replaced by a register containing M partial sums, therefore N

2M registers of M bits
are required. A one-hot enable is used to select one of these registers for the writing
operation. The two read ports of the memory are replaced by a tree of multiplexers.

REG_0 REG_1 REG_2 REG_3 REG_4 REG_5 REG_6 REG_7

 0 1

 MUX0

 0 1

 MUX1

 0 1

 MUX2

 0 1

 MUX3

 0 1

 MUX_A

 0 1

 MUX_B

M
D_in

En

Sel_1

Sel_2

D_out_1 D_out_2

M M

9

4

2

Figure 34: Register bank of the serially-updated PSN scheme

The selectors of the multiplexers and the enable of the registers are provided by
a small FSM.

42

CLEAR

IDLE

p0

p1

p2

p3

p4

p7

Clear_CNT = 1; W_address = 8; Others to 0

W_address = 8 (do not write);

other signals to 0

En_CNT = 1; W_address = count

W_address = count-2; En_CNT = 0; Sel = 1;

R_addr1 = count-1

R_addr2 = count-2

W_address = count-3; En_CNT = 0; Sel = 1;

R_addr1 = count-3

R_addr2 = count-1

W_address = count-4; En_CNT = 0; Sel = 1;

R_addr1 = count-4

R_addr2 = count-2

W_address = 8 (do not write); En_CNT = 0; Sel = 1;

R_addr1 = count-5

R_addr2 = count-1

W_address = 8 (do not write); En_CNT = 0; Sel = 1;

R_addr1 = count-8

R_addr2 = count-4

wake = 1
wake = 0

S = 6

S = 7

S = 8

Figure 35: FSM of the PSN circuit

After the CLEAR state, the FSM is in the IDLE state until the pulse signal wake
is ’1’ that happens when i becomes a multiple of M. To obtain this signal, it could be
used an edge detector on the 7thLSB of i, therefore it could be used the same signal
found in the πnetwork. After the IDLE, in the p0 state, a counter is abilitated and
the data from the parallel network are saved on the register with the address given
by the old value of the counter. The following states are used to select the proper
register to write and the ones to read from. From the state p4 it is not mandatory
to keep performing write operations and, after the state p7, the machine returns to

43

the CLEAR state where the counter is cleared. This counter is also cleared at the
end of the decoding attempt.

clk

p 0 1 2 3 0 1

S 0 8 7

i 255 256

Wake

Next_State IDLE p0 p1 p2 p3 IDLE

Present_State IDLE p0 p1 p2 p3 IDLE

En_CNT

count 3 4

W_addr 8 3 2 1 0 8

R_addr1 3 1 0

R_addr2 2 3 2

Sel

Figure 36: Timing of the FSM in the PSN circuit

The timing of the FSM is shown in fig.36, where the signal Sel is used to switch
the output of the PSN between the parallel and the serially-updated part. The
outputs W addr, R addr1, R addr2 of the FSM are sent to some LUTs to obtain
the signals used to control the bank of registers. The content of the LUTs is shown
below.

IN Sel1 Sel2 En_reg
0 0000 00 00000001
1 0000 00 00000010
2 0100 00 00000100
3 1000 00 00001000
4 0000 01 00010000
5 0000 10 00100000
6 0001 10 01000000
7 0010 01 10000000
8 / / 00000000

Figure 37: Outputs of the LUTs used in the PSN

44

The whole PSN architecture is portrayed in the following scheme.

1

𝑢ො𝑖

Parallel
PSN

PSN Memory
(serial PSN)

𝜋

0 1

M

M M

M M

count

log2
𝑁

2𝑀
+ 1

Clr_CNT

1

FSM

CNT

o to
𝑁

2𝑀

1
En_CNT

R_addr1
R_addr2

LUTs

W_addr

Wake S

1

Sel

End_SC

 1

Clear

En_reg

Sel_1

Sel_2

End_SC En_CNT

Figure 38: PSN architecture

This PSN architecture allows to reduce the area compared to other PSN schemes,
moreover, only the memory for the partial sums (in the serially-updated part) is
related to the value N. A final example for a code with N=8 and M=2 is shown
below.

S = 2

S = 1

S = 0

Leaf

𝑢ො0 𝑢ො1 𝑢ො2 𝑢ො3 𝑢ො4 𝑢ො5 𝑢ො6 𝑢ො7

A+B+C+D,

B+D,

C+D,

D

A

A+B,

B

B C D E F G

E+F

Figure 39: Partial sums passed over the tree of a N=8 PC

45

clk

p 0 1 0 3 0 1 0

S 0 1 0 2 1

i 0 1 2 3 4

u u0 u1 u2 u3

Parallel_Reg0 0 A A+B 0 C C+D 0

Parallel_Reg1 0 B 0 D 0

Serial_word0 A+B,B

Serial_word1 C+D,D

Sel

Figure 40: PSN timing for a N=8 PC with 2 PEs

A consequence of the implementation of the HPPSN in the semi-parallel archi-
tecture is that the scheduling of the operations will be different compared to what
was proposed in the original semi-parallel scheme [8]. In the previous example, when
i=4 and S=2, the value provided to the 2 PEs are first C+D and D, then, in the
following clock cycle, the partial sums are obtained by reading A+B, B and C+D,
D from the memory words and performing a XOR operation between them so to get
the values A+B+C+D, B+D. This leads to a different way to fill the LLRs memory.

5.1.3 LLR Memory

In the original semi-parallel architecture, the LLRs memory words contains M LLRs
organized in bit reverse way. Moreover, 2 consecutive words are read (starting from
the top of the memory block referring to the actual stage) and one word is written
(starting from the top of the region referring to the stage below). By implementing
the HPPSN, however, the scheduling is different and the cell memory must be placed
in a different way inside the word. In [9] a double permutation for the LLRs is
proposed: first the address of the cell is divided into two part, bSbS−1...bm is the
word address, while bm−1...b0 is the cell index. Then, considering j as the binary
index of an LLR, the cell where LLRj must be put is given by right rotating the
word address by one position and by bit-reversing the cell index. Therefore, for a
polar code with N=32 and M=4, the filled LLR RAM will be like the one shown in
fig.41.

46

𝐿0
5 𝐿4

5 𝐿2
5 𝐿6

5 𝐿1
5 𝐿5

5 𝐿3
5 𝐿7

5

𝐿16
5 𝐿20

5 𝐿18
5 𝐿22

5 𝐿17
5 𝐿21

5 𝐿19
5 𝐿23

5

𝐿8
5 𝐿12

5 𝐿10
5 𝐿14

5 𝐿9
5 𝐿13

5 𝐿11
5 𝐿15

5

𝐿24
5 𝐿28

5 𝐿26
5 𝐿30

5 𝐿25
5 𝐿29

5 𝐿27
5 𝐿31

5

𝐿0
4 𝐿4

4 𝐿2
4 𝐿6

4 𝐿1
4 𝐿5

4 𝐿3
4 𝐿7

4

𝐿8
4 𝐿12

4 𝐿10
4 𝐿14

4 𝐿9
4 𝐿13

4 𝐿11
4 𝐿15

4

𝐿0
3 𝐿4

3 𝐿2
3 𝐿6

3 𝐿1
3 𝐿5

3 𝐿3
3 𝐿7

3

/ / / / / / / /

𝐿0
2 𝐿2

2 𝐿1
2 𝐿3

2 / / / /

/ / / / / / / /

𝐿0
1 𝐿1

1 / / / / / /

/ / / / / / / /

1 0 1 0 0

0 1 0 0 1

S = 4

S = 3

S = 2

S = 1

S = 0

Word Address

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

LLR memory for a PC N=32 M=8

Indexes: 4 (=S) 3 (=m) 2 1 0 Figure 41: LLR memory for an N=32 M=8 PC

To better understand, let us consider the second cell of the second row of the
memory. This cell is the 9th cell of the stage 4, therefore its binary representation is
01001, with the double permutation it is transformed into 10100, therefore the 9th
cell of the stage S=4 will contains the 20th LLR sent to the decoder.

𝐿0
5 𝐿4

5 𝐿2
5 𝐿6

5 𝐿1
5 𝐿5

5 𝐿3
5 𝐿7

5

𝐿16
5 𝐿20

5 𝐿18
5 𝐿22

5 𝐿17
5 𝐿21

5 𝐿19
5 𝐿23

5

𝐿8
5 𝐿12

5 𝐿10
5 𝐿14

5 𝐿9
5 𝐿13

5 𝐿11
5 𝐿15

5

𝐿24
5 𝐿28

5 𝐿26
5 𝐿30

5 𝐿25
5 𝐿29

5 𝐿27
5 𝐿31

5

𝐿0
4 𝐿4

4 𝐿2
4 𝐿6

4 𝐿1
4 𝐿5

4 𝐿3
4 𝐿7

4

𝐿8
4 𝐿12

4 𝐿10
4 𝐿14

4 𝐿9
4 𝐿13

4 𝐿11
4 𝐿15

4

𝐿0
3 𝐿4

3 𝐿2
3 𝐿6

3 𝐿1
3 𝐿5

3 𝐿3
3 𝐿7

3

/ / / / / / / /

𝐿0
2 𝐿2

2 𝐿1
2 𝐿3

2 / / / /

/ / / / / / / /

𝐿0
1 𝐿1

1 / / / / / /

/ / / / / / / /

1 0 1 0 0

0 1 0 0 1

S = 4

S = 3

S = 2

S = 1

S = 0

Word Address

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

LLR memory for a PC N=32 M=8

Indexes: 4 (=S) 3 (=m) 2 1 0

Figure 42: Example of the double permutation

As for the scheduling, The first words to be read are the ones corresponding to
the address 0010 and 0011. Their content is used to compute 8 internal LLRs that
are saved in 0101. Then the words 0000 and 0001 are read and the result is put into
0100. When S ≤ m the scheduling is the same of the standard semi-parallel scheme.
It should be noticed that when S ≤ m the internal LLRs just produced must be
used immediately, therefore while the result is being written in the RAM memory,

47

the PEs will get the proper LLRs from a by-pass buffer. In particular, when S = m
the upper word is taken from the buffer and the bottom one from the memory. As
for the N=1024 M=64 PC code, its LLR RAM has 42 words of 64 LLR each. The
first 16 words belongs to the stage 9, the following 8 to the stage 8, then 4 to the
stage 7 and the all the other stages have 2 words. To keep the addressing and the
connection to the PEs simple, in both [8] and [9] two words are allocated even when
S < m. This, however, introduces a redundancy as shown in fig.41.
The scheme used to control the Ram memory is the following:

Read
Address
LUT

LLR RAM

+2

-2

=0

Write address
generator

≥ 𝑚

S

p

S

D_in

W_en

W_addr

R_addr

D_out1

D_out2

M∙Q

M∙Q

M∙Q

1

1 0

1 0

1 0

0

1

0

1

0

1

Load_phase

S = 9

P = 0

S = 0

Figure 43: Scheme of the LLR Memory controller

The stage signal S is used to get from a LUT the first address for that stage.
The following addresses when S > m and p > 0 will be the previous one minus 2,
while when S ≤ m the address to be read is simply taken from the LUT.
The write address is derived from the read address by summing 2S−m+1 to it and
by swapping the LSB with the bit in position S − m or, alternatively, by using a
second LUT.
The write enable W en is low when S=0 since the LLRs of the leaf stage are not
saved in the memory, and even when S=9 and p=0.
Since the LLR memory is filled by a buffer at the beginning of the decoding, the
Data in, W en and W addr ports have a multiplexer to switch between the signals
provided by the buffer (blue arrows) and the ones provided by the SC circuit.

48

clk

p 0 1 2 ... 7 0 1 ... 0

S 9 8 3

i 0

Comp1 (p=0)

Comp2 (s>=m)

Read_address 14 12 10 ... 0 22 20 ... 34

Write_address 23 21 ... 2 0 27 ... 34

W_en

Figure 44: Timing of the LLR Memory for a PC with N=1024 and M=64

The timing shows how the read addresses are provided to the memory (notice
that for a single address two consecutive words are read). Moreover, when S ≤ m
there is a conflict, however in those stages the values to the PEs are provided by
the by-pass register, so the write operation is executed correctly and the read one
is performed but the data obtained from the memory are not passed to the PEs.

5.1.4 LLR Memory-PEs Interface

The different scheduling introduced with the HPPSN requires different connections
between the LLR memory and the M PEs. When S > m the inputs to the PEs are
taken from the two words read from the memory. In particular, the PEi will have
as inputs the ith cells from the two words. When S = m the first word is taken from
the by-pass register while the second word is read from the memory, while, when
S < m all the LLRs provided to the PEs are taken from the by-pass register word,
in particular, the PEi gets the content of the 2 · ith and the 2 · (i+ 1)th cells of the
bypass register word.

49

LLR
RAM

PE0 PE1 PE63

Bypass Register

Decisor

PSN network
PISO

Ch.

Buffer

1st word 64∙Q

2nd word 64∙Q

Ch.

LLR

 Q
64∙Q

64∙Q

 64

Q-1
|𝐿0

0 |

𝑢̃𝑖 1

𝐿0
0 Q

 Q Q Q

to Sort

network 1 En_Reg_in

 1 Remainder
 Info 1

 1 En

 Read

𝑢̂𝑖 1

to CRC

network

K

Load_phase

MU
X
I

MU
X
II

MUX III MUX III MUX III

64∙Q

 Q Q

 64∙Q

Controller

 l_r

 p

 S

 i

En_work

64∙Q

 64∙Q

Figure 45: Timing of the LLR Memory for a PC with N=1024 and M=64

In the previous figure, the read ports of the memory are connected to two 2M·Q-
to-MQ multiplexer, where the first input is a word form the memory and the second
is the content of the bypass register. When S > m the MUX-I and MUX-II in fig.45
output the memory words, when S = m the MUX-I gives the content of the bypass
buffer, MUX-II the second word of the memory. Finally, when S < m the output is
the data provided by the bypass register.

0 1 2 3 … 63

PE0 PE1 PE63

 Q

MUX III MUX III MUX III

 Q Q Q

[0] [0] [1] [1] [2] [1] [3] [63] [63]

 64∙Q

 64∙Q

 Q Q

1st word/By-pass

2nd word/By-pass

Figure 46: Timing of the LLR Memory for a PC with N=1024 and M=64

50

In fig.46 the multiplexers 2Q-to-Q MUX-III implement the different connections
with the words previously described. Since only M

2 PEs are used when S < m, the
PEs from 1 to 31 will require 2 MUX-III, while only the second input of PE0 has one
MUX-III since the first input is always connected to the same cell of the word in both
connection configurations. Therefore, there will be a total of M−1 MUX-III. When
S ≥ m the MUX-III provides the first connection type, when S < m the second
type. Therefore, the selector of the MUX-III can be taken from an OR gate with
inputs the selectors of MUX-I and MUX-II. In the same figure, the square brackets
contain the cell index of the word to which the inputs of the PEs are connected.

5.1.5 Processing Element

All the M processing elements have the same scheme, described in [8] and portrayed
in fig.47.
A PE takes as inputs two LLRs (e.g. LAand LB), the 1-bit signal l r provided by the
SC controller and used to execute the computation of the left or the right message
and the partial sum β used in the right message evaluation. The output of the PE is
a single LLR (e.g. LC). The LLRs are provided in sign and magnitude form since,
as shown in equations eq.1 and eq.2, the operations to be performed on the LLRs,
like the absolute value or the sign retrieval, are very easy to implement with the
sign and magnitude format.
The magnitudes undergo a comparator which provides 1 if |LA| < |LB|, 0 otherwise.
This result is used to select which is the maximum and the minimum of the two
LLRs. If l r is 0, so αleft is being evaluated, the last two multiplexers provide one
the sign of LC as the XOR between the signs of LA and LB, the other selects the
minimum magnitude between |LA| and |LB|. If l r is 1, then αright is being computed.
In this case, the magnitude of the output will be provided by an unsigned adder
where the eventual subtraction is implemented by selecting the 2s’C version of the
minim magnitude input as one input of the adder, while the sign is provided by a
small logic as described in [8].

51

<

2’sC

+

0 1

0 1 1 0

0 1

0 1

1 0

|𝐿𝐵| |𝐿𝐴| 𝑠(𝐿𝐵) 𝑠(𝐿𝐴) β l_r

1 1 1 1
Q-1

Q-1

Q-1

|𝐿𝐶| 𝑠(𝐿𝐶)

1

min(|𝐿𝐴|, |𝐿𝐵|) Max(|𝐿𝐴|, |𝐿𝐵|)

Figure 47: PE circuit

5.1.6 Channel Buffer

At the beginning of the decoding, the LLR memory is filled with the LLRs received
from the channel. In particular, the LLRs are serially transmitted in groups of M,
then when the buffer is full, the content is written in the proper memory word.
Moreover, the channel LLRs are sent with the same order with which they are gen-
erated. However, their order in the RAM word is different, therefore it is the buffer
duty to organize the LLRs to match the memory cell scheme.

52

CNT_A

0 to M-1
LLR
RAM

B
u
f
f
e
r

BR

=(M-1)

CNT_B

0 to
𝑁

2𝑀
-1

CNT_C

0 to 2

X2

+1
0

 1

0
 1

T

=0

=2

= 𝑁

2𝑀
-1

2FFs

FF FF

0
 1

0

 1

LLR_in Q

Load 1

m B_Addr

Comp1 1

W_en 1

M∙Q

Addr

1 End_Load

Load_phase

Figure 48: Channel buffer

When the decoder receives the signal Ready high, it means that M LLRs are
serially being sent to it. The signal Ready activates a first counter (CNTA in the
picture) that generates the cell address where the LLR must be placed. This address
is simply the bit-reverse permutation of the output of the counter. In the scheme
this permutation is represented by the BR block, however, its implementation is
just done by changing the order of the wires. The signal Ready is also used as the
write enable for the buffer, which has room for M LLRs. To better understand, let
us consider the memory seen in fig.41. The first LLR sent to the decoder is L5

0, the
counter gives 000, therefore the LLR is saved in the first cell of the buffer. Then for
L5

1 the output of the counter is 001, whose bit reverse permutation is 100, so this
LLR is saved in the fifth cell, and so on.
When M LLRs are in the buffer, so the output of CNT A is equal to M-1, a second
counter (CNTB in the scheme) is enabled to provide the address of the LLR RAM
where the content of the buffer must be saved.
There will be a total of N

M
words to be saved, the first half will be stored in the even

addresses of the RAM (LLR RAM Address = 2 · CNTB). After the first N
2M words

have been saved (so the output of CNTB is N
2M − 1), a third counter (CNTC) is

activated and the remaining words will be saved in the odd addresses of the RAM
(LLR RAM Address = (2 ·CNTB)+1). In the circuit scheme, the x2 multiplier can
be implemented by simply shifting the wires, while the +1 adder by inserting 1 as
LSB after the wire shifting.

53

When all the LLRs have been stored into the RAM, the output of the third counter
is 2 and this condition is provided as an input to an AND gate together with the
CNTB = N

2M −1 condition. The output of this gate is used to clear the third counter
(not shown in the scheme) and it is also used to signal the end of the loading phase.
It should be noticed that the selector of the multiplexers at the input ports of the
RAM provides the values from the buffer circuit since the signal Load phase is kept
high during the entirety of this process.

clk

Next_state WAIT LOAD WAIT LOAD WAIT START

Present_State WAIT LOAD WAIT LOAD WAIT START

Load_phase

Ready

Channel LLR L0 L1 L2 L3 L28 L29 L30 L31

Load

CNT_A 0 1 2 3 0 1 2 3 0

Buffer_Address 00 10 01 11 00 10 01 11 00

Comp1 (CNT_A=M-1)

CNT_B 3 0 2 3

LLR_RAM_Address 000 101 111

We_LLR_RAM

CNT_C 0 1 2 0

CNT_B=3 AND CNT_C=2

End_Load h

a

b

c

d

e

g

f

Figure 49: Timing of the channel buffer

The timing in fig.49 refers to a code with N=32 and M=4 and it is shown the
storing of the first and last groups of LLRs.

5.1.7 Decisor

When the stage S=0 is reached during the SC decoding, the sign of L0
0 is evaluated

to obtain the hard decision bit. In particular, in an SC decoding, the decoded bit
will be 0 if s(L0

0) ≥ 0 or the index i is a frozen bit, 1 otherwise.
The PBF-C decoding decisor, however, needs also to send signals to other compo-
nents to get the indexes to be flipped from the memory elements, to let the sorting
networks sample correctly the bit just decoded and also to flip the bit during the
level 1 and level 2 phases.
The index i is also compared with the output of a LUT containing the positions
of the remainder. This result is used with one clock delay as an enable for a shift
register in the CRC circuit used to store the remainder bits and to provide them to
the CRC computation part when the SC decoding ends.

54

=

FF

Info ROM CRC_LUT

= FF

FF

CNT
0 to 15

=

FF

T

Flip1_index (CS_ROM1)

Flip2_index (CS_ROM2)

0 1
LV1

i

S = 0

S = 0

S = 0

LV2

𝑢̂𝑖

0 S(𝐿0
0)

0 1

0 1

0 1

0 1

Sel1

Sel2

S_flip2 (RAM_LV2) S_flip1 (RAM_LV1)

i

I_out

I_out

LV2

En_fromSC
En_Reg_In

(SORT network)
Info (to CRC)

En_Sipo (to SIPO)

D_in (to CRC)

D_in (to SIPO)

Remainder (to CRC)

Flip1_reg (SORT_LV1)

Figure 50: Decisor circuit for the PBF-C

As it can be seen in fig.50, the indexes to be provided to the sorters are taken from
the ROMs, then, based on the level phase, one of them is selected to be compared
to the index i and when S=0 the result, En fromSC is sent to the outer counters to
get new addresses for the ROMs and to the ROMs itself as read enable. A small
combinational circuit on the read enable port of the two ROMs, let the memories be
activated only during the proper level. This signal is also sent with one clock delay
to the sorters (which again will be activated only during their proper levels using
some gates). An example for this, considering a level 0 phase, is portrayed in the
timing diagram in fig.51 where, as an example, the index 2 represents an info bit,
while the index 3 represents a remainder bit. Both of them belongs to the critical
set of the example, so the sorter will be activated.

55

clk

LV1

LV2

S 0 1 0 2 1

i 1 2 3 4

u{i} u0 u1 u2 u3

I_out

S=0

S=0_FF

Info/En_SIPO

CRC_LUT 3 7

Comp_CRC

CNT_CRC 0 1

Remainder

En_fromSC

Addr_ROM1 1 2 3

Flip1_index 2 (Addr=0) 3 9

En_Reg_In (SORT1)

Figure 51: Decisor during level 0 phase

The index i is also sent as an address to an N-bit memory containing the positions
of the information bits (in this memory the indexes of the CRC remainder are seen
as frozen). If the bit selected in this way is equal to 1 (so i is an information bit),
both the CRC and the SIPO will sample the bit decoded. The sign of L0

0 is sent
to a first multiplexer whose output is the sign itself or the value zero based on the
output of the Info ROM (notice that the output of the multiplexer when an info bit
is being evaluated is 0 when the magnitude of L0

0 is greater than zero, 1 otherwise).
This bit goes then into a second multiplexer that will select its negated value if the
flip conditions are true. As an example, during the level 2 phase, two flips will be
performed: after the first one a FF toggle is activated an this will let select the
second index to be flipped. After the second flip, the toggle is enabled again and its
output returns low. An example of this is shown in fig.52.

56

clk

LV1

LV2

S_flip1 4

S_flip2 6

S 1 0 1 0

i 4 5 6 7

u{i} n(u4) u5(0) n(u6)

I_out

S=0

AND_out

Sel_1

Sel_2

a d

b

c e

Figure 52: Decisor during level 2 phase

The timing shows that when the signal Sel1 is high the decoded bit is flipped
(û4 = not(u4)), while if the output of the Info ROM is 0, so it is the decoded bit
(û5 = 0).

5.2 CRC-16 Circuit
Since the PBF-Constrained is based on the SC-Flip decoding, a CRC remainder is
encoded in the message sent to the decoder. Therefore, during the decoding phase,
the CRC apply on the information bits the same polynomial used by the encoder
on the original message. It should be noted that, during the encoding phase, the
K-bit information vector is padded with R zeros then, this K+R-bit vector is divided
by the CRC polynomial so that the last R positions contains the remainder of the
CRC. Then the PC encoder transmits the K info bits on the most reliable channels
and the R remainder bits on the next R most reliable channels. Doing so, the final
encoded message sent to the channel will have information and remainder positions
distributed over its length. In order to perform the CRC check at the decoder side,
it is necessary to obtain again the structure of a vector with the first K positions

57

filled with information bits and the last R slots with the CRC remainder.

𝐹𝐹0 𝐹𝐹4 𝐹𝐹5 𝐹𝐹11 𝐹𝐹12 𝐹𝐹15

Shifter

1 0

CNT
0 to 15

Info

CRC_Shift

Remainder

CRC_Shift

Clear

Clear

= 15
Clear

En
CRC_Shift 𝑢̂𝑖

FF
Result

Clear

(from CU)

En

16

End_CRC

Result

Figure 53: CRC-16 circuit

The CRC check operation has been implemented with the same structure of a
LFSR, so there are 16 FFs with some XOR gates between some of them to implement
the polynomial

x16 + x12 + x5 + 1.

This implementation fits well with the way the inputs are provided to the CRC
circuit: since the LFSR accepts one bit per clock cycle, whenever an information
bit is decoded, it is sent to the LFSR structure together with the signal Info used
as an enable. On the other side, when a bit associated with a remainder position is
decoded, it is sent to a 16-bit FIFO instead: at the end of the SC decoding, there
is a period of 16 clock cycles in which the signal CRC Shift is high and used as an
enabler for both the FIFO and the LFSR so that the content of the FIFO is sent
to the LFSR scheme. After this period, a counter will signal the end of the CRC
evaluation, the content of all the FFs of the LFSR is checked with a NAND gate: if
all the registers contain a zero, the check is considered successful and the decoded
bits are considered correct. Otherwise, the CRC check is considered failed and a
new flip attempt is performed. In both cases, the FIFO and the LFSR are cleared
with the signal of En FF provided by the CU to sample the result which is in turn
cleared by the control unit when the total decoding ends.

58

5.3 Insertion Sorter
In the PBF-Constrained scheme, there 2 networks to sort the LLRs: one to sort the
dim CS LLRs of the critical set of the level 0, the second to sort the T LLRs of the
critical sets of the level 1. It has been chosen to use two networks instead of one so
that it is possible to start immediately the level 1 decoding by taking the index to
be flipped from the sorter without waiting to transfer the content of the sorter to a
RAM.
As seen in the implementation of the SC-Flip decoder provided in [11], the sorting
networks implement the insertion sorting algorithm since their inputs (the index i
and the absolute value of the LLR) are provided at most one per clock cycle.
The control signal Mode is 0 during the SC decoding to get new data from the
decoding phase, while it is 1 when the index content of the first register Reg 0 has
to be provided to the SC module or it has to be saved in a RAM.

Reg0 Reg1

REG_In

1
 0

1
 0

0
1

 1
1

 0
0

1
 0

FF

≤ ≤

En_S En_S Mode Mode

En_S

Mode

En_Reg_in

D_in

(Q-1)+n

(Q-1)+n

(Q-1)+n

(Q-1)+n

(Q-1)+n from Reg1

 (Q-1)+n

from Reg2

 (Q-1)+n

(Q-1)

REG_out

En

n
to RAM

n

Figure 54: Insertion sorter scheme

The insertion sorting scheme is made of dim CS registers for the network used
to sort the critical set of the level 0, while of T registers for the second circuit.
All the LLRs are sorted in the same clock cycle every time a new data has to be

59

inserted. These networks are used to sort the absolute values of the LLRs (Q-1 bits)
of a critical set in ascending order. Moreover, since what to be flipped is an index,
the registers have a parallelism of (Q-1)+n bits to accommodate also the index i
corresponding to the LLR.
When a bit belonging to a critical set is decoded, the index i and the magnitude of
the LLR associated with that bit are sent to the sorting network. Here, they are
saved in a first register called Reg In, then the LLR content is compared in parallel
with the LLR content of all the registers of the network through comparators: if the
result of the comparison is 1, then the new LLR is smaller than the LLR stored in
that register, the opposite if the result is 0. Therefore, let us consider the results of
the comparators of three consecutive registers when a new data is introduced to the
network: 100→ the new data is greater than the one in the first register and smaller
than the ones in the other two registers: the first register keeps its content, the new
data is written into the second register and the content of the second register is
passed to the third register.
When S Mode = 1, the index i stored in the first register (Reg 0) is provided to a
RAM and each register sends its content to its left register. It should be noted that
S Mode = 1 is also used to enable the registers (with the exception of the Reg In)
and it is sent by the CU. The sorting network for the level 0 (Sort1) receives S -
Mode1 = 1 as a pulse signal each time a new flip has to be performed. In this way,
the content of the Reg 0 is stored into a RAM (RAM1) and it is also kept into the
Reg out (this register is not present in the second sorter), then Reg 0 is updated
with the content of Reg 1. As for the second sorter (Sort2), S Mode2 = 1 is sent as
a continuous signal at the end of each flip attempt of the level 1.

60

clk

S 1 0 1 0 2 1

i 16 17 18 19 20

Reg_i 16 17 18 19 20

u{i} u16 u17 u18 u19

|L0| 20 14 15 45

En_Reg_In

Reg_In 35/13 20/16 15/18

Reg_0 7/9

Reg_1 33/8 20/16 15/18

Reg_2 35/13 33/8 20/16

Figure 55: Timing of the insertion sorter when S Mode = 0, with positions 16 and 18 belonging
to a critical set

In the timing diagram, the content of the registers is provided as the value of
|L0| / the value of i, where the symbol ”/” is used just to show the separation of the
two fields.

61

5.4 PBF-C Level 0

SC

CRC16

Sort
LV1

CNT
LV1

LV1 LV2

CS_ROM1

En_CNT1 En_fromSC

En_CNT1

En_fromSC

LV1 LV2

En

R_en

Addr

Flip1_index n L_flip1 (Q-1)+n

En_Reg_In 1

Info 𝑢̂𝑖 Remainder

CRC_Shift

En_FF_Res

Result

Ch_LLR

Q

Ready

Read_SIPO

K SIPO_Out
En_fromSC

Figure 56: PBF-C level 0 architecture

At the beginning of the decoding, a standard SC is performed on the LLRs provided
by the channel. During this operation, the content of the ROM storing the critical
set of the level 0 (CS ROM1) is read and when the signal i has the same value of
the data read from the ROM, the absolute value of the LLR corresponding to that
index for S=0 is sent to the sorting network SORT LV1 along with an enable and
the address of the ROM is increased.
When the SC decoding ends, all the dim CS LLRs of the critical set are inside the
sorting circuit. Then, when the CRC check ends, the FF containing the result is
read. If the result is 1 the SC decoding is considered successful, the SIPO outputs
its content and then a clear state is reached where the sorting networks and other
registers are brought back to their initial value.
Finally, the FSM remains in the WAIT state until a new decoding operation starts.
Otherwise, if the result of the CRC is 0, the level 1 is reached.

62

RESET

WAIT

StartLV0

SCDecod_A

CRC16_A

CRC_end_A

Buffer_A

Clear_CU = 1;

Load_phase = 1;

Clear_CU = 0;

Load=0

En_CNT1 = 1;

En_work = 1;

Load_phase = 0

En_CNT1 = 0;

En_work = 0;

CRC_Shift = 1

End_Load = 1

Ready = 0

Load_LLR
Ready = 1

Ready = 0

Ready = 1

Load = 1

End_SC = 1

End_SC = 0

CRC_CNT = 15

else

CRC_Shift = 0;

En_FF_Result = 1;

En_FF_Result = 0;

To LV1_FSM

END_Dec

Result = 0

Result = 1

En_SIPO = 1;

Figure 57: FSM for the LV0 part

While the first part of this FSM has already been described in 5.1.6, the remain-
ing part is shown in the following timing diagram.

63

clk

Next_State SCDec. CRC_Shift C.end Buf END RST WAIT

Present_State SCDecod_A CRC_Shift C.end Buf END RST WAIT

i 1022 1023 0

u u1022u1023

CRC_Reg0 ... new1 new2 R0 R1 ... R14 R15 0

Comp1 (i=1023)

END_SC

CRC_shift

CRC_count 0 1 2 ... 15 0

Comp2 (CRC_count=15)

Clear_CRC

En_FF_Result

Result

SIPO_Read

SIPO_OUT 0 data 0

Clear_CU

c

a

b

Figure 58: Timing of the LV0 with successful decoding

The timing diagram, in fig.58 portrays the case where the decoding ends correctly,
therefore the content of the FF Result is 1 and the End Dec state is reached enabling
the read of the SIPO. In this diagram the SIPO is cleared just after one clock cycle by
the Clear command from the CU, however, it is simple to implement an architecture
able to keep the SIPO content for a longer time.

64

5.5 PBF-C Level 1

SC

CRC16

Sort
LV1

Sort
LV2

LUT
A

LUT
B

LUT
C

LUT
D

CS_ROM2

+

RAM_LV2

RAM_LV1 CNT
LV1

CNT
LV2

=

Flip2_index
L_flip2 S_flip2 (Din)

S_Mode2 ROM2_addr

En_fromSC

Flip1_reg (Wen_RAM)

2

ROM2_addr/

RAM2_addr

En_CNT1

Clear

S_Mode1

Wen_RAM1

 (SMode_1) En_fromSC

LV1

EnCNT2

Clear_S2

En_fromSC

En_CNT2

CRC_Shift

En_FF_Result

Result

R_en

RAM2_addr

S_flip1 (Din)

RAM1_addr

LV1

En_Work

SIPO_Out

S_Mode2

S_Mode2

S_Mode2

LV2
0 1

0 1

End_LV2

0 1 LV2

Figure 59: Scheme of the level 1 phase

When the standard SC decoding fails, the FSM starts the level 1 phase. Here,
for each decoding attempt, the least reliable index, stored in Reg0 of the network
SORT LV1, is used to flip the position corresponding to it and it is also saved into
RAM LV1, in this way, if all the dim CS attempts of the level 1 fail, this RAM
will store the first indexes to be flipped during the level 2 phase. The index to
be flipped is kept in the output register of SORT LV1 and it is used to access the
ROM containing the critical set of said index. This is done by the mean of some
LUTs: LUT A stores the first address of ROM LV2 containing the first element of
the critical set of the index, while LUT B provides the dimension of said set so
that only the correct amount of LLRs are sent to the second sorting network. The
LUT C is used to get the first address of the RAM LV2 where the index must be
saved, while LUT D provides the number between 0 and T-1 of indexes that will
be saved in the RAM LV2 for that critical set. The addresses for the ROM LV2
and the RAM LV2 is obtained by the sum of the output of the counter CNT LV2
and the content of the LUT A (for the ROM) or of the LUT C (for the RAM). The
input of the adder is chosen with a multiplexer whose selector is the output of an OR
gate with inputs LV2 (since during the level 2 phase only LUT C and LUT D are
used) and S Mode2 (it is 1 during the writing phase in the RAM LV2, in this way
the LUT C is selected as input for the adder). If the parallelism of the RAM LV2
address is lower than the one of the address of the ROM LV2, the proper MSBs of

65

the output of the adder are not connected to the address port of the RAM. The
counter is cleared during the SC decoding when its output is equal to the content
of LUT B or to the output of LUT D during the writing in the RAM LV2 phase,
therefore the selector of the multiplexer for the comparator is the same used for the
multiplexer for the input of the adder.
To better understand the structure of the memories and of the LUTs, let us consider,
as an example, the case of PBF-C applied to an N=16 PC with a number of attempts
at the second level equal to T=2.

6

8

5

10 12

10

6 8 10

12

12 13 14 12

8

9 10 12

Figure 60: PBF for a PC with N=16

In fig.60 is portrayed the PBF of an N=16 PC with critical set with dimension
5 for the level 0, then each node will be constrained to a maximum of 2 child nodes
with the PBF-C approach.
During the level 0 phase, the content of the CS ROM1 is sorted in the SORT LV1
network, then, with each decoding attempt, the RAM LV1 is filled with the sorted
order of indexes. The content of the CS ROM1 and the RAM LV1 (at the end of
the level 1 phase) is shown below.

 CS_ROM2 Address

CS(5)

6 0

8 1

10 2

12 3

CS(6)

8 4

10 5

12 6

CS(8)

9 7

10 8

12 9

CS(10) 12 10

CS(11)

13 11

14 12

 CS_RAM2 Address

CS(5)

6 0

8 1

CS(6)

8 2

10 3

CS(8)

9 4

10 5

CS(10) 12 6

CS(11)

13 7

14 8

LUT A

IN OUT

5 0

6 4

8 7

10 10

12 11

LUT B

IN OUT

5 5

6, 8 4

10 3

12 2

LUT C

IN OUT

5 0

6 2

8 4

10 6

12 7

LUT D

IN OUT

5, 6, 8, 12 1

10 0

CS_ROM1

5

6

8

10

12

CS_RAM1

8

6

5

10

12

Figure 61: Contents of CS ROM1 and RAM LV1

The critical sets of each index contained in the CS ROM1 is stored in the CS -
ROM2. The first address of each critical set block is the content of LUT A. Since
a maximum of 2 attempts are tried, the dimension of the RAM LV2 is smaller
compared to the ROM. Here, the first addresses of the critical sets are provided by
LUT C.

66

 CS_ROM2 Address

CS(5)

6 0

8 1

10 2

12 3

CS(6)

8 4

10 5

12 6

CS(8)

9 7

10 8

12 9

CS(10) 12 10

CS(11)

13 11

14 12

 CS_RAM2 Address

CS(5)

6 0

8 1

CS(6)

8 2

10 3

CS(8)

9 4

10 5

CS(10) 12 6

CS(11)

13 7

14 8

LUT A

IN OUT

5 0

6 4

8 7

10 10

12 11

LUT B

IN OUT

5 5

6, 8 4

10 3

12 2

LUT C

IN OUT

5 0

6 2

8 4

10 6

12 7

LUT D

IN OUT

5, 6, 8, 12 1

10 0

CS_ROM1

5

6

8

10

12

CS_RAM1

8

6

5

10

12

Figure 62: Contents of CS ROM2 and RAM LV2

The content of the LUTs is shown below.

CS_RAM1

8

6

5

10

12

 CS_ROM2 Address

CS(5)

6 0

8 1

10 2

12 3

CS(6)

8 4

10 5

12 6

CS(8)

9 7

10 8

12 9

CS(10) 12 10

CS(11)

13 11

14 12

CS_ROM1

5

6

8

10

12

 CS_RAM2 Address

CS(5)

6 0

8 1

CS(6)

8 2

10 3

CS(8)

9 4

10 5

CS(10) 12 6

CS(11)

13 7

14 8

LUT A

IN OUT

5 0

6 4

8 7

10 10

12 11

LUT B

IN OUT

5 5

6, 8 4

10 3

12 2

LUT C

IN OUT

5 0

6 2

8 4

10 6

12 7

LUT D

IN OUT

5, 6, 8, 12 1

10 0

CS_RAM1

8

6

5

10

12

 CS_ROM2 Address

CS(5)

6 0

8 1

10 2

12 3

CS(6)

8 4

10 5

12 6

CS(8)

9 7

10 8

12 9

CS(10) 12 10

CS(11)

13 11

14 12

CS_ROM1

5

6

8

10

12

 CS_RAM2 Address

CS(5)

6 0

8 1

CS(6)

8 2

10 3

CS(8)

9 4

10 5

CS(10) 12 6

CS(11)

13 7

14 8

LUT A

IN OUT

5 0

6 4

8 7

10 10

12 11

LUT B

IN OUT

5 5

6, 8 4

10 3

12 2

LUT C

IN OUT

5 0

6 2

8 4

10 6

12 7

LUT D

IN OUT

5, 6, 8, 12 1

10 0

The FSM flow is shown in fig.63

67

StartLV1

SCDecod_B

SC_End

Wait_RAM2

END_CRC

En_LV1

InitLV1

En_LV1 = 1

S_mode1 = 0;

En_work = 1;

En_CNT2 = 1

En_work = 0;

En_CNT2 = 0

En_CNT2 = 1;

S_mode2 = 1 (Also used as Wen_RAM2)

CRC_Shift = 1;

End_SC = 1
End_SC = 0

CRC_CNT = 15

CRC_Shift = 0

Clr_Sort2 = 1; En_CNT2 = 0;

En_FF_Result = 0; We_RAM2 = 0;

S_mode2 = 0; CRC_Shift = 0

Result = 0 & Count1=0

 Result = 1

(to END_DEC)

En_LV1 = 0;

S_mode1 = 1 (used also as Wen_RAM1);

En_CNT1= 1;

Wait_CRC

else

En_CNT2 = 0;

We_RAM2 = 0;

S_mode2 = 0

Buffer_B

DeactLV1

Result = 0 & Count1>0

Result = 0 & Count1>0

End_WR2=1

to LV2

En_LV1=1

Figure 63: FSM of the level 1 phase

Compared to the previous FSM for the level 0, here, before the SC decoding,
there are some states used to set the proper signals and to provide the index to be
flipped. The signal LV1 is used as input of many combinational logics at the input

68

of enable ports and, it will be brought back to 0 only when all the dim CS attempts
of the level 1 fail.
After the LV1 signal has been set, one index is taken from the SORT LV1 network
and provided as data (S flip1) to be written in the RAM LV1, to the SC module, so
that, when i=Flip1 reg, the hard decoded bit is flipped, and to the LUTs that will
provide the signals to access the CS ROM2 and to clear the counter. The address
of the RAM LV1 is given by CNT LV1 enabled together with En CNT1 as a pulse.
In the following state, the first index of the critical set for the second level is taken
from the output of CS ROM2 and it is kept stable since the read enable of this
ROM is then lowered. In the same state (StartLV1) the signal En work is brought
high enabling the start of the SC decoding (more precisely, it will be an SC-Flip de-
coding since the index provided by Flip1 reg will be flipped). During the decoding,
the sorting network SORT LV2 orders the combination of LLR+index in ascending
order based on the magnitude of the LLR.
At the end of the decoding, the CRC and the RAM LV2 writing phase starts si-
multaneously, so CRC Shift and S Mode2 are brought high. If one of them finishes
before the other (as an example, the writing process will require more latency when
the dimension of the critical set of the index that is being flipped is greater than the
length of the CRC) the FSM waits for the other operation to be completed. The end
condition of the writing phase is given when the signal End LV2 is high (so when
the output of CNT LV2 is equal to the content of the LUT D).
After this, the registers in the SORT LV2 network are cleared (this operation was
not required for the SORT LV1 circuit since it is used only once) and the result of
the CRC is checked. If the CRC failed, a new attempt is performed, the CNT LV1
is updated and the CS ROM1 provides the next least reliable index to be flipped.
During the last attempt, the CNT LV1 provides 0. If the CRC fails again, the FSM
will deactivate the LV1 signal and the level 2 phase starts.
The following diagrams describe these phases for the PC with N=16 seen in the
previous example.

69

clk

Next_state Init.1 START SC.Decod

Present_state En.1 Init.1STARTSC_Decod

EnLV1

LV1

S_Mode1

Reg0_S1 8 6

Flip1_reg 8

En_CNT1

CNT_1 0 1

LUT_A 7

LUT_B 3

En_CNT2

CNT_2 0 1

Addr_ROM2 7 8

Flip2_index 9

Figure 64: Timing of the first phase of the level 1 for the N=16 PC

In this timing diagram it can be noticed that the content of the REG0 (8) of the
first sorting network is written into the RAM LV1 (the write enable is the same S -
Mode1 signal used to take the data from the sorting network) in the address provided
by the output of the CNT LV1. In a similar manner, the index to be sorted during
the SC phase is taken using as the address of the CS ROM2 the sum of LUT A
and the output of CNT LV2. During the SC phase, the enable of the CNT LV2 is
provided by a signal from the SC module when i is equal to Flip2 index and S=0.

70

clk

S 1 0 1 0

i 8 9 10 11

S_flip1 8

LUT_A 7

LUT_B 3

Ren_ROM2

CNT_2 1 2 3

Addr_ROM2 8 9 10

Flip2_index 9 10 12

u{i} n(u8) u9 u10

Info

S2_RegIn_En

S2_RegIn L9 i9

Figure 65: SC decoding during the level 1 phase

During the SC phase, the bit associated with the index equal to S flip1 is flipped
(n(u8)) and a new Flip2 index is taken when i=Flip2 index and S=0.

71

clk

Next_state SC.end WAIT

Present_state SC SC_end WAIT

LV1

En_CNT2

CNT_2 0 1 0

End_WR2

S_Mode2

Flip1_reg 8

LUT_C 4

LUT_D 1

Addr_RAM2 4 5 4

S_flip2 9 10

Figure 66: Writing in the RAM LV2 phase

When the SC ends the CNT LV2 has already been cleared by its comparison
with LUT B, therefore its output is 0. Then, the counter is used with the LUT C to
obtain the addresses where the sorted indexes have to be stored. When CNT LV2
gives the same value found in LUT D, the writing phase ends.

72

5.6 PBF-C Level 2

SC

CRC16

LUT
D

LUT
C

+

=

CNT_LV2

RAM_LV2

S_flip1

Addr_RAM2

En_CNT2

RAM_LV1

CNT
LV1 En_CNT1

RegLV1

RegLV2

S_flip2

=0

LV2 0 1

From Sort_LV1

En_work

CRC_shift

En_FF_Result

Addr_RAM2

End_LV2

End_LV1

En_CNT1

En_CNT2

+1

LUT_B

S_Mode2

LV2

0 1

0 1

Clear

Figure 67: Scheme of the level 2 phase

After all the dim CS flip attempts of the level 1 have failed, for each of them a
maximum of T double flip tries are performed during the level 2 phase.
Now, all the indexes to be flipped are provided by the two RAMs. The first flip index
is read from RAM LV1 and it is sent to the LUTs LUT C, to get the address of the
RAM LV2, where its constrained critical set is stored, and to LUT D to understand
how many attempts have to be performed for that index.

73

 En_LV2

Init.LV1
_B

Init_LV2

START
_LV2

SC_Dec.
_C

CRC16_B

CRC_End_
C

En_LV2= 1

En_CNT1=1

En_CNT2 = 1;

En_CNT1 = 0

En_CNT1 = 0;

En_work = 0;

CRC_Shift = 1

End_SC = 1

End_SC = 0

CRC_CNT = 15

else

CRC_Shift = 0;

En_FF_Result = 1;

En_FF_Result = 0; Buffer_C

En_work = 1

to END_Dec.

Result = 0

&

End_LV2 = 0

Result = 0

&

End_LV2 = 1

Result = 1

|

(Result = 0

&

End_LV2 = 1)

Figure 68: FSM of the level 2 phase

74

As shown in the FSM in fig.68, when a decoding attempt fails, the first flip
index is kept, while the second one is taken from the new read from ROM LV2 by
increasing the CNT 2. When the critical set of the index of the level 1 has been
completely explored (End LV2 = 1) and the CRC still fails, a new index is taken
from the ROM LV1 and then it is used to get the second flip to be performed from
the RAM LV2.
When both CNT 1 and CNT 2 reach 0 (End LV1=1, End LV2=1) and the result
from the CRC check is zero, the content of the SIPO is read and the result of the
CRC, provided as an output of the whole decoder, is zero, signalling the failure of
the decoding process and the architecture waits for a new set of LLRs from the
channel to start the decoding of a new message.

clk

Next_state Init.1 Init.2 Start SC

Present_state En.2 Init.1 Init.2 Start SC

EnLV2

LV2

En_CNT1

CNT_1 0 1

Dout_RAM_LV1 8 6

S_flip1 8

LUT_C 4

LUT_D 1

En_CNT2

CNT_2 0 1

Dout_RAM_LV2 9 10

S_flip2 9

Figure 69: Timing of the second level phase

The timing in fig.69 shows the acquisition of the indexes to be flipped at the
start of the level 2 phase. Notice that these indexes are taken from two registers,

75

while the RAMs output the following flips.

5.7 Memory Resources Considerations
A preliminary evaluation of the memory resources needed to implement the proposed
architecture has been carried out considering the number of bits required by the main
blocks.
The dimensions of the ROMs and the RAMs depend on the number of elements
found in the critical sets, therefore on the positions of the unfrozen bits. This makes
the estimation of their rows quite difficult, while the number of columns has the
same parallelism of the signal i since these memories contain indexes.

Memory required [Kb] by the main blocks

Hardware
Resources

Code Properties

K=512
dim_CS = 125

T=32

K=512
dim_CS = 125

T=16

K=768
dim_CS = 96

T=32

CS_ROM1 12.50 12.50 0.96

RAM_LV1 12.50 12.50 0.96

CS_ROM2 78.93 78.90 47.11

RAM_LV2 35.40 19.06 2.62

SORT_LV1 2.14 2.14 1.50

SORT_LV2 0.54 0.27 0.51

LUT_A 2.00 2.00 1.25

LUT_B 2.00 2.00 1.25

LUT_C 1.50 1.30 1.15

LUT_D 0.38 0.18 0.38

Table 2: Preliminary memory resources estimation

Table 2 shows a first estimation for three different PCs with N=1024. The ROM
used for storing the critical sets of the first level (CS ROM2) is the one storing the
highest amount of bits. However, it should be taken into account that the area used
by a ROM is approximately 1/6 of a RAM with the same dimensions. Therefore
a proper implementation of the architecture should be carried out in the future to
better understand if this decoder can compete with the SCL decoder.

76

6 Conclusion
Polar codes have been receiving attentions due to their properties and their use
in the upcoming 5G standard, however, the SCL decoder, known to provide the
best performances, is characterized by a high complexity in terms of the required
resources, so an alternative to it is being researched.
In this thesis, a software implementation of the SC, SCF, and PBF decoding algo-
rithms has been provided and their curves have been discussed, then the PBF-C,
a new method that simplifies the PBF scheme, has been presented showing that
with T=32 it gives small loss in performance compared to the standard PBF but
simplifying the pruning technique and allowing to simulate past 2.5 dB.
An architecture for the PBF-C has been proposed where the SC module has been
designed with the HPPSN proposed in [9]. Moreover, this architecture is the first
one in literature based on the SCF scheme that is able to correct more than one
error.
Finally, a preliminary study on the required resources has been carried out to under-
stand the possible margin compared with an SCL implementation, however, more
accurate studies must be carried out in the future in order to confirm if this decoding
scheme could represent an alternative to the SCL decoder.

77

Appendix: Parallel PSN - PEs Interface

PE1

i=2 S=1 i=4 S=2 i=6 S=1 i=8 S=3 i=10 S=1 i=12 S=2 i=14 S=1 i=16 S=4

R1 R2 R5 R4 R9 R10 R13 R8

i=18 S=1 i=20 S=2 i=22 S=1 i=24 S=3 i=26 S=1 i=28 S=2 i=30 S=1 i=32 S=5

R17 R18 R21 R20 R25 R26 R29 R16

i=34 S=1 i=36 S=2 i=38 S=1 i=40 S=3 i=42 S=1 i=44 S=2 i=46 S=1 i=48 S=4

R33 R34 R37 R36 R41 R42 R45 R40

i=50 S=1 i=52 S=2 i=54 S=1 i=56 S=3 i=58 S=1 i=60 S=2 i=62 S=1 i=64 S=6

R49 R50 R53 R52 R57 R58 R61 R32

PE2

i=4 S=2 i=8 S=3 i=12 S=2 i=16 S=4 i=20 S=2 i=24 S=3 i=28 S=2 i=32 S=5

R1 R2 R9 R4 R17 R18 R25 R8

i=36 S=2 i=40 S=3 i=44 S=2 i=48 S=4 i=52 S=2 i=56 S=3 i=60 S=2 i=64 S=6

R33 R34 R41 R36 R49 R50 R57 R16

PE3

i=4 S=2 i=8 S=3 i=12 S=2 i=16 S=4 i=20 S=2 i=24 S=3 i=28 S=2 i=32 S=5

R3 R6 R11 R12 R19 R22 R27 R14

i=36 S=2 i=40 S=3 i=44 S=2 i=48 S=4 i=52 S=2 i=56 S=3 i=60 S=2 i=64 S=6

R35 R38 R43 R44 R51 R54 R59 R48

PE4 i=8 S=3 i=16 S=4 i=24 S=3 i=32 S=5 i=40 S=3 i=48 S=4 i=56 S=3 i=64 S=6

R1 R2 R17 R4 R33 R34 R49 R8

PE5 i=8 S=3 i=16 S=4 i=24 S=3 i=32 S=5 i=40 S=3 i=48 S=4 i=56 S=3 i=64 S=6

R5 R10 R21 R20 R37 R42 R53 R40

PE6 i=8 S=3 i=16 S=4 i=24 S=3 i=32 S=5 i=40 S=3 i=48 S=4 i=56 S=3 i=64 S=6

R3 R6 R19 R12 R35 R38 R51 R24

PE7 i=8 S=3 i=16 S=4 i=24 S=3 i=32 S=5 i=40 S=3 i=48 S=4 i=56 S=3 i=64 S=6

R7 R14 R23 R28 R39 R46 R55 R56

PE8 i=16 S=4 i=32 S=5 i=48 S=4 i=64 S=6

R1 R2 R17 R4

PE9 i=16 S=4 i=32 S=5 i=48 S=4 i=64 S=6

R5 R10 R21 R20

PE10 i=16 S=4 i=32 S=5 i=48 S=4 i=64 S=6

R3 R6 R19 R12

PE11 i=16 S=4 i=32 S=5 i=48 S=4 i=64 S=6

R7 R14 R23 R28

PE12 i=16 S=4 i=32 S=5 i=48 S=4 i=64 S=6

R1 R2 R17 R4

PE13 i=16 S=4 i=32 S=5 i=48 S=4 i=64 S=6

R5 R10 R21 R20

PE14 i=16 S=4 i=32 S=5 i=48 S=4 i=64 S=6

R3 R6 R19 R12

PE15 i=16 S=4 i=32 S=5 i=48 S=4 i=64 S=6

R7 R14 R23 R28

78

References
[1] C. E. Shannon, “A mathematical theory of communication,” The Bell System

Technical Journal, vol. 27, pp. 623–656, Oct 1948.

[2] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE Trans-
actions on Information Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

[3] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Transactions on
Information Theory, vol. 61, pp. 2213–2226, May 2015.

[4] O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, “A low-complexity im-
proved successive cancellation decoder for polar codes,” 2014.

[5] Z. Zhang, K. Qin, L. Zhang, H. Zhang, and G. T. Chen, “Progressive bit-
flipping decoding of polar codes over layered critical sets,” arXiv preprint
arXiv:1712.03332, 2017.

[6] L. Chandesris, V. Savin, and D. Declercq, “An improved scflip decoder for polar
codes,” 2017.

[7] C. Leroux, A. J. Raymond, G. Sarkis, I. Tal, A. Vardy, and W. J. Gross,
“Hardware implementation of successive-cancellation decoders for polar codes,”
Journal of Signal Processing Systems, vol. 69, pp. 305–315, Dec 2012.

[8] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel
successive-cancellation decoder for polar codes,” IEEE Transactions on Signal
Processing, vol. 61, no. 2, pp. 289–299, 2013.

[9] Y. Fan and C.-Y. Tsui, “An efficient partial-sum network architecture for semi-
parallel polar codes decoder implementation,” IEEE Transactions on Signal
Processing, vol. 62, no. 12, pp. 3165–3179, 2014.

[10] Z. Zhang, K. Qin, L. Zhang, and G. T. Chen, “Progressive bit-flipping decoding
of polar codes: A critical-set based tree search approach,” IEEE Access, vol. 6,
pp. 57738–57750, 2018.

[11] P. Giard, A. Balatsoukas-Stimming, T. C. Muller, A. Bonetti, C. Thibeault,
W. J. Gross, P. Flatresse, and A. Burg, “Polarbear: A 28-nm fd-soi asic for
decoding of polar codes,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 7, no. 4, pp. 616–629, 2017.

79

