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CHAPTER 1

Introduction

1.1 Work introduction

This Master thesis work is done in collaboration with Silicon Mitus. Objective of this work is to

demonstrate that a tool for High Level Synthesis, taking as input an high level description of a FIR

filter, can automatically generate an RTL architecture that is competitive in terms of area and power

with respect to a product developed with the traditional HDL design.

The company provides a Matlab source of the FIR filter that generates the golden outputs which are

taken as reference point. Moreover is provided also an RTL optimized description of the filter written

in System-Verilog that is useful to better understand the architecture that it must be recreated and to

have a comparison in terms of area and power. Lastly Silicon Mitus, as is schematized in Fig.1.1, gives

1
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also a testbench file, written in System-Verilog, that will be necessary to construct a new testbench

for the architecture generated with High Level Synthesis.

The first objective of the thesis is to write a C++ code, based on the above Matlab code that can be

synthesized by Catapult HLS tool. Then, after an RTL description in Verilog has been generated, it is

possible to give it as input to Synopsys Design Compiler. This tool performs another synthesis from

the RTL level to the gate level. Now it is possible to have a better knowledge on the area occupied

and on the two types of power, static and dynamic.

A comparison between the synthesized code from the Catapult RTL and the synthesized code from

Silicon Mitus RTL is done and finally the conclusions about the quality of results can be extracted.

1.2 Definition of High Level Synthesis

High Level Synthesis (HLS), also known as electronic system-level synthesis (ESL), describes an auto-

matic process executed by a tool to translate an algorithmic description into a hardware description.

A set of constraints and goals must be specified together with the high level description and they

affect the behaviour of the final hardware, that is the way the system interacts with the environment.

The description of the whole hardware is also called structure and it is made by a set of interconnected

components (from the more complex ones like CPUs and memories to the simplest ones like flip flop

and logic ports). Structure must be mapped into a physical domain. The smallest unit of the physical

domain is the transistor. Behavioural, structural and physical domains are three different ways of

description of an hardware system, each of them could be then divided in levels of abstractions as

shown in Fig.1.1.

Figure 1.1: Gajski-Kuhn chart [1]
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The Y diagram called Gajski-Kuhn chart, was proposed for the first time in 1983 as an indication

of the different perspectives in VLSI hardware design. More precisely, the graph reported is the

refinement of Robert Walker and Donald Thomas made in 1985 [1]. On this graph the authors drew

which should have been the best path for designer engineers (Fig1.2). So starting from a high level

Figure 1.2: Gajski-Kuhn chart [1]

of Behavioral Domain the first passage is to step down to a lower level of abstraction in the same

domain, then move to the Structural Domain. Here are defined the datapath and the control unit of

the architecture. These two passages are made, in this thesis, by Catapult, the HLS tool that arrives

to a HDL description of the filter starting from a C++ code. Then, to complete the design, there

must be others steps towards and inside the Physical Domain. All of these steps could be described as

few-to-many because, in general, many solutions are available to move from the starting point to the

end point of any arrow. For example there may be many structural implementations of a particular

behaviour.

High Level Synthesis, as we use the term, means to move from an Algorithmic level description of a

digital system to a Register-tranfer level (RTL) structure that implements its behaviour. From the

input specifications, it is produced a datapath that contains functional units, registers, multiplexers

and buses. If the datapath does not include the control block, as often happens, the synthesis tool

produces also the control part like microcode, PLA profiles or random logic.

From a single algorithm usually many different RT implementations could be produced. The work

of the designer is to guide the tool to the best hardware for his scope. It may happen that there

are constraints for example on the final floorplan area or on the maximum clock frequency or on the

dissipated power or even on the costs of production. HLS gives to the designer a better control over

the optimization phase to efficiently build and verify the hardware.
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HLS must be distinguished from other type of synthesis, like RTL-synthesis or logic-synthesis, because

all of them could be used after the high level one. The register-transfer starts from an already specified

set of registers and functional blocks and the interconnections between them is largely or completely

known. Logic synthesis, on the opposite, works from a description of the system through logic equation

and the final result is a technology that fits in the best way the given equations. It is used, once the

HDL description of the system is available, to synthesize the gate level as clearly shown in Fig1.3.

In the work of McFarland, Parker and Camposano [3] are described which are the main reasons of

Figure 1.3: HLS vs Logic synthesis [13]

the High Level Synthesis growing trend:

❼ Shorter design cycle: If a large part of the design is automated, the time-to-market is conse-

quently reduced. Furthermore also the costs decrease because one of the expensive part of the

chip is its design.

❼ Fewer errors: In HLS synthesis product can be easily verified.

❼ Ability to search the design space: It is possible to produce a synthesis reasonably quickly

and this leads to the possibility of exploring a large number of different designs.Moreover an

automated tool can suggest tradeoffs.

❼ Documenting the design process: The decisions carried on by the tool are tracked and it is

possible to know which are the consequences of those decisions.

❼ Availability of IC technology to more people: It is easier for inexperienced RTL-designers to

produce their own chip.

High Level Synthesis is nowadays introduced in the history of design of digital architectures.

Starting from the 70’s years the growing complexity of integrated circuits (Moore’s Law) leads to an
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even growing necessity to abstraction to gain in productivity. The compulsive integration of billion

of transistors on the same chip and nowadays also the addition of various technologies (SoC) gave a

big boost to the search of new methodologies of design. The HLS is one of the most promising way

to keep up with respect to the integration growth. Fig.1.4 shown different design methodologies that

were used during the last decades.

Figure 1.4: Different type of design in the history [12]

1.3 Brief history of HLS

Experts on this subject [2] are used to divide the history of the High Level Synthesis in three periods

that represent three different evolutions of this new kind of approach, from hereinafter we can call

them generations.

The first period covers years 70s-80s (Generation 0) and 80s-90s (Generation 1) when most of the works

were made in the research field. To a more in-depth analysis on the differences between these two

generations please refers to the work of G.Martin and G.Smith [2], while here are treated as a unique

period due to the similar contents. One of the main topic was the optimization of layout, that is part

of the lower level of a hierarchy. Noticeable contribution came from the Carnegie-Mellon University of

Pittsburgh where the Expl system was invented. It is the first that explores the possible optimizations

in the design working on the trade-off between series structures and parallel structures. Main limitation

of this system was that it works below an algorithmic level using standard register-transfer modules

to optimize the design. All the blocks are written in a hardware description language called ISPL.

In the late 70s the same research group guided by Alice Parker developed a new automation system

called CMU-DA (Carnegie Mellon University Design Automation) [4] which input is a functional
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specification so focused on describing very well the interfaces (input and output behaviour) while not

necessarily describing the internal structure. The original design system of the CMU-DA is reported

in Fig.1.5 to have a term of comparison with the today’s design tools.

Figure 1.5: The original CMU Design System [4]

The foundations of the contemporary HLS were laid during those years but, from commercial-

ization of this new technology point of view, this generation faced a terrible failure. As reported in

the work of G.Martin and G.Smith [2] the four mainly reasons, that we are going to analyse better

later, of the failure were: wrong historical period, input languages, quality of results and domain

specialization.

During those years many new revolutionary technologies were introduced such as automatic place-

ment and routing and RTL-synthesis and probably behavioural-synthesis were put aside. Also because

hardware description languages became very popular in those years while HLS tools are programmed

to accept as input source unlikely languages like Silage that will never be used again. Third cause is

referred to the roughness of those early tools with expensive allocation and primitive scheduling. The

final cause was probably the focusing on DSP design rather than the ASIC one, that was in vogue at

the time.

Second period or Generation 2, must be defined till 2000s when major companies started to develop

and commercialize their first tools. The main example could be Behavioural Compiler introduced by

Synopsys in 1994 that uses Verilog and VHDL as possible input languages.

The use of a behavioural HDLs was one of the main causes of failure for this generation because it

enters in competition with the existing RTL synthesis tool. This deters the interest of all algorithm
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and software designers to learn this new methodology. Instead RTL synthesis users did not find a

substantial improvement in terms of area and performance with respect to the tool they were already

using.

Some of the mistakes of this generation were the poor quality of the results and the wrong input lan-

guage, because, as we said, algorithmic designers were waiting for higher level programming languages.

The quality in particular was not satisfying talking about synthesis of circuit designed for control and

not for dataflow or signal processing. Other causes can be found in a lack of attention in the synthesis

of the interfaces and the impossibility, at that time, to have tool for the formal verification of the HLS

results.

A third generation, starting from early 2000s, introduced the big innovation of high level programming

languages as C, C++ or SystemC. The paradigm of possible solutions increased incredibly and all

of the market’s fields (ASIC, ASSP, FPGA, DSP, control) were covered by new tools. In this period

Mentor Graphics Catapult C Synthesis was born which is the predecessor of the tool used in this work.

In this generation finally most of the critic points of the previous ones were fixed, leading to a reason-

able success of the HLS tools in particular in Japan and Europe. Going further in details, the right

input languages like C or Matlab, comfortable for designers, gave a significant boost to this generation.

Moreover the wider domain of application and the improved quality of the results are important keys.

During these years many of the most famous companies turn to the use of simpler hardware blocks,

generated with HLS, to accelerate their algorithms. For example Catapult was used by Nokia to

generate hardware implementation of DSP for wireless communications starting from a Matlab code

[2]. The same tool was used by Alcatel Aerospace, Ericsson, Fujitsu and Toshiba.

In the Calypto Design System’s 3rd annual independent worldwide survey executed during January

2011 the results of the overall uses of HLS tools is show in Fig2.1. This anonymous survey was emailed

to several thousand SoC/IC design professionals worldwide. The same survey in 2014 evaluate which

Figure 1.6: High Level Synthesys deployment 2011 [9]
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are the type of hardware developed with usage of HLS. The result highlights a broad spectrum of

hardware being designed, including wireless, video, imaging, graphics and switch/routers.

Figure 1.7: Types of hardware being designed 2014 [11]
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1.4 Catapult HLS

In this section it will be described how the HLS tool chosen for our purpose works. The Catapult

C Synthesis tool automatically generates control and algorithmic RTL designs from both C++ and

SystemC sources. This process gives designers the possibility to move up to an higher abstraction

level for both design and verification of ASICs and FPGAs. Both time-to-market and freedom to

automatically explore different solutions are boosted and a fully optimized and error-free hardware

implementation is quickly achieved. Catapult has integrated High-Level Verification (HLV) tools and

methodologies that enable designers to complete their verification signoff at the C++ level with fast

closure for RTL.

Figure 1.8: Catapult High-Level Synthesis Platform [15]

Catapult C has been recognized as the High Level Synthesis market leader by Gary Smith EDA

for 3 years in a row [16].

As we already said, HLS simplifies the traditional RTL generation by automating the design. Using

C++/SystemC reduces the numbers of code lines up to 80% making it easier to write, modify because

of changes at the end of the design, retarget to a different technology and debug. In Fig1.9 is reported

a study made by Nvidia Corporation [17] about the time and the resources consumed by the traditional

RTL design and Catapult HLS one. As is it possible to understand using the HLS there is a gain both

in terms of time and in terms of resources occupied. The highly interactive Catapult workflow provides

full visibility and control of the synthesis process, enabling designers to rapidly converge to the best

implementation for performance, area, and power. After the RTL has been synthesized, Catapult

automates a complete verification infrastructure reusing the original C++ or SystemC testbench to

exercise the generated RTL.
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Figure 1.9: NVIDIA Closes Design Complexity Gap with High-Level Synthesis [17]

Figure 1.10: The Catapult design flow [14]

1.4.1 Catapult flow

To produce the desired output, Catapult provides the user with a friendly interface where are presented

all the tasks that can be used to steer the tool. This panel is shown in Fig1.11. Now we will explain

all of the single task.

❼ Input files: Clicking on this first option, the user can insert all of the input files needed for

the synthesis. All of the coding files must be specified but the headers files are not necessary,

they must be simply present in the same directory. An important tip is to remove the tick at

those files that must be included in the project but must not be synthesized, as for example the

testbench file.

❼ Hierarchy: All of the functions described in the code are shown here and for each of them
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Figure 1.11: The Catapult design flow

a hierarchy must be specified. Possibles status may be: Top, Block and Inline. Only one

function could be specified as ’Top’ of the hierarchy, this function should make all the calls to

the remaining functions that are signed as ’Block’. All other functions and labels are designated

’Inline’, meaning they are inside one of the hierarchy blocks. Labels are typically used to

emphasize loops and mark them as sub-blocks. Typically the hierarchy is designated in the

source code files by inserting the definition hls design pragma followed by one of the three types,

just above the function as in Fig.1.12.a . We must be careful because the Hierarchy Constraints

Window of the GUI Fig.1.12.b has a higher priority than the directives specified in the code, so

if the settings are conflicting, the code one will not be considered. If no hierarchy constraints

are specified, all of the functions and labels are considered to be ’Inline’ by default.

❼ Libraries: At this step the technology with which we want to synthesize must be defined. To

specify the technology, you first select a target RTL synthesis tool and a device. Based on your

selections, an associated list of IP libraries appears in the Compatible Libraries field on the right.

The set of libraries consists of a base library and some additional IP libraries (i.e. for RAMs

and ROMs). In this work the RTL tool is the OasysRTL and the target library is the Nangate

45nm. Here is also possible to generate a new memory with the specific command starting from

a VHDL/Verilog description.

❼ Mapping: Now the clock parameters are set. There are basic parameters like frequency and pe-

riod, duty cycle, offset and uncertainty, furthermore is also possible to implement automatically

advanced signals like two types of reset (synchronous or asynchronous) or the enable signal which

function is also clock gating. A signal called ”Transaction done” can be enabled. This is useful

for synchronization of the input/output signals and, in case there is not specified handshake,

every boundary signal has its own triosy signal that indicate completion of I/O transactions. In

this work, the I/O is managed by the ac channel interface as will be more clear in Chapter 4.

The triosy signals are not necessary with this interface type because it already has a ready/valid

handshake, called wait handshake.
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Figure 1.12: Hierarchy settings

❼ Architecture: This is probably the main task of all the design flow because here the constraints

on loops, memories, input and output interfaces and arrays are set. For the ’module’ fir synth

that is the ’Top’ block the parameters that are flexible are reported in Fig1.13. The effort level

can be setted as medium or high, moreover the user can modify the input and output delays

and others options. Step down in the architecture, we have at the same level ’Interfaces’ (which

kind of protocol to be used, in this thesis the wait protocol will be used, as specified above),

’Constant array’ (if present, optimize the memories) and ’Core’. We do not enter in all of the

possible settings for the first two. The interesting part is the optimization of the ’Core’ that is

presented in Fig.1.14.

Besides the possibility to change the effort, there is the option Design Goal that can be setted

on latency or area which is important for the scope of this work. Furthermore it is possible to

specify an expected value of area and maximum latency, if the tool cannot meet the specified

constraints, generates a warning message. It is also possible to change the share allocation time

that is the percentage of clock period reserved for the logic needed to share components. The

default value of this parameter is 20% of the clock cycle. Another step down brings to a lower

level where are present the memories inside the ’Core’, called ’Arrays’, and finally the loops

that form the central part of the design. ’Arrays’ can be modelled as a set of registers or as a

memory, taking into account that the memories that can be selected in this step are the ones
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Figure 1.13: Architecture constraints on Module

Figure 1.14: Architecture constraints on Core

included in the libraries step. The optimization of the loops is the part that has most weigh

inside the overall design because loops can be easily modified following different strategies. The

two main techniques that Catapult provides are Pipelining and Unrolling as shown in Fig1.15

that improve the hardware function’s performance by exploiting the parallelism between loop

iterations.

Here they are briefly described:

– Unroll: If we check the box of ”unrolling”, it creates multiple copies of the loop body

and adjust the loop iteration counter accordingly. By default the loop will be completely

unrolled, which allows the architecture to perform all the operations in only one clock cycle.

This is possible replicating the hardware a number of times equal to the initially iteration

counter. The area becomes very wide. In the schedule step, it will put as many iterations
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Figure 1.15: Architecture constraints on Loops

as possible in a clock cycle instead of an iteration in each clock cycle. It is possible to unroll

it partially. The number set in the ”Partial” field specifies how many times the loop body

is copied. Here is an example of code:

1 i n t sum = 0 ;

2 f o r ( i n t i = 0 ; i < 10 ; i++) {

3 #pragma HLS un r o l l f a c t o r=2

4 sum += a [ i ] ;

5 }

That is the same as writing:

1 i n t sum = 0 ;

2 f o r ( i n t i = 0 ; i < 10 ; i+=2) {

3 sum += a [ i ] ;

4 sum += a [ i +1] ;

5 }

– Pipeline: This pragma reduces the Initiation interval (II) which is the number of clock

cycles between the start times of consecutive loop iterations. This is possible thanks to the

concurrent execution of operations. The default initiation interval for the pipeline pragma

is 1, which processes a new input every clock cycle. It is important to know that the loops

nested inside of a pipelined loop are automatically pipelined too.

It is important to mention also the option that allows the tool to merge the loop with other

loops or, on the other hand, maintain one loop independent from the rest of the loops. Another

important advanced option is to introduce clusters, there is an entire window called ”Clustering”

to do that. Clusters are standard blocks that implement a typical operation, for example a MAC,

and they are already optimized. There will be a deeper analysis on this type of optimization in
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Chapter 4.

❼ Resources: Click on this button shows which resources will be utilized in the RTL composition,

so it is possible to choose which adder or multiplexer use. This step can be skipped passing

directly to the scheduling. In this case Catapult automatically will choose the best components

following the directives of the constraints at the previous steps.

❼ Schedule: Catapult generates the Gantt chart that is a graph where the design was analyzed by

the timed point of view. With the chart is possible to know which operations are done in each

clock cycle and which one consumes more execution time. The Gantt chart graphs the number

of control steps (C-steps) in each loop and the sequence of the operations scheduled within the

C-steps. Operations are shown in blue in a box proportional to the operation delay. Drawback

Figure 1.16: Gantt chart

is that the user can not see the pipeline stages in a clear way and this makes it difficult to

check where the pipeline stages have been placed in the design. Selecting a data object in the

Schedule window highlights the object in all columns and displays arrows in the Gantt chart to

show dependencies between the selected data object and other operations. Different coloured

arrows indicate different types of dependency paths. In Fig1.16 it is shown a MAC operation in

the Gantt chart with a data dependency that is coloured in green.

❼ RTL: This is the last step when the HDL code is generated and written on different output files

both in Verilog and VHDL. Catapult automatically generates also an RTL schematic where the

user can easily find the critical path and some reports. These lasts are about the resources used

in the design (Bill Of Materials) and useful information of how the design has been characterized.

After the generation of the RTL of the design, some fundamental characteristics are reported in a
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summary table that shown for every synthesized design version its performances in terms of latency,

throughput and area, as shown for example in Fig.1.17. Are reported either the Latency and Through-

put in terms of clock cycles or in terms of time (noclock cycles · clock period) and finally the Slack

that is the difference in time between the clock period and the travel time of the information along

the longest combinatorial path.

Figure 1.17: Summary table with different designs



CHAPTER 2

State of Art

2.1 Previous works on filter synthesis through HLS

High Level Synthesis is an automated process having a big impact on the design of digital circuits as

already said in Chapter 1 of this work. There are a lot of academic works that during these years

have investigated and established the quality of this new process with respect to the traditional design

flow.

Works that finally arrive to a positive or negative judgment on High Level Synthesis as a technique

to design elements for DSP, like the digital filters, are of particular importance and will be reported

in this chapter.

The paper whose title is ”Fast FIR filter implementation using High-Level Synthesis tool”[5] is only ap-

parently connected to the scope of this work but it is interesting to analyse. The work of T.Ognunfunmi

and S.Desai has been written in the far 1994 and the tool utilized was one of the first versions of Syn-

opsys. To confirm what we have said in the HLS’s history section, the input language of the HLS

tool is Verilog hardware description language. This work can be placed in the middle of Generation

2 because the tool needs an hardware description input language rather than a C-like language as

required by the next generations. The tool’s results were very impressive for that time, as described

in the paper, but are a bit far from the results that nowadays tools can produce.

Among contemporary works, FIR filter implementation has been analysed in 2015 by Hanbo, Shaojun

and Yigang [6]. After a description of the advantages of HLS on the traditional RTL design, they

present an interesting implementation of an FIR with three different tools: Vivado HLS, LabVIEW

FPGA and DSP Builder. Unfortunately, Catapult HLS (the tool used in this work) is not part of the

comparison. The circuit analyzed is a 20-order low-pass filter with input data on 16bits, unfortunately,

very different to the one of SM, that has an order of 128 and 32bits of parallelism.

The paper does not enter into the details of how to write a correct code for describing a filter in high

17
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level languages, but is more focused on the different flows of project that every tool has.However this

part is not interesting from this work’s point of view, so we directly analyse the results, reported

hereinafter.

The three tools, cited above, are compared with two other tools that are used for a traditional design,

also called IP(Intellectual Property) core design. There are a lots of IP, that are basic or hierarchical

blocks already described and most of them are fully parameterized. This meets the needs of the

majority of the designers but it also makes more complex the writing of an efficient code.

Figure 2.1: Table of performances [6]

Above all, what emerges from this table is that HLS tools in general require more hardware than

an implementation through IP core. Moreover, in general HLS leads to a faster synthesis of the filter,

with many tools the time is more than halved (Vivado HLS and DSP Builder with respect to IP core).

The performances are better also for the maximum frequency and the latency in the case of HLS. The

quality of results and the poorness of possible optimizations that LabVIEW offers can be explained if

we take a look to the second image (Fig.2.2).

Figure 2.2: Table of development time [6]

Looking at this, it is possible to understand that a project in LabVIEW has a development time

that is shorter. Because of this it is more useful to those designers that want to explore a lot of

different solutions quickly or for those who are beginners of the HLS technique. As opposed to this a

complete tool, like Vivado HLS, it has plenty of possible optimizations, it is based on a C language

but it has an higher development time.

Unfortunately, in the literature, there are no other specific papers on FIR filters design, with HLS.

Performances of HLS are tested by many researchers and at the moment there isn’t a unique shared
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opinion about that, because performances of a design with HLS deeply depend on the type of archi-

tecture.

In a joint work between the University of Sfax and the University of Nice-Sophia Antipolis [7] the

different performances between HLS and manual design of a H.264/AVC Deblocking Filter (part of a

video coding system) are presented. In Fig.2.3 it is interesting to consider the different development

times, noticed that Catapult HLS has been used in this work. What the authors demonstrate in this

Figure 2.3: Table of development time [7]

work is that the HLS approach has an inferior development time but it also has 3.4 times less perfor-

mances than the manual design. Also the throughput (in terms of filtered macroblocks) is worse: it

is a quarter with respect to the manual design.

This is an example in which the HLS has not the desired effect, and this depends mainly on the

application.

Another interesting work on the use of HLS for different applications is the Master thesis work of Tero

Joentakanen of Tampere University of Technology [20] in which he summarizes the previous different

works on HLS-design versus manual-design (Fig.2.4). Most of these works are Master theses of the

University of Oulu.
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Figure 2.4: Quality of results and design effort of HLS compared to hand-written RTL in several cases,
work of [20], citation of [21], [22], [23], [24], [25], [26], [27], [28]

In the study of all these works one thing appears very clearly: there are huge variations of per-

formances depending not only on the tool but also on the target technologies. In all of these works

there are area variations between -38% and +173% and maximum frequency variations between -29%

and +10%. All of these numbers must be interpreted as the differences between the HLS design with

respect to the manual one. Moreover also the same application but for two different targets (i.e. the

Systolic FIR designed in Catapult for both ASIC and FPGA), has completely different performances.

For the ASIC target, the FIR has better performances if it is implemented with HLS (-11%). Instead

if the target is the FPGA the manual design must be preferred (+23% LUT, +11% FF and -29%

fmax).



CHAPTER 3

Design of filter

3.1 Upsampling FIR

The filter that is treated in this thesis is an upsampling filter that is part of a high-performance DAC

designed to process digital stereo streaming. Target of this technology are the portable devices.

The upsampling grade of the filter is 2 and two of these filters are cascaded to obtain a final frequency

that is 4 times the initial one. Sample data rate is typical of audio systems and was fixed to 384kHz.

The internal logic of the filter can work with different frequencies: 19.2MHz, 38.4MHz or 76.8MHz.

The highest frequency is chosen for this work, together with Silicon Mitus. This means that, in order

to simulate the audio frequency the input samples need to arrive every 200 clock cycles.

Other specifications of this 1st upsampling stage are:

❼ Pass band Ripple: +/- 0.0015

❼ Pass band: 0.432·fsyn

❼ -3db band: 0.452·fsyn

❼ Stop band: -100 dB at 0.5·fsyn

❼ Order: 128

These specs define the frequency response of the filter (in Fig.3.1) and the coefficients. These last are

usually computed by Matlab but in this case they were provided directly by Silicon Mitus. Coefficients

are symmetric this is important because impact on the property of phase linearity of the filter.

The upsampling filter is an FIR (Finite Input Response) filter which architecture, in the direct form,

can be schematize as in Fig.3.2. Finite input response means that the output of the filter will be

settled to zero after a certain amount of time, so it has no internal feedback that cause an indefinitely

21
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Figure 3.1: Frequency response of the filter

response. As in Fig.3.2 the output depends only on the input and not on the output itself, this make

it essentially a finite weighted sum:

y[n] = c0 · x[n] + c1 · x[n− 1] + c2 · x[n− 2] + ...cN · x[n−N ] =

k=NX
k=0

f [n− k] · g[k] (3.1)

The FIR filter has two main core that are the delayed line and the MAC (multiply and accumulate)

structure that is repeated. The multiplier and the adder form the so called TAP. A filter of order N

has N+1 TAPs. For this reason the entire filter has a structure that is commonly called Tapped delay

line.

Figure 3.2: FIR

3.2 The original Matlab model

The algorithm of the filter given by Silicon Mitus is written in Matlab language and is comprehensive

of one top module, ovs top golden gen and other two functions, gen dig stim and gen rtl stim dec that

are presented in Fig3.3.
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Figure 3.3: Matlab model of the filter

The top module describes a FIR filter with two channels that work on different data, every channel

calls the function gen dig stim to generate input data starting from a sinusoidal wave with different

frequencies. Data generated are then quantized on the chosen number of bits. Quantization means to

assign every value at one and only one dicretized value belonging to a smaller set, often with a finite

number of elements. At this point it is necessary to introduce the dithering, that is a form of noise with

a typical distribution. It is added at the sampled values to minimize the distortion introduced during

the quantization step. Instead of round with a predictable cyclicity that would bring to a deterministic

error, the round is random.The flow chart of this important function is reported in Fig.3.4.

The technique of zero filling is applied to the quantized data. This implies that two inputs are

Figure 3.4: Gen dig stim function

interpolated by a zero (null-input) so the overall length of the input vector doubles.

Then convolution is applied between input vector and coefficients of the filter that are given. The

convolution operation returns an output vector whose dimension will be, in the case of two generic
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vectors A and B:

MAX(length(A) + length(B)− 1, length(A), length(B)) (3.2)

The output vector is divided by NBC-2 instead of NBC to recover zero-padding attenuation and then

is rounded.

3.3 Translation from Matlab to C++ of the algorithm

The first step to give the High Level description of the Filter to Catapult is to strictly translate the

model from Matlab to C++ language. This step includes the creation of the corresponding function to

generate the input vector. The function executes the creation of the inputs using the math.h element

sin(). Also dithering is implemented, as shown in Listing 3.1.

1 v i [ i ]=pow(10 , arg1 /20) ✯ s i n (2✯ pi ✯ arg2 ✯ t [ i ] )+pow(10 , arg3 /20) ;

2

3 i f ( adddith==1)

4 v i i n t . e lements [ i ]=round ( v i [ i ] ✯ ( pow(2 , nbit −1)−1)+(( rand ( ) % 100) /100) −0.5) ;

5 e l s e

6 v i i n t . e lements [ i ]=round ( v i [ i ] ✯ ( pow(2 , nbit −1)−1) ) ;

Listing 3.1: Dither insertion

The corresponding function of gen rtl stim dec is not created because its functionality, which is

only to create output files, is simply replaced by the ofstream in C++.

In this first implementation of the algorithm the input data are generated inside the FIR project

while the coefficients are taken from a text file. Quantized data are then interpolated with zeroes.

Zero-filling algorithm is reported in Listing 3.2.

1 ofstream out4 ( ” v i pad ch1 . txt ” , i o s : : out ) ;

2 f o r ( i n t y=0; y<2✯v i ch1 . l ength ; y++){

3 out4 << v i pad ch1 [ y ] << endl ;

4 }

5 out4 . c l o s e ( ) ;

Listing 3.2: Zero Filling

The core of the filter is written in a function called LinearConvolution that is entirely reported in

Listing 3.3.

1 void LinearConvolut ion ( double X[ ] , double Y[ ] , double Z [ ] , i n t lenx , i n t leny )

2 {

3 i n t l enz=lenx+leny −1;



Analysis and Design of a FIR filter obtained with HLS 25

4 f o r ( i n t i = 0 ; i < l en z ; i++ )

5 {

6 Z [ i ] = 0 ; // s e t to zero be f o r e sum

7 f o r ( i n t j = 0 ; j < l eny ; j++ )

8 {

9 i f ( i−j>=0 && i−j<l enx )

10 Z [ i ] += X[ i−j ] ✯ Y[ j ] ; // convolve : mult ip ly and accumulate

11 }

12 }

13 }

Listing 3.3: LinearConvolution

The convolution definition is the following one:

(f ∗ g)(t) =

Z ∞
−∞

f(τ)g(t− τ)dτ =

Z ∞
−∞

f(t− τ)g(τ)dτ (3.3)

This can be simply replaced by a finite-time formula, used with discrete vectors:

y[n] = (f ∗ g)[n] =

k=NX
k=0

f [N − k] · g[k] (3.4)

This convolution is implemented in line 10 of Listing 3.3, not with an infinite integral but with a

discrete sum. There are lenz output elements and every one is calculated with the convolution. In

the end, convolved data, are firstly divided by NBC-2 and then rounded adding 0.5 and then using

the floor function that has the same meaning in Matlab and C++.

1 f o r ( i n t i =0; i<len max conv ; i++){

2 vo f i r x 2 ch1 [ i +1]= f l o o r ( v o f i r x 2 c h 1 f u l l [ i ] / ( pow(2 , nbc−2) ) +0.5) ;

3 }

Listing 3.4: Final Rounding

Every step (Input generation, Convolution and Rounding) is repeated for both channels. At every

step, the outputs are tested to arrive at a final output that is the same of the golden one in Matlab.

3.4 The synthesizable filter

Catapult asks as input an algorithm that is synthesizable. It means that the inputs are no more

generated internally but are taken from the outside one at a time, because they are the results of a

sampling. A wave was sampled at a certain moment, the data was passed to the filter, going forward

in time another data was sampled and given as an input to the filter that has memorized the previous

one because is useful to generate the new output, and so on.
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The other big difference is that now coefficients are stored in a internal memory, this lead to a great

occupation of memory because we have 129 coefficients on 30bit. To be synthesizable the project must

Figure 3.5: Architecture of the project

include three different files, that are the header file (.h), the description of the algorithm (.cpp) and

the testbench that will be necessary to Catapult. A schematic figure of the architecture of the project

is in Fig.3.5.

As was described before now the filter declaration has only one element as input and the reference

where will be stored the final result as output. All of the variables and constants are defined as double,

without considering any optimization in terms of bits. This because to firstly have a positive feedback

from Catapult on the implemented algorithm, the optimizations of the space occupied by the variables

is not taken into account. The declaration, belonging to .h is visible here:

1 const unsigned ORDER = 129 ;

2 const unsigned NBC = 30 ;

3 void f i r s y n t h ( const double i sample , double &y) ;

Listing 3.5: fir sinth.h

This is the fir synth.cpp script:

1 void f i r s y n t h ( const double i sample , double &y)

2 {

3 double c o e f f i c i e n t s [ORDER] = {17015 , . . . , 1 7 0 1 5} ; //129 c o e f f i c i e n t s

4

5 s t a t i c double samples [ORDER] ;

6

7 SHIFT LOOP: f o r ( i n t n=ORDER−1; n>0; n−−) {

8 samples [ n ] = samples [ n−1] ;

9 }

10 samples [ 0 ] = i sample ;

11
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12 double sum = 0 ;

13

14 MACLOOP: f o r ( unsigned n=0; n<ORDER; n++) {

15 sum += samples [ n ] ✯ c o e f f i c i e n t s [ n ] ;

16 }

17 y=f l o o r (sum/(pow(2 , NBC−2) ) +0.5) ;

18 }

Listing 3.6: fir sinth.cpp

It is possible to clearly identify two main loops, the SHIFT LOOP and the MAC LOOP. The algorithm

now is more oriented to the synthesis and it takes the direct form of the FIR filter described in

hardware, like in Fig 3.2.

Shift loop implements a series of registers that introduce delays (z−1 in the Z domain). The first one

at every clock accept a new data while all the others shift previous data by one position to the right.

The for loop at line 7 has an index that decrements because otherwise data are overwritten. A total

number of 129 registers have been instantiated because in the convolution there be 129 coefficients

which in the script are not all represented.

The second loop instead, as its name suggest, perform the MAC operation between coefficients and

samples, in this case the index increments because it’s necessary to calculate all of the partial sums

before arriving at the final output y.

In the end at line 17 is calculated the final rounded output as in Listing 3.4.

3.5 Bit-Accurate filter

In the previous synthesizable implementation of the filter all the variables were defined as double, this

datatype is 64bit wide. In order to generate less expensive hardware it is possible to define, for every

variable, which will be its parallelism in the architecture. Reduce accuracy leads to an increment of

the performances and a saving of resources.

Catapult HLS tool supports a library that defines reduced-accuracy datatypes called AC (Algorithmic

C) library that provides two different header files < ac int.h > and < ac fixed.h > for supporting

signed/unsigned integer types and fixed point types respectively. In the table in Fig.3.6, provided

by Catapult’s guide [18], are shown the differences between the two definitions and which are the

parameters to specify. In Fig.3.7 are instead defined which are the ranges of int and fixed.

From the project specification it is known that:

❼ Input data → 32bit

❼ Coefficients → 30bit

❼ Output data → 32bit
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Figure 3.6: Type definition [18]

Figure 3.7: Range of different types [18]

As consequence in fir synth.h will be defined many different datatypes. The input type (DATA TYPE )

is defined ac fixed signed on 32bit with the decimal point on the LSB (this means that is equiva-

lent to the definition ac int< 32, true >). Similar definition is used to define COEFF TY PE and

OUT TY PE.

To understand the other definitions take a look at Fig.3.8 and in particular at the first two rows.

It describes how many bits are necessary to have the correct precision at the end of an operation.

The first two rows are interesting for the MAC LOOP. AC-library is useful to define the intermediate

parallelism of an operation. At line 6 of the header file is noticeable the definition of the output of

the product operation. In the definition are reported the two types of data, in this case DATA TYPE

and COEFF TYPE and a little wording rt T that is used when the new datatype is derived by two

operands. In line 7 instead there is the definition of the operand type (PROD TYPE ) but is reported

also the number of cyclic additions that must be done (ORDER). It defines a new datatype that

is wide enought to store ORDER number of summations. In this case rt unary defines a type that

requires only one operand.

Last definition to understand is the INTER TYPE that is an internal type useful to the correct exe-

cution of th rounding, but will be more clear in the fir synt.cpp.

1 const unsigned ORDER = 129 ;

2 const unsigned NBC = 30 ;

3

4 typede f a c f i x ed <32 ,32 , true> DATATYPE;

5 typede f a c f i x ed <30 ,30 , true> COEFF TYPE;
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6 typede f DATATYPE: : rt T<COEFF TYPE> : : mult PRODTYPE;

7 typede f PRODTYPE: : r t unary : : set<ORDER> : : sum SUMTYPE;

8 typede f a c f i x ed <33 ,33 , true> INTER TYPE;

9 typede f a c f i x ed <32 ,32 , true> OUTTYPE;

10

11 void f i r s y n t h ( const DATA TYPE, OUT TYPE &) ;

Listing 3.7: fir synth fix.h

Figure 3.8: Exact bits for operations [18]

Now it will be analyzed the .cpp file in Listing 4.1 that unlike what is in the non-fixed version

(Listing 3.6) has no more double definitions.

1 void f i r s y n t h ( const DATATYPE i sample , OUT TYPE &y)

2 {

3 COEFF TYPE c o e f f i c i e n t s [ORDER] = {17015 , . . . , 1 7 0 1 5} ;

4

5 s t a t i c DATATYPE samples [ORDER] ;

6

7 SHIFT LOOP: f o r ( i n t n=ORDER−1; n>0; n−−) {

8 samples [ n]= samples [ n−1] ;

9 }

10 samples [0 ]= i sample ;

11

12 SUMTYPE sum = 0 ;

13

14 MACLOOP: f o r ( unsigned n=0; n<ORDER; ++n) {

15 sum += samples [ n ] ✯ c o e f f i c i e n t s [ n ] ;

16 }

17

18 INTER TYPE temp out ;

19

20 temp out=sum >> 27 ;

21 temp out=temp out+1;

22 y=temp out >> 1 ;

23 }

Listing 3.8: fir synth fix.cpp
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The INTER TYPE pops up at line 18 and is useful because now the power function pow() cannot

be used due to its definitions, in fact it does not support fixed-type operators. As a matter of fact

now the division by a power of 2 is done with a binary shift to the right. After the division another

operation must be done, before the floor(), that is to sum 0.5 to round the result.

The division was by 228 so what is done is to perform a right shift of the SUM TYPE number of

27bit, and save it in a new variable of width SUM TYPE -27 that is 33 (INTER TYPE ). Than add a

1 on the LSB and perform another shift to the right, only by one position, it’s like adding up a 1 on

the first decimal digit to have an output rounded on 32bit. This simply trick is graphically explained

in Fig.3.9.

Figure 3.9: Rounding

3.6 The testbench

The synthesizable filter has no more the generation of the input data inside it neither the writing of

the output files. These two functions are now inserted into the testbench. It is choosen to use csv files

that are a particular type of calculus sheet where values are separated by commas. The definitions of

new datatypes impact also the testbench.

The testbench is fundamental for a good synthesis because Cataput can automatically check, using

Modelsim that the output after synthesis are equal to the ones of the testbench. This is effective

thanks to ScVerify, an extension that compares the output of the testbench in C++ that is called

golden output with the results of the simulation of the filter synthesize in VHDL or Verilog by Cata-

pult, called DUT output.

We start to analyze the testbench from the Read function that is called first.

1 i n t ReadCSV Samples ( s t r i n g f i l ename , samplesVect type &samples )

2 {

3 CsvParser ✯ c svpa r s e r = CsvParser new ( f i l ename . c s t r ( ) , ” , ” , 0) ;

4 CsvRow ✯row ;

5 const CsvRow ✯header = CsvParser getHeader ( c svpa r s e r ) ;

6

7 whi le ( ( row = CsvParser getRow ( c svpa r s e r ) ) )
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8 {

9 const char ✯✯ rowFie lds = CsvPar s e r ge tF i e ld s ( row ) ;

10 double doub l e s t imu lus e l ement ;

11 s t r i ng s t r eam (✯ rowFie lds ) >> doub l e s t imu lus e l ement ;

12

13 ac f i x ed<DATATYPE: : width , DATATYPE: : i width , DATATYPE: : s ign ,AC RND,AC SAT SYM>

f i x ed s t imu lu s e l emen t = doub l e s t imu lus e l ement ;

14

15 samples . push back ( f i x ed s t imu lu s e l emen t ) ;

16 CsvParser destroy row ( row ) ;

17 }

18 cout << FILE << ” : ” << LINE << ” − CSV f i l e ’ ” << f i l ename << ” ’ ” << samples .

s i z e ( ) << ” samples were read in . ” << endl ;

19 CsvParser dest roy ( c svpa r s e r ) ;

20 r e turn samples . s i z e ( ) ;

21 }

Listing 3.9: Read function

For the Read function, the use of CSV files complicate a little bit the syntax. It is used the

csvparser.h header to use function like CsvParser new, CsvParser getHeader, CsvParser getRow and

so on. Read function takes double elements from the file through the stringstream but then perform

a cast because now input element of the filter must be DATA TYPE, this cast is in line 13 of Listing

3.9. Samples read were stored in a vector element,a particularity of C++ language that differs from

the classic array because is more flexible thanks to dynamic allocation. Elements can be accessed

using offset on regular pointers to its element, like happens in Listing 3.10. A special iterator it that

is initialize at the beginning of the vector and increments till the end of it, is needed. Then to access

a single location we use the iterator as a pointer.To permit to ScVerify to understand which is the

device under test, a particular instantiation of the filter must be done, reported in line 5 of Listing 3.10.

1 f o r ( vector<DATATYPE> : : i t e r a t o r i t = samples . begin ( ) ; i t != samples . end ( ) ; ++i t )

2 {

3 DATATYPE st imulus e l ement = ✯ i t ;

4 OUTTYPE ex i t e l ement ;

5 CCS DESIGN( f i r s y n t h ) ( s t imulus e l ement , ex i t e l ement ) ;

6 samples out . push back ( ex i t e l ement ) ;

7 }

Listing 3.10: Testbench

The last function to analyze in the testbench is the Write function that simply take a vector of output

data and write them into a CSV file. The script is not reported because is not enough interesting.

As it is shown in Fig.1.8 the HLS Verification is an important branch of Catapult tool. This is useful

because permit to automatically verified the quality and the functioning of the automatically generated
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code. The designer is not engaged into the verification process, it must only activate SCVerify option

before the synthesis. SCVerify flow, within the Catapult HLS platform, automatically generates the

infrastructure (a wrapper file) for verifying the functionality of the Catapult-generated RTL against

the source code and reuses the original C++ Testbench. ScVerify starts a Modelsim session, and

Figure 3.10: ScVerify

compare the output produces by the RTL code with the golden output from the testbench. In the

end a report is generated where it is specified if the test is passed or not, how many input data are

taken into account and how many data output we have and others informations. An example of this

report is shown in Fig.3.11. This feature of Catapult HLS saves the designer a considerable amount of

work and time as it don’t have to manually write a RTL test bench each time the design specifications

change.

Figure 3.11: Test result
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3.7 Results

The results obtained in this case, with the filter described in this chapter are shown in Fig.3.12. These

results are not significant because the filter take as input 770 sample per channel (half of them are

0) while in the Silicon Mitus architecture the zeroes elements are not passed as input, so the length

of the input vector is a half. In their architecture the Zero-padding technique is applied internally at

the filter with an optimization of the architecture that will be explain during the next chapter.

Figure 3.12: Results of the first synthesis

An important fact that can be learned from this architecture and that we will find also in the

following ones, is the huge synthesized area for the registers. As it is shown in Fig.3.13, the percentage

of area occupied by registers is the 73% of the all amount. It is important, with the optimizations, to

reduce the number of registers to consequently decrease the total area.

Figure 3.13: Results of the first synthesis



CHAPTER 4

Architecture optimizations

4.1 Performances of SM filter

Silicon Mitus provided a filter described in Sistem Verilog that is manually optimized for occupying

the least possible area. The RTL code was passed to Synopsys Design Compiler that synthesizes a

gate-level architecture, using the library Nangate45nm dblm. To synthesize in the correct way the

filter, some directives were given to the tool. In particular, first of all, after reading the Verilog source

files, a symbolic clock is created and it is set as don’t touch because it is a special signal. Clock period

is set to 13.02ns because the frequency of the circuit must be 76.8MHz from specifications. there are

some directives on the clock properties:

create clock -name MY CLK -period 13.02 ckg refclk

set dont touch network MY CLK

Now we want to specify that the clock could be affected by jitter and that every signal could have

a delay with respect to the clock (delay of the input and output ports).

set clock uncertainty 0.07 [get clocks MY CLK]

set input delay 0.5 -max -clock MY CLK [remove from collection [all inputs] clk]

set output delay 0.5 -max -clock MY CLK [all outputs]

Finally it is possible to set the load of each output in our design, the chosen one is the input capacitance

of a buffer (BUF X4 ).

set OLOAD [load of NangateOpenCellLibrary/BUF X4/A]

set load ✩OLOAD [all outputs]

After having applied all these constraints it is possible to obtain an accurate estimation of area, power

and timing (and consequently the maximum frequency) that are reported in Fig.4.1 and Fig.4.2.

34
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Number of ports: 138

Number of nets: 1640

Number of cells: 1280

Number of combinational cells: 1176

Number of sequential cells: 97

Number of macros/black boxes: 0

Number of buf/inv: 263

Number of references: 36

Combinational area: 23941.596185

Buf/Inv area: 2566.101947

Noncombinational area: 24062.360776

Macro/Black Box area: 0.000000

Net Interconnect area: undefined (Wire load has zero net area)

Total cell area: 48003.956961

Figure 4.1: Area report for SM filter

As already said the most important design performance is the area that is estimated as 48000µm2.

This will be the reference point for all the optimizations.

Power results are estimated with a switching activity of the clock and of all the others signals of 0.5. A

more accurate analysis will be done using the back-annotation process on the architecture generated

by Catapult but not on this one.

For what concern the maximum frequency the steps are several. The design should be synthesized

with 0 ns clock period, at this point the timing shows a negative slack which means that obviously

the clock period is not sufficient to compute the algorithm. This negative slack give us an estimation

on which clock period can be necessary. Now a clock period equal to the slack has been used to

synthesize again the design. Since Synopsys automatically changes the filter’s structure, varying the

clock frequency, for example is instantiated a ripple-carry adder rather than a carry-look-ahead, a

process iteration is necessary until a null slack is obtained. In the end the period able to guarantee a

null slack is 5.35ns that corresponds to a maximum frequency of about 187MHz.

4.2 Code changes

The purpose of this chapter is to explain which steps were done to arrive at the best solution of the

filter in terms of area, starting from the synthesizable one described in Chapter 3.

Analysing the performances of this filter (Fig.3.13), pops up that the main percentage of the area is

occupied by registers. The main difference with the architecture of SM is that the Zero-padding is

done externally (so there are 770 input samples) or internally. That leads to the halve of input data

(only non-zero elements are passed). Of course this implementation reduces the Shift register length
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Cell Internal Power = 2.5567 mW (94%)

Net Switching Power = 162.7111 uW (6%)

---------

Total Dynamic Power = 2.7194 mW (100%)

Cell Leakage Power = 928.3768 uW

Internal Switching Leakage Total

Power Group Power Power Power Power ( % )

-------------------------------------------------------------------------------------------

io_pad 0.0000 0.0000 0.0000 0.0000 ( 0.00%)

memory 0.0000 0.0000 0.0000 0.0000 ( 0.00%)

black_box 0.0000 0.0000 0.0000 0.0000 ( 0.00%)

clock_network 0.0000 0.0000 0.0000 0.0000 ( 0.00%)

register 2.4853e+03 2.0440 3.5956e+05 2.8468e+03 ( 78.04%)

sequential 0.0000 0.0000 0.0000 0.0000 ( 0.00%)

combinational 71.4248 160.6684 5.6881e+05 800.9014 ( 21.96%)

-------------------------------------------------------------------------------------------

Total 2.5567e+03 uW 162.7123 uW 9.2837e+05 nW 3.6477e+03 uW

Figure 4.2: Power report for SM filter

and also significantly the number of registers.

To better explain what is going on, we take as reference a structure very similar to the one under

design but with a lower order. The order of the original filter is 128 while in the next figure we refer

to a filter with an even order of 12. Now what is important to notice is that, half of the input are

zeroes, but moreover, that every 2 clk cycles data are in the same positions and are multiplied for

the same coefficients. So for example in the highlighted clocks (the odd ones) data are multiplied for

the even coefficients (c0, c2, c4 and so on) while in the white clocks data are multiplied by the odd

coefficients (c1, c3 and so on). This property is very useful because now we want to pass as input only

non-zero data, but the output frequency (and of course values) must be unchanged. For example, in

clock cycles XV and XVI the output are:

XV : D8c0 +D7c2 +D6c4 +D5c6 +D4c8 +D3c10 +D2c12 (4.1)

XV I : D8c1 +D7c3 +D6c5 +D5c7 +D4c9 +D3c11 (4.2)

In clock cycle XV data are multiplied by even coefficients, then they are shifted because a null data

enters. In the new clock cycle (XVI ) the same data are multiplied by all the odd coefficients.

This mechanism can be substituted, without zero-input by the multiplication of one data at the same

time for an even coefficient and for the following odd coefficient. The two products are then distributed

on two different clock cycles to maintain the same frequency. The reference architecture becomes the

one in Fig.4.4 with an order of 6.
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Figure 4.3: FIR with order 12

To describe this architecture, some changes must be done in the High-level code. The MAC LOOP

must be separated in parts. One that describes what happens with even coefficients and one for the

odd ones.

1 MAC LOOP E: f o r ( i =0; i<ORDER; i++){

2 sum += sample [ i ]✯ c o e f f [ 2 i ] ;

3 }

4 MAC LOOP O: f o r ( i =0; i<ORDER−1; i++){

5 sum += sample [ i ]✯ c o e f f [ ( 2 i ) +1] ;

6 }

Listing 4.1: fir synth fix.cpp

This optimization is done to reduce the area occupied, but it is not the only one. Another solution is

possible thanks to the coefficients’ symmetry. Coefficients are 129 and are symmetric with respect to

the central one (the 65th). Central coefficient, in the reference architecture of Fig.4.4, is c6 (circled

of orange). So the FIR becomes the one in Fig.4.5.

The ROM memory which stores the coefficients, thanks to this solution, can save only half of the

coefficients, plus the central one. In the original filter it is possible to save now only 65 coefficients,

or better 64+1 to have a ROM addressable with only 6 bits. Moreover, now it is possible to sum

two samples that must be multiplied by the same coefficient to halve the loops cycles. This leads to

an advantage because this addition can be performed in the same clock cycle of the multiplication.
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Figure 4.4: FIR with order 6

For our purpose this is not a great area optimization because in most of the later architectures the

loops are rolled, then only one multiplier and only one adder will be instantiated. MAC loop for even

coefficient in this case has one more element than the odd one. To have the same interval for the i

counter variable, an addition must be added at the end of the MAC LOOP E. The new version of the

code is reported in Listing 4.5

1 MAC LOOP E: f o r ( i =0; i<(ORD/2)−1; i++){

2 sum += ( sample [ i ]+sample [ORD−i ] ) ✯ c o e f f [ 2 i ] ;

3 }

4 sum += sample [ORD/2]✯ c o e f f [ORD] ;

5

6 MAC LOOP O: f o r ( i =0; i<(ORD/2)−1; i++){

7 sum += ( sample [ i ]+sample [ORD−1− i ] ) ✯ c o e f f [ ( 2 i ) +1] ;

8 }

Listing 4.2: Loop for symmetric coefficients

Figure 4.5: FIR with order 6 and symmetric coefficients
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Starting from a filter with an even coefficient, dividing by two the order it is possible to have two

different situations:

1. The new filter has an EVEN order

2. The new filter has an ODD order

The previous structures belongs to the first case because the initial order was 12 and divided by two

results 6. This choice was because the SM filter has an original order of 128 so the new order is

64. But it is important to consider that the algorithm in Listing 4.5 is not valid for both situations

illustrated above. In the following it is demonstrate why. Take as an example a starting filter with

order 14. When it is divided the resulting order is 7 as in Fig.4.6. The same structure is reported

Figure 4.6: FIR with order 7

Figure 4.7: FIR with order 7 and symmetric coefficients

in Fig.4.7 where symmetric coefficients are underlined. In this case the central one is c7 (circled of

orange) that is an ODD coefficient so the code must undergo a small variation in the position of the

extra summation.
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1 MAC LOOP E: f o r ( i =0; i<(ORD/2)−1; i++){

2 sum += ( sample [ i ]+sample [ORD−i ] ) ✯ c o e f f [ 2 i ] ;

3 }

4

5 MAC LOOP O: f o r ( i =0; i<(ORD/2)−1; i++){

6 sum += ( sample [ i ]+sample [ORD−1− i ] ) ✯ c o e f f [ ( 2 i ) +1] ;

7 }

8 sum += sample [ (ORD/2)−1]✯ c o e f f [ORD] ;

Listing 4.3: Loop for symmetric coefficients and ODD order

4.3 The ac channel Class Definition

There is a last change that is necessary on the code. The problem is that now, for every input data,

two outputs are required, because this is an upsampling filter.

Input data arrive, from specifics, with a frequency of 384 kHz that means every 200 clock cycles

(remember that clk frequency is 76.8 MHz), while the output must be synchronized to change every

100 clk as in Fig.4.8.

Figure 4.8: Data in and data out frequency

In the tesbench, for every input data, the filter is recalled only once but two outputs must be

generated. The solution is to use a particular class for the HLS that is ac channel. This class is

useful when the frequency of the I/O changes within the design. That is the case of upsampling or

downsampling filters.

As specified in the Mentor Graphics guide [18], the ac channel class is a C++ template class that

enforces a FIFO discipline (reads occur in the same order as writes). That is, for modeling purposes,

an ac channel is infinite in length (writes always succeed) while attempting to read from an empty

channel generates an assertion failure (reads are blocking). If a channel appears in the top-level

interface of a design and is only written by the design, then the external environment is assumed to

be the unique reader. Likewise, the external environment is assumed to be the writer of a channel

which is only read.

For the purpose of the thesis this is a good solution because, defining different ac channel for the

input/output of every channel of the filter, it is possible to write two different results in the output
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channel and read them both within the same call in the testbench.

The definition of the function in the header file becomes:

1 void f i r s y n t h ( ac channel<DATATYPE> &, ac channel<DATATYPE> &,

2 ac channel<DATATYPE> &, ac channel<DATATYPE> &, bool ) ;

Listing 4.4: Loop for symmetric coefficients and ODD order

While in the .cpp file four different channels are defined, two for every filter channel (ch and ch2), it

is changed (with respect to Listing 3.5) like:

1 void f i r s y n t h ( ac channel<DATATYPE> &in ch , ac channel<DATATYPE> &out ch ,

2 ac channel<DATATYPE> &in ch2 , ac channel<DATATYPE> &out ch2 , bool enable )

Listing 4.5: Loop for symmetric coefficients and ODD order

To access the ac channel class specific functions are necessary, like .read() and .write(). Other specific

functions not used in this work are listed in the guide for Ac data types [18].

4.4 Results given by the optimized code

To summarize, the optimizations on the code analyzed in previous section, are reported here:

In the end the ac channel class to perform the upsampling of the data was introduced.

The description is now ready to be synthesized by Catapult, and this time the performances can be

compared to SM ones (Section 4.1) because the filter’s structure is very similar. This first description

of the filter will be from now on called Rolled Loop because by default Catapult synthesizes the solution

with rolled Shift and Mac structures. Resulting architecture has the performances in Fig.4.9. Thanks

to all the optimizations explained above, the area is decreasing with respect of the filter described at
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Figure 4.9: Summary table of Rolled Loop solution

the end of Chapter 3, but it is still far away from the performances of SM filter. It is interesting for

this first filter to report also some of the possible informations that Catapult gives us, so for example

almost the complete Bill of materials is reported in the following images. Fig.4.10 is an overview of all

the elemental blocks instantiated by Catapult, repeated more in detail (with also an area estimation)

in Fig.4.13. Then it is also useful to show the table in Fig.4.12, a summary of the contributions to

the total area.

Figure 4.10: Complete list of objects instantiated

There are some interesting things to discuss. The first one is regarding the multipliers instantiated.

As it is possible to see in all the reports there are two multipliers instead of one unique for the SM

structure. This can be modified, optimizing the architecture thanks to Catapult flexibility. The second

one is about the ROM memory used to store the coefficients.

It is possible to notice that in Figures 4.13 and 4.10 two memories are listed instead of one unique.

Looking only at the BoM it is not possible to understand clearly the reason of this choice, it is only

reported that there is a ROM addressable with 5bit (so 32 elements) and a parallelism of 26bit while

the other one has the same dimension but a parallelism of 29bit. In 4.13 is also specified the area of

these elements.

Looking at the memories (coloured in violet) in the snippet of datapath reported in Fig.4.11, we can

see how the memories are connected to the MAC structure. The ROM 1i5 1o26 is connected only to

the MAC LOOP E thus must contains only the even coefficients while the ROM 1i5 1o29 contains

only the odd coefficients and is connected to the other multiplier. Catapult optimizes the memory
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Figure 4.11: Two indipendent ROMs

dividing it into two memories, starting from an initial indication of the designer who defines a unique

vector of COEFF TYPE on 30bit (For the full code, refers to Appendix A).

Furthermore Catapult optimizes every single memory looking at the effective dimension of the even

and odd coefficients. This type of optimization is automatically done also for multipliers and adders.

Defining types PROD TYPE and SUM TYPE (Listing 3.8) gives to Catapult the possibility to have

freedom for choosing the better operational block. As a matter of fact, two different multipliers are

instantiated with different parallelism and, as consequence, different area.

In Fig.4.13 is shown that a multiplier that has two inputs of 26 bits and 33 bits has an output on 59

bits and consequently an area of 6676µm2 and it obviously will be used for the even coefficients. The

other multiplier has higher parallelism, its output is on 60 bits and its area is around 7451µm2.

In the end, as already said in Chapter 3, in the Rolled Loop Architecture the main part of the area

is occupied by registers. The filter has two channels with an order of 64. We would expect about

128 registers for the shift part. Unfortunately there are 390 synthesized registers (Fig.4.10). This

because Catapult has no informations about which operations must be in series and which ones can

be in parallel, so it instantiates a lot of registers to save temporary variables and by consequence a

lot of muxes (268 muxes are instantiated).

Figure 4.12: Statistics on the area

With a comparison between this solution and the one proposed in Chapter 3 (Fig.3.13), results are

impressive. The area occupied by registers and by muxes is almost halved, instead the functional logic
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obviously increases as there is lower availability of resources like multiplier and registers. Registers

occupy the 63% of the total area but also the muxes area is not negligible. The target is to reduce

them to get as close as possible to the area of SM.

In the following is reported a comparison between the Silicon Mitus filter performances and the Rolled

Loop filter ones. The filter optimized by SM has far better performances, so it is necessary another

type of optimization, that works directly on the structure of the filter and uses technique like pipelining

or unrolling. This will be available directly using the Catapult tool interface and will be explained in

the following chapter.

FIR SM Rolled Loop
min Period 5.35ns 6.72ns
Combinational area: 23941.59 52978.15
Buf/Inv area: 2566.10 5282.49
Noncombinational area: 24062.36 59306.02
Total area (µm2) 48003.95 112284.18
Internal P 2.556 7.039
Switching P 0.162 0.313
Leakage P 0.928 2.543
Total P (mW) 3.646 9.896

Table 4.1: Performances comparison

To conclude this chapter in Fig.4.14 is reported also the complete RTL of this Rolled Loop from

which was taken the frame in Fig.4.11. The gray part of the RTL represents the FSM and the control

part while the datapath is highlighted.
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Figure 4.13: Complete list of objects instantiated with area estimation
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Figure 4.14: Overall RTL of the Rolled Loop



CHAPTER 5

Catapult optimizations

5.1 Recap of the GUI parameters

One of the most important benefits of the HLS is that, using the same code, without any changes,

it is possible to explore elevate combination of solutions that with a traditional design would need a

rewriting of the HDL code for every change the designer wants to make. This leads to the possibility

of changing the structure of the filter without worrying about the code so in a very short time many

solutions are tested.

During Chapter 1 most of the possibilities that Catapult tool gives to the designer have been discussed,

in particular during the Mapping and the Architecture steps.

The first one is about the definition of clock, interface signals, resets and enable. Clock is fixed to

76.8MHz from specifications. The interfaces signals to synchronize inputs and outputs are chosen

with the wait handshake (remember that ac channel type has for definition this type of handshake).

Enable signal is not set directly from the Catapult GUI but it is inserted in the code description of the

filter as an if condition that comprehends both the SHIFT and the MACs loops. It has no handshake.

It is only a single signal because the transaction done has been disabled (we have analysed this signal

in Paragraph 1.4.1).

For what concerns the reset signals, it is possible to insert automatically a synchronous reset or an

asynchronous one in the architecture. The Silicon Mitus architecture has both the resets however only

the asynchronous one is an interface signal, it enters in the filter and then, with some logic, the other

one is generated.

Starting from this assumption, among the architectures that were generated and tested with Catapult

and that will be presented in the following chapter, there are some with one specific reset and others

with both resets, to underline also which could be the differences in terms of area and power.

These are the possible optimizations that can be introduced in the Catapult Mapping step. All the

47
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possible combinations between Architecture options are not reported here because they have already

been largely described in Paragraph 1.4.1.

In Silicon Mitus structure there is only one MAC block and the latency of the overall architecture is

64 clock cycles that is entirely occupied by the delay group of the filter.

Before introducing the optimized architectures, it is important to underline a feature of Catapult HLS

at which is dedicated the following subsection: the Cluster detection. This feature is used in some

intermediate solutions but not in the final architecture.

5.1.1 Clusters

The Operator Clustering flow detects and optimizes groups of related data path operators such as

adder trees, multiply-add, and squares. This methodology attempts to reduce many of the inefficiencies

with fine-grained scheduling of operators. This targeted clustering approach can lead to an improved

quality of results with better area and timing correlation with RTL synthesis results. Clustering offers

the following key benefits:

❼ Better area and timing correlation with RTL synthesis

❼ Smaller area due to course-grained sharing

❼ Increased capacity due to reduced design complexity

❼ Faster runtimes on complex designs with many synthesis iterations

❼ Shorter design latency for lower power and smaller area

Catapult performs arithmetic decomposition and gate-level optimizations on the extracted clus-

ters to create a highly optimized data path component that is annotated with very accurate area and

timing information. Since clustering extracts a specific arithmetic operator, Catapult can generate a

more accurate timing and area estimation because it is able to optimize at the technology gate level.

By default, Catapult will implement the cluster using low level technology cells from the Catapult

library (eg. Full/half adders). Alternatively, you can use your RTL Synthesis tool to optimize the

cluster by setting the CLUSTER RTL SYN directive/pragma.

5.2 Unrolling of the SHIFT LOOP

The first possible optimization to decrease the area, is the unrolling of the shift loop, partially or

totally. This is an optimization suggested in the Catapult guide, that is not easy to understand

otherwise: the hardware used in the Rolled Loop architecture to implement the shift register is only

a multiplexer, controlled by the loop counter [19]. Taking the filter described in Section 4.4, the first
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optimization could be to unroll the shift loop in order to decrease the area. A big multiplexer, that

is not area-optimized, will be replaced by a shift register that has the length equal to the unrolling

factor (U) and that takes only a single clock cycle to shift all the values by one position when a new

input sample is coming. Remember that with this architecture, a fully unrolled SHIFT LOOP is

implemented with 65 registers.

In the following table performances in case of half unrolling (U=32) and fully unrolling are reported.

All the other values of factor U lead to architecture with bad area optimization. In Fig.5.1 and Fig.5.2

the v2 is the partial unrolling, while the v3 is the total unrolling that means instantiates 64 registers.

Figure 5.1: Different shift-unrolling performances

Figure 5.2: Shift unrolling area comparison

The total unrolling of the SHIFT LOOP leads to an extreme reduction of the number of registers,

in particular the 32bit regs are reduced from 390 of Fig.4.12 to 142 in the BOM represented in Fig.5.6.

Not only registers but also muxes are decreased, as a matter of fact, with respect to the Rolled Loop,

the number of mux with 32bit of parallelism are only 14. The complete unrolling permits to instantiate

only one multiplier, using four clocks cycles to perform EVEN and ODD MAC LOOP for both the
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channels, this is explained in Fig.5.3.

Figure 5.3: Scheduling of the Shift full unrolled filter

The multiplications are scheduled alternated for the two channels but there is no pipelining. This

means that after 129 clock cycles the output of channel 2 is ready and after another clock cycle the

result of channel 1 is ready too. In the end it takes 130 clock cycles to perform both the results

because they are calculated in parallel. This scheduling is taken from the Gantt chart that is reported

in Fig.5.4 where it is possible to see that there is an internal loop made of four clock cycles (that is

repeated 32 times), then to calculate the throughput there must be added 6 clock cycles. These are

subdivided taking the inputs, calculating the last operations for the central coefficient and rounding

(C3 and C4) and finally generating the outputs (C5 and C6). In this way we arrive at the final

throughput that is 134 clock cycles as reported in the table in Fig.5.1. While in the case of partial

unrolling (U=32) the multipliers must be at least two, thanks to a different scheduling that is not

analyzed, the overall latency and throughput will be lower.

This way to perform the output data is a bit different from the one of SM architecture in Fig.4.8,

because now the two outputs of a single input are no more valid spaced by 100 clock cycles but outputs

are valid one after the other in two clock cycles. Obviously, this is a change in the way the output

data are expected and to accomplish this change the testbench should be modified. This new kind

of handshake, explained better in Fig.5.5, can also be a valid alternative to the one proposed by SM.
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Figure 5.4: Gantt chart for the Shift full unrolled filter

This timing is only for a channel and puts in evidence that it is possible, maintaining the same input

rate, to sample the output data two clock cycles in a row to have the correct ones.

For the scope of the thesis this type of architecture will be discarded to leave space to other archi-

tectures that fit perfectly within the handshake proposed by SM. Nevertheless it is possible to say

Figure 5.5: Timing of the Shift full unrolled filter

that the Shift full unrolled architecture is a good one in terms of area so it will be interesting to

see which its performances are after the Synopsys synthesis. These are reported in Table 5.1 where

FIR SM Rolled Loop Shift full unrolled
Combinational area: 23941.59 52978.15 24068.47
Buf/Inv area: 2566.10 5282.49 2113.90
Noncombinational area: 24062.36 59306.02 27314.21
Total area (µm2) 48003.95 112284.18 51382.68
Internal P 2.556 7.039 2.858
Switching P 0.162 0.313 0.150
Leakage P 0.928 2.543 1.054
Total P (mW) 3.646 9.896 4.063

Table 5.1: Performances comparison

it is compared to the Silicon Mitus filter and to the Rolled one, analyzed in the previous chapter.

With respect to this last one the performances are much better, the area is more than halved and

the same happens for the power. Comparing it instead with the SM, architecture the performances
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are comparable but slightly lower. The interface is similar and there are two resets as in the SM one,

the synchronous and the asynchronous, automatically generated by Catapult. The enable signal is

instead generated manually in the code.

Figure 5.6: Overall RTL of the Rolled Loop

5.3 Pipelining of MAC Loops

Up to now only solutions that take into account the partial or total unrolling of the shift loop have

been analyzed. Pipelining is another technique to modify the structure of the filter and was briefly

explained in Section 1.4.1. It can be used, together with the unrolling.

First of all starting from the Shift full unrolled architecture, it is possible to generate with Catapult

all the architectures with a growing Initiation Interval (II) up to grade 6. Results in Fig.5.7 are

consequences of the pipelining of the MAC LOOPs.

Figure 5.7: Pipelining

Latency decreases if pipeline (II=1) is applied because both loops are involved and as consequence

the latency in this case is divided by almost 4. Then if the initiation interval increases the latency

increases but the area that is the key paramenter in this analysis is slightly decreasing up to solution

with II=4. After this point, area increases. This means that those solutions are no more taken into
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account. As we have seen in previous section, the complete unrolling of the SHIFT LOOP leads to the

necessity to have a latency lower than 100 clk to use the same handshake proposed by SM. With this

constraint the elegible solutions are only the second and the third one, that means initiation interval

lower than 3 (II=1 or II=2).

Solution v3, that has the minimum area between them, has a latency of 69 clock cycles but occupy

almost 80000 µm2. This is not a good result compared to the one that will be proposed later. As a

matter of fact, even if after the synthesis with Synopsys the area tends to decrease, this solution is

discarded.

Starting instead from the other solution presented in Fig.5.1 that is the partial unrolling of the

SHIFT LOOP and applying pipelining as in the case presented above, the results are different and are

presented below. Pipelining is applied up to grade 3 because others solutions with higher initiation

interval exceed the limit of 200 clock cycles of throughput. This means that the inputs are not

correctly sampled.

Figure 5.8: Pipelining

This optimization leads to the best solution seen so far. Differently from the solutions presented

above, these ones have pipelining applied not only to the MAC LOOPs but also to the SHIFT LOOP.

This leads to better performances. With Catapult pipelining directly the main loop is possible and

automatically all of the internal loops are pipelined of the same grade. These solutions comprehend

always two different reset signals and a manual enable (because it is not generated automatically

by Catapult). Moreover to achieve these results also the option ”Use old scheduling and allocation

algorithm” is enabled. This permits to use technique adopted by the versions of Catapult released

before 2007. Below is reported the histogram of the area and all of its components for the four versions

that has in common the partial unrolling (Fig.5.9). Using the partial unrolling (U=32), it is important

to say that the solution has the double of the clock cycles to fit in the handshake of SM. This means

that if before solutions with latency and throughput higher than 100 clock cycles were discarded, now

solution up to 200 clock cycles must be accepted. In this way solutions like v4 of table in Fig.5.8 can

be used.

From now on we will focus on this solution, that will be called FIR both rst, to better understand its

performances.

After the Catapult generation of an RTL code in Verilog, this was passed to Synopsys together with

the library that describes a technology of 45nm. The synthesis gate-level produced by Synopsys was
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Figure 5.9: Pipelining

called netlist and was then passed to Modelsim to verify the correct functioning thanks to a testbench

”ad hoc”.

Before dealing with the verification part, the performances of this solution are shown, in a comparison

with the one of SM. In the second column of Table 5.2 the performances of FIR both rst are reported.

In the third column instead is reported the same architecture but the option ”Use old scheduling and

allocation algorithm” was disabled. The differences of performance in terms of area and power are not

negligible. This option has a high impact on the generation of an efficient RTL. FIR both rst area has

FIR SM FIR both rst same w/o old sched
Combinational area: 23941.59 29452.05 39664.85
Buf/Inv area: 2566.10 2165.23 2884.23
Noncombinational area: 24062.36 21900.04 25665.01
Total area (µm2) 48003.95 51352.09 65329.86
Internal P 2.556 2.710 2.695
Switching P 0.162 0.197 0.220
Leakage P 0.928 1.124 1.275
Total P (mW) 3.646 4.032 4.191

Table 5.2: Performances comparison

an increased of 7% with respect to the one of SM, while the power has a rise of 10%. Those numbers

get worse if we look at the third column where both area and power increase for the filter without

old scheduling. From now on FIR both rst will be the definitive solution for what concerns the filter
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generated by Catapult. The verification stage will be made on this filter.

5.3.1 Testbench and verification

To verify the goodness of this solution after the gate-level synthesis, the netlist together with the

library were passed to Modelsim. It is also necessary to have a testbench that must generate the input

signal of the filter’s interface. In Fig.5.10 are shown the differences at interface level between the SM

architecture and the one of FIR both rst. One of the goals of the thesis was to generate a filter with

the interface as close as possible to the reference, so that it could be replaced with a low effort in the

complete system of the client. What emerges from the figure is that interfaces are quite similar but

in the Catapult’s one there is an extra reset signal. The synchronous one was generated internally

by SM while is part of the external interface in the Catapult synthesized filter. Another difference

is that SM interface has three different enables, two specific ones for the channels and a general one.

In the Catapult’s interface there is only the last one that has a clock gating function too. To have a

complete vision also of the interface of SM, the output signals for saturation are not connected in the

testbench. Now the synchronize signals must be explained.

Figure 5.10: Interfaces differences

In Fig.4.8 was explained the two signals’ behaviour, ideated by SM, to synchronize input and

output stream. Catapult provides the possibility to specify the interface handshake as wait. This

generates automatically three signals for every channel: valid, ready and data. For input channels

(like in ch1 and in ch2 ) the valid signal is an input of the system and the ready instead is generated

as consequence and it is an output (look as example at the signals in blue in Fig.5.10 that belongs
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to the in ch1 ). For an output channel instead happens the opposite. As shown in Fig.5.10 with the

signals in yellow, the ready of an output channel is an input of the filter while the signals valid and

data are two outputs so they will be assigned to not-driven signal in the testbench. In the end, only

the valid for the input channels and the ready for the output ones must be setted in the testbench.

1 f i r s y n t h i f i r s y n t h (

2 . c l k ( s y s c l k ) ,

3 . a r s t ( r s tb ) ,

4 . r s t ( r s t ) ,

5 . i n c h r s c v l d ( sync in ) ,

6 . i n c h 2 r s c v l d ( sync in ) ,

7 . o u t ch r s c r dy (1 ) ,

8 . o u t ch2 r s c rdy (1 ) ,

9 . i n c h r s c d a t ( data i ch1 ) ,

10 . i n c h 2 r s c d a t ( data i ch2 ) ,

11 . o u t ch r s c da t ( f i r x 2 da t ao ch1 ) ,

12 . o u t ch2 r s c da t ( f i r x 2 da t ao ch2 ) ,

13 . i n c h r s c r d y ( in ch1 rdy ) ,

14 . o u t c h r s c v l d ( out ch1 v ld ) ,

15 . i n c h 2 r s c r d y ( in ch2 rdy ) ,

16 . o u t c h2 r s c v l d ( out ch2 v ld )

17 . enable ( enable )

18 ) ;

Listing 5.1: Port-map of the filter in the testbench

Input channels’ valid is equivalent to the SM sync in because it says when the input data are valid

and so it is driven to ’1’ every 200 clock cycles, for a single clock period. For what concerns the output

channels’ ready, this is driven always to ’1’ to take the output data immediately when computed. The

validation of the output data is subject to the sync in x2 generated in the testbench every 100 clk

synchronized with the synch in as in Fig.4.8.

The first sync in arrives after few clock cycles after the reset and the enable are both high (reset is

active low). Those clock cycles are used by the architecture to initialize correctly the registers being a

non-fixed number but depending on the structure of the filter. Obviously before the first sync in the

output must not be calculated and the counter must not start. To give the correct synchronization

of all of these signals, a valid in (that must not be confused with the valid of all the ac channels)

is activated only after the first sync in and then stays high indefinitely. It can be generated by a

SR-latch that will never be reset. This particular event happens only once after the start, as reported

in Fig.5.11 In Fig.5.11 the ’adjustment’ clock cycles before the first rdy are N=6. Then valid in goes

high, the first input data is sampled and from this moment the counter that synchronize input and

output can start. The outputs are valid after 198 clk that is the throughput for this architecture.

This event sets the rdy at ’1’ since another sync in and another input data arrives. In this way the
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Figure 5.11: Valid in behaviour and wait handshake

rdy stays high for 3 clk in this architecture specific case.

This behaviour is attested in the Modelsim’s timing in Fig.5.12 in which both the channels of the

filter are reported. The behaviour is the same of Fig.5.11. Arrows help to comprehend which the

consequences of the events are.

It is interesting to report also the general functioning of the filter. For every sync in there are two

sync in x2 that syncronize the outputs. In the timing the output are valid every 100 clk but the first

output is shifted of 100 clk cycles with the respect of the point in which the input data is sampled

because it takes the same period to be computed (Fig.5.13).

Figure 5.12: Start of the timing and valid in behaviour

5.3.2 Back annotation and switching activity

After the simulation in Modelsim of the behaviour of the filter, another passage can be done to obtain

a more accurate estimation of power with respect to the one obtained by Synopsys, reported in Table

5.2. If we take a look at the following report (Fig.5.15), that specify which the Switching probability

of all the input nets of the filter are, it is possible to notice that most of all (like the enable and the

reset signal) it has a default value equal to 0.5, that is not correct. Next to the switching probability,
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Figure 5.13: General functioning of the input/output sync

another value that is called Toggle ratio and represents the number of transitions of a net in a clock

period (divided by the reference clock period) is reported. For example in the clock case, the Toggle

rate reported is 0.1536 and it is correct because we know that in a clock period, the clock toggle 2

times so TR = 2/13.02 = 0.1536. The last column is the attribute of the net and it may be a letter a,

that means that the net switching activity information was annotated by the designer (as the case of

the clk) or a letter d, that means default switching activity information on net. Tn this case Synopsys

assigns itself values at the nets, but they are not even realistic values.

To have a better estimation of the power, a designer should specify which are the probabilities and

the toggle rate for every input net but this is very time consuming and not practical. The so called

Backannotation process is used instead. The description of this technique is schematized in Fig.5.14.

Starting from the RTL, generated by Catapult in our case, the synthesizer can generate the SAIF file

(Switching Activity Interchange format) in which all the nets of the design associated to an ”activity”

are annotated. This field is completed by the simulator, Modelsim for this work, that after running

the simulation, writes on the same SAIF file the switching activity for each node. In the end the SAIF

with the annotations is passed back to Synopsys that, at this point, can generate a more accurate

estimation for the power.

Unfortunately this annotation was available only for the design generated by Catapult and not even

for the Silicon Mitus filter. For this reason the obtained results will be reported in the following but

they cannot be compared to the reference power.

As reported in Table 5.3 the total power decreases in a relevant way (20%) but the Switching power

increases, because now the switching activities of all the nets are no more setted to a default value

that underestimate them.
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Figure 5.14: Backannotation process

FIR Optimized FIR Optimized with SW A
Internal P 2.710 1.691
Switching P 0.197 0.413
Leakage P 1.124 1.107
Total P (mW) 4.032 3.213

Table 5.3: Power comparison with and without Switching activity

5.4 Solutions with low latency

It was interesting for Silicon Mitus to search also the optimized structure, taking as reference the

minimum latency that is 64 clock cycles. This can be computed as the time delay or the group

delay of a filter that is the interval between an input sinewave applied to the filter and the output

sinewave generated by the filter. For an N-tap FIR filter, with symmetric coefficients, the time delay

is computed as (N-1)/2. As consequence in our case will be of 64 clock cycles.

We have already seen in the previous section that in Fig.5.8 there is the second version of that filter

with 66 clock cycles of latency, that is very close to the optimum one, considering a pipeline stage.

This is the filter design that up to now has the lower latency and an area hypothesized by Catapult

of 92200µm2.

In table 5.4 are reported other possible implementations of the filter with different optimizations that

more or less are comparable with the one presented above (the first one in the table). The maximum

latency considered is 69 clock cycles, that means 5 cycles over the minimum. The most interesting is

the fourth because it has an area of about 76600µm2 with a latency of only 68 clk: -17% with respect
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to the first alternative. This will be the better solution because it also perfectly fits in the Silicon

Mitus handshake algorithm (was told about that in Section 5.3).

Latency Throughput Area Slack

I)
Pipeline Main (II=1)
Part. Unroll Shift (U=32)
with both rst, with or without old sched

66 66 92240 9.16

II)
Pipeline Main (II=2)
Fully Unroll Shift (U=64)
with both rst, with old sched

65 64 91263 9.16

III)
Pipeline Main (II=2)
Fully Unroll Shift (U=64)
with both rst, without old sched

67 64 86131 9.72

IV)
Pipeline only MACs (II=2)
Fully Unroll Shift (U=64)
with both rst, with old sched

68 69 76629 9.16

V)
Pipeline only MACs (II=2)
Fully Unroll Shift (U=64)
with both rst, without old sched

69 70 79758 9.16

Table 5.4: Performances comparison

The performances of this design are reported below. As it is possible to see, the area and power

are not so far from the optimized structure seen in Table 5.2, but the latency in this case is 68 instead

of 197. The comparison with the reference filter shows that there is an area increasing of 14% while

12% for the power. However we can consider this a good alternative implementation of the filter.

FIR SM FIR 68 latency
Combinational area: 23941.59 28429.28
Buf/Inv area: 2566.10 2234.39
Noncombinational area: 24062.36 26115.88
Total area (µm2) 48003.95 54545.16
Internal P 2.556 2.799
Switching P 0.162 0.202
Leakage P 0.928 1.095
Total P (mW) 3.646 4.097

Table 5.5: Performances comparison
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Total Static Toggle Switching

Net Net Load Prob. Rate Power Attrs

--------------------------------------------------------------------------------

clk 1882.033 0.500 0.1536 174.9048 a

rst 27.924 0.500 0.0077 0.1298 d

enable_rsc_dat 3.983 0.500 0.0077 0.0185 d

in_ch_rsc_rdy 3.712 0.109 0.0049 0.0110

in_ch2_rsc_rdy 3.712 0.113 0.0049 0.0110

in_ch2_rsc_vld 2.010 0.500 0.0077 0.0093 d

in_ch_rsc_vld 2.010 0.500 0.0077 0.0093 d

out_ch2_rsc_rdy 2.010 0.500 0.0077 0.0093 d

out_ch_rsc_rdy 2.010 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[0] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[1] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[2] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[3] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[4] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[5] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[6] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[7] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[8] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[9] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[10] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[11] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[12] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[13] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[14] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[15] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[16] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[17] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[18] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[19] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[20] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[21] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[22] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[23] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[24] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[25] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[26] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[27] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[28] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[29] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[30] 1.997 0.500 0.0077 0.0093 d

in_ch2_rsc_dat[31] 1.997 0.500 0.0077 0.0093 d

in_ch_rsc_dat[0] 1.997 0.500 0.0077 0.0093 d

in_ch_rsc_dat[1] 1.997 0.500 0.0077 0.0093 d

in_ch_rsc_dat[2] 1.997 0.500 0.0077 0.0093 d

in_ch_rsc_dat[3] 1.997 0.500 0.0077 0.0093 d

in_ch_rsc_dat[4] 1.997 0.500 0.0077 0.0093 d

in_ch_rsc_dat[5] 1.997 0.500 0.0077 0.0093 d

in_ch_rsc_dat[6] 1.997 0.500 0.0077 0.0093 d

in_ch_rsc_dat[7] 1.997 0.500 0.0077 0.0093 d

in_ch_rsc_dat[8] 1.997 0.500 0.0077 0.0093 d

in_ch_rsc_dat[9] 1.997 0.500 0.0077 0.0093 d

in_ch_rsc_dat[10] 1.997 0.500 0.0077 0.0093 d

in_ch_rsc_dat[11] 1.997 0.500 0.0077 0.0093 d

in_ch_rsc_dat[12] 1.997 0.500 0.0077 0.0093 d

in_ch_rsc_dat[13] 1.997 0.500 0.0077 0.0093 d

...

in_ch_rsc_dat[29] 1.997 0.500 0.0077 0.0093 d

in_ch_rsc_dat[30] 1.997 0.500 0.0077 0.0093 d

in_ch_rsc_dat[31] 1.997 0.500 0.0077 0.0093 d

--------------------------------------------------------------------------------

Total (139 nets) 175.7061 uW

Figure 5.15: Nets Switching activity and Toggle rate



CHAPTER 6

FPGA implementation

As a conclusion of this thesis work, the developed filter is implemented on an FPGA board. The

chosen one is Zedboard of the Xilinx family because it is priced at a suitable level for students (even

if it is used as development platform also for industry) and because Catapult HLS can generate a

Verilog code that is compatible with this board.

Zed is the acronym of Zynq Evaluation and Development where Zynq is the name of a new kind of

device which combine together two sections: the Processing System (PS) and the Programmable Logic

(PL). These sections can be isolated or can be combined rising the number of possible applications.

The basic architecture is the same for all the Zynq devices but it is quite complex. As an example

there is the possibility to implement in the PL a ’soft’ processor like the Xilinx MicroBlaze that can

be used as alternative or combined with the ’hard’ processor that is an ARM Cortex-A9 (part of the

PS). The analysis of Zynq architecture is not the scope of this work, for our purpose is only necessary

Figure 6.1: Zynq architecture[30]

62
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to have a clear vision of the distinction of these two main parts of the Zynq. In Fig.6.1 we have a

distinct separation between the PS (in grey) and the PL (in orange). We will use the Processing

System to generate all the necessary signals (clk, rst and so on...) and to store the data that will be

sent to the PL where the FIR filter will be implemented. The interface between these two separate

sections is an AXI type (Advanced eXtensible Interface). The output data are read by the processor

and then sent to the user on a UART line.

6.1 AXI bus

AXI is part of ARM AMBA (Advanced Microcontroller Bus Architecture), a family of microcontroller

buses developed in 1996. At the moment the latest version of this bus (AXI4) was released in 2010

and it is used in this project. More precisely, there are three different types of AXI4 interface:

❼ AXI4 Full: This is the default interface, it is bidirectional and memory-mapped. This means

that data need to be stored in a memory both in the master and the slave. As consequence,

for every writing or reading operation, an address needs to be sent or received. It supports the

burst communication up to 256 data words (or ‘data beats’) after sending only one address. The

width of data can be parametrized up to 1024 bits. The protocol is composed by 5 signals, the

ones in Fig.6.2

❼ AXI4 Lite: This is an easier version of the complete AXI4. Used for low-throughput memory-

mapped communication. It allows only single data transfer.

❼ AXI4 Stream: This type is mono-directional, always Master to Slave. It is no more classified as

memory-mapped because it removes the requirement of an address and the burst mode is the

only possible. It is effectively an AXI4 single Write Data channel.

In Vivado there is the possibility to create new IP blocks with an AXI interface, totally customizable.

It is possible to choose how many interfaces and which types of it are necessary. Moreover the tool

allows the user to choose also how many interfaces registers must be instantiated. These registers are

very important since they represent the link between the internal logic of the IP and the AXI interface

that communicate with the PS.

6.2 From Catapult to Vivado

Now how to include the RLT description obtained with Catapult HLS in Vivado will be described.

Using this new tool it is possible to create a specific project for the Zedboard and finally to see our

filter working on a real FPGA.

First of all, in Catapult, it is necessary to change the target technology and re-synthesize the filter.
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Figure 6.2: Differences between the Memory-mapped interface and the Streaming interface[31]

To select the correct one, in the Library section of the tool, choose the Xilinx family, in particular the

Artix-7 and the identification code of a compatible board, as indicated in Fig.6.3. The compatibility

Figure 6.3: Setting for the compatible board

between the chosen identification code and the Zedboard code (XC7Z020-CLG484-1) was derived by

the datasheet.

The steps to arrive at the RTL description are the same described in Paragraph 1.4.1 but the final

area instantiated by Catapult is inferior to the one obtained at the end of Chapter 5, with the 45 nm

technology. This result it is not unexpected because Catapult optimize the design with different basis

structures that are present in the Zedboard.
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After this new synthesis of the filter it’s time to move on to Vivado. When creating a new project, the

first thing to do is to specify the target part. Then Vivado gives the designer the possibility to insert

into the project new sources in HDL or to create a new block diagram. In this diagram must be added

all the components of the Zedboard (in a block form) that will be used in that project choosing from

a long list that contains for example: Processor (Zynq processing system), GPIO, memories, AXI

interconnects and so on. All the blocks added to the diagram must be connected together. Then after

the design validation, a wrapper file must be created. In the end synthesis and the implementation

will run and a bitstream will be created and loaded into the FPGA.

The processing system instead can be programmed in C language using an SDK application.

6.3 Block diagram generation

The filter is an application that usually is subject to an infinite stream of data but, for sake of

simplicity, in this case the input data are stored in a memory inside the processor and are sent one

by one to the filter.

The AXI interface that communicates with the filter is Memory-mapped and not Stream. In particular

it is an AXI4-Lite because high performances are not requested.

Sending of the data cannot be left solely as a prerogative of the processor because a software application

cannot exactly timing all the handshake signals (ready, valid and so on). For this purpose four FIFOs

(two per channel) are interposed between the AXI interconnection and the filter as shown in Fig.6.4.

The FIFO memories allow the processor to send data with a certain frequency, without problems,

because they store all the data (they must be deep enough). Enabling the read from the FIFOs with the

correct timing, will allow filter to receive and sample data, together with the correct synchronization

signals. Quite the same happens to the output data, which are synchronized to go out every N clock

cycles. They are stored in the output FIFOs and then the processor, when available, goes to get the

data directly in the FIFO.

The steps to create the correct block design for our architecture are:

1. Filter IP creation

2. FIFO IP creation

3. Design a block diagram with Filter and four FIFO and package this design in a new IP

4. Create a new IP composed by an AXI4 Lite interface connected to the IP created in the step

before

5. Insert this IP into the final block diagram with the processing system and other blocks

All of these steps are now analysed more in details.
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Figure 6.4: AXI Interface of the block with FIR and FIFOs

6.3.1 Filter IP creation

This step is very linear. The concat rtl.v file generated by Catapult with the correct settings of the

target technology is added as a source file in Vivado. To generate a new IP, Vivado opens the options

window in Fig.6.5. In this case the choosen one is the first, because we don’t have a block diagram

and we don’t want an AXI interface for this IP. After this step, the generation of a new IP is basically

Figure 6.5: Window for creating a new IP

done. Another window is opened where changes can be made in the top level entity that will be

generated for this IP or you can simply package the IP and terminate this process.
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6.3.2 FIFO IP creation

The same procedure is done for the packaging of the FIFO component. This is a Fall Through FIFO

because it has a combinatorial output rather than a registered output. The consequence is that timing

usually results in a lower fmax. The code snippet of the definition of the output is reported below:

1 always @( posedge c l k )

2 begin

3 i f ( f i f o w e )

4 data out2 [ wptr [ po inte r s w idth −2 : 0 ] ] <= data in ;

5 end

6

7 a s s i gn data out = data out2 [ rp t r [ po inte r s w idth − 2 : 0 ] ] ;

Two pointers (wptr and rptr) are used because even if a FIFO is a sort of shift register, actually

shifting data around in memory is costly to be done in hardware. A better way is to use like a circular

buffer where every location has an address. Data are not moved but the shifting operation is done by

manipulating the next address to write to and read from. These two addresses are saved in the cited

above pointers.

When a new sample arrives, it is written in the location pointed by wptr, then the pointer is incre-

mented. The same happens to rptr after a reading operation.

There are two critical conditions where the FIFO must be stopped: in the case it is full or empty.

The memory is put in wait state until these conditions are no more verified.

1 a s s i gn po i n t e r e qua l = (wptr [ po inte r s w idth −2:0 ] − rp t r [ po inte r s w idth −2 :0 ] ) ? 0 : 1 ;

2 a s s i gn fb i t comp = wptr [ po inte r s w idth −1] ˆ rp t r [ po inte r s w idth −1] ;

3

4 always @(✯ )

5 begin

6 f i f o f u l l = fb i t comp & po in t e r e qua l ;

7 f i f o empty = (˜ fb i t comp ) & po in t e r e qua l ;

8 end

Both the conditions of full and empty are verified when the two pointers reach the same value, without

considering the MSB (condition pointer equal==1), but they differ for the values of the XOR between

the MSBs of the pointers. If for example we have 5 bits for the address, 4 are really used for the FIFO,

while the MSB is used for the overflow. In the full condition, the read pointer reads from the lowest

address while the write one has saturated the 4 LSB so the next address should have 1 as MSB:

❼ rptr =”00000”

❼ wptr=”10000”

In this condition fifo full = 1 because the 4 LSB are equal, but the MSB is different.

Instead in the empty condition it happens that the FIFO has no data so the read pointer points the
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lowest address but also the wptr must writes in that position. The situation is the following:

❼ rptr =”00000”

❼ wptr=”00000”

In this case fifo empty = 1 because the 4 LSB are equal and the XOR between MSBs is 0.

Another key point of the functionality of this FIFO is that the write and read operations are blocked

by the full or empty conditions:

1 a s s i gn f i f o r d = (˜ f i f o empty ) & rd ;

2 a s s i gn f i f o w e = (˜ f i f o f u l l ) & wr ;

So rd and wr signals that arrive from the external are not the real signals that enable the read and

write operations.

The full code of the FIFO is reported in Appendix B.

6.3.3 IP with Filter and FIFOs

In Vivado a new block diagram is created. It includes the Filter together with four FIFO memories.

The connections of the full and empty signal are left unconnected, because it is not important to

have them as external signals. The block diagram is shown in Fig.6.6. After the validation of the

Figure 6.6: Filter with FIFOs IP

design, this new IP can be packed. A validation of the correct behaviour of this IP is done with

Modelsim. Input data are sent in the same way described in Section 5.3.1. The only change is the

clock frequency set to 100MHz, one of the basic frequencies of the Zedboard (the other oscillator

produces a frequency of 33.3MHz). In order to send input samples with the same frequency of the

original testbench (audio frequency = 384kHz) the counter module 200 is replaced by a module 261.

This because 100MHz/384kHz=260.4.
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6.3.4 IP with AXI interface

At this point the IP with filter and FIFOs must be connected to an AXI interface and together generate

a new IP called AXI FIR FIFOs. A scheme with the connection only for one input and one output

channels is in Fig.6.9. At this point it is necessary to insert in this new IP also an FSM to generate all

the correct signals for the handshake. The only synchronizer that arrives from the external is a signal

called Start. The state machine is a replication of what happens in the original testbench, where a

counter and other signals (ready of input channel, valid in, enable) synchronize the reading of input

data and the writing of the output ones. Now the processor is managed by a software application

written in C language that makes impossible the correct sending of these triggers signals to the filter

together with the input data.

It was chosen to write all the data into the input FIFOs (FIFO 0 and FIFO 1), then write into an

interface register the value ’1’ for enabling the Start. Only after the Start is high, the filter requests

the first data and all the others in sequence. The output results were saved into the output FIFOs

Figure 6.7: Interconnections between the AXI interface and the Filter+FIFOs IP

(FIFO 2 and FIFO 3) and, after a certain time, the AXI interface can start to read data and send

them back to the processor.

The FSM description is reported below. It starts with the rising of the enable signal only a clock cycle

after the Start. Then the signals Valid in, rd en fifos in and wr en fifos out are set. The counter

starts only one clock cycle after the Valid in goes high.

1 always@ ( posedge c l k or negedge r s t n 1 )

2 i f (˜ r s t n 1 ) begin
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3 enab l e 1 = 0 ;

4 end e l s e i f ( s t a r t == 1) begin

5 enab l e 1 = 1 ;

6 end

7 e l s e begin

8 enab l e 1 = 0 ;

9 end

10

11 always@ ( posedge c l k )

12 i f (˜ r s t n 1 | ˜ enab l e 1 ) begin

13 v a l i d i n <= 1 ’ b0 ;

14 end

15 e l s e i f ( i n ch1 rdy == 1) begin

16 v a l i d i n <= 1 ’ b1 ;

17 end

18

19 always@ ( posedge c l k or negedge r s t n 1 )

20 i f (˜ r s t n 1 ) begin

21 cnt <= 0 ;

22 r d e n f i f o s i n = 0 ;

23 wr e n f i f o s o u t = 0 ;

24 end

25 e l s e i f ( v a l i d i n == 1) begin

26 cnt <= next cnt ;

27 r d e n f i f o s i n = sync in ;

28 wr e n f i f o s o u t = out ch1 v ld ;

29 end

Below is shown the design 1 (FIR FIFOs IP) portmap into the AXI interface. As in the Fig.6.9 the

data in signal arrives to the FIFO directly from the AXI interface through the bus S AXI WDATA.

This bus, as the read one, communicates with a set of interface registers, called slv reg. To cut out

these registers from the communication between the processor and the FIFOs some tricks are used.

For what concerns the writing operation, the S AXI WDATA arriving from the external is connected

both to all the slave registers and to the input of the FIFO. When a write function is called from

the processor, it specifies also an address. If the slave register in which the data should be written is

the slv reg0 (writing address is 0x43c00000) it is written instead in the data in of the input FIFO. In

other words, the data is intercepted and redirected.

This condition is expressed by the write data en enable signal. If the writing address is not zero,

the write operation is considered traditional and the incoming data is written on the correspondent

register, as in the case of the Start condition that is written on the slv reg2 (writing address is

0x43c00004).

1 wire wr i t e da ta en ;

2 a s s i gn wr i t e da ta en = s l v r e g wr en & ( axi awaddr [ADDR LSB+
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3 OPT MEM ADDR BITS:ADDR LSB]==4’h0 ) ;

4

5 de s i gn 1 d e s i g n 1 i

6 ( . c l k (S AXI ACLK) ,

7 . r s t n (S AXI ARESETN) ,

8 . s t a r t ( s l v r e g 2 ) ,

9 . da ta in (S AXI WDATA) ,

10 . data out ( data out ) ,

11 . rd 1 ( s l v r e g r d e n ) ,

12 . wr ( wr i t e da ta en ) ) ;

For what concerns the output data, it is associated in the portmap to a wire called data out. In the

code of the slave AXI interface (not shown) this wire is associated to the last interface register. If a

reading operation is requested from that register, data out is put on the output bus (S AXI RDATA),

as in Fig.6.9.

Before moving to the last step, that will include this IP in a block diagram with other blocks of

the Zedboard, this AXI IP was packaged and tested on Modelsim. The testbench now is a little bit

different because it must simulate which commands will arrive from the Processing System. Moreover

the FSM for the synchronization was ”moved” into the IP so the Testbench must only generate the

Start signal. The entire testbench code is reported in Appendix C.

The results of simulation are correct, input data are taken from a file and are stored in the input

FIFOs after the reset signal goes high. The start arrives after 600ns immediately followed by all the

synchronization signals. But we have to wait the first sync in signal before the first data is taken from

the FIFO and passed to the filter. It is important to remember that sync in is assigned to the read

enable of the first FIFO. In the timing in Fig.6.8 there are some key passages that are underlined.

The first one (blue circle) is the input data writing in the first FIFO, after the reset signal goes high.

An undetermined time flows until the Start arrives (in this testbench is chosen by the designer, but

not in the real world), the FSM produces the synchronization signals, and after the valid in goes to ’1’

and the first in ch1 rdy arrives, the first input sample (0) is sent to the filter, then the second sample

arrives after 261 clock cycles. The filter can compute all of its results that are stored in the output

FIFO waiting to be read. After another undetermined time (that in this demonstration is 50µs), the

read enable of the output FIFOs goes high. The FIFO starts sending out the data but obviously not

all have been calculated yet. When all the calculated results have already been sent out the FIFO will

be empty. It will have to wait for a new input data to enter the filter and calculate the two outputs,

so that the output FIFO has some data in it again.

This is what happens it the orange circle in the testbench. There is a period, immediately after the

read enable, where stored data are sent out, one after the other, every clock cycle, then the output

bus (datao ch1 and datao ch2) will receive new output data with a certain periodicity.

After checking the system behaviour is correct, it is the time for the last step which will lead us
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Figure 6.8: Timing for the verification of the AXI FIR FIFOs IP

directly to the FPGA.

6.3.5 Final block diagram

Now a new project is created in Vivado and and generated IP (AXI FIR Fifos) is added. There are

also others blocks that must be added as the Processing system, the Reset generator and an AXI

interconnect block. These last two are added automatically by Vivado once we try to connect our IP

to the Zynq PS. There are no critical points during this step. The only thing that must be verified, is

that the frequency generated in the PS is effectively 100MHz and the block Processor System Reset

generates a synchronous reset. The block diagram is verified, then synthesized and implemented.

Figure 6.9: Interconnections between the Zynq PS and the AXI IP through other blocks

Finally a bitstream is generated and loaded on the FPGA. The C code that manage the processor

activities, is partially presented in the Fig.6.10 but is also inserted in Appendix D. The operations

done are summarized here:
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1. Write the start value equal to 0

2. For cycle to write inputs, on the entry FIFO

3. Write the start value equal to 1

4. Software delay to be sure that the filter has at least computed one result

5. For cycle to read outputs, from the exit FIFO

6. Write the read data on a UART line

The results correctness is testified by Fig.6.10 where, in the Terminal on the right, are read all the

values transmitted by the UART line.

Figure 6.10: Screen of Vivado SDK with the UART Terminal



CHAPTER 7

Conclusions

This work was born with the willingness to further investigate the possibilities of an excellent design

method such as High Level Synthesis. This method lays its foundation during the 80’s years but only

with the new millennium it reaches a maturity that allows it to be used in a business environment.

It is still not optimized for specific applications as outlined in Chapter 2 of this work. But the results

obtained in the design of circuits, in particular for FPGA application, are relevant.

This work aims to test the quality of results of a Finite Input Response filter’s design with HLS.

Starting from a C++ model of the filter an RTL description was automatically produced by Catapult

HLS. The work made by the designer is to guide the tool through an elevate number of possible

optimizations, to the best architecture.

The goodness of the solution was tested in terms of area and power, having as reference the RTL

description of the same filter made by the company we have collaborated with.

In the end the filter is tested also on a Xilinx Zedboard, to verify it behaviour with real applications.

The final statement is that it is possible to obtain, with HLS and Catapult, quality of results compa-

rable to manually written RTL using traditional design (HDL).
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APPENDIX A

C++ codes

Listing A.1: fir sinth.h

#i f n d e f FIR SYNTH H

#de f i n e FIR SYNTH H

#inc lude <a c f i x e d . h>

const unsigned ORDER = 129 ;

const unsigned NBC = 30 ;

typede f a c f i x ed <32 ,32 , true> DATATYPE;

typede f a c f i x ed <30 ,30 , true> COEFF TYPE;

typede f DATATYPE: : rt T<COEFF TYPE> : : mult PRODTYPE;

typede f PRODTYPE: : r t unary : : set<ORDER> : : sum SUMTYPE;

typede f a c f i x ed <33 ,33 , true> INTER TYPE;

typede f a c f i x ed <32 ,32 , true> OUTTYPE;

void f i r s y n t h ( const DATA TYPE, OUT TYPE &);

#end i f

Listing A.2: fir sinth.cpp

#inc lude <iostream>

#inc lude <cmath>

#inc lude <vector>

#inc lude ” f i r s y n t h . h”

//#pragma h l s d e s i g n top
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us ing namespace std ;

void f i r s y n t h ( const DATATYPE i sample , OUT TYPE &y , const DATATYPE i sample2 ,

OUT TYPE &y2 )

{

COEFF TYPE c o e f f i c i e n t s [ORDER] = {17015 ,

29833 ,

5325 ,

−42050 ,

−37405 ,

33403 ,

. . .

29833 ,

17015} ;

s t a t i c DATATYPE samples [ORDER] , samples2 [ORDER] ;

SHIFT LOOP: for ( i n t n=ORDER−1; n>0; n−−) {

samples [ n]= samples [ n−1] ;

samples2 [ n]= samples2 [ n−1] ;

}

samples [0 ]= i sample ;

samples2 [0 ]= i sample2 ;

SUM TYPE sum = 0 , sum2=0;

MACLOOP: for ( unsigned n=0; n<ORDER; ++n) {

sum += samples [ n ] ✯ c o e f f i c i e n t s [ n ] ;

sum2 += samples2 [ n ] ✯ c o e f f i c i e n t s [ n ] ;

}

INTER TYPE temp out , temp out2 ;

temp out=sum >> 27 ;

temp out=temp out+1;

y=temp out >> 1 ;

temp out2=sum2 >> 27 ;

temp out2=temp out2+1;

y2=temp out2 >> 1 ;

}
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Listing A.3: main.cpp

// Inc lude the des ign function to be t e s t ed

#inc lude ” f i r s y n t h . h”

// Inc lude u t i l i t y headers

#inc lude <iostream>

#inc lude ” c svpa r s e r . h”

#inc lude <vector>

#inc lude <assert . h>

#inc lude <s t r i ng>

#inc lude <sstream>

#inc lude <fstream>

#inc lude <iomanip>

us ing namespace std ;

typede f vector<DATATYPE> samplesVect type ;

// Forward Dec l a ra t i on s of u t i l i t y f unc t i on s

i n t ReadCSV Samples ( s t r i n g f i l ename , samplesVect type &samples ) ;

bool WriteCSV Samples ( s t r i ng , samplesVect type &samples ) ;

i n t main ( )

{

/// de f i n e data s t r u c tu r e for ho ld ing input and output samples :

samplesVect type samples ;

samplesVect type samples out ;

// read in sample s from CSV f i l e

i f (ReadCSV Samples ( ” samples . csv ” , samples ) < 0)

{

c e r r << FILE << ” : ” << LINE << ”− Fai l ed to read input samples ” << endl ;

return −1;

}

// Loop through samples , apply ing them to the f i l t e r

for ( vector<DATATYPE> : : i t e r a t o r i t = samples . begin ( ) ; i t != samples . end ( ) ; ++i t )

{

DATATYPE st imulus e l ement = ✯ i t ;

OUT TYPE ex i t e l ement ;

f i r s y n t h ( s t imulus e l ement , ex i t e l ement ) ;

samples out . push back ( ex i t e l ement ) ;

}
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cout << ” S i z e o f samples out : ” << samples out . s i z e ( ) << endl ;

WriteCSV Samples ( ” f i l t e r o u t p u t . csv ” , samples out ) ;

cout << FILE << ” : ” << LINE << ” − End o f te s tbench . ” << endl ;

return 0 ;

}

i n t ReadCSV Samples ( s t r i n g f i l ename , samplesVect type &samples )

{

CsvParser ✯ c svpa r s e r = CsvParser new ( f i l ename . c s t r ( ) , ” , ” , 0 ) ; //1 : f i r s t l i n e i s

a header ; 0 : not

CsvRow ✯row ;

while ( ( row = CsvParser getRow ( c svpa r s e r ) ) )

{

const char ✯✯ rowFie lds = CsvPar s e r ge tF i e ld s ( row ) ;

double doub l e s t imu lus e l ement ;

s t r i ng s t r eam (✯ rowFie lds ) >> doub l e s t imu lus e l ement ;

// cout<<”Double input : ”<<doub le s t imulus e l ement<<endl ;

a c f i x ed<DATATYPE: : width , DATATYPE: : i width , DATATYPE: : s ign ,AC RND,AC SAT SYM>

f i x ed s t imu lu s e l emen t = doub l e s t imu lus e l ement ;

// cout<<”Fixed : ”<<f i x ed s t imu lu s e l ement<<endl ;

samples . push back ( f i x ed s t imu lu s e l emen t ) ;

CsvParser destroy row ( row ) ;

}

cout << FILE << ” : ” << LINE << ” − CSV f i l e ’ ” << f i l ename << ” ’ ” <<

samples . s i z e ( ) << ” samples were read in . ” << endl ;

CsvParser dest roy ( c svpa r s e r ) ;

return samples . s i z e ( ) ;

}

bool WriteCSV Samples ( s t r i n g oFileName , samplesVect type &samples )

{

ofstream oSampleFi le ;

cout << FILE << ” : ” << LINE << ” − Writing output csv f i l e to ’ ” <<

oFileName << ” ’ . ” << endl ;

oSampleFi le .open( oFileName . c s t r ( ) ) ;

i f ( ! oSampleFi le . i s open ( ) )

{

c e r r << FILE << ” : ” << LINE << ” − CSV output f i l e ’ ” << oFileName <<

” ’ could not be c rea ted . ” << endl ;

return f a l s e ;

}
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for ( samplesVect type : : i t e r a t o r i t = samples . begin ( ) ; i t != samples . end ( ) ; ++i t )

{

oSampleFi le << f i x e d << s e t p r e c i s i o n (0 ) << (✯ i t ) << endl ;

}

oSampleFi le . c l o s e ( ) ;

return t rue ;

}



APPENDIX B

VHDL codes

Listing B.1: FIFO.v

module FIFO #(

parameter data width = 32 ,

parameter f i f o d e p t h = 1024 ,

parameter po in t e r s w id th = 11

)

( data out , f i f o f u l l , f i f o empty , c lk , wr , rd , data in , r s t n ) ;

input wr , rd , c lk , r s t n ;

input [ data width −1:0 ] da ta in ;

output [ data width −1:0 ] data out ;

output f i f o f u l l , f i f o empty ;

wire f i f o t h r e s h o l d , f i f o o v e r f l ow , f i f o u nd e r f l ow ;

wire [ po inte r s w idth −1:0 ] wptr , rp t r ;

wire f i f o we , f i f o r d ;

w r i t e p o i n t e r top1 (wptr , f i f o we , wr , f i f o f u l l , c lk , r s t n ) ;

r e ad po in t e r top2 ( rptr , f i f o r d , rd , f i f o empty , c lk , r s t n ) ;

memory array top3 ( data out , data in , c lk , f i f o we , wptr , rp t r ) ;

s t a t u s s i g n a l top4 ( f i f o f u l l , f i f o empty , f i f o t h r e s h o l d , f i f o o v e r f l ow ,

f i f o unde r f l ow , wr , rd , f i f o we , f i f o r d , wptr , rptr , c lk , r s t n ) ;

endmodule

module memory array #(

parameter data width = 32 ,

parameter f i f o d e p t h = 1024 ,

parameter po in t e r s w id th = 11
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)

( data out , data in , c lk , f i f o we , wptr , rp t r ) ;

input [ data width −1:0 ] da ta in ;

input c lk , f i f o w e ;

input [ po inte r s w idth −1:0 ] wptr , rp t r ;

output [ data width −1:0 ] data out ;

reg [ data width −1:0 ] data out2 [ f i f o d ep th −1 : 0 ] ;

wire [ data width −1:0 ] data out ;

always @( posedge c l k )

begin

i f ( f i f o w e )

data out2 [ wptr [ po inte r s w idth −2 : 0 ] ] <=data in ;

end

a s s i gn data out = data out2 [ rp t r [ po inte r s w idth − 2 : 0 ] ] ;

endmodule

module r e ad po in t e r #(

parameter data width = 32 ,

parameter f i f o d e p t h = 1024 ,

parameter po in t e r s w id th =11

)

( rptr , f i f o r d , rd , f i f o empty , c lk , r s t n ) ;

input rd , f i f o empty , c lk , r s t n ;

output [ po inte r s w idth −1:0 ] rp t r ;

output f i f o r d ;

reg [ po inte r s w idth −1:0 ] rp t r ;

a s s i gn f i f o r d = (˜ f i f o empty )& rd ;

always @( posedge c l k or negedge r s t n )

begin

i f (˜ r s t n ) rp t r <= 11 ’ b00000000000 ;

else i f ( f i f o r d )

rp t r <= rpt r + 11 ’ b00000000001 ;

else

rp t r <= rpt r ;

end

endmodule

module s t a t u s s i g n a l #(

parameter data width = 32 ,

parameter f i f o d e p t h = 1024 ,
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parameter po in t e r s w id th = 11

)

( f i f o f u l l , f i f o empty , f i f o t h r e s h o l d , f i f o o v e r f l ow , f i f o unde r f l ow , wr , rd ,

f i f o we , f i f o r d , wptr , rptr , c lk , r s t n ) ;

input wr , rd , f i f o we , f i f o r d , c lk , r s t n ;

input [ po inte r s w idth −1:0 ] wptr , rp t r ;

output f i f o f u l l , f i f o empty , f i f o t h r e s h o l d , f i f o o v e r f l ow , f i f o u nd e r f l ow ;

wire fbit comp , ove r f l ow s e t , unde r f l ow se t ;

wire po i n t e r e qua l ;

wire [ po inte r s w idth −1:0 ] p o i n t e r r e s u l t ;

reg f i f o f u l l , f i f o empty , f i f o t h r e s h o l d , f i f o o v e r f l ow , f i f o u nd e r f l ow ;

a s s i gn fb i t comp = wptr [ po inte r s w idth −1] ˆ rp t r [ po inte r s w idth −1] ;

a s s i gn po i n t e r e qua l = (wptr [ po inte r s w idth −2:0 ] − rp t r [ po inte r s w idth −2 :0 ] ) ? 0 : 1 ;

a s s i gn p o i n t e r r e s u l t = wptr [ po inte r s w idth −1:0 ] − rp t r [ po inte r s w idth −1 : 0 ] ;

a s s i gn ov e r f l ow s e t = f i f o f u l l & wr ;

a s s i gn unde r f l ow se t = f i f o empty&rd ;

always @(✯ )

begin

f i f o f u l l =fb i t comp & po in t e r e qua l ;

f i f o empty = (˜ fb i t comp ) & po in t e r e qua l ;

f i f o t h r e s h o l d = ( p o i n t e r r e s u l t [ po inte r s w idth −1]

| | p o i n t e r r e s u l t [ po inte r s w idth −2]) ? 1 : 0 ;

end

always @( posedge c l k or negedge r s t n )

begin

i f (˜ r s t n ) f i f o o v e r f l o w <=0;

else i f ( ( o v e r f l ow s e t==1)&&( f i f o r d ==0))

f i f o o v e r f l o w <=1;

else i f ( f i f o r d )

f i f o o v e r f l o w <=0;

else

f i f o o v e r f l o w <= f i f o o v e r f l o w ;

end

always @( posedge c l k or negedge r s t n )

begin

i f (˜ r s t n ) f i f o u nd e r f l ow <=0;

else i f ( ( unde r f l ow se t==1)&&( f i f o w e==0))

f i f o u nd e r f l ow <=1;

else i f ( f i f o w e )

f i f o u nd e r f l ow <=0;

else

f i f o u nd e r f l ow <= f i f o und e r f l ow ;
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end

endmodule

module w r i t e p o i n t e r #(

parameter data width = 32 ,

parameter f i f o d e p t h = 1024 ,

parameter po in t e r s w id th = 11

)

(wptr , f i f o we , wr , f i f o f u l l , c lk , r s t n ) ;

input wr , f i f o f u l l , c lk , r s t n ;

output [ po inte r s w idth −1:0 ] wptr ;

output f i f o w e ;

reg [ po inte r s w idth −1:0 ] wptr ;

a s s i gn f i f o w e = (˜ f i f o f u l l )&wr ;

always @( posedge c l k or negedge r s t n )

begin

i f (˜ r s t n ) wptr <= 11 ’ b00000000000 ;

else i f ( f i f o w e )

wptr <= wptr + 11 ’ b00000000001 ;

else

wptr <= wptr ;

end

endmodule



APPENDIX C

Testbench

Listing C.1: Testbench for the AXI FIR FIFOs IP

‘ t ime s ca l e 1 ns/ 1 ps

‘ d e f i n e DELAY 5

module Testbench ( ) ;

// 4 . Parameter d e f i n i t i o n s

localparam EOF = −1;

// 5 . DUT Input r eg s

reg s t a r t ;

reg c l k ;

reg r s t n ;

reg wr ;

reg rd 1 ;

i n t e g e r f s t im ch2 , r s t im ch2 ;

i n t e g e r f s t im ch1 , r s t im ch1 ;

reg s igned [ 3 1 : 0 ] da ta i ch1 ;

reg s igned [ 3 1 : 0 ] da ta i ch2 ;

wire s igned [ 3 1 : 0 ] datao ch1 ;

wire s igned [ 3 1 : 0 ] datao ch2 ;

wire s igned [ 3 1 : 0 ] data out FIFO ;

// 7 . DUT In s t a n t i a t i o n

de s i gn 1 d e s i g n 1 i

( . c l k ( c l k ) ,

. r s t n ( r s t n ) ,

. s t a r t ( s t a r t ) ,

. da ta in ( data i ch1 ) ,
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. d a t a i n 1 ( data i ch2 ) ,

. d a t a i n t e rm e d i a t e f i f o f i r ( data out FIFO ) ,

. data out ( datao ch1 ) ,

. data out 1 ( datao ch2 ) ,

. rd 1 ( rd 1 ) ,

. wr (wr ) ) ;

//ENDSIM

reg t e s t f a i l = 0 ;

// 8 . I n i t i a l Condit ions

i n i t i a l

begin

f s t im ch1 = ✩ fopen ( ” ov s i n ch1 . txt ” , ” r ” ) ;

i f ( f s t im ch1 == 0) ✩stop ;

f s t im ch2 = ✩ fopen ( ” ov s i n ch2 . txt ” , ” r ” ) ;

i f ( f s t im ch2 == 0) ✩stop ;

c l k = 1 ’ b0 ;

wr = 1 ’ b1 ;

rd 1 = 1 ’ b0 ;

r s t n =0;

s t a r t =0;

#100;

r s t n =1;

#500;

s t a r t =1;

#50000;

rd 1 = 1 ’ b1 ;

end

// 9 . Generating Test Vectors

i n i t i a l

begin

while (1 ) begin

c lk<=0;

#(5);

c lk<=1;

#(5);

end

end
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always @ ( posedge c l k or negedge r s t n )

begin

i f ( r s t n )

begin

r s t im ch1 <= ✩ f s c an f ( f s t im ch1 , ”%d” , data i ch1 ) ;

r s t im ch2 <= ✩ f s c an f ( f s t im ch2 , ”%d” , data i ch2 ) ;

i f ( r s t im ch1 == EOF)

begin

✩d i sp l ay ( ”>>>” ) ;

✩d i sp l ay ( ”>>> Input f i l e 1 end” ) ;

// end s imula t i on ;

end

else i f ( r s t im ch2 == EOF)

begin

✩d i sp l ay ( ”>>>” ) ;

✩d i sp l ay ( ”>>> Input f i l e 2 end” ) ;

// end s imula t i on ;

end

end

end

endmodule



APPENDIX D

C application for the FPGA

Listing D.1: Test.c

/✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯

✯

✯ Copyright (C) 2009 − 2014 Xi l inx , Inc . All r i g h t s r e s e rved .

✯

✯ Permiss ion i s hereby granted , f r e e of charge , to any person obta in ing a copy

✯ of t h i s so f tware and a s s o c i a t ed documentation f i l e s ( the ” Software ” ) , to dea l

✯ in the Software without r e s t r i c t i o n , i n c l ud ing without l im i t a t i o n the r i g h t s

✯ to use , copy , modify , merge , publ i sh , d i s t r i bu t e , sub l i c en s e , and/or s e l l

✯ cop i e s of the Software , and to permit persons to whom the Software i s

✯ f u rn i shed to do so , sub j e c t to the f o l l ow i n g cond i t i on s :

✯

✯ The above copyr ight no t i c e and t h i s permis s ion no t i c e s h a l l be inc luded in

✯ a l l cop i e s or s ub s t an t i a l po r t i on s of the Software .

✯

✯ Use of the Software i s l im i t ed s o l e l y to app l i c a t i o n s :

✯ ( a ) running on a Xi l i nx device , or

✯ (b) that i n t e r a c t with a Xi l i nx dev i c e through a bus or i n t e r c onnec t .

✯

✯ THE SOFTWARE IS PROVIDED ”AS IS” , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

✯ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

✯ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL

✯ XILINX BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY ,

✯ WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF

✯ OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

✯ SOFTWARE.

✯

✯ Except as conta ined in t h i s not i ce , the name of the X i l i nx s h a l l not be used

✯ in adv e r t i s i n g or otherw i se to promote the sa l e , use or other d ea l i n g s in

✯ t h i s Software without p r i o r wr i t t en au tho r i z a t i on from Xi l i nx .
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✯

✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯✯/

/✯

✯ Test . c : s imple t e s t app l i c a t i on

✯

✯ This app l i c a t i o n c on f i g u r e s UART 16550 to baud ra t e 9600 .

✯ PS7 UART (Zynq ) i s not i n i t i a l i z e d by t h i s app l i c a t i on , s i n c e

✯ bootrom/bsp c on f i g u r e s i t to baud ra t e 115200

✯

✯ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

✯ | UART TYPE BAUD RATE |

✯ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

✯ uartns550 9600

✯ u a r t l i t e Conf igurab le only in HW des ign

✯ ps7 uar t 115200 ( con f i gu r ed by bootrom/bsp )

✯/

#inc lude <s t d i o . h>

#inc lude ” plat form . h”

#inc lude ” x i l p r i n t f . h”

#inc lude ” x i l i o . h”

#inc lude ”xuartps hw . h”

#inc lude ” xuartps . h”

#inc lude ” s l e ep . h”

#inc lude ”AXI FIR Fifos . h”

i n t main ( )

{

s32 data out ;

i n i t p l a t f o rm ( ) ;

s32 Inputs [ 3 8 5 ] = {

0 ,

487642562 ,

949807729 ,

1362349204 ,

1703713325 ,

1956065168 ,

2106220351 ,

. . .

−1703713325 ,

−1362349204 ,

−949807729 ,
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−487642562 ,

0} ;

AXI FIR FIFOS mWriteReg (0 x43c00000 , AXI FIR FIFOS S00 AXI SLV REG2 OFFSET , 0 ) ; / / s t a r t=0

for ( i n t i =0; i <384; i++){ // wr i t e inputs on the f i r s t f i f o

AXI FIR FIFOS mWriteReg (0 x43c00000 , AXI FIR FIFOS S00 AXI SLV REG0 OFFSET , Inputs [ i ] ) ;

}

AXI FIR FIFOS mWriteReg (0 x43c00000 , AXI FIR FIFOS S00 AXI SLV REG2 OFFSET , 1 ) ; / / s t a r t=1

for ( i n t j =0; j <5000; j ++); // de lay to be sure that the f i l t e r has f i n i s h e d

for ( i n t k=0; k<1024; k = k+2){ // read the outputs of the second f i f o

data out=AXI FIR FIFOS mReadReg (0 x43c00000 , AXI FIR FIFOS S00 AXI SLV REG12 OFFSET ) ;

x i l p r i n t f ( ”D out[%d ] : ” , k ) ; x i l p r i n t f ( ” %d ” , data out ) ;

data out=AXI FIR FIFOS mReadReg (0 x43c00000 , AXI FIR FIFOS S00 AXI SLV REG12 OFFSET ) ;

x i l p r i n t f ( ”D out[%d ] : ” , k+1); x i l p r i n t f ( ” %d \n\ r ” , data out ) ;

}

c l eanup p lat fo rm ( ) ;

return 0 ;

}


