
Politecnico di Torino

Electronic engineering

Master theses

CIC filter design with HLS

Master degree in Electronic Engineering

Author: Simone Impagnatiello

Supervisor: Prof. Mario Roberto Casu

Co-supervisor: Prof. Luciano Lavagno

Abstract

The thesis work is based on the use of the High-Level-Synthesis methodology and

focuses on the use of an High-Level-Synthesis tool, Mentor Catapult, to apply the HLS

design methodology to an industrial application. In collaboration with the company

Silicon Mitus, a CIC filter is developed. The CIC filter is one of the upstream filters in

an high-performance DAC for audio application, developed by Silicon Mitus. The thesis

goal is to prove that an architecture designed with HLS design methodology, can achieve

performance in terms of area, power consumption an timing, which are comparable with

the one obtained by an architecture, designed with the classical RTL design flow. The

thesis work starts with an introduction to HLS, explaining its concepts, the structures

of HLS tools and its advantages over those of RTL design flow. An overview on the

structures and the frequency behaviour of the CIC filters is reported, with different

CIC filter state-of-the-art architectural solutions. Finally the description of the design

flow is introduced and the final results are discussed.

Contents

Contents ii

List of Figures v

1 High-Level-Synthesis and Mentor Catapult 1

1.1 High-Level-Synthesis . 1

1.1.1 Advantage of High-Level-Synthesis 2

1.1.2 HLS flow description . 2

1.1.3 HLS State-Of-The-Art . 4

1.2 Catapult C . 5

1.2.1 Data types . 6

1.2.2 Synthesis tool steps . 8

2 CIC filter and state of art 13

2.1 Cascaded Integrator and Comb (CIC) filter 13

2.2 CIC filter frequency response . 16

2.3 Two possible algorithms for a CIC filter implementation 19

2.4 State-of-the-art CIC filter . 21

2.4.1 Bit-serial implementation (Recursive structure) 21

2.4.2 Implementation of a sharpened CIC filter 23

2.4.3 CIC filter architecture with optimal performance 29

3 C++ algorithm 33

3.1 Reference filter specification . 33

3.2 MATLAB code and algorithm by Silicon Mitus 34

3.3 MATLAB code translated in C++ . 37

i

CIC filter design with HLS ii

3.3.1 The testing environment in C++ 37

3.3.2 Filter algorithm and its implementation 39

3.4 C++ code to synthesize the CIC filter 43

4 CIC filter development with Catapult 50

4.1 Correctness verification of the synthesized architecture 51

4.2 Different architectures of the CIC filter and Catapult results 53

4.3 Final architecture and optimizations 55

4.3.1 Architecture functioning . 61

5 Conclusion 65

A Code 67

A.1 Synthesizable code . 67

A.2 C++ Testbench . 69

List of Figures

1.1 HLS flow [1] . 3

1.2 Catapult flow . 6

1.3 Quantization modes . 7

1.4 Overflow modes . 8

1.5 Methods for ac fixed . 9

1.6 Operators for ac fixed . 10

1.7 SCVerify infrastructure . 12

2.1 Decimation filter with CIC structure 14

2.2 A single integrator stage . 14

2.3 A single differential stage, with M=1 15

2.4 Scheme of the CIC decimation filter structure 15

2.5 Decimation filter implemented as a cascade of FIR filters 16

2.6 CIC filter frequency response, with M=1 18

2.7 CIC filter frequency response with M=2 18

2.8 General structure of a recursive CIC filter 2.8 19

2.9 General structure of a non-recursive CIC filter 2.8 20

2.10 Comparison between non-recursive and recursive algorithm, in terms of

area, power consumption and frequency [8] 20

2.11 Structure of integrative stage (a) and derivative stage (b) [9] 22

2.12 Array registers and adder decoder [9] 22

2.13 Stop-band attenuation of a 6 order CIC filters 23

2.14 Stop-band attenuation of a 8 order CIC filters 23

2.15 Stop-band attenuation of a 10 order CIC filters 24

2.16 Pass-band droop of CIC filters of the 6-th order 24

iii

CIC filter design with HLS iv

2.17 Pass-band droop of CIC filters of the 8-th order 25

2.18 Pass-band droop of CIC filters of the 10-th order 25

2.19 The desired ACF curve that represents improvement in stop-band and

in pass-band . 26

2.20 Architecture of the sharpened-response CIC filter 27

2.21 Comparison between the standard CIC response and the sharpened CIC

response [12] . 27

2.22 CIC filter pass-band droop trend according to the decimation factors

and parametrized on the filter order [12] 28

2.23 Sharpened CIC filter pass-band droop trend according to the decimation

factors and parametrized on the filter order [12] 29

2.24 CIC filter for decimation operation [14] 30

2.25 Comparison of area between the optimized architecture and the one

produced by the MATLAB HDL code for ASIC implementation [14] . . 31

2.26 Comparison of power between the optimized architecture and the one

produced by the MATLAB HDL code for ASIC implementation [14] . . 31

2.27 Comparison of frequency between the optimized architecture and the

one produced by the MATLAB HDL code for ASIC implementation [14] 31

2.28 Comparison of area between the optimized architecture and the one

produced by the MATLAB HDL code for FPGA implementation [14] . 32

2.29 Comparison of frequency between the optimized architecture and the

one produced by the MATLAB HDL code for FPGA implementation [14] 32

3.1 Top level entity of the architecture provided by Silicon Mitus 34

3.2 Structure of the MATLAB code for one single channel provided by Sili-

con Mitus . 35

3.3 Pulse density modulation example . 36

3.4 Graphical representation of the integral section computation algorithm 41

3.5 Graphical representation of the decimation stage computation algorithm 41

3.6 Graphical representation of the derivative section computation algorithm 42

3.7 The basic principle of the integrative algorithm 44

3.8 The basic principle of the derivative section algorithm 45

CIC filter design with HLS v

4.1 ModelSim simulation of the reference architecture by Silicon Mitus . . 50

4.2 ModelSim simulation shows the correct behaviour of the architecture

produced by Catapult . 53

4.3 Simulation by SCV erify . 55

4.4 How multiplexers, registers, functional units and logic affect the area of

the different architectures . 57

4.5 Silicon Mitus architecture (top view) 58

4.6 Internal structure of the reference architecture bt Silicon Mitus 59

4.7 Clock setting . 59

4.8 Signal setting . 60

4.9 Top view designed by Catapult . 61

4.10 Top view of the optimized architecture 62

4.11 Area estimation: Catapult vs Synopsys 62

List of Tables

1.1 Numerical range of ac int and ac fixed 6

2.1 Sampling rate and word length for recursive algorithm 19

2.2 Sampling rate and word length for non-recursive algorithm 20

2.3 Pass-band distortion after decimation vs decimation factor [12] 28

2.4 Improvements for FPGA implementation [14] 30

2.5 Improvements for ASIC implementation [14] 30

4.1 Catapult results in terms of latency an throughput cycles and slack time 54

4.2 The table shows the resources allocated by Catapult for the different

architectural solutions . 56

4.3 Synopsys results . 57

4.4 Catapult and Synopsys results of the final architecture 63

4.5 Catapult final architecture evaluated with Synopys 64

4.6 Catapult final architecture comparisons with Silicon Mitus architecture 64

vi

CHAPTER 1

High-Level-Synthesis and Mentor Catapult

1.1 High-Level-Synthesis

Digital electronic systems have grown their complexity and this trend will only increase

in the next future. This aspect of the digital design with the increasing capability of

silicon technology, leads to a high effort from hundreds of engineers and very expensive

projects in terms of time and cost. The request of short time-to-market reduces a

product development time and the productivity per engineer has to increase to allow

the development and the optimization of products.

Designs developed with hardware description language will eventually become imprac-

tical because of the growing complexity of the systems. These reasons have forced

design methodologies and tools to rise the abstraction description levels. In particular,

designers would use High-Level-Languange (HLL) to describe the algorithm, instead

of using hand-written Verilog or VHDL code, describing a RTL architecture.

Typically, design projects start with some kind of specification. An executable code

is created in HLL (typically MATLAB and C), providing functional specification. The

first step of a design using traditional methodologies is to define an optimal architec-

ture, and as a consequence to describe the architecture using hardware description

language as Verilog or VHDL. This fully-manual approach hides very big problems:

first, to find an optimal architecture is challenging, then manual interventions may

cause errors, involving behavioural bugs.

1

CIC filter design with HLS 2

High-Level-Synthesis is a design methodology that generates register-transfer level

description from behavioural specification. More precisely, the HLS tool performs a

translation of the high-level code into RTL-code starting from the description in an

high-level programming language (C++, C, SystemC and others).

1.1.1 Advantage of High-Level-Synthesis

Reducing design and Verification effort

By working with HLS, designers need to worry only about the desired behaviour and

not about implementation details, as clock, technology and so on. HLS tools allow to

accelerate the design process and to reduce the verification effort. Verification can be

done by writing few lines of code. Even if the HLS eliminates the manual intervention

of the RTL code, it continues to guarantee some decisions that a designer could take,

as the level of parallelism, the proper architecture (performing pipelining, re− timing

for example) ad so on.

With HLS, it is possible to obtain correct RTL code, in a small amount of time.

More effective reuse

Since clock, technology and micro-architecture are automatically added by the HLS

tool, changes can be made and verified more easily, without time-consuming problems

as re-writing the code, the state machine or breaking a pipeline.

Investing R&D resources

HLS leads an important advantage: the research and development resources can be

spent to create new algorithm and optimization, instead of writing RTL code. Features

superiority, performance and low cost can be easily achieved rising the abstraction level.

1.1.2 HLS flow description

In Figure 1.1 a typical High-Level-Synthesis flow is described. The flow depends on

the tool but typically most of the tools use this approach for the synthesis.

CIC filter design with HLS 3

Figure 1.1: HLS flow [1]

Compilation

The first step is the code compilation. Compilation typically includes other optimiza-

tion codes as dead-code elimination or false data dependency elimination. A formal

model is created by compiling the code. It contains informations about loops iter-

ations, data dependencies and parallel structure in the HLL code. The compilation

step produces a data flow graph (DFG), explaining all the data dependencies and the

operations. DFG representation is extended by using control DFGs (CDFG) used to

reprensent the control flow between the basic blocks and the data dependencies inside

them.

Allocation

The allocation step provides the number and the type of allocated resources. This is

not the unique step for resources allocation. Some resources could be added during

the scheduling and the binding step. The allocation is done using the components of

a specified library, where also timing power and area properties of the components are

CIC filter design with HLS 4

contained.

Scheduling

The functional operations are scheduled into cycles. These functional operations can

be chained, so that their outputs feed other successive operations, or scheduled to be

executed in parallel, when no data dependencies occur.

Binding

In the binding phase, the tool checks if the allocated resources and scheduling allows

the resources sharing. As a result every functional operation, variable and connection

is bound to a physical resource. Since area and delay are estimated as early as possible,

the binding step can perform some kind on optimization of the architecture.

Generation

This step takes all the decision taken in the allocation, scheduling and binding steps

and it generates the final RTL architecture.

1.1.3 HLS State-Of-The-Art

It is possible to divide the story of the HLS in three generations. The first generation

(1980s-early 1990s) failed [2] because of:

• input language (Silage);

• poor results quality, involving in too simple architecture, poor scheduling;

• domain specialization (HLS was DSP oriented, not appropriate for ASIC designs).

The second generation (mid-1990s-early 2000s) failed, too [2]. The main reasons are:

• attempting of substituting RTL synthesis with HLS;

• wrong input HLLs;

• variable and unpredictable results;

• hard validation process;

CIC filter design with HLS 5

• poor attention on interfaces.

The current generation is the third (from early 2000s) [2]. In spite of the second and

the first HLS generations, the third one is doing better for several reasons:

• Focus on domain of application: tools are used typically on domains where they

have an higher probability of generating quality results (DSP application).

• the use of comfortable language to develop algorithms implies the success of the

third generation;

• higher results quality;

• shifted design domains: the huge amount of signal and multimedia processing in-

corporated by many products, allows different kind of designs to take advantages

from HLS;

• using HLS for FPGA means to quickly get an algorithm in hardware.

1.2 Catapult C

Catapult C is a product of Mentor Graphics used for HLS synthesis. Catapult accepts

as inputs C/C++ and System C code producing register tranfer level (RLT) code. The

target platforms are FPGA and ASIC. It is also capable of verifying the correctness

of the output of the synthesized architecture, directly comparing its output with the

ones produced by the description algorithm. In Figure 1.2, the Catapult design flow

is shown. Notice the presence of a section (Constraints) exploiting the concept of

Folding/Unfolding, Re-timing/Pipelining and so on, to explore different architectural

solutions.

The High-level-synthesis tool needs the top entity to be specified. In this way the

top-module specifies port interface and definitions, bit widths and data types. Another

characteristic is that Catapult produces registered output so that it is easier to interface

modules one to each other.

Since the C++ description is time agnostic, clock, enable and reset signals are added

by the synthesis tool.

CIC filter design with HLS 6

Algorithm
description

Floating point
model

Fixed Point
Model

Hardware
FPGA/ASIC

Catapult
synthesis

RTL synthesis

Place & Route

Constraints

Figure 1.2: Catapult flow

1.2.1 Data types

Catapult allows the designer to use variables defined in a way suitable to be used

in the synthesized architecture in order to optimize the hardware design. There are

two possible data types that can be used: ac int and ac fixed. The Table 1.1 shows

Table 1.1: Numerical range of ac int and ac fixed

TYPE DESCRIPTION NUMERICAL RANGE

ac int<W, false> unsigned integer 0 to 2W−1

ac int<W, true> signed integer −2W−1 to 2W−1 − 1

ac fixed<W, I, false> unsigned fixed-point 0 to (1 − 2−W)2I

ac fixed<W, I, true> signed fixed-point (−0.5)2I to (0.5 − 2−W)2I

the possible basic declaration of variables using ac int or ac fixed. The template

parameter ’W ’ is a positive integer, so it defines the number of bits of the number.

The second parameter ’I’ defines the position of the fixed point, so it identifies the

CIC filter design with HLS 7

number of bits representing the integer part. The third parameter is a boolean value

and can be set to ”false” for unsigned numbers or ”true” for signed. The fixed-point

datatype ac fixed has two additional template parameters. Its full template is:

ac fixed < intW, intI, boolS, ac q modeQ, ac o modeO > (1.1)

The parameter ac q mode imposes which kind of Quantization method must be used

and the parameter ac o mode impose the Overflow method. In Tables 1.3 and 1.4 the

possible Quantization and Overflow modes are shown. The last thing to remark

Figure 1.3: Quantization modes

is that there a group of methods and operators that can be used using ac int and

ac fixed data types. A complete overview on these methods and operators is shown

in Figures 1.5 and 1.6.

CIC filter design with HLS 8

Figure 1.4: Overflow modes

1.2.2 Synthesis tool steps

Catapult synthesis tool needs different steps to complete the extraction of the RTL

code.

• Hierarchy: Catapult requires to identify the top entity, selecting TOP in the

Hierarchy setting in the Constraint editor ;

• Libraries: the technology is set.

• Mapping: allows to set the clock frequency and also other signals related to

timing as resets (synchronous and asynchronous) and enable;

• Architecture: to apply loop Pipeline and loop Unfolding technique to the ar-

chitecture;

• Schedule:

1. Catapult adds time to the design in this phase;

2. Scheduling task determines when a certain operation must be performed

and can be modified due to registers insertion, according to the target clock

the architecture ;

3. Scheduling task corresponds to a pipelining operation, with the purpose of

reducing the combinational delay;

CIC filter design with HLS 9

Figure 1.5: Methods for ac fixed

• RTL: Catapult generates the RTL netlist.

An important consideration must be done for the Architucture section. In this section

it is possible to ”pipeline” the loops. To pipeline a loop means that a new iteration can

start before the current one has completed. This operation has two important results:

execution of the loop iterations are overlapped and clearly an increase of performance

since the loops run in parallel. When a loop is pipelined, the initiation interval (II)

is set, and the number of pipeline stages are specified. The initiation interval (II) is

CIC filter design with HLS 10

Figure 1.6: Operators for ac fixed

the number of clock cycles between the start of two consecutive loop iterations. As a

direct consequence the loop pipelining leads to an increase of the allocated resources.

As output Catapults provides:

• reports: RTL report and Cycle report;

• RTL description in VHDL and Verilog;

• Gantt chart: a timing chart;

CIC filter design with HLS 11

• RTL schematic.

Finally, it is possible to proceed with the Verification step. The SCVerify infrastructure

is shown in Figure 1.7.

SCVerify flow allows the validation of the RTL netlist using the testbench written in

C/C++, comparing its output with a SCVerify-generated testbench. SCVerify places

the RTL netlist in a SystemC wrapper and it encapsulates the C/C++ testbench with

the C/C++ algorithm in the total infrastructure. The same input stimuli are passed

to both the SystemC wrapper and the C/C++ testbench. Finally the output from

both the modules are compared. SCVerify manages also timimg signals:

• generate sync: provides the synchronization events

1. ac channel: synchronization signals like handshake protocols signals (ccs in valid,

ccs in vld or ∗ wait);

2. Transaction Done Signal (triosy lz): it is a signal which is added to the

C++ variables. This signal is enabled for 1 clock cycle at the completion of

each I/O transaction;

• geratate reset: manages the assertion of the reset signal;

• watch comparators: compares the output and reports the number of comparisons

passed and the number of comparison failed.

SCVerify supports different simulation enviroments for verification as: Questasim and

Modelsim, Synopsys VCS and Cadance IUS/NCSim.

CIC filter design with HLS 12

Figure 1.7: SCVerify infrastructure

CHAPTER 2

CIC filter and state of art

2.1 Cascaded Integrator and Comb (CIC) filter

In DSP systems, the applications for extraction narrow-band signals form wide-band

source and narrow-band construction of wide-band signals are becoming more impor-

tant. In audio applications different sample rates coexist and this means that it is

necessary to change the rate of a system for lower or higher sampling rates. The

change of the samples rates is performed exploiting two operations: interpolation, to

increase the samples rates, and decimation, to decrease the samples rates.

In the following sections the decimation filtering is studies. The decimation oper-

ation can be performed using FIR-based filters. These class of filters have the great

disadvantage of having a structure with multipliers. This means that the computa-

tional costs in terms of power consumption would increase dramatically, because it

is necessary to perform a high number of multiplications per second. In [5]a way to

perform interpolation and decimation is introduced. Hogenauer proposed the CIC fil-

ters, a class of digital linear phase finite impulse response (FIR) filters, for decimation

and interpolation operations. The peculiar characteristic of the CIC filter is its mul-

tiplierless structure, implying a save of power consumption and area, because it is no

more necessary the coefficients storage for multipliers. In the following sections the

behaviour of a CIC decimation filter is studied.

13

CIC filter design with HLS 14

A CIC decimation filter structure is shown in Figure 2.1.

+

𝑧−1

+

𝑧−1

…

+

𝑧−1

+

𝑧−𝑀

+

𝑧−𝑀

…

+

𝑧−𝑀

X[n] Y[n]

Integrative section Derivative section

Stage1 Stage2 Stage N Stage1 Stage2 Stage N

R
f= 𝑓𝑠 f=𝑓𝑠/R

Figure 2.1: Decimation filter with CIC structure

The entire structure of a decimation filter consists of two sections: the integral

section and derivative section, also called comb section, connected by a decimation

step R.

The integrator section is composed by a number N of ideal integrator stages working

at the high sampling rate fs, where N is the order of the filter. Each integrator stage is

implemented as single-pole filter with a unitary feedback coefficient. A single integrator

stage is shown in Figure 2.2. The performed equation by this base integrator is:

y[n] = y[n− 1] + x[n] (2.1)

Figure 2.2: A single integrator stage

The transfer function of that stage is:

Hi(z) =
1

1 − z−1
(2.2)

Since N is the filter order, and so it contains the information about the number of

stages per section, the transfer function of the total integrator section is the following:

HI(z) =

(
1

1 − z−1

)N
(2.3)

CIC filter design with HLS 15

The combinational or derivative part works at lower frequency: fs/R, where R is called

integer change rate factor. This stage is composed by N comb stages and each one is a

differential delay M, that in practice is 1 or 2. A combinational stage is the one shown

is Figure 2.3, and the performed equation is:

y[n] = y[n− 1] − x[n−RM] (2.4)

Figure 2.3: A single differential stage, with M=1

Its transfer function is:

Hd(z) = 1 − z−RM (2.5)

Even in this case the resulting transfer function of the whole differential section is:

HD(z) = (1 − z−RM)N (2.6)

There is a switch between the two sections, that for decimation filters, reduces the

number of samples coming from the integral section by factor R factor. The entire

structure and transfer function of the CIC filter is:

I I I D D DR

N N

Figure 2.4: Scheme of the CIC decimation filter structure

HD(z)HI(z) =
(1 − z−RM)N

(1 − z−1)N
=

[RM−1∑
k=0

z−k
]

(2.7)

So from this result it is clear that a CIC filter is the equivalent of a cascade of N

FIR filters like in Figure 2.5, but it is less expensive for the following reasons:

• no multipliers and no storage for coefficients are required (saving of area);

CIC filter design with HLS 16

• intermediate storage is reduced (saving of area);

• the CIC filter structure is very regular since it consists 2 sections (integral and

differential);

• there is no need of control units or complex timing;

• re-usability of the same filter with different input sample rate

Figure 2.5: Decimation filter implemented as a cascade of FIR filters

2.2 CIC filter frequency response

A CIC filter behaves like a low-pass filter. Since the CIC filter is an LTI filter, in

order to evaluate the frequency response, it is necessary to evaluate the spectrum of

the output signal divided by the spectrum of the input signal.

Y (z) = H(z)X(z) (2.8)

where Y (z) is the z-transform of the output y[n], while X(z) is the z-transform of the

input x[n].

CIC filter design with HLS 17

Thus the H(z) has to be consider to evaluate the frequency response of a LTI filter

like the CIC. In particular H(z) has to be evaluated in the unit circle in the z-plane,

where as definition, z = ej(2πfts). Notice that fs = 1/ts is the input sample rate. From

(2.7), the frequency response can be simply obtained:

H(f) =

(
1 − e−j2πRMfts

1 − e−j2πfts

)N
= e−jπfts(RM−1)N

[
sin(πftsRM)

sin(πfts)

]N
(2.9)

From (2.9), it is possible to notice that H(0) = (RM)N . So the frequency response of

the CIC filter can be obtained by considering:

H(f)

H(0)
= e−jπfts(RM−1)N

[
1

RM

sin(πftsRM)

sin(πfts)

]N
(2.10)

It is possible to notice that the zeros of the frequency response occur every 1/RM, so

both the differential delay and the integer change rate factor are parameters that can

be used to control the zeros placements. In Figure 2.6, the frequency response of a

CIC decimation filter is shown using the MATLAB function for the CIC filters:

dsp.CICDecimator(R,M,N) (2.11)

The simulation is done using the following parameters:

• R=8;

• N=6;

• M=1;

• fs=8MHz

Notice that the zeros occur every 1/RM positions, which means that the zeros are

placed every 8MHz/8*1

Figure 2.7 displays the frequency response of the CIC decimation filter characterized

by the same parameters (R=8 and N=6), but with M=2. In this case is it possible to

appreciate that the zeros are placed every 1/RM. This is important since for decimation

filters implemented with CIC filter, the region around every M − th zero, falls inside

the passband, causing aliasing errors.

CIC filter design with HLS 18

Figure 2.6: CIC filter frequency response, with M=1

Figure 2.7: CIC filter frequency response with M=2

CIC filter design with HLS 19

2.3 Two possible algorithms for a CIC filter imple-

mentation

There are two ways for the implementation of a CIC filter: recursive and non −
recursive [8]. The implementation described above in Figure 2.1 is a recursive struc-

ture.

[
1

(1 − 𝑧−1)
]𝑘 (1 − 𝑧−1)𝑘

N

X[n] Y[n]

Figure 2.8: General structure of a recursive CIC filter 2.8

In Figure 2.8 a general structure of a CIC implemented using recursive algorithm

is shown.

Input Output

Sampling rate fos fos/N

Word Length m m+ k ∗ log2N

Table 2.1: Sampling rate and word length for recursive algorithm

The main problem of this structure is the high power consumption and the speed

limitation. A/D sigma-delta converters have become very popular, because they avoid

the problems of the classical A/D, thanks to the help of the large digital decimation

filters. The A/D sigma-delta converters usually have an output characterized by a

small parallelism (1 bit or 2 bits), and a very high output sample rate. Taking into

account recursive structures of the decimation CIC filter, it is possible to notice that

the integrative section takes as input the samples coming from a sigma-delta A/D con-

verter output. To maintain accuracy, the internal parallelism is m+ k ∗ log2N , where

m is the input parallelism, k is the filter order, and N is the decimation factor. Thus

the integral section of the filter is the dominant part in terms of power consumption,

because the computation requires additions between high parallelism data, performed

to a very high sampling rate.

CIC filter design with HLS 20

The new non-recursive algorithm provides an architecture like the one shown in

Figure 2.9. At every stage, the frequency is lowered by a factor of 2. From the Table

2.2 it is clear that when the frequency is high the word length is low, reducing the

problem of power consumption. Another comparison can be done by estimating the

(1 − 𝑧−1)𝑘
2

Y[n]
(1 − 𝑧−1)𝑘 (1 − 𝑧−1)𝑘

2 2

X[n]

Figure 2.9: General structure of a non-recursive CIC filter 2.8

power consumption, the highest working frequency and the estimated area, against the

decimation factor, as shown in Figure 2.10

Figure 2.10: Comparison between non-recursive and recursive algorithm, in terms of

area, power consumption and frequency [8]

Input Output

Sampling rate fos/2
i−1 fos/2

i

Word Length m+ k ∗ (i− 1) m+ k ∗ i

Table 2.2: Sampling rate and word length for non-recursive algorithm

CIC filter design with HLS 21

In conclusion, the architectures implemented using non-recursive algorithm can be

used for low-power and high-speed applications, while the architecture implemented

with recursive algorithm are suitable for applications requiring small area devices.

2.4 State-of-the-art CIC filter

2.4.1 Bit-serial implementation (Recursive structure)

The architecture described in 2.1 is the typical implementation proposed by Hogenauer

and it is characterized by a recursive architecture. As shown in Figure 2.4, the recursive

implementation of a CIC filter requires a certain number of integrator stages and deriva-

tor stages. For recursive filter, bit-serial implementation is proposed in [9]. Bit-serial

implementation exploits 1-bit input per clock cycle processing,having as immediate

result the reduction in the allocated hardware resources (few processing element and

smaller buses) and so the chip area is significantly reduced compared with the one of

the bit-parallel implementation. For this architecture the same working frequency rules

for the integral and derivative section are kept. It means that the integrative section

works at a frequency equal to the input sample rate, the derivative section works at

a frequency equal to the input sample rate divided by the decimation factor (taking

into account a CIC decimation filter). By using the bit-serial implementation, three

possible architecture are developed:

• CBS: conventional bit serial;

• BSAD: bit-serial with address decoder;

• BSOP: bit-serial with one-hot pointer.

The CIC filter proposed is a fifth-order filter with a integer change rate factor equal

to 16. The block diagrams of the integral and derivative stages are shown in Figure

2.11 These stages are cascaded with a number according to the filter order. Notice

that the shift register is a 25-bit shift register. The reason is that to maintain accuracy

the intermediate word length is bigger than the input one and it is chosen using the

following relation:

m+K ∗ log2(M) (2.12)

CIC filter design with HLS 22

25-bit shift register

X[n]

1

1

A
D
D
E
R

Y[n]

(a)

25-bit shift register S
U
B
T
R
A
C
T
O
R

X[n]

1

1

Y[n]

(b)

Figure 2.11: Structure of integrative stage (a) and derivative stage (b) [9]

where:

• m is the input word length, which is 5 in this case;

• K is the filter order, whose value is 5;

• M is the integer change rate factor equal to 16.

This architecture is the CBS one. The other optimized implementations are derived

from this one and they are the BSAD and BSOP architectures. The first one is pro-

posed to avoid the problem of the large shift register, by substituting it with registers

addressed with a 5-bit decoder. The structure of the array registers and the address

decoder is shown in Figure 2.12

Figure 2.12: Array registers and adder decoder [9]

The BSOP architecture avoids the decoder and inserts a one-hot pointer.

CIC filter design with HLS 23

2.4.2 Implementation of a sharpened CIC filter

One disadvantage of the CIC filters frequency response is the lack of a flat pass-band.

The typical implementations of the CIC filter structure proposed in [5] exhibit good

stop-band attenuation, but also pass-band droop. By increasing the filter order the

stop-band attenuation increases as reported in Figure 2.13, 2.14 and 2.18, but the

pass-band droop increases, too. This behavior is shown is figures 2.16, 2.17 and 2.18.

Figure 2.13: Stop-band attenuation of a 6 order CIC filters

Figure 2.14: Stop-band attenuation of a 8 order CIC filters

CIC filter design with HLS 24

Figure 2.15: Stop-band attenuation of a 10 order CIC filters

Figure 2.16: Pass-band droop of CIC filters of the 6-th order

The figures 2.13, 2.14, 2.15 and 2.16 2.17, 2.18 refer to CIC filters with decimation

factor equal to 8 and order of 6, 8 and 10 respectively.

Typically, it is necessary to improve the frequency response of a filter by increasing

the stop-band rejection (loss) and by decreasing the pass-band distortion. This can be

done by a compensation filter. Another way to improve the frequency response of a

filter is to repeat the use of the filter itself. The most simple idea is to cascade two

identical filter sections obtaining stop-band loss increased, but pass-band distortion

increased, too. The process to combine the results of several passes through the same

CIC filter design with HLS 25

Figure 2.17: Pass-band droop of CIC filters of the 8-th order

Figure 2.18: Pass-band droop of CIC filters of the 10-th order

filter is called filter sharpening [11]. This method is based on the Amplitude Change

Function (ACF), which has the form

Hin = f(Hout) (2.13)

where f is a polynomial relationship between the amplitude of the prototype filter Hin

(the CIC filter in this case), and the transformed filter Hout, which is the resulting

filter obtained by using the filter sharpening technique. The desired ACF curve

passes for (0,0) and (1,1), and the improvements in pass-band (Hout = 1) and in stop-

CIC filter design with HLS 26

Figure 2.19: The desired ACF curve that represents improvement in stop-band and in

pass-band

band (Hin = 0) are given by the order of tangency of the curve to Hout=1 and Hout=0.

The desired ACF curve is the one reported in Figure 2.19. The proposed filter which

achieve these improvements has as transfer function:

H(z) = H(z)2[3 − 2H(Z)] (2.14)

The entire architecture is shown in Figure 2.20 and it consists of 3 copies of a single-

stage CIC filter and two multipliers and a delay line to equalize the group delay through

the two channels

In Figure 2.21 the comparison between the frequency response of a CIC filter im-

plemented with a standard architecture and the one of a sharpened CIC architecture

is shown.

Table reports 2.3 the pass-band distortion according the decimation factor. The

Figures 2.22 and 2.23 demonstrate the difference of the pass-band droop between a

standard CIC filter implementation and a sharpened CIC filter implementation.

It is clear that the sharpened CIC filter has better performance compared to the

CIC filter design with HLS 27

H(z) +

Delay line

H(z) H(z)
-2

3

X[n]

Y[n]

Figure 2.20: Architecture of the sharpened-response CIC filter

Figure 2.21: Comparison between the standard CIC response and the sharpened CIC

response [12]

standard CIC filter. This kind of structure provides a solution for the problems of the

necessity of a compensation filter downstream the CIC filter and continues to keep the

advantage of the multiplierless architecture of the standard CIC filters.

Moreover it can be used for very-high data throughput rates, for example for wide-band

satellite comunication systems.

This architecture is also useful for systems requiring programmable decimation

factors. The compensation filter, which has to reduce the pass-band droop, must

be programmable in these systems. That’s because the pass-band depends on the

decimation factor as discussed in section 2.2. With the architecture proposed in [12]

CIC filter design with HLS 28

Pass-band distortion after decimation vs decimation factor [12]

Decimation Factor Worst-case pass-band distortion (dB)

2 0.00748664

4 0.00469985

8 0.00308263

16 0.00958937

32 0.00604246

64 0.00488694

128 0.00472363

256 0.00438328

512 0.00419868

1024 0.00411545

2048 0.00407759

4096 0.00405978

8192 0.00405779

Figure 2.22: CIC filter pass-band droop trend according to the decimation factors and

parametrized on the filter order [12]

it is possible to eliminate the necessity of a programmable compensation filters is to

CIC filter design with HLS 29

Figure 2.23: Sharpened CIC filter pass-band droop trend according to the decimation

factors and parametrized on the filter order [12]

modify the CIC architecture in order to obtain a sharpened response. This architecture

reduces the pass-band droop, allowing a lower pass-band distortion and facilitate the

design of a compensation filters because it can have constant coefficients, with little

extra cost.

2.4.3 CIC filter architecture with optimal performance

The new architectural approach proposed in [14], is represented in Figure 2.24. The

analysis in [14] focuses of the comb section of the CIC filter. The proposed architecture

allows to reduce the number of subtractors using the accumulation mode to perform

the sequential subtraction. The controller is connected to the multiplexer and gener-

ates the output enable, according to the filter parameters.

Table 2.4 shows the improvements of the implementation on FPGA of the optimized ar-

chitecture compared with architecture of the filter produced by MATLAB HDL Coder.

Table 2.5 shows the improvements obtained for ASIC implementation. More in

general this architecture improves the power and the area trends for both FPGA and

ASIC implementation also varying the filter order. Figures 2.25, 2.26 and 2.27 show

the trend of improvements comparing the ASIC implementation (blue) of the filter and

CIC filter design with HLS 30

Figure 2.24: CIC filter for decimation operation [14]

Table 2.4: Improvements for FPGA implementation [14]

Decimation

Factor

Average Improvements (%)

Area Frequency

8 8.4 78.4

16 15.1 114.5

32 11.5 108.1

63 8.3 85.7

Average 10.9 96.7

Table 2.5: Improvements for ASIC implementation [14]

Decimation

Factor

Average Improvements (%)

Area Power Frequency

8 26.1 35.5 20.9

16 28.7 37.9 17.9

32 28.8 29.9 5.9

64 28.9 34.3 4.3

Average 28.1 34.4 12.2

the results obtained using the HDL code produced by MATLAB (orange).

Figures 2.28 and 2.29 show the difference between the FPGA implementation (blue)

CIC filter design with HLS 31

Figure 2.25: Comparison of area between the optimized architecture and the one pro-

duced by the MATLAB HDL code for ASIC implementation [14]

Figure 2.26: Comparison of power between the optimized architecture and the one

produced by the MATLAB HDL code for ASIC implementation [14]

Figure 2.27: Comparison of frequency between the optimized architecture and the one

produced by the MATLAB HDL code for ASIC implementation [14]

CIC filter design with HLS 32

and the results using the MATLAB function (orange).

Figure 2.28: Comparison of area between the optimized architecture and the one pro-

duced by the MATLAB HDL code for FPGA implementation [14]

Figure 2.29: Comparison of frequency between the optimized architecture and the one

produced by the MATLAB HDL code for FPGA implementation [14]

CHAPTER 3

C++ algorithm

3.1 Reference filter specification

The case study is provided by the company Silicon Mitus, and it is a CIC filter, added

in an high-performance DAC designed to process digital stereo streaming. In particular

the CIC filter in the DAC must perform the decimation of the input samples. Silicon

Mitus provided the MATLAB behavioural description, the System Verilog description

of the architecture and the System Verilog testbench of the reference filter implemented

with the classical RTL design.

The reference CIC decimation filter has the following specifications:

• fdsd (direct digital interface frequency): possible choice between 2.8224MHz -

5.768 MHz - 11.2896 MHz - 22.5792MHz

• filter order: 6;

• downsampling rate (integer chenge rate factor): 8;

• Input parallelism: 1 bit;

• Internal parallelism: 19 bits;

• output parallelism: 19 bits.

The Direct Stream Digital interface (DSD) is based on Pulse-Density Modulation

(PDM) encoding, and it aims to store/stream a delta-sigma modulated digital audio

signal, without any coding. The input data rate can be:

33

CIC filter design with HLS 34

• DSD64: 64 times CD audio sampling rate(64*44.1kHz=2.8224MHz);

• DSD128: double-rate DSD (128*44.1kHz=5.768MHz);

• DSD256 (256*44.1kHz=11.2896);

• DSD512 (512*44.1kHz=22.5792MHz).

The top level entity of the architecture is the one shown in Figure 3.1. The architecture

consists of two independent channels, so it has two inputs ports and two outputs ports

for data stream, and another port with a signal trgo (trigger out), which is asserted

when the outputs are ready.

CLK

datai_ch1

datai_ch2

rstb

ckg_en

datao_ch1

datao_ch2

trgo

1

1

1

19

19

1

Figure 3.1: Top level entity of the architecture provided by Silicon Mitus

3.2 MATLAB code and algorithm by Silicon Mitus

The MATLAB code contains the discrete model of the CIC filter and the testbench

enviroment for the bittrue verification. The algorithm is developed as depicted in

Figure 3.2:

Digital waveform generation

The first step of the MATLAB code is to create the digital input. The function

gen dig stim produces the signals that have to be processed, by specifying the fre-

quency, the amplitude and the offset and the sine waves that have be generated. The

CIC filter design with HLS 35

Digital waveforms
generator

Pulse Density
Modulation

DC input
component
elimination

CIC filter
algorithm

Output

Output
representation on

n-bit and
saturation

Figure 3.2: Structure of the MATLAB code for one single channel provided by Silicon

Mitus

function performing this generation uses also the dithering, which is a sample volun-

tary added noise, in order to reduce the quantization error when samples are quantized.

Pulse Density Modulation

The subsequent step is to perform the Pulse Density Modulation (PDM) on the quan-

tized samples coming from the function described below (gen pdm). Indeed the Direct

Stream Digital Interface is based on PDM. The PDM is a modulation to represent

an analog signal in binary code. In PDM signals the amplitude is represented by the

relative density of the pulses: a high density on 1’s implies the maximum value of

the amplitude, while a high density of 0’s implies the sine curve reaches the minimum

amplitude level. An example of Pulse Density modulated signal is shown in Figure 3.3.

CIC filter design with HLS 36

Figure 3.3: Pulse density modulation example

CIC filter algorithm

The implementation of the filter function is the next step. The dws cic bittrue function

is the core of the code and describes the discrete model of the CIC filter. The function

is divided into 3 steps: the computation of the output of the integral section, the

decimation operation, and the computation of the output of the derivative section

corresponding to the final filter output. The output of each sections are represented

inside the bit dynamics and eventually wrapped around the upper or the lower value

of the binary dynamic limit. The function performing the representation of the output

values on 19 bits is dws dyn wa, which performs also a saturation of the outputs if

needed

Golden output generation

The gen cic golden function is the function encloses the described functions. Since the

entire architecture consist of 2 channels, the function performs all of the steps previously

described twice. In particular this function generates one input per channel, it performs

the Pulse Density Modulation exploiting the gen pdm function. In this way an array

containing all the inputs is created by this function. The DC component of the digital

input is eliminated using the following equation:

input AC = (input ∗ 2) − 1 (3.1)

CIC filter design with HLS 37

Finally the input array is passed to the CIC core function dws cic bittrue and the

output array is computed.

3.3 MATLAB code translated in C++

The entire code for the production of the golden output is translated is C++.

3.3.1 The testing environment in C++

The testbench environment in C++ is structured in the same way of the one described

in MATLAB. The digital input generation is the first step for the golden output cre-

ation, so for the C++ testbench environment. By using the class vector, the time

vector and the input vector are created. Both are initialized as single element vectors,

containing a 0. The following elements are inserted by using the method push.back,

which exploits the dynamically allocated space in memory. This is necessary since

the amount of input data that the filter have to process to produce the golden output

is very high (N val = 282244). For the same reason, all of the arrays are treated as

vectors.

1 vector<double> gen_dig_stim(double amp, double f, double offset, double fs,

2 float tend, int nbit){

3 //time vector declaration and initialization

4 vector<double> t (1,0);

5 //input vector declaration and initialization

6 vector<double> vi;

7 int da=0;

8 //output vector declaration and initialization

9 vector<double> vi_int;

10 //time vector creation

11 for(unsigned i=1; i<N_val; ++i){

12 t.push_back(t[i-1]+1/fs);

13 }

14 //input vector creation

CIC filter design with HLS 38

15 for(unsigned i=0; i<N_val; ++i){

16 vi.push_back(pow(10.0,amp/20)*sin(2*pi*f*t[i])+

17 pow(10.0,(offset/20)));

18 }

19 for(unsigned i=0; i<N_val; ++i){

20 vi_int.push_back(round(vi[i]*pow(2.0,(nbit-1))-1));

21 }

22 return vi_int;

23 }

The second step is to perform the PDM.

1 vector<double> gen_pdm(double amp, double f, double offset,

2 double fs, float tend, int nb, int adddith, string file_name) {

The PDM is created by computing some vectors as show is the code above.

1 //vectors computation

2 for(unsigned i=1; i<N_val; i++){

3 //x1

4 x1.push_back(b[0]*in[i]-c[0]*y[i-1]-g[0]*int2[i-1]);

5 .

6 .

7 .

8 //u

9 u.push_back(b[4]*in[i]+a[0]*int1[i]+a[1]*int2[i]+a[2]*int3[i]+a[3]*int4[i]);

10 //y

11 int z=0; //this value is 1 if u[w]>=0, 0 otherwise. It's a logic operation

12 if (u[i]>=0){

13 z=1;

14 }

15 else

16 z=0;

17 y.push_back(z*2-1);

18 for(unsigned i=0; i<N_val; i++){

CIC filter design with HLS 39

19 mod_dout.push_back((y[i]+1)/2.0);

20 }

21 return mod_dout;

The testbench environment consists also of a function representing the output results

on 19 bits.

vector<double> dws_dyn_wa(vector<double> vi, int nbit)

By calling the function dws cic bittrue, the golden output are generated. The function

parameters are initialized as follows:

1 vo_ch1_cic=dws_cic_bittrue(cic_dwsr, vi_cic_ch1, nbdi_cic, nbdo_cic,

2 cic_ord, cic_diffdel, dec_ph);

• int cic dwsr = 8;

• int sig ch2 a = -8;

• int nbdi cic = 1;

• int nbdo cic = 19;

• int cic ord = 8;

• int cic diffdel = 2;

• int dec ph = 2;

3.3.2 Filter algorithm and its implementation

The core of the MATLAB code is the dws cic bittrue function. The function described

in C++ follows the same algorithms used by Silicon Mitus in the MATLAB code.

The C++ code exploits the class std::vector which allows to create dynamic allocated

arrays.

The function declaration is shown below.

1 vector<double> dws_cic_bittrue(int dwsr, vector<double> vi, int nbdi,

2 int nbdo, int ord, int diffdel, int dec_ph)

CIC filter design with HLS 40

• int dwsr: it is an int variable which perform decimation operation;

• vector<double> vi: it is the input vector;

• int ndbi: it is the input parallelism;

• int ndbo: it is the output parallelism;

• int ord: it is the CIC filter order;

• int diffdel: it is the differential delay;

• int dec ph: it is the decimation phase;

In the following lines the C++ code implementing the computation done by the

integral section is shown. The matrix vector<vector<double> > vint has to be com-

puted.

1 vector<vector<double> > vint;

2 vector<vector<double> >::iterator i_vint;

3 //integral loop repeated according to the CIC order

4 vint.push_back(vi);

5 for(unsigned i=1; i<=6; i++){

6 vector <double> tmp;

7 tmp.push_back(vint[i-1][0]);

8 for(unsigned j=1; j<N_val; j++){

9 tmp.push_back(vint[i-1][j]+tmp[j-1]);

10 }

11 tmp=dws_dyn_wa(tmp, num_dyn_bit, 0);

12 vint.push_back(tmp);

13 }

In Figure 3.4 the graphical representation of the integral section algorithm is reported.

When the whole matrix is computed the last row is extracted and passed as input to

the following stage, which is the decimation stage.

The aim is to create the vector vdws inserting in it one element every eight elements

of the last row of the matrix vint computed by the integral section. This operation is

CIC filter design with HLS 41

……

X_IN[0] X_IN[1] X_IN[2]IN

X_1[0]=
X_IN[0]

X_1[1]=
X_IN[1]+
X_IN[0]

X_1[2]=
X_IN[2]+
X_1[1]

X_IN[n]

X_1[n]

X_N[0] X_N[1] X_N[2] X_N[n]
OUT

Figure 3.4: Graphical representation of the integral section computation algorithm

performed by the counter cnt which increments its value by a dwsr value (which is 8

in the case study) as reported in Figure 3.5. This means that the vector vdws contains

a number of elements decreased by a 8 factor compared to the number of elements in

vint[6].

x0 x1 x9 x17 x25… … …

cnt=1

…

cnt=9 cnt=17 cnt=25

vint[6]

Figure 3.5: Graphical representation of the decimation stage computation algorithm

1 vector<double> vdws;

2 //discard downsampling

3 unsigned cnt=1;

4 for(unsigned i=1; i<N_val; i++){

5 if(i==cnt){

6 vdws.push_back(vint[6][i]);

CIC filter design with HLS 42

7 cnt=cnt+dwsr;

8 }

9 }

Finally, the output of the filter is computed by the derivative section. The aim is

to compute the matrix vdiff as done for the integral section following the algorithm

in Figure 3.6, which reports the graphical representation of the derivative section com-

putation algorithm. The derivative section code is shown below. Notice that the 6− th

……

X_IN[0] X_IN[1] X_IN[2]IN

X_1[0]=
X_IN[0]-0

X_1[1]=
X_IN[1]-
X_IN[0]

X_1[2]=
X_IN[2]-
X_IN[1]

X_IN[n]

X_1[n]

X_N[0] X_N[1] X_N[2] X_N[n]
OUT

Figure 3.6: Graphical representation of the derivative section computation algorithm

row contains the final output of the filter. All the elements of the vdiff[6] are rounded

and placed in the output vector vout.

1 vector<vector<double> > vdiff;

2 vector<vector<double> >::iterator i_vdiff;

3 vector<double> vout; //output vector

4 vdiff.push_back(vdws);

5 unsigned len_vdws=vdws.size();

6 //differential loop repeated according to the CIC order

7 for(unsigned i=1; i<=6; i++){

8 vector<double> tmp1;

9 vector<double> tmp2;

CIC filter design with HLS 43

10 tmp2.push_back(0.0);

11 for(unsigned j=0; j<len_vdws-1; j++){

12 tmp2.push_back(vdiff[i-1][j]);

13 }

14 for(unsigned k=0; k<len_vdws; k++){

15 tmp1.push_back(vdiff[i-1][k]-tmp2[k]);

16 }

17 tmp1=dws_dyn_wa(tmp1, num_dyn_bit, 0);

18 vdiff.push_back(tmp1);

19 }

20 for(unsigned i=0; i<len_vdws; i++){

21 vout.push_back(floor(vdiff[6][i]*pow(2,(nbdo-num_dyn_bit))+0.5));

22 }

23 return vout;

24 }

3.4 C++ code to synthesize the CIC filter

Once the whole MATLAB code is translated in C++, the idea is to isolate the core

function and to pass it in Catapult so that it can be synthesized and the RTL descrip-

tion of the architecture can produced.

The CIC function implemented as described is the previous section, produces the out-

put with an algorithm which takes into account the number of samples at the input.

In order to allow Catapult to work, the described function has to get rid of the depen-

dence from the input.

The first step is to re-think about the algorithm.

Integrative section algorithm

In Figure 3.7 the basic principle of the new integrative section algorithm is reported.

In this case only two arrays are used: outsum and integ. The number of elements in

the array integ is 6, as the filter order value is, while the elements in the array outsum

is 7, so the value of the CIC filter order plus one element which is the incoming input.

CIC filter design with HLS 44

Figure 3.7: The basic principle of the integrative algorithm

Every time an input occurs the function is called and the outsum array computed

in the previews function call is copied in the array integ. Then the array outsum

is computed by using the array integ, where the values of outsum computed in the

previous function call are stored.

Derivative section algorithm

For the derivative section the new algorithm is similar to the one of the integrative

section, as reported in Figure 3.8. Also in this case the number of elements in the

outdiff array is order + 1, so 7, while the elements in the diff array is ord, so 6.

That’s because the last elements of the array coming from the decimation stage is

stored is the array outdiff .

The derivative section provides the final output of the filter, which is the last element

of the array outdiff .

CIC filter design with HLS 45

outdiff[5]

outdiff[4]

outdiff[3]

outdiff[2]

outdiff[1]

outdiff[0]

outdiff[6]

diff[5]

diff[4]

diff[3]

diff[2]

diff[1]

diff[0] -

-

-

-

-

-

=

=

=

=

=

=

outdiff[7]diff[6]

Figure 3.8: The basic principle of the derivative section algorithm

The synthesizable code

In the following lines the implementation of a CIC filter is shown.

1 double dws_cic_bittrue(double vi, int ord){

2 static double integ[ord];

3 static double outsum[ord+1];

4 static unsigned in_cnt = 0;

5

6 static double diff[ord];

7 static double outdiff[ord+1];

8

9 INTEGRAL_COPY_LOOP: for(int i=0; i<ord; i++){

10 integ[i]=outsum[i+1];

CIC filter design with HLS 46

11 }

12 outsum[0] = vi;

13 INTEGRAL_LOOP: for (int i=0; i<ord; i++){

14 outsum[i+1]=dws_dyn_wa(outsum[i]+integ[i], 19, 0);

15 }

16 if(in_cnt==1 || (in_cnt-1)%8==0){

17 DERIVATIVE_COPY_LOOP: for(int i=ord-1; i>=0; i--){

18 diff[i] = outdiff[i];

19 }

20 outdiff[0] = outsum[ord];

21 DERIVATIVE_LOOP: for (int i=0; i<ord; i++){

22 outdiff[i+1]=dws_dyn_wa(outdiff[i]-diff[i], 19, 0);

23 }

24 }

25 in_cnt++;

26 return outdiff[ord];

27 }

The code shown above implements one filter’s channel. For sake of simplicity the

part of the code implementing the second channel in missing, because it is exactly

identical to the one of the first channel. The entire code is shown in appendix A.1.

The elements of the arrays outsum, outdiff , integ, diff are declared as ’double’,

as done in the previous C++ code in order to compare the output results with the

golden output produced by the MATLAB code or by the C++ code. The arrays are

also declared as ’static’, because the data computed after each function call can be

reused when a new input has to be processed. This is useful for the arrays integ and

diff , because their previous content is directly involved in the sum and the subtraction

operations in integrative and derivative sections. The arrays outsum and outdiff are

also ’static’ because in each function call their content from the previous computation

is copied in integ and diff arrays.

For this code production, the parallelism of the input, intermediate and output data

is not used to define the variables, so, in order to compare the results of this code with

the once of the previous code it is necessary to use the function to represent the output

CIC filter design with HLS 47

values into the binary dynamic (dws dyn wa).

The code structure is composed by four for statements. Each section is described

using two independent loops: the first one is dedicated to the Copy ; the second one

is referred to the operation that has to be performed. In the Copy Loops the storing

in the arrays integ and in diff of all the elements of the arrays outsum and outdiff

is performed. The Integral Loop or the Derivative Loop allow the operations (sum for

integration and subtraction for derivation).

A counter (in cnt) is also instantiated as ’unsigned’. It has the function to discard

samples processed by the integral section in order to send the only the useful samples

to the derivative section. In particular it is necessary to send to the derivative section

the second integrated sample and one integrated sample every eight computed by the

integrative section. This discard operation is implemented using the if statement.

When the condition is verified, the derivative section is enabled, so it can work, too.

Optimized synthesizable code

Since Catapult is able to use variables with data types that take into account the

parallelism of the data, it is useful to use this declaration of variables exploiting the

arbitrary-length bit-accurate integer and fixed-point datatypes. The ac int represen-

tation was used, and in particular the following data types are exploited all around the

design:

• IN TY PE(ac int < 1, false >): the input of the CIC filter are 1-bit unsigned

data;

• CNT TY PE(ac int < 3, false >): the counter performing decimation is a mod-

ulo 8 counter, so it is a 3bit unsigned number;

• AC TY PE s(ac int < 2, true >): the filter requires to work with samples with-

out the DC component. To perform this operation, the input datum equal to 0

has to be represent as -1, while the input datum equal to 1 remains 1. In order

to represent correctly this values, a 2bit signed representation is required;

• OUT TY PE(ac int < 19, false >): all the value processed by every stage of

the integrative and derivative sections and given as output are represent as 19bit

unsigned numbers.

CIC filter design with HLS 48

1 void dws_cic_bittrue(IN_TYPE vi_ch1, IN_TYPE vi_ch2,

2 OUT_TYPE &out_cic_ch1, OUT_TYPE &out_cic_ch2){

3

4 static OUT_TYPE integ_ch1[ord];

5 static OUT_TYPE outsum_ch1[ord+1];

6 static CNT_TYPE in_cnt_ch1 = 7;

7 static OUT_TYPE diff_ch1[ord];

8 static OUT_TYPE outdiff_ch1[ord+1];

9

10 AC_TYPE_s vi_ac_ch1;

11 vi_ac_ch1 = AC_TYPE_s(vi_ch1)*2 - 1;

12

13 INTEGRAL_COPY_LOOP1: for(int i=0; i<ord; i++){

14 integ_ch1[i]=outsum_ch1[i+1];

15 }

16 outsum_ch1[0] = OUT_TYPE(vi_ac_ch1);

17 INTEGRAL_LOOP1: for (int i=0; i<ord; i++){

18 outsum_ch1[i+1]=outsum_ch1[i]+integ_ch1[i];

19 }

20 if(in_cnt_ch1==0){

21 DIFFERENTIAL_COPY_LOOP1: for(int i=ord-1; i>=0; i--){

22 diff_ch1[i] = outdiff_ch1[i];

23 }

24 outdiff_ch1[0] = outsum_ch1[ord];

25 DIFFERENTIAL_LOOP1: for (int i=0; i<ord; i++){

26 outdiff_ch1[i+1]=outdiff_ch1[i]-diff_ch1[i];

27 }

28 }

29 in_cnt_ch1++;

30 out_cic_ch1 = outdiff_ch1[ord];

31 }

Notice the counter (in cnt ch1) instantiated used to do the decimation operation as

CIC filter design with HLS 49

described previously. In this case the initialization of the counter is at the value 7.

The code written in this way allows Catapult to synthesize the architecture, because

the C++ description algorithm is totally independent from the input.

CHAPTER 4

CIC filter development with Catapult

In this chapter, the design of the CIC filter using Catapult is described. From the C++

algorithm description, the RTL code is produced by Catapult and the results obtained

using Catapult during the pre-synthesis phase, and the ones produced by Synopsys

during the post-synthesis phase are described and compared. In particular the results

in terms of area and power consumption are shown and the differences between the

explored solutions are reported. The aim of the work is to demonstrate that by using

HLS it is possible to obtain high quality implementations. This aim is obtained by

comparing the architecture synthesized by using the HLS tool Catapult, with the one

produced by Silicon Mitus which is implemented with the classical hand-written RTL

design. Figure 4.1 reports a section of the simulation of the reference architecture, with

both the channels. The output sample rate of the architecture is fs out = 1/R ∗ fs in,

-5 -259 1...

0 0 ...0 ...0

-5 -259 1...

0 ...0 ...0 ...0

0 ps 10000 ps

/tb_cic_top/clk_2p8m

/tb_cic_top/data_ch1

/tb_cic_top/ckg_en

/tb_cic_top/cic_trgo

...c_top/cic_datao_ch1_reg -5 -259 1...

/tb_cic_top/cic_datao_ch1 0 0 ...0 ...0

/tb_cic_top/data_ch2

...c_top/cic_datao_ch2_reg -5 -259 1...

/tb_cic_top/cic_datao_ch2 0 ...0 ...0 ...0

8 clock cycles

-5

Figure 4.1: ModelSim simulation of the reference architecture by Silicon Mitus

50

CIC filter design with HLS 51

where R is the decimation factor, which is 8 in this case, and fs in is the input sample

rate equal to 2.8224MHz. It means that the output is updated every 8 clock cycles as

it is reported in Figure 4.1.

4.1 Correctness verification of the synthesized ar-

chitecture

The first step is to evaluate if the architecture generated by Catapult provides the

corrected output. In order to do this SCV erify is enabled. In order to perform

this step a testbench in C++ is written. SCV erify uses ModelSim to simulate the

architecture and to check that no output errors occur. The synthesis in this step is

done by Catapult, without using any specific setting. Once Catapult terminates the

synthesis and produces the RLT description of the architecture, SCV erify creates a

SystemC wrapper, which tests the architecture, and compare the results with the ones

produced by the C++ testbench, as described in Chapter1. In the following lines the

testbench written in C++ is reported. The input are taken from a .txt file. For sake

of simplicity only the management of the file containing the input of the first channel

is shown, while the entire code is shown in Appendix A.2.

1 CCS_MAIN(int argc, char **argv) // required for sc verify flow in

2 // Catapult

3 {

4 ifstream in_ch1 ("cic_in_ch1.txt", ios::in);

5 vector<IN_TYPE> vi_cic_ch1;

6 int in1; //in1=[0 o 1], in1_bin=[-1 o 1]

7 OUT_TYPE in1_bin;

8 OUT_TYPE vout_cic_ch1;

9 vector<OUT_TYPE> cic_output_ch1;

10 while(!in_ch1.eof()){

11 in_ch1>>in1;

12 vi_cic_ch1.push_back(IN_TYPE(in1));

13 }

CIC filter design with HLS 52

14 in_ch1.close();

15

16 //the same is done for channel 2//

17

18 for (unsigned i=0; i<vi_cic_ch1.size(); i++){

19 CCS_DESIGN(dws_cic_bittrue)(vi_cic_ch1[i], vi_cic_ch2[i],

20 vout_cic_ch1, vout_cic_ch2);

21 }

22 CCS_RETURN(0);

23 }

The input are stored in a vector containing elements, whose data type is IN TY PE,

so 1bit unsigned elements. Every time an input occurs the function is called. The

produced output are stored in the vector of OUT TY PE elements (19 bits signed).

As shown in the ModelSim message below, there are no errors, so no mismatches

between the output produced by the architecture, and the one produced by the C++

testbench.

Info: Execution of user -supplied C++ testbench 'main()' has

completed with exit code = 0

#

Info: Collecting data completed

captured 284 values of vi_ch1

captured 284 values of vi_ch2

captured 284 values of out_cic_ch1

captured 284 values of out_cic_ch2

Info: scverify_top/user_tb: Simulation completed

#

Checking results

'out_cic_ch1 '

capture count = 284

comparison count = 284

ignore count = 0

error count = 0

stuck in dut fifo = 0

stuck in golden fifo = 0

'out_cic_ch2 '

CIC filter design with HLS 53

capture count = 284

comparison count = 284

ignore count = 0

error count = 0

stuck in dut fifo = 0

stuck in golden fifo = 0

#

Info: scverify_top/user_tb: Simulation PASSED 1083657975 ps

The Figure 4.2 shows the ModelSim simulation done using SCV erify. The signals

out cic ch1−ERR# and out cic ch2−ERR# counts the output errors, which are 0 in

this case, remarking the correct behavior of the architecture. The data out cic ch1 −
GOLDEN and out cic ch2 − GOLDEN are the output data produced by the C++

testbench in appendix A.2, while the data out cic ch1−DUT and out cic ch2−DUT

are produced by the SystemC wrapper testbench produced by SCV erify.

... -19’d5 -19’d259 19’d1524 19’d4226 19’d6459 19’d... 19’d... 19’d... 19’d... ...

... -19’d5 -19’d259 19’d1524 19’d4226 19’d6459 19’d... 19’d... 19’d... 19’d... ...

32’h0

... -19’d5 -19’d259 19’d1046 19’d1120 19’d2021 19’d4799 19’d8430 19’d7656 19’d... ...

... -19’d5 -19’d259 19’d1046 19’d1120 19’d2021 19’d4799 19’d8430 19’d7656 19’d... ...

32’h0

0 ps+10 200000000 ps 400000000 ps

out_cic_ch1-GOLDEN ... -19’d5 -19’d259 19’d1524 19’d4226 19’d6459 19’d... 19’d... 19’d... 19’d... ...

out_cic_ch1-DUT ... -19’d5 -19’d259 19’d1524 19’d4226 19’d6459 19’d... 19’d... 19’d... 19’d... ...

out_cic_ch1-ERR# 32’h0

out_cic_ch2-GOLDEN ... -19’d5 -19’d259 19’d1046 19’d1120 19’d2021 19’d4799 19’d8430 19’d7656 19’d... ...

out_cic_ch2-DUT ... -19’d5 -19’d259 19’d1046 19’d1120 19’d2021 19’d4799 19’d8430 19’d7656 19’d... ...

out_cic_ch2-ERR# 32’h0

Figure 4.2: ModelSim simulation shows the correct behaviour of the architecture pro-

duced by Catapult

4.2 Different architectures of the CIC filter and

Catapult results

Once the correctness of the architecture is verified, it is possible to proceed to explore

different architectural solutions to evaluate what is the best in terms of area power

and timing. This process is done by exploiting the Catapult synthesis first, and then

CIC filter design with HLS 54

generating the gate-level code with Synopsys Design Compiler, starting from the

Verilog RTL code produced by Catapult.

Starting from the code described in appendix A.1, the Catapult synthesis is performed

by using as clock frequency 2.8224MHz and 45nm target technology.

The Table 4.1 shows the timing results from Catapult synthesis. Note that the different

simulations are produced without changing the C++ code, but by simply changing the

simulation parameters described in Chapter1. The code is synthesized to create folded

architecture (F), first. Then different unfolding grade (U) and initiation intervals (P)

are applied.

Catapult results

Architecture solutions Latency cycles Throughput cycles Slack(ns)

F 40 41 352.3

P=1 F 36 36 353.28

P=1 U=2 18 18 352.74

P=1 U=3 12 12 352.09

P=1 U=4 16 16 351.56

P=1 U=5 16 16 350.8

P=1 U=6 1 1 337.42

Table 4.1: Catapult results in terms of latency an throughput cycles and slack time

The architecture full-unrolled (U=6) and with an initiation interval 1 (P=1) is the

one more interesting because it reflects the timing behavior of the reference architecture.

The Figure 4.3 explain the reason why Catapult evaluation of the throughput is 1.

Every output is written of the bus 8 times. The signal out cic ch1 − TRANS# and

out cic ch2 − TRANS# counts the number of transition on the output buses, so the

number of transactions on the bus is 8, per every output. This means that this behavior

is similar to the one of the reference architecture provided by Silicon Mitus, shown in

Figure 4.1.

The Table 4.2 shows what are the allocated resources in the different architectural

solution. Notice that folded architecture has the highest area. That’s because the op-

eration of the INTEGRAL COPY LOOP and the DERIVATIVE COPY LOOP are implemented

CIC filter design with HLS 55

19’d0 -19’d5 -19’d259 19’d1524

19’d0 -19’d5 -19’d259 19’d1046

32’h0 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... ...

32’h0

32’h0 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... ...

32’h0

clk

vi_ch1_rsc_dat

vi_ch2_rsc_dat

out_cic_ch1_rsc_dat 19’d0 -19’d5 -19’d259 19’d1524

out_cic_ch2_rsc_dat 19’d0 -19’d5 -19’d259 19’d1046

out_cic_ch1-TRANS# 32’h0 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... ...

out_cic_ch1-ERR# 32’h0

out_cic_ch2-TRANS# 32’h0 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... 3... ...

out_cic_ch2-ERR# 32’h0

8 output transitions

Figure 4.3: Simulation by SCV erify

with 102 multiplexers with 19 bits of input parallelism, which impact the total area

of the folded structure dramatically. The use of a very large number of multiplexers

require a large amount of instantiated registers.

The Figure 4.4 reports how much multiplexers, registers, functional units and logic

affect the area of the different architectural solutions. Notice the absence of multiplex-

ers and a few number of registers instantiated in the full-unrolled architecture. This

architecture allows resource sharing and so its total area is the lowest possible.

As expected the solutions with higher unfolding grade have larger area, except for

the full-unfolding architecture, for the reason discussed before.

The Table 4.3 reports the results obtained using Synopsys Design Compiler. Note

that also with the synthesis done by the actual logic synthesizer, the full-unrolling

architecture keeps the primacy in terms of area, and it is also the solution with the

lowest power consumption. For this reason, the full-unrolled architecture is developed

with the aim of obtaining an architecture whose performance are as close as possible

to the reference one designed by Silicon Mitus

4.3 Final architecture and optimizations

In order to better understand if an architecture designed using HLS can have perfor-

mance which are comparable with the ones obtained using the classical RTL design,

it is necessary to design an architecture which could replace the reference one, which

means to use for the synthesized architecture to use the same interface signals of the

CIC filter design with HLS 56

Allocated resources Total area µm2

Adders Multiplexers Registers
Architectural solutions Number Parallelism Number Parallelism Number Parallelism

F 1 4bit 3 3bit 11 3bit 21946.45

4 3bit 102 19bit 121 19bit
1 19bit

P=1 F 2 4bit 12 19bit 12 3bit 8594.17

14 3bit 6 1bit 1 2bit
4 19bit 10 3bit 40 19bit

11 1bit

P=1 U=2 2 3bit 10 2bit 4 3bit 8570.85

8 2bit 18 19bit 9 2bit
8 19bit 6 1bit 40 19bit

11 1bit

P=1 U=3 16 3bit 22 19bit 4 3bit 9603.20

6 2bit 16 1bit 1 2bit
12 19bit 4 3bit 40 19bit

23 1bit

P=1 U=4 2 3bit 14 19bit 4 3bit 10386.4

16 19bit 10 1bit 1 2bit
52 19bit
19 1bit

P=1 U=5 2 4bit 18 19bit 4 3bit 11884.62

8 3bit 19 1bit 1 2bit
2 2bit 52 19bit
20 19bit 27 1bit

P=1 U=6 2 3bit 0 - 2 3bit 5163.6

24 19bit 0 - 24 19bit
2 19bit
3 1bit

Table 4.2: The table shows the resources allocated by Catapult for the different archi-

tectural solutions

reference ones. The architecture produced by Silicon Mitus is the one reported in

Figure 4.5.

The interface signals are:

• rstb: it is the asynchronous reset of the architecture, which creates the internal

synchronous reset;

CIC filter design with HLS 57

0

5000

10000

15000

20000

25000

F P=1 F P=1 U=2 P=1 U=3 P=1 U=4 P=1 U=5 P=1 U=6

REG 16834,7 5929,9 5913,9 5857,9 7477,9 7606,2 3201,4

LOGIC 379,2 257,8 342,8 288,1 311,6 356,5 103,3

FUNCT 154,2 773,4 1114,2 1728,6 2077,2 2614,6 1807,3

MUX 4510,3 1632,9 1285,62 1632,5 519,3 1188,4 0

A
re
a(
µ
m
^
2
)

Architectural solutions

MUX FUNCT LOGIC REG

Figure 4.4: How multiplexers, registers, functional units and logic affect the area of

the different architectures

Unfolding grade Area(µm2) Power(µW) Dynamic / Leakage Time(ns) Slack / Arrival time

F 17007.50 47.88 / 388.51 351.05 / 3.13

P=1 F 6563.81 16.20 / 136.85 351.58 / 2.60

P=1 U=2 6517.26 16.15 / 142.46 351.47 / 2.71

P=1 U=3 6738.31 16.27 / 145.34 351.35 / 2.83

P=1 U=4 8154.22 20.24 / 174.02 351.6 / 2.58

P=1 U=5 8843.96 20.64 / 186.78 351.26 / 2.92

P=1 U=6 5163.59 12.52 / 94.77 350.21 / 3.97

Table 4.3: Synopsys results

• data ch1 and data ch2: they are the 1bit input data of the two filters;

• ckg en: it is the clock enable to perform the clock gating;

CIC filter design with HLS 58

rstb

clk

ckg_en

data_ch1

data_ch2

cic_datao_ch1

cic_datao_ch2

cic_trgo

1

1

1

1

1

19

19

Figure 4.5: Silicon Mitus architecture (top view)

• clk: it is the clock. Its frequency is 2.8224MHz;

• cic datao ch1 and cic datao ch1: are the 19bit filters output data;

• trgo: it is the signal indicating when the output is ready.

In this case the architecture design with HLS has to include a clock enable and an

asynchronous reset. Moreover, the reference architecture, by Silicon Mitus, produces

internally a synchronous reset starting from the asynchronous reset (rstb) and the clock

enable (ckg en). The synchronous reset has the aim to reset all the internal registers

of both the filters. For the architecture produced with the HLS methodology, enable,

clock and reset signals can be added to the architecture without changing the code.

The clock, enable and reset signals are set as follows:

• clk: the clock frequency is 2.8224MHz and the data sampling is performed on its

rising edge;

• rst: the synchronous reset is high-active;

• arst n: the asynchronous reset is low-active;

• en: the clock enable is high-active.

The full-unrolled architecture is developed and the Catapult results are:

CIC filter design with HLS 59

CIC1

CIC2

LOGIC

rstb

ckg_en
sync_rst

data_ch1

data_ch2

cic_datao_ch1

cic_datao_ch2

clk

trgo

cic_en

Figure 4.6: Internal structure of the reference architecture bt Silicon Mitus

Figure 4.7: Clock setting

• Slack cycle: 1;

• Throughput cycle: 1;

• Area: 6204.05 µm2;

• Slack time: 337.39 ns.

CIC filter design with HLS 60

Figure 4.8: Signal setting

Catapult uses triosy lz signals for each C++ variable to indicate the I/O completion

of the associated signals. In order to avoid these signals at the architecture interface

it is possible to use the interface using ac channel interface. This latter solves the

problem to build a streaming interface to guarantee that the data communication is

correct, so that data are read and written in the same order they are processed. So,

the ac channel interface constructs a FIFO discipline to ensure the correctness of the

communication between different blocks.

The C++ code is slightly modified to allow the synthesis using acchannel interface.

1 #include <ac_fixed>

2 #include <ac_channel>

3 const unsigned ord = 6;

4 typedef ac_int<1,false> IN_TYPE;

5 typedef ac_int<2,true> AC_TYPE_s;

6 typedef ac_int<19, true> OUT_TYPE;

7 typedef ac_int<1, false> BIT_TYPE;

8

9 void dws_cic_bittrue(ac_channel<IN_TYPE> &, ac_channel<IN_TYPE> &,

10 ac_channel<IN_TYPE> &, ac_channel<OUT_TYPE> &, ac_channel<OUT_TYPE> &,

11 BIT_TYPE &ready_out);

Once the directive to synthesize a full-unrolled architecture are set, the Catapult results

are:

CIC filter design with HLS 61

• Slack cycle: 1;

• Throughput cycle: 1;

• Area: 6767.38 µm2;

• Slack time: 337.25 ns.

This architecture is larger than the one implemented without acchannel interface. For

this reason the solution without ac channel interface is preferred.

4.3.1 Architecture functioning

The top view of this architecture synthesized by Catapult is the one represented in

Figure 4.9.

arst_n

clk

en

vi_ch1_rsc_dat out_cic_ch1_rsc_dat

ready_out_rsc_dat

1

1

1

1

1

19

19

out_cic_ch2_rsc_datvi_ch2_rsc_dat

out_cic_ch1_rsc_triosy_lz

out_cic_ch2_rsc_triosy_lz

vi_ch2_rsc_triosy_lz

vi_ch1_rsc_triosy_lz

ready_out_rsc_triosy_lz

1

1

1

1

1

rst

Figure 4.9: Top view designed by Catapult

The triosy lz signals enlarge the total area and make the architecture interface

(Figure 4.9) different from the one of the reference architecture (Figure 4.5). So the

solution is to eliminate them by hand in the Verilog code produced by Catapult, with

a very small effort. The resulting architecture is the one reported in Figure 4.10.

Table 4.4 reports that the results evaluated with Catapult and Synopsys are slightly

different but with the same behaviour, as shown in Figure 4.11.

CIC filter design with HLS 62

arst_n

clk

en

vi_ch1_rsc_dat out_cic_ch1_rsc_dat

ready_out_rsc_dat

1

1

1

1

1

19

19

out_cic_ch2_rsc_datvi_ch2_rsc_dat

rst

Figure 4.10: Top view of the optimized architecture

19191,9

7080
6841,8 7098,5

8749,8 9165

5025,3

24229,05

9425,25 9379,13 10386,35
11328,44

12831,87

6070,72

0

5000

10000

15000

20000

25000

30000

F P=2 F P=2 U=2 P=2 U=3 P=2 U=4 P=2 U=5 P=2 U=6

A
R

EA

ARCHITECTURAL SOLUTIONS

CATAPULT VS SYNOPSYS-AREA EVALUATION

Synopsys Catapult

(µ
𝑚

2
)

Figure 4.11: Area estimation: Catapult vs Synopsys

Notice that the Table 4.4 reports two full-unrolling solutions. By using the architec-

ture full-unrolled and with an initiation interval equal to 2 the area is lower compared

to the full-unrolled architecture with initiation interval 1.

The solution with P=2 can take as input the signals with a sample rate 2.8224MHz,

CIC filter design with HLS 63

but it has to use as internal frequency for the processing task 5.768MHz. In the DAC

design by Silicon Mitus, it is not possible to use two clock regimes, so this solution is

not further developed.

Tables 4.5 and 4.6 shows the difference in percentage between the Catapult architec-

ture and the reference architecture by Silicon Mitus. The architecture selected for the

Unfolding grade
Area by

Synopsys(µm2)

Area by

Catapult(µm2)

Power

Dynamic/

Leakage (µW)

Time Slack/

Arrival time

by Synopsys

(ns)

Time Slack/

Arrival time

by Catapult

(ns)

F 19191,9 24229,05 50,17/349,45 351,05/3,13 352,29

P=2 F 7080,0 9425,25 17,28/144,96 351,58/2,60 353,26

P=2 U=2 6841,8 9379,13 17,28/140,91 351,47/2,71 352,72

P=2 U=3 7098,5 10386,35 17,25/143,77 351,35/2,83 352,08

P=2 U=4 8749,8 11328,44 21,72/166,61 351,6/2,58 351,54

P=2 U=5 9165,0 12831,87 21,97/154,95 351,26/2,92 350,78

P=2 U=6 5025,3 6070,72 13,64/93,32 350,21/3,97 337,25

P=1 U=6 5402,9 6204,05 12,96/88,53 350,34/3,85 337,39

Table 4.4: Catapult and Synopsys results of the final architecture

comparison with the reference architecture provided by Silicon Mitus, is the full un-

rolled one, with initiation interval 1 (P=1 U=6). By using Synopsys Design Compiler

the logic synthesis is performed. The synthesis results differences between the Silicon

Mitus architecture and the Catapult architecture are performed by using the Compile

and the Compile ultra directives, and are reported in Table 4.5.

Notice that the with the architecture synthesized with the Compile ultra directive the

area and the power consumption of the architecture implemented with Catapult are

lower that the one of the architecture implemented by using the classical RTL design

methodology. In Table 4.6 the difference of the results of the logic synthesis between

the two architecture are highlighted.

In this way the aim to demonstrate the good quality production of a HLS synthesis

is achieved.

CIC filter design with HLS 64

Catapult Silicon Mitus

Compile Compile Ultra Compile Compile Ultra

Area (µm2) 6002.02 5402.99 5993.78 5564.64

Power Dyn/Stat (µW) 14.07 / 101.93 12.96 / 88.53 12.14 / 102.85 12.04 / 94.1

Time Slack/Arrival (ns) 350.20 / 3.99 350.34 / 3.85 351.11 / 2.62 351.21 / 2.61

Table 4.5: Catapult final architecture evaluated with Synopys

Catapult

Compile Compile Ultra

Area +0.14% -2.9%

Power Dyn/Stat +0.88% -4.38%

Time Slack/Arrival (ns) +1.37 +1.24

Table 4.6: Catapult final architecture comparisons with Silicon Mitus architecture

CHAPTER 5

Conclusion

The thesis work aims to evaluate the quality of the architecture implemented by us-

ing the HLS design methodology. The area, timing and power estimation difference

between the hand-written RTL reference design and the one developed with HLS is

summarized below.

Catapult

Area -2.9%

Power Dyn/Stat -4.38%

Time Slack/Arrival (ns) +1.24

The performance results in this case study are even better than the one obtained with

the hand-written RTL design. This means that from the current generation of HLS, it

is possible to consider it as a valid design methodology, with results very close to the

ones of the well-optimized classical RTL design.

The great advantage of design implemented with HLS is the very low time consuming

to implement different architectural solutions, since it is simply necessary to properly

set the constraints in the HLS tool, without changing the HLL description algorithm.

In this way, a very high effort can be dedicated to the algorithm optimization, instead

of writing HDL code.

Another important aspect of HLS is the highly reduced effort for verification flow. The

fast development of the test is another way to improve productivity.

In conclusion, the HLS can represent a very efficient mean for digital architectures

65

CIC filter design with HLS 66

design, which can lead to high quality results, with a small effort from the designer,

who can avoid the redundant work of writing HDL code by hand.

APPENDIX A

Code

A.1 Synthesizable code

1 void dws_cic_bittrue(IN_TYPE vi_ch1, IN_TYPE vi_ch2,

2 OUT_TYPE &out_cic_ch1, OUT_TYPE &out_cic_ch2){

3

4 static OUT_TYPE integ_ch1[ord];

5 static OUT_TYPE outsum_ch1[ord+1];

6 static CNT_TYPE in_cnt_ch1 = 7;

7 static OUT_TYPE diff_ch1[ord];

8 static OUT_TYPE outdiff_ch1[ord+1];

9 AC_TYPE_s vi_ac_ch1;

10 vi_ac_ch1 = AC_TYPE_s(vi_ch1)*2 - 1;

11

12 static OUT_TYPE integ_ch2[ord];

13 static OUT_TYPE outsum_ch2[ord+1];

14 static CNT_TYPE in_cnt_ch2 = 7;

15 static OUT_TYPE diff_ch2[ord];

16 static OUT_TYPE outdiff_ch2[ord+1];

17 AC_TYPE_s vi_ac_ch2;

18 vi_ac_ch2 = AC_TYPE_s(vi_ch2)*2 - 1;

19

20 INTEGRAL_COPY_LOOP1: for(int i=0; i<ord; i++){

21 integ_ch1[i]=outsum_ch1[i+1];

67

CIC filter design with HLS 68

22 }

23 outsum_ch1[0] = OUT_TYPE(vi_ac_ch1);

24 INTEGRAL_LOOP1: for (int i=0; i<ord; i++){

25 outsum_ch1[i+1]=outsum_ch1[i]+integ_ch1[i];

26 }

27 if(in_cnt_ch1==0){

28 DIFFERENTIAL_COPY_LOOP1: for(int i=ord-1; i>=0; i--){

29 diff_ch1[i] = outdiff_ch1[i];

30 }

31 outdiff_ch1[0] = outsum_ch1[ord];

32 DIFFERENTIAL_LOOP1: for (int i=0; i<ord; i++){

33 outdiff_ch1[i+1]=outdiff_ch1[i]-diff_ch1[i];

34 }

35 }

36 in_cnt_ch1++;

37 out_cic_ch1 = outdiff_ch1[ord];

38

39 INTEGRAL_COPY_LOOP1: for(int i=0; i<ord; i++){

40 integ_ch2[i]=outsum_ch2[i+1];

41 }

42 outsum_ch2[0] = OUT_TYPE(vi_ac_ch2);

43 INTEGRAL_LOOP2: for (int i=0; i<ord; i++){

44 outsum_ch2[i+1]=outsum_ch2[i]+integ_ch2[i];

45 }

46 if(in_cnt_ch2==0){

47 DIFFERENTIAL_COPY_LOOP2: for(int i=ord-1; i>=0; i--){

48 diff_ch2[i] = outdiff_ch2[i];

49 }

50 outdiff_ch2[0] = outsum_ch2[ord];

51 DIFFERENTIAL_LOOP2: for (int i=0; i<ord; i++){

52 outdiff_ch2[i+1]=outdiff_ch2[i]-diff_ch2[i];

53 }

54 }

55 in_cnt_ch2++;

CIC filter design with HLS 69

56 out_cic_ch2 = outdiff_ch2[ord];

57

58 }

A.2 C++ Testbench

1 #include "cic_synt.h"

2 #include <mc_scverify.h>

3 using namespace std;

4

5 CCS_MAIN(int argc, char **argv) // required for sc verify flow in Catapult

6 {

7 ifstream in_ch1 ("cic_in_ch1.txt", ios::in);

8 if(!in_ch1.is_open()){

9 cout<<"Opening error of the input file on the channel1"<<endl;

10 return -1;

11 }

12 vector<IN_TYPE> vi_cic_ch1;

13 int in1; //in1=[0 o 1], in1_bin=[-1 o 1]

14 OUT_TYPE in1_bin;

15 OUT_TYPE vout_cic_ch1;

16 vector<OUT_TYPE> cic_output_ch1;

17 while(!in_ch1.eof()){

18 in_ch1>>in1;

19 vi_cic_ch1.push_back(IN_TYPE(in1));

20 }

21 in_ch1.close();

22

23 ifstream in_ch2 ("cic_in_ch2.txt", ios::in);

24 if(!in_ch2.is_open()){

25 cout<<"Opening error of the input file of the channel2"<<endl;

26 return -1;

27 }

28 vector<IN_TYPE> vi_cic_ch2;

CIC filter design with HLS 70

29 int in2; //in1=[0 o 1], in1_bin=[-1 o 1]

30 OUT_TYPE in2_bin;

31 OUT_TYPE vout_cic_ch2;

32 vector<OUT_TYPE> cic_output_ch2;

33 while(!in_ch2.eof()){

34 in_ch2>>in2;

35 vi_cic_ch2.push_back(IN_TYPE(in2));

36 }

37 in_ch2.close();

38

39 ofstream out_ch1 ("cic_filter_out_ch1.txt");

40 ofstream out_ch2 ("cic_filter_out_ch2.txt");

41 for (unsigned i=0; i<vi_cic_ch1.size(); i++){

42 CCS_DESIGN(dws_cic_bittrue)(vi_cic_ch1[i], vi_cic_ch2[i],

43 vout_cic_ch1, vout_cic_ch2);

44 if (i==1 || (i-1)%8==0){

45 out_ch1<<vout_cic_ch1<<endl;

46 out_ch2<<vout_cic_ch2<<endl;

47 }

48 }

49 out_ch1.close();

50 out_ch2.close();

51 CCS_RETURN(0);

52 }

Bibliography

[1] P. Coussy, D. D. Gajski, M. Meredith, and A. Takach, ”An Introduction to High-

Level Synthesis”, IEEE Design & Test of Computers, vol. 26, no. 4, 2009 iii,

3

[2] Grant Martin, Gary Smith, ”High-Level Synthesis: Past, Present, and Future”,

IEEE Design & Test of Computers, July/August 2009 4, 5

[3] Mojtaba Mahdavi, ”High Level Synthesis with Catapult”, DSP Design Course,

EIT Department, Lund University, Sweden

[4] Catapult Documentation viewer, Mentor Graphics

[5] Eugene B. Hogenauer, An Economical Class of Digital Filters for Decimation and

Interpolation, IEEE Transactions on Acoustics, Speech, ans Signal Processing,

Vol. ASSP-29, No. 2, April 1981 13, 23

[6] Matthew P. Donadio, ”CIC Filter Introduction”, For Free Publication by Iowegian,

http://www.mit.bme.hu/,18 July 2000

[7] Julius O. Smith III,”Introduction to Digital Filters with Audio Applications”,

(September 2007 Edition), Center for Computer Research in Music and Acoustics

[8] Yonghong Gao, Lihong Jia, Jouni Isoaho and Hannu Tenhunen, ”A Compari-

son Design of Comb Decimators for Delta-Sigma Analog-to-Digital Converters”,

Electronic System Design Laboratory, Royal Institute of Technology, Stockholm,

Sweden (1999)

[9] S. M. Mortazavi Zanjani, S. Rahimian Omam, S. Mehdi Fakhraie, Omid Shoaei,

School of ECE, ”Experimental Evaluation Of Different Realizations Of Recursive

CIC Filters” IEEE CCECE/CCGEI, Ottawa, May 2006 iii, 19, 20

71

CIC filter design with HLS 72

[10] ALTERA, ”Understanding CIC Compensation Filters”, Application Note 455,

April 2007, ver. 1.0 iii, 21, 22

[11] James F. Kaiser, Richard W. Hamming, ”Sharpening the Response of a Symmetric

Nonrecursive Filter by Multiple Use of the Same Filter”, IEEE Transactions on

Acoustics, Speech, and Signal Processing (Volume: 25 , Issue: 5 , Oct 1977)

[12] Alan Y. Kwentus, Zhongnong Jiang, Alan N. Willson, Jr., ”Application of Filter

Sharpening to Cascaded Integrator-Comb Decimation Filters”, IEEE Transaction

On Signal Processing, Vol. 45, No. 2, February 1997 25

[13] Gordana Jovanovic Dolecek, Javier Diaz-Carmona, ”On Design of CIC Decima-

tors”, Institute INAOE Puebla, Institute ITC Celaya, Mexico iv, vi, 27, 28, 29

[14] Marian Pristach, Michal Pavlik, Jiri Haze, Lukas Fujcik, ”Optimized Architecture

of High Order CIC Filters”, Department of Microelectronics, Faculty of Electrical

Engineering and Communication Brno University of Technology, MIXDES 2013,

20th International Conference ”Mixed Design of Integrated Circuits and Systems”,

June 20-22, 2013, Gdynia, Poland

[15] Alan Kwentus Owen Lee Alan N. Willson, Jr., ”A 250 Msample/sec Programmable

Cascaded Integrator-Comb Decimation Filter”, Broadcom Corp. Irvine, CA, Elec.

Engr. Dept UCLA Los Angeles, CA, in Proc. VLSI Signal Processing, IX, pp.

231-24O,Oct.-Nov. 1996. iv, vi, 29, 30, 31, 32

	Contents
	List of Figures
	High-Level-Synthesis and Mentor Catapult
	High-Level-Synthesis
	Advantage of High-Level-Synthesis
	HLS flow description
	HLS State-Of-The-Art

	Catapult C
	Data types
	Synthesis tool steps

	CIC filter and state of art
	Cascaded Integrator and Comb (CIC) filter
	CIC filter frequency response
	Two possible algorithms for a CIC filter implementation
	State-of-the-art CIC filter
	Bit-serial implementation (Recursive structure)
	Implementation of a sharpened CIC filter
	CIC filter architecture with optimal performance

	C++ algorithm
	Reference filter specification
	MATLAB code and algorithm by Silicon Mitus
	MATLAB code translated in C++
	The testing environment in C++
	Filter algorithm and its implementation

	C++ code to synthesize the CIC filter

	CIC filter development with Catapult
	Correctness verification of the synthesized architecture
	Different architectures of the CIC filter and Catapult results
	Final architecture and optimizations
	Architecture functioning

	Conclusion
	Code
	Synthesizable code
	C++ Testbench

