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Summary

Refresh operations are the main cause of reduced performances in modern systems
using DRAMs as main memory. This task is unavoidable to have a reliable dynamic
memory but it is power consuming and increases the accesses latency of a service
request. Thus, this thesis proposes an advanced and reconfigurable hardware
architecture whose main aim is to reduce the refresh overhead in a typical chip of
DRAM. The designed architecture communicates with the memory and provides a
way of reducing the amount of refreshes that a standard controller usually addresses
to the memory. The architecture exploits the actual retention times of the memory
rows, that come after an initial profiling, and then postpones the unnecessary
refreshes until the very moment at which a given row needs to be refreshed.
This kind of solution is widely treated in literature, but this work provides an
innovative implementation that supports and draws benefits from memory accesses,
that are seen as issued refreshes as well. Then allows to characterize the cells’
retention times with a pattern suited to the used memory capacity and handles a
challenging problem for DRAMs like temperature variations.
Finally, the designed implementation provides a reconfigurable feature that allows
the user to have a memory controller calibrated on the system application: in some
cases, the presence of non-critical data saved in memory can allow to skip at all
refreshes for those locations, achieving further benefits in terms of power savings
and response latency.
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Chapter 1

Introduction to approximate
memory computing

1.1 Background and motivation
Nowadays systems are based on dynamic random-access memory (DRAM) as build-
ing block for main memory. They are widely used in a large number of applications
and in mobile systems too. A typical DRAM cell stores the bit content in the
form of a charge in a capacitor. The charge leaks off from the capacitor through
its access transistor and the data stored is lost. This is the reason for which, to
avoid losing the data, DRAM cells need to be refreshed, that means reading out
and restoring the content in the cells in a periodic way. These operations, however,
are degrading in terms of system performances and wasted energy, resulting in large
power consumptions. The first problem is mainly due to the fact that a refresh
operation cannot be interrupted whenever started: if a user request comes during a
refresh, this will be delayed in the worst case for a time equal to the refresh cycle
time, that depends on the memory architecture too. So this interference caused
by the normal working with the surrounding system increases the latency of the
operations this memory is used for.
Regarding the wasted energy, a refresh operation needs to precharge the bitlines
and close the row (PRE) and then activate it (ACT) to store the contents in the
row buffer of sense amplifiers: at the end of the operation the data is restored again
in the current row preventing the data to be lost. These operations are, as obvious,
power consuming if one considers that this sequence has to be executed as many
times as the number of rows present inside the memory array. All these problems
are supposed and expected to get worse in the future technology scaling, where
DRAM cells density is expected to rise.
Modern DRAM devices refresh the cells according to the one that shows to leaks
off more than the others: this cell determines the rate of refreshing for the entire
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1.1 – Background and motivation

memory. In fact, regarding this, the manufacturers set the refresh period to 64 ms to
avoid losing data and this refresh time is widely used in modern DRAM standards.
However, most of them can retain their data for a period longer than the actual
Auto-Refresh (CBR) one of 64 ms even if this command is optimized to reduce the
overhead described before, for example refreshing one or multiple rows per bank in
parallel. So, even if a so small value of refresh period is used to avoid corruptions
and guarantee the integrity of the data stored, the time that a typical DRAM cell
can sustain without losing the content, known as retention time, is quite longer.
This means that most of the refreshes issued by the controller are not necessary to
guarantee the correct behavior.
The idea comes from this consideration: by knowing cell retention times, it would
be possible to group DRAM rows into retention times bins and apply different
refresh rates at each row. This is feasible and it is corroborated by the fact that
there is a very reduced number of weak cells in a DRAM memory. Then, skipping
unnecessary refreshes and so lowering the rate at which cells are refreshed today, it
would be possible to gain great benefits in terms of power consumptions and system
performances. This will lead to the concept of Approximate Memory Computing,
where the system can rely on an Approximate Memory obtained with the refreshes
reduction solution. Prior works have focused on this idea of minimizing the overhead
of refresh, like “RAIDR” [1] implementation, where in a 32 GB DRAM used as
main memory reaches 74.6 % of refresh reduction, a power saving in average of
16.1 % and performances improvements of 8.6 % at the cost of a retention times
storage overhead. This overhead depends on the implemented architecture, if it is
a codesign of both hardware and software or if it is merely either a hardware or
software solution. Nevertheless, the purpose is the same and aims in reducing this
unnecessary introduced latency: in fact, as showed in work [1] and reported here in
Figure 1.1, the cumulative cell failure probability is almost null at the refresh period
of 64 ms and a reduced number of cells requires to be refreshed at a rate of 256 ms,
that is four times the standard refresh interval.
The realized hardware controller presented in this work is a FPGA-based imple-

mentation that provides several features that allow to face typical DRAM issues
that will be described in successive chapters. The idea of performing refreshes based
on actual retention times relies on the fact that, basically, DRAM cells, especially
in modern devices, show a retention time that extends approximately from 1 to 6
seconds at room temperature (till 45 °C) making, as mentioned, most of refreshes
unnecessary. In fact, such short refresh interval of 64 ms takes into account an
increase of temperature up to 85 °C, where cells retention time decreases exponen-
tially. In Figures 1.2 and 1.3, taken from the experimental studies performed on
different chip families and with different capacities [2], the normalized retention
time at different room temperatures and the cumulative distribution of the retention
times for the tested chips are reported respectively.

In Figure 1.2, the retention time of a certain cell, evaluated at different room

13



1 – Introduction to approximate memory computing

Figure 1.1: Cumulative cell failure probability overview and detailed view [1]

Figure 1.2: Normalized retention time
versus temperature [2]

Figure 1.3: Cumulative distribution of
retention times [2]

temperatures reported on horizontal axis, is normalized to the retention time of the
same cell at 50 °C. The important consideration that comes out from this is that
the retention time of a DRAM cell falls exponentially as the temperature rises. It
would mean that, in some situations, the retention times chosen for particular rows
as refresh rate could be different if the temperature changes and so this poses a
challenging issue to select the correct refresh rate in order to avoid data corruption.
In Figure 1.3, the retention times distribution has been obtained at 45 °C: as visible,
the fraction of cells with retention time below about 1.5 s is very small, meaning
that a large percentage of cells could be refreshed at lower refresh rate accordingly.
So taking into account these considerations and if the retention times are known,
the controller could be able to issue different refresh rates to each row, where the
weakest cell fixes the minimum retention time sustained by that row. To do that,
it is necessary to issue single row addresses to be refreshed on the bus in contrast
with the highly optimized Auto-Refresh used in modern DRAM chips: in practice,
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1.1 – Background and motivation

the idea is to establish again the RAS-only refresh feature present in older DRAMs
and refresh every single row according to its actual retention time. This, as known,
could be expensive in terms of activating each single row but, if the distribution of
the retention times is similar to the one mentioned in previous experimental works,
one could achieve considerable power savings and refresh overhead reductions at
the cost of an enlargement of the controller area, without doing any modification to
the DRAM itself.
So, in general, the high impact of refresh in modern devices has led the researchers
to realize new schemes in order to reduce the latency of a refresh operation or to
reduce the amount of refreshes issued to the memory itself. Even if the modern
Auto-Refresh is optimized to operate on multiple rows, the higher is the density of
cells, the higher is the impact of this overhead on system performances and power
consumptions. In the previous mentioned work [1], an estimation of the refresh
latency, throughput loss and power consumption has been performed across the
device capacity. Figure 1.4 taken from this work shows how things are going to
worsen in future, where throughput loss and power consumption can jeopardize the
constraints posed by a given system, making these devices unusable.
Clearly, when the density of cells per row rises, then as well increases the access

Figure 1.4: Effects of refresh on current and future DRAM devices [1]

time to the desired location due to the longer wordlines, causing so a high access
latency. The power consumption is affected too, considering that all the bitlines
of the same row are precharged first and driven after an active command to the
issued bank: when opening a row to perform a refresh, it requires to drive the entire
wordline of the row to be accessed and all the bitlines. Moreover, bitlines have a big
parasitic capacitance, then making this operation of activating a row very expensive
in terms of power and access latency.
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1 – Introduction to approximate memory computing

1.2 Auto-Refresh feature in DRAMs
In modern DRAM chips the controller issues an Auto-Refresh command to the
memory every tREF = 64 ms to ensure data integrity at normal room temperature
conditions. The DRAM reacts by refreshing some rows in all banks using an internal
counter, where the number of issued rows depends on the capacity and density of
the memory device. In order to refresh the entire memory in the tREF window,
Auto-Refresh commands are issued at a fixed time interval called tREFI. From work
[4], this interval can be calculated as:

tREFI = tREF ∗ r

R
(1.1)

having the total number of rows per bank (R) and the number of rows per bank
that are refreshed every tREFI (r).
During normal room temperature conditions, which is indicated by the manufacturers
to be up to 85 °C, the average time delay between refresh commands is 7.8 µs. When
the DRAM works in conditions where the temperature rises between 85 °C and 95
°C, the refresh interval is set to 3.9 µs meaning that the refresh window tREF is
halved to 32 ms. In Figure 1.5 from work [4] it is summarized what happens during
a refresh window.
Whenever an Auto-Refresh command is issued every tREFI, this operation involves

Figure 1.5: Refresh cycle window tREF [4]

all the banks of the given rank at the same time and no accesses are allowed to
be served on that rank. The number of accessed rows per bank (r) can be easily
calculated by inverting the previous formula, having so:

r =
⌈︃

tREFI ∗ R

tREF

⌉︃
(1.2)
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All the involved banks of the same rank are occupied for a time delay called
refresh cycle time (tRFC) from performing any other operation: this negatively
affects performances and energy efficiency too in terms of increased access latency
and decreased hit rate, causing a reduction of memory throughput in postponing
requested accesses. In fact, in modern DRAMs, the refresh latency given by tRFC
is, in average, in the range from about 200 ns to 300 ns and such long time delay
heavily degrades performances. Throughput loss evaluated as the ratio between
tRFC (time spent in doing refreshes) and tREFI (time interval between each refresh
command) is expected to reach the half of the totality of the memory throughput
in the future (Figure 1.4) and the power consumptions due to refresh are going to
become the prevailing contribute to the total DRAM power. For these motivations,
a solution to reduce refreshes overhead has been proposed and it will be discussed
in the successive chapters.

1.3 Overview of the proposed design implemen-
tation

The controller, aware of the retention times distribution of the DRAM cells, could
be able to perform row-by-row refreshes at different rates, known also in literature
as Row Granular Refresh [4]. This, as mentioned, would reduce the overhead given
by the Auto-Refresh carried out by modern DRAM devices.
But how the controller can be aware of the retention times distribution of the
memory rows? The controller architecture, hence, has to perform first an initial
profiling of the actual retention times of each row and save these values in a storage,
also called retention times bins.
Then, whenever the retention time of a given row has elapsed, that row has to be
refreshed to avoid to lose data integrity. How to perform single row refreshes at
different rates? The Auto-Refresh feature doesn’t allow such a kind of granular
refresh, so a different strategy has to be followed: as mentioned before, the idea is to
restore the RAS-only refresh used in older DRAMs, especially in the asynchronous
ones. Although vendors don’t say clearly how the refresh operates, it is quite known
that a row is activated (ACT) for an access, its content is written in the row buffer
of sense amplifiers and it is kept there till a successive row is required to be served:
at this point, the content is restored again in the row and the bank is precharged
(PRE) preparing it for a successive operation, closing so the previous opened row.
So, a sequence of ACTIVE (ACT) and PRECHARGE (PRE) commands has the
same effect of refreshing, hence it will be used by the designed controller to issue a
RAS-only refresh.
In order to avoid data corruption, every row refresh is issued every 64 ms and the
controller has to check if its retention time (saved as multiple of the same refresh
window tREF) has elapsed: if so, that row is refreshed.
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1 – Introduction to approximate memory computing

In conclusion, RAS-only refreshes could help to reduce the refresh overhead, provided
that the distribution of the retention times is similar to the one mentioned in previous
experimental works. The proposed hardware solution offers a way of getting the
entire profiling of the memory cells retention times, challenging with some problems
that will be described in detail; then offers a way of exploiting memory accesses
requests to further reduce the refresh overhead and last but not least a way of
handling the temperature variation, which has been demonstrated to be crucial in
causing retention times variations among the memory cells.
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Chapter 2

Basic SDRAM memory
controller

2.1 General organization
The basic idea is to realize a memory controller that is aware of the actual retention
times of the cells and refresh each row accordingly, implementation also known in
literature as Row Granular Refresh (RGR [4]). The FPGA-based hardware platform
has been designed and then tested by using the DE1-SoC development board provided
by Terasic® and its integrated ISSI® IS42S16320D-7TL SDR SDRAM, whose capacity
is 512 Mb. The used memory configuration, in terms of bus parallelism, is 8M rows
x 4 banks x 16 data bits bus (64 MegaBytes). The chosen clock frequency is 143
MHz, with a CAS Latency of 3 cycles. From the datasheet [7], the memory issues
8K (N) refresh cycles every 64 ms and from the equation 1.2 it is possible to extract
the number of rows per bank (r) that are refreshed every tREFI:

r = R

N
= 1 (2.1)

Hence, one row per bank is issued every refresh command to complete, in N
commands, the refresh of all the rows in a tREF window.
The starting point is to realize a basic memory controller able to issue standard
Auto-Refresh and single word reading and writing operations. This controller is
completely configurable, meaning that the user can manually set the most important
parameters before using it. To correctly perform operations, the memory controller
has to respect timing constraints fixed by the DRAM and sent corresponding
commands accordingly. The configuration allows the user to set the following timing
parameters in terms of clock cycles:

• tRAS_CYCLES → Row Access Strobe cycles

19



2 – Basic SDRAM memory controller

• tRCD_CYCLES → Row to Column Delay cycles

• tRP_CYCLES → Row Precharge cycles

• tDPL_CYCLES → Input Data To Precharge Command Delay cycles

• tRFC_CYCLES → Refresh Cycle Time cycles

• tMRD_CYCLES → Mode Register Set To Command Delay cycles

• CAS_LATENCY → CAS Latency cycles

• CLK_FREQUENCY → Clock Frequency in MHz

• REFRESH_TIME → Refresh Period tREF in ms

• REFRESH_COUNT → Number of refreshes in a refresh window (N)

• BANK_WIDTH → Bank Address Width

• ROW_WIDTH → Row Address Width

• COL_WIDTH → Column Address Width

• HADDR_WIDTH → Total Address Width

• SDRADDR_WIDTH → Address Width on the SDRAM side

Provided that the wanted configuration has been chosen, the user can be able to
communicate with the SDRAM issuing reading and writing operations. The state
diagram of the basic SDRAM controller is depicted in Figure 2.1.
At reset assertion, the controller enters through the initialization states where the

Mode Register is loaded. As the datasheet of the memory suggests, at power-up
a minimum initial delay of 100 µs is required before issuing any command apart
from NOPs. Then, the initialization steps provide a precharge of all banks and a
double cycle of Auto-Refreshes before issuing the Load Mode Register command
correctly, where the internal memory configurations are set such as data bus width,
CAS Latency and mode of operation (single word accesses or burst accesses): in
this very first realization, only single word accesses are provided. At this point, the
memory is configured with the desired operation mode and is left idle to receive
write or read commands.
The refreshes sent through the CBR Auto-Refresh are handled by a monitor counter:
every time the counter exceeds the threshold corresponding to 7.8 µs (tREFI),
the controller enters in the refresh states where all the banks to be refreshed are
closed first (Precharge command) and refreshed then (Auto-Refresh command).
Each command is a sequence of bits recognized by the memory: for a better visual
understanding, the command truth table referred to the used SDRAM taken from
the datasheet [7] is shown in Figure 2.2.
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2.1 – General organization

Figure 2.1: Basic SDRAM controller state diagram

Figure 2.2: Command truth table of the used SDRAM [7]
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2 – Basic SDRAM memory controller

For the used memory configuration, if the memory clock frequency is set to 143
MHz and there are 4 banks refreshed in parallel composed by 8192 rows each, the
clock cycles between refresh commands (tREFI) at that frequency are:

• CLK_FREQUENCY = 143 MHz

• REFRESH_TIME = 64 ms

• REFRESH_COUNT = 8192

CY CLES_REF =
⌊︂CLK_FREQUENCY ∗ REFRESH_TIME

REFRESH_COUNT

⌋︂
(2.2)

That corresponds to 1117 cycles. This means that every time the refresh counter
overcomes this threshold, the controller moves towards the Auto-Refresh and so
refreshes the rows according to its internal counter. Then, in the proposed idea to
issue row-by-row refreshes, this simply results in never making the counter reach the
CYCLES_REF threshold: an enable signal is inserted and so the Auto-Refresh can
be disabled. However, you must accept the condition that the controller never goes
in Self-Refresh states, otherwise the memory refreshes the rows by itself according
to its internal oscillator and counter. A phase-locked loop has been used in the
FPGA-based implementation to generate a SDRAM clock frequency of 140 MHz
from a clock of 50 MHz provided by the board (CLOCK_50), not exactly 143
MHz to keep relaxed on timing constraints. This means that the new threshold for
CYCLES_REF is equal to 1093 cycles.
In Figure 2.3 the top level entity of the realized basic SDRAM controller is depicted,
showing all the provided signals.
The host interface side has the ports of addresses for writing and reading, write

and read enable signals to issue corresponding commands, input write data port
when writing and output read data port when reading. Moreover two additional
signals are provided: a busy signal (BUSY ) saying when you are not allowed to
issue commands, meaning that the memory either is already executing a writing
or reading operation, or it is refreshing or it is in the initialization steps where
the user is configuring the operation mode; the second signal is a ready reading
signal (RD_READY ), saying when the data to be read is available on the bus.
These two signals will be fundamental when communicating with the memory. The
REF_CNT_EN signal is used to disable the Auto-Refresh feature.
The SDRAM side of the component has all the signals corresponding to the pins
needed to drive the memory itself. In the bottom part of the figure, the generic
parameters are assigned a value corresponding to the used configuration. Just a
note on the SDRADDR_WIDTH parameter needed on the SDRAM side pins: it
refers to the maximum between ROW_WIDTH and COL_WIDTH, because the
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2.1 – General organization

Figure 2.3: Top level basic SDRAM controller

address bus is unique and row addresses and column addresses are alternated on
this during the common operations. So the memory address is calibrated on the
row address width, that is the maximum among the two.
Looking at Figure 2.1, when the memory is idle and a reading or a writing operation
is issued, the controller first enters in the ROW ACTIVE state where the row in
the requested bank is activated, that means the row is opened by activating the
wordlines: so in this phase, bank and row addresses are provided to correctly perform
this row opening. Then, after a time equal to the tRCD delay, the column address
can be placed on the bus to access the 16 bits location that has been requested: if a
reading operation is requested, after the CAS_LATENCY delay the data will be
present on the bus and the RD_READY signal asserted to acknowledge the user;
otherwise, if a writing operation is issued, the controller will drive the bitlines and
write the data put on the bus by the user inside the pointed memory location. After
this, the bitlines of all the banks are precharged (PRE) preparing the memory for a
successive operation. The timing constraints are verified by inserting NOP states
between two issued commands, as all the datasheets show in their timing diagrams.
This basic controller has been tested to work by designing a simple testing platform
on the development board, exploiting push-buttons and DIP switches to issue
operations and send both data and addresses to the memory: it provides FIFOs to
store issued operations and sent them to the memory. FIFOs are used to handle
both reading and writing operations and they are one operation deep: this means
that they themselves put in busy state the user interface whenever an operation
has been already taken in charge from the controller. The user interface testbench
is pretty much simple and since it is out of the scope, it will be omitted in the
following sections.
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2 – Basic SDRAM memory controller

2.2 Controller enhancement
The basic controller has been enhanced to provide burst support and power-down
mode. The state diagram and the top level entity are reported in Figures 2.4 and
2.5, and a description of the added signals will follow.
The output signal DONE_INITIALIZATION is asserted by the controller when

Figure 2.4: Enhanced SDRAM controller state diagram

the 100 µs time delay has elapsed at power-on. Since then, the memory is ready to
receive commands and the controller is left idle.
The power down mode has been added through a homonym input signal: when
asserted, the memory controller puts the SDRAM in this mode where the clock is
suspended. Take care that during the period in which the SDRAM is in this state,
no refreshes are provided: this means that the user has to reactivate the clock signal
by exiting from this state before a time corresponding to a refresh cycle of 64 ms
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2.2 – Controller enhancement

Figure 2.5: Top level enhanced SDRAM controller

has elapsed, otherwise data integrity will not be guaranteed.
Then the burst feature signals have been provided: the input signal
ONLY_READ_BURST programs the Mode Register to work either with fixed-
length bursts readings and single access writings or with burst support for both
readings and writings. The input signal SEL_BURST_LENGTH selects the length
of the burst among 1 word, 2, 4 or 8 words.
Finally, the output signal PLACE_ONBUS_DATA_BURST_TO_WRITE is an
acknowledgement provided by the controller when the user wants to perform a
burst writing: when this signal is asserted by the controller, in the successive clock
cycles the memory is ready to receive the input data to write in and so the user has
to place the data on the bus as many clock cycles as the number of the words to
write given by the chosen burst length. This is necessary to respect the memory
timing parameters from issuing the ACTIVE command (providing bank and row
addresses) to the WRITE one (providing the burst starting column address). In the
following three Figures 2.6, 2.7 and 2.8 are showed some timings extracts of how
single reading and fixed length of four burst readings and writing respectively are
handled, as a visual explanation of what just described.
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2 – Basic SDRAM memory controller

Figure 2.6: Single reading timing diagram

Figure 2.7: Burst reading of length of four timing diagram

Figure 2.8: Burst writing of length of four timing diagram
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As mentioned before, NOP states are added to respect the timing constraints
fixed by the memory. The number of NOPs are controlled through two auxiliary
counter signals that act like present state and next state signals: whenever a number
of NOPs has to be added according to the delay, in clock cycles, to wait for from
the current state the memory controller is and the next state, state_cnt_nxt is
loaded in state_cnt and the last one is decremented till arrives to zero; at this
precise instant, the memory controller changes state from the NOP one to the next
predicted one. The time delay that fixes the number of NOPs depends on the delay
in cycles between two successive “active” commands and they are given in the list
of timing parameters reported in section 2.1.
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Chapter 3

Controller architecture
modification

Once the SDRAM controller has been verified to work, the surrounding layer that is
able to command the core controller is designed according to the intended purpose.
First of all, the Row Refresh Machine (RRM) has been realized by scratch: this is
the modification applied to a standard memory controller where the Auto-Refresh is
thrown away and a “retention times-aware” refresh is applied to each single row. In
order to determine at which rate each row should be refreshed, the initial profiling
is needed: so, before performing the characterization, the RRM will be showed to
refresh the rows at a random rate first, simply to understand how this machine
works and how the standard RAS-only refresh can be emulated; then, a “true”
characterization will be done and the RRM will refresh the rows according to the
retention times distribution.
But how to store the retention times in order to perform row-by-row refreshes? To
do that, two SRAMs are used to store the retention times in the form of thresholds
as multiples of 64 ms: the first SRAM stores the thresholds corresponding to the
retention times of each row, the second the related counters. In every refresh window
tREF of 64 ms, whenever a row is issued then its counter is decremented: when
each counter elapses, the controller issues a RAS-only refresh as a sequence of an
ACTIVE (ACT) command followed by a PRECHARGE (PRE) command (observing
timing constraints correctly), provided that the bitlines are precharged first. In this
way the row is refreshed to prevent any corruption. Practically, it is similar to what
happens when reading from a memory location: the row is activated, placed in the
row buffer and then written back again to restore the contents. So from now on,
the operation issued by the controller when a row at a particular address needs
to be refreshed will be called a dummy reading: hence, the name of the signal is
RD_DUMMY and the corresponding address sent is RD_DUMMY_ADDR. The
state diagram of the SDRAM controller when handling RAS-only refreshes is shown
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in Figure 3.1.
Whenever a dummy reading is asserted to a given row, the corresponding bank

Figure 3.1: Modified SDRAM controller state diagram

will not be available for readings or writings for the entire duration of activation-
precharge sequence tRAS + tRP. Then, the profiling will follow with an exhaustive
analysis of the best data pattern for the used SDRAM.
Finally further optimizations will be presented, together with the handling of a
challenging problem that is the strong temperature dependence of the retention
times distribution.

3.1 Row Refresh Machine
The Row Refresh Machine (RRM) represents the finite state machine that works
in parallel with the normal operations of the SDRAM and that issues refreshes
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3.1 – Row Refresh Machine

whenever the counters elapse. The fact that this machine works in parallel to the
memory means that the latency of a memory operation is not affected, but the
average response of the controller to a user service request could be heavily reduced
for the same reasons that have led to realize such a kind of controller architecture.
Regarding the memory used to test the realized controller, since there are 32768
rows and each one has to be issued every 64 ms to avoid to lose data, at 140 MHz
each row has to be issued every tREFI that can be computed using equation 1.1:

tREFI = tREF

R
= 64ms

32768 = 1.95 µs (3.1)

So, at this frequency, there are about 273 clock cycles between each row issuing,
where a possible refresh command can be sent in case of elapsed counter. That would
be more expensive than actual Auto-Refresh but we will see that the row-by-row
refresh won’t follow after each tREFI of 1.95 µs, meaning that the number of row
misses in an application, that uses such a memory in its main memory system, will
be highly reduced. So in order to emulate the refresh cycles (tRFC), where in this
case must check the value of the current counter and eventually assert a dummy
reading or simply decrement a counter, a window of clock cycles is provided for
each row for performing these operations. Moreover, another optimization has been
applied when performing this type of refreshes: the activation of a row for a request
issued by the user also restores the content at the end of the operation cycles; so
whenever a reading or a writing is performed to any location, the retention time
counter of that corresponding row is reset again to its maximum initial threshold
value minus one, without letting decrease it towards zero. This is the reason for
which the window of clock cycles emulating tRFC is needed, because the requested
operation uses as well the current counters memory to reset the threshold and this
would cause a conflict with the normal check for a dummy reading refresh. But if
any requests are sent while the RRM is flowing through this cycles window, some of
them could be lost and the controller can lose the opportunity to reset the counters
and provide further benefits in refreshes reduction. In order to allow the controller
to take advantage from all the possible accesses requested to the memory, a FIFO
is added to the architecture. In this FIFO all the access addresses are saved when
RRM is not available to reset the counters and, when it is not busy, used by the
controller to reset them. The bits width of the addresses to save inside the queue
can be obtained from Figure 2.5 and it is equal to:

HADDR_WIDTH = BANK_WIDTH + ROW_WIDTH = 15 bits

and that corresponds to the address number of bits used to point to the two SRAMs
storing thresholds and counters.
For what concerns the depth of the FIFO these considerations have been taken into
account: first of all, a worst case single word reading or writing operation takes 7
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clock cycles and during this period no further accesses are allowed since the memory
is busy; secondly, considering the window of clock cycles used by the controller to
check for a dummy reading and a possible superposition with a requested access, a
FIFO of depth 2 would be sufficient. To keep relaxed constraints, a FIFO of depth
4 has been used. A simplified representation of the actual component used in the
VHDL architecture is reported in Figure 3.2.
The enable to write signal ACTIVATED_ROW_FOR_ACCESS and the input

Figure 3.2: Accesses handling FIFO

data to write signal ACCESSED_ROW_ADDRESS are provided by the SDRAM
itself through the controller whenever an access has been detected: the FIFO_FULL
signal automatically detects if the queue is full, but it will never happen due to the
fixed relaxed capacity. The enable to read signal EN_READ_FROM_QUEUE is
sent by the controller whenever it is not busy in checking for a dummy reading: the
controller checks for accesses to handle by using the FIFO_EMPTY signal and, if
any present, serves the request by asserting the enable to read to ENR.
Whenever an access is handled, the reason for the reset to its maximum initial
threshold minus one stands in having to cover the “dead” period left during the
remaining time of the 64 ms refresh cycle issuing the successive rows, before returning
to the same row again after the refresh window. And, hence, that is the reason
for which it is necessary to save the initial thresholds somewhere: the first SRAM
storage is necessary, then, to restore back the initial value to the counter whenever
either an access request operation or a dummy reading refresh is performed.
Supposing that the profiling has been carried out and the thresholds have been
obtained, the ASM chart of the Row Refresh Machine is reported in Figure 3.3.
The final RRM ASM chart will be showed after the characterization where the

complete machine will be presented.
After the profiling step the controller enters in the START_USR_REFRESH state
where, if in the CYCLE_REF_CYCLES window, checks the value of the current
counter and either executes a dummy reading or decrements the value of the counter
and writes back in the same location of the SRAM; otherwise if not in the window
of checking for a refresh cycle, in the case of an access request issued by the user
(FIFO accesses not empty), the counter is reset to its maximum initial value minus
one as mentioned before. The need for 4 states of RESET_CNT_FOR_ACCi here
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3.1 – Row Refresh Machine

Figure 3.3: Row Refresh Machine (RRM) ASM chart

is due to the fact that the IP RAM2 megafunction used in Quartus® synthesizer for
the two SRAMs has registered both write and read address inputs and also both
write enable signal and input data to write; moreover it is necessary to consider the
latency of one clock cycle for the FIFO accesses, so in order to perform correctly
the reset of the counters without entering in conflict with a counter decrement, 4
states in sequence are needed.
For what concerns the datapath of this initial version of the controller architecture,
it is composed by the two memories of thresholds and counters, an integer counter
of about 273 cycles for each row described before (configurable according to the
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number of rows and to the clock frequency) and a counter of row addresses. Finally,
some multiplexers to correctly select the addresses to the memories and output
registers to save the contents. The complete structure of the datapath will be
reported in successive sections.
As proof of working, some simulations of the main features of the RRM have been
performed and they will be showed in the following figures. Just note that the
characterization has not been performed yet, hence the testing thresholds have been
set all to 4, meaning that all the rows have a retention time equal to 4 * 64 ms = 256
ms before being all refreshed in the fifth refresh cycle window. Moreover, to simplify
the computations and get an integer clock period value, the simulations have been
performed with a clock frequency of 100 MHz instead of 140 MHz then used in the
final implementation, meaning that in these simulations each row has 195 clock
cycles between each tREFI: nothing changes, it is only a matter of simplification.

3.2 Simulations and comments
In all the figures that follow, extracted from the simulations performed by using
ModelSim® simulator, only the most important of many signals will be showed to
provide a better clarity of how things are going on.
In Figure 3.4, a piece of the starting of row refresh is showed. This will coincide
with the end of the characterization where the thresholds and current counters
SRAMs are filled; in this simple simulation, this coincides with the end of the
SRAMs filling with a fixed threshold for each row (4, as said previously). The
CYCLE_REF_CYCLES signal defines the clock cycles refresh window (like tRFC)
and the CYCLE_REF signal defines the exact clock cycle where the current counter
is checked for a possible dummy reading, like issuing a refresh command every tREFI
in Auto-Refresh: since the counter is equal to 4 at the beginning, it is decremented
and written back again in the same location, as visible on the current counter
memory output signal Q at the bottom.

In Figure 3.5 there is another extract of the row-by-row refresh similar to the
previous one, this time on bank address 1 and row address 0, during the first 64
ms and exactly after a time equal to tREFI = 1.95 µs as obtained in equation 3.1.
One can observe again the refresh window covers the needed clock cycles taking
into account also a possible request operation issued by the user just before this
window and in agreement with the ASM chart shown in Figure 3.3, preventing so
any conflict with the state machine in using counters memory.
In treating the bank and row addresses as a unique row address array, this row at

bank address 1 and row address 0 corresponds to row address 8192.
Next in Figure 3.6 is indeed showed what happens when an access request is issued
to bank address 0 and row address 1 after about 192 ms and the state machine
is not flowing through the refresh window: as mentioned before, in this case the
counter in the location corresponding to row 1 is reset to the initial threshold value
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Figure 3.4: Starting of row refresh after characterization

Figure 3.5: Updating and writing back of the current counter on bank address 1
and row address 0

minus one to take into account the current 64 ms tREF cycle ending. The value is
taken from the thresholds memory and correctly written in the counters memory: as
visible, in fact, the highlighted write enable signal (WE) of that memory is asserted
and the write address signal (WR_ADDRESS) changes temporarily from current
one (8189) to the address issued for a reading (1). All is handled through the used
FIFO to serve access requests to prevent losing them whenever the state machine is
refreshing. Subsequently it will be possible to see how this will affect the dummy

35



3 – Controller architecture modification

reading on that row with respect to the other rows having initially fixed, indeed, all
the thresholds equal.
A similar situation is showed in Figure 3.7, where now the access is issued to row

Figure 3.6: Access request issued by the user to bank address 0 and row address 1

address 5.
Having set all the thresholds to 4, after 256 ms (four refresh cycles tREF) one can

Figure 3.7: Access request issued by the user to bank address 0 and row address 5

expect that there will be dummy reading assertions for all the row addresses in the
same tREF cycle, except for row addresses 1 and 5 due to the previously showed
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access requests sent by the user which caused their counters to reset. In Figure 3.8,
a dummy reading operation is performed on row address 0 after 256 ms.
A dummy reading is performed on this address and this is specified in the first most

Figure 3.8: Dummy reading assertion on bank address 0 and row address 0

significant 15 bits of RD_DUMMY_ADDR signal (the address must be always on
25 bits, as required by the SDRAM, so the least significant 10 bits of this signal,
standing for the column address, are set all to 0 to have a fast access to the first
column when sending a refresh command). As a result, a write enable is asserted on
the counters memory and the initial value of the threshold minus one is restored.
At this point an example on what happens on row addresses 1 and 5 is showed in
Figures 3.9 and 3.10.
It will explained what happens only on row address 1 as it is the same for row

address 5. At the starting of the third 64 ms refresh cycle the counter is decremented
from 2 to 1 but at the end of the same cycle a reading operation is issued to the
same address, resetting so the value of the counter to its initial threshold minus one,
that is 3. At the last of the four 64 ms refresh cycles, the counter is decremented
from 3 to 2. Then, in Figure 3.9 we are in the fifth 64 ms refresh cycle and the
counter is correctly decremented from 2 to 1. Just note that the fourth refresh cycle
doesn’t terminate exactly at 256 ms, due to conversions with respect to the used
clock frequency, but it terminates at about 255.918 ms (it is always better to stay
below the 64 ms or its multiples for a refresh cycle when you get approximations
from the computation, to avoid bit failures only due to bad conversions). In Figure
3.10 it is possible to see an overview of what happens: the RD_DUMMY signal is
not asserted in the fifth refresh cycle on row address 5 due to the previous access,
so its rate of refreshing has changed and it has been postponed with respect to the
shown adjacent rows.
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Figure 3.9: No dummy reading assertion on bank address 0 and row address 1

Figure 3.10: No dummy reading assertion on bank address 0 and row address 5

In Figure 3.11 there is an example of the benefits given by the usage of a FIFO to
handle the access requests. If a request came exactly in the refresh window given
by CYCLE_REF_CYCLES, the controller would not be able to reset the related
counter when serving the access to that row. The used FIFO allows to always take
advantage of accesses and, as soon as possible, to serve the request and reset the
associated counter: in the figure, a pending request is issued at row address 8199
and, after the refresh cycles window, the value is updated by temporarily changing
the WR_ADDRESS signal of the counters memory and asserting its write enable
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WE signal.
As a further consideration in these showed figures the accesses to the rows, as

Figure 3.11: Postponed access on bank address 1 and row address 7

separated bank addresses and row addresses, are performed in an interleaved way,
that means that a row per bank is accessed before returning back to the first bank,
as in the Auto-Refresh feature. This is important to avoid starvation on the same
bank when refreshing and so to reduce accesses overhead to any bank. Even during
the characterization the accesses will be performed in this manner, to stress all the
banks in the same way. For completeness, the equation 1.2 that says how many
rows per bank have to be accessed during a refresh command, given tREFI equal to
7.8 µs fixed by JEDEC [19] standard, the number of rows per bank R (8192 in this
case) and the refresh cycle period tREF equal to 64 ms, is:

r =
⌈︃

tREFI ∗ R

tREF

⌉︃
≃ 1

So it means that, in parallel, four rows of four different banks are refreshed
every tREFI. In this implementation, due to a row-by-row refresh, a single row
will be accessed during a refresh command (dummy reading) but however the rows
will be interleaved subsequently. This is, of course, time consuming due to the
non-parallelized bank accesses provided by the ACT command with respect to Auto-
Refresh, but the benefits will come just after the retention times characterization
results.
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3.3 Dummy reading requests handling
Every time a row needs to be refreshed, the modified controller now issues a RAS-
only refresh to that row. As for Auto-Refresh or for a normal request to read or
write sent by the user, all these operations cannot be interrupted till they end. This
means that if the memory starts serving a reading request sent by the user from a
memory location and the Auto-Refresh monitor counter has elapsed, the reading
operation terminates and the Auto-Refresh is so optimized that it starts refreshing
just after the termination of the request sent by the user. Normally, the refresh
command has the priority with respect to normal operations however respecting
typical FCFS scheduling, since data integrity has to be guaranteed.
But in this case the refresh commands are sent with a sequence of activation and
precharge, and so it is not so different from a normal accessing request. Clearly, the
priority is given to this sequence of commands to ensure data integrity too, but what
happens if a dummy reading comes exactly during an already started operation? As
it is treated as a request too, it would be lost. For this reason, a dummy readings
FIFO has been provided as well to avoid losing the refresh commands in such a
kind of situation. This queue has been placed inside the SDRAM core controller to
allow to be synthesized near this one, since the outcome is the row address to be
refreshed.
What about the depth? The FIFO implementation used also for accesses handling

Figure 3.12: Dummy readings handling FIFO

is configurable in terms of both bits width and depth and is reported in Figure
3.12. The bit width is on 25 bits, since this address has to be provided to the
the input address bus of the SDRAM, even if only the most significant 15 bits are
needed during an activation command and that correspond to bank address and row
address. The depth is fixed to 1 location since a dummy reading (in the worst case
of refreshes every 64 ms for each row) comes every tREFI = 1.95 µs. This means
that if a dummy reading comes exactly when a request is being taken in charge
by the SDRAM, it is saved inside the FIFO and handled just after the end of the
request, because this refresh sequence of commands has been given the priority over
the other operations: so when the memory terminates the request and returns idle,
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if the dummy reading FIFO is full, then a refresh is immediately issued to guarantee
the integrity of the row. In the worst case situation that a dummy reading comes
exactly at the beginning of the request, the refresh will be postponed at maximum
for a duration of a longest burst reading or writing operation allowed, that would
take about 100 ns: compared to the retention times sustained by the rows, this
delay is expected to not produce data corruption of the row contents. This feature
is not showed in the simulations when asserting a dummy reading, because added
in a second moment, but it has been tested to work correctly.
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Chapter 4

Retention times profiling

4.1 Test structure
Once the Row Refresh Machine (RRM) has been verified to work, the next step is to
fill the thresholds and current counters memories with actual retention times values:
so the characterization step is needed. In performing this task, similar steps of
work [2] have been followed. First of all, the memory locations are filled with some
data, then some time is waited for, eventually the memory locations are read and
compared with which had been written to see if that location is able to retain the
written data for that time without being refreshed. The overall general procedure
of the test application is shown in Figure 4.1.

How to choose the best data pattern that allows to find as many bit failures

Figure 4.1: Test application structure [2]

as possible? As mentioned in work [2], there are several factors that make the
profiling unable to provide exact and confident results, mainly due to Data Pattern
Dependence and Variable Retention Time effects. But if some precautions are taken
in performing this operation, the results could be quite acceptable. The retention
time of a given cell depends on the value that is stored in the same cell and in the
nearest ones: bitlines coupling and effects of crosstalk are the main responsible for
such variations. In this experimental study was found that static patterns as all 1s
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or all 0s are able to find out not more than 15% of all the actual weak cells. This
however depends on the complexity of the memory architecture where the Data
Pattern Dependence has a different effect regarding crosstalk between cells. Then,
from device to device, the behavior could be different in profiling the retention times
with static or dynamic and unpredictable patterns.
Hence, an experimental study has been conducted first, finding which is the best
pattern that allows to obtain the best coverage of bit failures in the used SDRAM:
the result, as said, is not expected to be the same for the all existing memories so
the controller architecture has been configured to choose among selected patterns.
Moreover, as suggested in the work, repeating the experiments in rounds separated
each other by the same time interval helps to free the results from DPD in the
beginning and then from the effects of temperature, that is kept pretty much
constant, are limited too through a small simulation time. From previous work
simulations, dynamic random data seem to be the ones that typically allow the
highest coverage of bit failures with the predominant presence of VRT that causes
big troubles in the retention times profiling. So, in order to provide which is
the best pattern for the SDRAM used in the designed architecture, exhaustive
simulations have been conducted to provide quite confident results: both static
and quasi dynamic patterns have been tested, such as all 1s, all 0s, alternated
0 and 1 (checkerboard) and pseudo-random. Each pattern, moreover, has been
followed by its complement to take into account the behavior of each single bit cell
as true-cell and anti-cell due to the presence of differential sense amplifiers. Then,
the simulations have been performed in 5 consecutive and repeated rounds to free
from the effects of DPD. The reason for a pseudo-random pattern, although it is
static, is that it can be reproduced (and that is the reason for which it has been
used) and it is the one that is likely to be similar to a dynamic and unpredictable
pattern when applied to the SDRAM. The test has been performed for 8 retention
times indicated on the horizontal axis, with the same procedure in Figure 4.1, and
the obtained results of the worst case and average number of rows coverage for all
the described patterns are reported in a bar graph in Figure 4.2. The number of
rows on vertical axis indicates the number of rows that are able to sustain that
retention time and that have failed the test on the next retention time. This doesn’t
identify how many cells show a bit flip during the test, because the characterization
fixes the retention time for a given row whenever the first cell of that row fails the
test. So the weakest cell fixes the retention time for the entire row and then all the
other cells are skipped when a bit flip is found out. The average and maximum room
temperature along the simulation have been annotated: the maximum temperature
differs from the average one only for 0.13 °C and since a temperature sensor with
an absolute uncertainty of ± 0.5 °C has been used, it is possible to conclude that
during the simulation the estimated room temperature stayed quite the same.

As visible from figure, the pseudo-random pattern is one of the best patterns
together with all 1s and all 0s that guarantee a good coverage of bit failures at lower
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Figure 4.2: Average and worst case number of rows with different patterns analysis

retention times than the maximum analyzed one (4.096 s): so it will be used for the
exhaustive temperature dependent simulations that will follow. The fact that also
static patterns like all 1s and all 0s provide a good coverage stands in the reduced
density of cells of the used SDRAM: with only 64 MB of capacity, the memory is
less affected by the problems described before and the patterns show more or less
the same behavior. In previous work [2], instead, tests on different DRAMs of 1 GB
upwards and from different vendors have been performed and the results showed
that, typically, the best pattern in terms of bit failures coverage is the random one.
However, the architecture is suited to perform the profiling with a data pattern,
among the four introduced, that the user can choose according to its DRAM.
So, due to its capability to regenerate the same data, a linear feedback shift register
(LFSR) has been used to produce pseudo-random data: in particular, we need to
generate 1024 data of 16 bits each for each of the 32768 rows. Then, in order to
provide different data on every row, two 16 bits linear feedback shift registers have
been used: one only on the first column of every row that provides the input seed
on the other LFSR that provides 16 bits data to write inside the 1024 columns of
each row. The column LFSR, indeed, will be used during the comparison step to
regenerate the written data and compare them with the ones read from the SDRAM:
a maximal-length polynome has been used for the LFSRs to cover all possible cases
on the used number of bits. During the writing procedure the Auto-Refresh is
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enabled to avoid the corruption of data. At this point, refresh is kept enabled for
64 ms while SDRAM is in idle state and then it is disabled for a chosen period,
in Figure 4.1 tWAIT, keeping the SDRAM in idle. This helps to understand if a
given row is able to retain its data without being refreshed. After this delay, the
Auto-Refresh is enabled again for 64 ms: so, in total, a tREF + tWAIT delay has
elapsed since last refresh for every single row. Then the readings step can start: the
characterization machine issues reading operations to each location and performs
comparisons with the output of the column LFSR; if the comparison is successful,
it means that the location in that given row can retain the data for that analyzed
time without being refreshed, otherwise it cannot. The comparison is done on 16
bits data, according to the memory data bus parallelism for the used configuration,
and the worst case cell fixes the retention time for the entire row: whenever a cell
content flips, it means that the entire row has to be refreshed at a higher rate than
the current period given by tREF + tWAIT to retain the data and the test on
the remained columns of the same row are skipped. As for writings step, also the
readings step is performed by keeping enabled the Auto-Refresh to avoid corruptions
during the procedure.
Next is to choose the values of tWAITs to use in these successive tests as done in
Figure 4.2. Now, considering that the profiling takes time to be performed, it has
been decided to choose only four tWAITs for the final retention times characterization
and execute a fixed number of 10 rounds on these: so, in sequence, the scheme
in Figure 4.1 will be repeated four times and consequently fixing, for each row,
the actual refresh time. In the experimental studies conducted at a temperature
of 45 °C [2], none of the cells showed a retention time less than 1.5 s and that is
considerable at such a high temperature. So taking into account that the tests
that will be performed will never overcome such value at room temperature, the
four total delays (tREF + tWAIT) chosen for repeated simulations are: 512 ms,
1.024 s, 2.048 s and 4.096 s. So the values of tWAITs are 448 ms, 960 ms, 1.984
s and 4.032 s that, in terms of multiples of 64 ms tREF, correspond to 7*tREF,
15*tREF, 31*tREF and 63*tREF respectively. Then, for thresholds and current
counters memories, the values that will be stored are:

1. tREF = 64 ms −→ threshold = 1

2. tREF + tWAIT = 512 ms −→ threshold = 8

3. tREF + tWAIT = 1.024 s −→ threshold = 16

4. tREF + tWAIT = 2.048 s −→ threshold = 32

5. tREF + tWAIT = 4.096 s −→ threshold = 64

The profiling step is executed at power-on, so the user could choose its own
thresholds according to the room temperature considering the retention times
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distribution in Figure 1.2: the thresholds are fixed on 8 bits, so the user can select
the four retention times of the characterization from 1 (64 ms) to 256 (16.384 s) as
desired. The pattern for profiling, instead, is set by default to the quasi dynamic
pseudo-random one, for the reasons described before regarding the complexity of
new chip devices.
In computing the retention times for each row, the first threshold equal to 1 has to
be considered too. This is necessary in the first cycle where the retention time of 512
ms the memory locations are tested for. In the very first cycle, if the comparison
doesn’t succeed, then that row is not able to retain data for 512 ms and so it will be
refreshed at 64 ms, assigning to that a threshold equal to 1. For the successive cycles
of the four tested retention times, the reference will always be the previous retention
time analyzed: if the comparison is successful update with the new retention time
threshold, otherwise keep unchanged the previous one.

4.2 Characterization state machine
The ASM chart of the characterization machine used to perform the retention times
profiling is reported in Figures 4.3, 4.4 and 4.5.
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Figure 4.3: Characterization machine ASM chart - Writings step
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Figure 4.4: Characterization machine ASM chart - tREF + tWAIT step
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Figure 4.5: Characterization machine ASM chart - Readings-comparisons step
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For completeness, some realized timings of the most important steps of the
procedure (writings and readings-comparisons steps above all) are showed in Figures
4.6, 4.7 and 4.8.
In Figure 4.6 the writings characterization step is reported. Since the profiling

Figure 4.6: Writings step characterization timing

Figure 4.7: tREF + tWAIT step characterization timing

works in single word access for writings, each word is written in the current location
and the column LFSR is enabled for each column through the EN_LFSR_COL
signal. When the end of the row is reached (COLUMN_CNT_OUT = 1023), the
row LFSR is enabled and the seed for the successive row is provided. In Figure
4.7, the timing shows the tREF + tWAIT step: during the tWAIT counting period,
the Auto-Refresh is disabled as shown by the AUTOMATIC_REF_EN signal. In
Figure 4.8 the readings-comparisons step is reported: again, for simplicity, single
word access is shown for readings but the profiling works also for burst mode. The
decisions for the thresholds update is made on the OUT_COMP_WRIT_READ
signal value that comes after RD_READY assertion: if the comparison signal is
equal to ‘1’ till the last column location, the threshold update takes place for that
row, otherwise the other columns are skipped and the threshold is not updated.
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In Figure 4.9, a first general overview of the realized architecture that surrounds
the SDRAM core controller is showed.
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4 – Retention times profiling

In the complete architecture there are also the counters needed for generating
addresses, for the different tWAITs and for tREF too, for the row cycles across the
RRM and also the row and column LFSRs used to write in memory and compare
the readings for a pseudo-random coverage. These components are omitted for a
better clarity of the figure.
As a final indication, some calculations have been made to understand how much
time the characterization requires: the four retention times described before have
been analyzed and waited for, so the sum of them is approximately equal to 7.68
s. Then you have to consider writings and readings cycles over all the SDRAM
locations: the characterization machine executes four retention times cycles, each
of them has one writings task and one readings task. The writings task is faster
than the readings one because no comparisons take place: so considering 32768
rows by 1024 columns to be written and the clock cycles required to perform each
of them at 140 MHz, the total four writings tasks across the four cycles, leaving
out the negligible time when the memory is busy in performing Auto-Refreshes,
require about 5.63 s. The reading task requires more time than the writing one
because of the delay spent in comparing the outcomes, updating the thresholds or
keeping them unchanged. So, the readings alone would have a time delay more or
less equal to the writings one but, taking into account the delay through the states
of characterization, the time spent is a little bit longer.
The design has been loaded and tested in terms of total delay required before
entering in the RAS-only refresh states of the RRM: the entire characterization
requires a total time of about 23 s for the used retention times, so the overhead
added from the operations performed by the characterization machine together with
the time spent for Auto-Refreshes is about l s to 4 s across all the entire procedure.
This is a case of study and, of course, time consuming but after repeated rounds
in worst case temperature conditions and for long periods, one could define the
final thresholds and save them in a non-volatile memory on board to be used to
load thresholds and current counters memories of the design at power-on, since
retention times distribution showed to not change considerably along the time. After
simulations in the following sections, it will be clear how it could be possible to
choose the thresholds, and so the refresh rates, for each row across all the rounds
at given room temperatures and some comments will follow regarding the main
challenging problems linked to the profiling procedure.
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4.3 Simulations and comments
In this section, simulations are performed to obtain the distribution of the retention
times of the SDRAM cells grouped in rows, taking into account the temperature
dependence.
In previous work [3], it has been demonstrated and showed how the retention time
of DRAM cells exponentially decreases as room temperature rises. To provide a
demonstration of this dependence, a sensor has been used to annotate the room
temperature during the simulations. About 30 samples have been used to get final
averaged temperature (according to the procedure duration), whose measure is
completed with an absolute uncertainty of ± 0.5 °C provided by the used analog
sensor. Across all the simulations, the lowest detected temperature was (16.95 ± 0.50)
°C while the highest detected one was (26.37 ± 0.50) °C, so it means that a maximum
span of 8 °C has been tested to see the effects on the cells.
The simulations have been divided in 10 rounds a day for the four discussed retention
times, performing one simulation every half a hour for the first four days, and one
simulation every hour for the last three days, globally covering a week of simulations.
The fact that the simulations are repeated in successive rounds at fixed delay frees,
as mentioned, the coverage of bit failures from DPD and then its increase or decrease
is due mainly to the temperature variation or to VRT, hence limiting the errors
to a small number. Moreover, the use of pseudo-random pattern has already been
justified in precedence, since it is very similar to a random pattern that, in most of
cases, induces the worst-case retention times behavior; but the used SDRAM has
a small capacity, so probably even a static pattern like all 1s or all 0s would have
provided an acceptable coverage [2], as seen in Figure 4.2.
In the following, figures of the first four days tests will be showed where MATLAB®

has been used to analyze the obtained data. In Figures 4.10 and 4.11 there are the
results of the simulations performed on day 1.
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Figure 4.10: Day 1 - Temperature behavior across the simulations

Figure 4.11: Day 1 - Number of rows variation at each retention time
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In Figure 4.10 the room temperature variation is reported across the 10 rounds of
simulation while in Figure 4.11 one can note the variation of the number of rows at
the same retention time across the rounds that have been reported in four different
subplots for each of the analyzed retention times. Since the reached temperature
is not so high to have rows at the retention time of 512 ms at all and of 1.024 s
apart from last two rounds, the curve of rows at 2.048 s has the exact behavior
of the temperature trend while the one at 4.096 s has quite the opposite behavior.
This makes sense: the higher is the temperature, the higher are the bits failures,
the smaller is the number of rows at maximum retention time of 4.096 s that,
as a consequence, switch to the previous retention time of 2.048 s. For a better
understanding, these numbers are reported in Table 4.1.
At first impact, rows seem spending more time in high retention times states, where

Day 1 sim. Retention time (s) Room temperature (°C)
0.512 1.024 2.048 4.096

sim1 0 0 10 32758 16.95
sim2 0 0 16 32752 18.71
sim3 0 0 25 32743 19.76
sim4 0 0 24 32744 19.75
sim5 0 0 23 32745 20.11
sim6 0 0 22 32746 19.86
sim7 0 0 20 32748 18.79
sim8 0 0 17 32751 18.26
sim9 0 1 27 32740 19.53
sim10 0 1 27 32740 20.24

Table 4.1: Day 1 - Number of rows at each retention time across 10 rounds

an average of more than 99 % of the total rows is able to retain data at a refresh
rate corresponding to 4.096 s and none of the rows has a retention time lower than
1.024 s. As visible, in fact, only one row appears to have a retention time of 1.024
s in the last two rounds as a result of the temperature rise. Looking at the table,
whenever the temperature rises, the number of rows with retention time 4.096 s
decreases and this consequently increases those with retention time lower and equal
to 2.048 s, due to a high number of bits failures and then in agreement with the
figures. As the retention time is expected to decrease whenever the temperature
rises, the numbers in Table 4.1 seem to follow exactly the temperature behavior.
In Figures 4.12 and 4.13 and Table 4.2 there are the results obtained on day 2.

On day 2 simulations, the temperature always rises across the complete test and
in fact, looking at Table 4.2, the number of rows at the retention time of 4.096 s
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Figure 4.12: Day 2 - Temperature behavior across the simulations

Figure 4.13: Day 2 - Number of rows variation at each retention time
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Day 2 sim. Retention time (s) Room temperature (°C)
0.512 1.024 2.048 4.096

sim1 0 0 14 32754 18.93
sim2 0 0 26 32742 20.04
sim3 0 0 23 32745 20.42
sim4 0 1 28 32739 20.98
sim5 0 1 45 32722 21.11
sim6 0 1 36 32731 21.15
sim7 0 2 46 32720 21.33
sim8 0 1 51 32716 21.51
sim9 0 2 54 32712 21.94
sim10 0 3 56 32709 21.91

Table 4.2: Day 2 - Number of rows at each retention time across 10 rounds

has a decreasing trend along the time of simulation. In fact, the temperatures are
higher with respect to the previous day, so more rows are claimed at lower retention
times. This trend is more visible in Figure 4.13 comparing it with the temperature
behavior in Figure 4.12 of the same day.
Figures 4.14 and 4.15 and Table 4.3 report the simulations performed on day 3.
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Figure 4.14: Day 3 - Temperature behavior across the simulations

Figure 4.15: Day 3 - Number of rows variation at each retention time
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Day 3 sim. Retention time (s) Room temperature (°C)
0.512 1.024 2.048 4.096

sim1 0 0 14 32754 20.68
sim2 0 1 30 32737 20.60
sim3 0 2 44 32722 21.24
sim4 0 2 49 32717 21.62
sim5 0 3 60 32705 22.57
sim6 0 2 52 32714 22.05
sim7 0 3 55 32710 22.70
sim8 0 3 56 32709 22.30
sim9 0 3 53 32712 22.40
sim10 0 2 52 32714 21.79

Table 4.3: Day 3 - Number of rows at each retention time across 10 rounds

Also in these rounds, the rows behavior is consistent with the temperature
variation along the time of simulation. The highest reached room temperature,
obtained in sim5, claims back 60 rows at the retention time of 2.048 s: in this case
the number of bit failures becomes to be consistent. As final proof, the fourth
simulation of rounds separated by half a hour has been conducted and the results
reported in Figures 4.16 and 4.17 and Table 4.4.
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Figure 4.16: Day 4 - Temperature behavior across the simulations

Figure 4.17: Day 4 - Number of rows variation at each retention time
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Day 4 sim. Retention time (s) Room temperature (°C)
0.512 1.024 2.048 4.096

sim1 0 0 5 32763 20.54
sim2 0 2 56 32710 21.58
sim3 0 3 82 32683 22.25
sim4 0 3 95 32670 22.76
sim5 0 3 84 32681 22.60
sim6 0 3 74 32691 22.00
sim7 0 3 81 32684 22.58
sim8 0 3 89 32676 22.84
sim9 0 4 108 32656 23.15
sim10 0 4 119 32645 23.42

Table 4.4: Day 4 - Number of rows at each retention time across 10 rounds

The results obtained in the four days of simulations are pretty much in agreement
each other: the rounds are separated by half a hour and the induced room temper-
ature variation is reported. Although VRT is always present in the DRAM cells,
in these cases the temperature has a predominant effect in their retention states
changes. Moreover the 10 rounds are separated by only half a hour, covering for
each test 4.5 hours a day. In reality, a typical VRT cell shows itself along a longer
time of simulation, causing the failing of having more or less the same number of
rows at the same temperature. For these reasons, three more days of simulations
have been performed covering, with 10 repeated rounds separated by one hour, 8
hours of simulation. The SDRAM has been left idle among the rounds, refreshing
the rows with the RRM.
Furthermore, the fact that the cells are grouped in rows could partially mitigate the
effect of VRT, making the temperature variation the main reason of retention times
change of the rows along the simulation. In fact, the retention time of a typical
DRAM VRT cell has been verified to not fall below about the 2 s across 10 hours of
simulations (Figure 11 [2]) and so these longer simulations could demonstrate this
important consideration. Nevertheless, to avoid to extend too much this proof of
consistency, only the last but one of the three simulations will be reported, where
the maximum room temperature value has been reached. The results are presented
in Figures 4.18 and 4.19 and Table 4.5.

The temperatures reached in the last two rounds are quite high and, indeed,
there are lots of bit failures and then many rows at the retention time of 2.048
s. The results are again in agreement with the considerations done in previous
simulations. Comparing the number of rows in this last simulation with the previous
ones at the same room temperatures it is possible to notice some discrepancies,
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Figure 4.18: Day 6 - Temperature behavior across the simulations

Figure 4.19: Day 6 - Number of rows variation at each retention time
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Day 6 sim. Retention time (s) Room temperature (°C)
0.512 1.024 2.048 4.096

sim1 0 1 26 32741 21.48
sim2 0 1 35 32732 21.08
sim3 0 2 39 32727 21.83
sim4 0 3 57 32708 23.29
sim5 0 3 86 32679 25.33
sim6 0 4 99 32665 25.96
sim7 0 3 86 32679 25.74
sim8 0 3 87 32678 25.76
sim9 0 4 105 32659 26.37
sim10 0 4 122 32642 26.21

Table 4.5: Day 6 - Number of rows at each retention time across 10 rounds

which means that the longer simulation has been affected by multiple VRT retention
states changes. Note that in the subplots sometimes a marker misses at one round:
this is not an error but it simply means that the number of rows at that retention
time and for that temperature is null. Hence, all the simulations show pretty much
the same behavior between the trend of the number of rows at 2.048 s and the
temperature change. Another important consideration is that at room temperature
none of the rows has showed to have a retention time below 1.024 s: this is a strong
result considering that all the rows are refreshed at 64 ms by default and this makes
the idea of how much refresh latency can be saved with such modification. As
a proof of this, in work [2] DRAM chips of different families with big capacities
with respect to the tested memory have been simulated in this way and the result
obtained for all the families is that none of the cells has a retention time lower than
1.5 s even at 45 °C (the retention time of 1.5 s was the first retention time of a finer
analyzed span, as for these simulations is 512 ms in the coarser span). In conclusion,
modern DRAMs of recent technology node and with such capacities (1 GB and 2
GB) compared with the used SDRAM (512 Mb) have been verified to retain data
for 1.5 s at so high temperatures: then, considering the reduction of bit failures in
lower-capacity devices and since the retention time of a typical VRT DRAM cell
never falls under 1 s (Figure 11 of work [2]), it is possible to conclude that almost if
not all the rows of the used SDRAM can be refreshed at 1.024 s refresh rate without
incurring in losses of data.

65





Chapter 5

Controller architecture
optimizations

Further optimizations of the controller architecture will be presented in this chapter
and the final characterization and RRM machines will be showed together with the
datapath of the architecture. The first applied modification is the so called Selective
Row Granular Refresh (S-RGR [4]). Some applications could draw benefits from not
refreshing some rows at all and further gains in terms of performances and power
savings can be achieved. The second is an optimization regarding the temperature
handling. The architecture, as it is till now, does not handle temperature variations
that could cause heavy effects on the data integrity. Some considerations will be
done before choosing the best solution that reduces as much as possible the latency
of the controller in handling a temperature variation. An optimization of the Row
Access Strobe (RAS) timing parameter will follow [4], making some background
considerations on the physical refresh procedure that leads to restore the content in
the issued row. Finally, clock gating technique has been applied to the controller
architecture whenever the SDRAM enters in power-down mode.

5.1 Skipping refreshes solution
The architecture has been modified by adding a configurable SRAM in terms of
memory depth. The data to store in the memory are the addresses of the SDRAM
the user, intentionally, doesn’t want to refresh at all. This kind of modification,
that the system designer can decide to take advantage or not, is a way of calibrating
the entire structure to the application in which the SDRAM will be used.
For some applications, there could be data that are not critical and their bit flips
are not so destructive such to cause losses in performances: this could be the case
of video coding or any other application that has a particular resilience to errors.
Another case in which this modification can provide considerable advantages is

67



5 – Controller architecture optimizations

in such applications that have dense accesses: in fact, in the memory locations
that are sufficiently accessed, it would not be necessary to refresh them if they are
continuously read or if their contents are constantly updated.
In some implementations present in literature, solutions with even the 50 % of
non refreshed memory are provided: latency of the user requests is drastically
reduced but, as obvious, the data integrity could be compromised if, for the target
application, the memory spent most of the time in idle or without updating such
locations. Hence a configurable signal is provided with the same name of the
technique to decide using the SDRAM in this configuration and, then, a little
on-chip memory is filled with the addresses of these locations not to be refreshed.
But which addresses the machine will save? The higher is the retention time that a
row is able to sustain, the stronger are the cells detected with the used procedure.
So, as a consequence, according to the desired number of rows to not refresh, the
same number of addresses of the locations founded out with the highest retention
time are saved in this configurable SRAM. These addresses are saved during the
characterization step when they are profiled and then they are skipped by the
Row Refresh Machine when they are recognized to be the row addresses not to be
refreshed, as will be reported in Figures 5.8 and 5.9.

5.2 Temperature effects handling
Although the controller architecture is aware of the distribution of the rows retention
times and is able to refresh them accordingly, a temperature variation could affect
drastically the behavior of the cells, as seen in previous simulations. Data integrity
could not be ensured at all in this situation and the designed controller would be no
more useful. As seen in Figure 1.2 from work [2], the distribution of cells retention
times has an exponential behavior across the temperatures: so even a slight increase
of temperature could prevent the controller to issue correct refreshes.
The authors of this experimental study have extracted the equation that fits with
the worst case behavior of the retention times distribution with respect to room
temperature, reported here:

x(T ) = A ∗ e−0.0625T + C (5.1)

The retention times distribution and then the equation is normalized to a ref-
erence room temperature of 45 °C, that is quite high and also higher than the
maximum temperature reached during the simulations performed in section 4.3.
This means that for our case this equation induces the worst case too, since such
a high temperature has not been reached as a reference for the retention times
distribution. Then, in order to allow the controller to be aware of the temperature
variation a design modification has been provided. Let’s call TREF the reference
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room temperature at which the retention times profiling is performed: looking at
the worst case induced equation 5.1, whenever the temperature rises by about 10
°C the retention times have to be halved. If not done, most of the cells would have
bit flips and the memory could incur in data corruption. Hence, a temperature
resolution of 10 °C has been considered to be the value of temperature at which
the variation could be consistent and some actions need to be taken. To do that,
the user has to provide on-line temperature or some other mechanism to check for
room temperature variation. The architecture provides an input signal, called CUR-
RENT_TEMPERATURE, that is initially set to “00” at reference temperature of
the profiling. Whenever the user detects an increase of temperature by 10 °C, simply
changing this signal from “00” to “01” the retention times are halved. In practice,
the controller has memory of the previous room temperature and according to the
new value set by the user it can halve or double the retention times accordingly.
This 2 bits wide signal so allows to handle a maximum temperature variation of 30
°C where the retention times are reduced to one eighth of their initial values reaching
TREF + 30 °C or, if the temperature decreases, the user can change the input signal
value and the controller detects a lower current temperature with respect to the
previous one: the taken action is to double the retention times up to a reduction of
the temperature until the initial TREF where the starting profiled retention times
are restored. Clearly, the temperature variation span could have been larger than
30 °C but the advice is that, due to the strong temperature effects on the retention
times, over a temperature variation of 30 °C it would be better to perform again
the characterization to provide safer values of retention times.
However this temperature handling span guarantees to change the retention times
on the fly, without performing every time the profiling to have a correct refresh
behavior and so loosing too much time in providing an acceptable memory latency
response. In Figure 5.1, a simple representation of what happens in the case of a
temperature variation is showed.
The controller, as said, has memory of the last temperature variation by using two

registers and, using two comparators, detects if a temperature change has occurred
(setting TEMPERATURE_CHANGED to ‘1’) and in which direction (determining
the divisor/factor), as an increased or decreased temperature. Finally, a FIFO
temperature of depth one is added, to avoid loosing a temperature variation if the
controller is issuing any other operation in the RRM. Whenever it has finished its
operations, it can pay attention to a detected temperature variation and serve it. A
FIFO of depth one is sufficient provided that the temperature doesn’t change of 10
°C in 64 ms, which is quite improbable. When a temperature variation is detected,
the taken action is to save in the FIFO temperature the divisor/factor that will be
used to update the thresholds inside the homonym and current counters memories.
So this value, out of the FIFO temperature, points to a multiplexer where the
thresholds memory output, halved or doubled, is chosen as input write data to the
memories: this value is written, as it is, inside the thresholds memory while it is
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Figure 5.1: Temperature handling interface

subtracted by one for the counters memory before being written in, for the same
reasons described in chapter 3. However an important consideration must be taken
into account: if a temperature variation is detected in the very exact moment when
a row needs to be refreshed, since the temperature change has the effect to restore
the half or the double of each corresponding retention time, the row would lose the
dummy reading in its elapsed counter cycle and incur in bit failures. Thence, keeping
in this worst case situation, whenever a temperature change is handled, a dummy
readings cycle is performed to every row ensuring so the rows data integrity. In the
following, some simulations of the temperature handling procedure are provided.
In Figure 5.2, during the normal working, the user sends an increase of temperature

of 10 °C over TREF (CURRENT_TEMPERATURE changed from “00” to “01”)
and TEMPERATURE_CHANGED is asserted writing into the FIFO tempera-
ture. Since the RRM is not doing useful operations, the temperature variation
is immediately served: the row counter is reset and for the next 64 ms refresh
commands are asserted to each row. At the same time the thresholds are updated
inside the memories and since the temperature has risen, the thresholds have to be
halved: in fact, as the INITIAL_WRITE_THRESHOLDS signal states, all the
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Figure 5.2: Temperature rise of TREF + 10 °C detected

initial thresholds are set to 4 like in the simulations examples presented in chapter
3 and so they have to be halved to 2 and written back to the thresholds memory.
The Q signal, standing for its output, demonstrates that actually this happens. The
current counters memory output, instead, shows that the thresholds are correctly
set to 1.
In Figure 5.3, a further temperature increase of 10 °C is detected (input signal

Figure 5.3: Temperature rise of TREF + 20 °C detected

changed from “01” to “10”), reaching a temperature variation of TREF + 20 °C.

71



5 – Controller architecture optimizations

Also in this case the thresholds are halved, then resulting to be one fourth of the
initial thresholds at the reference profiling room temperature. This means that if
the starting thresholds were all fixed to 4 (tREF = 256 ms), now the thresholds are
all set to 1 (tREF = 64 ms) and this means that now the rows are refreshed every
64 ms as for the standard Auto-Refresh. It is an example where all the thresholds
are fixed to the same initial value, but the profiling provides a different retention
times distribution this temperature handling takes advantage from. However, in
the worst case where a temperature halving leads to obtain a value lower than 64
ms, although the memory is not in the extended temperature range the thresholds
updating is skipped as will be showed in Figure 5.10.
In Figure 5.4 it is possible to notice what happens at the end of the previous temper-
ature change handling: as described before, now all the thresholds correspond to a
refresh window of 64 ms and so, after the end of the temperature variation handling
(TEMPERATURE_HANDLING is de-asserted), dummy readings are immediately
asserted as refresh commands. The RRM terminates issuing dummy readings caused
by the temperature change and then continues to issue refresh commands as the
row counters are elapsed. So the thresholds continue to be correctly managed by
the controller architecture.
Finally, in Figure 5.5, the same previous 64 ms refresh window of dummy readings

Figure 5.4: Previous temperature rise of TREF + 20 °C end of handling

is interrupted by a temperature change, actually a temperature fall of 10 °C (CUR-
RENT_TEMPERATURE changed from “10” to “01”). This situation describes
the reason for which it is necessary to continue issuing dummy readings whenever
a temperature change is detected: if the controller is refreshing the rows whose
counters are elapsed and a temperature variation occurs, the change of thresholds
could cause the skipping of the refreshes for these rows incurring, probably, in data
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5.2 – Temperature effects handling

Figure 5.5: Temperature fall of 10 °C, reaching again TREF + 10 °C

corruptions. This because a temperature change must have the highest priority
in the RRM to fastly update the thresholds and, then, this worst case situation
induces the controller to perform a refresh window cycle to continue guaranteeing
the data integrity of the rows content whenever a temperature variation is detected.
In conclusion, also a challenging effect like the temperature dependence of the reten-
tion times has been handled, providing a smarter controller aware of the surrounding
working condition. In Figures 5.6, 5.7, 5.8 5.9 and 5.10 are reported the final ASM
charts of the entire controller architecture that has been designed. Figures 5.8 and
5.9 yield also the solution for the S-RGR [4] feature while Figure 5.10 refers to the
ASM chart states needed to handle a temperature variation detection.
Lastly, in Figure 5.11, the datapath of the final controller architecture is presented.
The picture is minimized to show only the most important RTL blocks.
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Figure 5.6: Final characterization and RRM machine ASM chart - Writings step
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5.2 – Temperature effects handling

Figure 5.7: Final characterization and RRM machine ASM chart - tREF + tWAIT
step
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Figure 5.8: Final characterization and RRM machine ASM chart - Readings-
comparisons step
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Figure 5.9: Final characterization and RRM machine ASM chart - Skipping refreshes
handling
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Figure 5.10: Final characterization and RRM machine ASM chart - Temperature
handling
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5 – Controller architecture optimizations

5.3 RAS time delay reduction
In this section the controller architecture has been optimized making some consider-
ations about SDRAM timing parameters. The effect of applying a row-by-row based
refresh is to lose all the optimizations that come with the use of Auto-Refresh, where
internally multiple rows are refreshed at a time. Following the idea of work [4], a
controller can find out the optimized timing parameters used by the Auto-Refresh.
In this way the controller can still issue row-by-row refreshes but having the same
advantages of Auto-Refresh in issuing refresh commands, that means energy and
performances improvements. In simulations conducted in the same work, it has been
found out that this mechanism is even more efficient than the standard optimized
Auto-Refresh when applying Row Granular Refresh [4], then it is worth doing some
considerations to understand if it is applicable to this implementation. The followed
idea is the same and requires a controller customization to handle the sequence of
testing. The idea that comes from work [4] concerns mainly the reduction of the
tRAS timing delay that the DRAM experiences between an active command (ACT)
and a precharge command (PRE): in fact, whenever a row needs to be refreshed,
a row level refresh issues an ACT command that places the entire row in the row
buffer of sense amplifiers and then, after a PRE command is sent, it restores the
content of the row in the same location. An active command, hence, specifies the
bank and the row on which this operation has to be conducted and a precharge
command closes the row and precharges the bitlines for the next request. However,
this duet doesn’t need to wait for bitline sensing, because no voltage difference is
detected on the bitlines since no column address of a specific location has been sent
on the address bus. Therefore, apart from a standard read or write operation where
the sensing is needed to correctly terminate this operation, in row level refreshes
such long tRAS is not necessary and so can be reduced and still obtain reliable
refreshes. In modern DDR3 memory chips, the measurements conducted through
the FPGA-based platform developed in work [4] have found that the optimized
tRAS shortens the refresh cycle period tRFC up to 45% with respect to a such
optimized Auto-Refresh. This makes the idea of how much access response latency
can be saved especially in upcoming DRAM chips, that are expected to become
denser and denser, increasing then the refresh cycle time tRFC to cover all the rows.
The timing parameters involved in tRFC computation are:

• tRAS → Row Access Strobe Delay

• tRP → Row Precharge Delay

• tRRD → Row-to-Row Delay

• tFAW → Four Activate Window Delay
where tRRD stands for the time delay between active commands to different
selected banks and tFAW stands for the delay window where at maximum only
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5.3 – RAS time delay reduction

four consecutive active commands can be issued. tFAW constraint can be neglected
for the used SDR SDRAM, since it is valid especially for modern chip memories
working at double data rate. To reduce refresh latency, the idea of the cited work
has been followed but customizing the controller. Instead of reducing all the timing
parameters, tRAS, tRRD and tRP, the attention has been focused on tRAS only,
since tRP and tRRD intervene also during standard read/write operations and
then JEDEC [19] standard values have been kept for these parameters. For the
considerations made before, an active command is not followed by a read command
waiting for bitlines sensing, but it is followed by a precharge command and so total
tRAS can be reduced for refresh operations without affecting read/write ones.
The procedure has been executed by adding a down counter, counting tRAScurr +
tRP + CAS LATENCY cycles, that at terminal count resets to its starting value
in that test minus one if the memory passed the test for that current tRAScurr.
The SDRAM core controller, instead, is modified by adding a down counter as
well to the tRAS value that is decremented every time the memory passes the
test, in agreement with the previous down counter updating letting tRP and CAS
LATENCY unmodified. Moreover, the sequence of active and precharge states has
been added and executed when the starting minimum tRAS evaluation command is
triggered. Therefore, 6 more states have been added to the control unit just after the
characterization step to perform this evaluation. A known pattern is first written to
a random memory location, then the sequence of active and precharge command
is followed and, after the precharge delay, a read command is issued to the same
location: the comparison on the data bus says if the memory has passed the test
for that tRAS, since data bus is not driven and remains in high impedance if the
read command is not triggered in the correct way (recognized as illegal operation
in SDRAM commands table). In Figures 5.12, 5.13 and 5.14 the timings of the
sequence of operations are reported, where the first and second figures represent
the two passed tests cases for 6 tRAS cycles and 5 tRAS cycles respectively, while
the last one represents the case in which SDRAM did not pass the test for 4 tRAS
cycles and, hence, its value is not updated.

The datasheet of the used SDRAM fixes the number of cycles for tRAS timing
parameter to 6 clock cycles. This means that, for the used speed grade and the
actual used clock frequency of 140 MHz, the total tRAS delay corresponds to about
42.86 ns. After the evaluation sequence, the value has been reduced of one cycle,
hence to about 35.71 ns. So a reduction of about 7 ns has been obtained on the
tRAS value, providing benefits over Auto-Refresh and RGR [4] in terms of refresh
latency and saved energy. The reduction is not significant for one reason: the cycle
period of the used frequency corresponds to about 7.14 ns, that means that the
scaling of the tRAS value comes for about 7.14 ns each and the minimum tRAS can
be reached early. The choice to not use another FSM at higher frequency to get a
higher resolution stands in the fact that control units at different frequencies are
typically a bad design implementation choice and the conversions of long to short
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Figure 5.12: tRAS passed test for 6 cycles delay (JEDEC [19] standard value)

Figure 5.13: tRAS passed test for 5 cycles delay

Figure 5.14: tRAS failed test for 4 cycles delay
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strobes and vice versa could require inverter chains whose delays are technology
dependent. In fact, the problem is mainly due to the used SDRAM that does not
support higher frequencies causing so a minimal tRAS reduction. The problem is
solved and further reductions and benefits are achieved when using a faster SDRAM:
a modern DDR reaches frequencies of the order of GHz, hence providing scaling
resolutions of ns per cycle. Then, replacing the used SDR with a modern DDR and
its core controller, the reduction in tRAS value could be considerable and then a
more reliable minimum value can be obtained. So, the same frequency has been
kept for this procedure, addressing further improvements for modern DRAM chips.
In fact, the FPGA-based experimental setup of work [4] was tested on a DDR3
working at the order of GHz providing so a scaling resolution of ns: the obtained
reduction is of 10 ns, achieving about 35 % reduction over JEDEC [19] standard
tRAS value of 28.3 ns for that memory.
Nevertheless, an improvement is obtained also at the used frequency of 140 MHz. In
fact, compared to the RGR with standard tRAS in a tREF cycle of 64 ms, the time
spent in refreshing is reduced from 2.11 ms to 1.87 ms, obtaining so a reduction in
tRFC delay and then an improvement of system performances of about 11.4 %, due
to the reduced access response latency. This, as a consequence, reflects in a more
energy efficient solution.

5.4 Power-down mode clock gating
Power-down mode allows to save power consumed by the memory whenever active
operations are not going to be performed for a certain amount of time. The clock is
suspended and the SDRAM can experience either precharge power-down, where all
the banks are kept precharged, or active power-down, where at least one bank is
activated when the user puts the memory in this low power mode. The problem
is that the realized controller continues to perform useful operations while flowing
through RRM states even if the memory is in power-down mode and is not able to
listen to any kind of operation. In order to approach to a low power solution for the
realized controller architecture, clock gating technique has been used to suspend the
controller clock whenever the user puts the SDRAM in power-down mode. Classic
clock gating scheme used is showed in Figure 5.15.
A D latch active on the low level clock allows to filter out possible glitches coming

with the power-down mode signal provided by the user. The use of a D latch allows
to have full period to sample the enable signal with respect to a D flip flop negative-
edge triggered, avoiding so to halve clock frequency only for this glitches filtering.
When the controller is acknowledged by the memory entering in power-down mode,
the latch samples the power-down signal and suspends clock for the controller: this
means that all the controller operations are stalled till the memory exits from this
low power condition. In Figure 5.16 is reported a piece of simulation in which the
user puts the SDRAM in power-down mode for 30 µs: as visible, all the controller
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Figure 5.15: Clock gating scheme [18]

signals are interrupted for the entire duration of POWER_DOWN signal at ‘0’
logic. This results in further power savings for the memory controller: however, as
for Auto-Refresh, is the user’s concern to exits from power-down mode as soon as
possible since no refreshes are issued in this condition.
The power consumptions that are saved for the SDRAM in power-down mode will

Figure 5.16: Controller architecture simulation in power-down mode

be reported in following results analysis chapter 6.
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Chapter 6

Results analysis

In this section, some computations about the SDRAM power consumptions and
area occupation will be conducted. As mentioned, from this designed controller
architecture it is expected to save power and latency, especially due to the removed
Auto-Refresh feature, while the area occupied is necessarily higher due to the
retention times storage. For what concerns the performances of the controller
itself, it is quite useless to test for the maximum frequency since the controller
works in parallel with the SDRAM when issues RAS-only refreshes, so it could be
useful, instead, to have an idea of the reduced response latency obtained with this
implementation. Finally, a validation simulation will be reported where, in the worst
case situation, the memory is left idle refreshing with this controller architecture:
after some time, the SDRAM will be entirely read to see if it is able to retain data
through the profiled retention times with minimum errors.

6.1 Power estimation
To estimate the power consumptions, the technical note details [15] of how SDRAM
consumes power have been followed. With these calculations, one can estimate the
SDRAM consumptions in a given system by simply referring to the datasheet. For
the power calculations, the most important parameters and commands sent to the
memory will be considered, that are:

• ACT −→ Active

• BL −→ Length of burst

• PRE −→ Precharge

• READ −→ Reading

• REF −→ Refresh
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• WRITE −→ Writing

All the operations of the SDRAM are controlled by a clock enable signal. When-
ever CKE is de-asserted, the input buffers to the memory are turned off and the
SDRAM enters in power-down mode. In order to correctly issue commands, clock
enable must be asserted and then the memory can decode commands and addresses
inside the memory logic. To better understand which portions of the SDRAM
consume power whenever a command is sent, the block diagram of the used memory
will be showed taken from its datasheet [7]. During an active command the row
content is brought from the memory array to the sense amplifiers of the selected
bank: all the blocks shown in Figure 6.1 consume power. The data in the sense
amplifiers stay there until a precharge command is issued: this action rewrites the
data in the same cells array exactly like a dummy reading refresh performs. If a
precharge command is not issued, the SDRAM can execute readings and writings
to the same opened bank. A RD requires to place on the bus the correct column
address to be accessed in the same row of the array whose content is still stored
in the row buffer of sense amplifiers. The data is redirected to the DATA OUT
BUFFER and then it is available on DQ pins: so in this step, only the output
buffers and input/output (I/O) circuitry are used.
In a WRITE operation data spreads in the opposite direction: the data placed

on the bus is stored in the DATA IN BUFFER and brought to the I/O structure
before being sensed on the bitlines and written in the selected location. To perform
power computations, the values of the IDDi currents both for stand-by and power-
down mode are needed and these values can be easily obtained from the datasheet.
Although the power computations performed in the technical notes are referred to a
DDR3 SDRAM, the way in which these contributes are computed is exactly the
same. Here, for completeness, the followed methodology reported in [15] is listed:

1. Compute the power components from datasheet.

2. Scale the power according to system command scheduling.

3. Scale the power to the used supply voltage and frequency.

4. Sum all the components to compute the total power.

When the memory is in power-down state and all banks are in a precharge state,
the current that flows is referred to as IDD2P. If the memory is in active power-down
where a bank is open, the current consumed is IDD3P. In active states, the memory
is performing requests sent by the user and the power consumption rises since all
the blocks are involved in the operation. The current consumed when all banks
are precharged is referred to as IDD2N while if any bank is opened the current
consumed is given by IDD3N. These values, taken from the datasheet for the used
configuration and for the selected speed grade (corresponding to a clock frequency
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Figure 6.1: SDRAM block diagram (for 8MX16X4 banks configuration) [7]

of 143 MHz), are reported in Table 6.1.
To compute the power consumed by the SDRAM operating in these two different

Current Value (mA)
IDD2P 8
IDD3P 15
IDD2N 35
IDD3N 40

Table 6.1: Power-down and stand-by SDRAM currents

conditions, it is necessary to multiply the current by the applied VDD voltage. Here
are reported the datasheet power contributes due to these currents:
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Pds(PRE_PDN) = 8 mA ∗ 3.3 V = 26.4 mW

Pds(PRE_STBY ) = 35 mA ∗ 3.3 V = 115.5 mW

Pds(ACT_PDN) = 15 mA ∗ 3.3 V = 49.5 mW

Pds(ACT_STBY ) = 40 mA ∗ 3.3 V = 132 mW

(6.1)

The background power contribute is always consumed by the SDRAM according
to the condition in which the memory is working. These contributes have to be
averaged considering how much time the memory spends in each of them and this
ratio is determined providing to know the time in which the DRAM banks are all
precharged rather than one of them is activated. So, as the notes suggest [15], these
following information are needed to perform computations:

• BNK_PRE(%) : Time percentage all banks precharged

• CKE_LO_PRE(%) : Time percentage of power-down bank in precharge state

• CKE_LO_ACT(%) : Time percentage of power-down bank in active state

So the actual scheduled power is determined from the background one taking
into account the system usage percentages. Hence:

Psch(PRE_PDN) = Pds(PRE_PDN) ∗ BNK_PRE(%)∗
∗CKE_LO_PRE(%)

Psch(PRE_STBY ) = Pds(PRE_STBY ) ∗ BNK_PRE(%)∗
∗[1 − CKE_LO_PRE(%)]

Psch(ACT_PDN) = Pds(ACT_PDN) ∗ [1 − BNK_PRE(%)]∗
∗CKE_LO_ACT (%)

Psch(ACT_STBY ) = Pds(ACT_STBY ) ∗ [1 − BNK_PRE(%)]∗
∗[1 − CKE_LO_ACT (%)]

(6.2)

What about the active power? When an active command is issued, the power
consumed by the memory is pretty much high due to the current needed to interpret
the command and the address. Datasheet current is referred to as IDD0 or IDD1 as
the operating current in this case, that is averaged over the tRC period between
successive commands. For the used SDRAM, this current refers to one bank active
condition, CAS Latency (CL) of 3 and Burst Length (BL) of 1. An example of the
IDD0 current profile for a given DDR3 DRAM taken from notes [15] is reported in
Figure 6.2.

The consumed background portion, represented by the orange line, is always
present and refers to the previously computed power consumptions, in stand-by
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Figure 6.2: Typical IDD0/IDD1 current profile [15]

mode due to IDD3N (active) or IDD2N (precharge). In order to find the power due
to active or precharge commands for the used SDRAM, this current value has to be
subtracted from IDD1 and multiplied by the supply voltage as follows:

Pds(ACT ) =
[︄
140 mA − 40 mA ∗ 37 ns + 35 mA ∗ (60 − 37) ns

60 ns

]︄
∗ 3.3 V =

= 336.33 mW

(6.3)

This corresponds to the worst case when working at tRCmin as time interval.
In a real case an active command is not issued every tRCmin and so to obtain
the correct Psch(ACT) is necessary to derate this value to the average value of
row-to-row activation time delay. In the notes it is referred to as tRRDsch, where
tRRD is the command period from activating a bank to activating a different bank.
Supposing to use the SDRAM with a row-to-row activating time higher than tRC,
let’s say tRRDsch = 75 ns, then the actual value is computed:

Psch(ACT ) = 336.33 mW ∗ 60 ns

75 ns
= 288.28 mW (6.4)

So in a true scheduling the Psch(ACT) is reduced. Clearly, if more banks are
opened at a time, the scheduled time between active rows could be very small and
the active power can grow further.

Whenever a bank is opened, it can be scheduled with a WRITE operation. The
current that is consumed when all banks are active, a BL equal to 4 is selected
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and with a CL equal to 3, is referenced in the datasheet to as IDD4. Again, as for
active power, to obtain only the power associated with the WRITE operation, the
stand-by current IDD3N has to be removed. This contribute is computed as:

Pds(WR) = (160 mA − 40 mA) ∗ 3.3 V = 396 mW (6.5)

Then this value has to be derated considering the actual writings scheduling.
It is referred to as WRsch(%), standing for the ratio between the cycles the write
data is on the bus with respect to the cycles between successive active requests to
different banks. Reporting the computation from the technical notes, supposing to
have an average of 36 cycles between active commands and the data on the bus for
8 cycles:

WRsch(%) = no. of writing cycles

no. of active cycles
≃ 22 % (6.6)

Then the scheduled power for writings operation can be computed:

Psch(WR) = 396 mW ∗ 22.22 % = 88 mW (6.7)

As it is computed for a BL = 4, if a different length is selected, then it is
suggested to multiply the scheduled power by a factor equal to (4/BL) to account
for a different length of the burst operation.

During a READ operation the power consumed is quite similar to the one needed
for a WRITE one whenever a row is activated. In fact, as showed in the notes, the
profile of the current that flows in this case is almost identical to the writing one.
The power contribute taken from datasheet for a READ operation is computed as
follows:

Pds(RD) = (160 mA − 40 mA) ∗ 3.3 V = 396 mW (6.8)

Also in this case the actual scheduling of RD operations has to be used to derate
the previous value to take into account for real bandwidth carried out in a read
operation. It is specified as RDsch(%) standing, as for writing one, for the ratio
of the cycles which hold data to read on the bus over the total cycles between two
active requests. Supposing as well 8 cycles for data on the bus over an average of 32
cycles, RDsch(%) = 25 %. Hence, as for equation 6.7, the actual scheduled power
consumed for a READ operation is:

Psch(RD) = 396 mW ∗ 25 % = 99 mW (6.9)
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These last two contributes determine the consumed power for reading and writing
operations. However the total power has to consider also the one consumed by
output driver that is specified as on-die termination power. As mentioned in the
notes, this requirement is not present in the datasheet but however must be taken
into account since depends on the given system in which this SDRAM is used and
cannot be neglected. Nevertheless this refers mainly to the used resistance values for
the on-die termination when interfacing with the SDRAM and this is a configurable
parameter for DDR technology on by programming internal registers, while for the
used SDR SDRAM this contribute is not considered in the datasheet itself.

Finally, the power needed for refresh operations has to be computed. This is the
major component that is interested in this designed controller architecture and this
is the last contribute that must be computed for the total SDRAM power. The
datasheet indicates both Auto-Refresh current, given by IDD5, and distributed Self-
Refresh current, referred to as IDD6. The current interested in power consumptions
is referred to IDD5, whose value and profile is obtained in the worst case condition
considering minimum tRFC delay between active or refresh commands and at the
same speed grade at which the device is used. As previously stated, in this operation
also the stand-by current IDD3N is consumed and so it must be considered to get
correct Pds(REF):

Pds(REF ) = (210 mA − 40 mA) ∗ 3.3 V = 561 mW (6.10)

To get the actual power consumed for refresh operation, it is necessary to consider
that the refreshes commands are issued in a refresh cycle window at a time interval
given by tREFI, computed as in 1.1 considering the refresh cycle tREF of 64 ms
and the number of rows in a bank to refresh (R). So the actual power is computed:

Psch(REF ) = 561 mW ∗ 60 ns

7.8 µs
= 4.32 mW (6.11)

The power contributes have been conducted according to the worst-case specifica-
tions conditions at which the different currents have been profiled. Actually, indeed,
the FPGA based-system works with a LVTTL of 3.3 V instead of the maximum
voltage of 3.6 V for which the currents have been measured. Moreover, the used
clock frequency is generated through a PLL circuit to obtain a frequency of 140 MHz,
slightly different from the speed grade at 143 MHz at which the timing parameters
have been obtained. So the computed power contributes have to be scaled to the
operating conditions.
The power contribute, referred to the used VDD with respect to the maximum VDD
specified in the absolute maximum ratings depends on voltage square, on the input
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capacitance C and on the frequency f. Hence, the power derated to the used voltage
is:

Psys = Psch ∗
(︄

applied V DD

max V DD

)︄2

(6.12)

Also a frequency scaling is needed for the previously computed power contributes
that change with frequency.
Active power components need to be scaled while contributes in which the memory
is in power-down mode don’t need to be scaled because of disabled clock in this
condition. Scheduled power for refresh operations does not need to be derated since
it refers to the time period between active commands and not to frequency. The
frequency derated power, considering the linear dependence of the power with the
frequency itself, is computed as:

Psys = Psch ∗
(︄

used frequency

specified frequency

)︄
(6.13)

The specified frequency refers to the one at which currents profiles have been
obtained. The conditions of the test, as indicated in the datasheet, refer also to a
rate that is minimum for a given latency specified by the CAS parameter, especially
for the operating current IDD0/IDD1 whose profile has been showed previously.
When all the power contributes have been derated for both actual frequency and
supply voltage, the final SDRAM power for any usage condition is computed
summing up all the components. Also the power due to the on-die termination and
the power related to the data bus DQ have to be added according to the system
in which the SDRAM is used. To avoid to compute all these values, Micron® has
provided an available worksheet [16] to automatically obtain the power consumptions.
The spreadsheet allows to specify the speed grade for the actual frequency and
latency for CAS parameter, the number of data strobes on the bus per DRAM and
the memory density. After inserting all the parameters, timings and currents over
all, then the usage conditions must be provided, such as system supply voltage,
frequency and the percentages of usage conditions. The output load has to be
specified as well, to automatically compute the power for output or termination
on the DRAM when the memory itself drives the bus (for a READ operation).
This power contribute per DQ must be multiplied by the number of strobes on the
device. To compute tRRDsch, the technical notes take into account a new entry
called “PageHit(%)”. The rate of this value corresponds to the amount of readings
and writings operations successfully performed to a row which already was read
or written previously over the number of total writings and readings commands
performed on that row. This depends on the amount of accesses performed on
every single location, hence is mainly due to the running application. Notebook
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applications and desktop as well experience high percentages of this parameter,
while server applications demonstrate to have low percentages experiencing low hit
rates to the same page location. The correct equation for tRRDsch [15] is reported
in the following:

tRRDsch =
[︄

BL/2
(RDsch% + WRsch%) ∗ fclk

]︄
/(1 − PageHit%) (6.14)

Then an example of the usage of the SDRAM in a system environment is provided.
The memory integrated circuit on the DE1-SoC development board has one rank
only, then RD and WR percentage of termination scheduling is null since always
the same rank is used. Data bus is fixed to 16 bits, as in the used configuration for
the realized FPGA-based architecture and the controller issues operations only to
this unique rank. Taking the data example for a mobile sample application from
the notes, where two ranks of DRAM are used, the total utilization of data bus is
set to 80 %, divided in the percentage of cycles which are yielding data from the
DRAM (50 % of the bandwidth for reading operations) and the percentage of cycles
which are writing to the DRAM (30 % of the bandwidth for writing operations).
Since the memory hierarchy has two ranks, the bandwidth is supposed to be equally
distributed for each of them. To have such a high value of bandwidth, a 50 % hit
rate is considered by the example, and this value can be acceptable if one considers
the latency added by the refresh overhead that causes lots of row misses. Moreover,
in this first case power-down condition is never entered, hence the percentage of
time that all banks of the DRAM are precharged is assumed to be 20 % of the total
operating time. According to these chosen values and considering a maximum BL
of 4, average tRRDsch for successive active commands is equal to 71.43 ns.
In Figures 6.3 and 6.4, the “Device Spec” for the used SDRAM and the “Usage
Conditions” tabs of the worksheet [16] are showed.

Provided all the information, the single power contributes are reported in the
“Power Calcs” tab, derated to the used conditions. The results are shown in Figure
6.5.
The “Summary” tab, reported in Figure 6.6, shows the final power consumption

contributes plotted in a bar graph.
The SDRAM rank consumes 130.7 mW background power (including the refresh

power too), 182.9 mW activate power and 294.8 mW for write and read operations,
including data bus power consumption. Hence, the total SDR SDRAM power
consumption in the system environment is about 608.4 mW and this value has to
be multiplied by the number of DRAM ranks to obtain the total power consumed
by the memory system. As visible, the refresh power P(REF) corresponds to 12.1
mW: in the designed controller the power consumed by the Auto-Refresh is null
since this command is never issued, so the total background power is reduced to
118.6 mW, having so background power savings for 9.2 %. This is a low density
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Figure 6.3: SDRAM device specifications [16]

Figure 6.4: SDRAM usage conditions [16]

memory, but in a modern DRAM chip the power consumed for refresh operations
requires a higher current, hence the power savings are considerable. Due to the
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Figure 6.5: Power computations derated to the system conditions [16]

Figure 6.6: Power consumption summary overview [16]
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Figure 6.7: Power consumption summary overview without refresh power [16]

long retention times, the power for activation is quite the same since row-by-row
refreshes can be seen as accesses for read bandwidth and it is not too much affected
considering that almost the 99 % of rows are activated only at the longer retention
time as seen in profiling simulations, where the maximum chosen one was 4.096 s:
this means that the rows are almost all activated one time every 64*tREF, which is
quite negligible in terms of power. Finally, in Figure 6.8, are reported the power
consumptions for the case in which the SDRAM enters in power-down mode for a
certain time period. To compute power contributes in this situation, it is necessary
to consider the equation 6.2 for scheduled power-down mode power in precharge and
active conditions. In the analyzed application case, the rank of the used SDRAM
is supposed to perform active operations in the 40 % of time usage while in the
remaining 60 % of time the memory is left idle. Then, the time percentage in which
all the banks are precharged is set to 20 % of the total idle time, meaning that one
third of the total idle time the banks are precharged. Now, assuming that of this 20
% of the precharge state time in which no active operations are performed, 15 % of
the time has at least one bank active (CKE_LO_PRE(%)) and remaining 5 % has
all banks precharged (CKE_LO_ACT(%)) for the time in which clock enable signal
is de-asserted, the power consumptions considering power-done mode condition are
summarized in Figure 6.8.
As expected, background power is reduced since the currents flowing in precharge

power-down (IDD2P) and active power-down (IDD3P) are lower as reported in
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Figure 6.8: Power consumption summary overview with power-down mode [16]

Table 6.1. Hence, total background power is reduced from 118.6 mW to 106.3 mW,
so having power savings for 10.4 % with respect to previous analyzed conditions
where power-down mode is never entered.

6.2 Area estimation
Concerning the area occupied by the entire architecture, an estimation of the area
on the used Cyclone® V FPGA device family will be provided. In the minimized
datapath structure showed in Figure 5.11, only the most important blocks have been
reported: used counters and some combinational logic are not displayed for a better
clarity. Nevertheless, it is quite important to understand which is the overhead, in
memory bits, of the two SRAMs used to store the thresholds and current counters.
In the actual configuration with 8-bits thresholds, that define a retention times
range from 64 ms to about 16 s, the memory occupation depends on:

• ADDRESS_WIDTH = BANK_WIDTH + ROW_WIDTH = 13 bits

• DATA_WIDTH = NBITS_THRESHOLDS = 8 bits

Hence each memory has 32768 rows (all the SDRAM ones) by 8 bits each,
covering so 32 KB. Considering the presence of both thresholds and current counters
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memories, the total storage overhead corresponds to 64 KB.
Then, if one considers the area occupied by one of the banks of the used SDRAM,
that has in the configuration 8192 rows by 1K page and a data parallelism of 16
bits, the area in memory bits corresponds to 16 MB: hence, the thresholds storage
overhead corresponds to only the 0.2 % of one bank area, that is quite negligible. If
compared to the total SDRAM area, the overhead corresponds to a paltry percentage
of 0.05 %. The advantages of this architecture come with modern DRAM chips
with higher densities, where the thresholds storage contribute is even more reduced
compared to the entire DRAM area. The additional contribute is given by the
controller usage for skipping refreshes, where an additional SRAM has to store
the addresses of the rows that must not be refreshed at all: the overhead added
from this feature depends on the application and from the user choices according to
the system requirements. To give an idea, if the user selects 1K addresses to not
refresh, the additional overhead is equal to 15 Kb, that is still negligible. Then it is
advisable to choose, in this configuration, a limited number of rows compared to
the total SDRAM capacity to avoid incurring in considerable overheads.
In order to provide more quantitative results of the area occupied in FPGA, the Fitter
Resource Usage Summary report has been extracted from Quartus® synthesizer,
which displays the percentage of a given resource used in the design. This report
shows a detailed analysis of the logic utilization based on Adaptive Logic Module
(ALM) usage, that is the basic building block of these device families and is designed
to have best performances and resources usage. In practice, the logic utilization to
build the design refers to a portion of the ALMs available on the device (ALMs
needed over total ALMs) and this is the used metric to find the area occupied on
the chip in FPGA.
The report summarizes also the combinational ALUT usage for logic: an Adaptive
Look-Up Table (ALUT) represents a logical construct which can be realized by the
combinational logic of an Adaptive Logic Module (ALM) in the device. Moreover, in
an ALM the Fitter can select from different paths to control a register input signal.
As mentioned in the guide [17], there are paths that are dedicated which bypass the
logic defined by the LUTs; direct paths, instead, move across the LUTs. The way in
which the path is chosen depends on the critical paths in the designed structure:
in some cases it might be better to have a register driven using a direct path if
the logic given by the LUT is not utilized for another one in the implementation.
Finally, the dedicated logic registers entry is reported: this refers to number of
registers in the design realized with the same logic of ALMs. To understand the
area occupied by the designed controller architecture, a comparison between the
area of the basic SDRAM core controller discussed in chapter 2 and the one of the
final implementation with the optimizations reported in chapter 5 will be displayed.
In the following figures, Fitter Summary and Resource Usage obtained from the
Compilation Report for the two cases are explored.
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Figure 6.9: Fitter Summary for the basic controller

Figure 6.10: Fitter Resource Usage Summary for the basic controller
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Figure 6.11: Fitter Summary for the advanced controller

Figure 6.12: Fitter Resource Usage Summary for the advanced controller
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Looking at the utilization in ALMs, the final advanced controller occupies only 7
% more logic than the initial basic controller on the device chip. The number of
dedicated registers is higher as well, while the number of the used pins is almost
the same since both the implementations interface, in principle, with the SDRAM
pins only. The significant result is given by the total block memory bits entry: the
final controller architecture has 11 % more of total block memory bits on the device
over the basic controller, as a result of the usage of thresholds and current counters
memories (32768x8 configuration each) and of the SRAM for skipping refreshes
(256x15 configuration). No synthesis has been performed through Synopsys® design
compiler or similar, since the controller architecture would reside on the FPGA chip
in a more complex system where the SDRAM is used and it is not needed to realize
a stand alone integrated circuit for such implementation.
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6.3 System performances estimation
When this controller architecture is brought to a real system, the advantages come
from the removed Auto-Refresh feature in favor of a reduced rate of refreshing,
exploiting retention times distribution. To understand the increase of performances
due to the usage of RAS-only refreshes together with actual retention times, it
would be necessary to execute several benchmarks that stress the memory usage in
different conditions, when trying to replicate real system applications. Unfortunately,
simulators that support SDR SDRAMs are difficult to find today, so a future work
could be involved in replacing the SDR SDRAM core controller with a DDR one,
without modifying the surrounding realized architecture that would continue to
work. However, to give an idea of the improvements some considerations will be
done.
Supposing to choose as refresh rate, after the profiling procedure, the minimum
found retention time at room temperature of 1.024 s for all the rows to reduce
VRT state changes and to have a more reliable refresh process, this means that
in 16 tREF refresh cycles of 64 ms only in the very last one all the rows will be
refreshed. So, considering the refresh command duration, that in Auto-Refresh takes
60 ns (tRFCmin) while in RAS-only refresh takes 52 ns (minimum activation time
tRAS plus minimum precharge time tRP), the total time that the SDRAM spends
refreshing for the two cases is reported in the following Table 6.2, where the values
are derated to the actual clock frequency of 140 MHz.

A controller that issues RAS-only refreshes saves 6.32 ms in 16 refresh cycles,

Refresh type Time spent (ms)
Auto-Refresh 8.43

RAS-only refresh 2.11
Improved RAS-only refresh 1.87

Table 6.2: Refresh types latency comparisons in 16 tREF cycles

that corresponds to a refresh time saving of about 75 %. All this time that the
SDRAM does not spend in refreshing is time gained in serving user requests, then
this results in a reduced access latency and improved performances. Although the
tRAS optimization does not improve the area and not even the power consumptions
(for RAS-only refreshes the power consumption refers to the activate power, whose
accesses are determined by tRRDsch but due to the reduced refresh rate, the average
value of tRRDsch is mainly fixed by reading and writing operations according to the
system application bandwidth), a reduction of the Row Access Strobe delay results
in an improvement of the time spent in doing refreshes. In fact, having reduced
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tRAS of one clock cycle, that at 140 MHz has fallen from about 42.86 ns to about
35.71 ns, now a refresh command (activate plus precharge) lasts about 57.14 ns
with respect to the previous 64.29 ns, providing further refresh overhead reductions.
In particular, comparing with the time spent in the same 16 tREF by the other
solutions, the total time spent in refreshing corresponds to 1.87 ms providing so 11.4
% more refresh reduction over RAS-only refresh with standard timing parameters
at the actual clock frequency.
In Figure 6.13 an indicative comparison with other implementations present in
literature has been done, in terms of occupied logic area (as % of a DRAM bank
area) and refresh reduction.

Figure 6.13: Comparison with other implementations [1], [4], [5]

6.4 Validation test
In this section a validation of the controller has been performed. The memory is
written with pseudo-random data in the same way done in the profiling step. After a
time delay of 4 hours where the memory, in the worst case, is left idle without issuing
accesses, the locations have all been read and compared with the data written at the
beginning: the comparison determines if the rows are able to retain data with their
profiled retention times and, then, if the controller is reliable enough in performing
actual retention times-based refreshes. The room temperature has been tracked
during the simulation time and possible variations of ± 10 °C have been issued to
the controller. The results of the test are reported in Figures 6.14 and 6.15.
The room temperature has been acquired every 5 minutes, for a total of 48 samples
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Figure 6.14: Room temperature trend Figure 6.15: Refresh rates distribution

across the simulation time. The temperature has not reached a variation of ± 10
°C, hence no retention times updating has been issued. The chosen retention times
for the simulation test are 512 ms, 1024 ms, 1344 ms and 2752 ms.
Figure 6.15 reports the distribution of the retention times obtained after 4 hours by
reading back the content of the rows. The green dashed line represents the retention
times distribution at the beginning of the test, while the red dashed line reports the
retention times distribution after the 4 hours of simulation: the result is that only
3 rows out of 32768 have failed the test, reporting bit failures in some cells. This
means that, even in a worst case condition where the memory is left completely
idle, the controller is reliable enough at such retention times distribution. This is
corroborated by the fact that a typical DRAM cell is affected by VRT especially
for retention times over about 3 seconds where the state changes are, instead, very
frequent. In conclusion, choosing a correct profiling, the user can finally rely on a
safe memory usage through a controller that issues retention times-based refreshes.
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Chapter 7

Final conclusions and future
work

7.1 Conclusions
The controller architecture is now able to issue RAS-only refreshes according to
the profiled retention times distribution using the best pattern for the adopted
SDRAM. The core controller of the SDR is able to provide single word accesses
or burst-based accesses, whose length is configurable. The accesses are handled
by the RRM to further improve the refresh reduction, as an access corresponds
to fully restore the content in the selected row. Then, the architecture has been
modified to include a configurable SRAM to save addresses of some rows to not
refresh at all and this could allow to achieve further benefits in terms of refresh
overhead reduction and power savings when consented by a specific application. For
example the presence of non critical data whose bit failures are not destructive in
terms of performances or a high flow of data that are continuously read and written
in these locations make refreshes unnecessary. The feature of skipping refreshes is
configurable and the number of addresses to save, at the maximum retention time,
is configurable as well, providing to work at room temperature where the number
of rows at the maximum retention time is pretty much high. Then, temperature
variations of ± 10 °C with respect to the reference profiling room temperature have
been handled, where the retention times are halved or doubled accordingly. This
implementation choice comes from the need of handling the temperature effects on
the retention times distribution but also to avoid weighing operations down. Finally
an optimization on the Row Access Strobe timing parameter has been conducted [4]
to further reduce the refresh overhead in RGR mode and clock gating technique has
been applied to the controller whenever the SDRAM enters in power-down mode.
Power and area estimations have been provided to broadly understand the power
savings and the storage overhead produced by this implementation, which in general
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is quite irrelevant. The logic required for the entire implementation does not affect
execution critical path, since the refreshes are generated in parallel with the normal
functionality of the memory controller and its frequency is however smaller than a
processor clock frequency could be.
A final consideration can be done on the challenging problem of VRT. Experimental
studies conducted in work [2] have demonstrated that none of the DRAM cells
of all of the tested chip families had a retention time lower than 1.5 seconds at
a room temperature of 45 °C. The result is that there are lots of cells, and then
rows, that could be refreshed at very low rates. The analysis done in this thesis
work has demonstrated that, for the four tested retention times, most of the rows
can be refreshed at 1.024 s as minimum retention time, then setting thresholds
and current counters memory locations to 16. However these results are valid and
true for the tested SDRAM on the DE1-SoC development board and they could
be in part or totally different for another memory: taking into account all these
factors and the considerations made until now, the behavior changes from memory
to memory depending from the architecture too, thus it is always necessary and
strongly recommended to profile the memory first before using it in an attempt to
reduce the refresh overhead. This is the reason for which the control has been built
in such a way that, to start the row-by-row refresh mode, you have to pass through
characterization states before activating the RRM. Although the DPD is bypassed
by checking for the worst-case data pattern to apply and taking some precautions
in doing the profiling, VRT instead is always present and is a real problem in
retention times characterization. Fixed the pattern, the performed simulations have
been executed under room temperature variation and cells retention times mainly
followed the temperature trend. The FPGA-based architecture has not built for
studying VRT but it is obvious that, at fixed temperatures, the effects of VRT on
profiling would be remarkable. In work [2], in all the devices that have been tested
most of the cells stayed in the high retention time state, in that case equal to 6.2 s.
Although the state changes are very marked, as visible in Figure 11 of that work
and reported here for clarity in Figure 7.1, it has been found that almost the totality
of the cells were found to have a minimum retention time period of about 1.5 s, in
agreement with the seven days simulations performed in this work.
Moreover, in the same work [2], it has been found that most cells stayed in high

retention states for about 4 hours and only some cells stayed in high retention states
for the entire day of the experiment: this means that repeated simulations on more
days are needed to perform a correct profiling of the minimum retention time of
any cell. That’s what has been observed in the performed analysis: apart from
temperature variation, when the experiments were conducted for the first four days
for a total of about four hours, at intervals of half a hour, it has been observed
that the rows almost faithfully followed the temperature variation along the test.
Most of them (≃ 99 %), in fact, stayed in high retention time state of 4.096 s in
agreement with what mentioned in the experimental study. On the contrary, in
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Figure 7.1: Retention time behavior of a typical VRT cell [2]

the last three days simulations of the week performed for about 8 hours a day at
intervals of a hour, it was found that for some temperatures equal to ones in the
first four days simulations the behavior was in some cases different in terms of the
number of rows found in the various retention time states. This means that the
effects of VRT are more visible along a day of simulation. However, since these
simulations have verified that none of the rows exhibited a retention time lower
than 1.024 s, thus setting this value as refresh rate for all the rows could minimize
the errors due to VRT.
As a final consideration, one should account that even if this procedure could
provide a limited number of errors, a particular application, in which this design
can be involved, could require a memory completely free from errors: the use of
error correcting codes (ECC) could be a good way to solve the problem and to
handle VRT [10], except that this mechanism would require too much energy and
capacity during the execution time for DRAMs, making this solution not generally
applicable. So, in short, this controller architecture solution has been realized and
thought for resilient applications, like video coding ones for example, where a limited
number of failures can be accepted provided that they do not affect significantly
the performances.

7.2 Future work
The problem encountered in this work mainly concerns the lack of a simulator to
properly test the SDR SDRAM controller running some benchmarks. Although
it has not been possible to perform such tests, lots of works in literature have
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demonstrated that similar architectures that aim to reduce the refresh overhead
in DRAMs in general, in the end get huge benefits in terms of performances. In
all the cited works different boards have been exploited, in most cases provided
with a channel for testing external SO-DIMMs or custom PCB have been realized
conformed with standards. In this way different chips from different vendors could
be tested and, especially, they could work with modern DDR chip of memories.
Simulations performed on DDR3 from different manufacturers have demonstrated
that the refresh reductions are more and more marked in modern memories due to the
high density of cells. Refresh overhead is expected to aggravate in next technology
nodes due to more rows to refresh at a time and so the power consumption is
expected to reach the limits imposed by that technology, making impossible to
further scale in frequency. In this context, the idea proposed in this work could
help to reduce the problem of refresh by relaxing power constraints and increase
frequency, having thus a reduced response latency at the cost of a small loss of
performances. Other works, orthogonal to this, have focused on reducing refresh
in different manners, like providing VDD scaling or reducing the data bus traffic
exploiting different kinds of data compressions.
The advantage of the proposed solution is that is quite general and can be applied
to different types of SDRAMs, by simply setting the proper configuration. In fact,
apart from the sequence of activate and precharge for RAS-only refreshes and the
sequence of commands used for determining the minimum tRAS value, the core
controller has not been further customized. Surrounding this, the designed controller
handles the environment operating conditions and addresses proper commands to
the core controller in order to reduce the unnecessary number of refreshes. In this
sense, the controller architecture can be modified by replacing the SDRAM core
controller of the SDR with the one of a DDR by simply configuring in the proper way
also the surrounding top level architecture. In this way simulations can be addressed
by launching benchmarks of different types and with different accesses distributions
to understand all the benefits given by this solution. As demonstrated by the cited
works and stated here, the benefits on DDR SDRAMs are remarkable and we are
convinced that same benefits can be hopefully obtained with this implementation
when applied to a modern memory device.
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User specifications

Figure A.1: Advanced SDRAM controller top entity

Figure A.1 shows the top level entity of the designed controller architecture. In
the host interface side, in LIST OF GENERICS are reported the timing parameters
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that the user must set in clock cycles, the used clock frequency (in MHz), the refresh
time period (in ms that is 64), the refresh count (number of rows in a bank, here
8192), bank, row and column width as address bits and data width as data bus bits
parallelism. Then there are other three parameters:

• SDRAM_HADDR_WIDTH = sum of bank, row and column address bits

• SDRADDR_WIDTH = max[ROW_WIDTH, COL_WIDTH]

• SELECTIVE_REF_MEM_ROWS = # of rows refreshes are skipped to

All these parameters depend on the selected configuration for the SDRAM. For
the used memory, here is a setup list of all the generic parameters:

• tRCD_CYCLES = 3

• CAS_LATENCY = 3

• tRP_CYCLES = 3

• tDPL_CYCLES = 2

• tRFC_CYCLES = 9

• tMRD_CYCLES = 2

• tRAS_CYCLES = 6

• CLK_FREQUENCY = 140

• REFRESH_TIME = 64

• REFRESH_COUNT = 8192

• BANK_WIDTH = 2

• ROW_WIDTH = 13

• COL_WIDTH = 10

• SDRAM_HADDR_WIDTH = 25

• DATA_WIDTH = 16

• SDRADDR_WIDTH = 13

• SELECTIVE_REF_MEM_ROWS = 256
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Provided the configuration, the SDRAM is ready to perform operations. In LIST
OF PORTS are reported the signals available to the user. Here is reported the list
of the signals used to communicate with the controller:

- INPUTS

• START_ROW_REFRESH
• CURRENT_TEMPERATURE
• SELECTIVE_ROW_GRANULAR_REFRESH
• RD_ADDRESS_SELECTIVE_MEM
• SELECT_PATTERN

- OUTPUTS

• BUSY_CHARACTERIZATION
• OUT_ADDRESS_SELECTIVE_MEM

START_ROW_REFRESH asserted by the user triggers the beginning of the
SDRAM profiling and the use of the memory in a row-by-row refresh mode.
CURRENT_TEMPERATURE is a 2 bits wide signal that, at reset, has to be set
to “00”. When the profiling has finished, the memory will be refreshed according
to the distribution of retention times, obtained at the current reference room
temperature (TREF ). As described in section 5.2, the memory controller is able to
handle temperature variations at steps of 10 °C from TREF to TREF + 30 °C. The
user has to change this signal value whenever an increase or a decrease of about
10 °C is detected, having established that a temperature increase or a decrease of
about 10 °C requires retention times halving or doubling respectively (Figure 1.2
taken from work [2]). An increase of 10 °C over TREF (changing the signal value
to “01”), causes the halving of the retention times. A further increase of 10 °C over
current temperature (changing from “01” to “10”) causes the retention times to be
one fourth of the starting TREF retention times values. At TREF + 30 °C (from “10”
to “11”) the retention times are one eighth over TREF ones. At any temperature
in the range [TREF + 10 °C, TREF + 30 °C], if the user detects a reduction of the
temperature of 10 °C, then can change the signal value at steps of 10 °C where
the retention times values are doubled each time and so, passing from “11” to “00”
in 3 steps the user can restore the initial retention times values obtained at TREF .
The halving is done without any rounding factor, since an integer value is needed
and then the truncation towards minus infinite is just fine to provide safe retention
times conversions. Note that over TREF + 30 °C the controller does not handle
temperature variations anymore and it is necessary to perform again the retention
times profiling, since the exponential behavior of retention times with respect to
temperature makes the memory less reliable at such high temperatures. Moreover
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a temperature change requires a dummy readings cycle, then increasing accesses
memory latency: this is one of the main reasons for which only a span of 30 °C has
been handled. Note also when starting with “00” at TREF or when returning to this
value after successive temperature variations, you cannot double the retention times
if the temperature drops 10 °C below TREF : this, clearly, would make the starting
retention times characterization useless.
SELECTIVE_ROW_GRANULAR_REFRESH, asserted at reset, tells the memory
controller that the user wants to skip refreshes to some rows, as a system application
requires it or simply because the application has a set of non critical data whose
integrity is not destructive in terms of performances.
RD_ADDRESS_SELECTIVE_MEM is the address signal to point to this memory
of not refreshed rows to know where these locations are actually present in the
SDRAM.
OUT_ADDRESS_SELECTIVE_MEM corresponds to the data output of this
memory and refers to the actual SDRAM row addresses. The reading is asynchronous,
hence the output is immediately available.
SELECT_PATTERN is a 2 bits wide signal that allows the user to configure the
profiling of the retention times distribution using one among four different patterns:

• “00” −→ all 1s

• “01” −→ all 0s

• “10” −→ checkerboard

• “11” −→ pseudo-random

The choice, as previously mentioned, stands in the SDRAM architecture complex-
ity and in the type of application that will be run. A quasi dynamic pattern usually
provides a good coverage of bit failures but if the memory has a small capacity and
the application has a sparse memory filling, a pattern like all 0s could also provide
a good result.
Finally, BUSY_CHARACTERIZATION is an output signal warning the user that
the memory controller, and hence the SDRAM, is busy performing the retention
times characterization.
The following signals of the host interface side, instead, are used to communicate
with the SDRAM core controller. Explanatory signals like addresses and data ones
to communicate with the memory are skipped for simplicity.

- INPUTS

• POWER_DOWN
• ONLY_READ_BURST
• SEL_BURST_LENGTH
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- OUTPUTS

• RD_READY
• BUSY
• PLACE_ONBUS_DATA_BURST_TO_WRITE

POWER_DOWN, if asserted when SDRAM is idle, puts the memory in power-
down mode by suspending the clock. Note that in power-down mode, the rows are
not refreshed and any dummy reading command cannot be received, hence causing
bit failures. It is the user concern to leave this state as soon as possible, where for
the Auto-Refresh feature is before tREF elapses, otherwise data integrity could not
be guaranteed. Applied clock gating technique suspends clock also for the controller.
ONLY_READ_BURST set to ‘1’ at power-on configures the SDRAM to provide
burst readings and single word writings. When set to ‘0’, burst mode is selected for
both readings and writings.
SEL_BURST_LENGTH is a 2 bits wide signal to select the burst length in both
readings and writings. “00” corresponds to 1 word burst length, “01” to 2 words,
“10” to 4 words and “11” to a burst 8 words long.
For the output signals, BUSY signal is asserted to ‘1’ whenever the SDRAM is per-
forming active operations, that are initialization, readings, writings, Auto-Refreshes
or RAS-only refreshes.
RD_READY is asserted to ‘1’ the next clock cycle to which the data is on the bus
when a reading operation is performed. When a burst mode is selected, this signal
is asserted for all the entire duration of the burst length.
PLACE_ONBUS_DATA_BURST_TO_WRITE is asserted by the memory con-
troller during a write burst operation: when this signal is set to logic ‘1’, by the
next clock cycle the user has to place on the bus, in successive clock cycles, the data
to be written in memory for as many clock cycles as the burst length. Timings of
the usage of these last two signals are omitted here, since they have already been
showed in Figures 2.6, 2.7 and 2.8 and during retention times profiling readings step
in Figure 4.8.
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