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Abstract
The thesis work deals with the implementation of three different algorithms to be

used during the training of a network to replace the classic algorithm of backpropa-

gation using one of them [15]. They are based on the Random Feedback Alignment,

which reduces the computational work required to obtain the transposed of the

forwarding weights necessary during the classical backpropagation using random

matrices [13]. The error information is propagated from the last layer to the others

using the random matrices. The three algorithms studied modify the path used to

transport the error from the last layer to each previous one [15]. They are imple-

mented on different networks to understand which algorithm is more indicated for a

deep one as the Residual Neural Network (ResNet) and the performance differences

reached are computed. There are many advantages using random propagation: the

possibility to parallelize the computational work during backpropagation; the for-

ward and backward steps performed simultaneously; reducing the memory accesses.

Variations of the Feedback Alignment algorithm are studied to understand if they

can give back better accuracies on a deep network as ResNet [18]. After simulations

performed using the PyTorch framework, there is a theoretical study of the com-

putational requirements differences using the various solutions considered during

the work and it is analyzed which implementations can give a better alternative to

backpropagation.
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Chapter 1

Introduction and targets to reach

One of the most efforts during the training of a network is due to the computational

requirement for the transpose of the weights required during backward and the

management of memory accesses since they increase the time required to perform the

operations. The transpose operation is necessary to compute the different gradients

of outputs and inputs of each layer. Once the output of the whole network is

computed, the loss referred to the label assigned to each input is calculated and

the gradients of the loss with respect the last output is used to train the network.

This term is used to compute the partial gradients of inputs of each layer and it is

required to multiply this term to the transposed weight used during forward for the

error propagation. The possibility to replace the transposed forward weights with

random ones has been proposed by Lillicrap [13]. Successively Nøkland proposed two

additional algorithms to one of the previous paper, the Direct Feedback Alignment

and Indirect Feedback Alignment [15]. These three algorithms are important since

they expose the possibility to change operations required to train a network, with

the possibility to reduce memory accesses or computations in the training phase of

a network. The targets to reach in this thesis work concern the possibility to apply

them to a Residual Neural Network (ResNet), to compute the final accuracy to

understand which one of the three implementations are best suited for our purpose

and to analyze the possible reduction in the computational cost achieved through

the different solutions. The structure of the network has been chosen because it is

one of the most accurate in the image recognition task and its structure is developed

to an efficient error information transport, avoiding vanishing gradients without an

increase of computational complexity. The work has been developed starting from

a simple network to understand how the accuracy values will be modified by the

algorithms and more complex networks are used on the solutions more promising.

The ResNet has been studied in the last part to understand the results obtained

with the different solutions adopted in the previous networks and to analyze the

effect obtained in deeper networks. Other optimizations presented recently were

considered to obtain a complete understanding of the propagation of the error in deep
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networks [18] [20] [22]. An analysis of the computational cost required by the most

important solutions studied is presented in the last chapter in order to understand

if the backpropagation can be replaced with algorithms with less computational

complexity or if it is possible reduce the memory required or the accesses.
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Chapter 2

State of the art

2.1 AI and Neural Networks

In the last decades, there have been improvements in artificial intelligence (AI)

field, due to the increase of the computational capability of the calculators and in

the numbers of fields interested in the performances that can be achieved [23]. The

application of AI has reached many different environments like medical diagnostic,

images recognition, autonomous driving cars and others. They are all based on

the ability of a system, not programmed to perform a specific work, to learn how to

respond to inputs from the external world and to take decisions after a training step.

This means the possibility that a system can learn and perform actions to respond

to inputs not provided during the training. The neural network is the basic unit

behind the artificial intelligence system and it is associated with the brain for its

structure. The element similar to the neuron is the axon, which inputs are multiplied

to weights and a non-linear function is applied to the sum of them:
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Figure 2.1: Schematic structure of an axon

The training phase is required since the weights are initialized randomly, with

some distribution used to be faster, so at the beginning, the network is not able to

classify inputs received.
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This ability is acquired after that the weights values are updated, so the net-

work can approximate complex non-linear functions and recognize inputs never seen

before. There are different methods to train a network:

• Supervised

• Unsupervised

• Semi-supervised

The first one uses a dataset of images in which a label is associated with each input

to indicate their class. This label is used at the end of the forward step to compute

the loss term. The derivative of this term indicates the error committed during the

forward phase and it is propagated back to each layer to update the values and get

better accuracy. The second method uses a dataset without labels and the task of

the machine is to be able to extract common features from the inputs and be able

to distinguish them. An example can be a machine to check spam incoming. The

third method is a mix of the previous two.

2.1.1 Linear and convolutional layers

A neural network is based on stacked layers and an activation function is performed

at the output of each layer. The layers of a network can be different, due to the func-

tion that is applied to inputs. There are linear and convolutional layers for example.

The first uses a linear function, where the inputs are multiplied for the weights and

a term of bias can be added. The second type of layer performs product iteratively

between the input images and a kernel of weights. This method is preferred for a

deep network, in which there is more than one hidden layer. It allows to reduce the

dimensions of the input for each successive layer and it is able to reach a higher level

of abstraction, generating a features map [23].

2.1.2 Forward

During the forward phase, outputs are computed from inputs applying the right

function of the layer. The output of the whole network is a probability term for

every class and the higher one is the choice of the network for the class where the

input image belongs. Since the weights are random the training phase is required.

The equations that are used during forward are:

an = xn−1 ∗Wn−1 + bn−1 (2.1)

xn = f(an) (2.2)

18



where indicating with n the specific layer of the network:

• xn−1 indicates the input;

• Wn−1 the weights;

• bn−1 the bias term added;

• an the output of the layer;

• f() the activation function applied;

The multiplication between weights and inputs can be replaced by convolution if

there is a convolutional layer. There are different types of activation function that

it is possible to apply, like Rectified Linear Unit, Tangent Hyperbolic or the Sigmoid.

The activation function purpose is to obtain a probability term for each class and the

higher term is the choice of the network referred to inputs received. Each activation

function can be more adapted for a specific classification purpose, related to the

subject that the network must classify.

2.1.3 Training of the network

The purpose of the training is obtaining probability values more accurate in the

class where the input belongs. This phase requires computational efforts in relation

to the number of layers and their weights that are related to the number of features

requested to be extracted. A huge number of weights can have a negative effect,

resulting in a network not able to learn due to overfitting, that occurs when a network

learns too much from training dataset and it is not able to recognize different inputs.

Weights and biases values will be updated using a training set of images, where the

class is indicated by a vector in which the 1 (100% probability) indicates the right

class and other are 0. After the first forward it is possible to evaluate the error or

loss computed by the networks since its output will be a vector with dimensions

like the number of classes and a probability value for each class is computed. The

update is obtained in different steps: loss computing, obtaining the gradient of the

loss referred to the output and propagation of this value through all the layers.

2.1.4 Stochastic gradient descent

The Stochastic Gradient Descent method allows the computation of partial deriva-

tives of the loss referred to the different weights and biases of the whole network. In

this way, all values can be tuned to obtain better accuracy. This method is based

on the chain rule, the possibility to compute gradients of inputs and outputs of a

function, performing iteratively multiplications between gradients of the last output
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with the partial derivative of output with respect to input of a layer as can be seen

in the figure.
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Figure 2.2: Computation of partial derivatives through the network

The purpose is to compute local gradients that indicates how the error affects

a variable and this term will be used to reach a minimum of the function that can

approximate in the better way the whole dataset information. The method tries

to reach the minimum moving in the direction that allows obtaining a smaller loss

value, using this equation:

W n = W n−1 − lr ∗ δW n−1 (2.3)

where lr is the learning rate and δWn−1 is the gradient of the loss referred to the

weight. The learning rate is an important factor to consider during the training

phase since it is the step size that allows moving in the direction of the minimum.

Using a large learning rate it is hard to find the right direction, while if it is too

small a huge number of steps is required and this is not an efficient way to reach

the minimum.

2.1.5 Backpropagation

The step to compute partial gradients starting from the last layer to the first one is

called backpropagation. It refers to the computation of each value going along the

network in direction opposite during the forward. This error respect to each weight

or bias is used to update their values as can be seen in the Stochastic Gradient

Descent equation, trying to minimize the function described by all features of the

whole network.
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The backpropagation is actually the most efficient way to train a network, al-

lowing to reach results with higher accuracy. It is the slower part and the one

that requires most computational efforts to load variables computed during for-

ward, like the results of activation function, to obtain transposed of the weights

used to compute gradients and to update the weights. The equations show the error

computation, from the derivative of the loss function, and how the error is used to

compute local gradients [15]:

e = δoutput =
∆J

∆output
(2.4)

δa2 = (W T
3 ∗ e) · f ′(a2) (2.5)

δa1 = (W T
2 ∗ δa2) · f ′(a1) (2.6)

δan refers to the gradient of the loss with respect to the input of the layer, while

the gradient of the output is the term δan+1 that is multiplied for the transposed

weight.

2.1.6 Problem due to classic error propagation

The transposed computation requires an effort that increases the difference in time

between the forward and backward phases during the training. In addition, there is

a waste of time related to the error propagation through each layer that can slow

down the entire backward phase. For the backpropagation it is also necessary to

save all results of activation functions in memory because they must be used in the

backward step. This requires memory accesses that slow down the operations and

also a portion of memory is busied to save temporarily these values. For this reason,

it is thought that other solutions can reach the same performances as the human

brain. It is supposed that the learning phase of a brain is based on a parallel input

elaboration and output evaluation, that allows faster learning than actually possible

in neural networks.
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2.2 Optimizations to backpropagation

There are many algorithms with the purpose to avoid problems that occur during the

updating of network values using the classical backpropagation: for the transpose

computation some hardware solution has been proposed, where the memories are

able to save values of weights and give back automatically their transposed [6], but

also software solutions that are based on algorithms where random matrices substi-

tute transposed weights [15]. Other optimizations are based on different updating

methods to Stochastic Gradient Descent, like the Alternative Direction Method of

Multipliers (ADMM) or Moore-Penrose Pseudo Inverse [7] [19]. Some solutions as

invertible networks try to provide better management of the memory required during

the training phase with also speed up [21].

2.2.1 Random Feedback Alignment

The Random Feedback Alignment is based on the possibility to use fixed random

matrices to transport error information in a network with one or two hidden layers

[13]. These matrices replace the original ones avoiding transposed computation

and obtaining the same performance of the classic method. This is an important

step to understand how the training works since it breaks the link of using forward

weights during the backpropagation. This algorithm is called Feedback Alignment

(FA) and later Nøkland proposed other two algorithms following the Lillicrap’s idea

[15], where the error is brought back creating different paths between the last layer

and each layer. This is important since in the classic backpropagation and FA

the gradients of each layer are computed going through the network in the opposite

direction of forwarding, while with the ones proposed by Nøkland the different paths

allow to update simultaneously or compute gradients going in the same direction as

forward. The two methods proposed are called Direct Feedback Alignment (DFA)

and Indirect Feedback Alignment (IFA). A similar study is performed by Qianli

Liao, where the FA method is applied but some modifications are performed and

interesting results are shown [18].

FA

The difference between Feedback Alignment and backpropagation is the method

used to bring back the error e to each layer replacing the transposed weights, referred

as WT , with fixed random weights, referred as B [15].
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Figure 2.4: Schematic of how Feedback Alignment works

It is demonstrated that initially the training goes worse than the classic method,

but the network is able to learn how to use the fixed random weights and to obtain

the same perfomances [13]. The condition that must be respected is [13]:

eTWBe > 0 (2.7)

where W is the matrix used during forwarding, B the fixed random matrix used

during backward and e is the error of the last layer [13]. The condition means

to have the B matrix able to behave as the transpose of the W matrix, allowing

the network to train in a similar way [13]. This is possible adjusting forwarding

weights of the networks since they start to act like Pseudo Inverse and so the error

information can be transported using fixed random matrices. The initializations of

values are based on successive iterations with weights between 0.0001 to 0.01, while

the random weights are initialized in the interval -0.5 to 0.5 in order to meet the

best behaviour during the training [13].

The equations related to this algorithm are [15]:

δa2 = (B3 ∗ e) · f ′(a2) (2.8)

δa1 = (B2 ∗ δa2) · f ′(a1) (2.9)

It is possible to see how the random matrices replace the transposed ones, but the

computation direction is almost the same as backpropagation. The Qianli Liao’s

solution has results in contrast to Lillicrap’ones since it is demonstrated that the

magnitude of feedback weights is not relevant if a concordance of signs is respected

between forwarding weights and random ones [18]. Implementations with different

percentage of concordace are discussed to highlight this behaviour [18]. It is applied

the technique of Batch Normalization to obtain results even better than SGD ones.

This result is also due to a different implementation of SGD, where the gradients

values used during the update are substituted by their signs. In this way, it is possible

to avoid the problems of exploding or vanishing gradients because the magnitudes

are discarded.
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DFA and IFA

Nøkland proposed two systems to transport the error of the network to each layer:

the first one is based on paths that connect all hidden layers to the last and it is called

Direct Feedback Alignment (DFA) [15]; the second has a unique path that links the

last layer to the first hidden one and it is called Indirect Feedback Alignment(IFA)

[15]. In the DFA there is the possibility to perform the computation of gradients

independently from the next layer, so the computations of the whole network are

parallelized. In the scheme it is shown as the last layer is linked to all previous ones:
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Figure 2.5: Schematic of how DFA works

The dimensions of these random matrices are different from the one used in FA

since a dimension agreement in the gradient computation must be matched. The

equations related to this algorithm are [15]:

δa2 = (B3 ∗ e) · f ′(a2) (2.10)

δa1 = (B2 ∗ e) · f ′(a1) (2.11)

As can be seen, the gradients of a layer are not propagated to others and this allows

the parallelization of the process. The results are comparable to backpropagation

ones and the DFA algorithm is able to train efficiently also deep networks, while

the feedback implementation can’t do. In the IFA the gradients computation is

performed in the same order as during the forward and the major advantage is the

possibility to substitute the random matrices with the one used during forward. This

allows the possibility to reduce the memory requirements to store random matrices

and at the same time to avoid transposed computation.
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Figure 2.6: Schematic of how IFA works

In this manner it is possible to perform gradients computation while other inputs

are evaluated, allowing a reduction of memory accesses for weights loading. The

equations related to this algorithm are [15]:

δa2 = (W2 ∗ δa1) · f ′(a2) (2.12)

δa1 = (B2 ∗ e) · f ′(a1) (2.13)

The results about this algorithm are not presented in the paper of Nøkland since

it is only a theoretical approach and experiments are performed only on MNIST

dataset, but results are not shown.

2.2.2 Alternative Direction Method of Multipliers approach

This method tries to solve the problem related to stochastic gradient descent, when

there is a large dataset and using the classic method can occur phenomena of sat-

uration, bad conditioning and be stuck in a minimum point. The aim is to allow

the dataset to be divided into smaller steps and to find a solution globally in closed

form [7]. In this way, the work is divided during the training phase between differ-

ent cores, communicating via MPI, that analyze each a different substep, since the

solution is found to be globally optimal. This means a speedup in the training phase

and performance similar to the one obtained training networks on GPUs. This op-

timization is not applicable on the Stochastic Gradient Descent since it takes only a

small portion of training dataset and performs the update of network values, incur-

ring in the possibility of stuck in local minima. The alternating direction method

is referred to the approach to the layers: these are divided in the relation between

inputs and weights and a term referred to the non-linear activation function. It is

possible to update networks values avoiding vanishing gradients and the updating

can be performed simultaneously for every layer. The most important results are
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the analysis of performance with ADMM: it reaches the same accuracies obtained

with other implementations performed on GPUs, but in a short interval of time and

results on different numbers of cores shown as the speedup of the training is huge.

2.2.3 Moore-Penrose Pseudo Inverse

An alternative to SGD method is the use of the Pseudo-Inverse, that is a generaliza-

tion of the inverse of a matrix [19]. The difference with Extreme Machine Learning,

where this matrix is used after the training phase of the network in replacement of

the last layer, is that it is used to train the whole network. While SGD performs

local optimizations due to limited input dimensions, being the dataset divided into

batches, using the Pseudo Inverse it is possible to analyze all the n inputs together.

Each input will be multiplied for its weight, added the bias term and obtained the

output. So it is required to perform a division of the value of weights on the number

n of inputs. The results showed the possibility for the network to be able to learn

and a possible implementation is referred to cancer detection.

2.2.4 Invertible Networks

The invertible networks are based on the possibility to avoid the storage of the

activations, used to compute the gradients as shown in the Stochastic Gradient

Method, thanks to the ability of the layer to compute the inputs from the outputs

[21]. This is possible because are used invertible functions, so during the backprop-

agation phase, it is performed additional computations to obtain activations and

be able to compute the values of gradients. This gives the possibility to reduce the

memory necessary to store net values. In the paper, it is presented a new framework

based on PyTorch, called MemCNN [21]. It allows speeding up the training of the

networks using invertible networks and thanks to the integration of reversible blocks

and autograd functions. These invertible networks are called RevNet [21] and their

results shown as can be possible train networks on Cifar10 and Cifar100 dataset

with accuracies similar to ResNet, but the time required is less.

2.3 Deep Neural Network

The definition of Deep Neural Network (DNN) is applied when there is more hid-

den layers [23]. The increase of computation capability has allowed working with

deeper networks in a reasonable amount of time and the DNN purpose is reaching

a higher accuracy in the evaluation of inputs provided. This is possible because

deep networks have the ability to extract more and complex features, combining

them to obtain final probability values more accurate. The problem presented with
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network based on a lot of hidden layers is the vanishing gradients, that is the un-

successful transportation of the error information through the whole network. The

error information is repeatedly multiplied for the weight values, usually lower than

one. Different networks structures are proposed during the last years that are able

to learn better than smaller ones, based on more than ten or hundreds of hidden

layers, like VGG19 or ResNet101.

2.3.1 Residual Neural Networks: ResNet

The ResNet is born to solve the problem of vanishing gradients using a shortcut

link between blocks of layers [11]. In this way, the output of shortcut connections

are added to the output of stacked layers and it is possible to achieve better results

implementing SGD, without requiring additional computational capability. The

function is changed as can be seen [11]:

y = F (x,Wi) (2.14)

y = F (x,Wi) + x (2.15)

and the non-linear activation is applied after the addition operation. The effect

is the reduction of the vanishing gradients since the shortcut connections provide

information also in deep layers and the possibility to train networks of more than

one hundred of layers. The ResNet is based on convolutional layers followed by

Batch Normalitazion, while in other structures it is also possible to apply after the

non-linear activation function [11]. A basic element that forms the ResNet can be

seen:

Figure 2.7: Basic Block of a ResNet

where α is the number of planes inside a layer and it can be: 64, 128, 256, 512

and others.
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2.3.2 Batch Normalization

This technique has the effect to reduce the noisy elements present in the batch

images taken as input, reducing the covariance between the images of a batch [18].

The Batch Normalization is very effective in the reduction of the vanishing gradients

problem, that affects networks very deep. In addition, it avoids the phenomenon of

Exploding Gradients that has the opposite effect [18]: the network initially starts

training, the loss goes to infinite after some epochs and the network is not more able

to learn. This solution allows recognizing images different from the one used for the

training set, based on major freedom of the layers to each other. There is also the

possibility to use a higher learning rate and the effect of overfitting is reduced, that

occurs when a network learns too much from the training set and it is not able to

recognize other inputs. The formula that characterizes this technique is taken from

PyTorch documentation [3]:

y =
x− E[x]√
V ar[x] + ε

∗ γ + β (2.16)

where E[x] is the mean and Var[x] is the standard-deviation.

2.4 PyTorch: Framework for deep networks

There are many frameworks that allow a first approach on the world of machine

learning, but PyTorch is one of the most efficient in memory savage and based on

Python. This is a high-level programming language, with a variety of functions that

allows an easy approach to machine learning through codes available also on Github

repositories. This framework has some important built-in functions that allow to

speed up training and different types of networks are already available.

2.4.1 Autograd function

The autograd function is one of the most important characteristics of PyTorch since

it allows fast computations of the different gradients in an automatic manner, while

in other frameworks this must be implemented manually [5]. This is possible since

during the forward phase a dynamic graph is built, that will be used to compute

gradients during the backward phase going in the reverse direction of the forward.

This can be done in a faster way since the functions to compute gradients are defined

at a low level during the forward phase. The autograd function is based on memory

optimizations, so buffers are used and free to reduce memory requirement. Since

PyTorch is based on C++ functions, it is extremely efficient since they are faster

than custom functions defined in Python.
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2.4.2 Dataset

A huge variety of dataset is available to train networks in supervised learning for

image recognition. The most used are MNIST, Cifar10, Cifar100 and ImageNet.

Usually, the dataset is divided into training images and testing images. There is the

possibility of a third sub-dataset taken from the training images called validation

test, used after training and before the testing. Images are associated with classes

and the purpose of the neural network is to recognize the correct class to which the

image belongs, giving in the output a higher probability in the right class.

MNIST

The MNIST dataset is based on images of handwritten digits, there are 10 classes,

60’000 training images and 10’000 testing. This is a simple dataset and a simple

neural network based on linear layers is able to reach 80% on the test accuracy

without most of the optimizations currently used. Since there are only handwritten

numbers, the features to extract are relatively simple. The low error value (0.3%)

obtained also implementing advanced networks is due to numbers that are difficult

to recognize also for humans. The classes are divided in order to express them with

a number between 0 and 9, so at class 10 corresponds the number 0. The dimension

of the images are 28x28 pixels and they are in grey scale.

Cifar10

The Cifar10 dataset is based on 50’000 training images, 10’000 testing ones and 10

classes. This dataset is based on images of horses, cars, houses and other stuff. It

is more difficult for a network the extraction of features with respect to the MNIST

case since there is a higher complexity to be considered, like colours, ambient noise

and others. The networks depth must be increased and more complex solutions must

be used to reach higher accuracy. ResNet networks are able to reach accuracy about

90% using 18 layers and higher accuracy using deeper implementations. The classes

contained in the dataset are plane, car, bird, cat, deer, dog, frog, horse, ship, truck.

This dataset is very challenging for neural networks since there are very different

objects to classify. The dimensions of the input images are 3x32x32, where 32x32

is the pixel resolution and 3 is the channels number since the images are in RGB

colours.

29



30



Chapter 3

Work development

3.1 Set-up of environment

The first part of the thesis work is performed on a notebook Asus with a GPU

Nvidia Geforce 920m, since it has a compute capability of 3.5 and according to Nvidia

tutorials this factor is sufficient to use this GPU to compute faster than using a CPU.

A partition with Ubuntu 16.04 has been installed to work with Python, in order to

have a faster environment than a Windows IDE and to avoid compatibility problems

related to libraries. Ubuntu has Python as a native language so it is requested

only to install other libraries to have an easier approach to machine learning using

specific packages. PyTorch, CUDA and Torchvision are installed. The first one is

a framework built to work on machine learning with Python and it is an optimized

library for machine learning. CUDA is the specific architecture and it consists of a

set of C functions that allows the use of the GPU to compute faster than CPU can

do. Torchvision is a package for the management of images and used to normalize

the inputs before the training step.

3.1.1 PyTorch

PyTorch is a framework developed for deep learning purposes with interesting fea-

tures like Python integration and an optimized management of the memory. These

factors allow an easy approach to machine learning field, since also deep networks

can be trained in a reasonable amount of time. The possibility to have a great

number of examples on Github repositories is a good starting point to approach the

study of neural networks and to implement different algorithms as in this work is

done. The installation guide is provided on PyTorch site and the package can be

installed through a simple command. This command is based on the preferences for

the installation like using Conda or Pip package [2]. An example of the command

is provided:

pip3 install torch torchvision
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It is possible to work with Tensor, that is one of the main features of PyTorch.

These elements are multidimensional arrays used to work with CUDA and they can

be used to work with CPU or GPU. Flags can be set to track operations computed

on the Tensor and in this way using the function torch.autograd the backward step

is automatically computed.

3.1.2 CUDA

CUDA is the architecture that allows the GPU to perform parallel computing [16].

In the last years, many applications have been developed on CUDA GPU in order

to speed up elaborations and simulations like machine learning or other scientific

purposes. The number of applications is increasing and nowadays a higher number

of Nvidia devices are based on CUDA architectures. In the machine learning field

it allows the possibility to perform all computations on GPU, using the higher

number of ALU, and many operations in parallel using threads. This is possible

since different programming languages, based on C, Python, Matlab or others, allow

to use the CUDA architectures for computation through native instructions.

3.1.3 Nvidia Geforce 920m

The Nvidia GPU of the Asus Notebook used in the first part of the work is a GPU

with medium performances launched in March 2015, but it is sufficient to start

working with simple neural networks. It has an FP32 theoretical performance of

732.7 GFLOPS.

3.1.4 Tesla K40

The next machine used to train networks is provided by the VLSI laboratory of the

Politecnico di Torino and it is a workstation with a GPU Nvidia Tesla K40. The work

is performed remotely using the connection to the network of VLSI laboratory where

the workstation shares access to the internet. The configurations of the workstation

are related to the docker installed on the machine in order to allow different users

to work in a safe space and avoiding to interrupt or corrupt others’ systems [10].

This machine has been used in the last part of the simulation work since the timing

requested by the GPU of the notebook performs too poorly with a network deep as

ResNet18. It has an FP32 theoretical performance of 4’291 GFLOPS, so a speed up

of 5 times is expected referred to Geforce 920m.
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3.1.5 Docker

Docker is a container used to isolate a portion of software from the whole computing

machine [10]. It is provided with all the libraries necessary to develop code and it

is independent of the system, in order to have a safe environment for developing

codes. It is a similar situation to virtual machines, but the advantage of the docker

is the operating system virtualized, while with virtual machine different hardware

are virtualized and on each VM an operating system must be installed [10]. The

major benefit is the performances obtained by the docker and the OS is shared by

other dockers so better management of the instructions can be obtained through

kernel scheduling.

3.1.6 Google Colab with Tesla K80

Google Colab is a free platform provided by Google, where every user can simulate

Jupyter notebooks linking Google Drive account to the platform [8]. The hardware

of the emulated computers are really performant and the GPU is an Nvidia Tesla

K80. The notebook starts with a lot of libraries already installed, such as PyTorch

and CUDA. The limit is a runtime lower than 12 hours consecutively and if this limit

is exceeded the runtime will interrupt and the user is disconnected from the platform.

This service can be linked to Google Drive account in order to save files produced by

code running. There are cells where the code can be written and executed without

the need to set-up the libraries since the most used ones are already installed. In a

Jupyter notebook, there are different cells and the variables are shared between all

of them after the execution. One of the greater features is the possibility to share a

notebook through links or downloading from the Google Drive account.

3.2 Develop simple network with numpy

The starting point to analyze the algorithms is to approach the simplest possible

network and to modify it using the FA, DFA and IFA implementations. The dataset

chosen is the MNIST, since the first results provided in the paper of Nøkland refers

to this one. The code is obtained by a free online book that is the first one used

to approach machine learning [14]. The network is described by a sequence of

linear layers and the number of them is simply editable changing the dimensions of

a variable called sizes. Optimizations are not applied, such as cross entropy cost

function, regularization and the weights are initialized in a simple way. The cost

function used in this code is the quadratic cost:

J(x) = α(l − y(x))2 (3.1)
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where α is a constant value, l is the label of the image taken as input and y(x) is the

output of the neural network. The activation function used is the sigmoid, since it

is one of the first utilized to approach machine learning. The code is based on the

Numpy library, so the use of GPU is avoided for these first codes. The forward part

of the code used is shown:

a c t i v a t i o n = x

a c t i v a t i o n s = [ x ]

zs = [ ]

f o r b , w in z ip ( s e l f . b i a s e s , s e l f . we ights ) :

z = np . dot (w, a c t i v a t i o n ) + b

zs . append ( z )

a c t i v a t i o n = sigmoid ( z )

a c t i v a t i o n s . append ( a c t i v a t i o n )

The forward part consists of multiplications between inputs and weights of the layer

and in the addition of a bias term. After the sigmoid activation function applica-

tion, the output is used as input for the new layer. The activations and zs arrays

are required since in the backward part it is necessary to recall these values for the

gradients computations. The backward part is reported to understand the computa-

tions performed and how they can be modified successively to analyze the different

algorithms:

d e l t a = s e l f . c o s t d e r i v a t i v e ( a c t i v a t i o n s [−1] , y )∗ \
s igmoid pr ime ( zs [−1])

nabla b [−1] = de l t a

nabla w [−1] = np . dot ( de l ta , a c t i v a t i o n s [ −2 ] . t ranspose ( ) )

f o r l in range (2 , s e l f . num layers ) :

z = zs [− l ]

sp = sigmoid pr ime ( z )

de l t a = np . dot ( s e l f . we ights [− l +1] . t ranspose ( ) , d e l t a ) ∗ sp

nabla b [− l ] = de l t a

nabla w[− l ] = np . dot ( de l ta , a c t i v a t i o n s [− l −1] . t ranspose ( ) )

r e turn ( nabla b , nabla w )

In this part of the code the delta is the error of the last layer at the beginning and

it is computed using the function self.cost derivative that performs the function in

equation 2.4, that in this case is:

δJ = l − x (3.2)

This value is multiplied with the derivative of the activation function of the last

output of the network and successively it is multiplied again with the transposed of

the weight to obtain the gradient referred to the input. In this way, the error infor-

mation is propagated to each layer. The gradients referred to bias and weight terms
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expressed as nabla b and nabla w are obtained as shown: the first is equal to the

gradient of the output and the second is obtained multiplying with the transposed

of the activation.

3.2.1 FA

The Feedback Alignment algorithm differs from the classic backpropagation for the

use of random matrices instead of the transposed of weights used during forward as

can be seen in equation 2.8. The code has been modified as shown:

de l t a = s e l f . c o s t d e r i v a t i v e ( a c t i v a t i o n s [−1] , y )∗ \
s igmoid pr ime ( zs [−1])

nabla b [−1] = de l t a

nabla w [−1] = np . dot ( de l ta , a c t i v a t i o n s [ −2 ] . t ranspose ( ) )

f o r l in range (2 , s e l f . num layers ) :

z = zs [− l ]

sp = sigmoid pr ime ( z )

de l t a = np . dot ( s e l f . c o e f f [− l +1] , d e l t a ) ∗ sp

nabla b [− l ] = de l t a

nabla w[− l ] = np . dot ( de l ta , a c t i v a t i o n s [− l −1] . t ranspose ( ) )

r e turn ( nabla b , nabla w )

The variable self.coeff is initialized in the same way as self.weight, but it has dimen-

sions trasposed in order to avoid additional computations.

3.2.2 DFA

In the Direct Feedback Alignment, there is a different path to compute the gradients

of the output for each layer. It is performed the product between the random

matrices and the gradient of the last layer as shown in equation 2.10:

d e l t a 0 = s e l f . c o s t d e r i v a t i v e ( a c t i v a t i o n s [−1] , y )∗ \
s igmoid pr ime ( zs [−1])

nabla b [−1] = d e l t a 0

nabla w [−1] = np . dot ( de l ta 0 , a c t i v a t i o n s [ −2 ] . t ranspose ( ) )

f o r l in range (2 , s e l f . num layers ) :

z = zs [− l ]

sp = sigmoid pr ime ( z )

de l t a = np . dot ( s e l f . c o e f f [− l +1] , d e l t a 0 ) ∗ sp

nabla b [− l ] = de l t a

nabla w[− l ] = np . dot ( de l ta , a c t i v a t i o n s [− l −1] . t ranspose ( ) )

r e turn ( nabla b , nabla w )
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In the FA it is possible to see that the difference is only in the matrices used to

propagate the error in each layer, but in the DFA the code has been modified in a

deeper way. The delta coefficient is different from the one computed in the last layer

(delta 0). This factor must be considered as the error performed by the network in

the classification task and in the FA it is updated going through the layers of the

network, while in the DFA it is used always the same value. The advantage of DFA

is the possibility to have an error factor independent between the hidden layers, but

related only to the last layer.

3.2.3 IFA

In the Indirect Feedback Alignment, the error is not reported in each layer as in

the DFA, but a random matrix is used to link the last layer to the first hidden one

[15]. The gradients of the output are computed going in the same direction of the

forward, using as matrices the weights in their normal form as shown in equation

2.12. The code modified is shown:

d e l t a 0 = s e l f . c o s t d e r i v a t i v e ( a c t i v a t i o n s [−1] , y )∗ \
s igmoid pr ime ( zs [−1])

nabla b [−1] = d e l t a 0

nabla w [−1] = np . dot ( de l ta 0 , a c t i v a t i o n s [ −2 ] . t ranspose ( ) )

d e l t a = np . dot ( s e l f . c o e f f , d e l t a 0 ) ∗ s igmoid pr ime ( zs [ 0 ] )

nabla b [ 0 ] = de l t a

nabla w [ 0 ] = np . dot ( de l ta , a c t i v a t i o n s [ 0 ] . t r a spo s e ( ) )

f o r l in range (1 , s e l f . num layers −2):

d e l t a = np . dot ( s e l f . we ights [ l ] , d e l t a ) ∗ s igmoid pr ime ( zs [ l ] )

nabla b [ l ] = de l t a

nabla w [ l ] = np . dot ( de l ta , a c t i v a t i o n s [ l ] . t ranspose ( ) )

r e turn ( nabla b , nabla w )

The code has been modified computing the gradients of the first hidden layer at the

beginning, after it is computed the last layer gradient. This changes the direction

of computation for the gradients in each layer and the indices inside the for cycle

has an opposite sign with respect to previous cases. The advantage is the use of

the same weights during forwarding, without performing the transpose operation.

In addition, it can give the opportunity to perform unique access in memory, using

the weights both for forward and backward at the same time.
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3.2.4 Results

The number of hidden layers has been changed to check how the different implemen-

tations modify their behaviours with increased depth. In the paper of Nøkland there

are not results about IFA implementations but only related to BP, FA and DFA.

The four algorithms are performed on linear networks to make comparisons between

all of them. At the beginning only 3 hidden layers are used, with respectively 10,

20 and 10 neurons. The output layer has 10 neurons because the dataset to classify

is the MNIST that has 10 classes.

Figure 3.1: Test accuracy on a three hidden layer network

The picture shows how the four different algorithms have the same behaviour

and it is interesting to note as the DFA and IFA algorithms perform slightly better

than the FA algorithm. In the FA it is possible to note as the accuracy is about

20% lower than the other cases in the first epochs and this is coherent with the

alignment theory about the initial phase of adapting the backward weight for the

learning phase. The backpropagation seems to learn in a faster way, since at the

end of the first epoch it has a gain of 5-6% with respect to other algorithms. Due

to the simplicity of the dataset and the network used, it is not possible to make

considerations valid for these algorithms so the network depth has been modified.

Increasing the depth of the network, five hidden layers are used with 10 neurons

everyone and what it is expected is the DFA ability to propagate in a better way

the error in each layer since the hidden layers are adjusted all with the error value

instead of propagating this error through the whole network.
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Figure 3.2: Test accuracy on a five hidden layer network

The DFA algorithm shows an initial accuracy value higher than the backpropagation

algorithm, while the FA and IFA implementations have accuracies lower than the

others. The IFA algorithm seems to learn with difficulty since the accuracy values

don’t increase in a uniform way. The FA algorithm instead seems to learn correctly,

but it reaches lower accuracy values, probably due to the structure of the network.

The dimensions of the five hidden layers are modified increasing the number of

neurons to 10, 20, 50, 20 and 10 respectively.

Figure 3.3: Test accuracy on a five hidden layer network with more neurons
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The results confirm as the backpropagation and DFA have similar behaviour,

the functions of accuracy are pretty similar and the difference is about 1-2%. The

FA shows a behaviour similar to the previous case, reaching in the last epochs

an accuracy value 5% lower than BP and DFA. The IFA algorithm performs very

badly since at beginning its learning is slightly lower respect previous case, but the

problem is the drop in accuracy after 10 epochs. This phenomenon can be linked

to exploding gradients. The gradients values instead of fitting the curve that can

describe the dataset start to diverge and the consequence is a loss value that goes

to infinite. The network is not able to learn anymore starting to deteriorate its

performance. Another experiment has been performed increasing a second time the

number of neurons in the last layers to check if the behaviour of the last results can

be confirmed. So there are five hidden layers with 10, 20, 50, 100 and 20 neurons:

Figure 3.4: Test accuracy on a five hidden layer network with additional neurons

The results confirm that increasing the complexity of the network each of the four

algorithms has a different answer. The FA has a 10% less accuracy with respect

to backpropagation and it is possible to see how the accuracy of the first epochs is

smaller than the BP case. This phenomenon is due to the fixed random matrices

used during the backpropagation. In the beginning, the training of the network

performs worse than using the classic algorithm, but the updating of the forwarding

weights allow learning for the network. The forwarding weights start to act as

Pseudo Inverse of fixed random matrices and they became able to bring back the

error information in an efficient way. The DFA seems to train the networks as well

as the backpropagation, so it is the best replacement that can be used in the training

phase for networks with this complexity. The IFA algorithm, instead, seems to be

able to train only very small networks. This can be the effect of a bad initialization
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resulting in the impossibility for the network to train with reduced error information.

In fact, the error is brought back to the first layer in the same entity as in the last

layer, resulting in a different magnitude of information for the first hidden layer. The

three algorithms have been tested on a neural network with some optimizations to

understand which solution can give better performance, avoiding bad initialization

that can occur in the previous networks studied.

3.3 Implementation in optimized networks

After a first analysis of the results obtained using a simple network, it is used an-

other code taken from the book cited before [14], in which optimizations such as

regularization, cross entropy cost and a proper initialization of weights have been

applied. The effect of a proper weight initialization is the increase in speed during

the learning phase [14]. Since the network training consists of weights values up-

dating, if they are initialized in an easier way to be modified, the learning speeds

up. This implies fewer epochs to reach the same accuracy and to avoid iterations

over the same set of images multiple times. In the previous code, the quadratic cost

function is used to compute the loss between the label associated with the dataset

images and network output. Using the cross entropy cost there is an advantage

since its learning is associated with the entity of the error [14]. So the importance

of this cost function is related to the speed that allows the network to learn since it

is slower with the quadratic cost and bad initialization conditions. Using the cross

entropy cost instead, there is a faster learning effect, even with bad initialization

conditions. For this reason, the network can be less affected by overfitting, since it

has to be trained for fewer epochs. Applying this technique exploding gradients can

be reduced, decreasing the learning factor that occurs during the implementation

of IFA but also to improve results for BP, DFA and FA. There are different tech-

niques of regularization such as weight decay and modifying the cost function with

a regularization term.

J = J0 +
λ

2n
∗
∑
w

w2 (3.3)

The structures of the four networks with applied optimizations are the same as in the

first type of code since the scope is to understand the effect of classical optimizations

on these algorithms.
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Figure 3.5: Test accuracy on optimized linear network with three hidden layers

The optimizations seem to be more effective on the DFA than on other algo-

rithms. In the simple network, the results of DFA and IFA are comparable, while

in this case there is a difference of 5% between the two algorithms. The FA solution

seems to start with faster learning since at first epoch there is a gain of 5% with re-

spect to the simple network, but after five epochs of iterations the accuracy reached

is about 75%, that is less than the 80% of the simple network case. The BP doesn’t

seem to be affected by the optimizations and this can be related to the simplicity

of the network, where a low overfitting occurs. The next network is based on more

hidden layers to check if the optimizations give better results:

Figure 3.6: Test accuracy on optimized linear network with five hidden layers

41



The BP, DFA and FA seem to have similar behaviour as the previous result,

with reduced accuracy for the FA about 5%. The IFA curve has the same problem

shown in the simple network case, where the learning curve is irregular with respect

to the others. The third simulation performed with the simple network is repeated

on the network with optimizations to confirm the results obtained:

Figure 3.7: Test accuracy on optimized linear network with more neuros

The results show how the BP, DFA and FA have similar behaviour with respect to

the previous case, but the IFA performs very badly compared to the simple network.

This phenomenon is related to the difficulty for the IFA to train deeper networks

since the effect of the error is completely changed compared to the BP. While in

the BP the error has a higher effect on the last layers going to a lower effect on

the first hidden ones, in the IFA this is completely changed. The effect influences

too much the first layers of the network and the last layers are unable to change

the prediction based on the first features extracted. If the matrix values used to

propagate the error in the first hidden layer are chosen extremely low, the network is

not able to train properly since the next hidden layers are updated with very small

values. To confirm the inability of the IFA to train deep networks, the training

performed on the last analyzed structure was repeated with 5 hidden layers made

of 10, 20, 50, 100 and 20 neurons respectively.
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Figure 3.8: Test accuracy on a optimized linear network with increased neurons

The results show as the IFA algorithm is completely unable to train a network so

deep. The difference for IFA implementations between the performance obtained in

the simple network and the one of the optimized version can be related to difficult

starting conditions in the training phase, but the optimizations have given worst

results only for the IFA algorithm, while BP, DFA and FA seem to perform in the

same way.

3.4 Approch to PyTorch

PyTorch is used because the aim of the work is implementing these different algo-

rithms on a complex network as ResNet. It is an optimized framework for memory

management, resulting in faster training. This is an important factor working with

deep networks as ResNet because the number of free parameters is very large and

an optimized framework can give better performances. The basic code that has

been used to approach PyTorch is found on the site of the framework and it uses

the Cifar10 dataset [4]. The first part of the code is about the normalization of the

input images using torchvision. This library allows easy loading of the training and

testing set to prepare the inputs images to be classified. The network defined in the

original code is a convolutional network. It is based on two convolutional layers with

6 and 16 output channels respectively. The rectified linear unit and max-pooling

are applied to the output of the convolutional layers. The max-pooling effect is to

take a number of elements of the matrix and the lower is discarded, so there is a

reduction of the inputs dimensions. In this network has been used a max-pooling

between four values each time. It is possible to set also the stride factor, allowing
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the windows of values to overlap. The filter shape of the convolutional layer is 5x5

for both layers. The networks have also three linear layers, with 120, 84 and 10

neurons respectively and at each output it is applied the rectified linear unit. The

cost function used is the cross entropy loss, since its performances are better than

the quadratic cost.

3.4.1 Most important PyTorch functions

The most important packages of PyTorch are the Autograd and Optimizer since

these are used during the training phase to compute and update the weights values.

The function autograd is called using the backward() function and gradients of

all the network are computed iteratively. The greater benefit of this function is

related to the speed of computation, due to the efficient memory management of

PyTorch. During the forward step, the functions related to the backpropagation step

are saved and in this way, it is not necessary to perform two times the translation

from Python to C++. The gradients are saved in the .grad of every variable and

using the optimizer function .step() the weights and biases terms are updated. The

values to update, the weight decay, the learning rate and momentum factors are

chosen through this function. Different algorithms for updating the weights are

available such Stochastic Gradient Descent, Adam, L-BFGS and others. After the

updating the optimizer library is called through .zero grad() function to set null the

values of gradients because the function autograd accumulates the value in the .grad

performing iteratively the addition between values saved and the computed ones.

The optimization method used is the Stochastic Gradient Descent, discussed in the

state of the art chapter.

3.4.2 Custom module definition

In PyTorch, a module represents a class of data and functions to be saved. Usually, a

module has a function to be performed during the forward step. There are modules

defined in the libraries and there is the possibility to define custom modules to have a

specific behaviour. In order to modify the backpropagation step of the training, it is

necessary to modify how the gradients are computed. So it is required to use custom

modules and a custom autograd function for the specific module must be defined.

The operations to be performed both in forward and in backward are specified

through the definition of the custom function. The difference is in the organization of

the GPU instructions to perform the backpropagation: there is the dynamic method,

used in a classical way, and the static method, used defining custom module. Using

the dynamic method there is a faster computation performed since the values are

maintained in memory and the steps required to compute during the backward are

defined at a low level in the forward phase, so the code interpretation is avoided in
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the backward step. Using the static method instead there is an additional loss of time

due to the translation of the code to machine language and how it is implemented

by the hardware.

3.4.3 Register Hook

The register hook is used to have a different approach to modify the gradients value

as requested by the implementations to be analyzed. Since during simulations there

is a huge slow down in the computation using the custom modules, it has been

decided to try other solution. In the Autograd package, there is the possibility

to modify the gradients computed with respect to the Tensor using the function

register hook [5]. This is an in-place operation and it is executed when the value

of the gradients has been computed. During the backward phase, the register hook

function allows modifying the gradients values in a way that is faster than using

custom modules.

3.4.4 Implementations of algorithms with PyTorch

The original network has been obtained by PyTorch tutorials and it is modified to

have better comparisons with the previous networks analyzed. At the beginning it

is used only linear layers and successively convolutional layers are restored, but the

max-pooling ones are avoided. The network is based on linear layers with a number

of neurons higher than the MNIST network classifier since the features that must

be extracted in a dataset as the Cifar10 are more complicated and the dimensions

of the images are bigger.

BP

The custom module is implemented also on the classic backpropagation to under-

stand better the modifications applied to the code. The forward function is shown,

but it is not modified for the other algorithms:

de f forward ( ctx , input , weight , b i a s=None ) :

ctx . save for backward ( input , weight , b i a s )

output = input .mm( weight . t ( ) )

i f b i a s i s not None :

output += bia s . unsqueeze ( 0 ) . expand as ( output )

re turn output

During the forward part, the input variable is saved with weights and biases in the

context variable (ctx.save for backward) beacause they must be used again during

the backward step. The output is computed performing the product between input

and the transposed of the weights. In the previous codes, the product between
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weights and inputs is performed without the transpose computation in the forward

step. PyTorch defines the weights in transposed dimensions for linear layers with

the purpose to perform the transposition in the forward and to use the matrices

in the backward avoiding loss of time with additional computation. In this way,

it is possible to have a symmetric time for computation between the forward and

backward. Also the bias term is added to the output. The backward part is shown

to analyze how the different gradients values are computed and the error information

is propagated through the layers:

de f backward ( ctx , grad output ) :

input , weight , b i a s = ctx . s av ed t e n s o r s

grad input = grad weight = grad b i a s = None

i f ctx . needs input grad [ 0 ] :

g rad input = grad output .mm( weight )

i f ctx . needs input grad [ 1 ] :

grad weight = grad output . t ( ) .mm( input )

i f b i a s i s not None and ctx . needs input grad [ 2 ] :

g r ad b i a s = grad output . sum ( 0 ) . squeeze (0 )

re turn grad input , grad weight , g r ad b i a s

It is possible to see how the gradients of the loss with respect to input and weights are

computed in the custom module. The grad output variable is the gradient of the loss

referred to the output of the specific layer and it is obtained by the autograd function

to be propagated through all the layers using the dynamic graph that PyTorch

builds during the forward. The gradients referred to inputs are obtained as the

product between the gradients with respect to output and the weights used during

the forward. It is important to note as the weights matrices are not transposed

thanks to PyTorch initialization. The gradients referred to weights are computed

multiplying the gradient with respect to output with the input variable saved during

the forward, that will be the output of the previous layer where the activation

function has been applied. The transpose operation applied to the gradients term is

the difference with the codes seen before, because it is applied to activation before.

The gradients of the loss referred to bias are computed in order to update this value

during the optimizer step as it is done with the other parameters.
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FA

The backward part for the Feedback Alignment method is shown and the replace-

ment of forward weights with random matrices is applied as can be seen:

de f backward ( ctx , grad output ) :

input , weight , we ight fa , b i a s = ctx . s a ve d t e n s o r s

grad input = grad weight = grad we i gh t f a = grad b i a s = None

i f ctx . needs input grad [ 0 ] :

g rad input = grad output .mm( we igh t f a )

i f ctx . needs input grad [ 1 ] :

grad weight = grad output . t ( ) .mm( input )

i f b i a s i s not None and ctx . needs input grad [ 2 ] :

g r ad b i a s = grad output . sum ( 0 ) . squeeze (0 )

re turn grad input , grad weight , g r ad b i a s

The grad input computation is modified using the weight fa variable instead of

weight as in the BP case. The weight fa variable is defined during the class def-

inition and the weights are initialized in the same way as done with the forward

weights.

s e l f . weight . data . uniform(−stdv , stdv )

s e l f . we i gh t f a . data . uniform(−stdv , stdv )

The modification has only the purpose to check how the results will change in this

case. In the implementation of this algorithm, the dimensions must be inverted

in the definition step of the forward weights, to remove the transpose operation in

the forward. The gradients computation for both grad weight and grad bias is not

modified.

DFA

In the DFA algorithm the gradients are not propagated through the layers, so it is

requested to interrupt the propagation of grad input values:

de f backward ( ctx , grad output ) :

input , weight , b i a s = ctx . s av ed t e n s o r s

grad input = grad weight = grad b i a s = None

i f ctx . needs input grad [ 1 ] :

grad weight = grad output . t ( ) .mm( input )

i f b i a s i s not None and ctx . needs input grad [ 2 ] :

g r ad b i a s = grad output . sum ( 0 ) . squeeze (0 )

re turn grad input , grad weight , g r ad b i a s

As can be seen, the grad input computation has been removed and the value of

grad output is modified using the register hook function. This function performs
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the replacement when the variable grad input is declared None and it is propagated

to the next layer. The values of grad input will be changed from the autograd

function performing the product with the derivative of the activation function.

d e l t a = d e l t a c r o s s e n t r o p y ( zs [−1] , l a b e l s )

zs [ −1 ] . r e g i s t e r h o o k ( lambda grad : d e l t a )

a c t i v a t i o n s [ −2 ] . r e g i s t e r h o o k ( lambda grad : d e l t a .mm(Wfc4 ) )

a c t i v a t i o n s [ −3 ] . r e g i s t e r h o o k ( lambda grad : d e l t a .mm(Wfc3 ) )

a c t i v a t i o n s [ −4 ] . r e g i s t e r h o o k ( lambda grad : d e l t a .mm(Wfc2 ) )

a c t i v a t i o n s [ −5 ] . r e g i s t e r h o o k ( lambda grad : d e l t a .mm(Wfc1 ) )

l o s s . backward ( )

The output gradients of the last layer are computed using the custom function that

performs the derivative of the loss referred to the last output of the whole network,

called delta cross entropy. The function used to compute this term is related to the

cost function chosen that can be the quadratic cost or the cross entropy one, because

also the values of the gradients are related to the function used. These multiple calls

to register hook modify the gradients values referred to each variable. The zs vector

is filled with the output of each layer and the activations vector is filled with the

output values after the activation is applied. In this way using the register hook

function on zs[-1] the gradients referred to the last output are modified and the

product with derivative of activation function is avoided. For the other layers, it is

used the activation vector in order to avoid the manual multiplication between the

product of the gradient delta and the different random matrices with the derivative

of the activation function. This product will be performed by the autograd function

in an automatic way, using the dynamic graph that has tracked all the operations

performed on the Tensors.

IFA

For the IFA algorithm, the backward() function has been avoided since it computes

the gradients going from the last layer to the first hidden one and this has an

opposite direction to the one used by the IFA. This function is replaced by writing

the backward steps manually and using defined variables to save gradients values:

f o r i , data in enumerate ( t r a i n l o a d e r , 0 ) :

inputs , l a b e l s = data

opt imize r . z e ro g rad ( )

a c t i v a t i o n s , z s = net . forward ( inputs )

l o s s = c r i t e r i o n ( zs [−1] , l a b e l s )

de l t a0 = d e l t a c r o s s e n t r o p y ( zs [−1] , l a b e l s )

f c 5 we i gh t g rad = de l ta0 . t ( ) .mm( a c t i v a t i o n s [−2])

d e l t a = de l ta0 .mm(Wfc2)∗ r e lu pr ime ( zs [−5])
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f c 1 we i gh t g rad = de l t a . t ( ) .mm( a c t i v a t i o n s [−6])

d e l t a = de l t a .mm( net . f c 2 . weight . t ( ) )∗ r e lu pr ime ( zs [−4])

f c 2 we i gh t g rad = de l t a . t ( ) .mm( a c t i v a t i o n s [−5])

d e l t a = de l t a .mm( net . f c 3 . weight . t ( ) )∗ r e lu pr ime ( zs [−3])

f c 3 we i gh t g rad = de l t a . t ( ) .mm( a c t i v a t i o n s [−4])

d e l t a = de l t a .mm( net . f c 4 . weight . t ( ) )∗ r e lu pr ime ( zs [−2])

f c 4 we i gh t g rad = de l t a . t ( ) .mm( a c t i v a t i o n s [−3])

net . f c 5 . weight . data −= 0.01∗ f c 5 we i gh t g rad

net . f c 4 . weight . data −= 0.01∗ f c 4 we i gh t g rad

net . f c 3 . weight . data −= 0.01∗ f c 3 we i gh t g rad

net . f c 2 . weight . data −= 0.01∗ f c 2 we i gh t g rad

net . f c 1 . weight . data −= 0.01∗ f c 1 we i gh t g rad

The gradients variables are obtained by the product between the previous delta and

the weights, but it is requested to perform the multiplication with the derivative

of the rectified linear unit function applied to the output. This is not required

to be performed manually with the custom module because the element by element

multiplication is executed by the autograd function automatically using the dynamic

graph.

3.4.5 Results BP, FA, DFA and IFA

The four codes explained previously have been simulated to understand which one

is more indicated to replace the backpropagation to classify a dataset complex as

the Cifar10 because the MNIST dataset is not considered a challenging one:

Figure 3.9: Test accuracy on a linear network classifiying Cifar10 images
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Table 3.1: Graphs of linear network classifying Cifar10 images

Algorithm lr Best Test Accuracy

BP 0.001 55%

DFA 0.001 49%

FA 0.001 26%

IFA 0.001 24%

Many solutions where the network was not able to learn are obtained using the

different algorithms since replacing the forward weights with random ones causes

exploding gradients phenomena. This effect is relevant in the IFA implementation,

but it is present also in the FA case. In order to obtain solutions comparable,

different weights initializations are used and it is considered the accuracies value

obtained as the best solutions to achieve with the defined structure of the network.

The weights initialization for the random ones in the FA and DFA cases are a uniform

distribution in the interval (0, 0.01), while for the IFA case it is a uniform distribution

in the interval (0, 0.001). The BP and DFA perform pretty good reaching 60% and

50% of accuracy respectively. This value is lower than the ones shown before since

there is a complex dataset as Cifar10 and a simple linear network is not able to

classify in a better way. The FA seems to confirm the 20% lower accuracy referred

to DFA as obtained in the previous networks. The IFA algorithm instead trains

the network very difficult. This must be due to how the error of the last layer is

reported.

Problem of Exploding Gradients on IFA

Since with the IFA implementation the error is reported from the last layer to the

first hidden one, the random matrix must be defined with a uniform distribution

in a smaller interval. This must be done in relation to the entity of the correction

factor used during the backpropagation. The error is multiplied for several weights

matrices before obtaining the correction factor for the first layer. If a matrix without

proper values is used the problem of exploding gradients will be dominant. This is

not relevant in the DFA probably due to the ability of the other layers to attenuate

the phenomenon, while in the IFA the other layers will be less trained since the error

goes in the forward direction. The several experiments have shown bad results and

the best one is obtained using a random weight matrix for the IFA with uniform

distribution in the interval (0, 0.001) as mentioned before. The IFA algorithm has

been discarded due to the difficult training shown, considering this algorithm a bad

solution for deep networks.

50



3.4.6 Results BP, FA and DFA

The initialization of the weights is an important factor in networks using random

matrices and different solutions are implemented to understand if best ones can

be found for the FA and DFA. For the IFA case, the solution shown before is the

the best one obtained on this network structure. The initialization of the random

weights has been changed to a uniform distribution in the interval (0, 0.03), but it

is possible to see how the FA and DFA have irregular behaviour with respect to the

previous case. This is due to the difficulty of fitting the curve that is used to make

predictions, since the initialization of the weights used to transport back the error

is not optimal.

Figure 3.10: Test accuracy on a linear network classifiying Cifar10 images with

modified initializations

Table 3.2: Graphs of linear network on Cifar10 using different initializations

Algorithm lr Best Test Accuracy

BP 0.001 55%

DFA 0.001 43%

FA 0.001 26%
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3.4.7 Convolutional network without module

The next network trained on the Cifar10 dataset is the same as the one provided

by PyTorch, but the max-pooling layers are removed in order to have a better

understanding of the elements to be modified for a correct implementation [4]. It is

based on two convolutional layers with 6 and 16 output channels and three linear

layers with 120, 84 and 10 neurons respectively. It is used the CrossEntropyLoss()

function to compute the loss and the Stochastic Gradient Descent to update the

weights values with a learning rate equal to 0.001. The optim.SGD function is used

for the FA e DFA implementations thanks to the register hook function that is used

to modify the gradients values. The solution of the custom modules and custom

autograd function is not applied to replace convolutional layers since PyTorch does

not expose the source of code for the backward step to the user, so the register hook

function is used to understand if FA and DFA implementations work correctly also

on convolutional networks. The convolutional layer must give better results with a

complex dataset as Cifar10 since it is able to extract more complex features and it

is able to perform faster training since the kernel used for the convolution is always

the same, so it is not requested to load a different value for every input.

DFA

The code for the DFA implementation is reported to understand how the functions

register hook and view are used to replace the gradients with the ones computed

following the DFA algorithm:

de l t a = d e l t a c r o s s e n t r o p y ( zs [−1] , l a b e l s )

zs [ −1 ] . r e g i s t e r h o o k ( lambda grad : d e l t a )

a c t i v a t i o n s [ −2 ] . r e g i s t e r h o o k ( lambda grad : d e l t a .mm(Wfc3 ) )

a c t i v a t i o n s [ −3 ] . r e g i s t e r h o o k ( lambda grad : d e l t a .mm(Wfc2 ) )

de l t a1 = de l t a .mm(Wfc1)

de l t a1 = de l ta1 . view (4 ,16 ,24 ,24 )

a c t i v a t i o n s [ −4 ] . r e g i s t e r h o o k ( lambda grad : de l t a1 )

de l t a2 = de l t a .mm(Wconv2)

de l t a2 = de l ta2 . view (4 ,6 , 28 , 28 )

a c t i v a t i o n s [ −5 ] . r e g i s t e r h o o k ( lambda grad : de l t a2 )

l o s s . backward ( )

opt imize r . s tep ( )

As can be seen, the function delta cross entropy has been used to compute the gra-

dients of the output of the last layer and this value is used to derive all others output

gradients. It is interesting how the variables delta1 and delta2 need to be modified

using the view() function. The delta variable has two dimensions, but the gradients

have four dimensions using convolutional layers due to two dimensions of the input
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image and the other two related to output channels and batch dimension. A random

matrix with concordant dimensions has been defined and before the computation of

the gradient it is necessary to define the matrix in two dimensions. Since the func-

tion register hook replaces the gradients only during the backward, it is necessary to

define multiple delta variables. If it is used only one variable that will be updated,

the register hook function will consider only the last value.

FA

The FA code is reported, but it is similar to the DFA one, since only the error

information propagation has a different path:

de l t a0 = d e l t a c r o s s e n t r o p y ( zs [−1] , l a b e l s )

zs [ −1 ] . r e g i s t e r h o o k ( lambda grad : de l t a0 )

de l t a1 = de l ta0 .mm(Wfc3)

a c t i v a t i o n s [ −2 ] . r e g i s t e r h o o k ( lambda grad : de l t a1 )

de l t a2 = de l ta1 .mm(Wfc2)

a c t i v a t i o n s [ −3 ] . r e g i s t e r h o o k ( lambda grad : de l t a2 )

de l t a3 = de l ta2 .mm(Wfc1)

d e l t a 3 1 = de l ta3 . view (4 ,16 ,24 ,24 )

a c t i v a t i o n s [ −4 ] . r e g i s t e r h o o k ( lambda grad : d e l t a 3 1 )

de l t a4 = de l ta3 .mm(Wconv2)

d e l t a 4 1 = de l ta4 . view (4 , 6 , 28 , 28 )

a c t i v a t i o n s [ −5 ] . r e g i s t e r h o o k ( lambda grad : d e l t a 4 1 )

l o s s . backward ( )

opt imize r . s tep ( )

The function delta cross entropy is used also in this code. The error is propagated

through the different delta variables used. The difference respect the DFA case is

how the delta values are computed since the error information is propagated in each

layer, while in the DFA the error uses skipping connections.
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3.4.8 Results

After the explanation of the codes, two different simulations are shown where the

initialization of the random weights is varied for both the FA and DFA algorithms.

The first one has a uniform distribution in the interval (0, 0.001), the second in the

interval (0, 0.005):

Figure 3.11: Test accuracy on a convolutional network classifiying Cifar10 images

Table 3.3: Graphs of convolutional network on Cifar10 with (0, 0.001) initialization

Algorithm lr Best Test Accuracy

BP 0.001 59%

DFA 0.001 46%

FA 0.001 22%

The results show the possibility to reach good accuracies also using a simple

convolutional network with few hidden layers, reaching 59% of accuracy with the

backpropagation. The DFA shows an increase in the accuracies difference with the

backpropagation case, because it is about 15% lower than the one obtained with

linear networks, that it is around 5%. The FA algorithm shows a lite degradation,

increasing the drop in accuracy to 35%. The first conclusion with these results is

the inefficiency for the FA algorithm to train convolutional networks. The number

of hyper-parameters can be strongly influenced by many factors.
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Implementations with different initialization are performed in order to under-

stand how the network behaviour is modified for all the algorithms:

Figure 3.12: Test accuracy on a linear network classifiying Cifar10 images with

different initialization

Table 3.4: Graphs of convolutional network on Cifar10 with (0, 0.005) initialization

Algorithm lr Best Test Accuracy

BP 0.001 59%

DFA 0.001 42%

FA 0.001 33%

The initialization of the weights is fixed in the interval (0, 0.005) with uniform

distribution and both the FA and DFA have different behaviour. The FA improves

the accuracy of 10%, while the DFA has a drop of 4%, that is not huge, but the

accuracy curve seems to be very irregular respect the previous case. This factor

gives a particular clue to the importance of the initialization of the random weights

used to propagate back the error in each layer.

55



3.4.9 Convolutional network with module

After the implementation of the convolutional network with a manually defined

backward, the custom modules have been used also in this type of network. The

problem has been the definition of the backward step, since PyTorch does not give

access to the backward autograd function of the convolutional layer to the users. The

problem has been solved using the two functions torch.nn.grad.conv2d input() and

torch.nn.grad.conv2d weight(). Another solution can be the definition of custom

functions that in the backward step compute the partial gradients using concate-

nated for cycles, but this solution is not optimal due to times requested to perform

the computations. The backpropagation function has been modified inserting the

custom module to check if it works properly with the two functions mentioned pre-

viously, so the forward step and the backward are reported:

de f forward ( ctx , input , weight , b i a s=None , s t r i d e =1, \
padding=0, d i l a t i o n =1, groups =1):

ctx . save for backward ( input , weight , b i a s )

re turn F . conv2d ( input , weight , b ias , s t r i d e , \
padding , d i l a t i o n , groups )

The forward part of the code is used only to recall the classic function also inside

the normal module of the convolutional layer, since the forward part is not required

to be modified. In the backward part the two functions are called:

de f backward ( ctx , grad output ) :

input , weight , b i a s = ctx . s av ed t e n s o r s

grad input = grad weight = grad b i a s = g r a d s t r i d e = None

grad padding = g r a d d i l a t i o n = grad groups = None

i f ctx . needs input grad [ 0 ] :

g rad input = torch . nn . grad . conv2d input ( input . shape , /

weight , grad output )

i f ctx . needs input grad [ 1 ] :

grad weight = torch . nn . grad . conv2d weight ( input , /

weight . shape , grad output )

i f b i a s i s not None and ctx . needs input grad [ 2 ] :

g r ad b i a s = grad output . sum ( 0 ) . squeeze (0 )

re turn grad input , grad weight , g rad b ias , g r a d s t r i d e , /

grad padding , g r a d d i l a t i o n , grad groups

The function torch.nn.grad.conv2d input computes the gradients referred to in-

put and this function is based on the use of the transposed convolutional func-

tion. In the library torch.grad where this function is defined, there is a com-
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putation for the dimensions of the parameter related to the gradients required

and the call to the function conv transpose2d of the library torch. The function

torch.nn.grad.conv2d weight computes the gradients with respect to weights and its

definition is slightly different from the previous one. The function contiguous is

called many times and the convolution is performed using the conv2d function of

torch. The results must be modified with view and contiguous in order to match the

right dimensions necessary for the computation. These functions are inserted in the

grad package of the library torch to allow a different computation of the gradients

instead of the classic autograd, avoiding a critical speed down of the computation.

In this way, there is a code similar to the one for the linear layer, defining how the

variables grad input, grad weight and grad bias are computed.

FA

The backward part is reported to understand the differences with the backpropaga-

tion code:

de f backward ( ctx , grad output ) :

input , weight , we ight fa , b i a s = ctx . s a ve d t e n s o r s

grad input = grad weight = grad we i gh t f a = None

g rad b i a s = g r a d s t r i d e = grad padding = None

g r a d d i l a t i o n = grad groups = None

i f ctx . needs input grad [ 0 ] :

g rad input = torch . nn . grad . conv2d input ( input . shape , /

we ight fa , grad output )

i f ctx . needs input grad [ 1 ] :

grad weight = torch . nn . grad . conv2d weight ( input , /

weight . shape , grad output )

i f b i a s i s not None and ctx . needs input grad [ 2 ] :

g r ad b i a s = grad output . sum ( 0 ) . squeeze (0 )

re turn grad input , grad weight , g rad we ight fa , g rad b ias , /

g r a d s t r i d e , grad padding , g r a d d i l a t i o n , grad groups

How the grad input is computed has been modified only in the FA code, replacing

the variable weight with the weight fa. The variable grad weight can be computed

replacing the weight.shape with weight fa.shape, but the dimensions are the same.
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DFA

In the DFA the grad input variable computation is not required since the error

information is not propagated through all the layers as seen before.

de f backward ( ctx , grad output ) :

input , weight , b i a s = ctx . s av ed t e n s o r s

grad input = grad weight = grad b i a s = g r a d s t r i d e = None

grad padding = g r a d d i l a t i o n = grad groups = None

i f ctx . needs input grad [ 1 ] :

grad weight = torch . nn . grad . conv2d weight ( input , /

weight . shape , grad output )

i f b i a s i s not None and ctx . needs input grad [ 2 ] :

g r ad b i a s = grad output . sum ( 0 ) . squeeze (0 )

re turn grad input , grad weight , g rad b ias , g rad b ias , /

g r a d s t r i d e , grad padding , g r a d d i l a t i o n , grad groups

In this code, it is possible to see how the computation of grad input has been removed

and the grad output is modified using the register hook as seen before. This is

done because in the FA there is an agreement of dimensions between the random

matrices and the weights matrices used during forwarding, but these dimensions are

not respected in the DFA case. The gain respect the previous code is the reduction

of computation since the values of grad input are not computed two times.
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3.4.10 Results

The codes exposed are simulated with the same conditions used previously on the

network without custom modules: the FA and DFA have random weights initialized

with uniform distribution in the interval (0, 0.001), while the BP has a uniform

distribution in the interval (-stdv, stdv), since it is not useful to modify the initial

conditions for this algorithm.

Figure 3.13: Test accuracy on a convolution network using custom modules to clas-

sify Cifar10

Table 3.5: Graphs of convolutional network on Cifar10 with (0, 0.005) initialization

Algorithm lr Best Test Accuracy

BP 0.001 57%

DFA 0.001 39%

FA 0.001 22%

The results show as the DFA and FA have functions similar to Figure 3.9 and this

is due to the same initialization used. The accuracy value obtained is lower because

the number of iterations has been reduced to analyze better the different results and

their behaviour. The BP seems to perform as in the case without modules, so the

custom module implementation is considered good. The FA algorithm has achieved

a lower accuracy, so another initialization is applied and the weights have a uniform

distribution in the interval (-stdv, stdv). The simulation is performed several times

because the results show particular behaviours:
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Figure 3.14: Test accuracy on a convolution network using only FA algorithms

Table 3.6: Graphs of convolutional network on Cifar10 with (0, 0.005) initialization

Algorithm lr Best Test Accuracy

FA1 0.001 39%

FA2 0.001 45%

FA3 0.001 32%

FA4 0.001 48%

The four simulations have two different behaviours: the red and orange lines are

the simulations where the network is able to train in a proper way and the results

are similar to the previous ones for the DFA implementations. The blue and green

lines show the phenomenon of exploding gradients since there is a network starting

to learn, but after two epochs the degradation occurs.
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3.5 Developing of ResNet with FA and DFA al-

gorithms

The ResNet code has been taken from Github repository and the structure is de-

rived from the paper of Kaiming and others [12] [11]. For this work, ResNet18 has

been chosen, such network has 18 layers with shortcuts that provide the identity

function as required by the model. Some shortcut is formed by layers to provide

an increase of dimensions because the hidden layers have an increasing number of

output channels going deeper [11]. The whole network has a convolutional layer as

first, followed by blocks of convolutional and batch normalization ones. The last

layer is the linear one that allows the classification with 10 output channels, one

for each class. The blocks that form the ResNet are called BasicBlock and they are

based on convolutional layers and batch normalization. This structure is valid only

for ResNet18 and ResNet34 models because increasing the number of layers the Ba-

sicBlock is replaced by the Bottleneck module formed with a different combination

of layers. The convolutional and linear modules with their relative functions are

replaced by the custom ones to implement the DFA and FA. The custom functions

have been called MyConv and MyLinear. The codes are similar to the ones used for

the convolutional and linear layers of the previous simulations. The backward step

is reported to understand the implementations:

de f backward ( ctx , grad output ) :

input , weight , we ight fa , b i a s = ctx . s a ve d t e n s o r s

grad input = grad weight = grad we i gh t f a = grad b i a s = None

g r a d s t r i d e = grad padding = g r a d d i l a t i o n = grad groups = None

i f ctx . needs input grad [ 0 ] :

g rad input = torch . nn . grad . conv2d input ( input . shape , /

we ight fa , grad output )

i f ctx . needs input grad [ 1 ] :

grad weight = torch . nn . grad . conv2d weight ( input , /

weight . shape , grad output )

i f b i a s i s not None and ctx . needs input grad [ 2 ] :

g r ad b i a s = grad output . sum ( 0 ) . squeeze (0 )

re turn grad input , grad weight , g rad we ight fa , g rad b ias , /

g r a d s t r i d e , grad padding , g r a d d i l a t i o n , grad groups

The computation of grad input is modified replacing the variable weight with the

weight fa one.
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DFA

In the DFA code the grad input computation steps have been modified, since the

function torch.nn.grad.conv2d input() is not able to work with an output gradient

of different dimensions:

i f ctx . needs input grad [ 0 ] :

a = we ight d fa . shape [ 1 ]

b = we ight d fa . shape [ 2 ]

c = we ight d fa . shape [ 3 ]

g rad input = grad . nn( we ight d fa . view (−1 , a∗b∗c ) )

grad input = grad input . view (−1 , a , b , c )

The grad variable is the result of the function delta cross entropy seen previously

and this parameter is passed using custom functions added to the convolutional layer

function. In this way it is possible to pass the error value to all layers and to modify

the grad input computation. It is requested to modify the weight dfa variable to

have a concordance of dimensions between the product and the gradient.

3.5.1 Problem implementing custom modules

The results of these implementations are not available because the codes have re-

quested too much time to simulate and the first simulations usually give only some

configuration hyperparameter to be set as weight initialization or magnitude for the

learning rate. The codes have been modified in order to have faster simulations and

an idea has been taken from PyTorch forum [17], where a function was inserted to

change the values of the weights used for the backward.

3.5.2 Developing of ResNet switching weights values for FA

The function to perform the switching of the weights has been inserted in the main

code, where the training is performed. The function update is called after the output

values computation from the network. The backpropgation is executed through the

function backward() and the function update is called again to switch the weights

since the ones to be updated using gradients are the forward ones. The code is

shown to understand how the switch is performed [17]:

de f update ( s e l f , mode ) :

i f mode == ’ backward ’ :

s e l f . fo rward weight . copy ( s e l f . weight )

s e l f . weight . data . copy ( s e l f . backward weight )

e l s i f mode == ’ forward ’ :

s e l f . weight . data . copy ( s e l f . fo rward weight )

re turn
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The function .copy is an in-place operation that will be computed in a single step

and the variables are maintained separated. The forwarding weights must be saved

every time in a variable, since they must be restored to perform the optimization

and used again during the forward step.

3.5.3 Developing of ResNet using register hook function for

DFA

In the DFA algorithm, the dimensions of the random weights are different from the

forwarding ones, so it is impossible to perform the switching as in the FA code. The

solution provided uses the register hook function passing the delta variable.

de f grad update ( s e l f , d e l t a ) :

a = s e l f . we ight d fa . shape [ 1 ]

b = s e l f . we ight d fa . shape [ 2 ]

s e l f . g rad d fa = ( de l t a .mm( s e l f . we ight d fa . view (−1 , a∗b∗b ) ) )

s e l f . output . r e g i s t e r h o o k ( lambda grad : /

s e l f . g rad d fa . view (−1 , a , b , b ) )

re turn

The gradients computation is similar to the codes seen before since the gradient is

computed using the function delta cross entropy and the product with a random

matrix. The dimensions of the weight dfa variables must be adjusted with the

function view. The problem of this code is found in the error propagation, due to

CUDA limitation. This is due to the memory allocable by the GPU, but a solution

is provided using the following function:

de f f r e e s p a c e ( s e l f ) :

de l s e l f . g rad d fa

Since the DFA algorithm requires gradients matrices for every layer and the CUDA

error occurs different times, the matrices of gradients are deleted after the backward

step in order to free space in memory and to avoid exceeding the limit. The GPU

memory has to maintain different values as the dynamic graph information and other

variables, so the addition of other variables to be saved has generated this error.
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3.5.4 Results Back Propagation

The backpropagation code is not modified, in order to obtain results as accurate as

the original ones presented by the author of the code. In the instruction provided it

is used a learning rate of 0.1, but it is requested too much time to reach values as the

one presented by the author [12]. So it is used a learning rate that is two magnitudes

smaller and the code is iterated two times over 200 epochs. The accuracy obtained

is 92,58% and it is quite similar to the one of the author of the code (93,05%).

Table 3.7: Simulations ResNet18 with backpropagation algorithm

Iteration epochs lr Test Accuracy

1 200 0.001 91,56%

2 200 0.0001 92,58%

The code allows to train over a variable number of epochs and when a higher

accuracy value is found, the network parameters are saved in a file such that it

is possible to iterate again the training phase with modified hyperparameters, but

using the variables found previously and using them from the beginning.

3.5.5 Results FA

The FA implementation shows the limit of this algorithm to be applied on a network

complex as the ResNet. A huge number of iterations is required to reach an accuracy

of 64,47% and this is a poor solution, because the same results can be obtained with

simpler networks and there is no gain using a deeper network. The main motivation

for this result can be the inability for the FA to perform a good alignment in the

first layers and the complexity of the convolutional network is an obstacle for this

algorithm.

Table 3.8: Simulations ResNet18 with Feedback Alignment

Iteration epochs lr Test Accuracy

1 150 0.1 50,64%

2 150 0.05 53,99%

3 200 0.01 60,09%

4 200 0.005 64,04%

5 200 0.001 64,74%

The number of epochs to reach the final accuracy value is over 800 epochs, so

the time requested to perform this training is much greater than the one requested
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by the simpler networks seen before.

3.5.6 FA Nokland and Lillicrap

In order to understand if the weight initialization used is correct, different experi-

ments has been performed. The first one is the same initialization of Nøkland [15].

So the weights used during the forward are initialized with uniform distribution in

the interval (-stdv, stdv), where stdv is obtained in this way:

stdv =
1
√
n1

∗
∑
w

w2 (3.4)

where n1 is the product between the dimensions of the kernel and the input channels.

For the random weights instead the uniform distribution is in the interval (-stdv2,

stdv2), where stdv2 is obtained in this way:

stdv2 =
1
√
n2

∗
∑
w

w2 (3.5)

where n2 is the product between the dimensions of the kernel and the output chan-

nels. The Nøkland implementation shows an initial training similar to the previous

case.

Table 3.9: Nøkland weight initialization on ResNet18 with FA

FA Nøkland

Iteration epochs lr Test Accuracy

1 150 0.1 49,60%

2 175 0.05 52,61%

The training steps are similar to the previous case and an accuracy of 52,61% is

reached. In the Lillicrap method instead a different initilization is used with weights

uniform distributed in the interval (-0.0001, 0.0001) and the random weights in the

interval (-0.5, 0.5) [13].

Table 3.10: Lillicrap weight initialization on ResNet18 with FA

FA Lillicrap

Iteration epochs lr Test Accuracy

1 none 0.1 10%

The results show a network not able to learn and this can be due to the different

depth of the ResNet respect the networks used by Lillicrap.
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The Nøkland initialization seems to be the best to work with ResNet, because

the magnitude of the weights is scaled going to layers with an higher number of

output and input channels and the error propagation has a different effect.

3.5.7 Results DFA

The DFA algorithm has shown good results also in the implementation of convolu-

tional networks, but the results obtained with the ResNet are not good to consider

this algorithm a replacement for the backpropagation. The weights values used for

the random matrices are different: the first time they are initialized with uniform

distribution in the interval (-0.001, 0.001) and the second one they are initialized

with uniform distribution in the interval (-0.0001, 0.0001). Better results are ob-

tained reducing the magnitude of the maximum values in the interval, since an

higher value of test accuracy is reached (32% in epoch 2).

Table 3.11: First weight initialization on ResNet18 with DFA

DFA with weight in [-0,001; 0,001]

Iteration epochs lr Test Accuracy

1 5 0.1 10%

Table 3.12: Second weight initialization on ResNet18 with DFA

DFA with weight in [-0,0001; 0,0001]

Iteration epochs lr Test Accuracy

1 22 0.1 10%

Both the iterations have given a final test accuracy of 10%, due to the phe-

nomenon of exploding gradients. The effect is similar to the one occurred using the

IFA algorithm on deeper networks, since there is an initial phase of learning, but the

cost function goes to infinite and the network starts to perform worse every epoch.

3.5.8 Failing FA and DFA and state of the art comparison:

approach to sign concordance

The results shown before are the demonstration that applying these algorithms on

the ResNet is not an optimal solution due to the depth that characterizes this

network. It is searched what has been proposed in the state of the art for the imple-

mentation of random matrices on networks so deep. The first hint is in the paper of

Qianli where it is exposed the importance of sign concordance between forward and

backward, that allows discarding the magnitude information of the weights report-

ing back the error [18]. This solution seems interesting because using the random
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propagation many times the problem of the exploding gradients occurred. In the

same paper, the Batch Manhattan is presented an additional optimization to limit

the exploding gradients phenomenon [18].

3.5.9 Batch Manhattan

This operation is applied using the sign function on the gradients values before the

weights values updating. The optimization is applied discarding the magnitudes for

the gradients and only the signs information is preserved. Good results are obtained

limiting the exploding gradients phenomenon, but a reduction of the learning rate

is necessary to have valid results.

3.6 Simulations results and comparison with pa-

pers ones

3.6.1 FA with initial sign concordance

The first modification to the codes is applied in the initialization phase. The sign

concordance is imposed when the forwarding weights and random weights are ini-

tialized. Different learning rates are tried in order to understand if the network

fails to obtain higher accuracy due to stuck points. The first iteration is performed

starting from a learning rate set to 0.01, while in the second iteration it is set to

0.001.

Table 3.13: Results of ResNet18 with FA and sign concordance

Iteration epochs lr Test Accuracy

1 200 0.1 51,57%

2 200 0.05 54,32%

3 200 0.01 60,37%

4 200 0.005 62,48%

5 200 0.001 66,83%

The first result shows a similar behaviour as the experiment without sign con-

cordance, reaching an accuracy of 66,83%.
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The learning rate is scaled an order of magnitude:

Table 3.14: Results of ResNet18 with FA signed scaled learning rate

Iteration epochs lr Test Accuracy

1 200 0.001 68,26%

2 200 0.0001 No improve

The second experiment shows that the number of epochs required to reach the

same accuracy is lower. This result can be related to the sign concordance that has

the effect to reduce the initial error training that characterizes the FA algorithm so

a lower learning rate can be used since the learning is faster.

3.6.2 FA with Batch Manhattan and initial sign concor-

dance

In order to apply the Batch Manhattan optimization the main code has been modi-

fied inserting a function called sign grad that has the role to perform this optimiza-

tion in all the layers of the ResNet. The function is called in the different modules

that form the ResNet, so the BasicBlock, the convolutional layer and the linear

layer:

de f s i gn g rad ( s e l f ) :

s e l f . weight . grad = s e l f . weight . grad . s i gn ( )

re turn

In this way it is possible to see how the values saved in the variable grad are modified

mantaining only the sign information.

Table 3.15: Results of ResNet18 with the Batch Manhattan and initial sign concor-

dance

Iteration epochs lr Test Accuracy

1 200 0.00001 72,16%

2 200 0.000001 No improve

The first implementations have performed very poorly and they are not reported.

This is due to the sign grad function applied to gradients. A reduction of the

learning rate by different magnitude orders is necessary to make this algorithm

work. Solutions very interesting are found reducing the learning rate to 0.00001.

The accuracy has grown up to 72,16% and this is important because it means that
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the algorithm is able to learn without the magnitude information and this algorithm

can be applied also on network deep as the ResNet.

3.6.3 DFA gradients signed

The use of Batch Manhattan have improved the results for the FA algorithm so this

optimization is implemented also on the DFA in the same way. This is done because

the first simulations using the DFA on a ResNet are characterized by the exploding

gradients phenomenon. In order to understand if the DFA algorithm needs some

particular weight initialization, three different simulations are performed. In the

first one the random weights are initialized with uniform distribution in the interval

[0; 0.0000001]:

Table 3.16: Results of ResNet18 using DFA and Batch Manhattan

Iteration epochs lr Test Accuracy

1 200 0.0001 45,86%

2 200 0.00005 No improve

The network is able to reach an accuracy value about 45,86% using this con-

figuration, but the simulation seems to stuck in a local minima and the accuracy

doesn’t grown anymore also after scaling the learning rate. The next simulation has

a modified interval set to [0; 0.0001]:

Table 3.17: Results of ResNet18 using DFA and Batch Manhattan with different

weights

Iteration epochs lr Test Accuracy

1 215 0.0001 46,84%

In the last case the interval is set equal to [-stdv, stdv] as the one used for the

FA case, when it give back the best accuracy:

Table 3.18: DFA using weights scaling with depth and Batch Manhattan

Iteration epochs lr Test Accuracy

1 133 0.0001 39,66%

The first simulations have similar results, because the effect of the value initial-

ization is almost the same. In the third solution the best accuracy is reached at

epoch 40 and after that the improvements are not consistent.
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3.6.4 FA with Batch Manhattan and sign concordance every

epoch

The next step has been to apply the sign concordance between forwarding weights

and random ones every epoch in addition to Batch Manhattan. The code has been

modified in this way:

de f update ( s e l f , mode ) :

i f mode == ’ backward ’ :

s e l f . fo rward weight . copy ( s e l f . weight )

s e l f . weight . data . copy ( s e l f . backward weight . abs ( ) /

∗ s e l f . fo rward weight . s i gn ( ) )

e l s i f mode == ’ forward ’ :

s e l f . weight . data . copy ( s e l f . fo rward weight )

re turn

As can be seen in the codes there is the multiplication between the signs of the

forwarding weights and the absolute values of the weights used during the backward.

This product is copied in the variable backward weight. It is necessary to apply the

abs() function to discard the signs randomly generated.

Table 3.19: Results of ResNet18 using FA, Batch Manhattan and sign concordance

every epoch

Iteration epochs lr Test Accuracy

1 200 0.00001 85,12%

2 100 0.000001 86,86%

The results show an increase of 10% of the accuracy reaching 86,86%. This

value is near the one obtained implementing the classical backpropagation. The

importance of the sign concordance is highlighted by the results obtained with these

simulations and the next experiment aims to apply some modification in order to

understand if it is possible to replace the backpropagation with some solution that

has a reduced computational effort.
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3.6.5 FA with Batch Manhattan and random weights gen-

erated every batch

Another experiment that has been tried is to generate the random matrix used

for the backpropagation every epoch instead to initialize them during the module

definition for the convolutional layer. This solution requires the sign concordance

between weights generated and ones used in the forward step.

de f update ( s e l f , mode ) :

i f mode == ’ backward ’ :

s e l f . fo rward weight . copy ( s e l f . weight )

s e l f . backward weight = torch . FloatTensor ( s e l f . weight . s i z e ( ) )

s e l f . backward weight . uniform(− s e l f . stdv , s e l f . stdv )

s e l f . weight . data . copy ( s e l f . backward weight . abs ( ) \
∗ s e l f . fo rward weight . s i gn ( ) )

e l s i f mode == ’ forward ’ :

s e l f . weight . data . copy ( s e l f . fo rward weight )

re turn

The definition of the values for the variable self.backward weight is performed every

time before the backward step. This solution is derived from the concept proposed

by Qianli where the magnitude of the values is not more important if the sign

concordance is respected [18]. In the FA algorithm proposed by Lillicrap is required

to save the random matrices in order to have these values fixed, while using the sign

concordance the matrices can be locally generated, used to propagate the error and

discarded.

Table 3.20: Results of ResNet18 using FA and random weights generated every

epoch

Iteration epochs lr Test Accuracy

1 150 0.00001 83,58%

2 96 0.000001 86,14%

The results are comparable to the ones presented before, since the test accuracy

is similar. In the next implementation the sign concordance is used avoiding the

Batch Manhattan optimization, in order to understand if it is sufficient to limit the

phenomenon that causes the degradation in the previous codes.
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3.6.6 FA using only sign concordance every epoch

The Batch Manhattan is removed avoiding the step where the gradients are replaced

by their signs. The learning rate has been set to 0.001, because the Batch Manhattan

solution requires a scaled learning rate:

Table 3.21: Results implementing only the sign concordance every epoch

Iteration epochs lr Test Accuracy

1 200 0.001 85,43%

2 200 0.0001 87,05%

The accuracy value reached is slightly higher than in the previous cases and

this is possible since using the Batch Manhattan the magnitude information of the

gradients is discarded to remove the exploding phenomenon that occours, but the

sign concordance is sufficient to avoid its presence.

3.6.7 ResNet34 with Batch Manhattan and sign concor-

dance every epoch

An implementation on the ResNet34 is tried in order to understand if this algorithm

can be applied to deeper networks. The Batch Manhattan is used and the sign

concordance is performed every epoch. These choices have been done because the

ResNet34 is a deeper network and the phenomenon of exploding gradients must be

avoided:

Table 3.22: Results implementing sign concordance every epoch and Batch Manhat-

tan on ResNet34

Iteration epochs lr Test Accuracy

1 200 0.00001 84,97%

2 130 0.000001 87,14%

The higher accuracy value obtained indicates the possibility to work with this

implementation also on deeper networks. The accuracy difference between this solu-

tion and the same on a ResNet18 is very small, only 0.28%. This result is reasonable

since the accuracy difference between the ResNet18 and ResNet50 using the back-

propagation is 0.6%.
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3.6.8 Error propagation using forward weights signs scaled

by stdv and Batch Manhattan

The last implementation uses the matrices obtained by the forward ones after the

sign function is performed. The matrix of signs is used to propagate the error

obtained in the last layer and this solution avoids the use of the forward weights

and also the need to define new matrices:

de f update ( s e l f , mode ) :

i f mode == ’ backward ’ :

s e l f . fo rward weight . copy ( s e l f . weight )

s e l f . weight . data . copy ( s e l f . fo rward weight . s i gn ( ) /

∗ s e l f . stdv )

e l s i f mode == ’ forward ’ :

s e l f . weight . data . copy ( s e l f . fo rward weight )

re turn

The update function has been modified and it is possible to see how the matrices

obtained by the sign function need to be scaled and the self.stdv factor is used.

Table 3.23: Results using the signs to brought back the error information

Iteration epochs lr Test Accuracy

1 150 0.00001 88,96%

2 200 0.000001 90,25%

The results show an accuracy comparable to the one obtained using the back-

propagation. This is an interesting result because with respect to the last algorithm

there is a safe in the memory occupied by the random matrices and the multiplica-

tion between the backward and forward matrices is avoided.
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3.6.9 Error propagation using forward weights signs scaled

by 0,001 and Batch Manhattan

The previous result shows as it is possible to have a network able to learn without the

magnitudes information of the weights used during the forward step. The simulation

performed next is based on a different scaling factor, using 0.001 instead of stdv.

Table 3.24: Results implementing a different scale factor for forward signs

Iteration epochs lr Test Accuracy

1 150 0.00001 78,25%

2 200 0.000001 80,51%

It is obtained a network able to learn better than the FA algorithm, but it has

a 10 % drop of accuracy respect the previous algorithm.

3.6.10 Error propagation using forward weights signs scaled

by stdv

The last experiment performed avoids the Batch Manhattan optimization, so the

sign() function on the gradients is not performed.

Table 3.25: Results using only signs to brought back the error information

Iteration epochs lr Test Accuracy

1 200 0.001 88,18%

2 200 0.0001 90,03%

3 200 0.00001 90,05%

The results are similar to the previous case but there is the advantage that

the sign function is not applied on the gradients, so the algorithm has a reduced

computational cost and the same accuracy value has been reached.
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3.6.11 Comparison with paper results

The performances of the different solutions obtained are compared to the state of

the art about the use of random matrices to transport back the error in the network.

These papers are almost recent, published between the end of November 2018 and

January 2019 [20] [22] [24] [1].

Moskovitz’s considerations

In the paper of Moskovitz, it is noted as using random matrices a condition of

asymmetry between forward and backward is imposed resulting in the inability for

complex networks to learn properly [22]. The use of the sign concordance has been

presented as a solution to limit the phenomenon of exploding gradients or vanishing

ones [22]. The network used is simpler than the ResNet of this work, but the results

are interesting for the study of the FA algorithm. For a network with 8 hidden

layers, 9 convolutional ones and one linear, the difference between BP and FA is

about 25% lower, while the solution using the sign concordance is 1.6%. The DFA

is implemented only in a smaller network and it performs really bad, similar to FA,

with a 10% difference respect the backpropagation [22]. This factor is obtained on

a network with two convolutional layers followed by max-pooling and two linear

layers. The DFA algorithm is not performed on more complex networks due to

memory requirements [22].

Bartunov’s considerations

In the paper of Bartunov, there are experiments on MNIST and Cifar10 datasets.

The importance of this paper is in the difference in performance reached by FA,

DFA and backpropagation algorithms. With the MNIST dataset there are good

results as ones presented at the beginning of this work, but using the Cifar10 the

DFA performs worse than the other two solutions, probably due to the use of the

complex dataset. In order to extract more features, a deeper network is required,

but the DFA is not able to provide learning.

Xiao’s considerations

Solutions similar to this work are reported in this paper, it is analyzed the results

obtained implementing the Lillicrap’s FA, the Qianli’s sign concordance and the BP

in a ResNet18 using PyTorch to classify the ImageNet dataset [24]. The solution

adopted to change the value of the weights is different to the one used in this work,

since it is used the function torch.legacy.nn.SpatialConvolution [25]. In this way,

during the backward, it is used directly another variable instead to copy values be-

tween variables. It is not possible to make direct comparisons between the solutions
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of this work and the paper one since the ImageNet is quite different from the Ci-

far10, but it is possible to analyze how the three algorithms perform on a ResNet18

to understand if they are able to classify in a comparable manner as the solutions

presented by this work. The results show as the FA has an accuracy lower than BP

and sign concordance case. While the FA implementation reaches a test error of

90,52%, the BP and sign concordance reach 33,14% and 37,91% respectively [24]. It

must be considered that ImageNet has a wider dataset and there are 1’000 classes,

but the difference in performances between the signs concordance and the random

matrices of FA confirms the great importance of the first one.

3.7 Computational efforts evaluation

The computational efforts required by the different solutions implemented are eval-

uated considering the simulation results, in order to understand which one can have

a lower computational cost during the training of the network reaching a good ac-

curacy value. This evaluation is performed to understand if the different solutions

can replace the classic backpropagation algorithm. The GPUs architectures used

during the simulations are Kepler ones since the last part of the work is performed

on Nvidia Tesla K40 and K80. The difference between the CPU and GPU archi-

tectures is the number of ALU inside the GPU and the reduction of cache memory

[16].

Figure 3.15: CPU and GPU architectures comparisons [16]

Using the huge ALU number it is possible with a GPU to work with parallel

threads, despite the smaller cache memory inside the processor. This factor allows

a faster computation performed by GPUs, but an higher number of accesses in the

DRAM memory are required and this can be a loss of time. It is required a good

management of memory to reduce the number of accesses in DRAM and the PyTorch

framework has been chosen for this reason.
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3.7.1 Evaluation of operations required for algorithms

The evaluation of the computational efforts is based on the analysis of the algorithms

used during simulations to understand which are the basic operations of each algo-

rithm in order to hypothesize the cost required by the single operation. The basic

operations considered are:

• Copy data from DRAM to cache

• Transpose the matrix

• Product between matrices

• Saving values in DRAM

• Function sign() on matrix elements

The complexity of these operations are related to the instructions performed by the

calculator, so it is checked details provided by Nvidia documents.

Table 3.26: Operations Bandiwth comparison [9]

Operation Effective Bandwidth(GB/s)

Simple Copy 96.9

Näıve Transpose 2.2

The copy and transpose operations are similar, but the second one has a compu-

tational cost higher than the simple copy due to the partition camping of the memory

[9]. This is related to the division of the memory in banks, that gives problems not

allowing to use all banks in an optimal way. For this reason Nvidia systems adopted

solutions to reduce the performance differences, going to use a diagonal indexing for

the elements of the matrices.

77



Figure 3.16: How the matrix is indexed in optimized way [9]

Table 3.27: Operations Bandwidth comparison [9]

Operation Effective Bandwidth(GB/s)

Simple Copy 96.9

Shared Memory Copy 80.9

Näıve Transpose 2.2

Diagonal 69.5

Implementing the diagonal matrix solution the transpose operation is faster as

can be seen from the table. Since the GPU works with parallelized operations

performed by threads, also the product operation between matrices is divided using

different threads. Every thread will perform the operation related to one element

for each matrix, the product will be parallelized and the results matrix is obtained

by the different products provided by threads. The analysis cost will be performed

referring to the whole elements of the matrices and not to the cost of the operations

between the single elements performed by every thread. Considering the operations

required during the training phase, an evaluation of the computational load of every

operation has been performed, in relation to data found on Nvidia documents. Since

the values shown are referred to different systems and these values are varied also

by the computer components, it is used a unit only with the purpose to compare the

higher complexity of an operation respect another. The easier operation considered
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is the multiplication, indicated with 1, while the transpose is referred with 3. The

algorithms that will be considered are:

• Back Propagation (BP)

• Feedback Alignment (FA)

• Direct Feedback Alignment (DFA)

• Direct Feedback Alignment using Batch Manhattan (DFA+Signgrad)

• Feedback Alignment with initial sign concordance and Batch Manhattan

(FAsign+Signgrad)

• Feedback Alignment with random matrices every epoch and Batch Manhattan

(FArand+Signgrad)

• Feedback Alignment with sign concordance every epoch(FAsign)

• Signs of forward weights used to propagate error in each layer, after the scaling

for constant value and Batch Manhattan (Sign+Signgrad)

• Signs of forward weights used to propagate error in each layer, after the scaling

for a constant value (Sign)

3.7.2 BP operations

• Copying weights from memory to registers (2)

• Transposition and saving of transposed weights in memory (3)

• Copying transposed weights from memory to registers (2)

• Copying gradients of Loss referred to layer output in registers (2)

• Multiplication between transposed weights and gradients of Loss referred to

layer output to obtain gradients of input that will be the output of next layer

(1)

• Copying activations in registers (2)

• Multiplication between gradients of Loss referred to layer output and activa-

tions to obtain gradients of weights (1)

• Writing weights gradients in memory (2)

• Writing in memory the input gradients that will be used for the next layer (2)
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• Total cost: 17

The accuracy obtained is 92,58% and it is the result of the code implementing Back

Propagation, so the original code taken from Github repository is not modified [12].

The computational cost is an index of the elemental operations that the calculator

must perform to execute a specific algorithm. In order to have a more efficient train-

ing phase, a lower computational cost must be obtained from the other algorithms

considered.

3.7.3 FA operations

• Copying random weights from memory to registers (2)

• It is not required to transpose weights matrices since these are defined with

right dimensions (0)

• Copying gradients of Loss referred to layer output in registers (2)

• Multiplication between random weights and gradients of Loss referred to layer

output to obtain gradients of input that will be the output of the next layer

(1)

• Copying activations in registers (2)

• Multiplication between gradients of Loss referred to layer output and activa-

tions to obtain gradients of weights (1)

• Writing weights gradients in memory (2)

• Writing in memory the input gradients that will be used for the next layer (2)

• Total cost: 12

The final cost is lower than using BP, but there is a lower accuracy value too.

The random matrices that replace the transposed ones have to be saved in DRAM

since they must be fixed during the whole training phase. In the case of BP the

transposed are deleted after the Loss gradients are computed. For this reason the

implementation will have a computational cost lower, but there is a higher memory

requirement that can slow down the training phase due to DRAM accesses. The

accuracy obtained is 68,26%.

3.7.4 DFA operations

• Copying random weights from memory to registers (2)
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• It is not required to transpose weights matrices since these are defined with

right dimensions (0)

• Copying gradients of Loss referred to layer output in registers (2)

• Multiplication between random weights and gradients of Loss referred to last

layer output to obtain gradients of the output of the layer (1)

• Copying activations in registers (2)

• Multiplication between gradients of Loss referred to layer output and activa-

tions to obtain gradients of weights (1)

• Writing weights gradients in memory (2)

• It is not required to compute input gradients to propagate (0)

• Total cost: 10

The final cost is very low, but there is the problem of a higher memory requirement,

since the random matrices must be fixed. In addition during the simulation there

are problems working with ResNet18, since the phenomenon of exploding gradients

makes the training impossible.

3.7.5 DFA+Signgrad operations

• Copying random weights from memory to registers (2)

• It is not required to transpose weights matrices since these are defined with

right dimensions (0)

• Copying gradients of Loss referred to layer output in registers (2)

• Multiplication between random weights and gradients of Loss referred to last

layer output to obtain gradients of the output of the layer (1)

• Copying activations in registers (2)

• Multiplication between gradients of Loss referred to layer output and activa-

tions to obtain gradients of weights (1)

• Application of sign function on the weights gradients (1)

• Writing weights gradients in memory (2)

• It is not required to compute input gradients to propagate (0)

• Total cost: 11
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This case is similar to the previous one, but using the Batch Manhattan the phe-

nomenon of exploding gradients is avoided. The maximum accuracy obtained is

46,84%. This solution has an accuracy value too low to consider it as a replacement

for the Back Propagation algorithm.

3.7.6 FAsign+Signgrad operations

• Copying random weights from memory to registers (2)

• Copying weights from memory to registers (2)

• Perform the sign() function on weights matrices (1)

• Perform transposed of sign matrices and writing in memory (3)

• Copying transposed signs matrices from memory to registers (2)

• Multiplication between the transposed signs matrices and random weights ma-

trices (1)

• Copying gradients of Loss referred to layer output in register (2)

• Multiplication between random+sign weights and gradients of Loss referred

to last layer output to obtain gradients of input that will be the output of the

next layer (1)

• Copying activations in registers (2)

• Multiplication between gradients of Loss referred to layer output and activa-

tions to obtain gradients of weights (1)

• Application of sign function on the weights gradients (1)

• Writing weights gradients in memory (2)

• Writing in memory the input gradients that will be used for next layer (2)

• Total cost: 22

This solution has good accuracy results reaching a value of 86,86%. The prob-

lem is the higher DRAM memory requirement to save the random weights and the

transpose operation must be performed to apply the sign concordance. The compu-

tational cost is higher than the BP ones and this makes the solution not optimal to

replace the Back Propagation.
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3.7.7 FArand+Signgrad operations

• Random weights generation (2)

• Copying weights from memory to registers (2)

• Perform the sign() function on weights matrices (1)

• Perform transposed of sign matrices and writing in memory (3)

• Copying transposed sign matrices from memory to registers (2)

• Multiplication between the transposed sign matrices and random weights ma-

trices (1)

• Copying gradients of Loss referred to layer output in registers (2)

• Multiplication between random+sign weights and gradients of Loss referred to

last layer output to obtain gradients of the output of the next layer (1)

• Copying activations in registers (2)

• Multiplication between gradients of Loss referred to layer output and activa-

tions to obtain gradients of weights (1)

• Application of sign function on the weights gradients (1)

• Writing weights gradients in memory (2)

• Writing in memory the input gradients that will be used for the next layer (2)

• Total cost: 22

The problem of a higher DRAM memory requirement is solved generating the ran-

dom weights every epoch. This operation is more complex than the multiplication

between matrices. The accuracy is about 86,14%. There is lower memory occupied,

but there is an increase in the computational cost due to the required reading and

transpose operation to be performed on the forward weights.

3.7.8 FAsign operations

• Copying random weights from memory to registers (2)

• Copying weights from memory to registers (2)

• Perform the sign() function on weights matrices (1)

• Perform transposed of sign matrices and writing in memory (3)
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• Copying transposed sign matrices from memory to registers (2)

• Multiplication between the transposed sign matrices and random weights ma-

trices (1)

• Copying gradients of Loss referred to layer output in registers (2)

• Multiplication between random+sign weights and gradients of Loss referred to

last layer output to obtain gradients of the output of the next layer (1)

• Copying activations in registers (2)

• Multiplication between gradients of Loss referred to layer output and activa-

tions to obtain gradients of weights (1)

• Writing weights gradients in memory (2)

• Writing in memory the input gradients that will be used for next layer (2)

• Total cost: 21

Respect the previous case the use of the Batch Manhattan optimization has been

removed, obtaining anyway good results of accuracy about 87,05%. The higher

memory requirement and the increased computational cost makes this solution not

optimal to replace the Back Propagation.

3.7.9 Sign+signgrad operations

• Copying weights from memory to registers (2)

• Copying the scale factor STDV from memory to registers (2)

• Perform the sign() function on weights matrices (1)

• Perform transposed of signs matrices and writing in memory (3)

• Copying transposed signs matrices from memory to registers (2)

• Multiplication between the transposed signs matrices and STDV (1)

• Copying gradients of Loss referred to layer output in registers (2)

• Multiplication between scaled signs and gradients of Loss referred to last layer

output to obtain gradients of the output of the next layer (1)

• Copying activations in registers (2)

• Multiplication between gradients of Loss referred to layer output and activa-

tions to obtain gradients of weights (1)
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• Application of sign function on the weights gradients (1)

• Writing weights gradients in memory (2)

• Writing in memory the input gradients that will be used for next layer (2)

• Total cost: 22

The solution reduces the memory requirement using only the signs of the weights

matrices scaled by the variable self.stdv. The accuracy is about 90,25%, but there

is a computational cost higher.

3.7.10 Sign operations

• Copying weights from memory to registers (2)

• Copying the scale factor STDV from memory to registers (2)

• Perform the sign() function on weights matrices (1)

• Perform transposed of signs matrices and writing in memory (3)

• Copying transposed signs matrices from memory to registers (2)

• Multiplication between the transposed signs matrices and STDV (1)

• Copying gradients of Loss referred to layer output in register (2)

• Multiplication between scaled signs and gradients of Loss referred to last layer

output to obtain gradients of the output of the next layer (1)

• Copying activations in registers (2)

• Multiplication between gradients of Loss referred to layer output and activa-

tions to obtain gradients of weights (1)

• Writing weights gradients in memory (2)

• Writing in memory the input gradients that will be used for next layer (2)

• Total cost: 21

This solution is the best one achieved through the implementations adopted since

its computational cost is the same for the FAsign solution, but there is an higher

accuracy value comparable to the one of the BP, reaching a value of 90,05%. The

memory requirement is reduced since there are not random matrices to be saved,

but the signs of the forward weights are used to propagate back the error. The

importance of this result is the possibility to use values different from the forward
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one, in order to propagate back the error information, but the network is able to

learn only if a strictly concordance of signs is respected. The results about the

computational cost evaluation and the accuracies used to compare each solution to

the Back Propagation are reported:

Table 3.28: Summary of computational complexity and accuracies

Computational Complexity Accuracy

BP 17 92, 58%

FA 12 68, 26%

DFA 10 10%

DFA+Signgrad 11 46, 84%

FAsign+Signgrad 22 86, 86%

FArand+Signgrad 22 86, 14%

FAsign 21 87, 05%

Sign+signgrad 22 90, 25%

Sign 21 90, 05%
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Chapter 4

Conclusions

4.1 Discussion about results

The results obtained in this thesis work have shown as the implementation of algo-

rithms using random matrices to propagate back the error in deep neural network

as ResNet are not able to train in a proper way. This factor is in contrast to the

ideas exposed by Lillicrap and Nøkland asserting the ability to use fixed matrices to

train networks since this factor is limited only to the first hidden layers. Working

with small networks the gain that can be achieved using these solutions is pretty

good since the transposition is avoided and a higher parallelization is possible. If

these solutions are applied on complex networks as ResNet the accuracies values

are lower and sign concordance is required between forward and backward weights.

The sign concordance is not considered initially in order to work with matrices com-

pletely independent from the ones used during the forward step, but successively

this concordance must be applied to obtain valid results. The best alternative to

backpropagation can be achieved using only the signs to report back the error, but

the computational cost is higher anyway. In this thesis work, it is highlighted how

the use of random matrices can give back vanishing gradients or exploding ones, re-

sulting in a network completely unable to work. The sign concordance importance

is evident through the results obtained, but the computational efforts to take the

values from the memory, to apply the function to extract the signs and to use them

in the backward phase don’t allow this solution to give a reduction of computational

cost.
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4.1.1 Promising implementations

The architectures able to work with a network complex as the ResNet are the GPUs

of the last years, allowing the parallelization of operations using multithreads and

enough memory storage for all the parameters required as weights, biases, activations

and gradients values. During the simulations on a GPU with 2 GB of memory the

problem of exceeding memory error is encountered many times, so it is required to

work with GPU more performant and with more memory allocable. The possibility

to introduce in the CUDA the operation of an optimized extraction of signs values,

avoding the multiple operations required by the one proposed in this work, can give

back a reduction in the computational efforts. The values 1 and -1 should be saved

in cache during the whole training and an optimized alternative of the copy of values

operations can be used to build the matrices used during the backward phase.
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