POLITECNICO DI TORINO

Facolta di Ingegneria
Corso di Laurea in Ingegneria Elettronica

Tesi di Laurea

Low complexity algorithms and
architectures for odd-type DCT hardware
implementation

Relatore:
Prof. Maurizio MARTINA

Candidato:
Luigi CRESCENZI

Febbraio 2019

A mio nonno Francesco

Summary

This thesis is centred on the Discrete Cosine Transform Type V (DCT5). This trans-
form has gained great interest in the context of the video coding standards known as
Post-HEVC. In particular, the DCT5 was introduced in the JEM software developed by
the Joint Video Experts Team (JVET).

The DCTS5 is initially defined and algorithms are developed to efficiently perform the
computation of this transform. More in detail, the DCT5 is firstly expressed in terms of
a Discrete Fourier Transform (DFT). In fact, a length-N DCT5 is related to a length-
(2N — 1) DFT. The possible algorithms for the DFT are therefore analyzed and several
simplifications are made in order to reduce the computational complexity.

The first algorithm under consideration is the Winograd Fourier Transform Algorithm.
This is studied for both prime and composite lengths of the DFT. Successively, the Prime
Factor Algorithm is investigated and finally, Bluestein’s and Rader’s algorithms are eval-
uated.

By considering previous works, the DCT5 is then related to a Discrete Cosine Trans-
form Type II (DCT2). Also in this case, the existing algorithms for the DCT2 are adapted
to efficiently compute the DCT5. The DCT5 is then solved via Givens Rotations and
finally, by referring to a previously published article, a direct factorization of the DCT5
matrix is also presented.

All the algorithms are developed for lengths 4, 8, 16 and 32, which are the ones of
greatest interest in the context of the JEM software. Furthermore, a comparison of the
algorithms is carried out. More in detail, they are compared as far as the computational
complexity, the regularity and the presence of cascaded multiplications are concerned.

One of the algorithms that are presented is based on a paper by Selesnick and Burrus
that describes how to efficiently compute a 31-point DFT. By making simplifications,
such an algorithm is adapted to the computation of a 16-point DCT5. The floating-point
version of the algorithm is successively used to obtain a fixed-point C-model. The C-model
is inserted in the JEM software and the performances are evaluated by referring to the
Bjontegaard delta. According to this model, an architecture is therefore developed and
synthesized and its performances are estimated in terms of frequency, area and power
consumption.

II

Contents

DUINIMmMary

L

Discrete Cosine Transform Type VI

1 DCOTH . oot e e oo e e e e e
1.1 Definition] . o o o v oo o
|1.2 Algorithms for the DCTd

R

DCT5 via DFT|

0.1 Direct Mapping between DCT5 and DFTI
.2 The Winograd Fourier Transform Algorithm (WFTAi
2.2.1 Winograd Short-N DFT Moduleso oot
D.2.2 WFTA for DOTS (N =AY . . . o o o
D.2.3 The Winograd large fast Fourier transforrrj
2.4 WEFTA for DOT5 (N =8) . . . o o oo
|2.3 The Prime Factor Algorithm (PFA*
».3.1 The steps of the PFAI
D.3.2 PFA for DCT5 (N =8) .« o o oo
I2.4 Bluestein’s Algorithrﬂ
0.4.1 Bluestein’s algorithm stepsl
2.4.2 Bluestein’s algorithm for DCTd
b.5 Rader’s Algorithni
2.5.1 Rader’s algorithm stepsl
2.5.2 Rader’s algorithm for DCT5 (N = 4*

DCT5 via DCT2

3.1 Relationship between the DCT5 and the DCT6
3.2 Relationship between the DCT6 and the DCTZ

B.2.1 Derivation of the 4-point DCT6 from the 7-point DCT?I
B.3 DCT5via DCT2 (N =4) . . . o o,
3.3.1 Reordering of the input Vect01|
3.3.2 Definition of the vector :BRI
3.3.3 Computation of the 7-point DCTQI
3.3.4 Definition of the output vector ﬂ'

IIT

II

b.3.5 Final Algorithn{
B.A DCT5via DCT2 (N =8) . o oo e
3.4.1 Reordering of the input Vectorl
3.4.2 Definition of the vector iBRI
3.4.3 Computation of the 15-point DCTQI
3.4.4 Definition of the output vector lri'
3.4.5 Final Algoritht] o o ovo oo

DCTS5 via Givens Rotationﬂ

1.1 Givens Rotationsl
1.2 DCT5 via Givens Rotations (N = 4)|

DCT5 via Direct Factorizatiod

b.l Direct Factorization of the DCTﬂ
H.1.1 Permutation matrixl
5.1.2 Non-normalized DCT5H matrixl
H.1.3 Direct sum operatorl
H.1.4 Non-normalized skew-DCT3 matrixl
H.1.5 Base change matrixl
b.2 Direct Factorization of the DCT5 (N = 8*
5.2.1 FEight-point permutation matrixl
5.2.2 Three-point non-normalized DCT5 matrixl
5.2.3 Five-point non-normalized skew-DCT3 matrix|

h.2.4 Eight-point base change matrixl

5H.2.5 Computational Complexityl

Comparison of the algorithmsl

6.1 Algorithms for the 4-point DCT5: a comparisorf

6.2 Algorithms for the 8-point DCT5: a comparisorf

6.3 Algorithms for the 16-point DCT5: a comparison
6.4 Algorithms for the 32-point DCT5: a comparison|

16-Point DCT5 Implementation|

7.1 Algorithm Selectiod
7.2 Fixed-Point Algorithrd
7.3 C—Modei
7.4 JEM Simulationel
7.5 Architecture Developrnentl
7.6 HDL Description and Simulation
7.7 Logic Synthesis{
7.8 Post-synthesis simulation and power estimatiod

v

66
66
67

71
71
72
72
73
73
74
75
75
75
76
78
78

79
79
80
80
81

|Appendix A DCT5 via DFT for longer length4
|A.1 WETA for longer lengths]
A.1.1 WFTA for DCT5 (N =16) o it s .
A.1.2 WETA for DCT5 (N =32) i
|A.2 PFA for longer lengths’
A21 PFA for DCT5 (N=32)
|A.3 Rader’s algorithm for longer leng;ths]
|A.3.1 Rader’s algorithm for DCT5 (N = 16)|

endix B DCT5 via DCT2 for longer lengthd

l%.l DCT5 via DCT2 (N =16). . . o o oo oo oo e
B.1.1 Reordering of the input vect01|
B.1.2 Definition of the vector mnl
B.1.3 Computation of the 31-point DCTQI
B.1.4 Definition of the output vector lrf
B.1.5 Final Algorithrﬂ
B.2 DCT5 via DCT2 (N =32) . .« o o o e
B.2.1 Reordering of the input VectOII
B.2.2 Definition of the vector TR oo
B.2.3 Computation of the 31-point DCTQI
B.2.4 Definition of the output vector Y oo
B.2.5 Final Algorithrﬂ

|Appendix C Direct Factorization for N = 32|

b.l Direct Factorization of the DCT5 (N = 32)|
C.1.1 Thirty-two-point permutation matrixl
C.1.2 Eleven-point non-normalized DCT5 matrixl
C.1.3 Twenty-one-point non-normalized skew-DCT3 matrixl
C.1.4 Thirty-two-point base change matrix|

|Ap endix D 16-Point DCT5 Algorithn{
D.1 MatLab Implementation (Floating—Point)l
D.2 MatLab Implementation (Fixed-Point) oo oot

Chapter 1

Discrete Cosine Transform Type V

THE AIM OF THIS CHAPTER is to introduce the Discrete Cosine Transform Type V
(DCT5). In particular, a brief definition of the DCTS5 is followed by an introduction to
the possible algorithms that can be adopted to efficiently compute this transform. The
derivation of these algorithms will be instead the main topic of the next chapters.

1.1 DCT5

A Discrete Cosine Transform (DCT) expresses a finite sequence of data points in terms
of a sum of cosine functions oscillating at different frequencies. The DCT5 is one of the
eight well-known DCTs. In particular, it belongs to the family of the odd-DCTs, together
with the DCT6, DCT7 and DCTS. These DCTs have gained great interest in the context
of the video coding standards known as Post-High Efficiency Video Coding (Post-HEVC).
In particular, the DCT5 was introduced in the JEM software developed by the Joint Video
Experts Team (JVET).

1.1.1 Definition

As stated in [1], the DCTS5 of a sequence {xy} of N points can be computed by applying
the equation:

-1
2 2m
Y, = —1, Tyxp cos | nk forn=0,1,...N — 1 1.1
T 2 Torweos (k™) (1.1)
where
T - % if n=20
" if n#0
1L i
1 ifk#0

1 — Discrete Cosine Transform Type V

As a consequence, given a vector

Lo
I

TN-1

the DCT5 can be calculated by performing the matrix product:

Yo
Y1 v
Y=| . | =[Cy]= (1.2)
Yn—1
rl 1 1 o L 7
2 7z 75 %
% cos 213711 cos 2;‘,@1 <o cos ((N — 1)2]\2,61) o
s 7T - T1
_ 2 % cos (2% cos (557 <.+ cos (2(N -1) 2]3_1) .
2N -1 : : : : : :
% cos ((N -1) 2137:1) cos (Q(N — 1)2]\2,7:1) <o+ COos ((N — 1)2213711) TN-1

It should be underlined that the matrix [C]\\/,] is symmetric and orthonormal. Therefore,
it can be written:

vyl \%
[Cx] = [CR]
Computational complexity
As shown in table @, the computational cost_of the direct implementation of the
matrix-vector multiplication described in equation E is equal to N? multiplications and

(N — 1) x N additions.

Table 1.1: Computational complexity of the DCT5H implemented by MVM

Npcors Number of multiplications Number of additions

4 16 12

8 64 56
16 256 240
32 1024 992
64 4096 4032
128 16 384 16 256

1 — Discrete Cosine Transform Type V

1.2 Algorithms for the DCT5

Several algorithms can be developed to reduce the computational complexity presented
in subsection

DIRECT
FACTORIZATION

GIVENS
ROTATIONS

(2N-1)-POINT
DFT

Figure 1.1: Algorithms for the DCTS

In particular, as depicted in figure @:

o an N-point DCT5 can be related to a (2N — 1)-point DFT. Since only N = 2™ is of
interest, the DFT can be solved by applying:

Winograd Fourier Transform Algorithm

Prime Factor Algorithm
— Bluestein’s Algorithm
Rader’s Algorithm

e the DCT5 can be solved via DCT2
e the DCT5 can be solved by applying the Givens rotations.
e the DCT5 can be solved via direct factorization.

The following chapters contain a detailed description of these algorithms.

Chapter 2

DCT5 via DFT

THIS CHAPTER SHOWS how an N-point DCT5 can be mapped into a (2N — 1)-point
DFT and presents the possible algorithms for the DFT that can be adopted to compute
the DCT5 of a given sequence {xy }. In particular, the DCT5 will be firstly solved by adopt-
ing the Winograd Fourier transform algorithm. Secondly, algorithms based on the Prime
Factor algorithm will be derived. Finally, Bluestein’s algorithm and Rader’s algorithm will
be considered.

2.1 Direct Mapping between DCT5 and DFT

The DCT5 can be derived from the Discrete Fourier Transform by properly rearranging
the input vector. In particular, the DCTH can be expressed as a function of a DFT. In
fact, since

N-1
2 27
Y, = —T, Tyx cos | nk forn=0,1,...,.N —1
" \/2J\f—1”kZ:0 Rk < 2N—1)
it is possible to define a vector
. g
o ﬁ
i‘l T
z=1| . | = .
TN TN-1
and rewrite the summation as
N—-1 - N-1 .
S = kz_o Ty.xy, cos <n/<:2N — 1) = kz_o Ty, CcOs <nk2N_ 1)

This expression can be written as a sum of two terms. The first one is related to the
elements of & having an even index, while the second one to those which have an odd

4

2 - DCT5 via DFT

index. More in detail, we have

X N
27
= 7 2 1
S §x2k008< SN 1 > Zx2k+1cos< 2N—1(k+)>

The second summation can be further rearranged as

. 27t 27

kzoi'gkﬂcos(2N_12k+1> Z:@N U 1cos(5N — (2N—1—2k)>
Since cos(x) is an even and periodic function, it can be written

N-1
27 . 27
E l‘gN 2k— 1COS< ON — (2N*1*2k‘) = ENSCQN_Qk_lcos <n2N_12k:)
k==

and consequently

iy 27 = 2
S = kz_o Top, COS (SN — 12k> Z ToN—_2k_1 COS <n2N — 12k>

A vector g can be defined so that

QL = Toy, for0§k<%—1
AN—k—1 = Bopp1 for 0< k<&

and equation El] can be expressed as

2 = o
Y, = 2N—1Tn Qi COS <n2N_12k>
k=0
By introducing the vector
[l]| [g0] [2]
l1 0 0
la 7 T2
l3 0 0
ly g2 T4
ls 0 0
l == = g ,
In—2 IN/2—1 TN-2
IN—1 0 0
IN qn /2 TN-1
IN+1 0 0
Ing2 4N /241 TN-3
| lan—2]] | an-1 | | 71|

2 - DCT5 via DFT

the equation

N-1 2N—2
qucos< 2N—12k> Z lkcos(2N—1k>

=0

can be derived.
The mathematical expression of a non-normalized DFT applied to the vector [is:

2N—2
Ye, = Z lkefjnkﬂail for n=0,1,...2N — 2.

This gives the equation:

2N -2

2N -2
Yr, = Zlkcos<)—JZlkSIIl(1l<:>

As a consequence, equation El] can be rewritten as

2
Yn = anRe(YFn) for n = O,l,...,N —1
It is important to notice that if the length of the input vector is even, then the DFT should
be performed on an odd length vector.

2.2 The Winograd Fourier Transform Algorithm (WFTA)

The Winograd Fourier Transform Algorithm (described in [2], [3], [4], [5], [6] and [{7])
remarkably reduces the number of multiplications needed to compute the DFT. It does
not increase the number of additions in many cases. This algorithm can be directly used
to compute the DFT by taking into account the prime factorization of the input vector
length, which is, for some cases, reported in tableEl]

Table 2.1: Prime Factorization of Nppr for different lengths of the DCTS

Npcts Nprr Nper Prime Factorization

4 7 7
8 15 3x5
16 31 31
32 63 32 x7

2.2.1 Winograd Short-N DFT Modules

As stated in [4], Winograd short-N DFT modules are the building blocks for develop-
ing the WFTA for longer lengths. They are defined for powers of prime numbers and are

6

2 - DCT5 via DFT

based on a fast cyclic convolution algorithm, which generally uses the theoretically mini-
mum number of multiplications. In mathematical terms, Winograd’s algorithm obtains a
canonical decomposition of the DFT matrix as shown below:

[DNDFT] = [SNDFT] [CNDFT] [TNDFT]
where

e [Dnppr) is the Nppr X Nppr DET matrix;
o [SNppr] is an Nppr x J matrix having 0, 1, -1 only as elements;
o [Cnpprl isa J x J diagonal matrix with each element purely real or purely imaginary;

o [Tnypp] is @ J x Nppr matrix having 0,1, -1 only as elements.

As a consequence, [Snpp] and [Ty,..] are just addition matrices and [Cnppy] is the
multiplier matrix. The number of needed multiplications is equal to J. If Nppr is small,
J is close to Nppr.

2.2.2 WFTA for DCT5 (N = 4)

A DCTS5 of length 4 can be mapped into a DFT of length 7 as described in section @
In particular, the DCT5 equation can be written as

Y, = cyT,Re(Yry) forn =0,1,2,3 (2.1)
where
o Cy= %
6
« Re(Yr,) =Re (Z lkej”k27n>
k=0
and o - -
lo o W
l1 0 0
l2 T T2
l = l3 = 0 = 0
ly T3 x3
ls 0 0
lg 1 71

Equation @ can be further rearranged to give
Y, = T,Re(csYyn) = TpRe(Ys,)

where:

N -

Yo = (Vi | = ca[S7][CA[Ta]1 = [S] | Cr] (T3]

2 - DCT5 via DFT

In particular:

11 1 1 1
01 1 1 1

01 0 -1 -1

00 -1 1 1

=10 -1 1 0 0
01 1 -1 1

01 0 1 -1

0 0 -1 -1 1

0 -1 1 0 0

10 0 0 0 O

11 1 1 0 1

11 -1 0 -1 1
S]=111 0 -1 1 -1
11 0 -1 1 1

11 -1 0 -1 -1
111 1 0 -1

-1

_— o = O

and {6’7] is a diagonal matrix whose main diagonal contains the elements of the vector

1
% (cos(0) + cos(20) + cos(360)) —

% (2cos(0) — cos(20) — cos(3 6))
3 (cos(0) — 2 cos(20) + cos(30))
3 (cos(0) + cos(20) — 2cos(30))
%J (sin(0) + sin(20) — sin(30))
?J (2sin(0) — sin(20) + sin(30))
?] (sin(0) — 2sin(20) — sin(30))
3J (sin(0) 4 sin(20) + 2sin(30)) |

By making use of these matrices, equation Ell yields an algorithm, which is composed
of five main steps:

e Pre-Normalization
o Pre-Additions

o Multiplications
o Post-Additions

e Post-Normalization

In the following, each of these steps will be analyzed.

8

2 - DCT5 via DFT

Pre-Normalization
The multiplication
1
My = Cnormxo = —=720

V2

is performed.

Pre-Additions

The additions related to this step are derived from the matrix-vector multiplication

Mnl +x1+ 22 + xg
[M| T+ 22 + 73
0 Tl — T3
x2 r3 — 2
A= [T7] 0 = o — T1
I3 U
0 U
| T1] U
L U |

The elements labeled as “U”are not of interest since they are only needed for the compu-
tation of the DFT imaginary part. The calculation of the other elements instead requires
6 sums. These are reported in table @

Table 2.2: WFTA for DCT5 (N =4): Pre-Additions

Op. Name Operation Op. Name Operation Op. Name Operation
ao T1 + 22 az T2 —I1 a4 T3 — T2
a x3 + ag as Tl — X3 as Mp + ay

Hence, we can write:

as

S SCScSg e ER

2 - DCT5 via DFT

Multiplications

The multiplications (reported in table @) derive from the matrix-vector product

Coas
Ciaq

Cgag
éga4
M = [Cy} A= |¢ay| =

SSSSESSERER

T TS

Table 2.3: WFTA for DCT5 (N = 4): Multiplications

Op. Name Operation Op. Name Operation Op. Name Operation
Mo éoag, M2 Cgag M4 C4CL2
M, Ciaq Ms Csay

Post-Additions

The additions related to this step are obtained by performing the matrix-vector mul-
tiplication
_ M, :
Moy + My + My + M3
My + My — My — My
Z = [S’{]M: Mo+ My — Ms + My
Mo+ My — M3 + My
Moy + My — My — My
| Mo + My + Mo + M3

It should be highlighted that this result is obtained by setting the elements labeled as
“U”equal to zero. In fact, since only the real part of the DFT is relevant to our goal, there
is no need to take these elements into account.

Moreover, it should be noticed that only the first four components of Z have to be
considered. Nevertheless, even though the other elements are not of interest, they are equal
to those components which are instead significant. This is due to the fact that the inputs
of the DFT are real. Indeed, the real part of the DFT of an odd-length real sequence is a
palindromic sequence except for the first element.

All the elements of the vector Z can be computed by performing the additions pre-
sented in table @ In particular, it can be written:

T
Z=[My aw a2 a1 ann a2 ap)

10

2 - DCT5 via DFT

Table 2.4: WFTA for DCT5 (N = 4): Post-Additions

Op. Name Operation Op. Name Operation Op. Name Operation
ag Mo + M, ay —Ms — My ar ag + as
ar M + M3 aio ag + az a2 ag + ag
as M4 — M3

Post-Normalization
The multiplication
1
Mo = CnormMO = —Mj

is performed.

Final Algorithm

S

The final version of the algorithm is reported in table @ It should be highlighted that
the computational cost of the algorithm is reduced to 7 multiplications and 13 additions.

Table 2.5: WFTA applied to the DCT5 for N =4

Op. Name Operation Op. Name Operation Op. Name Operation
My ChormZ0 My C()CLE, ar My + M3
ao 1+ T2 My Craq as My — M3
ay x3 + agp Mo Cyas ag — My — My
as o — 1 M3 C3a4 1/0 Cnorm]wo
as 1 — T3 M, Cluay Y1 ag + ar
a4 xr3 — T2 as My + M, Ys ag + ag
as My + ar Ys ag + ag
Remarks

The DFT Module used to derive the algorithm presented in table @ is built by fol-

lowing these steps:

1. the DFT is expressed as a function of a circular convolution by using Rader’s theo-

rem;

2. the circular convolution is solved by making use of the Winograd short convolution

algorithms.

11

2 - DCT5 via DFT

It is also possible to directly express the DCT5 as a function of a circular convolution.
More in detail, by exploiting elementary trigonometric identities, it can be written:

1 1 1 L
? 4%ﬂ 4aﬂ 4%”
oY) = 2| (7) cos(7) cos(7)
=R % cos (47”) cos (67”) cos (2771)
% cos (67”) cos (27”) Cos (4771)

1 1 1 1
% %n iﬂ %ﬂ
] = 2| () =) willy)
=75 con(2) cos(3) cos (&)
L cos (%) con (%) cos (%)
is obtained.
Since the submatrix
. 9 cos(z7:) cos(iﬁ) cos(%:)
[S]_W cos (%) cos (3£F) cos(g)

cos (47“) cos (67”) cos (7)

is a circulant matrix, the computation of the DCT5 can be derived from the circular
convolution between the vectors

o |cOs (27”) 1
g = ——|cos (67”) and d= |x9
VT | cos (1) 73

This circular convolution can be solved by adopting the algorithm reported in [6]. More
in detail, by defining the constants:

2 27 47t 67T 2 27 47t
G0:—7 COS — -+ COS — -+ CoS — Gy = — [cos— — cos —

3 7 7 7 N&d 7 7
G —l cos6—7[—cos4—7[G —i cos2—ﬂ—|—c056—n—2cos4—ﬂ
2T 7 7 7 T 37 7 7 7
2 1
Gy=+/= Gs = —

the algorithm presented in table @ is derived.
It should be highlighted that the identity

27r+ 47[+ 67t_ 0.5
cos7 cos7 COSY_ .

is exploited in the derivation of the algorithm.

12

2 - DCT5 via DFT

Table 2.6: Algorithm for the DCT5 (N = 4) executed by performing a circular convolution

Op. Name Operation Op. Name Operation Op. Name Operation
ag 71+ T2 M, Goas ay a7 — as
a x3 + ag Ms Gsay Y3 ag — ag
az 1 — X3 M, Gyzo Yo ar + ag
as To — X3 as My — Ms; a9 2My + 4My
ay az + as ag My — M3 a3 My — ay2
My Goay ar Moy + My Yo Gsais
My Giaz Y1 a7+ as

2.2.3 The Winograd large fast Fourier transform

Supposing that the length Nppr of the DFT can be expressed as a product of two
numbers (N1,N2) that are coprime, it can be demonstrated that

[Po] Yr = ([Dn1] @ [Dn2]) [P]1

where:

o [P,] is a permutation matrix;

o [Dn1], [Dn2] are the DFT matrices for length N; and No;
e ® is the symbol of the Kronecker product;

o [P] is a permutation matrix.

Since:

[Dni] = [Sni] [Cnal [Tva]

and
[Dn2] = [Sna] [Cna] [Th2]

it can be written
[Dn1] @ [Dne] = ([Sni1] @ [Sn2]) ([Cn1] @ [Cn2]) ([Th1] @ [Tvz)) (2.2)

where the Kronecker products [S] = [Sny1] ® [Sne2] and [T'] = [Tn1] ® [Tn2] are matrices of
zeros and ones, and the Kronecker product [C] = [Cn1] ® [Cy2] is again a diagonal matrix
with each element purely real or purely imaginary.

Hence, equation E leads to

2] = [Sn1] ([Sna] [Chaxai] © [Tna] ((Twa] [21)T)"
where:

o [Cnoxni] = CNzC;I\}l, with Cn2 and Cpn1 being the vectors, which respectively
contain the diagonal elements of the matrices [Cn2] and [Cn1];

13

2 - DCT5 via DFT

e o is the symbol of the element by element matrix multiplication;
e [z] isan N1 x N2 matrix containing the elements of the input vector I;
o [Z] is an N1 x N2 matrix containing the elements of the output vector Y.

In the following, the procedure needed to derive the matrix [z] will be described as well
as the one used to extract the elements of the vector Y¢ from the matrix [Z].

Input matrix

In order to build the matrix [z], a permutation is firstly applied to the vector I. There-
fore, the vector I is obtained as
=[Pl

where [P;] is the input permutation matrix. This matrix is derived according to the fol-
lowing steps:

1. A couple (nq,ny) is assigned to each element of I with 0 < n; < (N1 —1) and
0 < mng < (N2 —1). More in detail, the couple (n1,n2) is obtained by progressively
increasing no and ny. This is better explained by the following example. Consider
for instance, Nppr = 15 = 3 X 5 = N1 x N2. The assignments shown in table @
are obtained.

2. The corresponding index of the vector I is derived by applying the equation:
i = (Tll X N2+ ng X Nl) mod Nppr
The indexes obtained for the case presented above are reported in table @

Table 2.7: Permuted indexes calculation for N1 =3 and N2 =15

i[(nl,ng) i[

0 (0,00 (0x54+0x3)mod15=0
1 (0,1) (0x5+4+1x3)mod15=3
2 (0,2) (0x54+2x3)mod15=26
3 (0,3) (0x5+3x3)mod15=9
4 (0,4) (0x54+4x3)mod 15 =12
5 (1,0) (1x54+0x3)modl5=5
6 (1,L1) (I1x54+1x3)mod15=38
7 (1,2) (I1x54+2x3)mod15=11
8 (1,3) (I1x543x3)mod15=14
9 (14) (1x54+4x3)mod15=2
10 (2,00 (2x540x3)mod15=10
11 (2,1) (2x5+1x3)mod15=13
12 (22) (2x5+2x3)modl5=1
13 (2,3) (2x54+3x3)modl5=4
14 (24) (2x544x3)modl5=7

14

2 - DCT5 via DFT

3. The permutation matrix is built by setting the elements in position (i;, 7;) equal to
one. Therefore, for the case presented above, the ones of the permutation matrix are
in positions: (0,0), (1,3), (2,6), (3,9), (4,12), (5,5), (6,8), (7,11), (8,14), (9,2), (10,10),
(11,13), (12,1), (13,4) and (14,7). Hence, for this particular case, the matrix is:

p—
)
)
@)
)
)
)
)
)
)
)
@)
)

S

I
OO OO OO OO OO oo oo
SO R OO OO oo oo
SO OO OO OOoOOoO oo o
[elBeleolBeoleololaoleolalBolalol =
O R OO OO ODODODODODOoOOoO oo oo
OO OO DO OO OO OO oo
SO OO OO OO OO OO +Oo
— O O OO OO oo oo o oo
DD O DO DD OOoO R OO O oo
N eleoNeoNeNeNeNeBeNeNel =)
SO OO H OOOOOoOOoO oo o
O DD O DO DO OO OO oo
O O OO OO OO oo+ O oo
DO O R OO ODODODOOoO oo oo
SO OO OO HOOOOoO oo o

The elements of I are then ordered along the rows of the matrix [z]. In particular, for
the case presented above, it can be written:
o I I I3 Iy
[l=11ls s Iz s g
lio lin ha hs g

Output matrix

The vector Yg is stored in the two-dimensional array [Z] by starting in the upper
left corner and listing the components down the “extended diagonal ”. Since the number
of rows and the number of columns are relatively prime, the extended diagonal passes
through every element of the array. For the case considered above, we have:

Zoo Zoi Zop2 Zoz Zoa Yro Yre Yri2 Yr3 Yro
Zl=|Z10 Z1p Zi2 Zi3 Zia| = |Yrio Ym Yrr Yris Yis
Zoo Zoi oo Zoz Zoa Yrs Yri1 Y2 Yrs Yrus

2.2.4 WFTA for DCT5 (N = 8)

A DCTS5 of length 8 can be mapped into a DFT of length 15 as described in section Ell
In particular, the DCT5 equation can be written as

Y, = csT,Re(Yr,) forn=0,1,...,7 (2.3)

where

15

2 - DCT5 via DFT

[] C8 = 72
V15

14 o
« Re(Yr,) =Re (Z lkeJ"kis>
k=0

and
lo &0 o
1 0 0
lz i‘Q i)
I3 0 0
l4 i’4 T4
l5 0 0
l6 i‘6 Te
l=|l;|=]0|=1]0
lg :f7 xT7
lg 0 0
l1o T5 x5
I 0 0
l12 T3 3
l13 0 0
el 2] [m

Equation @ can be further rearranged to give
Y, = T,Re(csYrn) = TpRe(Yi,)

The elements of Y are contained in the matrix [Z] which is calculated by applying the
equation

T\T A T\ T
(2] = cs [S5] (1951 [Csxs] o [T5] (T3] [2)™)" = [5] (185] [Cons| o T1 (D7) (2.4)

where

[é5x3} = cg [Csx3]
Equation @ yields an algorithm composed of the following steps:

e Pre-Normalization
¢ Pre-Additions

e Multiplications

e Post-Additions

e Post-Normalization

In the following, each of these steps will be analyzed.

16

2 - DCT5 via DFT

Pre-Normalization
The multiplication

Mnl - Cnorm$0 = Zo

Sl

is performed.
Pre-Additions
The additions related to this step are obtained by performing the matrix products
[A] = [T5] ([T5] [2])*

In particular, the input permutation matrix [F;] is applied to the vector I:

100 00O0O0OO0O0OO0OOO0OOO0 O]l lo
00010O0O0O0O0O0OO0O0OO0O0O0f]|h I3
000O0OO0OO0OT1TTO0O0O0OO0O0OO0O0 0]l le
0000O0OO0OOOOT1TO0O0O0O0O0]]|l ly
000O0OO0OO0OOOOO0OO0O0OT1O0 0]l l12
0000O0O1O0O0O0OO0OO0O0 O]l ls
000O0OO0OO0OOOT1ITO0OO0O0OO0O0 0]l ls
[=[P]l=10 0000000000100 O0||l]=]n
000O0OO0OOOOO0OOO0OOO0O0 1f]|! l14
001 00O0O0OO0OO0OO0UO0OO0OO0O0 0]]l I
00 0O0O0OO0OO0OO0OO0OOT1IO0O0O0 0f]ho l1o
000O0OO0OO0OOOO0OOO0OO0OO0T1 0f]|ln l13
01 000O0O0O0O0OO0OOO0O0 Of]|lhe i
000O0O1O0O0O0OO0OOO0OOO0O0 Of]|ls ly
00000O0O0OT1TO0O0O0O0O0O0 0]]|lhd] K4
The elements of I are then ordered along the rows of the matrix [z]:
lo I3 le lo o My 0z 0 w3
[Z] = l5 lg l11 l14 l2 = 0 T 0 1 T2
llO 113 ll l4 l7 Ts 0 0 z4 O
Since:
1 1 1 1 17
L1 01 11
T3]=1(0 1 1 and [T5] =
01 —1 601 0 0 -1
01 -1 1 -1
0 0 -1 1 0]

17

2 - DCT5 via DFT

it can be derived

[A] = [T5] (T3] [2]) "

U
U
U

(M + 21 + 29+ 23+ 24 +25 +26 +27 21+ T2+ x4 + 25+ 27 U
T1+ X2+ 23+ T4+ X6 + T7
—X1+ T2+ 23 — x4 — 6 + T7

r1+x2+ x4+ 27 U

—x1 + T2 — x4 + 7 U
U —x2 + X7
U X1 — XTg — X4 + X7
U T1 — T4

where the elements labeled as “U”are not calculated because they would only be used
to compute the imaginary part of the DFT, which is not needed. Fourteen additions are
instead required to compute the other elements of the matrix [A]. These are reported in

table @

Table 2.8: WFTA for DCT5 (N = 8): Pre-Additions

Op. Name Operation Op. Name Operation
aop T1+ 24 ar as + az
al To + X7 as T3 — Tg
a T3+ Te ag as + as
as ap +ay aio T7 — T2
a4 as + xIs ail 1 — X4
as a1 — ag a2 aip + a1
ag as + az a3 ag + M1

Therefore, it can be written:

Multiplications

SESESER -
Sog& &L
Q
s

The multiplications (reported in table @) derive from the element-by-element matrix

product

[M] =

[ém} o [4]

18

2 - DCT5 via DFT

The matrix [é5>< 3} can be obtained from the diagonal elements of the matrices [C5] and

[C3]. Since
1 0 O 0 0 0]
0 ks O 0 0 0
1 0 0
k
Cs) =10 ki 0| and [c5= |0 O K 000
0o 00 0 jks 0 0
52 00 0 0 jkg 0
00 0 0 0 jki
it follows that
[1] [cg cgky jeske]
ks cgks cgkiks jegkoks
A ky) csky cgkiky jegkoky
o]:c S Ky kel = | :
[o3 ®|iks 1k gl jesks jegkiks —cgkoks
jke jegke jegkike —cgkoke
Lik7 | Licgky jegkiky —cgkoky |

e ks =sin (—%ﬂ) + sin (—%“)
e kg =sin (—%ﬂ)
21

e ky =sin (—g) — sin (—?)

The multiplications derived from the imaginary elements of [C‘5X3} are not needed for
real input vectors. Hence, it is sufficient to consider

[C8 Cgkl U i _CO C1 UT

C8k3 C8k1k3 U C2 Cg U

[C' }_ C8k4 C8k1k4 U B C4 C5 U
53] = U U *Cgkgkg, o U U Cﬁ
U U —Cgk2k6 U U C7
L U U —C8k2k7_ _U U Cg_

19

2 - DCT5 via DFT

The matrix [M] can consequently be obtained as:

Co Cl U a13 a4 U
CQ Cg U a7 as U
C4 C5 U ag as U
M= U |l®°|U U aw
U U C7 U U a1
_U U Cg _U U ain |

_Coalg C1a4 U 1 _M() M3 U_

CQCL7 Cg&g U Ml M4 U

. C4a9 C5a5 U o MQ M5 U

o U U Cﬁalo o U U M@

U U C7a12 U U M7

U U Cgann] |U U Mg]

Table 2.9: WFTA for DCT5 (N = 8): Multiplications

Op. Name Operation Op. Name Operation Op. Name Operation
My Coars M3 Cray Ms Cea1o
M,y Caaz My Csas My Craiz
My Caag Ms Csas Mg Csann

Post-Additions

The additions related to this step are obtained by performing the matrix products

(2] = [S5] (1S5] [M]) "

Since
1 0 0 0 0 0
1 1 1 1 -1 0 1 0 0
Ss]=11 1 -1 0 1 1| and [S3=[1 1 1
11 -1 0 -1 -1 1 1 -1
11 1 -1 1 0
the columns of [Z] are
My
Z(Z ,O)Z Mo + M;
Moy + M3
My + My + M»

Z(: ,1): M0+M1+M2+M3+M4+M5+M6—M7
Moy + My + My + M3z + My + Ms — Mg + My

20

2 - DCT5 via DFT

My + My — My

Z(:,2) = | Mo+ My — My + Mz + My — Ms + My + Mg

| Mo + My — My + M3 + My — Ms — M7 — Mg

I Moy + My — My 1

Z(:,3)=|My+ My — My + M3+ My — Ms — M7 — Mg

| Mo + My — My + M3 + My — Ms + M7 + Mg |
Mo + My + Ms

Z(:4)=|My+ My + My + M3 + My + Ms — Mg + M7 | .

M0—|—M1—|—M2+M3—|-M4—|—M5+M6—M7

The additions described in table can be performed to compute all the elements of
the matrix [Z].

Table 2.10: WFTA for DCT5 (N = 8): Post-Additions

Op. Name Operation Op. Name Operation Op. Name Operation
ayy My + M ag ayy — Ms agy4 as3 + ao
ais a4 + Mo aso Mg — My ass as3 — ag
a6 ayy — Mo asy M7 + Mg age aie + aig
air M3 + My as2 My + M3 asy age + asy
aig a7 + Ms as3 ais + ag asg age — a1

Hence, the matrix [Z] can be expressed as

My a5 aie aie ais
[Z] = |a22 a4 a7 ass ass
a2z G5 a8 Q27 A24

It should be highlighted that only the first 8 elements aligned along the extended diagonal
have to be considered. In fact:

Yo 3:/F6 U Vs U
[Z] = Re U YFI YF7 U YF4
Yis U Ypo U U

where the components labeled as “U”are not needed for the computation of the DCT5
even though they are equal to the elements that are instead significant.

Post-Normalization

The multiplication

is performed.

21

2 - DCT5 via DFT

Final Algorithm

The final version of the algorithm is reported in table . It should be highlighted that
the computational cost of the algorithm is reduced to 11 multiplications and 29 additions.

Table 2.11: WFEFTA applied to the DCT5 for N =8

Op. Name Operation Op. Name Operation Op. Name Operation
Mnl CnormJ;O Ml C2a7 a22 MO + M3
ap T+ @4 Mo Caag as3 as + aig
ap T9 + 7 M; Cray any4 as3 + ago
as T3 + Tg M, Csas ass as3 — ago
as ap + ay Ms Csas a6 aie + aig
ay as + x5 Mg Cea1o asy ase + asi
as a; — ap M~ Crai2 ass age — a1
ag as + as Mg Csann Mo CrormMo
az as + ag a4 My + My Yo Mo
as T3 — Tg ais a4 + Mo Y agy4
ay as + ag aie ajq — My Y ass
aio xT7 — T2 az Mz + M,y Y3 aip
an T1 — @4 aig a7 + Ms Yy azs
a2 ap + a ag ayr — Ms Ys ag
a3 ag + My aso Mg — M7 Ys ais
My Coais as1 M7 + Mg Y7 asy

2.3 The Prime Factor Algorithm (PFA)

The indexing scheme proposed for the WFTA is a way of organizing a linear ar-
ray of Nppr = N1 x N2 numbers into an N1 by N2 array, but in such a way that a
one-dimensional Fourier transform can be converted into a true two-dimensional Fourier
transform. This two-dimensional Fourier transform can also be solved by computing N1
DFTs of length N2 and N2 DFTs of length N1. This is the approach followed in the Prime
Factor Algorithm ([4], [b], [6] and [[]).

2.3.1 The steps of the PFA

Supposing that the length Nppr of the DFT can be expressed as a product of two num-
bers (N1,N2) that are coprime, the PFA can be adopted to solve the DFT. In particular,
the DFT can be computed according to the following steps:

1. index transform of the input sequence

2. computation of N1 DFTs of length N2
3. computation of N2 DFTs of length N1

22

2 - DCT5 via DFT

4. index transform of the output sequence

In the following, each of these steps will be described in detail.

Input Mapping

The input mapping is obtained by following the same procedure proposed for the
Winograd large fast Fourier transform. In particular, a permutation is applied to the
input vector I. Therefore, the vector [is obtained as

[=[Pl

where [P;] is the input permutation matrix.
The matrix [P;] can be constructed according to the following steps:

1. A couple (ny,ng) is assigned to each element of I with 0 < n; < (N1 —1) and
0 < mng < (N2 —1). More in detail, the couple (n1,n2) is obtained by progressively
increasing no and nq. This is better explained by the following example. Consider
for instance, Nppr = 15 =3 X 5 = N1 x N2. The assignments shown in table @
are obtained.

2. The corresponding index of the vector [is derived by applying the equation:

i = (n1 X N2 +ng X Nl) mod Nppr
The indexes obtained for the case presented above are reported in table .

Table 2.12: Permuted indexes calculation for N1 =3 and N2 =5

i (n1,n2) 1

0 (00 (0x5+0x3)mod15=0
1 (0,1) (0x5+1x3)mod15=3
2 (02 (0x5+2x3)mod15=6
3 (0,3) (0x5+3x3)modl15=09
4 (04) (0x5+4x3)mod15=12
5 (1,0) (1x5+0x3)mod15=>5
6 (1,1) (1x5+1x3)mod15=8
7 (1,2) (1x5+2x3)mod15=11
8 (1,3) (I1x5+4+3x3)mod15=14
9 (1,4) (I1x54+4x3)mod15=2
10 (2,00 (2x540x3)mod15=10
11 (21) (2x5+1x3)mod15=13
12 (22) (2x5+2x3)mod15=1
13 (23) (2x5+3x3)mod15=4
14 (24) (2x5+4x3)mod15=7

23

2 - DCT5 via DFT

3. The permutation matrix is built by setting the elements in position (i;, 7;) equal to
one. Thus, for the case presented above, the ones of the permutation matrix are in
positions: (0,0), (1,3), (2,6), (3,9), (4,12), (5,5), (6,8), (7,11), (8,14), (9,2), (10,10),
(11,13), (12,1), (13,4) and (14,7).

The vector I can therefore be obtained by performing the matrix-vector multiplication:

[1 000000 0O0O0UO0O0O0OO0 0][l] (15
000100O0DO0O0O0O0OO0O0O0O0||nh I3
0000O0DO010O0O0O0O0O0O0O0|]|LL l
000O0O0DO0OOOOT1O0O0O0O0 0| ly
0000O0DO0OO0OOO0OO0T10O0||lL lio
000O0O0ODT1O0O0O0O0O0OO0O0O0O0|]|I ls
000O0O0DO0OOOT1IO0O0O0O0O0 O0]|]|L I
[I=[R]l=|0 0000000000100 O0||[l]=]h
000O0O0DO0OOOOO0OOO0O0O0 1|]|I li4
0010000O0O0O0O0O0O0O0 0]]l Iy
0000O0DO0OO0OOO0T1O0O0O0 0flho lio
0000O0DO0OOOOO0OOO0O0T1 0||n lis
01 0000O0DO0O0OO0O0OO0O0O0 0f[he L
000O01000O0O0O0GO0O0O0 Of[hs Iy
00 000O0O0T1TO0O0O0O0GO OO0 O0f[hal [Ir]

Computation of N1 DFTs of length N2

This is the first stage of the PFA. The elements of the vector I are used as inputs for
the N1 DFTs of length N2 (figure P.1 for N1 = 3 and N2 = 5) .

ly —> — XF0o
Iy —» —» XF0,
5-POINT
b= ppp [AT
ly —» — XF03
Ly — —= XFO0,
l; —= — XF1,
Iy —» —= XF1,
5-POINT
by —> DFT — XF1,
Ly — —= XF1;
Lz —™ " XF11
lio —> — XF2,
b3 —> — XF2;
5-POINT
I — DFT —= XF2,y
Iy —» — XF23
l; —» — XF2,

Figure 2.1: First stage of the PFA for N1 =3 and N2 =15

24

2 - DCT5 via DFT

Computation of N2 DFTs of length N1

This is the last stage of the PFA. The elements XFj; are used as inputs for the i-th
DFT of length N1 (figure @ for N1 =3 and N2 =5).

ly —m > — Zo
3-POINT
Iy —m —» 7
DFT
5-POINT
Iy —» DFT —» oo
ly —»
—» Z
hy —» 3-POINT
DFT > 2
> ZQ]
ls, —»
Iy —» —» 75
5-POINT o 3-POINT
h > DFT o DFT > Zi2
iy —» —» 755
by —»
— Zy3
3-POINT
DFT > Zis
Lg —
> 223
llg —
5-POINT
Z] > DFT » Z04
3-POINT
I, —» DFT —» 7,
I, —m > —» Z4

Figure 2.2: First and second stage of the PFA for N1 =3 and N2=15

Output mapping

The outputs of each DFT of length N1 represent a column of the matrix [Z]. The
elements of the vector Yg are stored in the matrix [Z] starting in the upper left corner
and listing the components down the “extended diagonal”. Since the number of rows and
the number of columns are relatively prime, the extended diagonal passes through every
element of the array. For the case considered in the previous paragraphs (figure R.3), it
can be written:

Zoo Zo1 Zo2 Zo3 Zoa Yro Yre Yri2 Yrz Yro
Z)=|Z1o Z1qn Z1p Zi13 Zia| = |Yrio Yri Yer Yrizs Y
Zoo Zoi oo Zoz Zoa Yrs Yri1 Yr2 Yrs Yrus

25

2 - DCT5 via DFT

Iy —» >
) 3-POINT
C DFT
5-POINT
ls ’ DFT
lg —
he > 3-POINT
DFT
I —
ly —»
5-POINT | 3-POINT
h ’ DFT o DFT
ly —»
ZQ —
3-POINT
L DFT
bz —»
5-POINT
h ’ DFT
> 3-POINT
b DFT
I, —» >

Figure 2.3: PFA for N1 =3 and N2=5

2.3.2 PFA for DCT5 (N =38)
A DCTS5 of length 8 can be mapped into a DFT of length 15 as described in section El]

In particular, the DCT5 equation can be written as

Y, = csT,,Re(Yrn) forn=0,1,...,7

where

g = =
8~ V15

14 -
« Re(Yr,) = Re (Z zke—mk?s>
k=0

26

YFD
YFlO

YF 5

YF 6
YF 1

YFH

YF12
YF?

Yro

YF 3
YF 13

YF 8

YF 9
Yry

YF14

2 - DCT5 via DFT

and o o) _ -
lo Zo 20Tk k=0 5
l1 0 0 0
la T T2 T2
I3 0 0 0
ly Ty T4 T4
l5 0 0 0
lg Tg T6 T6
l=11;|=10]|= 0 =10
ls Z7 x7 x7
lg 0 0 0
l1o T5 x5 x5
l11 0 0 0
l12 T3 T3 x3
li3 0 0 0
|14 | 1] L oz | 71 |

For the sake of simplicity, the normalization factors can be initially neglected. Hence,
we can neglect cg and consider:

T,=1 Ty, =1 Vn,k

As a consequence, the vector I can be redefined as

T
L=lo Iyt Iy I3 Iy I5 lg Iy lg ly Lo i he Lz la
:[acOO:UQ0x40x60z70x50x309§1]T
The input permutation matrix is therefore applied to this vector in order to obtain the
vector [. Thus, we have

1000000O0O0O0GO0GO0O0O0 0]l lo 20
0001000000O00O0GO0O0 0|4 I3 0
0000001000O00O0GO0O0O|]|l ls 6
000000O0O0O0OT1O00GO0O0O|]|ls lo 0
000000O0O0O0OO0OTILO0O0||lL l1 23
0000010000O0O0GO0OO|]|ls I 0
000000O0O0T10O00O0GO0O0O|]|l Is 7

[=[P]l=]00000000000T1O0O0O0|[l|]=]|l]=]|0
00000O0O0O0O0OO0O0GO0O0 1|]|ls I a1
001000000O0O0GO0GO0O0 0]l Iy 2
000000O0O0O0OTLO0O0 0 0f]|lo l1o s
000000O0O0O0O0O0O0GO01O0|]|l 13 0
01000000O0GO0O0GO0O0 0 Of|h I 0
0000100000O0O0GO OO0 0f]|lhs Iy 4
0 0000001000000 O0|[ha [lr] [O]

N
3

2 - DCT5 via DFT

T3

X7

T

T

Ty

The vector I is then used as input for the first stage of the PFA as depicted in figure @
The real part of the elements Y, represented in this figure are the outputs generated by
the DCT5. More in detail, only the first eight elements should be considered. Nevertheless,
it should be remembered that the real part of the DFT of an odd-length real sequence is
a palindromic sequence except for the first element. Hence, it can be written

-
3-POINT
DFT
5-POINT
DFT
3-POINT
DFT
5-POINT > 3-POINT
DFT DFT
3-POINT
DFT
5-POINT
DFT
3-POINT
DFT
L

Re(ng) = Re(YF7)

Re(ng) = Re(ng)

28

Figure 2.4: PFA for DCT5 with N =8 (N1 =3, N2=5)

YF?

Yrs
Yri3

Yrs

Yrg
Yra

YF14

Re(Yr14) = Re(Yr1)

2 - DCT5 via DFT

Several simplifications can be made to the scheme presented in figure @ First of all,
the Signal Flow Graph (SFG) of the 3-point and 5-point DFTs can be analyzed. These

are respectively reported in figures and P.G. Moreover, the values of the constants C;
are presented in table P
Re(x) Re(Xr)
Im(z)
G
Re(z1) O Re(Xr1)
Im(Il>
Re(:zz)
-Cy
Im(z) - O - Re(Xr)

Figure 2.5: Simplified 3-point DFT SFG (simplifications made for N1 =3, N2=15)

Re() Re(Xpo)
Im(XFo)
Cy
Re(m) O Re(Xr1)
Im(XFl)
Cs
Re(xn) +- O
Cs
Re(z;) \ O -4 Re(Xr,)
Im XFQ
Gy /
Re(.TQ) A= O -3 Im XF4
e(Xr4)
Cs / \
O m(Xp3)
e(Xrs3)

Figure 2.6: Simplified 5-point DFT SFG (simplifications made for N1 =3, N2=15)

Concerning the computation of the DCT5 (in particular, when it is chosen N1 = 3
and N2 = 5), the gray lines in figure @ can be neglected since only the real part of the
elements Yg, is needed. Similarly, the gray lines in figure can be neglected since the
inputs of the DCT5 are real.

29

2 - DCT5 via DFT

Table 2.13: Values of the constants C;

Constant Value Constant Value
Cy cos (%) - Co sin(~Z) + sin(— %)
Co sin (—2F) Cy sin(—47)
Cy [cos (—%) + cos(—%”) /2—1 Cg sin(—%ﬂ) - sin(—%”)
Cs [cos(—2F) — cos(—%“)] /2

as depicted in figure

The 3-point and 5@0111‘5 DFT SFGs can be used to build the SFG of the 8-point DCT5

To Yy
Cy G
|
T3
Y5
\ Gs
Ys
Ts
Cl Yl
4 X
L -G Y,
X7 V/ C4 Y3
5] N ﬁ\ % % Y?
o e ’l
Lo 1
Cr
Cs
5
Cy
Cs

Ty
C7 /

Figure 2.7: Non-normalized 8-point DCT5 SFG (N1 =3, N2=5)

30

2 - DCT5 via DFT

All the paths coming from null inputs or connected to unused outputs are drawn
using gray lines. Moreover, it should be highlighted that the palindromicity of the se-
quence Re({Yr1,Yro,...,Yr13,Yr14}) is exploited in the derivation of the SFG presented in
figure P.17.

Finally, the normalization factors can be introduced so that the normalized version of
the DCTS5 is obtained. The resulting SFG is presented in figure @

C [C

T— O Y
G4 Cl

T3

j Y:

Cs o

Ys
Te

Cy Y

4
C _C2 Y4

S P

T4
e

Figure 2.8: Normalized 8-point DCT5 SFG (N1 =3, N2=15)

31

2 - DCT5 via DFT

The constants C; reported in figure @ are obtained as
. 2
Ci = ¢sC; g = ——
(2 8 1 8 \/ﬁ

while the constant Cporm is equal to %
It should also be highlighted that the algorithm represented in figure @ only requires
21 multiplications and 36 sums. The list of the needed operations is reported in tableq@.

Table 2.14: PFA applied to the DCT5 for N=8 (N1 =3, N2=35)

Op. Name Operation Op. Name Operation Op. Name Operation
M CrormTo a2 a1 + Mg M5 Ciazy
ap T3 + T¢ a3 ai; — Mg M —Caage
ay Mn1 + ag ay Ms — M~ azz ags + M
as T3 — Tg ais M7 + Mg asgs azr + Mg
My Cgay aie T4+ T5 a9 agr — Mg
M1 C4a0 Mg Cga16 aso aiz + aig
Moy 650,2 Mg C4x4 asi asp + as
as My + My M, —651;4 M7 Ciaso
ay az + My Mo Cray a32 a1s — a0
as ag — Mo M3 681‘4 Mg —Caaszz
ag x9 + x7 a1n My + Mo ass M7 + a3
ay XT7 — X9 als a7 + My a34 ass + Mg
as ag + 1 ao arr — My, ass azz — Mg
a9 a6 — T1 ago Mia + M3 % Mz
a1o a7 + x1 asy M5 + My }Y/I a28
M C8ds a2 My + a Y2 435
My (Aj4a8 Mpa Cnorma22 3 31
Ms Cear My Cia9 Y 429
Mg ?5&9 as3 a2 + My ?5 @23
My Craig agy4 a2 + aig Yi Zii
Mg Cgzy azs aq + a4
ai Ms + My a6 a14 + Mo
Remarks

The same procedure presented above can be repeated by choosing N1 =5 and N2 = 3.
In this case, the scheme presented in figure is obtained.

The SFGs presented in figures and can therefore be considered. By making the
same simplifications discussed in the previous paragraph, the SFG presented in ﬁgureg@
is derived. The algorithm shown in this figure only requires 18 multiplications and 32
additions. The list of the needed operations is reported in table .

32

2 - DCT5 via DFT

T

7

Ts

ol

Ty

T3

Ty

Re(m)

Re(m)

Re(l’g)

— > — Yo
3-POINT
’ DFT > Yio
5-POINT
—» DFT —» Y
— Vi
—
3-POINT > Yo
DFT
—
—» Yo
— —» Vi
3-POINT _ 5-POINT
> DFT - DFT > Yir
— — Vi
— Vi
—
— Ther
— Vs
—
—» Yen
5-POINT
> DFT > Ve
3-POINT
’ DFT > Yis
> - —» Ypu
Figure 2.9: PFA for DCT5 with N =8 (N1=5, N2=3)
» Re(XFO)
G
4 O * Re(Xr1)
Im(XFl)
Cs
- — @ O - Im(XFQ)
Re(XFz)

Figure 2.10: Simplified 3-point DFT SFG (simplifications made for N1 =15, N2 =3)

33

2 - DCT5 via DFT

Re()

Im(z)

Re(z) %

Im(a;) \

Re() O

Im(z) ——- o

et A |

Im(xg):><

Re(n,)

Im(z,) . \ o \ \
_gg)

Re(XFD)

Re(XFl)

Re(XFz)

Re(XF4)

Re(ng)

Figure 2.11: Simplified 5-point DFT SFG (simplifications made for N1 =5, N2 =23)

Table 2.15: PFA applied to the DCT5 for N =8 (N1 =5, N2=3)

Op. Name Operation Op. Name Operation Op. Name Operation
M CrormTo ay az + e as aig + ax
agp x5 + Mn aio ag + ag Y5 Cga22
MO C1x5 ail ag — ag M1 C4a19
ay My + ag a2 ap + ap Mo —Cgarr
My Cizr M~ c8a12 Mz Csano
Mo Coxy Yo CrlormM’? My _C7a21
az x7 + M My Caanp Mis — (M,
as r1 + x4 Mgy Csa1 ass Ys + My
a4 T1— T4 ais My + Mg o4 a3 + Mis
Ms Cray Y a3 + My azs azs — M
My Caa4 Ys a3 — My aze Mz — My
as M3 + a3 aie az + ay . My, + Mys
ag T2 + T3 air Ms — Mg Y, asy + ass
Ms Crao as as + x¢ Yy 94 — o6
Mg Cazg ag aie + ais Y; o5 + a7
az M5 + ag ago ajg — ais Ys a5 — a7
as x7 + ag a1 a7 + My

34

2 - DCT5 via DFT

o \ Cy Y,
5
L g v,
G2 (//
‘Q ¢ Ys
Cy Y,

FN|

[1

\
ER

-G, \ Y,

-Cs
2 Gy Y,
T3
G
T2
C

Figure 2.12: Normalized 8-point DCT5 SFG (N1 =5, N2=3)

2.4 Bluestein’s Algorithm

Bluestein’s FFT algorithm (also called the chirp z-transform algorithm) is a fast Fourier
transform algorithm, which computes the discrete Fourier transform of arbitrary sizes
(including prime sizes) by reformulating the DFT as a convolution ([4], [6], [8] and [9]).

35

2 - DCT5 via DFT

In order to analyze this algorithm, we can begin by rewriting the DFT as:

NDFT_l . Py]VDFT_1 .27
Yr, = Z lke_‘mk NprFT — Z lkWnk W = e_J NpFT
k=0 k=0
Since)
nk = 5 [n? +k* — (n — k)?]
it follows that
1,2 NDFT_l 1.2 1 2
Yoo = W2 > p ek wmateh) (2.5)

k=0
Therefore, it is possible to define
~ 1 1.2

B = LW2F | by =W 2R Yo = Y, W En

and rewrite equation @ as

. Nprr—1 .
Yrn, = Z lhn—k
k=0
Note that [?FO,Ypl, ... ,YF(NDFT_]-)]T are the middle Nppr elements obtained from the
linear convolution of the length- Nppr vector
A P - T
U=1lo i ... INppp—1)

and the length-(2Nppr — 1) vector
T
f = [h_NDFT+1 h_NDFT+2 ... h_1 hg hi ... hNDFT_l}

This linear convolution can be computed by means of a cyclic convolution. More in
detail, the cyclic convolution can be performed between vectors having length equal to a
power of two. In particular, it can be considered the smallest power of two that is greater
than or equal to 2Nppr — 1. We can indicate this number with the letter M. Hence, the
circular convolution is performed between two length-AM vectors. The first vector 1,5 is
obtained by zero-padding the vector . Hence,

N A s - T
lo=1lo I1 ... INpgz—1 O 0 0 ... O]
where the number of appended zeros is equal to M — Npgr. On the other hand, the second
vector is
s T
f= [hg hi ... hnppp—1 O ... 0 h_nppr+1 P—Nppp42 - -- h_l]

The elements of the vector YF therefore are the first Nppr elements obtained from the
circular convolution of l,, with f. This circular convolution can be computed according
to the Circular Convolution Theorem. This theorem states that the circular convolution
c of two vectors a and b can be obtained as:

¢ = IDFT(DFT(a) o DFT(b))

where o is the symbol of the element-by-element vector product.

36

2 - DCT5 via DFT

2.4.1 Bluestein’s algorithm steps
The algorithm is composed of the following steps:

1. Computation of [: this is performed according to the formula

I = L2k
Hence, the vector [is
— ZOWO -
LW2
i: l2W2
2
_ZNDFT—IVV(NDF;F - i

2. Definition of the number M: this is the smallest power of two that is greater than
or equal to 2Nppr — 1.

3. Definition of the vector izp: this is done by padding the vector [with zeros so that
a length-M vector is obtained.

lp =

4. Definition of the vector F': the length-M vector f is defined as

_ ho . r WO b
hy Wz

ha w2
hNDFT—l W_%(NDFT_I)Q

R 0 0
=1 . |-

0 0
h—Npprt1 VVﬁé(fNDFTJFI)2
h—NDFT+2 W—% —Nprr+2)?
[b 1| wes]

The vector F' is therefore obtained as:

F =DFT(f)

37

2 - DCT5 via DFT

5. Computation of f/zp: this is obtained by performing the DFT of the vector izp.
Hence, it can be written

A ~

L,, =DFT(l,p)

6. Computation of the vector M': this is obtained by performing the element-by-element

vector product
M =L,,0F

7. Computation of the vector Yg: this is obtained by computing the IDFT of the vector
M . Therefore
Yr = IDFT(M)
8. Computation of the vector Yg: this is obtained according to the following formula

2

Ye, = YFRW%” for n =0,1,...,Nppr — 1.

Thus, the vector Y is:

Yo WO
Vi W2
YF — YF2W2
~ . (Nppr-1)?2
_YF(NDFT—l) i

2.4.2 Bluestein’s algorithm for DCT5

Bluestein’s algorithm can be employed to compute the DCT5. In fact, a DCT5 of
length NV can be mapped into a DFT of length 2V — 1. Hence, the algorithm can be used
to compute the DFT and consequently obtain the results produced by the DCT5.

In particular, the vector I is obtained starting from the input vector & and then it
is used as input for the DFT as depicted in figure . The real parts of the elements
[Yr0,YF1,...,YrN] represented in this figure, are the outputs of the DCT5 (for simplicity
considered in non-normalized form).

Table 2.16: Values of Nppr and M for different lengths of the DCT5

N Nppr M

4 7 16
8 15 32
16 31 64
32 63 128

Hence, as presented in table , a DCT5 of length 4 is mapped into a DFT of length
7 and computed by using a module which performs a DFT of length 16. Similarly, a DCT5

38

2 - DCT5 via DFT

we A: we
NS v
Wl 2 Wl,"2

O

h

9 .

W(Nr)r’r’l) 2 FN V[/(Nr)r'r’l)2 /2

M-POINT 4" MPOINT .}, .
DFT . IDFT

[

‘Nppr—1 YF(NDFT -1)

-1

PR

Figure 2.13: Bluestein’s Algorithm

of length 8 is computed by means of a DFT of length 32 and the DCT5 of length 16 and
32 are respectively performed by adopting modules that compute DFTs of length 64 and
128.

It should be highlighted that a possible algorithm that can be adopted to compute these
DFTs is the radix-2 DIT algorithm. This algorithm allows sharing submodules among the
different lengths of the DCT5. Moreover, the same module, which is used to compute the
DFT, can also be employed to compute the IDFT.

In the following, the radix-2 algorithm will be shortly presented by referring to the
results reported in [4]. Furthermore, it will be discussed how to share the submodules of
the radix-2 algorithm among the different lengths of the DCT5 and a possible technique
that can be adopted to compute the IDFT by means of the DFT will be also described.
Finally, the computational complexity will be analyzed as far as the DCT5 is concerned.

The Radix-2 DIT Algorithm

The DFT of a length-M vector b can be expressed as

M-—1 M-—1
. 27 : 271
Xpp = § e IR = § bW Wy =e M n=01,..M—-1
k=0 k=0

39

2 - DCT5 via DFT

The equation can be rearranged as

M/2—1 M/2—1 M/2—1 M/2—1
X = Z erW?\Zn + Z bgH_le\Qerl)n = Z bgrw?\}" + WS\% Z b27»+]_W?\2n
r=0 r=0 r=0 r=0
Since
W27“n — ?\?/2

it can be derived

M/2-1 M/2-1
XFn = Z bZTW}n\?}/Q + W% Z b2r+1W7]n\;[L/2
r=0 r=0
M
=Gu+ WiH, n=0l.. 7 —1

Hence, an M-point DFT is formulated in terms of M /2-point DFTs, G,, and H,,, which
are DFTs of even samples and odd samples of b respectively.
Since G,, and H,, are periodic with period %, we have

G

n+% = Gn Hn+% = Hy
Therefore, it can be written
Xp(namy2) = Gn + WM,
Since
Wit = 1
it follows that M
Xr(n+my2) = Gn — Wi H, n = 0,1,...,? -1

Hence, the computation of X, and Xp(,417/2) can be performed by using a butterfly unit
as depicted in figure .

Gn XFn
n
M
H, O Xe(nsm/2)

Figure 2.14: Butterfly Unit

We now consider M = 8. The scheme presented in figure M can therefore be derived
from the description reported above.

40

2 - DCT5 via DFT

by —» Xro
» 4-POINT A
bg — Xrs3
by ——» Xra
[/ — Xpe

’ 4-POINT "
by DFT Xoc
by —» Xr7

b 9 POINT ro
. . DFT .
by ——»

: 2 POINT X2
. .| DFT ..
b 9 POINT i
5 DFT .
bs 2 POINT ro
, . DFT .

Figure 2.16: 8-Point DFT expressed in terms of four 2-point DFTs

The process can be iteratively repeated until two-point DFTs are obtained. Thus, for
M = 8, the scheme presented in figure P.16 can be drawn.
The 2-point DFTs can be implemented by using butterfly units. The SFG presented

41

2 - DCT5 via DFT

bo ><‘ Xro

by —— Xy
WO

bo » 04 Xr2
oy

by ——- O Xrs

b1 >< XF4

by ——<----- Xrs
WO

bs 04 Xre
Ky

b et e Xpr

Figure 2.17: Radixz-2 DIT algorithm applied to an 8-Point DFT

in figure is therefore obtained for M = 8. It should be highlighted that the inputs are
organized in bit reversed order.

Shared submodules

According to what is described in the previous paragraphs, a DCT5 of length 32 is
computed by performing a DFT of length 128. Similarly, a DCT5 of length 16 can be
expressed in terms of a DF'T of length 64. Since the SFG presented in ﬁgure shows
that a DFT of length 128 can be computed by means of two DFTs of length 64, each of the
modules, used to implement the 64-point DFTs in the computation of a length-32 DCT5,
can be shared to obtain a DCT5 of length 16. Hence, the 128-point DF'T, required for
the computation of a 32-point DCT5, can also be used to compute two 16-point DCTS5.
In a similar way, the computation of a 64-point DF'T can be performed by means of
two 32-point DFTs as depicted in figure . Therefore, each of the modules, used
to implement the 32-point DFTs in the computation of a length-32 DCT5, can also be
employed to compute a DCT5 of length 8. Thus, the DFT module used to compute the
32-point DCT5 can also be useful for the computation of four 8-point DCT5. Finally, a
DFT of length 32 can be obtained from two DFTs of length 16 (figure) Hence, the
hardware that is required for the computation of a 128-point DFT can also be employed
for obtaining eight 16-point DFTs. Therefore, eight DCT5 of length 4 can be partially
computed by using the hardware required for the computation of a length-32 DCT5.

42

2 - DCT5 via DFT

=] \ / .
] - — | \ /
g : — \ / s
| - RADIX-2 v
;RADIX—Z E RADIX-2 . / : DIT \ / i
3 o -/ DIT - \ /

i wront ~*~ 16-POINT 1
N = ERa= =
= L /T .
: . | A7
] . - i
= - i .
] “ - RADIX-2 |34l
Jrapixs 5 -] RADIX-2 | — s DIT “v{ o
O DIT [= — DIT % by ——f = Xezs
o+ POINT S —| 32-POINT [i] W
g o E 4 bprr [{H - 16-POINT W,
- K T - pFr
3 = . o B w2 i
. - :
E] I |] w Y
] ¢ _| .
(a) 128-Point (b) 64-Point (c) 32-Point

Figure 2.18: Submodules of the Radix-2 DIT algorithm for different lengths of the DFT

IDFT via DFT

There are several possible techniques that can be adopted to compute the IDFT via a
forward DFT ([[10], [11]). Given an input vector B, one possible method consists in revers-
ing the order of the samples in the vector [By,...,Bnppr—1) and appending the obtained
vector to By. The vector

2 T
B:[BO BNIDFT—1 BNIDFT—2 BNIDFT—3 ... Bs B Bl]

is therefore derived from this procedure. Hence, this is used as input for the DFT. The
outputs of the DFT are then divided by Nippr. The method is presented in figure .

Since the IDFT can be computed via DFT, Bluestein’s algorithm can be executed by
an architecture similar to the one depicted in figure 2.20.

43

2 - DCT5 via DFT

By bo
By by
By b

:Nippr
BS : DFT . b3

NIDFT -3

Nerl - by
b

By

Nippr-1 bNIDFT_l
Figure 2.19: IDFT via DFT
w* F
l i w* /M
MUX i/
C C
O O
l , M M
P P
L L
E E
M| X :
M M
Ut DFT Ny
T T
1 1
P P
L L
I I
> E E
R R
S S

Figure 2.20: Architecture for Bluestein’s algorithm

Computational complexity

The architecture presented in figure requires Nyt complex multipliers. This
number can be approximately computed according to the following formula:

M
Nmult =M + ? 10g2(M) + N

44

2 - DCT5 via DFT

Each complex multiplication can be performed by means of 4 real multiplications and
2 real additions or 3 real multiplications and 5 real additions [6]. More in detail, the SFGs
depicted in figures m and @ can be obtained.

Re(a) Re(b) Im(a) Im(b) Re(a

Re(c)

Figure 2.21: Complex multiplication between a and b (4 real multiplications and 2 real additions)

Im(b) Re(b) Im(a) Re(a) Im(b) Re(b)

Re(a) Re(b) Im(a)

(x (x (x

Im(c) Re(c)

Figure 2.22: Complex multiplication between a and b (8 real multiplications and 5 real additions)

The numbers of real multipliers required for different values of N can therefore be an-
alyzed by choosing the implementation represented in figure . Moreover, the number
of real multipliers required by the direct implementation of the matrix-vector multiplica-
tion can_be compared to the one needed by the algorithm. This comparison is made in
table M

It should be highlighted that, for large values of NN, Bluestein’s algorithm requires
a lower number of real multipliers than the direct implementation of the matrix-vector
product.

45

2 - DCT5 via DFT

Table 2.17: Number of multipliers for several values of N (MVM = Matriz- Vector Multiplication)

Number of real multipliers

N MVM Bluestein’s Algorithm
4 16 156
8 64 360
16 256 816
32 1024 1824
64 4096 4032
128 16 384 8832

Remarks

The Radix 2 DIT algorithm is only one of the many possible algorithms that can be
adopted to compute a DFT having length equal to a power of 2. Among the others, there
are the Radix 2 DIF algorithm and the split-radix algorithm.

2.5 Rader’s Algorithm

We have seen that any DFT can be translated into a convolution by the chirp-z trans-
form algorithm at the cost of 2Nppr complex multiplications performed on the input and
output data samples. We shall see now that DFTs can also be turned into circular con-
volutions by a completely different method ([4], [6], and [12]). This method is, in some
cases, computationally more efficient than the chirp z-transform algorithm because pre-
multiplications and postmultiplications are replaced by a simple rearrangement of input
and output data samples, as depicted in figure R.23. The steps of the algorithm (that can
be adopted when Nppr is an odd prime or a power of an odd prime) will be presented in
the following.

l[) »
P

Y

CIRCULAR
PERMUTATION CONVOLUTION PERMUTATION |—+(+)———» Vi,

Y

n>0

Figure 2.23: Rader’s Algorithm

46

2 - DCT5 via DFT

2.5.1 Rader’s algorithm steps
The algorithm is composed of the following steps:
1. Computation of Ygg: this can be computed according to the following formula

Nprr—1

YFO = Z ln

n=0

2. Definition of a primitive root g of Npp: as stated in [§]

In modular arithmetic, a branch of number theory, a number g is a primi-
tive root modulo Npgr if every number a coprime to Nppr is congruent to
a power of g modulo Nppr. That is, for every integer a coprime to Npgr,
there is an integer k such that gk = a mod Nppr.

Primitive roots can be easily found by using commercial softwares like WolframAlpha.

3. Definition of the vector I: the input permutation applied to the vector I generates

the vector {. More in detail, we have

l, = l(gNDFT—l—" mod Nppr) forn=0,1,... ,NppT — 2

4. Definition of the vector T": by defining

_ 27

W =e INprrT

the vector T' can be obtained as

T, = W™ mod Noer) for p = 01,...,Nppr — 2

5. Computation of the circular convolution ¢ of { with T this can be computed ac-

cording to the Circular Convolution Theorem. Hence, we have:

PN

¢ = IDFT(DFT({) o DFT(T))

where o is the symbol of the element-by-element vector product.

6. Computation of the vector é: this is computed according to the following formula

Cn = cn + o

7. Definition of the vector Yg: Yg¢ is defined at point 1). The other elements of the

vector are stored in the vector é according to the following permutation:

YF(gn mod Nppr) — én for n = 0,1, ce 7NDFT -2

47

2 - DCT5 via DFT

2.5.2 Rader’s algorithm for DCT5 (N = 4)

A DCTS5 of length 4 can be mapped into a DFT of length 7 as described in section Ell
In particular, the DCT5 equation can be written as

Y, = c4sT,Re(Yry) forn =0,1,2,3 (2.6)
where
e Cyqy = %
6 : u
« Re(Yr,) = Re (2 lke_J"k27>
k=0
and o o o
lo o W
l1 0 0
l2 i‘g)
l= l3 - 0 = 0
l4 i’g T3
ls 0 0
| l6 | | 1 | | 21 |

The computation of the DCT5 is therefore translated into the computation of a DFT
of length Nppr = 7. Since Nppr is a prime number, Rader’s algorithm can be adopted to
compute the DFT. Hence, the steps described in the previous paragraph can be followed
to compute the DCT5. In the following, each of these steps will be analyzed.

Computation of Ygq

The computation of Yrg is performed according to the following formula:

NprrT-1 "
0
Yro = Z ln= —F—=4+ 21 +29+ 23
n=0 \/i

Hence, Yj can be obtained from Ygg as follows

1

2
Yo = C4T0R9(YF0) = WEYFO

Definition of a primitive root g of Npgr

A primitive root of 7 is

g=3

48

2 - DCT5 via DFT

Definition of the vector [

The vector [is defined according to the permutation:

ln = l(36_” mod 7)

forn=20,1,..

Hence, it can be written:

lo = l36-0 goa7 = 11
Iy =l36-1 oq7 =I5
ly = lgs-2 poq7 = la
I3 = l36-3 mod 7 = o
Iy = l36-4 mod 7 = 2

l5 =136-5 mod 7 = I3

Therefore, we have

&~
I

Definition of the vector T

5

The vector T is defined according to the following formula:

T, = W@ med?) g =0,1,...
Hence, it can be written
Ty = (30 mod 7) _ pprt
T, = (3t mod 7) _ 1ps3
T, = (3% mod 7) _ ypr2
Ty = (3% mod 7) _ 15,6
T, = (3 mod 7) _ 154
Ty = 17 (3° mod 7) _ 1575
Therefore we have
T=[wt w3 w2 wé wt

s}

W]

2 - DCT5 via DFT

Computation of the circular convolution c of [with T

The circular convolution ¢ can be computed according to the Circular Convolution
Theorem. Hence, we have:

A

¢ = IDFT(DFT({) o DFT(T))

Since T contains only constants, Tg = DFT(T') can be precomputed. On the contrary,
the DFT of the vector I can be computed according to the WFTA or the PFA. In fact,
[has length M = 6 = 3 x 2. Therefore, the Winograd short-N DFT modules of length 2
and 3 can be used to compute the DET. Moreover, the IDFT can be obtained by using a
forward DFT as depicted in figure .

Computation of the vector é

The vector ¢é is computed according to the following formula:

én = (Re(en) +1p) ca

Definition of the vector Y

The elements [Y7,Y2,Y3] of the vector Y are stored in the vector é according to the
following permutation:
}/(3n mod 7) = én for n = 071,2

Hence, we have:

Y1 = }/(30 mod 7) — Co
Yo = YV(S2 mod 7) = Co

Y3 = Y31 moa7) = €1

Final algorithm

Unfortunately, the procedure described above generates an algorithm characterized by
a high computational complexity. In fact, supposing that the PFA is adopted to compute
the DFT, the architecture depicted in figure M can be derived. Since the number of
real multiplications needed for each 3-point DFT is equal to 4 and the number of real
multiplications needed for each complex multiplication is at least equal to 3, the number
of real multipliers (Npyu11) needed to implement this architecture is:

Nput =6 +4x2+6x3 =232

This number is greater than the one obtained by directly implementing the matrix-
vector multiplication. This makes the algorithm unpractical for most of applications. As we
will see in appendix @, the results obtained about the computational complexity slightly
improve when the algorithm is applied to the case N = 16.

50

2 - DCT5 via DFT

, i’ 2
z, /N2 . /\/_ c, /6 C% /\/5
Ty > v
— “] ORI
T3 >
00— M Tro
U
-3 | N
> X
2-POINT ;)
DFT i
M 3-POINT /i\
U | [DFT NV
X T
(x)
\J
M
U
xJ L
2-POINT
DFT
0 —{ M
U 4’—> Trs3
X N
7 &
T["]
» M |
U 3-POINT)
X L DFT N
Trs
2-POINT
DFT A\
> X
0 —» N I N
v
X

Figure 2.24: Architecture for DCT5 (N = 4) based on Rader and Prime Factor algorithms

51

Chapter 3

DCT5 via DCT?2

THIS CHAPTER PRESENTS the algorithms for the DCT5 that can be obtained from algo-
rithms for the Discrete Cosine Transform Type 2 (DCT2). More in detail, the relationships
between the DCT5 and the Discrete Cosine Transform Type 6 (DCT6) will be presented
as derived in [13]. Successively, the DCT6 will be related to the DCT2 as reported in [14]
and finally, the DCT2 will be calculated according to the algorithms presented in [15], [16]
and [[L7].

3.1 Relationship between the DCT5 and the DCT6

As described in [13], the DCT5 can be derived from the DCT6 according to the fol-
lowing relationship

[CN] = [Dn] [CN] [IN]

where:
. [CX,] is the N-point DCT5 matrix.

o [Dy] is the diagonal matrix implementing the sign-alteration. More in detail, it can

be written
[1 0 0 0]
-1 0 O
[Dn] = :
0 O 1 0
10 0 —1]

. [C’X,I] is the N-point DCT6 matrix.

52

3 - DCT5 via DCT2

o [Jn] is the backward identity matrix. Hence, it can be written

0 0 ... 0 1]

0 0 1 0
[Inl= ¢

0 1 0 0

10 ... 0 0

3.2 Relationship between the DCT6 and the DCT2

As stated in [14], the following relationship holds between the DCT2 and the DCT6:

I (oYL] [In] [Jn]
[C2N+1] = [Qan+1] [N [SVH]] 1 (3.1)
N =N]
where:
. [C%VH] is the 2N + 1-point DCT2 matrix;
o [Qan+1] is a sign alteration and reordering matrix, which acts as in the following:
Top = Xn n = [0,N]

Font1 = (-1)""any14n n=[0,N —1]

. [C]\\/,Ll] is the N + 1-point DCT6 matrix;

[SX,H] is the N-pont Discrete Sine Transform Type 7 (DST7) matrix;

o [In], [Jn] are respectively the N-point identity and backward identity matrix.

3.2.1 Derivation of the 4-point DCT6 from the 7-point DCT2

The relationship expressed by equation El] is better explained by an example. Consider,
for instance, N + 1 = 4. For this particular case, we have:

0
-1

[Qan+1] = [Q7] =

OO OO oo

(=l elalall S =Nl

SO OO oo

_ O O O O oo

O O O O O

SO OO RO OO
O O O O O

53

3 - DCT5 via DCT2

According to what is described above, it can be written:
-1
(oY . 1] [J3]
[[Svnﬂ =[Q7]" [C7] 1
’ — [J3] [£3]

The 4-point DCT6 can therefore be obtained by performing the matrix products

o
x1
X [13] [J3] T2
Y= (@]t [C]] 1 3

— [J3] [13] —T2

.

— 0

and taking the first four elements of the output vector Y™ In the following each of the
steps needed to obtain the output vector will be analyzed.

Step 1

The following operation is performed:

2o o]
T 0
£ N)1 P I P
T = 1 T3 = | X3
— [Jg] [[3] —x9 0
-1 T1
[—2o] LO]
Step 2
The following operation is performed:
o]
0
T2
YH = [C%I] T3
0
T
L 0]

This operation is the computation of the DCT2 of the vector obtained at the end of step 1.

54

3 - DCT5 via DCT2

Step 3

The following operation is performed:

VI, 'yT= | vy

Steps for the computation of the DCT6 via DCT2

According to what is described in the previous paragraphs, the 4-point DCT6 of the
input vector
T
I
T2
3

can be obtained by performing the following operations:

1. definition of the vector

Zo
0
T2
z3
0
x1

0

8
Il

2. computation of the vector Y obtained by computing the DCT2 of the vector &;

3. definition of the outputs of the DCT6, which are the even-indexed elements of the
vector YL,

3.3 DCTS5 via DCT2 (N = 4)

According to what is described above, an algorithm for the 4-point DCT5 can be
derived from algorithms for the 7-point DCT2. More in detail, the computation of a 4-
point DCT5 can be translated into the computation of a 4-point DCT6 as described in
section and the 4-point DCT6 can be derived from the 7-point DCT2 as illustrated in
section B.2. The following paragraphs will present the steps involved in the derivation of
the algorithm.

55

3 - DCT5 via DCT2

3.3.1 Reordering of the input vector

According to what is described in section @, the input vector @ is reordered so that
the vector
x3
€2
Ea
o

Ty = [J4]x =

is obtained.

3.3.2 Definition of the vector xzgr

According to what is described in section @, the vector &g is obtained as

3 [23
T2 0
] (B e | |
TR = 1 Ty | = |xo
— [Jg] [13] —I1 0
—I2 €2
| —23] 0]

3.3.3 Computation of the 7-point DCT2

The vector Y is obtained by computing the DCT2 of the vector xr. A possible
algorithm for the 7-point DCT2 can be derived by relating the DCT2 to a 7-point DFT
as described in [15] and using the algorithm for the 7-point DFT reported in [17]. Several
simplifications can be made to this algorithm. In fact:

1. 3 out of 7 inputs are equal to zero;
2. only the even-indexed outputs of the DCT2 are of interest.
Hence, the computation of the DCT2 leads to the vector:

BY OH_
U
Y'QH
YII — U
Y;LH
U
YGH

56

3 - DCT5 via DCT2

where the elements labeled as U are not of interest for the computation of the 4-point
DCT5. More in detail, the output vector produced by the computation of the DCT6 is

A

Y, Y.

YVI — 1 — 2
Pl |
Y3 Ys

3.3.4 Definition of the output vector Y

According to what is described in section El!, the output vector Y can be obtained
from the vector Y VI as follows:

1 0 0 07 [Y! VAL
0 -1 0 0] |V YV

. VI _ 1 1
Y = [D4] Y 1o 0 1 0 Y*QVI - YQVI
0 0 0 —1] ¥y -Y,"!

3.3.5 Final Algorithm
The SEG of the 4-point DCT5 obtained from the SFG of the 7-point DCT?2 is reported

in figure while the values of the constants and the list of the operations needed are
respectively reported in tables and

Cy

()

/

v

[\
i

To
G, \
‘41 O Yy
7 \
// \\
Ve CB
T2 - O Y;
Cy
Ly T T v O ’ g

Figure 3.1: Non-normalized 4-point DCT5 SFG obtained from the 7-point DCT2 SFG

57

3 - DCT5 via DCT2

Table 3.1: Constants for the 4-point DCTS algorithm derived from the 7-point DCTZ2 algorithm

Constant Value Constant Value
C, —1.166 666 67 Cs 0.055854 27
Co 0.734 30220 Cy —0.790156 47

Table 3.2: Algorithm for the 4-point DCT5 derived from the 7-point DCT2

Op. Name Operation Op. Name Operation Op. Name Operation
My CrormTo a4 mo + my ag ag + my
ai 1+ T2 as Ty — T2 Y, ag
as xr3 + a4y ma Coaas aio —mgz — ma
as az + Mn ag T3 — T2 ar ao + aq
mo c4as m3 Csag Y3 an
Mpo Chorm™o ar xr1 — I3 a12 m3 —my
Yo My my Caar a3 a2 + aq
my Craz asg ag +mo Y a3

More in detail, the constants Ci, that are present in the algorithm reported in table @,
can be obtained as

A~

C; = cuG; cq =

Sl

while the constant Cporm is equal to %

3.4 DCT5 via DCT2 (N = 8)

An algorithm for the 8-point DCT5 can be derived from algorithms for the 15-point
DCT?2. More in detail, the computation of an 8-point DCT5 can be translated into the
computation of an 8-point DCT6 as described in section and the 8-point DCT6 can
be derived from the 15-point DCT2 as illustrated in section B.2. The following paragraphs
will present the steps involved in the derivation of the algorithm.

3.4.1 Reordering of the input vector

According to what is described in section El!, the input vector @ is reordered so that
the vector

mr:[J8]$:[$7 Te X5 X4 T3 T2 T 900]
is obtained.

58

3 - DCT5 via DCT2

3.4.2 Definition of the vector gy

According to what is described in section @, the vector xR is obtained as

o 2]
g 0
5 5
T4 0
3 z3
) 0
FC I 3 I (R P
TR = 1 Ty | = |xo
— [J7] [17] —T 0
—xX9 i)
—1x3 0
—T4 T4
—I5 0
—Z6 Z6
__x7_ . O -

3.4.3 Computation of the 15-point DCT2

The vector Y is derived by computing the DCT2 of the vector £r. A possible algo-
rithm for the 15-point DCT?2 is the Prime Factor Algorithm illustrated in [16] and [18].

More in detail, since the length of the DCT2 is Npcre = 15 and can be expressed as a
product of two numbers (N1,N2) that are coprime, the PFA can be adopted to solve this
DCT?2. In particular, the DCT2 can be computed according to the following steps:

index transform of the input sequence

computation of N1 DCTs of length N2

computation of N2 DCTs of length N1

computation of the output additions and index transform of the output sequence

WD =

In the following, each of these steps will be described in detail, supposing that N1 = 5
and N2 = 3 is chosen. The same procedure can be followed to derive a different algorithm
if N1 =3 and N2 =5 is chosen.

Input mapping

The input vector is mapped into the matrix [z] according to the following procedure.
Let n1, 0 < n; < N1, and ne, 0 < ng < N2 be the 2D array indices, and n, 0 < n <
Npcre, be the index of the original input sequence. In general, the mapping process can
be performed according to the following steps. For each n, 0 < n < Npcra:

1. starting from 0, the index ny of the 2D array is incremented by one until N1 —1 ,
then from N1—1 | index n; is decremented by one until to 0; this process is repeated.

59

3 - DCT5 via DCT2

2. index no is generated in the same way as ni except the range is from 0 to N2 — 1
for an increment and from N2 — 1 to 0 for a decrement.

Therefore, each column in table @ specifies the relation between (n1,n2) and n.

Table 3.3: Mapping of 1D input sequence into 2D array

Index name Index values
ni 01 2 3 4 4 3 2 1 0 O 1 2 3 4
N9 o1 2 2 1 001 2 2 1 0 0 1 2
n 01 2 3 4 5 6 7 8 9 10 11 12 13 14

Hence, the matrix z can be written as:

TRO TR0 TR9
TR11 TR1 TRS
[2] = |zR12 TR7T ZR2
TR6 TR13 TR3
TR5 TR4 ZTRU

Computation of N1 DCTs of length N2

As depicted in figure @, each row of the matrix [z] represent the input vector of a
DCT?2 of length N2.

_|3POINT| _
TR10 DCT2

_|3-POINT
TR1 DCT2

_|3POINT
Tr7 DCT2

_|3-POINT
TR13 DCT2

IRs — ™| ™
’ 3POINT

TR4 —™ -

DCT2
IR13 — ™| —

Figure 3.2: First stage of the 15-point DCT2 PFA

60

3 - DCT5 via DCT2

Computation of N2 DCTs of length N1

As depicted in figure @, the outputs of the N1 DCTs of length N2 are used as inputs
for the N2 DCTs of length N1.

TrRo —™ ™ — Ao
R0 — 3-POINT .4 ’
1 1
0 DCT2 5-POINT| 0
TrRo DCT2 | T 4120
TR11 ™ T AS’O
__|3-POINT — Asp
TR1 DCT?2
—»
IRS . 140’1
12 ™ — Ay
R 3-POINT | 5-POINT A7
TRT 7 DCT2 "| pere [T 421
TrR2 —™ — A3,1
— A4 1
TR —™ ’
xRG _|3POINT
;ﬂj4> DCT?2 — Ago
i — Ao
Ths —> 5POINT|
5 DCT2 2,2
QMA4>3JKHNT Ay,
DCT?2 ,
TR13 ™ ™ ™ A472

Figure 3.3: First and second stage of the 15-point DCT2 PFA

Output additions and index transform of the output sequence

The vector Y can be obtained according to the following equation:

0<k<N1
I <
where
Bio =0
Buim = BAN1—k,N2—m
and

. 1 if N2k + N1m < Npcro
PZ 21 i N2k + Nim > Npors

Hence, for N1 =5 and N2 = 3, the equation is:

0<k<5b

vyl = Ay — B
[3pk—+5m| k,m puk,m 0<m<3

61

3 - DCT5 via DCT2

where

Bro=0
B,uk,m = /,LA5,]€73,m

and

1 if3k+5m<15
F=Y21 i3k +5m > 15

The equations reported in table @ can therefore be derived.

Table 3.4: Output additions and index transform of the output sequence for N1 =5 and N2 =3

(m,k) 3k+5m p Y|§Iuk+5m| Agm — Bukm
(0,0) 0 1 Y Ao

(0,1) 3 1 Y A1

(0,2) 6 1 v Az

(0,3) 9 1 Yot Az

(0,4) 12 1 Y Agp

(1,0) 5 1 v Ao

(1,1) 8 1 Yt A1 — Ado
(1,2) 11 1 Y Agq — A3
(1,3) 14 1 v Azq — Agg
(1,4) 17 —1 YH Ag1+ Aip
(2,0) 10 1 Y Ap2

(2,1) 13 1 Yh Aro — Aaq
(2,2) 16 -1 v Ao+ Az
(2,3) 19 —1 vy Az + Az
(2,4) 22 ~1 Yt Ag2+ A1

Hence, the scheme depicted in figure @ can be obtained from the description reported
above.

Derivation of the output vector of the 8-point DCT6
The computation of the DCT2 leads to the vector:
YII — [Ybﬂ U Y'2H U)qII U)/611 0 YSH U Yl% U YII2I U YIIZHT

62

3 - DCT5 via DCT2

. 3-POINT
1

IO DCT2 5-POINT yi
TR9 DCT2 6

_|3POINT
TR1 DCT2

T _|3POINT 5-POINT
TRT DCT2 DCT2

__|3-POINT
TR13 DCT2

R 5-POINT
g _,|3POINT DCT2
T4 DCT2

Figure 3.4: 15-point DCT2 PFA

where the elements labeled as U are not of interest for the computation of the 8-point
DCTS5. More in detail, the output vector produced by the computation of the DCT6 is

ry VI ry 119
Yo Yo
Y'IVI Y'QH
VI 11
}/2\11 Y4H
YVI — }/3 — }/6
Y4VI }/BH
VI 11
Gal |y
Sal LV
Y70 Y74l

3.4.4 Definition of the output vector Y

According to what is described in section @, the output vector Y can be obtained
from the vector Y V! as follows:

1 0 0 0 0 0 0 07 T[Y']

0 -1 0 0 0 0 0 0|y -y

001 0 0 0 0 0|t AL

_ vi_|0 0 0 —-10 0 0 0] || |-V
Y=Y =10 0 00 1 0 0 0 AL AL
00 00 0 -10 0]]|y1 -y 1

00 0 0 0 0 1 0]]|y VAR

00 0 0 0 0 0 —1] [YV| |-y

=)
w

3 - DCT5 via DCT2

3.4.5 Final Algorithm

The SFG of the 8-point DCT5 obtained from the SFG of the 15-point DCT?2 is reported
in figure while the values of the constants and the list of the operations needed are
respectively reported in tables and

Ys

)

Ty

)

Y,

Y,

Figure 3.5: Non-normalized 8-point DCT5 SFG derived from the 15-point DCT2 SFG

Table 3.5: Constants for the 8-point DCTS5 algorithm derived from the 15-point DCTZ2 algorithm

Constant Value Constant Value Constant Value
Cy —0.866 025 Cs —0.559017 Cs —0.951057
Csy 1.500 000 Cy —1.250000 Cs 1.538 842

Cr —0.363 271

64

3 - DCT5 via DCT2

Table 3.6: Algorithm for the 8-point DCTS5 derived from the 15-point DCT2

Op. Name Operation Op. Name Operation Op. Name Operation
My Crorm®o a2 ag + aio a1 as + ag
ai Ty — 7 a13 aiz + as a22 az — T3
a2 To + X7 mg Cga13 az3 a1 — a22
mi Cray mg Cgan a24 a1 + ao2
ma Caas mio Cyars ass agy + ag
as mo — a9 a14 mio + ms mi4 (386125
ms —Cixy4 ais mg + a14 mis (;3a23
my Cay aie my — a14 mie Cyaoy
ay My — Ty Ye ais aze mi4 + mie
as My + x5 Mo Crormmsg agy m1s + age
ms Coxs Yo Mo ass mis — a6
ag ms — as Y3 —aig agg aig — asgs
me —Cqxzy aiy ms — Mg Y7 —asy
ay 1 + 26 a1 air —mi a3o G20 — a2t
my Coxy mii —m1Cy Yy a3o
as my7 — ay mi9 a18@5 asi Q20 + az7
ayg x4+ ay mi3 a17Cg Y1 —asi
aio as + x3 alg mio — M1 as2 a19 + asgg
ai ag — aig a0 mi2 + mi3 Y 432
Ys —miy

More in detail, the constants Ci, that are present in the algorithm reported in table @,

can be obtained as

while the constant Cpory is equal to

CZ‘ = Cgci

1

S

Ccg —

65

ﬁ‘w
at

Chapter 4

DCT5 via Givens Rotations

THIS CHAPTER PRESENTS a possible algorithm that can be adopted to compute the
DCT5 by using only rotations. The algorithm, which will be developed in the following,
does not reach levels of computational complexity as low as the ones achieved by the
WETA or the PFA. Nevertheless, it is worth analyzing it since it minimizes the variety of
required processing units [[19].

4.1 Givens Rotations

Any matrix [A] can be factored so that

[A] = [Q][R] (4.1)

where [Q] is an orthogonal matrix and [R] is an upper triangular matrix. Moreover, if [A]
is orthogonal then [R] is a diagonal matrix so that

Hence, the diagonal elements of [R] can only be +1 or -1. Furthermore, the columns of [A]
and [Q] are identical except for a possible minus sign.

Such a decomposition of the matrix [A] is called QR-decomposition and can be achieved
by using the so-called Givens rotations. The essential point of this method is to null the
lower off-diagonal elements of [A] by performing a rotation of the right angle. This is better
illustrated by an example. Consider, for instance, the vector

A matrix [T'(0)] exists so that

[T(0)]b = [(g’] (4.2)

4 — DCT5 via Givens Rotations

If
| cos(8) sin(8)
[T(6)] = [_ sin(0) 008(9)]
then

bo sin(f) = _

Vb5 +b] Vb + b3

This procedure can also be followed to null the ij-element of the orthogonal matrix
[A]. Hence, to null the ij-element of [A], the matrix [T} ;(6)] is needed. The angle 6 is such
that

cos(f) =

A1 A;
cos(0) = L sin(f) = —
Az?—l,j + Az?,j Azz—l,j + A%,j

and [T;;(0)] is an identity matrix except for the elements in positions (i —1,i— 1),
(1 —1,14), (4, i — 1) and (i, i) where cos(0), sin(f), —sin(f) and cos(f) are respectively
located.

By systematically applying this type of rotations, the matrix [A] is reduced to a diag-
onal matrix with +1 or —1 as diagonal elements. The sequence of rotations on the matrix
[A] can be represented by

N N
IT II @m0 1A =I(x]

j=1li=j+1
Hence, it can be written
N N T
(Al =T 11 001 (R
j=1li=j+1

If we compare this expression to equation El!, we can notice that
T

N N N N
=911 II mas@ny =S11 11 (70

j=1li=j+1 i=1 j=i+1

We have therefore obtained a decomposition of the matrix [A] into planar rotations.

4.2 DCT5 via Givens Rotations (N = 4)

Since [CX] is an orthonormal matrix, it can be factored into a sequence of planar
rotations. More in detail, the matrix is

0.3780 0.5345 0.5345 0.5345

[CV] ~10.5345 04713 -0.1682 —0.6811
4 0.5345 —0.1682 —0.6811 0.4713
0.5345 —0.6811 04713 —0.1682

67

4 — DCT5 via Givens Rotations

We can start by nulling the element in position (3, 0). Hence, we can define

0.5345 0.5345

= =0.7071 sin (0) = =0.7071
v/0.53452 + 0.53452 (6) v0.53452 + 0.53452

cos (0)

and derive the rotation matrix as

10 0 0 10 0 0
0 1 0 0 0 1 0 0

B0 = 1o cos(@) sin(d)| — [0 0 0.7071 0.7071
0 0 —sin(d) cos(9) 0 0 —0.7071 0.7071

By performing the matrix product

0.3780 0.5345 0.5345 0.5345
0.5345 04713 —-0.1682 —0.6811
0.7559 —0.6005 —0.1483 0.2143

0 —0.3626 0.8149 —0.4522

[C1] = [T30(0)] [CY] =

we obtain the matrix whose element in position (2, 0) has to be nulled. Thus, we redefine

0.5345 0.7559

= = 0.5774 sin (0) = = 0.8165
v0.53452 + 0.75592 ©) v/0.53452 + 0.75592

cos (0)

and build the second rotation matrix as

1 0 0
0 05774 0.8165
0 —0.8165 0.5774
0 0 0

0 0
cos(f) sin(6)
—sin(f) cos(f)
0 0

[T20(0)] =

S O O
o o o
o o o

We can therefore perform the matrix product

0.3780 0.5345 0.5345 0.5345
0.9258 —0.2182 —-0.2182 —-0.2182
0 —-0.7315 0.0517 0.6798
0 —0.3626 0.8149 —0.4522

[Ca] = [T20(0)] [Ch] =

and obtain the matrix whose element in position (1, 0) has to be nulled. Hence, we write

0.3780 0.9258

= = 0.3780 sin (0) = = 0.9258
V/0.37802 + 0.92582 (6) V/0.37802 + 0.92582

cos (0)

and construct the third rotation matrix as

cos(d) sin(6) 0 0 0.3780 0.9258 0 0

| —sin(@) cos(@) 0 0| |—0.9258 0.3780 0 0
[T1.0(0)] = 0 0 10 0 0 10
0 0 0 1 0 0 0 1

4 — DCT5 via Givens Rotations

We can now perform the matrix product

0 0 0
—-0.5774 —-0.5774 —0.5774
—-0.7315 0.0517 0.6798
—0.3626 0.8149 —0.4522

[C3] = [T1,0(0)] [C2] =

o O O

and obtain the matrix whose element in position (3, 1) has to be nulled. Therefore, we
impose

—0.731
cos (0) = 0.7315 = —0.8960
v/ (=0.7315)2 + (—0.3626)2
—0.362
sin (8) = 03626 _ _0.4441

v/ (=0.7315)2 + (—0.3626)?2

and get the fourth rotation matrix as

1 0 0 0 10 0 0
01 0 0 0 1 0 0
T = 1o cos(0) sin(6) 0 0 —0.8960 —0.4441
0 0 —sin(d) cos(h) 0 0 04441 —0.8960
Hence, we perform the matrix product
1 0 0 0

0 —0.5774 —-0.5774 —0.5774
0 08165 —0.4082 —0.4082
0 0 —-0.7071 0.7071

[Cy] = [T51(0)] [C5] =

and derive the matrix whose element in position (2, 1) has to be nulled. Thus, we redefine

cos (0) = 057 = —0.5774
v/ (—0.5774)% + 0.81652

sin (0) = 08165 = 0.8165
v/ (=0.5774)% 4 0.81652

and build the fifth rotation matrix as

1 0 0 0 1 0 0 0
To1(0) 0 cos(d) sin(@) O |0 —0.5774 0.8165 0
21 0 —sin(f) cos(d) 0| |0 —0.8165 —0.5774 0
0 0 0 1 0 0 0 1
Hence, we can perform the matrix product
10 0 0
0 1 0 0
(Cs] = Ta Ol =1 o 7071 0707
0 0 —0.7071 0.7071

69

4 — DCT5 via Givens Rotations

and obtain the matrix whose element in position (3, 2) has to be nulled. Thus, we set

7071
cos (0) = 0.707 =0.7071
/0.70712 + (—0.7071)2
—0.7071
sin (0) = 0.707 = —0.7071
/0.70712 + (—0.7071)2
and construct the last rotation matrix as
10 0 0 10 0 0
0 1 0 0 0 1 0 0
B0 = | cos(6) sin(f) 0 0 0.7071 —0.7071
0 0 —sin(f) cos(f) 0 0 0.7071 0.7071
The matrix [R] is then obtained by performing the matrix product
1 000
0100
00 01

Hence, we have
(T3] [To.1] [T3.1] [T10] [T20] [T5,0] [C)] = [14]
As a consequence, we can write

[CY] = [Ts0]" [To0]" [Tro]" [T5]" [T2n]" [T52]"

= [T [Pao] [Tuo] [73] [72a] [752]

We have therefore found the factorization of [CX] into planar rotations. In particular, the
needed rotation matrices are:

10 0 0 1 0 0 0
[TS 0] _ |01 0 0 [Tg 0} _ 10 0.5774 —0.8165 0
’ 0 0 0.7071 -0.7071 ’ 0 0.8165 0.5774 0
0 0 0.7071 0.7071 0 0 0 1
[0.3780 —0.9258 0 0 10 0 0]
[Tl 0} _ 109258 03780 0 0 |:T3 1} _ |01 0 0
' 0 0 10 ’ 0 0 —0.8960 0.4441
| 0 0 0 1 0 0 —0.4441 —0.8960 |
1 0 0 0 10 0 0]
[T2 1} _ |0 —0.5774 —0.8165 0 [Tg 2} _ |01 0 0
’ 0 08165 —0.5774 O ’ 0 0 07071 0.7071
10 0 0 1 0 0 —0.7071 0.7071]
It should be highlighted that six rotations are required to compute a 4-point DCTS5.
In general, an N-point DCT5 needs NTQ — % rotations to be computed. Moreover, each

rotation can be performed by means of four multiplications and two additions or three
multiplications and three additions.

70

Chapter 5

DCT5 via Direct Factorization

THE AIM OF THIS CHAPTER is to present algorithms based on a direct factorization of
the DCT5. In particular, the direct factorization obtained in [20] will be firstly analyzed.
Hence, by making use of this result, an algorithm will be derived for the 8-point DCT5.
Moreover, an algorithm for the 32-point DCT5 will be presented in appendix [(J by referring
to the results reported in [13], [21] and [14].

5.1 Direct Factorization of the DCT5

The factorization proposed in [20] is the following one:
(Chnsa) = (@27 (€)@ |l (5)]) [2452) 51
where
o [CY,.5] is the non-normalized (3m + 2)-point DCT5 matrix;
(@3 +2] is a permutation matrix;
« [CY_,] is the non-normalized (m + 1)-point DCT5 matrix;

e @ is the direct sum operator;

[CI3 1 (2)] is a non-normalized (2m + 1)-point skew-DCT3 matrix;

[B?ESEZQ} is a base change matrix.
In the following, each of the elements present in the equation will be analyzed.

71

5 — DCT5 via Direct Factorization

5.1.1 Permutation matrix

The permutation matrix [@Q2™+?] is such that:

12 fori; =0
[Q2H2] =iy +3ig > (2ig +m + 1 fori; =1
2i9 +m+2 fori; =2
This means that the row whose index is i1 4+ 3¢5 has a one in position:
o iy ifi1 =0
e 2io+m+1 ifip =1
e 2ig+m+2 ifig =2

We can, for instance, consider N = 3m + 2 = 8. The position of the ones of the

permutation matrix is reported in table

Table 5.1: Rows and columns of the ones of the permutation matrixz for N = 8

Row (i1,i2) Column computation Column
0=0+3x0 (0,0) in =0 0
1=143x0 (1,0 2x0+2+1 3
2=2+3x0 (2,0 2x0+2+2 4
0=0+3x1 (0,) iy =1 1
4=1+3x1 (L1) 2x14+2+1 5
5=2+3x1 (2,1) 2x1+2+2 6
6=0+3x2 (02 iy =2 2
T=1+3x2 (1,2) 2x242+1 7

Hence, for this particular case, the permutation matrix is

0 0 0 0

ﬁ

DO 0O

Do

Il
coocococoor
O~ o000 O OO
cCoo~H OO OO

SO oo+ OO
(el en B en e B el
= elelolBoll S "
SO R OO oo
_ o OO O oo

5.1.2 Non-normalized DCT5 matrix

The non-normalized DCT5 matrix is equal to the normalized DCT5 matrix except for
the following facts:

o the multiplicative constant equal to \/2]%[771 in the normalized form is equal to one

in the non-normalized matrix;

5 — DCT5 via Direct Factorization

« all the elements of the column 0 are equal to one in the non-normalized form;
 all the elements of the row 0 are equal to one in the non-normalized form.

Hence, the non-normalized DCT5 matrix is:

1 1 1 e 1
1 cos (2% cos (5am -+ COs <(N — 1) 52)
IN-1 IN-T IN-T
4 8 9
(Y] = 1 cos { gy cos | 5Nt .-+ Cos (2(N — 1)2N711)
N
1 cos (N = 1)5287) cos (2N = 1)5255) - cos (V= 1?52

5.1.3 Direct sum operator

The direct sum operator is such that, given the matrices [A] and [B]:

5.1.4 Non-normalized skew-DCT3 matrix

The non-normalized skew-DCT3 matrix can be obtained from the DCT3 matrix as

follows:

111 _ [T (C3)
[CNDCTS(T)} - [NDCTS] [XNDCTS(T‘)}
where:
. [C]I\I,]IDCTS] is the non-normalized Npcrs X Npors DCT3 matrix. More in detail, the
non-normalized DCT3 of a given sequence {xj} of length Npcrs is defined as:
Npcrs—1 T
Yy — Z T} COS <(n +1/2)k) forn=0,1,...,Npcr3 — 1
Npcrs
k=0

Hence, the non-normalized DCT3 matrix is:

i N; —1 T]
1 1_ = o DCT3
€08 | 2 Mpors cos 2 Npcrs
3(Npcrs—1) =«
1 3 =
CoS {2 Mpors cos 2 Npors
111 . 5 m 5(Npcrs—1) =
[C’ND CT3] = |1 o8 { 3 Nooms cos 5 Noors
2Npers—=1__ ¢ (2Npers—1)(Npers—1) =«
_1 cos(5 Nocrs ... cos 5 Noors) |

73

5 — DCT5 via Direct Factorization

[X](ch) (r)} is a matrix defined as follows:
DCT3
1 0 0
€1 SNpcr3—1
(C3)
[NDCTS()] -
0 51 CNpors—1.
where:
— ¢ = CoS ((1}({2}3;;);71)
— 8 = sin ((%QD;;);”>
5.1.5 Base change matrix
The base change matrix is defined as:
1
L] [[Lm]
Ch
[B?Em-‘y)ﬂ} =
[I2m+1] - [Im}
= [Jm]
where
o [I,] is the n-point identity matrix:
[1 0
0 1
[1n] =
0 0
10 0

o [Jy] is the n-point backward identity matrix:

0 O

0 0
[Jn] = |:

0 1

|1 0

74

5 — DCT5 via Direct Factorization

5.2 Direct Factorization of the DCT5 (N = 8)

The factorization described in section El] can be applied to the 8-point DCT5. More
in detail, it can be written:

2
c¥) =) ([e3) @ st (3)]) [3]
In the following each of the terms present in the right-side of the equation will be described.

5.2.1 Eight-point permutation matrix

The permutation matrix can be obtained by following the procedure illustrated in
section . Hence, the matrix is:

2

O O OO o oo
OO O OO OO
OO OO O oo
_ o O 0o o oo

oo

D

I
cCcoococooco ok
coocoroOO
cooocoor O
cCoococor OO

5.2.2 Three-point non-normalized DCT5 matrix

The 3-point DCT5 matrix is defined as:

1 1 1
N4 2 4
[Cg } =11 cos (4?”) cos (85—“)
TU 7T
1 cos (?) cos (?)
According to what is described in the previous chapters, several low-complexity algo-

rithms can be adopted for the computation of the 3-point DCT5. One algorithm is also
found in [21]. In the following, the algorithm will be presented.

Low-complexity algorithm for 3-point DCT5

The algorithm is shown in the SFG depicted in figure @ The values of the constants
are instead reported in table @ Finally, the operations needed are listed in table @

Table 5.2: Constants for the 3-point DCT5 algorithm

Constant Value

Cy —0.25000
Cs 0.55902

75

5 — DCT5 via Direct Factorization

Zo of Yo
Cy

X1 » O L » Yl
Cy

T2 ——@ O - Yg

Figure 5.1: 3-Point DCT5 SFG

Table 5.3: Algorithm for the 3-point DCT5

Op. Name Operation Op. Name Operation Op. Name Operation
ap 1+ X2 M,y apCq Yy az + Mo
al r1 — T2 M2 a1C2 Y2 ag — M2
Y ap + o as My + zo

5.2.3 Five-point non-normalized skew-DCT3 matrix

The 5-point non-normalized skew-DCT3 matrix can be obtained as

ORI

where
1 cos (fo) cos (i—g) cos (g—g) cos (4—78)
1 cos (%) cos (1—6‘) cos (1—6‘) cos (11—0)
. [CIH} = |1 cos (%‘) cos (110—5) cos (115—0”) cos (210—0”)
1 cos (%) cos (%ﬁ) Cos (21—”) CcoS (218—0”)
1 cos (%) cos (118—“) Cos (21—“) Cos (316—“)
1 0 0 0 0
0 cos (—%) 0 0 sin (—%)
o [Xém) (%)} = |0 0 Cos (—;—g) sin (—3—73) 0
0 0 sin (—3—78 cos —%) 0
0 sin (—%) 0 0 cos (—%)

A possible low-complexity algorithm for the 5-point DCT3 is reported in [21]. In the
following, the algorithm will be presented.

Low-complexity algorithm for 5-point DCT3

The algorithm is shown in the SFG depicted in figure @ Moreover, the values of the
constants are reported in table @ and the list of operations needed is in table p.5.

76

5 — DCT5 via Direct Factorization

To ? Y,
G
n -t O - — v,
Cy
I \\ O » - Yg
\\
\ Cs
\
Ty ‘\\ O - » Y4
\\
\ Cy
\
//' - O » - YO
//
/ Cs
/
e O
Figure 5.2: Non-normalized 5-Point DCT3 SFG
Table 5.4: Constants for the 5-point DCTS algorithm
Constant Value
Cq —1.25000
Co 1.538 84
Cs —0.55902
Cy 0.95106
Cs —0.363 27
Table 5.5: Algorithm for the non-normalized 5-point DCTS
Op. Name Operation Op. Name Operation Op. Name Operation
ap Ty — T2 M;3 Csaz ar My + My
Y5 ag + xg My Cyas Yi as + ay
az T3+ Ty M; —Csz3 Y3 as — ay
as —T1 — I3 aq M1 + Y'Q a10 M4 + M5
M, Ciao as ag + M; Y, ag + aio
M, Caz1 ag ag — M; Yo ag — aio

77

5 — DCT5 via Direct Factorization

5.2.4 Eight-point base change matrix

The 8-point base change matrix is

0000 1 0 0]

) . 01001 0 1 0
00110 0 0 1

[3(05)}][] 7 2] [t ooo0oo0o -1 0o o
8 |7 N “lo1 000 0 -1 0
5] — L] 00100 0 0 -1

— [] 00010 0 0 -1
00001 0 -1 0]

5.2.5 Computational Complexity

The computational complexity is reduced to 15 multiplications and 33 additions.

78

Chapter 6

Comparison of the algorithms

THIS CHAPTER PRESENTS a comparison of the algorithms considered until now. More
in detail, the algorithms will be compared as far as the computational complexity, the
regularity and modularity and the number of cascaded multipliers are concerned. The
computational complexity is calculated for the “unfolded form”of the algorithms.

6.1 Algorithms for the 4-point DCT5: a comparison

Tl@computatiomal complexity of the algorithms for the 4-point DCT5 is reported in
table 6.1].

Table 6.1: Number of additions and multiplications needed by the algorithms for the normalized
4-point DCTS

Algorithm Number of multiplications Number of additions
Matrix-Vector Multiplication 16 12
Circular Convolution 6 14
DFT (WFTA) 7 13
DFT (Bluestein+Radix 2 DIT) 128 466
DFT (Rader+PFA) 36 87
DCT2 7 13
Givens Rotations 18 18

The algorithm that requires the lowest number of multiplications is the one derived
from the circular convolution (reported in table at page IE) The algorithms derived
from the WFTA and the DCT2 only need 13 additions but 7 multiplications. Moreover,
the algorithm which makes use of the Givens rotations is characterized by a computational
complexity higher than the direct implementation of the matrix-vector multiplication. Fur-
thermore, Bluestein’s algorithm and Rader’s algorithm have high levels of computational

79

6 — Comparison of the algorithms

complexity even though they are the only ones which exhibit a particularly regular struc-
ture. Finally, it should be considered that Bluestein’s algorithm and Rader’s algorithm are
characterized by the presence of several cascaded multipliers. This is important because
the presence of cascaded multipliers determine an increase of the parallelism when the
fixed-point algorithm is generated.

6.2 Algorithms for the 8-point DCT5: a comparison

Tl@computatiomal complexity of the algorithms for the 8-point DCT5 is reported in
table 6.2.

Table 6.2: Number of additions and multiplications needed by the algorithms for the normalized
8-point DCT5

Algorithm Number of multiplications Number of additions

Matrix-Vector Multiplication 64 56
DFT (WFTA) 11 29
DFT (PFA N1=3, N2=15) 21 36
DFT (PFA N1 =5, N2 =3) 18 32

DFT (Bluestein+Radix 2 DIT) 344 1210
DCT2 (PFA N1 =3, N2 =15) 21 36
DCT2 (PFA N1 =5, N2 =3) 18 32
Direct Factorization 19 33

The lowest computational complexity is reached by the algorithm derived from the
WEFTA (presented in table at page é) An increase in the regularity of the structure
determine an increase of the number of needed multiplications and additions. This is par-
ticularly true for the algorithms derived from PFA and DCT2. Moreover these algorithms
are characterized by the presence of cascaded multipliers that cause an increase of the
parallelism in the fixed-point implementation. Cascaded multipliers are also present in
the algorithm obtained from the direct factorization of the DCT5. Finally, even though
Bluestein’s algorithm is the one characterized by the highest level of modularity, its com-
putational complexity is too high to make the algorithm appropriate for any reasonable
application.

6.3 Algorithms for the 16-point DCT5: a comparison

The computational complexity of the algorithms for the 16-point DCT5 is reported in
table @

The lowest computational complexity is reached by the algorithms described in sec-
tions and . Also in this case, even if Bluestein’s and Rader’s algorithms are
characterized by a good level of modularity that, for instance, allows the computation of

80

6 — Comparison of the algorithms

Table 6.3: Number of additions and multiplications needed by the algorithms for the mormalized
16-point DCTS

Algorithm Number of multiplications Number of additions
Matrix-Vector Multiplication 256 240
DFT (Selesnick and Burrus) 43 165
DFT (Bluestein+Radix 2 DIT) 872 2986
DFT (Rader+PFA+WFTA) 236 904
DCT?2 (Spiral) 72 144

the 8-point DCT5, their computational complexity is too high to take them into _consid-
eration. Finally, it should be underlined that the algorithm described in section is
the only one that is not characterized by the presence of cascaded multipliers (except for
the ones needed for the pre-and post-normalization).

6.4 Algorithms for the 32-point DCT5: a comparison

T}@compu‘cational complexity of the algorithms for the 32-point DCT5 is reported in
table 6.4.

Table 6.4: Number of additions and multiplications needed by the algorithms for the normalized
32-point DCTS5

Algorithm Number of multiplications Number of additions
Matrix-Vector Multiplication 1024 992
DFT (WFTA) 52 304
DFT (PFA N1=9, N2=17) 105 330
DFT (PFA N1 =7, N2=9) 99 326
DFT (Bluestein+Radix 2 DIT) 2120 6602
DCT2 (PFA N1 =7, N2=09) 93 302
DCT2 (PFA N1=9, N2=17) 103 320
Direct Factorization 149 296

The lowest computational complexity is reached by the algorithm based on the WFTA.
Also in this case, an increase in the regularity of the structure determine an increase of
the computational complexity as demonstrated by the algorithms derived from the DFT
and the DCT2 via PFA. A regular structure is also present in the algorithm obtained
from the direct factorization of the DCT5. Moreover, this algorithm, as well as the ones
obtained from the PFA, allows also the computation of the 4-point DCT5. Finally, even
if Bluestein’s algorithm is characterized by a high level of regularity and by the presence
of submodules that can be shared for the computation of the DCT5 of other lengths, its
complexity is higher than the one required by the direct implementation of the matrix-
vector multiplication. Furthermore, except for the one derived from the WFTA whose

81

6 — Comparison of the algorithms

cascaded multiplications are only due to the pre- and post-normalization, all the algorithms
are characterized by the presence of several cascaded multipliers.

82

Chapter 7

16-Point DCT5 Implementation

THIS CHAPTER IS DEVOTED to describing the development of an integrated circuit,
which can be used to compute the 16-point DCT5. First of all, an algorithm is selected
among those presented in the previous chapters. Starting from the selected algorithm, a
fixed-point version is obtained and implemented in C language. The C-model is therefore
included in the JEM software and the performances are evaluated by performing simu-
lations. The architecture is then developed and tested. Finally, the circuit is synthesized
and its timing performances are analyzed as well as the occupied area and the power
cosumption.

7.1 Algorithm Selection

Taking into account the computational complexities reported in table @, the algo-
rithm that requires the lowest number of operations is the one obtained by following the
procedure presented in section . Moreover, apart from the multiplications needed for
the pre- and post-normalization, this does not require cascaded multipliers. Hence, this
algorithm is selected among the possible ones. A MatLab implementation of the floating-
point version of the algorithm is reported in appendix D).

7.2 Fixed-Point Algorithm

The fixed-point version of the algorithm is derived by converting the fractional con-
stants into integer constants. In particular, the generic integer constant C; is obtained
from the fractional constant C; by using the following equation:

61' = I_CZ x 29 + 0.5J

A MatLab_implementation of the fixed-point version of the algorithm is also reported in
appendix E

83

7 — 16-Point DCT5 Implementation

7.3 C-Model

The C-Model is obtained by converting the fixed-point version of the algorithm (pre-
sented in section @) in C language. In particular, the type of each variable must be
defined so that no overflow occurs when inputs of type int are supplied.

7.4 JEM Simulations

The JEM software provides an implementation of the 16-point DCT5 in the function
“fastForwardDCT5__B16”described in the file “TComTrQuant.cpp”. This is the direct im-
plementation of the matrix-vector multiplication. The C-Model of the new algorithm can
therefore be substituted to the proposed one and the JEM simulation can be performed
with both the original model and the C-Model obtained as described in section [7.3. In
particular, the encoder behavior can be simulated by using the configuration files “en-
coder_intra_ jvet10.cfg”’and “RaceHorsesC.cfg”’and considering the test sequence “Race-
Horses_ 832x480__30.yuv”. The configuration files can be specified when the executable
“TAppEncoderStatic”is launched. Another parameter is also needed. This parameter is
QP and must be set equal to one of the following values: 22, 27, 32, 37. The obtained
values of PSNR are reported in table [7.1].

Table 7.1: PSNR and Bit Rate for different values of QP obtained by applying the direct imple-
mentation of the matriz-vector multiplication (MVM) and the new algorithm

MVM New Algorithm
BitRate PSNR BitRate PSNR

22 1758.3734 43.1979 1758.8384 43.1973
27 1056.7232 39.9631 1056.6789 39.9637
32 611.4884 36.8599 611.4947 36.8592
37 315.3521 33.6566 315.4666 33.6598

QP

shown in table

The nginteﬁrd delta (table @) can therefore be computed from the values of PSNR

Table 7.2: Bjontegaard Delta

ABj(z)ntegaard
DSNR Rate
—1.6300 x 107%* —6.0479 x 107

84

7 — 16-Point DCT5 Implementation

7.5 Architecture Development

In order to optimize the circuit, the RAGn technique is used to implement each mul-
tiplication. By adopting this technique, the circuit requires no multipliers and only 249
adders/subtractors (except for the ones used to implement the sign changes).

Moreover, the number of bits needed at each node is analyzed by performing a simu-
lation. According to the JEM specifications, the inputs are represented by using 16 bits.
Hence, in order to obtain the number of bits required at each node, the following inputs
are supplied:

« 10000 vectors whose elements belong to the range [—32768, 32767];

e vectors obtained by considering all the possible combinations of elements equal to
-32768 or 32767.

Finally, input and output registers are inserted for each input and output signal.

7.6 HDL Description and Simulation

The architecture presented in section @ is described in VHDL and simulated by us-
ing the software ModelSim. More in detail, the inputs used in the test-bench are obtained
by modifying the JEM software so that the values inputted to the function “fastForward-
DCT5__B16”are printed to a file. The file containing the input values is therefore generated
by running the executable “TAppEncoderStatic”(as described in section [.4)) for a limited
amount of time.

7.7 Logic Synthesis

The circuit is synthesized with Synopsys Design Compiler using the NanGate FreePDK45
Open Cell Library. The results concerning the area and the timing performances are re-
ported in tables @ and @

Table 7.3: Synthesis Results

Minimum Clock Period FEquivalent number of gates
(ns)
4.20 56 745

Table 7.4: Area Estimation

Combinational Area Buf/Inv Area Noncombinational Area Total Cell Area

45282.2 6825.6 3664.9 48947.2

85

7 — 16-Point DCT5 Implementation

7.8 Post-synthesis simulation and power estimation

The synthesized circuit is simulated in order to also estimate the switching activity at
each node and the obtained results are printed in a saif file. This is used to evaluate the
power consumption and the obtained results are reported in table [7.5.

Table 7.5: Power Consumption Estimation @ 59.5MHz

mW %

Cell Internal Power 2.5262 37.0
Net Switching Power 3.0854 45.1
Total Dynamic Power 5.6116 82.1

Cell Leakage Power — 1.2255 17.9

Total Power 6.8372

86

Appendix A

DCT5 via DFT for longer lengths

This appendix presents how the DCT5 can be computed via DFT for N = 16 and
N = 32.
A.1 WFTA for longer lengths

This section shows how the WFTA can be applied to the DCT5 for N = 16 and
N = 32.

A.1.1 WFTA for DCT5 (N = 16)

A DCTS5 of length 16 can be mapped into a DF'T of length 31 as described in section Ell
In particular, the DCT5 equation can be written as

Y, = ci6T.Re(Yrn) forn =0,1,...,15 (A.1)

where

. cpp= -2
V31

30 .
« Re(Yyn) =Re (Z lke_lnk§1>
k=0

and
T
L=1lp 1 Iy I3 hy lis L hy lis ... lor lag log I3
—[#0 0 @ O ... &4 0 &15 0 &13 ... 0 &5 0 & |
T
:[%01’20 :1:140331503;13 ...01’30331}

Equation @ can be further rearranged to give

Y, = T,Re(c16Yr) = T,Re(Yin)

87

A — DCT5 via DFT for longer lengths

where

Yr=| ! | =ci6[931][C31] [T51]1 = [S31] [031} [T31]1
1AfF30

More in detail, the matrices [Ss1], [C’gl} and [T31] can be found according to the

following steps:

1. the DF'T is expressed as a function of a circular convolution by using Rader’s theo-
rem;

2. the circular convolution is solved by making use of the Winograd short convolution
algorithms.

Nevertheless, this procedure is cumbersome and leads to an algorithm that requires a
large number of sums. A better method to solve this DF'T was proposed by Selesnick and
Burrus ([22], [23]). This can be efficiently used to compute the DCT5. In fact, several
simplifications can be made. These are due to the following facts:

1. the input sequence is real;
2. 15 out of 31 inputs are equal to zero;
3. the computation of only the real part of the DFT is needed.

By taking these aspects into account, the method yields an algorithm that only requires
42 multiplications and 165 sums.

A.1.2 WFTA for DCT5 (N = 32)

A DCTS5 of length 32 can be mapped into a DFT of length 63 as described in section @
In particular, the DCT5 equation can be written as

Y, = c32T,,Re(Yrn) forn=0,1,....31 (A.2)
where
62
o Re(Yr,) =Re (Z lpe J"k63>
k=0
and
T
L=1[lo l1 Iy I3 Iy ... lag l30 I3t sz lss lsa I35 ... lgo le1 le2]
—[#0 O & 0 &4 ... 0 @3 0 &3 0 &9 0 ... @ 0 & |
T
:[%OJJQO%A...0%‘3001’310.%290...1‘30.%1}

Equation @ can be further rearranged to give
Y, = T,Re(c32Yry) = T,Re(Yin)

88

A — DCT5 via DFT for longer lengths

The elements of Yy are contained in the matrix [Z] which is calculated by applying the
equation

12) = e 157) (18] [Coscr] o [T0) (T3] [2)™)T = [51] (190] [Conr] o [T6] (2] ()T

where
[09 x 7] = c32 [Cox7]

This equation yields an algorithm which is composed of five main steps:
e Pre-Normalization
o Pre-Additions

e Multiplications

Post-Additions

e Post-Normalization

The algorithm can be derived by following the same procedure presented for the case
N = 8. More in detail, the matrices [T7], [S7] and [C7] are the same adopted for the case
N = 4. On the other hand,

11 1 1 1 1 1 1 1
O 0 0 1 0 0 1 0 0
o1 1 0 1 1 0 1 1
01 =10 0 0 0 -1 1
0O 0 1 0-1-10 1 0
To]=1]0 =1 0 0 1 1 0 0 -1
0o 1 -10 1 -1 0 1 -1
0O 0 0 1 0 0 -1 0 0
0O -1 -10 0 0 0 1 1
00 -10 -1 1 0 1 0
0o 1 0 0 -1 1 0 0 -1
1 0 0 0 0 0 0 0 0 0 0]
1 -12 1 1 0 0 1 1 1 0
1 -12 0 -1 1 0 -1 0 1 -1
1 030 0 0 1 0 0 0 0
[So]=|1 -1 2 -1 0 -1 0 1 -1 0 -1
1 -12 -1 0 -1 0 -1 1 0 1
1 03 0 0 0 -1 0 0 0 0
1 -12 0 -1 1 0 1 0 -1 1
1 -1 2 1 1 0 0 -1 —1 -1 0

A — DCT5 via DFT for longer lengths

and [Cy] is a diagonal matrix whose main diagonal contains the elements of the vector

1
1.5
—0.5

% [2 cos (0) — cos (20) — cos (40)]
3 [cos (0) 4 cos (20) — 2 cos (40)]
Co = |5 [cos (D) —2cos (20) + cos (40)] 0=——
jsin(30)
jsin(30)
—jsin(0)
—jsin(40)
—jsin(20)

It should be highlighted that the matrix [So] contains elements that are not equal to
0, 1 or -1. This form of the matrix can be used to minimize the number of multiplications
by introducing shift operations.

Pre-Normalization

The multiplication

Mnl = «@O = Cnormmo = To

1
V2
is performed.

Pre-Additions

The additions related to this step are obtained by performing the matrix products
T
[A] = [To] ([T7] [2])

The matrix [A] is composed of 99 elements. Each element A;; of the matrix [A] needs
additions to be performed. More in detail:

[A] = |As0 Asy As2 Asz Asy U U U U
U U U U U A6,5 A6,6 A677 A6,8
v U U U U A 76 Arr Arg
U U U U U A8,5 A8,6 A877 A&g
U U U U U Ays Agg Agr Aos
v U U U U Aws Awe A7z aiog

A — DCT5 via DFT for longer lengths

where the elements labeled as “U”are only needed for the computation of the imaginary
part of the DFT.

Since the number of required additions is much larger than the one analyzed for the case
N =8, it cannot be reduced by inspection method. In the following, a possible algorithm
that can be adopted to minimize the number of pre-additions is therefore presented.

Minimization of the number of pre-additions

Each element of the matrix [A] can be described by the equation:

31
Aig =Y uijri
k=0
where u; ;1 can be equal to 1, 0 or -1. Hence a vector

ul’j = [ulvj70 ui7j71 ui’j72 cee u27]730 uz7.7731:|

can be found for each element of the matrix [A].
The vectors u;,j can be gathered into a matrix [w]. Thus, this matrix can be defined

as
Uo,0 wo wp,0 Wo,1 ... W0,31
Uo,1 w1 w10 w11 ... W131
[w=|uoa | =|wa|=|wao wa1 ... Wizl
Uu1,0 ws w50 W51 ... W531
| U10,8] LW49 | LW49,0 W49,1 ... W49 31]

The elements related to the computation of the imaginary part of the DFT are not included
in this matrix.

Each couple (w; j,wj) is therefore analyzed by varying i. Hence, the values assumed
by the couples (wp,wo,1), (W1,0,w11), -, (Wa9,0,wa9,1) are firstly analyzed. Secondly, the
values assumed by the couples (wg 0,wo,2), (W1,0,w1,2), -, (Wa9,0,wa92) are considered and
the process is iterated for all the possible values of j and k. In the end, the couple (j, 12:) is
selected, that is the one that most frequently satisfies one of the following two conditions:

1. (wi,j,wiyk) = (1, 1) OR (wi,j,wi7k) = (—1, — 1)
2. (wijwik) =(1,-1) OR (wijwik) = (-1, 1)
In case more than one couple satisfies one of these conditions with the maximum number

of occurrences, a random number can be generated to select one of those couples.
If the selected couple satisfies condition 1):

e The sum

»

[l

Il
>

<

+

>
ESN

is performed.

A — DCT5 via DFT for longer lengths

o A new matrix [w] is defined starting from the matrix [w]. More in detail, the matrix
[w] is equal to the matrix [w] except for the fact that the couples (w; 5w, 1), which
are equal to (1,1) or (-1,-1) in the matrix [w] are set equal to (0,0) in the matrix
[w]. Moreover, a column is added to represent the sum s;. The i-th element of this
column is such that:

0 if (wifv ijg) # (

UA)Z"32 = 1 if (w :

On the other hand, if the selected couple satisfies condition 2):

e The sum

is performed.
o A new matrix [@] is defined starting from the matrix [w]. More in detail, the matrix
[w] is equal to the matrix [w] except for the fact that the couples (w, ;,w; ;), which
are equal to (1,-1) or (-1,1) in the matrix [w], are set equal to (0,0) in the matrix
[w]. Moreover, a column is added to represent the sum s;. The i-th element of this
column is such that:
0 if (wi’c, 7,,]%) 75 (]_7 — 1) AND (U)i’j,wi’]%) 7é (—1, 1)
W; 32 = 1 if (w, -

The process described above can be reiterated by considering the matrix [w]. This
obviously implies that the sum s; has to be considered among the possible elements.
Hence, if k£ = 32, the sum to be performed is

So = i‘j + 81
in case condition 1) is satisfied and

Sg =23 — 8
2 5 St

in case condition 2) holds.

In particular, this procedure can be repeated until each line of the matrix contains only
one element different from zero. When this happens, all the additions, needed to compute
all the significant elements of the matrix [A], have been performed.

Moreover, the whole process can be reiterated so that different random numbers can be
generated to select one of the couples that, at each step, satisfy one of the two conditions
with the maximum number of occurrences. The obtained number of pre-additions can
therefore be compared to the one achieved at the end of the previous iterations. Hence,
the set of equations, derived from the iteration that guarantees the lowest number of
pre-additions, can be selected.

92

A — DCT5 via DFT for longer lengths

Multiplications

The multiplications derive from the element-by-element matrix product
[M] = [Coxr| o [4]

The derivation of the needed multiplications is not reported here since it is analogous to
the one described for the case N = 8.

Post-Additions
The additions related to this step are obtained by performing the matrix products
2] = [S7] ([So] [M])*

The matrix [Z] is composed of 63 elements, which need additions to be performed. More
in detail:

Yro }A/:FZB U Yen u Ve v Y7 U
U Y1 Yr U Yrz U Yris U Yrs
Yro U Yp2 Ypzo U Yrz U Yrs U
[Z] = Re U Yro U Yes Yeu U Yru U Yrir
Yps U Yen U Yra U U Yrs U
U Yr9 U Yr2 U Yps U U Yros
[Yror U Yro U Ymzs U Yrg U U

where the elements labeled as “U”are not needed for the computation of the DCT5. Nev-
ertheless, since the inputs of the DFT are real, these elements are equal to those which are
not labeled as “U”. Moreover, also in this case, the number of required additions is much
larger than the one analyzed for the case N = 8 and consequently it cannot be reduced
by inspection method. In the following, a possible algorithm, which can be adopted to
minimize the number of post-additions, is therefore presented.

Minimization of the number of post-additions

Since

My My My, Mg M,y U U U U
Ms Mg M; Mg My U U U U
My My My Mg My U U U U
Mys My Mz Mg My U U U U
My Moy Mo Mag Moy U U U U
[M] = | Mas Mys Moy Mog My U U U U
U U U U U Msy Mszy M3y Msg
U U U U U Msy Mss Msg Msy
U U U U U Msgs Msg My My
U U U U U Mys My My Mys
U U U U U M46 M47 M48 M49

93

A — DCT5 via DFT for longer lengths

each element of the matrix [Z] can be expressed as

49
Zij =Y tijxMy
k=0
where u; ;1 can be equal to -3, -2, -1, 0, 1, 2 or 3. Hence a vector

Wi = [Uijo Wijl Uij2 ... Uijdz Uija9)

can be found for each element of the matrix [Z].
Starting from the vector wu; j, a new vector

Nij = [Nijo Mij1 .- Mijos Mijool

can be defined. The vector n; ; is such that

(*1 N *1) if Uj 5.k = -3
(—1 y 0) if ui,j’k =-2
(0 y —1) if Ui, g,k = -1
(nm’gk,ni,j,gk_u) = (0 y 0) if ui,j,k =0
(0,1) if Ui =1
(1 y 0) if ui,j,k =2
(1,1) ifujr=3
A matrix i i i i i i
10,0 wo wo,0 Wo,1 ... W0,99
ni,i w1 w1, w11 ... W1,99
[w] = = =
n2;3 w30 w30,0 wW30,1 --- W30,99
[73,4 | W31 | | w310 w311 ... W31,99]

is then defined.

Each couple (w; j,wj) is therefore analyzed by varying i. Hence the values assumed
by the couples (wo,0,w0,1), (w1,0,w1,1), -, (W31,0,w31,1) are firstly analyzed. Secondly, the
values assumed by the couples (wg 0,wo,2), (w1,0,w1,2), .., (W31,0,w31,2) are considered and
the process is iterated for all the possible values of j and k. In the end, the couple (j, 12:) is
selected, that is the one that most frequently satisfies one of the following two conditions:

L (wijwig) = (1, 1) OR (wijwik) = (-1,—1)
2. (wm,wi,k) = (1, - 1) OR (wi,j,whk) = (—1, 1)

In case more than one couple satisfies one of these conditions with the maximum number
of occurrences, a random number can be generated to select one of those couples.

94

A — DCT5 via DFT for longer lengths

If the selected couple satisfies condition 1):

e The sum s; is performed according to the following rule:

(2M; +2M, i (jmod2)=0 AND (kmod2) =
2M P Mg if (jmod2)=0 AND (kmod?2)=
e ML%JHME if Gmod2)=1 AND (kmod2) =0
xML%J+ML§J if (jmod2)=1 AND (kmod?2)=

o A new matrix [0] is defined starting from the matrix [w]. More in detail, the matrix
[w] is equal to the matrix [w] except for the fact that the couples (w; 5,w; 1), which
are equal to (1,1) or (-1,-1) in the matrix [w] are set equal to (0,0) 1n the matrix
[w]. Moreover, a column is added to represent the sum s;. The i-th element of this
column is such that:

0 if (wa0,) #(L 1) AND (wsw,;) # (=1, — 1)

On the other hand, if the selected couple satisfies condition 2):

e The sum s is performed according to the following rule:

2M; —2M; if (jmod2) =0 AND (kmod?2)=

B 2M§_ML§J if (jmod2)=0 AND (kmod?2) =
o M —2M; i (jmod2)=1 AND (kmod2) =
\ML%J_MléJ if (jmod2)=1 AND (kmod2) =

o A new matrix [w] is defined starting from the matrix [w]. More in detail, the matrix
[@] is equal to the matrix [w] except for the fact that the couples (w; Wi, i), which
are equal to (1,-1) or (-1,1) in the matrix [w], are set equal to (0,0) in the matrix
[w]. Moreover, a column is added to represent the sum s;. The i-th element of this

column is such that:

0 if (wswp) #(1,=1) AND (w,sw,;) # (=1, 1)
) =(1,-1)

~1if (w5,) = (<1, 1)

UA)l"log = 1 if (w

The process described above can be reiterated by considering the matrix [w]. This
obviously implies that the sum s; has to be considered among the possible elements. In
particular, this procedure can be repeated until each line of the matrix contains only one

95

A — DCT5 via DFT for longer lengths

element different from zero. When this happens, all the additions needed to compute all
the significant elements of the matrix [Z], have been performed.

Moreover, the whole process can be reiterated so that different random numbers can be
generated to select one of the couples which, at each step, satisfy one of the two conditions
with the maximum number of occurrences. The obtained number of post-additions can
therefore be compared to the one achieved at the end of the previous iterations. Hence,
the set of equations derived from the iteration, which guarantees the lowest number of
post-additions, can be selected.

Post-Normalization

The multiplication

My = CrormMo = My

Sl

is performed.

Final Algorithm

The procedure described above yields an algorithm, which requires 52 multiplications,
304 sums and 5 shifts.

A.2 PFA for longer lengths

This section presents how the DCT5 can be computed via PFA for N = 32.

A.2.1 PFA for DCT5 (N = 32)
A DCTS5 of length 32 can be mapped into a DF'T of length 63 as described in section El!

In particular, the DCT5 equation can be written as

Y, = c32T,,Re(Yry,) forn=0,1,...,31

where

° 032 = 72
V63

62 o
o Re(Yr,) = Re (Z lke_mkés>
k=0

and
T
=[lo 1 log lso ls1 ls2 lsg lsa Iss ... leo le1 le2]
[0 0 $2 ... 0 :%30 0 .f31 0 @29 0 ... i‘3 0 .f:‘l]T
[onk|k =0 0 i) 0 ... 0 T30 0 I31 0 I29 0o ... T3 0 1‘1]T
T
[LOQ 0 o ... 0 T30 0 I31 0 29 0 ... T3 0 3;1]

96

A — DCT5 via DFT for longer lengths

For the sake of simplicity, we can neglect css and consider:
T,=1 T, =1 vn,k
As a consequence, the vector I can be redefined as
L=[lo U1 Iy I3 ... log log lso Is1 ls2 ls3 Isa I35 ... leo le ZGQ]T
:[xo 0 20 0 ... mog 0O 230 0 2331 0 x99 O ... 23 O xl]T

The input permutation matrix is therefore applied to this vector in order to obtain the
vector I, which is used as input for the first stage of the PFA. Hence, the scheme shown in
figure is derived. The real part of the elements Yg, represented in this figure, are
the outputs generated by the DCT5 (considered in non-normalized form). Alternatively,
the scheme presented in figure can be considered.

The simplifications made for the case N = 8 can be adopted also in this case. More-
over, it should be noticed that 7-point DF'Ts are required in the algorithms presented in
figures lA.l(a)l and lAl(b)l Since a 4-point DCT5 can be mapped into a 7-point DFT,
the modules used to implement the 7-point DFTs can also be employed for the computa-
tion of the 4-point DCT5. Finally, it should be highlighted that the 9-point DFTs can be
implemented by following the Winograd algorithm as well as the Radix-3 algorithm.

A.3 Rader’s algorithm for longer lengths

This section presents how Rader’s algorithm can be adopted to compute the DCT5 for
N =16.
A.3.1 Rader’s algorithm for DCT5 (N = 16)

A DCTS5 of length 16 can be mapped into a DFT of length 31 as described in section Ell
In particular, the DCT5 equation can be written as

Y, = ci6TnRe(Yrn) forn=0,1,...,15

where
30 o
o Re(Yr,) = Re (Z lkeJ”k:n>
k=0
and
L=1lp It Ip I3 ... lu hs lie Ly hs ... lag log 130]T
—[# 0 @ O ... 214 0 #15 0 &13 ... &3 0 @]
T
:[% 0 €T 0 ... T14 0 I15 0 r13 ... X3 0 561:|

The computation of the DCT5 is therefore translated into the computation of a DFT
of length Nppr = 31. Since Nppr is a prime number, Rader’s algorithm can be adopted
to compute the DFT. Hence, the steps described at page @ can be followed to compute
the DCTS5. In the following, each of these steps will be analyzed.

97

A — DCT5 via DFT for longer lengths

—]7-POINT

|

PiTieed

}

7-POINT

DFT DFT

!

9-POINT
DFT

9-POINT
DFT

Ly

s of of of og

v
=

Z16
—|7-POINT \
9 DFT
Z11

L
=

I A A A A

/ 7-POINT
’ DFT [

Fivs

P

0 e
\ 9-POINT| _ 40 Jo-pOINT ,
\\‘k‘»'v‘;’% o E 0 . \)X‘V‘qﬁ 7-POINT

T4
8171 7-POINT \\
Z13 ‘

;Q%W' DET

Priiedd

SRS RN
SN e

I

\\\ ‘\A’A:l’l 9-POINT

—|9-POINT

o
|
e

posofcf ss

Friie i

P

Pivid

I

I

"
SU: 7poINT| |\ ‘V"'/ / ’ DEE E DFT "\"V’ N\ T 7-poINT
] prr \‘)‘« \:"A’/e‘#‘ - o — ‘%‘%\""/ /'Qibl DFT
R e)
pies)1/ S il)
] 7-%(;1%“ ’AA‘&A‘&&&' 9-POINT E I?O - 9-POINT ‘X“A’A":"i&%‘(l T-POINT
- ‘"‘VWW‘ DFT [0 = DFT WWWV‘ DET
A Cymon AR
e ”‘W‘ - 0 e
e A A I B VT 8
RS g)
EIE | e R (-
;1 DFT "”‘ /W\»(’ - ! Ty3 —] ’}(/m\ “\ ‘ DFT
) A AA’A\ \ 9-POINT|[0 —g.pomNT | '/'AA“
TR R
T b IR

: ”/‘lh JNeeon
AR
g;(il 7-POINT %%K “A‘}“‘

DFT

(S
“\‘\ DFT

P

\ 9-POINT

0
0
b
0
0

7 0 — ’

2 0 =g oy l

DFT 0 T

0
)
0

SRR

Ny,
V.\\r
——
=
| A A A A

Piviiede i

7— 7.POINT ' ‘\ 7-POINT
o] prT s D5 A DFT
il i

- 7-POINT
T20

“7l9-POINT

L ae— DFT 7-POINT

0 — DFT

9-POINT
DFT

DFT

et SRR SN R R NSNS SRS SRS eSS SR N SRR RREESES SRS e

Pririviid

SENEEN SESNEES SRSSSNN NSNNNN NNSNRNN SESSENEN SNENmsx mXmmmmn mmmmen

PiTieed

(a) N1=9, N2 =7 (b)y N1=7,N2=9

Figure A.1: PFA for DCT5 with N = 32

98

A — DCT5 via DFT for longer lengths

Computation of Ygg

The computation of Yrg is performed according to the following formula:

NprT-1 - 15
YFOZ Z lnzio"i_zxn
n=0 \/5 n=1
Hence, Yj can be obtained from Ygg as follows
2 1
Yo = c16ToRe(Yro) = —=—=Yro

Definition of a primitive root g of Nppr
A primitive root of 31 is
g=3
Definition of the vector [

The vector [is defined according to the permutation:

~

ln == l(330—n mod 31) for n = 0,1, PN 729

Definition of the vector T

The vector T is defined according to the following formula:

T, = W@ med3l) for p—01,...,29

Computation of the circular convolution c of [with T

The circular convolution ¢ can be computed according to the Circular Convolution
Theorem. Hence, we have:

A

¢ = IDFT(DFT({) o DFT(T))

Since T contains only constants, Tg = DFT(T') can be precomputed. On the contrary, the
DFT of the vector [can be computed according to the WFTA or the PFA. In fact, [has
length M = 30 = 2 x 3 x 5. Therefore, the Winograd short-N DFT modules of length 2,
3 and 5 can be used to compute the DET. Moreover, the IDFT can be obtained by using
a forward DFT as depicted in figure .

Computation of the vector é

The vector ¢ is computed according to the following formula:

¢n = (Re(cn) + o) ci6

99

A — DCT5 via DFT for longer lengths

Definition of the vector Y

The elements [Y7,...,Y15] of the vector Y are stored in the vector é according to the
following permutation:

Yv(3" mod 31) = Cn

Final Algorithm

The procedure described above leads to the architecture depicted in figure @ This
architecture is characterized by the presence of fifteen 2-point DFTs and two 15-point
DFTs. Each of the 15-point DFTs is also used to obtain an 8-point DCT5.

The 2-point DFTs can be implemented by using butterfly units with unitary twiddle
factor. On the other hand, the 15-point DFTs can be implemented by adopting the PFA
or the WFTA. In order to minimize the complexity, we suppose that the WFTA is chosen

and implemented according to the scheme reported in figure [24].

0~ 19 : 0 .10
1 P[5 1 ; 1 10 Jp[
9 «E10 : 5 JE[- 2
3 R 3 x 6 R 3
4~ 3 5 . 5 —7 3 Lo 4
5 _M[13 - T

_JUL6 12 JUl.
g 11 - - 6
;A 2o 3 AT
10 - Tl 14 3 773 13T |
1 — 14 - 8 11+ 11
12 9
12~ 05 R ~ 7 3 0 12
13~ N5 x = — 13
1N x N
3-POINT - 3-POINT
PRE-WEAVE - POST-WEAVE
MODULE 5-POINT 5-POINT MODULE
PRE-WEAVE MULTIPLAICATION POST-WEAVE
MODULE PHASE MODULE

Figure A.2: WFTA for 15-point DFT

The computational complexity can therefore be analyzed by making the assumptions
reported above. In particular, each 15-point DFT module requires 81 complex additions
and 18 complex multiplications. Each complex addition is performed by means of two real
additions. Moreover, since the multiplicative constants are purely real or purely imaginary,
each complex multiplication needs 2 real multiplications. Hence, each 15-point DFT re-
quires 162 real additions and 36 real multiplications. On the other hand, each 2-point DFT
requires 4 real additions. Furthermore, 50 multipliers and 16 adders are needed to pro-
cess the outputs. Finally, 30 complex multiplications must be performed by the constants
stored in the vector Tg. Each of these multiplications needs at least 3 real multiplications
and 5 real sums or 4 real multiplications and 2 real sums. The number of multipliers
(Nmut) and adders (Nagqq) can therefore be computed as follows:

Nonutt = 36 x 2+ 50 4 30 x 3 = 212

100

A — DCT5 via DFT for longer lengths

l

H

O

o]
T—‘wﬁﬁ

F

a7 &

E

sl el al s

Figure A.3: Architecture for DCT5 (N = 16) based on Rader and Prime Factor algorithms. Two
8-point DCTS5 are also obtained by exploiting the 15-point DFTs. The outputs of only
one of these are reported in the figure.

101

A — DCT5 via DFT for longer lengths

Nogd = 162 x 24+ 4 x 15+ 16 4+ 30 x 5 = 550

Unfortunately, even if the number of multipliers is lower than the one needed by the
direct implementation of the matrix-vector multiplication, the number of required adders
makes this architecture unpractical for most of applications.

102

Appendix B

DCT5 via DCT?2 for longer lengths

This appendix presents how the DCT5 can be computed via DCT2 for N = 16 and
N = 32.

B.1 DCT5 via DCT2 (N = 16)

An algorithm for the 16-point DCT5 can be derived from algorithms for the 31-point
DCT2. More in detail, the computation of a 16-point DCT5 can be translated into the
computation of a 16-point DCT6 as described in section and the 16-point DCT6 can
be derived from the 31-point DCT?2 as illustrated in section B.9. The following paragraphs
will illustrate the steps involved in the derivation of the algorithm.

B.1.1 Reordering of the input vector

According to what is described in section El], the input vector @ is reordered so that
the vector

T15
Z14

Ly = [J16] r =
€1
{L‘()_

is obtained.

103

B — DCT5 via DCT?2 for longer lengths

B.1.2 Definition of the vector gy

According to what is described in section @, the vector g is obtained as

o
0
[215] x13
T14 0
[115] [J15] T x1
TR = 1 o = | Xo
— [J15] [115] —x1 0
. Lo
0
—Z14
| —215]
T4
L 0 -

B.1.3 Computation of the 31-point DCT2

The vector Y is obtained by computing the DCT2 of the vector xr. A possible
algorithm for the 31-point DCT2 can be produced by using the software Spiral [25]. Several

simplifications can be made to this algorithm. In fact:

1. 15 out of 31 inputs are equal to zero;

2. only the even-indexed outputs of the DCT2 are of interest.

Hence, the computation of the DCT2 leads to the vector:

_Y()II -
U
YQH
U
Y II — :
U
Vg
U
Y4

104

B — DCT5 via DCT?2 for longer lengths

where the elements labeled as U are not of interest for the computation of the 16-point
DCT5. More in detail, the output vector produced by the computation of the DCT6 is

v VIJ nvalls
Youl 1M
Y] Y5
YVI _ . — .
VI 11
Yl |t
Y15 Y50,

B.1.4 Definition of the output vector Y

According to what is described in section El!, the output vector Y can be obtained
from the vector Y VI as follows:

Y = [Dig) Y V!

B.1.5 Final Algorithm

The procedure reported above leads to an algorithm that requires 72 multiplications
and 144 sums.

B.2 DCT5 via DCT2 (N = 32)

An algorithm for the 32-point DCT5 can be derived from algorithms for the 63-point
DCT2. More in detail, the computation of a 32-point DCT5 can be translated into the
computation of a 32-point DCT6 as described in section and the 32-point DCT6 can
be derived from the 63-point DCT2 as illustrated in section B.9. The following paragraphs
will illustrate the steps involved in the derivation of the algorithm.

B.2.1 Reordering of the input vector

According to what is described in section E!, the input vector @ is reordered so that
the vector

Z31
Z30
Ly = [J32] xr =
€1
xo

is obtained.

105

B — DCT5 via DCT?2 for longer lengths

B.2.2 Definition of the vector gy

According to what is described in section @, the vector g is obtained as

o]
0
[231] 29
T30 0
-1
[131] [J31] T)
TR = 1 X0 = | X0
— [J31] [I31] —x1 0
.)
0
—I30
| —x31]
30
- 0 -

B.2.3 Computation of the 31-point DCT2

The vector Y is obtained by computing the DCT2 of the vector xr. A possible
algorithm for the 63-point DCT2 can be derived by adopting the PFA as illustrated for
the case N = 8 in section . Several simplifications can be made to this algorithm. In
fact:

1. 31 out of 63 inputs are equal to zero;
2. only the even-indexed outputs of the DCT2 are of interest.

Hence, the computation of the DCT2 leads to the vector:

_Y()II -
U
YQH
U
YII — :
U
Yo
U
Y3

106

B — DCT5 via DCT?2 for longer lengths

where the elements labeled as U are not of interest for the computation of the 32-point
DCT5. More in detail, the output vector produced by the computation of the DCT6 is

v VI nvalls
R I RS
Y, v
YVI _ . — .
VI 11
Yol | Ta
_}/31 u _}/62_

B.2.4 Definition of the output vector Y

According to what is described in section El], the output vector Y can be obtained

from the vector Y VI as follows:
Y = [D3] YVI

B.2.5 Final Algorithm

The procedure reported above leads to an algorithm that requires 93 multiplications
and 302 sums if N1 = 7 and N2 = 9 are chosen or 103 multiplications and 320 sums in
case N1 =9 and N2 = 7 are selected.

107

Appendix C

Direct Factorization for N = 32

This appendix presents the derivation of the algorithm obtained starting from the
direct factorization of the 32-point DCT5.

C.1 Direct Factorization of the DCT5 (/N = 32)

The factorization described in section El] can be applied to the 32-point DCT5. More
in detail, it can be written:

2 cs
e = (o) (e8] o 3 (5)]) [67]
In the following each of the terms present in the right-side of the equation will be described.

C.1.1 Thirty-two-point permutation matrix

The permutation matrix [:1%] can be obtained by following the procedure illustrated

in section p.1.1.

C.1.2 Eleven-point non-normalized DCT5 matrix

The eleven-point non-normalized DCT5 can be, for instance, computed by recursively
adopting the factorization proposed in equation p.1|. In particular, it can be written:

[CY] = [@5'] <[C4V} ® [C;H <§)]> B
where:

« [Q3'] and [B%?B)] can be obtained by respectively referring to sections and .

. [CX] is the 4-point non-normalized DCT5 matrix. The 4-point DCT5 can therefore
be computed according to one of the algorithms presented in the previous chapters.

108

C — Direct Factorization for N = 32

o [CH1 (%)} can be computed according to the following formula:
() f(3)

— [C%H] is the seven-point DCT3 matrix;

where:

- [Xécg) (%)} can be obtained according to what is described in section .

A possible algorithm for the seven-point DCT3 can be found in [21)]. This will be

presented in the following.

Algorithm for the 7-point DCT3

The seven-point DCT3 can be computed according to the following factorization:

O R R EAR CH RN

T
[J3] [13] B i

where:

o [I,] and [J,] are respectively the m-point identity matrix and backward identity
matrix;

. [CX] is the 4-point non-normalized DCT5 matrix;

1 0 0 0
0 -1 0 0
c D=1y o 1 o
0 0 0 —1

. [S;’ H] is the non-normalized 3-point DST7 matrix. This is defined as:

(S = [sin (%) sin (%) sin (%)

10000 0 O
00001 0 0
01000 0 0

e« [R7]=10 0000 -1 0
00100 0 0
00000 0 1
00010 0 0

109

C — Direct Factorization for N = 32

According to what is described in the previous chapters, several algorithms can be
adopted to compute the 4-point DCT5. On the other hand, a possible algorithm for the
transposed 3-point DST7 is presented in [21]. The SFG of this algorithm is shown in figure

while the value of the constants and the list of operations needed are respectively

reported in tables and

Ci
M)
/

C,
O v

I

Os

Y,

Figure C.1: Non-normalized transposed 3-Point DST7 SFG

Table C.1: Constants for the transposed 3-point DST7 algorithm

Constant Value

Cq —0.34087293
Cy 0.533 969 36
Cs 0.874 84229
Cy 0.440 958 55

Table C.2: Algorithm for the non-normalized transposed 3-point DST7

Op. Name Operation Op. Name Operation Op. Name Operation
ag —Iy — T2 M2 Cgal ay MQ - Mg
a1 o+ X1 Ms Csas as a7 + My
as 1 — T2 M, Caay Yo as
as To — X1 as My + My ag My + M3
ag as — T ag as — My aio ag + My
M Ciag Yo ag Y1 aio

110

C — Direct Factorization for N = 32

C.1.3 Twenty-one-point non-normalized skew-DCT3 matrix

According to what is described in [20], the 21-point non-normalized skew-DCT3 matrix
([CIH ()]) can be expressed as:

w21 ([e ()] e e ()] = [+ ()]) (e ()] 1) [+45]

where:
. [K?l] is a permutation matrix;

[CHl ()], [cH ()] and [CH! (%)] are non-normalized 7-point skew-DCT3 matri-

Ces;

e @ is the direct sum operator;

[CIH ()} is a non-normalized 3-point skew-DCT3 matrix;

e ® is the symbol of the kronecker product;

[I7] is the 7-point identity matrix;

[Bég?’)} is a base change matrix.

Permutation matrix [K#!]

The permutation matrix [K2'] is such that:

[K2') = ([Is] & [Js] @ [Is] @ [J3] & 3] & [Js] & [I3]) [L3]
where [L%l} is defined as

[LE]: 4 + 7imod 20 for 0 <@ <20
20 — 20

Non-normalized 7-point skew-DCT3 matrices

The considered non-normalized 7-point skew-DCT3 matrices are:
_ o\ _ o\
111 111 C3
o (5)] =1e#1 [(5)
- nS - nS
111 _ [l (C3)
o (3)] =181 [(5)

- 8\] C e 8V
cl <9> _ [C%II} X§ 3) (9)

where the 7-point DCT3 can be computed according to the algorithm described in sec-

tion and [Xécg] [X (©3) ()} [Xécg) ()} can be found by following what is
b.1.4

illustrated in section

111

C — Direct Factorization for N = 32

Non-normalized 3-point skew-DCT3 matrix

The non-normalized 3-point skew-DCT3 matrix can be obtained as:

ORI

The 3-point DCT3 can be calculated by adopting the algorithm described in [21)]. The
SFG of this algorithm is shown in figure while the value of the constants and the list

of operations needed are respectively reported in tables @ and

T ? Yy
//
/
// C 1
/
2 / O Y,
/
/
/
/ G,
/
Ty — O ¢ Yo

Figure C.2: Non-normalized 3-Point DCTS SFG

Table C.3: Constants for the 3-point DCTS algorithm

Constant Value

Cq —0.866 02540
Cy 1.500 000 00

Table C.4: Algorithm for the non-normalized 3-point DCTS

Op. Name Operation Op. Name Operation Op. Name Operation
aop o — T2 M, Comy as a; — M
i agp al aog + My Y5 a2
M1 Clxl a9 al + M1 Yb as

The matrix [X écg) (%)} can be derived according to what is described in section .

Base change matrix [Bég?’)}

The base change matrix is defined as:

(7] —[Z] |
[B§,073>} = ([I] ® ([Io] ® diag(1,2,...,2))) - [[Z:]]
[17]

112

C — Direct Factorization for N = 32

where {I;n] = diag(0,1,...,1) and

C.1.4 Thirty-two-point base change matrix

The 32-point base change matrix is:

1 1
[ng’ﬂ _ [110] [J10] 7 [110]
[121] — [10]
— [J10]

113

Appendix D

16-Point DCT5 Algorithm

This appendix presents a MatLab implementation of both the floating point and
fixed-point_versions of the algorithm obtained by following the procedure described in
section . More in detail, the algorithm is obtained by following that procedure and
making some manipulations in order to avoid cascading the multiplier that is needed for
the pre-normalization.

D.1 MatLab Implementation (Floating-Point)

function [OUTPUT]=Burrus_DCT5_N16_simpl_floating (INPUT)

QUTPUT=zeros (16,1) ;

s1 = INPUT(2)+INPUT(7);
s2 = INPUT(2)-INPUT(6);
s3 = s1+INPUT(6);

s4 = INPUT(7)-INPUT(6);
s5 = INPUT(16)+INPUT(4);
s6 = INPUT(16)-INPUT (14);
s7 = s5+INPUT(14);

s8 = INPUT(4)-INPUT(14);
s9 = INPUT (9)+INPUT(15);

s10 = INPUT(9)-INPUT(10);
s11 = s9+INPUT(10);
s12 = INPUT(15)-INPUT(10);

s13 = INPUT(5)+INPUT(8);
$14=INPUT(5) -INPUT (12);
s15 = s13+INPUT(12);

s16 =INPUT (8)-INPUT (12);

s17 =INPUT (3)+INPUT (13);
s18 = INPUT(3)-INPUT(11);
s19 = s17+INPUT(11);

s20 = INPUT(13)-INPUT(11);

114

D — 16-Point DCT5 Algorithm

s21 =s83+s7;

s22 = s3-s19;

s23=s21+s11;

s24= s7-s19;

s25=5823+s15;

s26=s511-s819;

s27=825+s19;

s28=s15-s519;

s29=s2+s6;

s30=s2-s18;

s31=829+s10;

s32=s6-s18;

s33=s31+s14;

s34=s10-s518;

s35=s33+s18;

s36=s14-s18;

s37=s4+s8;

s38=s84-s520;

s39=537+s12;

s40=s8-s20;

s41=s39+s16;

s42=5812-s20;

s43=s841+s20;

s44=s516-s520;
m42=0.254000254000381*INPUT (1) ;
m1=0.359210604053550%s27;
s45=m1+m42;
m2=-0.371184290855335%s27;
s46=s35+s43;
m3=0.090171514658534%*s35;
m4=0.229210235490481%*s43;
m5=-0.106460583383005%*s46;
s47=m3+m5;

s48=m4+m5;

s49=522+s26;

s50=s24+s28;

sb1=s22+s24;

sb2=526+s528;

s53=5849+s50;
m6=-0.036100033196720%*s22;
m7=-0.078100047944899%*s24;
m8=-0.116772960840795%*s51 ;
m9=0.286861819809839%*s26;
m10=-0.280541341615715%s28;
m11=-0.091988811024145%s52;
m12=0.060884183013370%*s49;
m13=0.255757191799065%s50;
ml14=-0.021575920589499%*s53;
sb4=m6+m12;

115

D — 16-Point DCT5 Algorithm

s55=m9+m12;

sb6=m7+m13;

sb7=m10+m13;

s58=m8+m14;

s59=ml11+mi14;

s60=s54+s58;

s61=s56+s58;

s62=s55+s59;

s63=s57+s59;

s64=s30+s38;

s65=832+s40;

s66=s34+s42;

s67=s36+s44;

s68=s30+s34;

s69=s32+s36;

s70=s838+s42;

s71=s40+s44;

s72=s64+s66;

s73=s65+s67;

s74=s30+s32;

s75=834+s36;

s76=s68+s69;

s77=s38+s40;

s78=s42+s44;

s79=s70+s71;

s80=s64+s65;

s81=s66+s67;

s82=872+s873;
m15=0.472972261217078%*s30;
ml6=0.477863351912534%s32;
ml7=-0.138340176742113*s74;
ml18=-1.062784397189376%*s34;
m19=-0.910707361134637%*s36;
m20=0.723261222018955%s75;
m21=0.388629137543990%*s68;
m22=0.049105962373569%*s69;
m23=-0.204531229038880%*s76;
m24=-0.094201906554648%*s38;
m25=0.721961433523775%s40;
m26=-0.416450310827657*s77;
m27=0.226075551590858%s42;
m28=0.441581943060109*s44;
m29=-0.531586674286976%*s78;
m30=-0.020934456904672*s70;
m31=-0.326445579600790%*s71;
m32=0.259083404324019%s79;
m33=-0.126256784887477*s64;
m34=-0.399941595145436%*s65;
m35=0.184930162523257*s80;

116

D — 16-Point DCT5 Algorithm

m36=0.278902948532839%s66;
m37=0.156375139358176*s67;
m38=-0.063891515910660%*s81;
m39=-0.122564893546439%*s72;
m40=0.092446539075740%s73;
m41=-0.018184058428379%*s82;
s83=m15+m33;

s84=m24+m33;

s85=m16+m34;

s86=m25+m34;

s87=m17+m35;

s88=m26+m35;

s89=m18+m36;

s90=m27+m36 ;

s91=m19+m37;

$92=m28+m37 ;

s93=m20+m38;

s94=m29+m38;

s95=m21+m39;

s96=m30+m39;

s97=m22+m40;

s98=m31+m40;

s99=m23+m41;

s100=m32+m41;
s101=s83+s95;
s102=s89+s95;
s103=885+s897;
s104=891+s897;
s105=s887+s99;
s106=s93+s99;
s107=s84+s96;
s108=s90+s96;
s109=s886+s98;
$110=892+s98;
s111=s88+s100;
s112=s594+s100;
s113=s101+s105;
s114=s103+s105;
s115=s102+s106;
s116=s104+s106;
s117=s107+s111;
s118=s109+s111;
s119=s5108+s112;
s120=s110+s112;
s121=s45+m2;
s122=s5121+s60;
s123=5121-s860;
s124=s121+s61;
s125=5123-s61;

117

D — 16-Point DCT5 Algorithm

s126=s5121+s62;
s127=s125-s562;
s128=s5121+s63;
s129=5127-863;
s130=847+s113;
s131=s47-s113;
s132=s47+s114;
s133=s131-s114;
s134=s47+s115;
s135=s5133-s115;
s136=s47+s116;
s137=s135-s5116;
s138=s48+s117;
s139=s48-s117;
s140=s48+s118;
s141=s139-s118;
s142=s548+s119;
s143=s141-s119;
s144=s48+s120;
s145=s5143-s120;
s146=s122+s130;
s147=s8122-s130;
s148=5122+s138;
s149=s5147-s138;
s150=s5124+s132;
s151=s5124-s132;
s152=5124+s140;
s153=s8151-s5140;
s154=s5126+s134;
s155=5126-s134;
s156=s126+s142;
s157=s155-5142;
s158=s5128+s136;
s159=s5128-s136;
s160=s128+s144;
s161=s159-s144;
s162=s5129+s137;
s163=8129-s5137;
s164=s129+s145;
s165=s163-s145;
m43=s45*%0.707106781186547;

OUTPUT (1) =m43;
OUTPUT (2)=s165;
OUTPUT (3)=s161;
OUTPUT (4)=s146;
OUTPUT (5)=s157;
OUTPUT (6)=s164;
OUTPUT (7)=s162;

118

D — 16-Point DCT5 Algorithm

OUTPUT (8)=s154;
OUTPUT (9)=s153;
OUTPUT (10)=s8152;
OUTPUT (11)=s8160;
OUTPUT (12)=s156;
QUTPUT (13)=s158;
OUTPUT (14)=s5148;
OUTPUT (15)=s150;
OUTPUT (16)=s8149;

end

D.2 MatLab Implementation (Fixed-Point)

function [OUTPUT]=Burrus_DCT5_N16_simpl (INPUT)

QUTPUT=zeros (16,1) ;

s1 = INPUT(2)+INPUT(7);
s2 = INPUT(2)-INPUT(6);
s3 = s1+INPUT(6);

s4 = INPUT(7)-INPUT(6);
s5 = INPUT(16)+INPUT(4);
s6 = INPUT(16)-INPUT (14);
s7 = s5+INPUT (14);

s8 = INPUT(4)-INPUT(14);
s9 = INPUT(9)+INPUT(15);

s10 = INPUT(9)-INPUT(10);
s11 = s9+INPUT (10);

s12 = INPUT(15)-INPUT(10);
s13 = INPUT(5)+INPUT(8);

s14=INPUT(5) -INPUT (12);
s15 = s13+INPUT(12);
s16 =INPUT(8)-INPUT(12);

s17 =INPUT (3)+INPUT (13);
s18 = INPUT(3)-INPUT(11);
s19 = s17+INPUT(11);

s20 = INPUT(13)-INPUT(11);

s21 =s83+s87;
s22 = s3-s819;
s23=s21+s11;
s24= sT7-s19;
s25=5823+s15;
s26=s11-s519;
s27=s825+s19;
s28=s15-s19;
s29=s52+s6;
s30=s2-s518;
s31=s829+s10;

119

D — 16-Point DCT5 Algorithm

s32=s6-s18;
s33=s31+s14;
s34=s10-s518;
s35=s33+s18;
s36=s14-s18;
s37=s4+s8;
s38=s584-s520;
s39=537+s12;
s40=s8-s820;
s41=s39+s16;
s42=5812-s20;
s43=5841+s20;
s44=s16-s520;

m42=130*INPUT (1) ;

ml1=183%s27;
s45=m1+m42;
m2=-190%s27;
s46=s35+s43;
m3=46%s35;
m4=117%s43;
m5=-55%g46;
s47=m3+m5;
s48=m4+m5 ;

s49=522+s26;
sb0=524+s28;
sb1=s22+s24;
s52=526+s28;
s53=5849+s50;

m6=-18%xs22;
m7=-40%*s24;
m8=-60%gb1;
m9=147%*s26;

m10=-144%s28;
ml1=-47%xsb2;
ml12=31*s49;
m13=131%*s50;
ml4=-11%s53;
sb4=m6+m12;
sb5=m9+m12;
sb6=m7+m13;
sb57=m10+m13;
s58=m8+m14;
s59=mi11+mi4;
s60=s54+s58;
s61=s56+s58;
s62=s55+s59;
s63=s57+s59;
s64=s30+s38;
s65=5832+s40;

120

D — 16-Point DCT5 Algorithm

s66=s34+s42;
s67=s36+s44;
s68=s30+s34;
s69=s32+s36;
s70=s838+s42;
s71=s40+s44;
s72=s64+s66;
s73=s65+s67;
s74=s30+s32;
s75=s834+s36;
s76=s68+s69;
s77=s838+s40;
s78=s42+s44;
s79=s70+s71;
s80=s64+s65;
s81=s66+s67;
s82=872+s873;
m15=242%s30;
ml16=245%s32;
ml7=-71%s74;
m18=-544%s34;
m19=-466*s36;
m20=370%*s75;
m21=199%*s68;
m22=25%*s69;
m23=-105%s76;
m24=-48%xs38;
m25=370%s40;
m26=-213%s77;
m27=116%*s42;
m28=226%*s44;
m29=-272*s78;
m30=-11%s70;
m31=-167*s71;
m32=133%s79;
m33=-65%s64;
m34=-205%s65;
m35=95*s80;
m36=143%s66;
m37=80*s67;
m38=-33*s81;
m39=-63*s72;
m40=47*s73;
m41=-9%s82;
s83=m15+m33;
s84=m24+m33;
s85=m16+m34;
s86=m25+m34;
s87=m17+m35;

121

D — 16-Point DCT5 Algorithm

s88=m26+m35;
s89=m18+m36;
s90=m27+m36 ;
s91=m19+m37;
$92=m28+m37 ;
s93=m20+m38;
s94=m29+m38;
s95=m21+m39;
s96=m30+m39;
s97=m22+m40;
s98=m31+m40;
s99=m23+m41;
s100=m32+m41;
s101=s83+s95;
s102=s89+s95;
s103=885+s897;
s104=891+s897;
s105=s87+s99;
s106=s593+s99;
s107=s84+s96;
s108=s90+s96;
s109=s886+s98;
$110=s892+s98;
s111=s88+s100;
s112=s594+s100;
s113=s101+s105;
s114=s103+s105;
s115=s102+s106;
s116=s104+s106;
s117=s107+s111;
s118=s109+s111;
s119=s108+s112;
s120=s110+s112;
s121=s45+m2;
s122=s5121+s60;
s123=5121-s860;
s124=s121+s61;
s125=5123-s61;
s126=s5121+s62;
s127=s125-s562;
s128=s5121+s863;
s129=5127-863;
s130=s47+s113;
s131=s847-s113;
s132=s47+s114;
s133=s131-s114;
s134=s47+s115;
s135=s5133-s115;
s136=s47+s116;

122

D — 16-Point DCT5 Algorithm

s137=s8135-s5116;
s138=s48+s117;
s139=s48-s117;
s140=s48+s118;
s141=s139-s118;
s142=s548+s119;
s143=s141-s119;
s144=s48+s120;
s145=s5143-5120;
s146=s122+s130;
s147=s5122-s130;
$148=5122+s138;
s149=s5147-s138;
s150=s5124+s132;
s151=5124-s132;
s152=5124+s140;
s153=8151-s5140;
s154=s5126+s134;
s155=5126-s134;
s156=s126+s142;
s157=s155-s5142;
s158=s5128+s136;
s159=s5128-s136;
s160=s128+s144;
s161=s159-s144;
s162=s5129+s137;
s163=s5129-s137;
s164=s129+s145;
s165=s163-s145;
m43=floor (bitsra(s45*362,9));

OUTPUT (1)=m43;

OUTPUT (2)=s165;
OUTPUT (3)=s161;
OUTPUT (4)=s146;
OUTPUT (5)=s157;
OUTPUT (6)=s164;
OUTPUT (7)=s162;
OUTPUT (8)=s154;
OUTPUT (9)=s153;
OUTPUT (10)=s8152;
OUTPUT (11)=s8160;
OUTPUT (12)=s156;
OUTPUT (13)=s158;
OUTPUT (14)=s148;
OUTPUT (15)=s8150;
OUTPUT (16)=s8149;

end

123

Bibliography

1]

2]

3]

[12]

[13]

K. R. Rao, P. Yip, V. Britanak, Discrete Cosine and Sine Transforms: General Prop-
erties, Fast Algorithms and Approxzimations Elsevier, 2007.

S. Winograd, “On Computing the Discrete Fourier Transform” in Mathematics of
Computation, v. 32, n. 141, pp. 175-199, Jan. 1978.

——, Arithmetic Complexity of Computations Philadelphia, Pennsylvania, STAM
CBMS-NSF, 1980.

K. R. Rao, D. N. Kim, J. J. Hwang, Fast Fourier Transform: Algorithms and Appli-
cations Springer, 2010.

C. S. Burrus, M. Frigo, S. Johnson, M. Pueschel, I. Selesnick, Fast Fourier Transforms
Rice University, Houston, Texas, Connexions, 2008.

R. E. Blahut, Fast Algorithms for Signal Processing Cambridge, United Kingdom,
Cambridge University Press, 2010.

U. Meyer-Baese, Digital Signal Processing with Field Programmable Gate Arrays Hei-
delberg, Germany, Springer, 2014.

W. W. W. Community. [Online]: https://wikipedia.org

E. Chu, Discrete and Continuous Fourier Transforms: Analysis, Applications and
Fast Algorithms Boca Raton, Florida, CRC Press, 2008.

R. Lyons. Four ways to compute an inverse fft using the forward fft algorithm.
[Online]: https://www.dsprelated.com/showarticle/800.php

P. Duhamel, B. Piron, J. M. Etcheto, “On computing the inverse DFT” in IEEE
Transactions on Acoustics, Speech, and Signal Processing, v. 36, n. 2, pp. 285-286,
Feb. 1988.

H. J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms Heidelberg,
Germany, Springer-Verlag, 1981.

M. Masera, M. Martina, G. Masera, “Odd type DCT/DST for video coding: Relation-
ships and low-complexity implementations” in 2017 IEEE International Workshop on
Signal Processing Systems (SiPS), Oct. 2017, pp. 1-6.

124

https://wikipedia.org
https://www.dsprelated.com/showarticle/800.php

BIBLIOGRAPHY

[14]

[15]

[16]

[17]

[21]

[22]

23]

Y. A. Reznik, “Relationship between DCT-II, DCT-VI, and DST-VII transforms”
in 2013 IEEFE International Conference on Acoustics, Speech and Signal Processing,
May 2013, pp. 5642-5646.

M. T. Heideman, “Computation of an odd-length DCT from a real-valued DFT of
the same length” in IEEE Transactions on Signal Processing, v. 40, n. 1, pp. 5461,
Jan. 1992.

G. Bi, Y. Zeng, Transforms and Fast Algorithms for Signal Analysis and Representa-
tions New York, Springer Science & Business Media, 2004.

C. S. Burrus. Programs for short ffts. [Online|: https://cnx.org/contents/eL72ctwp@
4/ Appendix-4-Programs-for-Short-FFTs

G. Bi, “Index mapping for prime factor algorithm of discrete cosine transform” in
Electronics Letters, v. 35, n. 3, pp. 198—-200, 1999.

K. R. Rao, P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications
San Diego, California, Academic Press, Inc., 1990.

M. Puschel, J. M. F. Moura, “Algebraic Signal Processing Theory: Cooley-Tukey
Type Algorithms for DCTs and DSTs” in IEEE Transactions on Signal Processing,
v. 56, n. 4, pp. 1502-1521, Apr. 2008.

J. Kello, “DCT-V for Video Coding: A reconfigurable implementation for length 32
and 4”7 Tesi di laurea, 2018.

I. W. Selesnick, C. S. Burrus, “Automatic generation of prime length FFT programs”
in IEEE Transactions on Signal Processing, v. 44, n. 1, pp. 14-24, Jan. 1996.

I. Selesnick. Fft programs for prime lengths. [Online]: https://www.ece.rice.edu/
dsp/software/pfft.shtml

J. H. McClellan, C. M. Rader, Number Theory in Digital Signal Processing Englewood
Cliffs, New Jersey, Prenctice-Hall, 1979.

M. Puschel, J. M. F. Moura, J. R. Johnson, D. Padua, M. M. Veloso, B. W. Singer,
J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, N. Rizzolo,
“SPIRAL: Code Generation for DSP Transforms” in Proceedings of the IEEE, v. 93,
n. 2, pp. 232-275, Feb 2005.

125

https://cnx.org/contents/eL72ctwp@4/Appendix-4-Programs-for-Short-FFTs
https://cnx.org/contents/eL72ctwp@4/Appendix-4-Programs-for-Short-FFTs
https://www.ece.rice.edu/dsp/software/pfft.shtml
https://www.ece.rice.edu/dsp/software/pfft.shtml

	Summary
	Discrete Cosine Transform Type V
	DCT5
	Definition

	Algorithms for the DCT5

	DCT5 via DFT
	Direct Mapping between DCT5 and DFT
	The Winograd Fourier Transform Algorithm (WFTA)
	Winograd Short-N DFT Modules
	WFTA for DCT5 (N=4)
	The Winograd large fast Fourier transform
	WFTA for DCT5 (N=8)

	The Prime Factor Algorithm (PFA)
	The steps of the PFA
	PFA for DCT5 (N=8)

	Bluestein's Algorithm
	Bluestein's algorithm steps
	Bluestein's algorithm for DCT5

	Rader's Algorithm
	Rader's algorithm steps
	Rader's algorithm for DCT5 (N=4)

	DCT5 via DCT2
	Relationship between the DCT5 and the DCT6
	Relationship between the DCT6 and the DCT2
	Derivation of the 4-point DCT6 from the 7-point DCT2

	DCT5 via DCT2 (N=4)
	Reordering of the input vector
	Definition of the vector bold0mu mumu xRxR2005/06/28 ver: 1.3 subfig packagexRxRxRxR
	Computation of the 7-point DCT2
	Definition of the output vector bold0mu mumu YY2005/06/28 ver: 1.3 subfig packageYYYY
	Final Algorithm

	DCT5 via DCT2 (N=8)
	Reordering of the input vector
	Definition of the vector bold0mu mumu xRxR2005/06/28 ver: 1.3 subfig packagexRxRxRxR
	Computation of the 15-point DCT2
	Definition of the output vector bold0mu mumu YY2005/06/28 ver: 1.3 subfig packageYYYY
	Final Algorithm

	DCT5 via Givens Rotations
	Givens Rotations
	DCT5 via Givens Rotations (N=4)

	DCT5 via Direct Factorization
	Direct Factorization of the DCT5
	Permutation matrix
	Non-normalized DCT5 matrix
	Direct sum operator
	Non-normalized skew-DCT3 matrix
	Base change matrix

	Direct Factorization of the DCT5 (N=8)
	Eight-point permutation matrix
	Three-point non-normalized DCT5 matrix
	Five-point non-normalized skew-DCT3 matrix
	Eight-point base change matrix
	Computational Complexity

	Comparison of the algorithms
	Algorithms for the 4-point DCT5: a comparison
	Algorithms for the 8-point DCT5: a comparison
	Algorithms for the 16-point DCT5: a comparison
	Algorithms for the 32-point DCT5: a comparison

	16-Point DCT5 Implementation
	Algorithm Selection
	Fixed-Point Algorithm
	C-Model
	JEM Simulations
	Architecture Development
	HDL Description and Simulation
	Logic Synthesis
	Post-synthesis simulation and power estimation

	Appendix DCT5 via DFT for longer lengths
	WFTA for longer lengths
	WFTA for DCT5 (N=16)
	WFTA for DCT5 (N = 32)

	PFA for longer lengths
	PFA for DCT5 (N=32)

	Rader's algorithm for longer lengths
	Rader's algorithm for DCT5 (N=16)

	Appendix DCT5 via DCT2 for longer lengths
	DCT5 via DCT2 (N=16)
	Reordering of the input vector
	Definition of the vector bold0mu mumu xRxR2005/06/28 ver: 1.3 subfig packagexRxRxRxR
	Computation of the 31-point DCT2
	Definition of the output vector bold0mu mumu YY2005/06/28 ver: 1.3 subfig packageYYYY
	Final Algorithm

	DCT5 via DCT2 (N=32)
	Reordering of the input vector
	Definition of the vector bold0mu mumu xRxR2005/06/28 ver: 1.3 subfig packagexRxRxRxR
	Computation of the 31-point DCT2
	Definition of the output vector bold0mu mumu YY2005/06/28 ver: 1.3 subfig packageYYYY
	Final Algorithm

	Appendix Direct Factorization for N=32
	Direct Factorization of the DCT5 (N=32)
	Thirty-two-point permutation matrix
	Eleven-point non-normalized DCT5 matrix
	Twenty-one-point non-normalized skew-DCT3 matrix
	Thirty-two-point base change matrix

	Appendix 16-Point DCT5 Algorithm
	MatLab Implementation (Floating-Point)
	MatLab Implementation (Fixed-Point)

