
POLITECNICO DI TORINO

Facoltà di Ingegneria
Corso di Laurea in Ingegneria Elettronica

Tesi di Laurea

Low complexity algorithms and
architectures for odd-type DCT hardware

implementation

Relatore:
Prof. Maurizio Martina

Candidato:
Luigi Crescenzi

Febbraio 2019

A mio nonno Francesco

Summary

This thesis is centred on the Discrete Cosine Transform Type V (DCT5). This trans-
form has gained great interest in the context of the video coding standards known as
Post-HEVC. In particular, the DCT5 was introduced in the JEM software developed by
the Joint Video Experts Team (JVET).

The DCT5 is initially defined and algorithms are developed to efficiently perform the
computation of this transform. More in detail, the DCT5 is firstly expressed in terms of
a Discrete Fourier Transform (DFT). In fact, a length-N DCT5 is related to a length-
(2N − 1) DFT. The possible algorithms for the DFT are therefore analyzed and several
simplifications are made in order to reduce the computational complexity.

The first algorithm under consideration is the Winograd Fourier Transform Algorithm.
This is studied for both prime and composite lengths of the DFT. Successively, the Prime
Factor Algorithm is investigated and finally, Bluestein’s and Rader’s algorithms are eval-
uated.

By considering previous works, the DCT5 is then related to a Discrete Cosine Trans-
form Type II (DCT2). Also in this case, the existing algorithms for the DCT2 are adapted
to efficiently compute the DCT5. The DCT5 is then solved via Givens Rotations and
finally, by referring to a previously published article, a direct factorization of the DCT5
matrix is also presented.

All the algorithms are developed for lengths 4, 8, 16 and 32, which are the ones of
greatest interest in the context of the JEM software. Furthermore, a comparison of the
algorithms is carried out. More in detail, they are compared as far as the computational
complexity, the regularity and the presence of cascaded multiplications are concerned.

One of the algorithms that are presented is based on a paper by Selesnick and Burrus
that describes how to efficiently compute a 31-point DFT. By making simplifications,
such an algorithm is adapted to the computation of a 16-point DCT5. The floating-point
version of the algorithm is successively used to obtain a fixed-point C-model. The C-model
is inserted in the JEM software and the performances are evaluated by referring to the
Bjøntegaard delta. According to this model, an architecture is therefore developed and
synthesized and its performances are estimated in terms of frequency, area and power
consumption.

II

Contents

Summary II

1 Discrete Cosine Transform Type V 1
1.1 DCT5 . 1

1.1.1 Definition . 1
1.2 Algorithms for the DCT5 . 3

2 DCT5 via DFT 4
2.1 Direct Mapping between DCT5 and DFT 4
2.2 The Winograd Fourier Transform Algorithm (WFTA) 6

2.2.1 Winograd Short-N DFT Modules . 6
2.2.2 WFTA for DCT5 (N = 4) . 7
2.2.3 The Winograd large fast Fourier transform 13
2.2.4 WFTA for DCT5 (N = 8) . 15

2.3 The Prime Factor Algorithm (PFA) . 22
2.3.1 The steps of the PFA . 22
2.3.2 PFA for DCT5 (N = 8) . 26

2.4 Bluestein’s Algorithm . 35
2.4.1 Bluestein’s algorithm steps . 37
2.4.2 Bluestein’s algorithm for DCT5 . 38

2.5 Rader’s Algorithm . 46
2.5.1 Rader’s algorithm steps . 47
2.5.2 Rader’s algorithm for DCT5 (N = 4) 48

3 DCT5 via DCT2 52
3.1 Relationship between the DCT5 and the DCT6 52
3.2 Relationship between the DCT6 and the DCT2 53

3.2.1 Derivation of the 4-point DCT6 from the 7-point DCT2 53
3.3 DCT5 via DCT2 (N = 4) . 55

3.3.1 Reordering of the input vector . 56
3.3.2 Definition of the vector xR . 56
3.3.3 Computation of the 7-point DCT2 56
3.3.4 Definition of the output vector Y . 57

III

3.3.5 Final Algorithm . 57
3.4 DCT5 via DCT2 (N = 8) . 58

3.4.1 Reordering of the input vector . 58
3.4.2 Definition of the vector xR . 59
3.4.3 Computation of the 15-point DCT2 59
3.4.4 Definition of the output vector Y . 63
3.4.5 Final Algorithm . 64

4 DCT5 via Givens Rotations 66
4.1 Givens Rotations . 66
4.2 DCT5 via Givens Rotations (N = 4) . 67

5 DCT5 via Direct Factorization 71
5.1 Direct Factorization of the DCT5 . 71

5.1.1 Permutation matrix . 72
5.1.2 Non-normalized DCT5 matrix . 72
5.1.3 Direct sum operator . 73
5.1.4 Non-normalized skew-DCT3 matrix 73
5.1.5 Base change matrix . 74

5.2 Direct Factorization of the DCT5 (N = 8) 75
5.2.1 Eight-point permutation matrix . 75
5.2.2 Three-point non-normalized DCT5 matrix 75
5.2.3 Five-point non-normalized skew-DCT3 matrix 76
5.2.4 Eight-point base change matrix . 78
5.2.5 Computational Complexity . 78

6 Comparison of the algorithms 79
6.1 Algorithms for the 4-point DCT5: a comparison 79
6.2 Algorithms for the 8-point DCT5: a comparison 80
6.3 Algorithms for the 16-point DCT5: a comparison 80
6.4 Algorithms for the 32-point DCT5: a comparison 81

7 16-Point DCT5 Implementation 83
7.1 Algorithm Selection . 83
7.2 Fixed-Point Algorithm . 83
7.3 C-Model . 84
7.4 JEM Simulations . 84
7.5 Architecture Development . 85
7.6 HDL Description and Simulation . 85
7.7 Logic Synthesis . 85
7.8 Post-synthesis simulation and power estimation 86

IV

Appendix A DCT5 via DFT for longer lengths 87
A.1 WFTA for longer lengths . 87

A.1.1 WFTA for DCT5 (N = 16) . 87
A.1.2 WFTA for DCT5 (N = 32) . 88

A.2 PFA for longer lengths . 96
A.2.1 PFA for DCT5 (N = 32) . 96

A.3 Rader’s algorithm for longer lengths . 97
A.3.1 Rader’s algorithm for DCT5 (N = 16) 97

Appendix B DCT5 via DCT2 for longer lengths 103
B.1 DCT5 via DCT2 (N = 16) . 103

B.1.1 Reordering of the input vector . 103
B.1.2 Definition of the vector xR . 104
B.1.3 Computation of the 31-point DCT2 104
B.1.4 Definition of the output vector Y . 105
B.1.5 Final Algorithm . 105

B.2 DCT5 via DCT2 (N = 32) . 105
B.2.1 Reordering of the input vector . 105
B.2.2 Definition of the vector xR . 106
B.2.3 Computation of the 31-point DCT2 106
B.2.4 Definition of the output vector Y . 107
B.2.5 Final Algorithm . 107

Appendix C Direct Factorization for N = 32 108
C.1 Direct Factorization of the DCT5 (N = 32) 108

C.1.1 Thirty-two-point permutation matrix 108
C.1.2 Eleven-point non-normalized DCT5 matrix 108
C.1.3 Twenty-one-point non-normalized skew-DCT3 matrix 111
C.1.4 Thirty-two-point base change matrix 113

Appendix D 16-Point DCT5 Algorithm 114
D.1 MatLab Implementation (Floating-Point) 114
D.2 MatLab Implementation (Fixed-Point) . 119

V

Chapter 1

Discrete Cosine Transform Type V

The aim of this chapter is to introduce the Discrete Cosine Transform Type V
(DCT5). In particular, a brief definition of the DCT5 is followed by an introduction to
the possible algorithms that can be adopted to efficiently compute this transform. The
derivation of these algorithms will be instead the main topic of the next chapters.

1.1 DCT5
A Discrete Cosine Transform (DCT) expresses a finite sequence of data points in terms

of a sum of cosine functions oscillating at different frequencies. The DCT5 is one of the
eight well-known DCTs. In particular, it belongs to the family of the odd-DCTs, together
with the DCT6, DCT7 and DCT8. These DCTs have gained great interest in the context
of the video coding standards known as Post-High Efficiency Video Coding (Post-HEVC).
In particular, the DCT5 was introduced in the JEM software developed by the Joint Video
Experts Team (JVET).

1.1.1 Definition
As stated in [1], the DCT5 of a sequence {xk} of N points can be computed by applying

the equation:

Yn =
2√

2N − 1
Tn

N−1∑
k=0

Tkxk cos
(
nk

2π

2N − 1

)
for n = 0,1,...,N − 1 (1.1)

where

Tn =

{
1√
2

if n = 0

1 if n ̸= 0

Tk =

{
1√
2

if k = 0

1 if k ̸= 0

1

1 – Discrete Cosine Transform Type V

As a consequence, given a vector

x =


x0
x1
...

xN−1


the DCT5 can be calculated by performing the matrix product:

Y =


Y0
Y1
...

YN−1

 =
[
CV
N

]
x (1.2)

=
2√

2N − 1



1
2

1√
2

1√
2

· · · 1√
2

1√
2

cos
(

2π
2N−1

)
cos

(
4π

2N−1

)
· · · cos

(
(N − 1) 2π

2N−1

)
1√
2

cos
(

4π
2N−1

)
cos

(
8π

2N−1

)
· · · cos

(
2(N − 1) 2π

2N−1

)
...

...
...

...
...

1√
2

cos
(
(N − 1) 2π

2N−1

)
cos

(
2(N − 1) 2π

2N−1

)
· · · cos

(
(N − 1)2 2π

2N−1

)




x0

x1

x2

...
xN−1



It should be underlined that the matrix
[
CV
N

]
is symmetric and orthonormal. Therefore,

it can be written: [
CV
N

]−1
=

[
CV
N

]
Computational complexity

As shown in table 1.1, the computational cost of the direct implementation of the
matrix-vector multiplication described in equation 1.2 is equal to N2 multiplications and
(N − 1)×N additions.

Table 1.1: Computational complexity of the DCT5 implemented by MVM

NDCT5 Number of multiplications Number of additions
4 16 12
8 64 56

16 256 240
32 1024 992
64 4096 4032

128 16 384 16 256

2

1 – Discrete Cosine Transform Type V

1.2 Algorithms for the DCT5
Several algorithms can be developed to reduce the computational complexity presented

in subsection 1.1.1.

(2N-1)-POINT
DFT

DCT5

DCT2

GIVENS
ROTATIONS

DIRECT
FACTORIZATION

Figure 1.1: Algorithms for the DCT5

In particular, as depicted in figure 1.1:

• an N -point DCT5 can be related to a (2N − 1)-point DFT. Since only N = 2n is of
interest, the DFT can be solved by applying:

– Winograd Fourier Transform Algorithm
– Prime Factor Algorithm
– Bluestein’s Algorithm
– Rader’s Algorithm

• the DCT5 can be solved via DCT2

• the DCT5 can be solved by applying the Givens rotations.

• the DCT5 can be solved via direct factorization.

The following chapters contain a detailed description of these algorithms.

3

Chapter 2

DCT5 via DFT

This chapter shows how an N -point DCT5 can be mapped into a (2N − 1)-point
DFT and presents the possible algorithms for the DFT that can be adopted to compute
the DCT5 of a given sequence {xk}. In particular, the DCT5 will be firstly solved by adopt-
ing the Winograd Fourier transform algorithm. Secondly, algorithms based on the Prime
Factor algorithm will be derived. Finally, Bluestein’s algorithm and Rader’s algorithm will
be considered.

2.1 Direct Mapping between DCT5 and DFT
The DCT5 can be derived from the Discrete Fourier Transform by properly rearranging

the input vector. In particular, the DCT5 can be expressed as a function of a DFT. In
fact, since

Yn =
2√

2N − 1
Tn

N−1∑
k=0

Tkxk cos
(
nk

2π

2N − 1

)
for n = 0,1,...,N − 1

it is possible to define a vector

x̂ =


x̂0
x̂1
...

x̂N−1

 =


x0√
2

x1
...

xN−1


and rewrite the summation as

S =

N−1∑
k=0

Tkxk cos
(
nk

2π

2N − 1

)
=

N−1∑
k=0

x̂k cos
(
nk

2π

2N − 1

)
This expression can be written as a sum of two terms. The first one is related to the

elements of x̂ having an even index, while the second one to those which have an odd

4

2 – DCT5 via DFT

index. More in detail, we have

S =

N
2
−1∑

k=0

x̂2k cos
(
n

2π

2N − 1
2k

)
+

N
2
−1∑

k=0

x̂2k+1 cos
(
n

2π

2N − 1
(2k + 1)

)
The second summation can be further rearranged as

N
2
−1∑

k=0

x̂2k+1 cos
(
n

2π

2N − 1
(2k + 1)

)
=

N−1∑
k=N

2

x̂2N−2k−1 cos
(
n

2π

2N − 1
(2N − 1− 2k)

)
Since cos(x) is an even and periodic function, it can be written

N−1∑
k=N

2

x̂2N−2k−1 cos
(
n

2π

2N − 1
(2N − 1− 2k)

)
=

N−1∑
k=N

2

x̂2N−2k−1 cos
(
n

2π

2N − 1
2k

)
and consequently

S =

N
2
−1∑

k=0

x̂2k cos
(
n

2π

2N − 1
2k

)
+

N−1∑
k=N

2

x̂2N−2k−1 cos
(
n

2π

2N − 1
2k

)
A vector q can be defined so that{

qk = x̂2k for 0 ≤ k ≤ N
2 − 1

qN−k−1 = x̂2k+1 for 0 ≤ k ≤ N
2 − 1

and equation 1.1 can be expressed as

Yn =
2√

2N − 1
Tn

N−1∑
k=0

qk cos
(
n

2π

2N − 1
2k

)
By introducing the vector

l =



l0
l1
l2
l3
l4
l5
...

lN−2

lN−1

lN
lN+1

lN+2

...
l2N−2



=



q0
0
q1
0
q2
0
...

qN/2−1

0
qN/2

0
qN/2+1

...
qN−1



=



x̂0
0
x2
0
x4
0
...

xN−2

0
xN−1

0
xN−3

...
x1



,

5

2 – DCT5 via DFT

the equation
N−1∑
k=0

qk cos
(
n

2π

2N − 1
2k

)
=

2N−2∑
k=0

lk cos
(
n

2π

2N − 1
k

)
can be derived.

The mathematical expression of a non-normalized DFT applied to the vector l is:

YFn =
2N−2∑
k=0

lke−jnk 2π
2N−1 for n = 0,1,...,2N − 2.

This gives the equation:

YFn =

2N−2∑
k=0

lk cos
(
n

2π

2N − 1
k

)
− j

2N−2∑
k=0

lk sin
(
n

2π

2N − 1
k

)
As a consequence, equation 1.1 can be rewritten as

Yn =
2√

2N − 1
TnRe(YFn) for n = 0,1,...,N − 1

It is important to notice that if the length of the input vector is even, then the DFT should
be performed on an odd length vector.

2.2 The Winograd Fourier Transform Algorithm (WFTA)
The Winograd Fourier Transform Algorithm (described in [2], [3], [4], [5], [6] and [7])

remarkably reduces the number of multiplications needed to compute the DFT. It does
not increase the number of additions in many cases. This algorithm can be directly used
to compute the DFT by taking into account the prime factorization of the input vector
length, which is, for some cases, reported in table 2.1.

Table 2.1: Prime Factorization of NDFT for different lengths of the DCT5

NDCT5 NDFT NDFT Prime Factorization
4 7 7
8 15 3× 5
16 31 31
32 63 32 × 7

2.2.1 Winograd Short-N DFT Modules
As stated in [4], Winograd short-N DFT modules are the building blocks for develop-

ing the WFTA for longer lengths. They are defined for powers of prime numbers and are

6

2 – DCT5 via DFT

based on a fast cyclic convolution algorithm, which generally uses the theoretically mini-
mum number of multiplications. In mathematical terms, Winograd’s algorithm obtains a
canonical decomposition of the DFT matrix as shown below:

[DNDFT] = [SNDFT] [CNDFT] [TNDFT]

where
• [DNDFT] is the NDFT ×NDFT DFT matrix;
• [SNDFT] is an NDFT × J matrix having 0, 1, -1 only as elements;
• [CNDFT] is a J×J diagonal matrix with each element purely real or purely imaginary;
• [TNDFT] is a J ×NDFT matrix having 0,1, -1 only as elements.
As a consequence, [SNDFT] and [TNDFT] are just addition matrices and [CNDFT] is the

multiplier matrix. The number of needed multiplications is equal to J . If NDFT is small,
J is close to NDFT.

2.2.2 WFTA for DCT5 (N = 4)
A DCT5 of length 4 can be mapped into a DFT of length 7 as described in section 2.1.

In particular, the DCT5 equation can be written as
Yn = c4TnRe(YFn) for n = 0,1,2,3 (2.1)

where
• c4 = 2√

7

• Re(YFn) = Re
(

6∑
k=0

lke−jnk 2π
7

)
and

l =



l0
l1
l2
l3
l4
l5
l6


=



x̂0
0
x̂2
0
x̂3
0
x̂1


=



x0√
2

0
x2
0
x3
0
x1


Equation 2.1 can be further rearranged to give

Yn = TnRe(c4YFn) = TnRe(ŶFn)

where:

ŶF =



ŶF0

ŶF1

ŶF2

ŶF3

ŶF4

ŶF5

ŶF6


= c4 [S7] [C7] [T7] l = [S7]

[
Ĉ7

]
[T7] l

7

2 – DCT5 via DFT

In particular:

[T7] =



1 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 0 −1 −1 0 1
0 0 −1 1 1 −1 0
0 −1 1 0 0 1 −1
0 1 1 −1 1 −1 −1
0 1 0 1 −1 0 −1
0 0 −1 −1 1 1 0
0 −1 1 0 0 −1 1



[S7] =



1 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 0
1 1 −1 0 −1 1 −1 0 −1
1 1 0 −1 1 −1 0 1 −1
1 1 0 −1 1 1 0 −1 1
1 1 −1 0 −1 −1 1 0 1
1 1 1 1 0 −1 −1 −1 0


and

[
Ĉ7

]
is a diagonal matrix whose main diagonal contains the elements of the vector

Ĉ7 =
2√
7



1
1
3 (cos(θ) + cos(2θ) + cos(3θ))− 1
1
3 (2 cos(θ)− cos(2θ)− cos(3θ))
1
3 (cos(θ)− 2 cos(2θ) + cos(3θ))
1
3 (cos(θ) + cos(2θ)− 2 cos(3θ))
1
3 j (sin(θ) + sin(2θ)− sin(3θ))
1
3 j (2 sin(θ)− sin(2θ) + sin(3θ))
1
3 j (sin(θ)− 2 sin(2θ)− sin(3θ))
1
3 j (sin(θ) + sin(2θ) + 2 sin(3θ))


=



Ĉ0

Ĉ1

Ĉ2

Ĉ3

Ĉ4

Ĉ5

Ĉ6

Ĉ7

Ĉ8


θ = −2π

7

By making use of these matrices, equation 2.1 yields an algorithm, which is composed
of five main steps:

• Pre-Normalization
• Pre-Additions
• Multiplications
• Post-Additions
• Post-Normalization

In the following, each of these steps will be analyzed.

8

2 – DCT5 via DFT

Pre-Normalization

The multiplication

Mn1 = Cnormx0 =
1√
2
x0

is performed.

Pre-Additions

The additions related to this step are derived from the matrix-vector multiplication

A = [T7]



Mn1
0
x2
0
x3
0
x1


=



Mn1 + x1 + x2 + x3
x1 + x2 + x3

x1 − x3
x3 − x2
x2 − x1

U
U
U
U


The elements labeled as “U”are not of interest since they are only needed for the compu-
tation of the DFT imaginary part. The calculation of the other elements instead requires
6 sums. These are reported in table 2.2.

Table 2.2: WFTA for DCT5 (N = 4): Pre-Additions

Op. Name Operation
a0 x1 + x2
a1 x3 + a0

Op. Name Operation
a2 x2 − x1
a3 x1 − x3

Op. Name Operation
a4 x3 − x2
a5 Mn1 + a1

Hence, we can write:

A =



a5
a1
a3
a4
a2
U
U
U
U


9

2 – DCT5 via DFT

Multiplications

The multiplications (reported in table 2.3) derive from the matrix-vector product

M =
[
Ĉ7

]
A =



Ĉ0a5
Ĉ1a1
Ĉ2a3
Ĉ3a4
Ĉ4a2
U
U
U
U


=



M0

M1

M2

M3

M4

U
U
U
U


Table 2.3: WFTA for DCT5 (N = 4): Multiplications

Op. Name Operation

M0 Ĉ0a5
M1 Ĉ1a1

Op. Name Operation

M2 Ĉ2a3
M3 Ĉ3a4

Op. Name Operation

M4 Ĉ4a2

Post-Additions

The additions related to this step are obtained by performing the matrix-vector mul-
tiplication

Z = [S7]M =



M0

M0 +M1 +M2 +M3

M0 +M1 −M2 −M4

M0 +M1 −M3 +M4

M0 +M1 −M3 +M4

M0 +M1 −M2 −M4

M0 +M1 +M2 +M3


It should be highlighted that this result is obtained by setting the elements labeled as

“U”equal to zero. In fact, since only the real part of the DFT is relevant to our goal, there
is no need to take these elements into account.

Moreover, it should be noticed that only the first four components of Z have to be
considered. Nevertheless, even though the other elements are not of interest, they are equal
to those components which are instead significant. This is due to the fact that the inputs
of the DFT are real. Indeed, the real part of the DFT of an odd-length real sequence is a
palindromic sequence except for the first element.

All the elements of the vector Z can be computed by performing the additions pre-
sented in table 2.4. In particular, it can be written:

Z =
[
M0 a10 a12 a11 a11 a12 a10

]T

10

2 – DCT5 via DFT

Table 2.4: WFTA for DCT5 (N = 4): Post-Additions

Op. Name Operation
a6 M0 +M1

a7 M2 +M3

a8 M4 −M3

Op. Name Operation
a9 −M2 −M4

a10 a6 + a7

Op. Name Operation
a11 a6 + a8
a12 a6 + a9

Post-Normalization

The multiplication

Mn2 = CnormM0 =
1√
2
M0

is performed.

Final Algorithm

The final version of the algorithm is reported in table 2.5. It should be highlighted that
the computational cost of the algorithm is reduced to 7 multiplications and 13 additions.

Table 2.5: WFTA applied to the DCT5 for N = 4

Op. Name Operation
Mn1 Cnormx0
a0 x1 + x2
a1 x3 + a0
a2 x2 − x1
a3 x1 − x3
a4 x3 − x2
a5 Mn1 + a1

Op. Name Operation

M0 Ĉ0a5
M1 Ĉ1a1
M2 Ĉ2a3
M3 Ĉ3a4
M4 Ĉ4a2
a6 M0 +M1

Op. Name Operation
a7 M2 +M3

a8 M4 −M3

a9 −M2 −M4

Y0 CnormM0

Y1 a6 + a7
Y2 a6 + a9
Y3 a6 + a8

Remarks

The DFT Module used to derive the algorithm presented in table 2.5 is built by fol-
lowing these steps:

1. the DFT is expressed as a function of a circular convolution by using Rader’s theo-
rem;

2. the circular convolution is solved by making use of the Winograd short convolution
algorithms.

11

2 – DCT5 via DFT

It is also possible to directly express the DCT5 as a function of a circular convolution.
More in detail, by exploiting elementary trigonometric identities, it can be written:

[
CV
4

]
=

2√
7


1
2

1√
2

1√
2

1√
2

1√
2

cos
(
2π
7

)
cos

(
4π
7

)
cos

(
6π
7

)
1√
2

cos
(
4π
7

)
cos

(
6π
7

)
cos

(
2π
7

)
1√
2

cos
(
6π
7

)
cos

(
2π
7

)
cos

(
4π
7

)


By reversing the position of the third and fourth row, the matrix

[
ĈV
4

]
=

2√
7


1
2

1√
2

1√
2

1√
2

1√
2

cos
(
2π
7

)
cos

(
4π
7

)
cos

(
6π
7

)
1√
2

cos
(
6π
7

)
cos

(
2π
7

)
cos

(
4π
7

)
1√
2

cos
(
4π
7

)
cos

(
6π
7

)
cos

(
2π
7

)


is obtained.
Since the submatrix

[Cs] =
2√
7

cos
(
2π
7

)
cos

(
4π
7

)
cos

(
6π
7

)
cos

(
6π
7

)
cos

(
2π
7

)
cos

(
4π
7

)
cos

(
4π
7

)
cos

(
6π
7

)
cos

(
2π
7

)


is a circulant matrix, the computation of the DCT5 can be derived from the circular
convolution between the vectors

g =
2√
7

cos
(
2π
7

)
cos

(
6π
7

)
cos

(
4π
7

)
 and d =

x1x2
x3


This circular convolution can be solved by adopting the algorithm reported in [6]. More
in detail, by defining the constants:

G0 =
2

3
√
7

(
cos 2π

7
+ cos 4π

7
+ cos 6π

7

)
G1 =

2√
7

(
cos 2π

7
− cos 4π

7

)
G2 =

2√
7

(
cos 6π

7
− cos 4π

7

)
G3 =

2

3
√
7

(
cos 2π

7
+ cos 6π

7
− 2 cos 4π

7

)
G4 =

√
2

7
G5 =

1√
2

the algorithm presented in table 2.6 is derived.
It should be highlighted that the identity

cos 2π
7

+ cos 4π
7

+ cos 6π
7

= −0.5

is exploited in the derivation of the algorithm.

12

2 – DCT5 via DFT

Table 2.6: Algorithm for the DCT5 (N = 4) executed by performing a circular convolution

Op. Name Operation
a0 x1 + x2
a1 x3 + a0
a2 x1 − x3
a3 x2 − x3
a4 a2 + a3
M0 G0a1
M1 G1a2

Op. Name Operation
M2 G2a3
M3 G3a4
M4 G4x0
a5 M1 −M3

a6 M2 −M3

a7 M0 +M4

Y1 a7 + a5

Op. Name Operation
a9 a7 − a5
Y3 a9 − a6
Y2 a7 + a6
a12 2M0 + 4M0

a13 M4 − a12
Y0 G5a13

2.2.3 The Winograd large fast Fourier transform
Supposing that the length NDFT of the DFT can be expressed as a product of two

numbers (N1,N2) that are coprime, it can be demonstrated that

[Po]YF = ([DN1]⊗ [DN2]) [Pi] l

where:

• [Po] is a permutation matrix;
• [DN1], [DN2] are the DFT matrices for length N1 and N2;
• ⊗ is the symbol of the Kronecker product;
• [Pi] is a permutation matrix.

Since:

[DN1] = [SN1] [CN1] [TN1]

and
[DN2] = [SN2] [CN2] [TN2]

it can be written

[DN1]⊗ [DN2] = ([SN1]⊗ [SN2]) ([CN1]⊗ [CN2]) ([TN1]⊗ [TN2]) (2.2)

where the Kronecker products [S] = [SN1]⊗ [SN2] and [T] = [TN1]⊗ [TN2] are matrices of
zeros and ones, and the Kronecker product [C] = [CN1]⊗ [CN2] is again a diagonal matrix
with each element purely real or purely imaginary.

Hence, equation 2.2 leads to

[Z] = [SN1] ([SN2] [CN2×N1] ◦ [TN2] ([TN1] [z])
T)T

where:

• [CN2×N1] = CN2C
T
N1, with CN2 and CN1 being the vectors, which respectively

contain the diagonal elements of the matrices [CN2] and [CN1];

13

2 – DCT5 via DFT

• ◦ is the symbol of the element by element matrix multiplication;
• [z] is an N1×N2 matrix containing the elements of the input vector l;
• [Z] is an N1×N2 matrix containing the elements of the output vector YF.

In the following, the procedure needed to derive the matrix [z] will be described as well
as the one used to extract the elements of the vector YF from the matrix [Z].

Input matrix

In order to build the matrix [z], a permutation is firstly applied to the vector l. There-
fore, the vector l̂ is obtained as

l̂ = [Pi] l

where [Pi] is the input permutation matrix. This matrix is derived according to the fol-
lowing steps:

1. A couple (n1,n2) is assigned to each element of l̂ with 0 ≤ n1 ≤ (N1 − 1) and
0 ≤ n2 ≤ (N2 − 1). More in detail, the couple (n1,n2) is obtained by progressively
increasing n2 and n1. This is better explained by the following example. Consider,
for instance, NDFT = 15 = 3 × 5 = N1 × N2. The assignments shown in table 2.7
are obtained.

2. The corresponding index of the vector l is derived by applying the equation:

il = (n1 ×N2 + n2 ×N1) mod NDFT

The indexes obtained for the case presented above are reported in table 2.7.

Table 2.7: Permuted indexes calculation for N1 = 3 and N2 = 5

il̂ (n1,n2) il

0 (0,0) (0× 5 + 0× 3) mod 15 = 0
1 (0,1) (0× 5 + 1× 3) mod 15 = 3
2 (0,2) (0× 5 + 2× 3) mod 15 = 6
3 (0,3) (0× 5 + 3× 3) mod 15 = 9
4 (0,4) (0× 5 + 4× 3) mod 15 = 12
5 (1,0) (1× 5 + 0× 3) mod 15 = 5
6 (1,1) (1× 5 + 1× 3) mod 15 = 8
7 (1,2) (1× 5 + 2× 3) mod 15 = 11
8 (1,3) (1× 5 + 3× 3) mod 15 = 14
9 (1,4) (1× 5 + 4× 3) mod 15 = 2
10 (2,0) (2× 5 + 0× 3) mod 15 = 10
11 (2,1) (2× 5 + 1× 3) mod 15 = 13
12 (2,2) (2× 5 + 2× 3) mod 15 = 1
13 (2,3) (2× 5 + 3× 3) mod 15 = 4
14 (2,4) (2× 5 + 4× 3) mod 15 = 7

14

2 – DCT5 via DFT

3. The permutation matrix is built by setting the elements in position (il̂, il) equal to
one. Therefore, for the case presented above, the ones of the permutation matrix are
in positions: (0,0), (1,3), (2,6), (3,9), (4,12), (5,5), (6,8), (7,11), (8,14), (9,2), (10,10),
(11,13), (12,1), (13,4) and (14,7). Hence, for this particular case, the matrix is:

[Pi] =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0


The elements of l̂ are then ordered along the rows of the matrix [z]. In particular, for

the case presented above, it can be written:

[z] =

 l̂0 l̂1 l̂2 l̂3 l̂4
l̂5 l̂6 l̂7 l̂8 l̂9
l̂10 l̂11 l̂12 l̂13 l̂14


Output matrix

The vector YF is stored in the two-dimensional array [Z] by starting in the upper
left corner and listing the components down the “extended diagonal ”. Since the number
of rows and the number of columns are relatively prime, the extended diagonal passes
through every element of the array. For the case considered above, we have:

[Z] =

Z0,0 Z0,1 Z0,2 Z0,3 Z0,4

Z1,0 Z1,1 Z1,2 Z1,3 Z1,4

Z2,0 Z2,1 Z2,2 Z2,3 Z2,4

 =

 YF0 YF6 YF12 YF3 YF9
YF10 YF1 YF7 YF13 YF4
YF5 YF11 YF2 YF8 YF14


2.2.4 WFTA for DCT5 (N = 8)

A DCT5 of length 8 can be mapped into a DFT of length 15 as described in section 2.1.
In particular, the DCT5 equation can be written as

Yn = c8TnRe(YFn) for n = 0,1,...,7 (2.3)

where

15

2 – DCT5 via DFT

• c8 = 2√
15

• Re(YFn) = Re
(

14∑
k=0

lke−jnk 2π
15

)
and

l =



l0
l1
l2
l3
l4
l5
l6
l7
l8
l9
l10
l11
l12
l13
l14



=



x̂0
0
x̂2
0
x̂4
0
x̂6
0
x̂7
0
x̂5
0
x̂3
0
x̂1



=



x0√
2

0
x2
0
x4
0
x6
0
x7
0
x5
0
x3
0
x1


Equation 2.3 can be further rearranged to give

Yn = TnRe(c8YFn) = TnRe(ŶFn)

The elements of ŶF are contained in the matrix [Z] which is calculated by applying the
equation

[Z] = c8 [S3] ([S5] [C5×3] ◦ [T5] ([T3] [z])
T)T = [S3]

(
[S5]

[
Ĉ5×3

]
◦ [T5] ([T3] [z])

T
)T

(2.4)

where [
Ĉ5×3

]
= c8 [C5×3]

Equation 2.4 yields an algorithm composed of the following steps:

• Pre-Normalization
• Pre-Additions
• Multiplications
• Post-Additions
• Post-Normalization

In the following, each of these steps will be analyzed.

16

2 – DCT5 via DFT

Pre-Normalization

The multiplication

Mn1 = Cnormx0 =
1√
2
x0

is performed.

Pre-Additions

The additions related to this step are obtained by performing the matrix products

[A] = [T5] ([T3] [z])
T

In particular, the input permutation matrix [Pi] is applied to the vector l:

l̂ = [Pi] l =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0





l0
l1
l2
l3
l4
l5
l6
l7
l8
l9
l10
l11
l12
l13
l14



=



l0
l3
l6
l9
l12
l5
l8
l11
l14
l2
l10
l13
l1
l4
l7


The elements of l̂ are then ordered along the rows of the matrix [z]:

[z] =

 l0 l3 l6 l9 l12
l5 l8 l11 l14 l2
l10 l13 l1 l4 l7

 =

Mn1 0 x6 0 x3
0 x7 0 x1 x2
x5 0 0 x4 0


Since:

[T3] =

1 1 1
0 1 1
0 1 −1

 and [T5] =



1 1 1 1 1
0 1 1 1 1
0 1 −1 −1 1
0 1 0 0 −1
0 1 −1 1 −1
0 0 −1 1 0


17

2 – DCT5 via DFT

it can be derived

[A] = [T5] ([T3] [z])
T

=



Mn1 + x1 + x2 + x3 + x4 + x5 + x6 + x7 x1 + x2 + x4 + x5 + x7 U
x1 + x2 + x3 + x4 + x6 + x7 x1 + x2 + x4 + x7 U
−x1 + x2 + x3 − x4 − x6 + x7 −x1 + x2 − x4 + x7 U

U U −x2 + x7
U U x1 − x2 − x4 + x7
U U x1 − x4


where the elements labeled as “U”are not calculated because they would only be used
to compute the imaginary part of the DFT, which is not needed. Fourteen additions are
instead required to compute the other elements of the matrix [A]. These are reported in
table 2.8.

Table 2.8: WFTA for DCT5 (N = 8): Pre-Additions

Op. Name Operation
a0 x1 + x4
a1 x2 + x7
a2 x3 + x6
a3 a0 + a1
a4 a3 + x5
a5 a1 − a0
a6 a4 + a2

Op. Name Operation
a7 a3 + a2
a8 x3 − x6
a9 a5 + a8
a10 x7 − x2
a11 x1 − x4
a12 a10 + a11
a13 a6 +Mn1

Therefore, it can be written:

[A] =



a13 a4 U
a7 a3 U
a9 a5 U
U U a10
U U a12
U U a11



Multiplications

The multiplications (reported in table 2.9) derive from the element-by-element matrix
product

[M] =
[
Ĉ5×3

]
◦ [A]

18

2 – DCT5 via DFT

The matrix
[
Ĉ5×3

]
can be obtained from the diagonal elements of the matrices [C5] and

[C3]. Since

[C3] =

1 0 0
0 k1 0
0 0 jk2

 and [C5] =



1 0 0 0 0 0
0 k3 0 0 0 0
0 0 k4 0 0 0
0 0 0 jk5 0 0
0 0 0 0 jk6 0
0 0 0 0 0 jk7


it follows that

[
Ĉ5×3

]
= c8



1
k3
k4
jk5
jk6
jk7


[
1 k1 jk2

]
=



c8 c8k1 jc8k2
c8k3 c8k1k3 jc8k2k3
c8k4 c8k1k4 jc8k2k4
jc8k5 jc8k1k5 −c8k2k5
jc8k6 jc8k1k6 −c8k2k6
jc8k7 jc8k1k7 −c8k2k7


where:

• k1 = cos
(
−2π

3

)
− 1

• k2 = sin
(
−2π

3

)
• k3 = 1

2

[
cos

(
−2π

5

)
+ cos

(
−4π

5

)]
− 1

• k4 = 1
2

[
cos

(
−2π

5

)
− cos

(
−4π

5

)]
• k5 = sin

(
−2π

5

)
+ sin

(
−4π

5

)
• k6 = sin

(
−4π

5

)
• k7 = sin

(
−2π

5

)
− sin

(
−4π

5

)
The multiplications derived from the imaginary elements of

[
Ĉ5×3

]
are not needed for

real input vectors. Hence, it is sufficient to consider

[
Ĉ5×3

]
=



c8 c8k1 U
c8k3 c8k1k3 U
c8k4 c8k1k4 U
U U −c8k2k5
U U −c8k2k6
U U −c8k2k7

 =



C0 C1 U
C2 C3 U
C4 C5 U
U U C6
U U C7
U U C8


19

2 – DCT5 via DFT

The matrix [M] can consequently be obtained as:

[M] =



C0 C1 U
C2 C3 U
C4 C5 U
U U C6

U U C7

U U C8

 ◦



a13 a4 U
a7 a3 U
a9 a5 U
U U a10
U U a12
U U a11



=



C0a13 C1a4 U
C2a7 C3a3 U
C4a9 C5a5 U
U U C6a10
U U C7a12
U U C8a11

 =



M0 M3 U
M1 M4 U
M2 M5 U
U U M6

U U M7

U U M8


Table 2.9: WFTA for DCT5 (N = 8): Multiplications

Op. Name Operation
M0 C0a13
M1 C2a7
M2 C4a9

Op. Name Operation
M3 C1a4
M4 C3a3
M5 C5a5

Op. Name Operation
M6 C6a10
M7 C7a12
M8 C8a11

Post-Additions

The additions related to this step are obtained by performing the matrix products

[Z] = [S3] ([S5] [M])T

Since

[S5] =


1 0 0 0 0 0
1 1 1 1 −1 0
1 1 −1 0 1 1
1 1 −1 0 −1 −1
1 1 1 −1 1 0

 and [S3] =

1 0 0
1 1 1
1 1 −1


the columns of [Z] are

Z (: ,0) =

 M0

M0 +M3

M0 +M3


Z (: ,1) =

 M0 +M1 +M2

M0 +M1 +M2 +M3 +M4 +M5 +M6 −M7

M0 +M1 +M2 +M3 +M4 +M5 −M6 +M7


20

2 – DCT5 via DFT

Z (: ,2) =

 M0 +M1 −M2

M0 +M1 −M2 +M3 +M4 −M5 +M7 +M8

M0 +M1 −M2 +M3 +M4 −M5 −M7 −M8


Z (: ,3) =

 M0 +M1 −M2

M0 +M1 −M2 +M3 +M4 −M5 −M7 −M8

M0 +M1 −M2 +M3 +M4 −M5 +M7 +M8


Z (: ,4) =

 M0 +M1 +M2

M0 +M1 +M2 +M3 +M4 +M5 −M6 +M7

M0 +M1 +M2 +M3 +M4 +M5 +M6 −M7

.
The additions described in table 2.10 can be performed to compute all the elements of

the matrix [Z].

Table 2.10: WFTA for DCT5 (N = 8): Post-Additions

Op. Name Operation
a14 M0 +M1

a15 a14 +M2

a16 a14 −M2

a17 M3 +M4

a18 a17 +M5

Op. Name Operation
a19 a17 −M5

a20 M6 −M7

a21 M7 +M8

a22 M0 +M3

a23 a15 + a18

Op. Name Operation
a24 a23 + a20
a25 a23 − a20
a26 a16 + a19
a27 a26 + a21
a28 a26 − a21

Hence, the matrix [Z] can be expressed as

[Z] =

M0 a15 a16 a16 a15
a22 a24 a27 a28 a25
a22 a25 a28 a27 a24


It should be highlighted that only the first 8 elements aligned along the extended diagonal
have to be considered. In fact:

[Z] = Re

ŶF0 ŶF6 U ŶF3 U

U ŶF1 ŶF7 U ŶF4
ŶF5 U ŶF2 U U


where the components labeled as “U”are not needed for the computation of the DCT5
even though they are equal to the elements that are instead significant.

Post-Normalization

The multiplication
Mn2 = CnormM0 =

1√
2
M0

is performed.

21

2 – DCT5 via DFT

Final Algorithm

The final version of the algorithm is reported in table 2.11. It should be highlighted that
the computational cost of the algorithm is reduced to 11 multiplications and 29 additions.

Table 2.11: WFTA applied to the DCT5 for N = 8

Op. Name Operation
Mn1 Cnormx0
a0 x1 + x4
a1 x2 + x7
a2 x3 + x6
a3 a0 + a1
a4 a3 + x5
a5 a1 − a0
a6 a4 + a2
a7 a3 + a2
a8 x3 − x6
a9 a5 + a8
a10 x7 − x2
a11 x1 − x4
a12 a10 + a11
a13 a6 +Mn1
M0 C0a13

Op. Name Operation
M1 C2a7
M2 C4a9
M3 C1a4
M4 C3a3
M5 C5a5
M6 C6a10
M7 C7a12
M8 C8a11
a14 M0 +M1

a15 a14 +M2

a16 a14 −M2

a17 M3 +M4

a18 a17 +M5

a19 a17 −M5

a20 M6 −M7

a21 M7 +M8

Op. Name Operation
a22 M0 +M3

a23 a15 + a18
a24 a23 + a20
a25 a23 − a20
a26 a16 + a19
a27 a26 + a21
a28 a26 − a21
Mn2 CnormM0

Y0 Mn2
Y1 a24
Y2 a28
Y3 a16
Y4 a25
Y5 a22
Y6 a15
Y7 a27

2.3 The Prime Factor Algorithm (PFA)
The indexing scheme proposed for the WFTA is a way of organizing a linear ar-

ray of NDFT = N1 × N2 numbers into an N1 by N2 array, but in such a way that a
one-dimensional Fourier transform can be converted into a true two-dimensional Fourier
transform. This two-dimensional Fourier transform can also be solved by computing N1
DFTs of length N2 and N2 DFTs of length N1. This is the approach followed in the Prime
Factor Algorithm ([4], [5], [6] and [7]).

2.3.1 The steps of the PFA
Supposing that the length NDFT of the DFT can be expressed as a product of two num-

bers (N1,N2) that are coprime, the PFA can be adopted to solve the DFT. In particular,
the DFT can be computed according to the following steps:

1. index transform of the input sequence
2. computation of N1 DFTs of length N2
3. computation of N2 DFTs of length N1

22

2 – DCT5 via DFT

4. index transform of the output sequence

In the following, each of these steps will be described in detail.

Input Mapping

The input mapping is obtained by following the same procedure proposed for the
Winograd large fast Fourier transform. In particular, a permutation is applied to the
input vector l. Therefore, the vector l̂ is obtained as

l̂ = [Pi] l

where [Pi] is the input permutation matrix.
The matrix [Pi] can be constructed according to the following steps:

1. A couple (n1,n2) is assigned to each element of l̂ with 0 ≤ n1 ≤ (N1 − 1) and
0 ≤ n2 ≤ (N2 − 1). More in detail, the couple (n1,n2) is obtained by progressively
increasing n2 and n1. This is better explained by the following example. Consider,
for instance, NDFT = 15 = 3× 5 = N1×N2. The assignments shown in table 2.12
are obtained.

2. The corresponding index of the vector l is derived by applying the equation:

il = (n1 ×N2 + n2 ×N1) mod NDFT

The indexes obtained for the case presented above are reported in table 2.12.

Table 2.12: Permuted indexes calculation for N1 = 3 and N2 = 5

il̂ (n1,n2) il

0 (0,0) (0× 5 + 0× 3) mod 15 = 0
1 (0,1) (0× 5 + 1× 3) mod 15 = 3
2 (0,2) (0× 5 + 2× 3) mod 15 = 6
3 (0,3) (0× 5 + 3× 3) mod 15 = 9
4 (0,4) (0× 5 + 4× 3) mod 15 = 12
5 (1,0) (1× 5 + 0× 3) mod 15 = 5
6 (1,1) (1× 5 + 1× 3) mod 15 = 8
7 (1,2) (1× 5 + 2× 3) mod 15 = 11
8 (1,3) (1× 5 + 3× 3) mod 15 = 14
9 (1,4) (1× 5 + 4× 3) mod 15 = 2
10 (2,0) (2× 5 + 0× 3) mod 15 = 10
11 (2,1) (2× 5 + 1× 3) mod 15 = 13
12 (2,2) (2× 5 + 2× 3) mod 15 = 1
13 (2,3) (2× 5 + 3× 3) mod 15 = 4
14 (2,4) (2× 5 + 4× 3) mod 15 = 7

23

2 – DCT5 via DFT

3. The permutation matrix is built by setting the elements in position (il̂, il) equal to
one. Thus, for the case presented above, the ones of the permutation matrix are in
positions: (0,0), (1,3), (2,6), (3,9), (4,12), (5,5), (6,8), (7,11), (8,14), (9,2), (10,10),
(11,13), (12,1), (13,4) and (14,7).

The vector l̂ can therefore be obtained by performing the matrix-vector multiplication:

l̂ = [Pi] l =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0





l0
l1
l2
l3
l4
l5
l6
l7
l8
l9
l10
l11
l12
l13
l14



=



l0
l3
l6
l9
l12
l5
l8
l11
l14
l2
l10
l13
l1
l4
l7


Computation of N1 DFTs of length N2

This is the first stage of the PFA. The elements of the vector l̂ are used as inputs for
the N1 DFTs of length N2 (figure 2.1 for N1 = 3 and N2 = 5) .

5-POINT

DFT

l0

l3

l6

l9

l12

5-POINT

DFT

l5

l8

l11

l14

l2

5-POINT

DFT

l10

l13

l1

l4

l7

XF00

XF01

XF02

XF03

XF04

XF10

XF11

XF12

XF13

XF14

XF20

XF21

XF22

XF23

XF24

Figure 2.1: First stage of the PFA for N1 = 3 and N2 = 5

24

2 – DCT5 via DFT

Computation of N2 DFTs of length N1

This is the last stage of the PFA. The elements XFji are used as inputs for the i-th
DFT of length N1 (figure 2.2 for N1 = 3 and N2 = 5).

5-POINT

DFT

l0

l3

l6

l9

l12

5-POINT

DFT

l5

l8

l11

l14

l2

5-POINT

DFT

l10

l13

l1

l4

l7

3-POINT

DFT

3-POINT

DFT

3-POINT

DFT

3-POINT

DFT

3-POINT

DFT

Z0,0

Z1,0

Z2,0

Z0,1

Z1,1

Z2,1

Z0,2

Z1,2

Z2,2

Z0,3

Z1,3

Z2,3

Z0,4

Z1,4

Z2,4

Figure 2.2: First and second stage of the PFA for N1 = 3 and N2 = 5

Output mapping

The outputs of each DFT of length N1 represent a column of the matrix [Z]. The
elements of the vector YF are stored in the matrix [Z] starting in the upper left corner
and listing the components down the “extended diagonal”. Since the number of rows and
the number of columns are relatively prime, the extended diagonal passes through every
element of the array. For the case considered in the previous paragraphs (figure 2.3), it
can be written:

[Z] =

Z0,0 Z0,1 Z0,2 Z0,3 Z0,4

Z1,0 Z1,1 Z1,2 Z1,3 Z1,4

Z2,0 Z2,1 Z2,2 Z2,3 Z2,4

 =

 YF0 YF6 YF12 YF3 YF9
YF10 YF1 YF7 YF13 YF4
YF5 YF11 YF2 YF8 YF14


25

2 – DCT5 via DFT

5-POINT

DFT

l0

l3

l6

l9

l12

5-POINT

DFT

l5

l8

l11

l14

l2

5-POINT

DFT

l10

l13

l1

l4

l7

3-POINT

DFT

3-POINT

DFT

3-POINT

DFT

3-POINT

DFT

3-POINT

DFT

YF0

YF10

YF5

YF6

YF1

YF11

YF12

YF7

YF2

YF3

YF13

YF8

YF9

YF4

YF14

Figure 2.3: PFA for N1 = 3 and N2 = 5

2.3.2 PFA for DCT5 (N = 8)
A DCT5 of length 8 can be mapped into a DFT of length 15 as described in section 2.1.

In particular, the DCT5 equation can be written as

Yn = c8TnRe(YFn) for n = 0,1,...,7

where

• c8 = 2√
15

• Re(YFn) = Re
(

14∑
k=0

lke−jnk 2π
15

)

26

2 – DCT5 via DFT

and

l =



l0
l1
l2
l3
l4
l5
l6
l7
l8
l9
l10
l11
l12
l13
l14



=



x̂0
0
x̂2
0
x̂4
0
x̂6
0
x̂7
0
x̂5
0
x̂3
0
x̂1



=



x0Tk|k=0

0
x2
0
x4
0
x6
0
x7
0
x5
0
x3
0
x1



=



x0√
2

0
x2
0
x4
0
x6
0
x7
0
x5
0
x3
0
x1


For the sake of simplicity, the normalization factors can be initially neglected. Hence,

we can neglect c8 and consider:

Tn = 1 Tk = 1 ∀n,k

As a consequence, the vector l can be redefined as

l =
[
l0 l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14

]T

=
[
x0 0 x2 0 x4 0 x6 0 x7 0 x5 0 x3 0 x1

]T

The input permutation matrix is therefore applied to this vector in order to obtain the
vector l̂. Thus, we have

l̂ = [Pi] l =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0





l0
l1
l2
l3
l4
l5
l6
l7
l8
l9
l10
l11
l12
l13
l14



=



l0
l3
l6
l9
l12
l5
l8
l11
l14
l2
l10
l13
l1
l4
l7



=



x0
0
x6
0
x3
0
x7
0
x1
x2
x5
0
0
x4
0


27

2 – DCT5 via DFT

5-POINT

DFT

x0

0

x6

0

x3

5-POINT

DFT

0

x7

0

x1

x2

5-POINT

DFT

x5

0

0

x4

0

3-POINT

DFT

3-POINT

DFT

3-POINT

DFT

3-POINT

DFT

3-POINT

DFT

YF0

YF10

YF5

YF6

YF1

YF11

YF12

YF7

YF2

YF3

YF13

YF8

YF9

YF4

YF14

Figure 2.4: PFA for DCT5 with N = 8 (N1 = 3, N2 = 5)

The vector l̂ is then used as input for the first stage of the PFA as depicted in figure 2.4.
The real part of the elements YFn represented in this figure are the outputs generated by
the DCT5. More in detail, only the first eight elements should be considered. Nevertheless,
it should be remembered that the real part of the DFT of an odd-length real sequence is
a palindromic sequence except for the first element. Hence, it can be written

Re(YF8) = Re(YF7) Re(YF9) = Re(YF6) . . . Re(YF14) = Re(YF1)

28

2 – DCT5 via DFT

Several simplifications can be made to the scheme presented in figure 2.4. First of all,
the Signal Flow Graph (SFG) of the 3-point and 5-point DFTs can be analyzed. These
are respectively reported in figures 2.5 and 2.6. Moreover, the values of the constants Ci

are presented in table 2.13.

Re(x0)

Im(x0)

Re(x1)

Im(x1)

Re(x2)

Im(x2)

C1

C1

C2

-C2

Re(XF0)

Im(XF0)

Re(XF1)

Im(XF1)

Re(XF2)

Im(XF2)

Figure 2.5: Simplified 3-point DFT SFG (simplifications made for N1 = 3, N2 = 5)

Re(x0)

Im(x0)

Re(x1)

Im(x1)

Re(x4)

Im(x4)

Re(x3)

Im(x3)

Re(x2)

Im(x2)

C4

C4

C5

C5

C6

-C6

C7

-C7

C8

-C8

Re(XF0)

Im(XF0)

Re(XF1)

Im(XF1)

Re(XF2)

Im(XF2)

Im(XF3)

Re(XF3)

Im(XF4)

Re(XF4)

Figure 2.6: Simplified 5-point DFT SFG (simplifications made for N1 = 3, N2 = 5)

Concerning the computation of the DCT5 (in particular, when it is chosen N1 = 3
and N2 = 5), the gray lines in figure 2.5 can be neglected since only the real part of the
elements YFn is needed. Similarly, the gray lines in figure 2.6 can be neglected since the
inputs of the DCT5 are real.

29

2 – DCT5 via DFT

Table 2.13: Values of the constants Ci

Constant Value
C1 cos

(
−2π

3

)
− 1

C2 sin
(
−2π

3

)
C4

[
cos

(
−2π

5

)
+ cos(−4π

5)
]
/2− 1

C5

[
cos(−2π

5)− cos(−4π
5)

]
/2

Constant Value
C6 sin(−2π

5) + sin(−4π
5)

C7 sin(−4π
5)

C8 sin(−2π
5)− sin(−4π

5)

The 3-point and 5-point DFT SFGs can be used to build the SFG of the 8-point DCT5
as depicted in figure 2.7.

x0

0

0

0

x3

0

0

0

x6

0

C4

C4

C5

C5

C6

-C6

C7

-C7

C8

-C8

0

0

x7

0

x2

0

x1

0

0

0

C4

C4

C5

C5

C6

-C6

C7

-C7

C8

-C8

x5

0

0

0

0

0

x4

0

0

0

C4

C4

C5

C5

C6

-C6

C7

-C7

C8

-C8

C1

C1

C2

-C2

Y0

U

U

U

Y5

U

C1

C1

C2

-C2

Y6

U

Y1

U

Y4

U

C1

C1

C2

-C2

Y3

U

Y7

U

Y2

U

C1

C1

C2

-C2

U

U

U

U

U

U

C1

C1

C2

-C2

U

U

U

U

U

U

Figure 2.7: Non-normalized 8-point DCT5 SFG (N1 = 3, N2 = 5)

30

2 – DCT5 via DFT

All the paths coming from null inputs or connected to unused outputs are drawn
using gray lines. Moreover, it should be highlighted that the palindromicity of the se-
quence Re({YF1,YF2,...,YF13,YF14}) is exploited in the derivation of the SFG presented in
figure 2.7.

Finally, the normalization factors can be introduced so that the normalized version of
the DCT5 is obtained. The resulting SFG is presented in figure 2.8.

x0

0

0

0

x3

0

0

0

x6

0

C4

C5

C6

-C6

C7

-C7

C8

-C8

0

0

x7

0

x2

0

x1

0

0

0

C4

C5

-C6

-C7

-C8

x5

0

0

0

0

0

x4

0

0

0

C4

C5

C6

-C6

-C7

-C8

C1

C1

C2

-C2

Y0

U

U

U

Y5

U

C1

C1

C2

-C2

Y6

U

Y1

U

Y4

U

C1

C1

C2

-C2

Y3

U

Y7

U

Y2

U

C1

C1

C2

-C2

U

U

U

U

U

U

C1

C1

C2

-C2

U

U

U

U

U

U

c8

c8

c8

Cnorm Cnorm

C4

C5

C4

C6

C5

C7

C8

C4

C5

C7

C8

Figure 2.8: Normalized 8-point DCT5 SFG (N1 = 3, N2 = 5)

31

2 – DCT5 via DFT

The constants Ĉi reported in figure 2.8 are obtained as

Ĉi = c8Ci c8 =
2√
15

while the constant Cnorm is equal to 1√
2
.

It should also be highlighted that the algorithm represented in figure 2.8 only requires
21 multiplications and 36 sums. The list of the needed operations is reported in table 2.14.

Table 2.14: PFA applied to the DCT5 for N = 8 (N1 = 3, N2 = 5)

Op. Name Operation
Mn1 Cnormx0
a0 x3 + x6
a1 Mn1 + a0
a2 x3 − x6
M0 c8a1
M1 Ĉ4a0
M2 Ĉ5a2
a3 M0 +M1

a4 a3 +M2

a5 a3 −M2

a6 x2 + x7
a7 x7 − x2
a8 a6 + x1
a9 a6 − x1
a10 a7 + x1
M3 c8a8
M4 Ĉ4a8
M5 Ĉ6a7
M6 Ĉ5a9
M7 Ĉ7a10
M8 Ĉ8x1
a11 M3 +M4

Op. Name Operation
a12 a11 +M6

a13 a11 −M6

a14 M5 −M7

a15 M7 +M8

a16 x4 + x5
M9 c8a16
M10 Ĉ4x4
M11 −Ĉ5x4
M12 Ĉ7x4
M13 Ĉ8x4
a17 M9 +M10

a18 a17 +M11

a19 a17 −M11

a20 M12 +M13

a21 M3 +M9

a22 M0 + a21
Mn2 Cnorma22
M14 C1a21
a23 a22 +M14

a24 a12 + a18
a25 a4 + a24
a26 a14 +M12

Op. Name Operation
M15 C1a24
M16 −C2a26
a27 a25 +M15

a28 a27 +M16

a29 a27 −M16

a30 a13 + a19
a31 a30 + a5
M17 C1a30
a32 a15 − a20
M18 −C2a32
a33 M17 + a31
a34 a33 +M18

a35 a33 −M18

Y0 Mn2
Y1 a28
Y2 a35
Y3 a31
Y4 a29
Y5 a23
Y6 a25
Y7 a34

Remarks

The same procedure presented above can be repeated by choosing N1 = 5 and N2 = 3.
In this case, the scheme presented in figure 2.9 is obtained.

The SFGs presented in figures 2.10 and 2.11 can therefore be considered. By making the
same simplifications discussed in the previous paragraph, the SFG presented in figure 2.12
is derived. The algorithm shown in this figure only requires 18 multiplications and 32
additions. The list of the needed operations is reported in table 2.15.

32

2 – DCT5 via DFT

3-POINT

DFT

3-POINT

DFT

3-POINT

DFT

3-POINT

DFT

3-POINT

DFT

5-POINT

DFT

5-POINT

DFT

5-POINT

DFT

x0

0

x5

0

x7

0

x6

0

0

0

x1

x4

x3

x2

0

YF0

YF1

YF2

YF3

YF4

YF5

YF6

YF7

YF8

YF9

YF10

YF11

YF12

YF13

YF14

Figure 2.9: PFA for DCT5 with N = 8 (N1 = 5, N2 = 3)

Re(x0)

Im(x0)

Re(x1)

Im(x1)

Re(x2)

Im(x2)

C1

C1

C2

-C2

Re(XF0)

Im(XF0)

Re(XF1)

Im(XF1)

Re(XF2)

Im(XF2)

Figure 2.10: Simplified 3-point DFT SFG (simplifications made for N1 = 5, N2 = 3)

33

2 – DCT5 via DFT

Re(x0)

Im(x0)

Re(x1)

Im(x1)

Re(x4)

Im(x4)

Re(x3)

Im(x3)

Re(x2)

Im(x2)

C4

C4

C5

C5

C6

-C6

C7

-C7

C8

-C8

Re(XF0)

Im(XF0)

Re(XF1)

Im(XF1)

Re(XF2)

Im(XF2)

Im(XF3)

Re(XF3)

Im(XF4)

Re(XF4)

Figure 2.11: Simplified 5-point DFT SFG (simplifications made for N1 = 5, N2 = 3)

Table 2.15: PFA applied to the DCT5 for N = 8 (N1 = 5, N2 = 3)

Op. Name Operation
Mn1 Cnormx0
a0 x5 +Mn1
M0 C1x5
a1 M0 + a0
M1 C1x7
M2 C2x7
a2 x7 +M1

a3 x1 + x4
a4 x1 − x4
M3 C1a3
M4 C2a4
a5 M3 + a3
a6 x2 + x3
M5 C1x2
M6 C2x2
a7 M5 + a6
a8 x7 + a6

Op. Name Operation
a9 a3 + x6
a10 a8 + a9
a11 a8 − a9
a12 a10 + a0
M7 c8a12
Y0 CnormM7

M8 Ĉ4a10
M9 Ĉ5a11
a13 M7 +M8

Y6 a13 +M9

Y3 a13 −M9

a16 a2 + a7
a17 M2 −M6

a18 a5 + x6
a19 a16 + a18
a20 a16 − a18
a21 a17 +M4

Op. Name Operation
a22 a19 + a1
Y5 c8a22
M11 Ĉ4a19
M12 −Ĉ6a17
M13 Ĉ5a20
M14 −Ĉ7a21
M15 −Ĉ8M4

a23 Y5 +M11

a24 a23 +M13

a25 a23 −M13

a26 M12 −M14

a27 M14 +M15

Y1 a24 + a26
Y4 a24 − a26
Y7 a25 + a27
Y2 a25 − a27

34

2 – DCT5 via DFT

x0

0

0

0

x5

0

C1

C1

C2

-C2

0

0

x7

0

0

0

C1

C1

C2

-C2

x6

0

0

0

0

0

C1

C1

C2

-C2

0

0

x1

0

x4

0

C1

C1

C2

-C2

x3

0

x2

0

0

0

C1

C1

C2

-C2

C4

C5

C6

-C6

C7

-C7

C8

-C8

Y0

U

Y6

U

Y3

U

U

U

U

U

C4

C5

C6

C7

C8

Y5

U

Y1

U

Y7

U

U

Y2

U

Y4

C4

C4

C5

C5

C6

-C6

C7

-C7

C8

-C8

U

U

U

U

U

U

U

U

U

U

c8

c8

Cnorm Cnorm

C4

C5

C4

-C6

C5

-C7

-C8

Figure 2.12: Normalized 8-point DCT5 SFG (N1 = 5, N2 = 3)

2.4 Bluestein’s Algorithm

Bluestein’s FFT algorithm (also called the chirp z-transform algorithm) is a fast Fourier
transform algorithm, which computes the discrete Fourier transform of arbitrary sizes
(including prime sizes) by reformulating the DFT as a convolution ([4], [6], [8] and [9]).

35

2 – DCT5 via DFT

In order to analyze this algorithm, we can begin by rewriting the DFT as:

YFn =

NDFT−1∑
k=0

lke−jnk 2π
NDFT =

NDFT−1∑
k=0

lkW
nk W = e−j 2π

NDFT

Since
nk =

1

2

[
n2 + k2 − (n− k)2

]
it follows that

YFn = W
1
2
n2

NDFT−1∑
k=0

lkW
1
2
k2W− 1

2
(n−k)2 (2.5)

Therefore, it is possible to define

l̂k = lkW
1
2
k2 , hn−k = W− 1

2
(n−k)2 , ŶFn = YFnW

− 1
2
n2

and rewrite equation 2.5 as

ŶFn =

NDFT−1∑
k=0

l̂khn−k

Note that [ŶF0,ŶF1, . . . ,ŶF(NDFT−1)]
T are the middle NDFT elements obtained from the

linear convolution of the length-NDFT vector

l̂ =
[
l̂0 l̂1 . . . l̂NDFT−1

]T

and the length-(2NDFT − 1) vector

f =
[
h−NDFT+1 h−NDFT+2 . . . h−1 h0 h1 . . . hNDFT−1

]T

This linear convolution can be computed by means of a cyclic convolution. More in
detail, the cyclic convolution can be performed between vectors having length equal to a
power of two. In particular, it can be considered the smallest power of two that is greater
than or equal to 2NDFT − 1. We can indicate this number with the letter M . Hence, the
circular convolution is performed between two length-M vectors. The first vector l̂zp is
obtained by zero-padding the vector l̂. Hence,

l̂zp =
[
l̂0 l̂1 . . . l̂NDFT−1 0 0 0 . . . 0

]T

where the number of appended zeros is equal to M−NDFT. On the other hand, the second
vector is

f̂ =
[
h0 h1 . . . hNDFT−1 0 . . . 0 h−NDFT+1 h−NDFT+2 . . . h−1

]T

The elements of the vector ŶF therefore are the first NDFT elements obtained from the
circular convolution of l̂zp with f̂ . This circular convolution can be computed according
to the Circular Convolution Theorem. This theorem states that the circular convolution
c of two vectors a and b can be obtained as:

c = IDFT(DFT(a) ◦ DFT(b))

where ◦ is the symbol of the element-by-element vector product.

36

2 – DCT5 via DFT

2.4.1 Bluestein’s algorithm steps
The algorithm is composed of the following steps:

1. Computation of l̂: this is performed according to the formula

l̂k = lkW
1
2
k2

Hence, the vector l̂ is

l̂ =



l0W
0

l1W
1
2

l2W
2

...

lNDFT−1W
(NDFT−1)2

2


2. Definition of the number M : this is the smallest power of two that is greater than

or equal to 2NDFT − 1.

3. Definition of the vector l̂zp: this is done by padding the vector l̂ with zeros so that
a length-M vector is obtained.

l̂zp =


l̂
0
0
...
0


4. Definition of the vector F̂ : the length-M vector f̂ is defined as

f̂ =



h0
h1
h2
...

hNDFT−1

0
...
0

h−NDFT+1

h−NDFT+2

...
h−1



=



W 0

W− 1
2

W−2

...

W− 1
2
(NDFT−1)2

0
...
0

W− 1
2
(−NDFT+1)2

W− 1
2
(−NDFT+2)2

...

W− 1
2


The vector F̂ is therefore obtained as:

F̂ = DFT(f̂)

37

2 – DCT5 via DFT

5. Computation of L̂zp: this is obtained by performing the DFT of the vector l̂zp.
Hence, it can be written

L̂zp = DFT(l̂zp)

6. Computation of the vector M : this is obtained by performing the element-by-element
vector product

M = L̂zp ◦ F̂

7. Computation of the vector ŶF: this is obtained by computing the IDFT of the vector
M . Therefore

ŶF = IDFT(M)

8. Computation of the vector YF: this is obtained according to the following formula

YFn = ŶFnW
1
2
n2 for n = 0,1,...,NDFT − 1.

Thus, the vector YF is:

YF =



ŶF0W 0

ŶF1W
1
2

ŶF2W 2

...

ŶF(NDFT−1)W
(NDFT−1)2

2


2.4.2 Bluestein’s algorithm for DCT5

Bluestein’s algorithm can be employed to compute the DCT5. In fact, a DCT5 of
length N can be mapped into a DFT of length 2N − 1. Hence, the algorithm can be used
to compute the DFT and consequently obtain the results produced by the DCT5.

In particular, the vector l is obtained starting from the input vector x and then it
is used as input for the DFT as depicted in figure 2.13. The real parts of the elements
[YF0,YF1,...,YFN] represented in this figure, are the outputs of the DCT5 (for simplicity
considered in non-normalized form).

Table 2.16: Values of NDFT and M for different lengths of the DCT5

N NDFT M

4 7 16
8 15 32
16 31 64
32 63 128

Hence, as presented in table 2.16, a DCT5 of length 4 is mapped into a DFT of length
7 and computed by using a module which performs a DFT of length 16. Similarly, a DCT5

38

2 – DCT5 via DFT

×

×

l0

l1

.

.

.

×

0

0

.

.

.

M-POINT
DFT

.

.

.

×

×

.

.

.

×

×

×

M-POINT
IDFT

×

×

.

.

.

×

YF0

YF1

1̂
F

0̂F

DFT -1N̂
F

DFTN̂
F

M̂-1
F

−DFT 1N
l −DFTF(1)N

Y

2
DFT(-1) /2N

W

0
W

0
W

1/2
W

1/2
W

2
DFT(-1) /2N

W

Figure 2.13: Bluestein’s Algorithm

of length 8 is computed by means of a DFT of length 32 and the DCT5 of length 16 and
32 are respectively performed by adopting modules that compute DFTs of length 64 and
128.

It should be highlighted that a possible algorithm that can be adopted to compute these
DFTs is the radix-2 DIT algorithm. This algorithm allows sharing submodules among the
different lengths of the DCT5. Moreover, the same module, which is used to compute the
DFT, can also be employed to compute the IDFT.

In the following, the radix-2 algorithm will be shortly presented by referring to the
results reported in [4]. Furthermore, it will be discussed how to share the submodules of
the radix-2 algorithm among the different lengths of the DCT5 and a possible technique
that can be adopted to compute the IDFT by means of the DFT will be also described.
Finally, the computational complexity will be analyzed as far as the DCT5 is concerned.

The Radix-2 DIT Algorithm

The DFT of a length-M vector b can be expressed as

XFn =

M−1∑
k=0

bke−jnk 2π
M =

M−1∑
k=0

bkWnk
M WM = e−j 2π

M n = 0,1,...,M − 1

39

2 – DCT5 via DFT

The equation can be rearranged as

XFn =

M/2−1∑
r=0

b2rW2rn
M +

M/2−1∑
r=0

b2r+1W(2r+1)n
M =

M/2−1∑
r=0

b2rW2rn
M + Wn

M

M/2−1∑
r=0

b2r+1W2rn
M

Since
W2rn

M = Wrn
M/2

it can be derived

XFn =

M/2−1∑
r=0

b2rWrn
M/2 + Wn

M

M/2−1∑
r=0

b2r+1Wrn
M/2

= Gn + Wn
MHn n = 0,1,...,

M

2
− 1

Hence, an M -point DFT is formulated in terms of M/2-point DFTs, Gn and Hn, which
are DFTs of even samples and odd samples of b respectively.

Since Gn and Hn are periodic with period M
2 , we have

Gn+M
2
= Gn Hn+M

2
= Hn

Therefore, it can be written

XF(n+M/2) = Gn + Wn+M/2
M Hn

Since
WM/2

M = −1

it follows that
XF(n+M/2) = Gn − Wn

MHn n = 0,1,...,
M

2
− 1

Hence, the computation of XFn and XF(n+M/2) can be performed by using a butterfly unit
as depicted in figure 2.14.

Gn

Hn

XFn

XF(n+M/2)

www
w
wwww
w +w

Wn
M

Figure 2.14: Butterfly Unit

We now consider M = 8. The scheme presented in figure 2.15 can therefore be derived
from the description reported above.

40

2 – DCT5 via DFT

4-POINT

DFT

4-POINT

DFT

b0

b2

b4

b6

b1

b3

b5

b7

XF0

XF1

XF2

XF3

XF4

XF5

XF6

XF7

0

8
W

1

8
W

2

8
W

3

8
W

Figure 2.15: 8-Point DFT expressed in terms of two 4-point DFTs

b0

b4

b2

b6

b1

b5

b3

b7

XF0

XF1

XF2

XF3

XF4

XF5

XF6

XF7

2-POINT

DFT

2-POINT

DFT

2-POINT

DFT

2-POINT

DFT

0

8
W

1

8
W

2

8
W

3

8
W

0

4
W

0

4
W

1

4
W

1

4
W

Figure 2.16: 8-Point DFT expressed in terms of four 2-point DFTs

The process can be iteratively repeated until two-point DFTs are obtained. Thus, for
M = 8, the scheme presented in figure 2.16 can be drawn.

The 2-point DFTs can be implemented by using butterfly units. The SFG presented

41

2 – DCT5 via DFT

b0

b4

b2

b6

b1

b5

b3

b7

XF0

XF1

XF2

XF3

XF4

XF5

XF6

XF7

0

4
W

0

4
W

1

4
W

1

4
W

0

8
W

1

8
W

2

8
W

3

8
W

Figure 2.17: Radix-2 DIT algorithm applied to an 8-Point DFT

in figure 2.17 is therefore obtained for M = 8. It should be highlighted that the inputs are
organized in bit reversed order.

Shared submodules

According to what is described in the previous paragraphs, a DCT5 of length 32 is
computed by performing a DFT of length 128. Similarly, a DCT5 of length 16 can be
expressed in terms of a DFT of length 64. Since the SFG presented in figure 2.18(a) shows
that a DFT of length 128 can be computed by means of two DFTs of length 64, each of the
modules, used to implement the 64-point DFTs in the computation of a length-32 DCT5,
can be shared to obtain a DCT5 of length 16. Hence, the 128-point DFT, required for
the computation of a 32-point DCT5, can also be used to compute two 16-point DCT5.
In a similar way, the computation of a 64-point DFT can be performed by means of
two 32-point DFTs as depicted in figure 2.18(b). Therefore, each of the modules, used
to implement the 32-point DFTs in the computation of a length-32 DCT5, can also be
employed to compute a DCT5 of length 8. Thus, the DFT module used to compute the
32-point DCT5 can also be useful for the computation of four 8-point DCT5. Finally, a
DFT of length 32 can be obtained from two DFTs of length 16 (figure 2.18(c)). Hence, the
hardware that is required for the computation of a 128-point DFT can also be employed
for obtaining eight 16-point DFTs. Therefore, eight DCT5 of length 4 can be partially
computed by using the hardware required for the computation of a length-32 DCT5.

42

2 – DCT5 via DFT

RADIX-2

DIT

64-POINT

DFT

RADIX-2

DIT

64-POINT

DFT

XF0

XF1

XF2

XF3

XF4

XF5

XF6

XF7

XF8

XF9

XF10

XF11

XF12

XF13

XF14

XF15

XF16

XF17

XF18

XF19

XF20

XF21

XF22

XF23

XF24

XF25

XF26

XF27

XF28

XF29

XF30

XF31

XF32

XF33

XF34

XF35

XF36

XF37

XF38

XF39

XF40

XF41

XF42

XF43

XF44

XF45

XF46

XF47

XF48

XF49

XF50

XF51

XF52

XF53

XF54

XF55

XF56

XF57

XF58

XF59

XF60

XF61

XF62

XF63

XF64

XF65

XF66

XF67

XF68

XF69

XF70

XF71

XF72

XF73

XF74

XF75

XF76

XF77

XF78

XF79

XF80

XF81

XF82

XF83

XF84

XF85

XF86

XF87

XF88

XF89

XF90

XF91

XF92

XF93

XF94

XF95

XF96

XF97

XF98

XF99

XF100

XF101

XF102

XF103

XF104

XF105

XF106

XF107

XF108

XF109

XF110

XF111

XF112

XF113

XF114

XF115

XF116

XF117

XF118

XF119

XF120

XF121

XF122

XF123

XF124

XF125

XF126

XF127

b0

b64

b32

b96

b16

b80

b48

b112

b8

b72

b40

b104

b24

b88

b56

b120

b4

b68

b36

b100

b20

b84

b52

b116

b12

b76

b44

b108

b28

b92

b60

b124

b2

b66

b34

b98

b18

b82

b50

b114

b10

b74

b42

b106

b26

b90

b58

b122

b6

b70

b38

b102

b22

b86

b54

b118

b14

b78

b46

b110

b30

b94

b62

b126

b1

b65

b33

b97

b17

b81

b49

b113

b9

b73

b41

b105

b25

b89

b57

b121

b5

b69

b37

b101

b21

b85

b53

b117

b13

b77

b45

b109

b29

b93

b61

b125

b3

b67

b35

b99

b19

b83

b51

b115

b11

b75

b43

b107

b27

b91

b59

b123

b7

b71

b39

b103

b23

b87

b55

b119

b15

b79

b47

b111

b31

b95

b63

b127

0

128
W

1

128
W

2

128
W

3

128
W

4

128
W

5

128
W

6

128
W

7

128
W

8

128
W

9

128
W

10

128
W

11

128
W

12

128
W

13

128
W

14

128
W

15

128
W

16

128
W

17

128
W

18

128
W

19

128
W

20

128
W

21

128
W

22

128
W

23

128
W

24

128
W

25

128
W

26

128
W

27

128
W

28

128
W

29

128
W

30

128
W

31

128
W

32

128
W

33

128
W

34

128
W

35

128
W

36

128
W

37

128
W

38

128
W

39

128
W

40

128
W

41

128
W

42

128
W

43

128
W

44

128
W

45

128
W

46

128
W

47

128
W

48

128
W

49

128
W

50

128
W

51

128
W

52

128
W

53

128
W

54

128
W

55

128
W

56

128
W

57

128
W

58

128
W

59

128
W

60

128
W

61

128
W

62

128
W

63

128
W

(a) 128-Point

RADIX-2

DIT

32-POINT

DFT

RADIX-2

DIT

32-POINT

DFT

XF0

XF1

XF2

XF3

XF4

XF5

XF6

XF7

XF8

XF9

XF10

XF11

XF12

XF13

XF14

XF15

XF16

XF17

XF18

XF19

XF20

XF21

XF22

XF23

XF24

XF25

XF26

XF27

XF28

XF29

XF30

XF31

XF32

XF33

XF34

XF35

XF36

XF37

XF38

XF39

XF40

XF41

XF42

XF43

XF44

XF45

XF46

XF47

XF48

XF49

XF50

XF51

XF52

XF53

XF54

XF55

XF56

XF57

XF58

XF59

XF60

XF61

XF62

XF63

b0

b32

b16

b48

b8

b40

b24

b56

b4

b36

b20

b52

b12

b44

b28

b60

b2

b34

b18

b50

b10

b42

b26

b58

b6

b38

b22

b54

b14

b46

b30

b62

b1

b32

b17

b49

b9

b41

b25

b57

b5

b37

b21

b53

b13

b45

b29

b61

b3

b35

b19

b51

b11

b43

b27

b59

b7

b39

b23

b55

b15

b47

b31

b63

0

64
W

1

64
W

2

64
W

3

64
W

4

64
W

5

64
W

6

64
W

7

64
W

8

64
W

9

64
W

10

64
W

11

64
W

12

64
W

13

64
W

14

64
W

15

64
W

16

64
W

17

64
W

18

64
W

19

64
W

20

64
W

21

64
W

22

64
W

23

64
W

24

64
W

25

64
W

26

64
W

27

64
W

28

64
W

29

64
W

30

64
W

31

64
W

(b) 64-Point

RADIX-2

DIT

16-POINT

DFT

RADIX-2

DIT

16-POINT

DFT

XF0

XF1

XF2

XF3

XF4

XF5

XF6

XF7

XF8

XF9

XF10

XF11

XF12

XF13

XF14

XF15

XF16

XF17

XF18

XF19

XF20

XF21

XF22

XF23

XF24

XF25

XF26

XF27

XF28

XF29

XF30

XF31

b0

b16

b8

b24

b4

b20

b12

b28

b2

b18

b10

b26

b6

b22

b14

b30

b1

b17

b9

b25

b5

b21

b13

b29

b3

b19

b11

b27

b7

b23

b15

b31

0

32
W

1

32
W

2

32
W

3

32
W

4

32
W

5

32
W

6

32
W

7

32
W

8

32
W

9

32
W

10

32
W

11

32
W

12

32
W

13

32
W

14

32
W

15

32
W

(c) 32-Point

Figure 2.18: Submodules of the Radix-2 DIT algorithm for different lengths of the DFT

IDFT via DFT

There are several possible techniques that can be adopted to compute the IDFT via a
forward DFT ([10], [11]). Given an input vector B, one possible method consists in revers-
ing the order of the samples in the vector [B1,...,BNIDFT−1] and appending the obtained
vector to B0. The vector

B̂ =
[
B0 BNIDFT−1 BNIDFT−2 BNIDFT−3 . . . B3 B2 B1

]T

is therefore derived from this procedure. Hence, this is used as input for the DFT. The
outputs of the DFT are then divided by NIDFT. The method is presented in figure 2.19.

Since the IDFT can be computed via DFT, Bluestein’s algorithm can be executed by
an architecture similar to the one depicted in figure 2.20.

43

2 – DCT5 via DFT

DFT.

.

.

B2

B3
.

.

.

:NIDFT

b0

b1

b2

b3

B0

B1

−IDFT 3N
B

−IDFT 2N
B

−IDFT 1N
B

−IDFT 3N
b

−IDFT 2N
b

−IDFT 1N
b

:NIDFT

:NIDFT

:NIDFT

:NIDFT

:NIDFT

:NIDFT

Figure 2.19: IDFT via DFT

C
O
M
P
L
E
X

M
U
L
T
I
P
L
I
E
R
S

DFT
M
U
X

MUX

C
O
M
P
L
E
X

M
U
L
T
I
P
L
I
E
R
S

l

YF

F̂
x

W

/ Mx
W

Figure 2.20: Architecture for Bluestein’s algorithm

Computational complexity

The architecture presented in figure 2.20 requires Nmult complex multipliers. This
number can be approximately computed according to the following formula:

Nmult = M +
M

2
log2(M) +N

44

2 – DCT5 via DFT

Each complex multiplication can be performed by means of 4 real multiplications and
2 real additions or 3 real multiplications and 5 real additions [6]. More in detail, the SFGs
depicted in figures 2.21 and 2.22 can be obtained.

×

+

× ×

+

×

Re(a) Re(b) Im(a) Im(b) Re(a) Im(b) Im(a) Re(b)

+ - + +

Re(c) Im(c)

Figure 2.21: Complex multiplication between a and b (4 real multiplications and 2 real additions)

+

+ +

Re(a)Re(b) Im(a)Im(b)

×

+

+ +

×

+

+ -

×

Re(b)Im(b)

Re(a) Re(b) Im(a)

+

+ +

+

+ -

Im(c) Re(c)

Figure 2.22: Complex multiplication between a and b (3 real multiplications and 5 real additions)

The numbers of real multipliers required for different values of N can therefore be an-
alyzed by choosing the implementation represented in figure 2.22. Moreover, the number
of real multipliers required by the direct implementation of the matrix-vector multiplica-
tion can be compared to the one needed by the algorithm. This comparison is made in
table 2.17.

It should be highlighted that, for large values of N , Bluestein’s algorithm requires
a lower number of real multipliers than the direct implementation of the matrix-vector
product.

45

2 – DCT5 via DFT

Table 2.17: Number of multipliers for several values of N (MVM = Matrix-Vector Multiplication)

Number of real multipliers
N MVM Bluestein’s Algorithm
4 16 156
8 64 360

16 256 816
32 1024 1824
64 4096 4032

128 16 384 8832

Remarks

The Radix 2 DIT algorithm is only one of the many possible algorithms that can be
adopted to compute a DFT having length equal to a power of 2. Among the others, there
are the Radix 2 DIF algorithm and the split-radix algorithm.

2.5 Rader’s Algorithm

We have seen that any DFT can be translated into a convolution by the chirp-z trans-
form algorithm at the cost of 2NDFT complex multiplications performed on the input and
output data samples. We shall see now that DFTs can also be turned into circular con-
volutions by a completely different method ([4], [6], and [12]). This method is, in some
cases, computationally more efficient than the chirp z-transform algorithm because pre-
multiplications and postmultiplications are replaced by a simple rearrangement of input
and output data samples, as depicted in figure 2.23. The steps of the algorithm (that can
be adopted when NDFT is an odd prime or a power of an odd prime) will be presented in
the following.

PERMUTATION
CIRCULAR

CONVOLUTION
PERMUTATIONln

n>0

l0

+

YF0

YFn

Figure 2.23: Rader’s Algorithm

46

2 – DCT5 via DFT

2.5.1 Rader’s algorithm steps
The algorithm is composed of the following steps:

1. Computation of YF0: this can be computed according to the following formula

YF0 =
NDFT−1∑

n=0

ln

2. Definition of a primitive root g of NDFT: as stated in [8]

In modular arithmetic, a branch of number theory, a number g is a primi-
tive root modulo NDFT if every number a coprime to NDFT is congruent to
a power of g modulo NDFT. That is, for every integer a coprime to NDFT,
there is an integer k such that gk = a mod NDFT.

Primitive roots can be easily found by using commercial softwares like WolframAlpha.

3. Definition of the vector l̂: the input permutation applied to the vector l generates
the vector l̂. More in detail, we have

l̂n = l(gNDFT−1−n mod NDFT) for n = 0,1, . . . ,NDFT − 2

4. Definition of the vector T : by defining

W = e−j 2π
NDFT

the vector T can be obtained as

Tn = W (gn mod NDFT) for n = 0,1, . . . ,NDFT − 2

5. Computation of the circular convolution c of l̂ with T : this can be computed ac-
cording to the Circular Convolution Theorem. Hence, we have:

c = IDFT(DFT(l̂) ◦ DFT(T))

where ◦ is the symbol of the element-by-element vector product.

6. Computation of the vector ĉ: this is computed according to the following formula

ĉn = cn + l0

7. Definition of the vector YF: YF0 is defined at point 1). The other elements of the
vector are stored in the vector ĉ according to the following permutation:

YF(gn mod NDFT) = ĉn for n = 0,1, . . . ,NDFT − 2

47

2 – DCT5 via DFT

2.5.2 Rader’s algorithm for DCT5 (N = 4)

A DCT5 of length 4 can be mapped into a DFT of length 7 as described in section 2.1.
In particular, the DCT5 equation can be written as

Yn = c4TnRe(YFn) for n = 0,1,2,3 (2.6)

where

• c4 = 2√
7

• Re(YFn) = Re
(

6∑
k=0

lke−jnk 2π
7

)
and

l =



l0
l1
l2
l3
l4
l5
l6


=



x̂0
0
x̂2
0
x̂3
0
x̂1


=



x0√
2

0
x2
0
x3
0
x1


The computation of the DCT5 is therefore translated into the computation of a DFT

of length NDFT = 7. Since NDFT is a prime number, Rader’s algorithm can be adopted to
compute the DFT. Hence, the steps described in the previous paragraph can be followed
to compute the DCT5. In the following, each of these steps will be analyzed.

Computation of YF0

The computation of YF0 is performed according to the following formula:

YF0 =

NDFT−1∑
n=0

ln =
x0√
2
+ x1 + x2 + x3

Hence, Y0 can be obtained from YF0 as follows

Y0 = c4T0Re(YF0) =
2√
7

1√
2
YF0

Definition of a primitive root g of NDFT

A primitive root of 7 is
g = 3

48

2 – DCT5 via DFT

Definition of the vector l̂

The vector l̂ is defined according to the permutation:

l̂n = l(36−n mod 7) for n = 0,1, . . . ,5

Hence, it can be written:

l̂0 = l36−0 mod 7 = l1

l̂1 = l36−1 mod 7 = l5

l̂2 = l36−2 mod 7 = l4

l̂3 = l36−3 mod 7 = l6

l̂4 = l36−4 mod 7 = l2

l̂5 = l36−5 mod 7 = l3

Therefore, we have

l̂ =



0
0
x3
x1
x2
0


Definition of the vector T

The vector T is defined according to the following formula:

Tn = W (3n mod 7) for n = 0,1, . . . ,5

Hence, it can be written

T0 = W (30 mod 7) = W 1

T1 = W (31 mod 7) = W 3

T2 = W (32 mod 7) = W 2

T3 = W (33 mod 7) = W 6

T4 = W (34 mod 7) = W 4

T5 = W (35 mod 7) = W 5

Therefore we have
T =

[
W 1 W 3 W 2 W 6 W 4 W 5

]T

49

2 – DCT5 via DFT

Computation of the circular convolution c of l̂ with T

The circular convolution c can be computed according to the Circular Convolution
Theorem. Hence, we have:

c = IDFT(DFT(l̂) ◦ DFT(T))

Since T contains only constants, TF = DFT(T) can be precomputed. On the contrary,
the DFT of the vector l̂ can be computed according to the WFTA or the PFA. In fact,
l̂ has length M = 6 = 3 × 2. Therefore, the Winograd short-N DFT modules of length 2
and 3 can be used to compute the DFT. Moreover, the IDFT can be obtained by using a
forward DFT as depicted in figure 2.19.

Computation of the vector ĉ

The vector ĉ is computed according to the following formula:

ĉn = (Re(cn) + l0) c4

Definition of the vector Y

The elements [Y1,Y2,Y3] of the vector Y are stored in the vector ĉ according to the
following permutation:

Y(3n mod 7) = ĉn for n = 0,1,2

Hence, we have:

Y1 = Y(30 mod 7) = ĉ0

Y2 = Y(32 mod 7) = ĉ2

Y3 = Y(31 mod 7) = ĉ1

Final algorithm

Unfortunately, the procedure described above generates an algorithm characterized by
a high computational complexity. In fact, supposing that the PFA is adopted to compute
the DFT, the architecture depicted in figure 2.24 can be derived. Since the number of
real multiplications needed for each 3-point DFT is equal to 4 and the number of real
multiplications needed for each complex multiplication is at least equal to 3, the number
of real multipliers (Nmult) needed to implement this architecture is:

Nmult = 6 + 4× 2 + 6× 3 = 32

This number is greater than the one obtained by directly implementing the matrix-
vector multiplication. This makes the algorithm unpractical for most of applications. As we
will see in appendix A, the results obtained about the computational complexity slightly
improve when the algorithm is applied to the case N = 16.

50

2 – DCT5 via DFT


0 / 2x

x1

x2

x3

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

0

0

0

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

3-POINT
DFT

3-POINT
DFT

×

×

×

×

×

×

TF0

TF4

TF2

TF3

TF1

TF5

× Y0

Re() ×

Re() ×

Re() ×

Y1

Y2

Y3

4c / 2

4c / 6

4c / 6

4c / 6

+

+

+

4 0c / 2x

4 0c / 2x

4 0c / 2x

Figure 2.24: Architecture for DCT5 (N = 4) based on Rader and Prime Factor algorithms

51

Chapter 3

DCT5 via DCT2

This chapter presents the algorithms for the DCT5 that can be obtained from algo-
rithms for the Discrete Cosine Transform Type 2 (DCT2). More in detail, the relationships
between the DCT5 and the Discrete Cosine Transform Type 6 (DCT6) will be presented
as derived in [13]. Successively, the DCT6 will be related to the DCT2 as reported in [14]
and finally, the DCT2 will be calculated according to the algorithms presented in [15], [16]
and [17].

3.1 Relationship between the DCT5 and the DCT6

As described in [13], the DCT5 can be derived from the DCT6 according to the fol-
lowing relationship [

CV
N

]
= [DN]

[
CVI
N

]
[JN]

where:

•
[
CV
N

]
is the N -point DCT5 matrix.

• [DN] is the diagonal matrix implementing the sign-alteration. More in detail, it can
be written

[DN] =


1 0 . . . 0 0
0 −1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 −1



•
[
CVI
N

]
is the N -point DCT6 matrix.

52

3 – DCT5 via DCT2

• [JN] is the backward identity matrix. Hence, it can be written

[JN] =


0 0 . . . 0 1
0 0 . . . 1 0
...

... . .
. ...

...
0 1 . . . 0 0
1 0 . . . 0 0



3.2 Relationship between the DCT6 and the DCT2

As stated in [14], the following relationship holds between the DCT2 and the DCT6:

[
CII
2N+1

]
= [Q2N+1]

[[
CVI
N+1

] [
SVII
N

]] [IN] [JN]
1

− [JN] [IN]

 (3.1)

where:

•
[
CII
2N+1

]
is the 2N + 1-point DCT2 matrix;

• [Q2N+1] is a sign alteration and reordering matrix, which acts as in the following:

x̂2n = xn n = [0,N]

x̂2n+1 = (−1)n+1xN+1+n n = [0,N − 1]

•
[
CVI
N+1

]
is the N + 1-point DCT6 matrix;

•
[
SVII
N

]
is the N -pont Discrete Sine Transform Type 7 (DST7) matrix;

• [IN], [JN] are respectively the N -point identity and backward identity matrix.

3.2.1 Derivation of the 4-point DCT6 from the 7-point DCT2

The relationship expressed by equation 3.1 is better explained by an example. Consider,
for instance, N + 1 = 4. For this particular case, we have:

[Q2N+1] = [Q7] =



1 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 0 0 0 −1
0 0 0 1 0 0 0


53

3 – DCT5 via DCT2

According to what is described above, it can be written:

[[
CVI
4

] [
SVII
3

]] = [Q7]
−1 [CII

7

]  [I3] [J3]
1

− [J3] [I3]

−1

The 4-point DCT6 can therefore be obtained by performing the matrix products

Ŷ II = [Q7]
−1 [CII

7

]  [I3] [J3]
1

− [J3] [I3]

−1



x0
x1
x2
x3
−x2
−x1
−x0


and taking the first four elements of the output vector Ŷ II. In the following each of the
steps needed to obtain the output vector will be analyzed.

Step 1

The following operation is performed:

x̂ =

 [I3] [J3]
1

− [J3] [I3]

−1



x0
x1
x2
x3
−x2
−x1
−x0


=



x0
0
x2
x3
0
x1
0


Step 2

The following operation is performed:

Y II =
[
CII
7

]


x0
0
x2
x3
0
x1
0


This operation is the computation of the DCT2 of the vector obtained at the end of step 1.

54

3 – DCT5 via DCT2

Step 3

The following operation is performed:

Ŷ II = [Q7]
−1 Y II =



Y II
0

Y II
2

Y II
4

Y II
6

−Y II
1

Y II
3

−Y II
5


Steps for the computation of the DCT6 via DCT2

According to what is described in the previous paragraphs, the 4-point DCT6 of the
input vector

x =


x0
x1
x2
x3


can be obtained by performing the following operations:

1. definition of the vector

x̂ =



x0
0
x2
x3
0
x1
0


2. computation of the vector Y II obtained by computing the DCT2 of the vector x̂;

3. definition of the outputs of the DCT6, which are the even-indexed elements of the
vector Y II.

3.3 DCT5 via DCT2 (N = 4)
According to what is described above, an algorithm for the 4-point DCT5 can be

derived from algorithms for the 7-point DCT2. More in detail, the computation of a 4-
point DCT5 can be translated into the computation of a 4-point DCT6 as described in
section 3.1 and the 4-point DCT6 can be derived from the 7-point DCT2 as illustrated in
section 3.2. The following paragraphs will present the steps involved in the derivation of
the algorithm.

55

3 – DCT5 via DCT2

3.3.1 Reordering of the input vector

According to what is described in section 3.1, the input vector x is reordered so that
the vector

xr = [J4]x =


x3
x2
x1
x0


is obtained.

3.3.2 Definition of the vector xR

According to what is described in section 3.2, the vector xR is obtained as

xR =

 [I3] [J3]
1

− [J3] [I3]

−1



x3
x2
x1
x0
−x1
−x2
−x3


=



x3
0
x1
x0
0
x2
0



3.3.3 Computation of the 7-point DCT2

The vector Y II is obtained by computing the DCT2 of the vector xR. A possible
algorithm for the 7-point DCT2 can be derived by relating the DCT2 to a 7-point DFT
as described in [15] and using the algorithm for the 7-point DFT reported in [17]. Several
simplifications can be made to this algorithm. In fact:

1. 3 out of 7 inputs are equal to zero;

2. only the even-indexed outputs of the DCT2 are of interest.

Hence, the computation of the DCT2 leads to the vector:

Y II =



Y II
0

U
Y II
2

U
Y II
4

U
Y II
6


56

3 – DCT5 via DCT2

where the elements labeled as U are not of interest for the computation of the 4-point
DCT5. More in detail, the output vector produced by the computation of the DCT6 is

Y VI =


Y VI
0

Y VI
1

Y VI
2

Y VI
3

 =


Y II
0

Y II
2

Y II
4

Y II
6


3.3.4 Definition of the output vector Y

According to what is described in section 3.1, the output vector Y can be obtained
from the vector Y VI as follows:

Y = [D4]Y
VI =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1



Y VI
0

Y VI
1

Y VI
2

Y VI
3

 =


Y VI
0

−Y VI
1

Y VI
2

−Y VI
3


3.3.5 Final Algorithm

The SFG of the 4-point DCT5 obtained from the SFG of the 7-point DCT2 is reported
in figure 3.1 while the values of the constants and the list of the operations needed are
respectively reported in tables 3.1 and 3.2.

C1

C2

C3

C4

x0

x1

x2

x3

Y0

Y2

Y3

Y1

Figure 3.1: Non-normalized 4-point DCT5 SFG obtained from the 7-point DCT2 SFG

57

3 – DCT5 via DCT2

Table 3.1: Constants for the 4-point DCT5 algorithm derived from the 7-point DCT2 algorithm

Constant Value
C1 −1.166 666 67
C2 0.734 302 20

Constant Value
C3 0.055 854 27
C4 −0.790 156 47

Table 3.2: Algorithm for the 4-point DCT5 derived from the 7-point DCT2

Op. Name Operation
Mn1 Cnormx0
a1 x1 + x2
a2 x3 + a1
a3 a2 +Mn1
m0 c4a3
Mn2 Cnormm0

Y0 Mn2
m1 Ĉ1a2

Op. Name Operation
a4 m0 +m1

a5 x1 − x2
m2 Ĉ2a5
a6 x3 − x2
m3 Ĉ3a6
a7 x1 − x3
m4 Ĉ4a7
a8 a4 +m2

Op. Name Operation
a9 a8 +m4

Y2 a9
a10 −m3 −m2

a11 a10 + a4
Y3 a11
a12 m3 −m4

a13 a12 + a4
Y1 a13

More in detail, the constants Ĉi, that are present in the algorithm reported in table 3.2,
can be obtained as

Ĉi = c4Ci c4 =
2√
7

while the constant Cnorm is equal to 1√
2
.

3.4 DCT5 via DCT2 (N = 8)

An algorithm for the 8-point DCT5 can be derived from algorithms for the 15-point
DCT2. More in detail, the computation of an 8-point DCT5 can be translated into the
computation of an 8-point DCT6 as described in section 3.1 and the 8-point DCT6 can
be derived from the 15-point DCT2 as illustrated in section 3.2. The following paragraphs
will present the steps involved in the derivation of the algorithm.

3.4.1 Reordering of the input vector

According to what is described in section 3.1, the input vector x is reordered so that
the vector

xr = [J8]x =
[
x7 x6 x5 x4 x3 x2 x1 x0

]T

is obtained.

58

3 – DCT5 via DCT2

3.4.2 Definition of the vector xR

According to what is described in section 3.2, the vector xR is obtained as

xR =

 [I7] [J7]
1

− [J7] [I7]

−1



x7
x6
x5
x4
x3
x2
x1
x0
−x1
−x2
−x3
−x4
−x5
−x6
−x7



=



x7
0
x5
0
x3
0
x1
x0
0
x2
0
x4
0
x6
0


3.4.3 Computation of the 15-point DCT2

The vector Y II is derived by computing the DCT2 of the vector xR. A possible algo-
rithm for the 15-point DCT2 is the Prime Factor Algorithm illustrated in [16] and [18].

More in detail, since the length of the DCT2 is NDCT2 = 15 and can be expressed as a
product of two numbers (N1,N2) that are coprime, the PFA can be adopted to solve this
DCT2. In particular, the DCT2 can be computed according to the following steps:

1. index transform of the input sequence
2. computation of N1 DCTs of length N2
3. computation of N2 DCTs of length N1
4. computation of the output additions and index transform of the output sequence

In the following, each of these steps will be described in detail, supposing that N1 = 5
and N2 = 3 is chosen. The same procedure can be followed to derive a different algorithm
if N1 = 3 and N2 = 5 is chosen.

Input mapping

The input vector is mapped into the matrix [z] according to the following procedure.
Let n1, 0 ≤ n1 < N1, and n2, 0 ≤ n2 < N2 be the 2D array indices, and n, 0 ≤ n <
NDCT2, be the index of the original input sequence. In general, the mapping process can
be performed according to the following steps. For each n, 0 ≤ n < NDCT2:

1. starting from 0, the index n1 of the 2D array is incremented by one until N1 − 1 ,
then from N1−1 , index n1 is decremented by one until to 0; this process is repeated.

59

3 – DCT5 via DCT2

2. index n2 is generated in the same way as n1 except the range is from 0 to N2 − 1
for an increment and from N2− 1 to 0 for a decrement.

Therefore, each column in table 3.3 specifies the relation between (n1,n2) and n.

Table 3.3: Mapping of 1D input sequence into 2D array

Index name Index values
n1 0 1 2 3 4 4 3 2 1 0 0 1 2 3 4
n2 0 1 2 2 1 0 0 1 2 2 1 0 0 1 2
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Hence, the matrix z can be written as:

[z] =


xR0 xR10 xR9

xR11 xR1 xR8

xR12 xR7 xR2

xR6 xR13 xR3

xR5 xR4 xR14



Computation of N1 DCTs of length N2

As depicted in figure 3.2, each row of the matrix [z] represent the input vector of a
DCT2 of length N2.

3-POINT

DCT2

3-POINT

DCT2

3-POINT

DCT2

3-POINT

DCT2

3-POINT

DCT2

xR0

xR10

xR9

xR11

xR1

xR8

xR12

xR7

xR2

xR6

xR13

xR3

xR5

xR4

xR13

Figure 3.2: First stage of the 15-point DCT2 PFA

60

3 – DCT5 via DCT2

Computation of N2 DCTs of length N1

As depicted in figure 3.3, the outputs of the N1 DCTs of length N2 are used as inputs
for the N2 DCTs of length N1.

3-POINT

DCT2

3-POINT

DCT2

3-POINT

DCT2

3-POINT

DCT2

3-POINT

DCT2

xR0

xR10

xR9

xR11

xR1

xR8

xR12

xR7

xR2

xR6

xR13

xR3

xR5

xR4

xR13

5-POINT

DCT2

5-POINT

DCT2

5-POINT

DCT2

A0,0

A1,0

A2,0

A3,0

A4,0

A0,1

A1,1

A2,1

A3,1

A4,1

A0,2

A1,2

A2,2

A3,2

A4,2

Figure 3.3: First and second stage of the 15-point DCT2 PFA

Output additions and index transform of the output sequence

The vector Y II can be obtained according to the following equation:

Y II
|N2µk+N1m| = Ak,m −Bµk,m

{
0 ≤ k < N1

0 ≤ m < N2

where {
Bk,0 = 0

Bµk,m = µAN1−k,N2−m

and

µ =

{
1 if N2k +N1m < NDCT2

−1 if N2k +N1m > NDCT2

Hence, for N1 = 5 and N2 = 3, the equation is:

Y II
|3µk+5m| = Ak,m −Bµk,m

{
0 ≤ k < 5

0 ≤ m < 3

61

3 – DCT5 via DCT2

where {
Bk,0 = 0

Bµk,m = µA5−k,3−m

and

µ =

{
1 if 3k + 5m < 15

−1 if 3k + 5m > 15

The equations reported in table 3.4 can therefore be derived.

Table 3.4: Output additions and index transform of the output sequence for N1 = 5 and N2 = 3

(m,k) 3k + 5m µ Y II
|3µk+5m| Ak,m −Bµk,m

(0,0) 0 1 Y II
0 A0,0

(0,1) 3 1 Y II
3 A1,0

(0,2) 6 1 Y II
6 A2,0

(0,3) 9 1 Y II
9 A3,0

(0,4) 12 1 Y II
12 A4,0

(1,0) 5 1 Y II
5 A0,1

(1,1) 8 1 Y II
8 A1,1 −A4,2

(1,2) 11 1 Y II
11 A2,1 −A3,2

(1,3) 14 1 Y II
14 A3,1 −A2,2

(1,4) 17 −1 Y II
7 A4,1 +A1,2

(2,0) 10 1 Y II
10 A0,2

(2,1) 13 1 Y II
13 A1,2 −A4,1

(2,2) 16 −1 Y II
4 A2,2 +A3,1

(2,3) 19 −1 Y II
1 A3,2 +A2,1

(2,4) 22 −1 Y II
2 A4,2 +A1,1

Hence, the scheme depicted in figure 3.4 can be obtained from the description reported
above.

Derivation of the output vector of the 8-point DCT6

The computation of the DCT2 leads to the vector:

Y II =
[
Y II
0 U Y II

2 U Y II
4 U Y II

6 0 Y II
8 U Y II

10 U Y II
12 U Y II

14

]T

62

3 – DCT5 via DCT2

3-POINT

DCT2

3-POINT

DCT2

3-POINT

DCT2

3-POINT

DCT2

3-POINT

DCT2

xR0

xR10

xR9

xR11

xR1

xR8

xR12

xR7

xR2

xR6

xR13

xR3

xR5

xR4

xR13

5-POINT

DCT2

5-POINT

DCT2

5-POINT

DCT2

II

0
Y

II

3
Y

II

6
Y

II

9
Y

II

12
Y

II

5
Y

II

8
Y

II

2
Y

II

11
Y

II

1
Y

II

14
Y

II

4
Y

II

7
Y

II

13
Y

II

10
Y

Figure 3.4: 15-point DCT2 PFA

where the elements labeled as U are not of interest for the computation of the 8-point
DCT5. More in detail, the output vector produced by the computation of the DCT6 is

Y VI =



Y VI
0

Y VI
1

Y VI
2

Y VI
3

Y VI
4

Y VI
5

Y VI
6

Y VI
7


=



Y II
0

Y II
2

Y II
4

Y II
6

Y II
8

Y II
10

Y II
12

Y II
14



3.4.4 Definition of the output vector Y

According to what is described in section 3.1, the output vector Y can be obtained
from the vector Y VI as follows:

Y = [D4]Y
VI =



1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1





Y VI
0

Y VI
1

Y VI
2

Y VI
3

Y VI
4

Y VI
5

Y VI
6

Y VI
7


=



Y VI
0

−Y VI
1

Y VI
2

−Y VI
3

Y VI
4

−Y VI
5

Y VI
6

−Y VI
7


63

3 – DCT5 via DCT2

3.4.5 Final Algorithm
The SFG of the 8-point DCT5 obtained from the SFG of the 15-point DCT2 is reported

in figure 3.5 while the values of the constants and the list of the operations needed are
respectively reported in tables 3.5 and 3.6.

C2

C1

0

x3

0

C2

C1

x1

x6

0

C2

C1

0

x0

x5

C2

C1

x4

0

0

C2

C1

x7

0

x2

C3

C4

C5

C6

C7

C3

C4

C5

C6

C7

C3

C4

C5

C6

C7

Y0

Y3

Y4

Y6

Y7

Y1

Y5

Y2

U

U

U

U

U

U

U

Figure 3.5: Non-normalized 8-point DCT5 SFG derived from the 15-point DCT2 SFG

Table 3.5: Constants for the 8-point DCT5 algorithm derived from the 15-point DCT2 algorithm

Constant Value
C1 −0.866 025
C2 1.500 000

Constant Value
C3 −0.559 017
C4 −1.250 000

Constant Value
C5 −0.951 057
C6 1.538 842
C7 −0.363 271

64

3 – DCT5 via DCT2

Table 3.6: Algorithm for the 8-point DCT5 derived from the 15-point DCT2

Op. Name Operation
Mn1 Cnormx0
a1 x2 − x7
a2 x2 + x7
m1 C1a1
m2 C2a2
a3 m2 − a2
m3 −C1x4
m4 C2x4
a4 m4 − x4
a5 Mn1 + x5
m5 C2x5
a6 m5 − a5
m6 −C1x1
a7 x1 + x6
m7 C2x1
a8 m7 − a7
a9 x4 + a7
a10 a2 + x3
a11 a9 − a10

Op. Name Operation
a12 a9 + a10
a13 a12 + a5
m8 c8a13
m9 Ĉ3a11
m10 Ĉ4a12
a14 m10 +m8

a15 m9 + a14
a16 m9 − a14
Y6 a15
Mn2 Cnormm8

Y0 Mn2
Y3 −a16
a17 m3 −m6

a18 a17 −m1

m11 −m1Ĉ7

m12 a18Ĉ5

m13 a17Ĉ6

a19 m12 −m11

a20 m12 +m13

Op. Name Operation
a21 a4 + a8
a22 a3 − x3
a23 a21 − a22
a24 a21 + a22
a25 a24 + a6
m14 c8a25
m15 Ĉ3a23
m16 Ĉ4a24
a26 m14 +m16

a27 m15 + a26
a28 m15 − a26
a29 a19 − a28
Y7 −a29
a30 a20 − a27
Y4 a30
a31 a20 + a27
Y1 −a31
a32 a19 + a28
Y2 a32
Y5 −m14

More in detail, the constants Ĉi, that are present in the algorithm reported in table 3.6,
can be obtained as

Ĉi = c8Ci c8 =
2√
15

while the constant Cnorm is equal to 1√
2
.

65

Chapter 4

DCT5 via Givens Rotations

This chapter presents a possible algorithm that can be adopted to compute the
DCT5 by using only rotations. The algorithm, which will be developed in the following,
does not reach levels of computational complexity as low as the ones achieved by the
WFTA or the PFA. Nevertheless, it is worth analyzing it since it minimizes the variety of
required processing units [19].

4.1 Givens Rotations
Any matrix [A] can be factored so that

[A] = [Q][R] (4.1)

where [Q] is an orthogonal matrix and [R] is an upper triangular matrix. Moreover, if [A]
is orthogonal then [R] is a diagonal matrix so that

[R]T[R] = [I]

Hence, the diagonal elements of [R] can only be +1 or -1. Furthermore, the columns of [A]
and [Q] are identical except for a possible minus sign.

Such a decomposition of the matrix [A] is called QR-decomposition and can be achieved
by using the so-called Givens rotations. The essential point of this method is to null the
lower off-diagonal elements of [A] by performing a rotation of the right angle. This is better
illustrated by an example. Consider, for instance, the vector

b =

[
b0
b1

]
A matrix [T (θ)] exists so that

[T (θ)]b =

[
b̂0
0

]
(4.2)

66

4 – DCT5 via Givens Rotations

If
[T (θ)] =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
then

cos(θ) = b0√
b20 + b21

sin(θ) = b1√
b20 + b21

This procedure can also be followed to null the ij-element of the orthogonal matrix
[A]. Hence, to null the ij-element of [A], the matrix [Ti,j(θ)] is needed. The angle θ is such
that

cos(θ) = Ai−1,j√
A2

i−1,j +A2
i,j

sin(θ) = Ai,j√
A2

i−1,j +A2
i,j

and [Ti,j(θ)] is an identity matrix except for the elements in positions (i− 1, i− 1),
(i− 1, i), (i, i − 1) and (i, i) where cos(θ), sin(θ), − sin(θ) and cos(θ) are respectively
located.

By systematically applying this type of rotations, the matrix [A] is reduced to a diag-
onal matrix with +1 or −1 as diagonal elements. The sequence of rotations on the matrix
[A] can be represented by 

N∏
j=1

N∏
i=j+1

[Ti,j(θ)]

 [A] = [R]

Hence, it can be written

[A] =


N∏
j=1

N∏
i=j+1

[Ti,j(θ)]


T

[R]

If we compare this expression to equation 4.1, we can notice that

[Q] =


N∏
j=1

N∏
i=j+1

[Ti,j(θ)]


T

=


N∏
i=1

N∏
j=i+1

[Ti,j(θ)]


We have therefore obtained a decomposition of the matrix [A] into planar rotations.

4.2 DCT5 via Givens Rotations (N = 4)
Since

[
CV
4

]
is an orthonormal matrix, it can be factored into a sequence of planar

rotations. More in detail, the matrix is

[
CV
4

]
=


0.3780 0.5345 0.5345 0.5345
0.5345 0.4713 −0.1682 −0.6811
0.5345 −0.1682 −0.6811 0.4713
0.5345 −0.6811 0.4713 −0.1682


67

4 – DCT5 via Givens Rotations

We can start by nulling the element in position (3, 0). Hence, we can define

cos (θ) = 0.5345√
0.53452 + 0.53452

= 0.7071 sin (θ) =
0.5345√

0.53452 + 0.53452
= 0.7071

and derive the rotation matrix as

[T3,0(θ)] =


1 0 0 0
0 1 0 0
0 0 cos(θ) sin(θ)
0 0 − sin(θ) cos(θ)

 =


1 0 0 0
0 1 0 0
0 0 0.7071 0.7071
0 0 −0.7071 0.7071


By performing the matrix product

[C1] = [T3,0(θ)]
[
CV
4

]
=


0.3780 0.5345 0.5345 0.5345
0.5345 0.4713 −0.1682 −0.6811
0.7559 −0.6005 −0.1483 0.2143

0 −0.3626 0.8149 −0.4522


we obtain the matrix whose element in position (2, 0) has to be nulled. Thus, we redefine

cos (θ) = 0.5345√
0.53452 + 0.75592

= 0.5774 sin (θ) =
0.7559√

0.53452 + 0.75592
= 0.8165

and build the second rotation matrix as

[T2,0(θ)] =


1 0 0 0
0 cos(θ) sin(θ) 0
0 − sin(θ) cos(θ) 0
0 0 0 1

 =


1 0 0 0
0 0.5774 0.8165 0
0 −0.8165 0.5774 0
0 0 0 1


We can therefore perform the matrix product

[C2] = [T2,0(θ)] [C1] =


0.3780 0.5345 0.5345 0.5345
0.9258 −0.2182 −0.2182 −0.2182

0 −0.7315 0.0517 0.6798
0 −0.3626 0.8149 −0.4522


and obtain the matrix whose element in position (1, 0) has to be nulled. Hence, we write

cos (θ) = 0.3780√
0.37802 + 0.92582

= 0.3780 sin (θ) =
0.9258√

0.37802 + 0.92582
= 0.9258

and construct the third rotation matrix as

[T1,0(θ)] =


cos(θ) sin(θ) 0 0

− sin(θ) cos(θ) 0 0
0 0 1 0
0 0 0 1

 =


0.3780 0.9258 0 0

−0.9258 0.3780 0 0
0 0 1 0
0 0 0 1


68

4 – DCT5 via Givens Rotations

We can now perform the matrix product

[C3] = [T1,0(θ)] [C2] =


1 0 0 0
0 −0.5774 −0.5774 −0.5774
0 −0.7315 0.0517 0.6798
0 −0.3626 0.8149 −0.4522


and obtain the matrix whose element in position (3, 1) has to be nulled. Therefore, we
impose

cos (θ) = −0.7315√
(−0.7315)2 + (−0.3626)2

= −0.8960

sin (θ) =
−0.3626√

(−0.7315)2 + (−0.3626)2
= −0.4441

and get the fourth rotation matrix as

[T3,1(θ)] =


1 0 0 0
0 1 0 0
0 0 cos(θ) sin(θ)
0 0 − sin(θ) cos(θ)

 =


1 0 0 0
0 1 0 0
0 0 −0.8960 −0.4441
0 0 0.4441 −0.8960


Hence, we perform the matrix product

[C4] = [T3,1(θ)] [C3] =


1 0 0 0
0 −0.5774 −0.5774 −0.5774
0 0.8165 −0.4082 −0.4082
0 0 −0.7071 0.7071


and derive the matrix whose element in position (2, 1) has to be nulled. Thus, we redefine

cos (θ) = −0.5774√
(−0.5774)2 + 0.81652

= −0.5774

sin (θ) =
0.8165√

(−0.5774)2 + 0.81652
= 0.8165

and build the fifth rotation matrix as

[T2,1(θ)] =


1 0 0 0
0 cos(θ) sin(θ) 0
0 − sin(θ) cos(θ) 0
0 0 0 1

 =


1 0 0 0
0 −0.5774 0.8165 0
0 −0.8165 −0.5774 0
0 0 0 1


Hence, we can perform the matrix product

[C5] = [T2,1(θ)] [C4] =


1 0 0 0
0 1 0 0
0 0 0.7071 0.7071
0 0 −0.7071 0.7071


69

4 – DCT5 via Givens Rotations

and obtain the matrix whose element in position (3, 2) has to be nulled. Thus, we set

cos (θ) = 0.7071√
0.70712 + (−0.7071)2

= 0.7071

sin (θ) =
−0.7071√

0.70712 + (−0.7071)2
= −0.7071

and construct the last rotation matrix as

[T3,2(θ)] =


1 0 0 0
0 1 0 0
0 0 cos(θ) sin(θ)
0 0 − sin(θ) cos(θ)

 =


1 0 0 0
0 1 0 0
0 0 0.7071 −0.7071
0 0 0.7071 0.7071


The matrix [R] is then obtained by performing the matrix product

[R] = [T3,2(θ)] [C5] =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = [I4]

Hence, we have
[T3,2] [T2,1] [T3,1] [T1,0] [T2,0] [T3,0]

[
CV
4

]
= [I4]

As a consequence, we can write[
CV
4

]
= [T3,0]

T [T2,0]
T [T1,0]

T [T3,1]
T [T2,1]

T [T3,2]
T

=
[
T̂3,0

] [
T̂2,0

] [
T̂1,0

] [
T̂3,1

] [
T̂2,1

] [
T̂3,2

]
We have therefore found the factorization of

[
CV
4

]
into planar rotations. In particular, the

needed rotation matrices are:

[
T̂3,0

]
=


1 0 0 0
0 1 0 0
0 0 0.7071 −0.7071
0 0 0.7071 0.7071

 [
T̂2,0

]
=


1 0 0 0
0 0.5774 −0.8165 0
0 0.8165 0.5774 0
0 0 0 1


[
T̂1,0

]
=


0.3780 −0.9258 0 0
0.9258 0.3780 0 0

0 0 1 0
0 0 0 1

 [
T̂3,1

]
=


1 0 0 0
0 1 0 0
0 0 −0.8960 0.4441
0 0 −0.4441 −0.8960


[
T̂2,1

]
=


1 0 0 0
0 −0.5774 −0.8165 0
0 0.8165 −0.5774 0
0 0 0 1

 [
T̂3,2

]
=


1 0 0 0
0 1 0 0
0 0 0.7071 0.7071
0 0 −0.7071 0.7071


It should be highlighted that six rotations are required to compute a 4-point DCT5.

In general, an N -point DCT5 needs N2

2 − N
2 rotations to be computed. Moreover, each

rotation can be performed by means of four multiplications and two additions or three
multiplications and three additions.

70

Chapter 5

DCT5 via Direct Factorization

The aim of this chapter is to present algorithms based on a direct factorization of
the DCT5. In particular, the direct factorization obtained in [20] will be firstly analyzed.
Hence, by making use of this result, an algorithm will be derived for the 8-point DCT5.
Moreover, an algorithm for the 32-point DCT5 will be presented in appendix C by referring
to the results reported in [13], [21] and [14].

5.1 Direct Factorization of the DCT5

The factorization proposed in [20] is the following one:

[
CV
3m+2

]
=

[
Q3m+2

m

]([
CV
m+1

]
⊕

[
CIII
2m+1

(
2

3

)])[
B

(C5)
3m+2

]
(5.1)

where

•
[
CV
3m+2

]
is the non-normalized (3m+ 2)-point DCT5 matrix;

•
[
Q3m+2

m

]
is a permutation matrix;

•
[
CV
m+1

]
is the non-normalized (m+ 1)-point DCT5 matrix;

• ⊕ is the direct sum operator;

•
[
CIII
2m+1

(
2
3

)]
is a non-normalized (2m+ 1)-point skew-DCT3 matrix;

•
[
B

(C5)
3m+2

]
is a base change matrix.

In the following, each of the elements present in the equation will be analyzed.

71

5 – DCT5 via Direct Factorization

5.1.1 Permutation matrix
The permutation matrix

[
Q3m+2

m

]
is such that:

[
Q3m+2

m

]
= i1 + 3i2 7→


i2 for i1 = 0

2i2 +m+ 1 for i1 = 1

2i2 +m+ 2 for i1 = 2

This means that the row whose index is i1 + 3i2 has a one in position:

• i2 if i1 = 0
• 2i2 +m+ 1 if i1 = 1
• 2i2 +m+ 2 if i1 = 2

We can, for instance, consider N = 3m + 2 = 8. The position of the ones of the
permutation matrix is reported in table 5.1.

Table 5.1: Rows and columns of the ones of the permutation matrix for N = 8

Row (i1,i2) Column computation Column
0 = 0 + 3× 0 (0,0) i2 = 0 0
1 = 1 + 3× 0 (1,0) 2× 0 + 2 + 1 3
2 = 2 + 3× 0 (2,0) 2× 0 + 2 + 2 4
0 = 0 + 3× 1 (0,1) i2 = 1 1
4 = 1 + 3× 1 (1,1) 2× 1 + 2 + 1 5
5 = 2 + 3× 1 (2,1) 2× 1 + 2 + 2 6
6 = 0 + 3× 2 (0,2) i2 = 2 2
7 = 1 + 3× 2 (1,2) 2× 2 + 2 + 1 7

Hence, for this particular case, the permutation matrix is

[
Q8

2

]
=



1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1


5.1.2 Non-normalized DCT5 matrix

The non-normalized DCT5 matrix is equal to the normalized DCT5 matrix except for
the following facts:

• the multiplicative constant equal to 2√
2N−1

in the normalized form is equal to one
in the non-normalized matrix;

72

5 – DCT5 via Direct Factorization

• all the elements of the column 0 are equal to one in the non-normalized form;
• all the elements of the row 0 are equal to one in the non-normalized form.

Hence, the non-normalized DCT5 matrix is:

[
CV
N

]
=



1 1 1 · · · 1

1 cos
(

2π
2N−1

)
cos

(
4π

2N−1

)
· · · cos

(
(N − 1) 2π

2N−1

)
1 cos

(
4π

2N−1

)
cos

(
8π

2N−1

)
· · · cos

(
2(N − 1) 2π

2N−1

)
...

...
...

. . .
...

1 cos
(
(N − 1) 2π

2N−1

)
cos

(
2(N − 1) 2π

2N−1

)
· · · cos

(
(N − 1)2 2π

2N−1

)


5.1.3 Direct sum operator

The direct sum operator is such that, given the matrices [A] and [B]:

[A]⊕ [B] =

[
[A]

[B]

]

5.1.4 Non-normalized skew-DCT3 matrix

The non-normalized skew-DCT3 matrix can be obtained from the DCT3 matrix as
follows: [

CIII
NDCT3(r)

]
=

[
CIII
NDCT3

] [
X

(C3)
NDCT3

(r)
]

where:

•
[
CIII
NDCT3

]
is the non-normalized NDCT3 ×NDCT3 DCT3 matrix. More in detail, the

non-normalized DCT3 of a given sequence {xk} of length NDCT3 is defined as:

Y III
n =

NDCT3−1∑
k=0

xk cos
(
(n+ 1/2)k

π

NDCT3

)
for n = 0,1, . . . ,NDCT3 − 1

Hence, the non-normalized DCT3 matrix is:

[
CIII
NDCT3

]
=



1 cos
(
1
2

π
NDCT3

)
. . . cos

(
NDCT3−1

2
π

NDCT3

)
1 cos

(
3
2

π
NDCT3

)
. . . cos

(
3(NDCT3−1)

2
π

NDCT3

)
1 cos

(
5
2

π
NDCT3

)
. . . cos

(
5(NDCT3−1)

2
π

NDCT3

)
...

...
. . .

...

1 cos
(
2NDCT3−1

2
π

NDCT3

)
. . . cos

(
(2NDCT3−1)(NDCT3−1)

2
π

NDCT3

)


73

5 – DCT5 via Direct Factorization

•
[
X

(C3)
NDCT3

(r)
]

is a matrix defined as follows:

[
X

(C3)
NDCT3

(r)
]
=



1 0 0
0 c1 sNDCT3−1

...
.

.

... . .
. . . .

0 s1 cNDCT3−1


where:

– cl = cos
(
(1/2−r)lπ
NDCT3

)
– sl = sin

(
(1/2−r)lπ
NDCT3

)
5.1.5 Base change matrix

The base change matrix is defined as:

[
B

(C5)
3m+2

]
=


1 1

[Im] [Jm] [Im]

−1/2
[I2m+1] − [Im]

− [Jm]


where

• [In] is the n-point identity matrix:

[In] =


1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 1


• [Jn] is the n-point backward identity matrix:

[Jn] =


0 0 . . . 0 1
0 0 . . . 1 0
...

... . .
. ...

...
0 1 . . . 0 0
1 0 . . . 0 0


74

5 – DCT5 via Direct Factorization

5.2 Direct Factorization of the DCT5 (N = 8)
The factorization described in section 5.1 can be applied to the 8-point DCT5. More

in detail, it can be written:[
CV
8

]
=

[
Q8

2

]([
CV
3

]
⊕

[
CIII
5

(
2

3

)])[
B

(C5)
8

]
In the following each of the terms present in the right-side of the equation will be described.

5.2.1 Eight-point permutation matrix
The permutation matrix can be obtained by following the procedure illustrated in

section 5.1.1. Hence, the matrix is:

[
Q8

2

]
=



1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1


5.2.2 Three-point non-normalized DCT5 matrix

The 3-point DCT5 matrix is defined as:

[
CV
3

]
=

1 1 1
1 cos

(
2π
5

)
cos

(
4π
5

)
1 cos

(
4π
5

)
cos

(
8π
5

)


According to what is described in the previous chapters, several low-complexity algo-
rithms can be adopted for the computation of the 3-point DCT5. One algorithm is also
found in [21]. In the following, the algorithm will be presented.

Low-complexity algorithm for 3-point DCT5

The algorithm is shown in the SFG depicted in figure 5.1. The values of the constants
are instead reported in table 5.2. Finally, the operations needed are listed in table 5.3.

Table 5.2: Constants for the 3-point DCT5 algorithm

Constant Value
C1 −0.250 00
C2 0.559 02

75

5 – DCT5 via Direct Factorization

C1

C2

x0

x1

x2

Y0

Y1

Y2

Figure 5.1: 3-Point DCT5 SFG

Table 5.3: Algorithm for the 3-point DCT5

Op. Name Operation
a0 x1 + x2
a1 x1 − x2
Y0 a0 + x0

Op. Name Operation
M1 a0C1

M2 a1C2

a2 M1 + x0

Op. Name Operation
Y1 a2 +M2

Y2 a2 −M2

5.2.3 Five-point non-normalized skew-DCT3 matrix
The 5-point non-normalized skew-DCT3 matrix can be obtained as[

CIII
5

(
2

3

)]
=

[
CIII
5

] [
X

(C3)
5

(
2

3

)]
where

•
[
CIII
5

]
=


1 cos

(
π
10

)
cos

(
2π
10

)
cos

(
3π
10

)
cos

(
4π
10

)
1 cos

(
3π
10

)
cos

(
6π
10

)
cos

(
9π
10

)
cos

(
12π
10

)
1 cos

(
5π
10

)
cos

(
10π
10

)
cos

(
15π
10

)
cos

(
20π
10

)
1 cos

(
7π
10

)
cos

(
14π
10

)
cos

(
21π
10

)
cos

(
28π
10

)
1 cos

(
9π
10

)
cos

(
18π
10

)
cos

(
27π
10

)
cos

(
36π
10

)



•
[
X

(C3)
5

(
2
3

)]
=


1 0 0 0 0
0 cos

(
− π

30

)
0 0 sin

(
−4π

30

)
0 0 cos

(
−2π

30

)
sin

(
−3π

30

)
0

0 0 sin
(
−2π

30

)
cos

(
−3π

30

)
0

0 sin
(
− π

30

)
0 0 cos

(
−4π

30

)


A possible low-complexity algorithm for the 5-point DCT3 is reported in [21]. In the

following, the algorithm will be presented.

Low-complexity algorithm for 5-point DCT3

The algorithm is shown in the SFG depicted in figure 5.2. Moreover, the values of the
constants are reported in table 5.4 and the list of operations needed is in table 5.5.

76

5 – DCT5 via Direct Factorization

x0

x2

x1

x4

x3

C1

C2

C3

C4

C5

Y2

Y1

Y3

Y4

Y0

Figure 5.2: Non-normalized 5-Point DCT3 SFG

Table 5.4: Constants for the 5-point DCT3 algorithm

Constant Value
C1 −1.250 00
C2 1.538 84
C3 −0.559 02
C4 0.951 06
C5 −0.363 27

Table 5.5: Algorithm for the non-normalized 5-point DCT3

Op. Name Operation
a0 x4 − x2
Y2 a0 + x0
a2 x2 + x4
a3 −x1 − x3
M1 C1a0
M2 C2x1

Op. Name Operation
M3 C3a2
M4 C4a3
M5 −C5x3
a4 M1 + Y2
a5 a4 +M3

a6 a4 −M3

Op. Name Operation
a7 M2 +M4

Y1 a5 + a7
Y3 a5 − a7
a10 M4 +M5

Y4 a6 + a10
Y0 a6 − a10

77

5 – DCT5 via Direct Factorization

5.2.4 Eight-point base change matrix
The 8-point base change matrix is

[
B

(C5)
8

]
=


1 1

[I2] [J2] [I2]

−1/2
[I5] − [I2]

− [J2]

 =



1 0 0 0 0 1 0 0
0 1 0 0 1 0 1 0
0 0 1 1 0 0 0 1
1 0 0 0 0 −1

2 0 0
0 1 0 0 0 0 −1 0
0 0 1 0 0 0 0 −1
0 0 0 1 0 0 0 −1
0 0 0 0 1 0 −1 0


5.2.5 Computational Complexity

The computational complexity is reduced to 15 multiplications and 33 additions.

78

Chapter 6

Comparison of the algorithms

This chapter presents a comparison of the algorithms considered until now. More
in detail, the algorithms will be compared as far as the computational complexity, the
regularity and modularity and the number of cascaded multipliers are concerned. The
computational complexity is calculated for the “unfolded form”of the algorithms.

6.1 Algorithms for the 4-point DCT5: a comparison

The computational complexity of the algorithms for the 4-point DCT5 is reported in
table 6.1.

Table 6.1: Number of additions and multiplications needed by the algorithms for the normalized
4-point DCT5

Algorithm Number of multiplications Number of additions
Matrix-Vector Multiplication 16 12

Circular Convolution 6 14
DFT (WFTA) 7 13

DFT (Bluestein+Radix 2 DIT) 128 466
DFT (Rader+PFA) 36 87

DCT2 7 13
Givens Rotations 18 18

The algorithm that requires the lowest number of multiplications is the one derived
from the circular convolution (reported in table 2.6 at page 13). The algorithms derived
from the WFTA and the DCT2 only need 13 additions but 7 multiplications. Moreover,
the algorithm which makes use of the Givens rotations is characterized by a computational
complexity higher than the direct implementation of the matrix-vector multiplication. Fur-
thermore, Bluestein’s algorithm and Rader’s algorithm have high levels of computational

79

6 – Comparison of the algorithms

complexity even though they are the only ones which exhibit a particularly regular struc-
ture. Finally, it should be considered that Bluestein’s algorithm and Rader’s algorithm are
characterized by the presence of several cascaded multipliers. This is important because
the presence of cascaded multipliers determine an increase of the parallelism when the
fixed-point algorithm is generated.

6.2 Algorithms for the 8-point DCT5: a comparison

The computational complexity of the algorithms for the 8-point DCT5 is reported in
table 6.2.

Table 6.2: Number of additions and multiplications needed by the algorithms for the normalized
8-point DCT5

Algorithm Number of multiplications Number of additions
Matrix-Vector Multiplication 64 56

DFT (WFTA) 11 29
DFT (PFA N1 = 3, N2 = 5) 21 36
DFT (PFA N1 = 5, N2 = 3) 18 32

DFT (Bluestein+Radix 2 DIT) 344 1210
DCT2 (PFA N1 = 3, N2 = 5) 21 36
DCT2 (PFA N1 = 5, N2 = 3) 18 32

Direct Factorization 19 33

The lowest computational complexity is reached by the algorithm derived from the
WFTA (presented in table 2.11 at page 22). An increase in the regularity of the structure
determine an increase of the number of needed multiplications and additions. This is par-
ticularly true for the algorithms derived from PFA and DCT2. Moreover these algorithms
are characterized by the presence of cascaded multipliers that cause an increase of the
parallelism in the fixed-point implementation. Cascaded multipliers are also present in
the algorithm obtained from the direct factorization of the DCT5. Finally, even though
Bluestein’s algorithm is the one characterized by the highest level of modularity, its com-
putational complexity is too high to make the algorithm appropriate for any reasonable
application.

6.3 Algorithms for the 16-point DCT5: a comparison

The computational complexity of the algorithms for the 16-point DCT5 is reported in
table 6.3.

The lowest computational complexity is reached by the algorithms described in sec-
tions A.1.1 and B.1. Also in this case, even if Bluestein’s and Rader’s algorithms are
characterized by a good level of modularity that, for instance, allows the computation of

80

6 – Comparison of the algorithms

Table 6.3: Number of additions and multiplications needed by the algorithms for the normalized
16-point DCT5

Algorithm Number of multiplications Number of additions
Matrix-Vector Multiplication 256 240
DFT (Selesnick and Burrus) 43 165

DFT (Bluestein+Radix 2 DIT) 872 2986
DFT (Rader+PFA+WFTA) 236 904

DCT2 (Spiral) 72 144

the 8-point DCT5, their computational complexity is too high to take them into consid-
eration. Finally, it should be underlined that the algorithm described in section A.1.1 is
the only one that is not characterized by the presence of cascaded multipliers (except for
the ones needed for the pre-and post-normalization).

6.4 Algorithms for the 32-point DCT5: a comparison
The computational complexity of the algorithms for the 32-point DCT5 is reported in

table 6.4.

Table 6.4: Number of additions and multiplications needed by the algorithms for the normalized
32-point DCT5

Algorithm Number of multiplications Number of additions
Matrix-Vector Multiplication 1024 992

DFT (WFTA) 52 304
DFT (PFA N1 = 9, N2 = 7) 105 330
DFT (PFA N1 = 7, N2 = 9) 99 326

DFT (Bluestein+Radix 2 DIT) 2120 6602
DCT2 (PFA N1 = 7, N2 = 9) 93 302
DCT2 (PFA N1 = 9, N2 = 7) 103 320

Direct Factorization 149 296

The lowest computational complexity is reached by the algorithm based on the WFTA.
Also in this case, an increase in the regularity of the structure determine an increase of
the computational complexity as demonstrated by the algorithms derived from the DFT
and the DCT2 via PFA. A regular structure is also present in the algorithm obtained
from the direct factorization of the DCT5. Moreover, this algorithm, as well as the ones
obtained from the PFA, allows also the computation of the 4-point DCT5. Finally, even
if Bluestein’s algorithm is characterized by a high level of regularity and by the presence
of submodules that can be shared for the computation of the DCT5 of other lengths, its
complexity is higher than the one required by the direct implementation of the matrix-
vector multiplication. Furthermore, except for the one derived from the WFTA whose

81

6 – Comparison of the algorithms

cascaded multiplications are only due to the pre- and post-normalization, all the algorithms
are characterized by the presence of several cascaded multipliers.

82

Chapter 7

16-Point DCT5 Implementation

This chapter is devoted to describing the development of an integrated circuit,
which can be used to compute the 16-point DCT5. First of all, an algorithm is selected
among those presented in the previous chapters. Starting from the selected algorithm, a
fixed-point version is obtained and implemented in C language. The C-model is therefore
included in the JEM software and the performances are evaluated by performing simu-
lations. The architecture is then developed and tested. Finally, the circuit is synthesized
and its timing performances are analyzed as well as the occupied area and the power
cosumption.

7.1 Algorithm Selection

Taking into account the computational complexities reported in table 6.3, the algo-
rithm that requires the lowest number of operations is the one obtained by following the
procedure presented in section A.1.1. Moreover, apart from the multiplications needed for
the pre- and post-normalization, this does not require cascaded multipliers. Hence, this
algorithm is selected among the possible ones. A MatLab implementation of the floating-
point version of the algorithm is reported in appendix D.

7.2 Fixed-Point Algorithm

The fixed-point version of the algorithm is derived by converting the fractional con-
stants into integer constants. In particular, the generic integer constant Ĉi is obtained
from the fractional constant Ci by using the following equation:

Ĉi = ⌊Ci × 29 + 0.5⌋

A MatLab implementation of the fixed-point version of the algorithm is also reported in
appendix D.

83

7 – 16-Point DCT5 Implementation

7.3 C-Model

The C-Model is obtained by converting the fixed-point version of the algorithm (pre-
sented in section D.2) in C language. In particular, the type of each variable must be
defined so that no overflow occurs when inputs of type int are supplied.

7.4 JEM Simulations

The JEM software provides an implementation of the 16-point DCT5 in the function
“fastForwardDCT5_B16”described in the file “TComTrQuant.cpp”. This is the direct im-
plementation of the matrix-vector multiplication. The C-Model of the new algorithm can
therefore be substituted to the proposed one and the JEM simulation can be performed
with both the original model and the C-Model obtained as described in section 7.3. In
particular, the encoder behavior can be simulated by using the configuration files “en-
coder_intra_jvet10.cfg”and “RaceHorsesC.cfg”and considering the test sequence “Race-
Horses_832x480_30.yuv”. The configuration files can be specified when the executable
“TAppEncoderStatic”is launched. Another parameter is also needed. This parameter is
QP and must be set equal to one of the following values: 22, 27, 32, 37. The obtained
values of PSNR are reported in table 7.1.

Table 7.1: PSNR and Bit Rate for different values of QP obtained by applying the direct imple-
mentation of the matrix-vector multiplication (MVM) and the new algorithm

QP MVM New Algorithm
BitRate PSNR BitRate PSNR

22 1758.3734 43.1979 1758.8384 43.1973
27 1056.7232 39.9631 1056.6789 39.9637
32 611.4884 36.8599 611.4947 36.8592
37 315.3521 33.6566 315.4666 33.6598

The Bjøntegaard delta (table 7.2) can therefore be computed from the values of PSNR
shown in table 7.1.

Table 7.2: Bjøntegaard Delta

∆Bjøntegaard

DSNR Rate
−1.6300× 10−4 −6.0479× 10−5

84

7 – 16-Point DCT5 Implementation

7.5 Architecture Development
In order to optimize the circuit, the RAGn technique is used to implement each mul-

tiplication. By adopting this technique, the circuit requires no multipliers and only 249
adders/subtractors (except for the ones used to implement the sign changes).

Moreover, the number of bits needed at each node is analyzed by performing a simu-
lation. According to the JEM specifications, the inputs are represented by using 16 bits.
Hence, in order to obtain the number of bits required at each node, the following inputs
are supplied:

• 10000 vectors whose elements belong to the range [−32768, 32767];

• vectors obtained by considering all the possible combinations of elements equal to
-32768 or 32767.

Finally, input and output registers are inserted for each input and output signal.

7.6 HDL Description and Simulation
The architecture presented in section 7.5 is described in VHDL and simulated by us-

ing the software ModelSim. More in detail, the inputs used in the test-bench are obtained
by modifying the JEM software so that the values inputted to the function “fastForward-
DCT5_B16”are printed to a file. The file containing the input values is therefore generated
by running the executable “TAppEncoderStatic”(as described in section 7.4) for a limited
amount of time.

7.7 Logic Synthesis
The circuit is synthesized with Synopsys Design Compiler using the NanGate FreePDK45

Open Cell Library. The results concerning the area and the timing performances are re-
ported in tables 7.3 and 7.4.

Table 7.3: Synthesis Results

Minimum Clock Period Equivalent number of gates
(ns)
4.20 56 745

Table 7.4: Area Estimation

Combinational Area Buf/Inv Area Noncombinational Area Total Cell Area
45 282.2 6825.6 3664.9 48 947.2

85

7 – 16-Point DCT5 Implementation

7.8 Post-synthesis simulation and power estimation
The synthesized circuit is simulated in order to also estimate the switching activity at

each node and the obtained results are printed in a saif file. This is used to evaluate the
power consumption and the obtained results are reported in table 7.5.

Table 7.5: Power Consumption Estimation @ 59.5 MHz

mW %
Cell Internal Power 2.5262 37.0
Net Switching Power 3.0854 45.1
Total Dynamic Power 5.6116 82.1
Cell Leakage Power 1.2255 17.9

Total Power 6.8372

86

Appendix A

DCT5 via DFT for longer lengths

This appendix presents how the DCT5 can be computed via DFT for N = 16 and
N = 32.

A.1 WFTA for longer lengths
This section shows how the WFTA can be applied to the DCT5 for N = 16 and

N = 32.

A.1.1 WFTA for DCT5 (N = 16)

A DCT5 of length 16 can be mapped into a DFT of length 31 as described in section 2.1.
In particular, the DCT5 equation can be written as

Yn = c16TnRe(YFn) for n = 0,1,...,15 (A.1)

where

• c16 = 2√
31

• Re(YFn) = Re
(

30∑
k=0

lke−jnk 2π
31

)
and

l =
[
l0 l1 l2 l3 . . . l14 l15 l16 l17 l18 . . . l27 l28 l29 l30

]T

=
[
x̂0 0 x̂2 0 . . . x̂14 0 x̂15 0 x̂13 . . . 0 x̂3 0 x̂1

]T

=
[
x0√
2

0 x2 0 . . . x14 0 x15 0 x13 . . . 0 x3 0 x1
]T

Equation A.1 can be further rearranged to give

Yn = TnRe(c16YFn) = TnRe(ŶFn)

87

A – DCT5 via DFT for longer lengths

where

ŶF =

 ŶF0

...

ŶF30

 = c16 [S31] [C31] [T31] l = [S31]
[
Ĉ31

]
[T31] l

More in detail, the matrices [S31],
[
Ĉ31

]
and [T31] can be found according to the

following steps:

1. the DFT is expressed as a function of a circular convolution by using Rader’s theo-
rem;

2. the circular convolution is solved by making use of the Winograd short convolution
algorithms.

Nevertheless, this procedure is cumbersome and leads to an algorithm that requires a
large number of sums. A better method to solve this DFT was proposed by Selesnick and
Burrus ([22], [23]). This can be efficiently used to compute the DCT5. In fact, several
simplifications can be made. These are due to the following facts:

1. the input sequence is real;
2. 15 out of 31 inputs are equal to zero;
3. the computation of only the real part of the DFT is needed.

By taking these aspects into account, the method yields an algorithm that only requires
42 multiplications and 165 sums.

A.1.2 WFTA for DCT5 (N = 32)
A DCT5 of length 32 can be mapped into a DFT of length 63 as described in section 2.1.

In particular, the DCT5 equation can be written as

Yn = c32TnRe(YFn) for n = 0,1,...,31 (A.2)

where

• c32 = 2√
63

• Re(YFn) = Re
(

62∑
k=0

lke−jnk 2π
63

)
and

l =
[
l0 l1 l2 l3 l4 . . . l29 l30 l31 l32 l33 l34 l35 . . . l60 l61 l62

]T

=
[
x̂0 0 x̂2 0 x̂4 . . . 0 x̂30 0 x̂31 0 x̂29 0 . . . x̂3 0 x̂1

]T

=
[
x0√
2

0 x2 0 x4 . . . 0 x30 0 x31 0 x29 0 . . . x3 0 x1
]T

Equation A.2 can be further rearranged to give

Yn = TnRe(c32YFn) = TnRe(ŶFn)

88

A – DCT5 via DFT for longer lengths

The elements of ŶF are contained in the matrix [Z] which is calculated by applying the
equation

[Z] = c32 [S7] ([S9] [C9×7] ◦ [T9] ([T7] [z])
T)T = [S7]

(
[S9]

[
Ĉ9×7

]
◦ [T9] ([T7] [z])

T
)T

where [
Ĉ9×7

]
= c32 [C9×7]

This equation yields an algorithm which is composed of five main steps:

• Pre-Normalization

• Pre-Additions

• Multiplications

• Post-Additions

• Post-Normalization

The algorithm can be derived by following the same procedure presented for the case
N = 8. More in detail, the matrices [T7], [S7] and [C7] are the same adopted for the case
N = 4. On the other hand,

[T9] =



1 1 1 1 1 1 1 1 1
0 0 0 1 0 0 1 0 0
0 1 1 0 1 1 0 1 1
0 1 −1 0 0 0 0 −1 1
0 0 1 0 −1 −1 0 1 0
0 −1 0 0 1 1 0 0 −1
0 1 −1 0 1 −1 0 1 −1
0 0 0 1 0 0 −1 0 0
0 −1 −1 0 0 0 0 1 1
0 0 −1 0 −1 1 0 1 0
0 1 0 0 −1 1 0 0 −1



[S9] =



1 0 0 0 0 0 0 0 0 0 0
1 −1 2 1 1 0 0 1 1 1 0
1 −1 2 0 −1 1 0 −1 0 1 −1
1 0 3 0 0 0 1 0 0 0 0
1 −1 2 −1 0 −1 0 1 −1 0 −1
1 −1 2 −1 0 −1 0 −1 1 0 1
1 0 3 0 0 0 −1 0 0 0 0
1 −1 2 0 −1 1 0 1 0 −1 1
1 −1 2 1 1 0 0 −1 −1 −1 0



89

A – DCT5 via DFT for longer lengths

and [C9] is a diagonal matrix whose main diagonal contains the elements of the vector

C9 =



1
1.5
−0.5

1
3 [2 cos (θ)− cos (2θ)− cos (4θ)]
1
3 [cos (θ) + cos (2θ)− 2 cos (4θ)]
1
3 [cos (θ)− 2 cos (2θ) + cos (4θ)]

j sin(3θ)
j sin(3θ)
−j sin(θ)
−j sin(4θ)
−j sin(2θ)



θ = −2π

9

It should be highlighted that the matrix [S9] contains elements that are not equal to
0, 1 or -1. This form of the matrix can be used to minimize the number of multiplications
by introducing shift operations.

Pre-Normalization

The multiplication
Mn1 = x̂0 = Cnormx0 =

1√
2
x0

is performed.

Pre-Additions

The additions related to this step are obtained by performing the matrix products

[A] = [T9] ([T7] [z])
T

The matrix [A] is composed of 99 elements. Each element Ai,j of the matrix [A] needs
additions to be performed. More in detail:

[A] =



A0,0 A0,1 A0,2 A0,3 A0,4 U U U U
A1,0 A1,1 A1,2 A1,3 A1,4 U U U U
A2,0 A2,1 A2,2 A2,3 A2,4 U U U U
A3,0 A3,1 A3,2 A3,3 A3,4 U U U U
A4,0 A4,1 A4,2 A4,3 A4,4 U U U U
A5,0 A5,1 A5,2 A5,3 A5,4 U U U U
U U U U U A6,5 A6,6 A6,7 A6,8

U U U U U A7,5 A7,6 A7,7 A7,8

U U U U U A8,5 A8,6 A8,7 A8,8

U U U U U A9,5 A9,6 A9,7 A9,8

U U U U U A10,5 A10,6 A10,7 a10,8


90

A – DCT5 via DFT for longer lengths

where the elements labeled as “U”are only needed for the computation of the imaginary
part of the DFT.

Since the number of required additions is much larger than the one analyzed for the case
N = 8, it cannot be reduced by inspection method. In the following, a possible algorithm
that can be adopted to minimize the number of pre-additions is therefore presented.

Minimization of the number of pre-additions

Each element of the matrix [A] can be described by the equation:

Ai,j =

31∑
k=0

ui,j,kx̂k

where ui,j,k can be equal to 1, 0 or -1. Hence a vector

ui,j =
[
ui,j,0 ui,j,1 ui,j,2 . . . ui,j,30 ui,j,31

]
can be found for each element of the matrix [A].

The vectors ui,j can be gathered into a matrix [w]. Thus, this matrix can be defined
as

[w] =



u0,0

u0,1

...
u0,4

u1,0

...
u10,8


=



w0

w1

...
w4

w5

...
w49


=



w0,0 w0,1 . . . w0,31

w1,0 w1,1 . . . w1,31

...
...

...
w4,0 w4,1 . . . w4,31

w5,0 w5,1 . . . w5,31

...
...

...
w49,0 w49,1 . . . w49,31


The elements related to the computation of the imaginary part of the DFT are not included
in this matrix.

Each couple (wi,j ,wi,k) is therefore analyzed by varying i. Hence, the values assumed
by the couples (w0,0,w0,1), (w1,0,w1,1), …, (w49,0,w49,1) are firstly analyzed. Secondly, the
values assumed by the couples (w0,0,w0,2), (w1,0,w1,2), …, (w49,0,w49,2) are considered and
the process is iterated for all the possible values of j and k. In the end, the couple (ĵ, k̂) is
selected, that is the one that most frequently satisfies one of the following two conditions:

1. (wi,j ,wi,k) = (1, 1) OR (wi,j ,wi,k) = (−1,− 1)
2. (wi,j ,wi,k) = (1,− 1) OR (wi,j ,wi,k) = (−1, 1)

In case more than one couple satisfies one of these conditions with the maximum number
of occurrences, a random number can be generated to select one of those couples.

If the selected couple satisfies condition 1):

• The sum
s1 = x̂ĵ + x̂k̂

is performed.

91

A – DCT5 via DFT for longer lengths

• A new matrix [ŵ] is defined starting from the matrix [w]. More in detail, the matrix
[ŵ] is equal to the matrix [w] except for the fact that the couples (wi,ĵ ,wi,k̂), which
are equal to (1,1) or (-1,-1) in the matrix [w] are set equal to (0,0) in the matrix
[ŵ]. Moreover, a column is added to represent the sum s1. The i-th element of this
column is such that:

ŵi,32 =


0 if (wi,ĵ ,wi,k̂) ̸= (1, 1) AND (wi,ĵ ,wi,k̂) ̸= (−1,− 1)

1 if (wi,ĵ ,wi,k̂) = (1, 1)

−1 if (wi,ĵ ,wi,k̂) = (−1,− 1)

On the other hand, if the selected couple satisfies condition 2):

• The sum
s1 = x̂ĵ − x̂k̂

is performed.
• A new matrix [ŵ] is defined starting from the matrix [w]. More in detail, the matrix

[ŵ] is equal to the matrix [w] except for the fact that the couples (wi,ĵ ,wi,k̂), which
are equal to (1,-1) or (-1,1) in the matrix [w], are set equal to (0,0) in the matrix
[ŵ]. Moreover, a column is added to represent the sum s1. The i-th element of this
column is such that:

ŵi,32 =


0 if (wi,ĵ ,wi,k̂) ̸= (1,− 1) AND (wi,ĵ ,wi,k̂) ̸= (−1, 1)

1 if (wi,ĵ ,wi,k̂) = (1,− 1)

−1 if (wi,ĵ ,wi,k̂) = (−1, 1)

The process described above can be reiterated by considering the matrix [ŵ]. This
obviously implies that the sum s1 has to be considered among the possible elements.
Hence, if k̂ = 32, the sum to be performed is

s2 = x̂ĵ + s1

in case condition 1) is satisfied and

s2 = x̂ĵ − s1

in case condition 2) holds.
In particular, this procedure can be repeated until each line of the matrix contains only

one element different from zero. When this happens, all the additions, needed to compute
all the significant elements of the matrix [A], have been performed.

Moreover, the whole process can be reiterated so that different random numbers can be
generated to select one of the couples that, at each step, satisfy one of the two conditions
with the maximum number of occurrences. The obtained number of pre-additions can
therefore be compared to the one achieved at the end of the previous iterations. Hence,
the set of equations, derived from the iteration that guarantees the lowest number of
pre-additions, can be selected.

92

A – DCT5 via DFT for longer lengths

Multiplications

The multiplications derive from the element-by-element matrix product

[M] =
[
Ĉ9×7

]
◦ [A]

The derivation of the needed multiplications is not reported here since it is analogous to
the one described for the case N = 8.

Post-Additions

The additions related to this step are obtained by performing the matrix products

[Z] = [S7] ([S9] [M])T

The matrix [Z] is composed of 63 elements, which need additions to be performed. More
in detail:

[Z] = Re





ŶF0 ŶF28 U ŶF21 U ŶF14 U ŶF7 U

U ŶF1 ŶF29 U ŶF22 U ŶF15 U ŶF8
ŶF9 U ŶF2 ŶF30 U ŶF23 U ŶF16 U

U ŶF10 U ŶF3 ŶF31 U ŶF24 U ŶF17
ŶF18 U ŶF11 U ŶF4 U U ŶF25 U

U ŶF19 U ŶF12 U ŶF5 U U ŶF26
ŶF27 U ŶF20 U ŶF13 U ŶF6 U U




where the elements labeled as “U”are not needed for the computation of the DCT5. Nev-
ertheless, since the inputs of the DFT are real, these elements are equal to those which are
not labeled as “U”. Moreover, also in this case, the number of required additions is much
larger than the one analyzed for the case N = 8 and consequently it cannot be reduced
by inspection method. In the following, a possible algorithm, which can be adopted to
minimize the number of post-additions, is therefore presented.

Minimization of the number of post-additions

Since

[M] =



M0 M1 M2 M3 M4 U U U U
M5 M6 M7 M8 M9 U U U U
M10 M11 M12 M13 M14 U U U U
M15 M16 M17 M18 M19 U U U U
M20 M21 M22 M23 M24 U U U U
M25 M26 M27 M28 M29 U U U U
U U U U U M30 M31 M32 M33

U U U U U M34 M35 M36 M37

U U U U U M38 M39 M40 M41

U U U U U M42 M43 M44 M45

U U U U U M46 M47 M48 M49


93

A – DCT5 via DFT for longer lengths

each element of the matrix [Z] can be expressed as

Zi,j =

49∑
k=0

ui,j,kMk

where ui,j,k can be equal to -3, -2, -1, 0, 1, 2 or 3. Hence a vector

ui,j =
[
ui,j,0 ui,j,1 ui,j,2 . . . ui,j,48 ui,j,49

]
can be found for each element of the matrix [Z].

Starting from the vector ui,j , a new vector

ni,j =
[
ni,j,0 ni,j,1 . . . ni,j,98 ni,j,99

]
can be defined. The vector ni,j is such that

(ni,j,2k,ni,j,2k+1) =



(−1 , −1) if ui,j,k = −3

(−1 , 0) if ui,j,k = −2

(0 , −1) if ui,j,k = −1

(0 , 0) if ui,j,k = 0

(0 , 1) if ui,j,k = 1

(1 , 0) if ui,j,k = 2

(1 , 1) if ui,j,k = 3

A matrix

[w] =


n0,0

n1,1

...
n2,3

n3,4

 =


w0

w1

...
w30

w31

 =


w0,0 w0,1 . . . w0,99

w1,0 w1,1 . . . w1,99

...
...

...
w30,0 w30,1 . . . w30,99

w31,0 w31,1 . . . w31,99


is then defined.

Each couple (wi,j ,wi,k) is therefore analyzed by varying i. Hence the values assumed
by the couples (w0,0,w0,1), (w1,0,w1,1), …, (w31,0,w31,1) are firstly analyzed. Secondly, the
values assumed by the couples (w0,0,w0,2), (w1,0,w1,2), …, (w31,0,w31,2) are considered and
the process is iterated for all the possible values of j and k. In the end, the couple (ĵ, k̂) is
selected, that is the one that most frequently satisfies one of the following two conditions:

1. (wi,j ,wi,k) = (1, 1) OR (wi,j ,wi,k) = (−1,− 1)
2. (wi,j ,wi,k) = (1,− 1) OR (wi,j ,wi,k) = (−1, 1)

In case more than one couple satisfies one of these conditions with the maximum number
of occurrences, a random number can be generated to select one of those couples.

94

A – DCT5 via DFT for longer lengths

If the selected couple satisfies condition 1):

• The sum s1 is performed according to the following rule:

s1 =



2M ĵ
2

+ 2M k̂
2

if (ĵ mod 2) = 0 AND (k̂ mod 2) = 0

2M ĵ
2

+M⌊ k̂
2
⌋ if (ĵ mod 2) = 0 AND (k̂ mod 2) = 1

M
⌊ ĵ
2
⌋
+ 2M k̂

2

if (ĵ mod 2) = 1 AND (k̂ mod 2) = 0

M
⌊ ĵ
2
⌋
+M⌊ k̂

2
⌋ if (ĵ mod 2) = 1 AND (k̂ mod 2) = 1

• A new matrix [ŵ] is defined starting from the matrix [w]. More in detail, the matrix
[ŵ] is equal to the matrix [w] except for the fact that the couples (wi,ĵ ,wi,k̂), which
are equal to (1,1) or (-1,-1) in the matrix [w] are set equal to (0,0) in the matrix
[ŵ]. Moreover, a column is added to represent the sum s1. The i-th element of this
column is such that:

ŵi,100 =


0 if (wi,ĵ ,wi,k̂) ̸= (1, 1) AND (wi,ĵ ,wi,k̂) ̸= (−1,− 1)

1 if (wi,ĵ ,wi,k̂) = (1, 1)

−1 if (wi,ĵ ,wi,k̂) = (−1,− 1)

On the other hand, if the selected couple satisfies condition 2):

• The sum s1 is performed according to the following rule:

s1 =



2M ĵ
2

− 2M k̂
2

if (ĵ mod 2) = 0 AND (k̂ mod 2) = 0

2M ĵ
2

−M⌊ k̂
2
⌋ if (ĵ mod 2) = 0 AND (k̂ mod 2) = 1

M
⌊ ĵ
2
⌋
− 2M k̂

2

if (ĵ mod 2) = 1 AND (k̂ mod 2) = 0

M
⌊ ĵ
2
⌋
−M⌊ k̂

2
⌋ if (ĵ mod 2) = 1 AND (k̂ mod 2) = 1

• A new matrix [ŵ] is defined starting from the matrix [w]. More in detail, the matrix
[ŵ] is equal to the matrix [w] except for the fact that the couples (wi,ĵ ,wi,k̂), which
are equal to (1,-1) or (-1,1) in the matrix [w], are set equal to (0,0) in the matrix
[ŵ]. Moreover, a column is added to represent the sum s1. The i-th element of this
column is such that:

ŵi,100 =


0 if (wi,ĵ ,wi,k̂) ̸= (1, − 1) AND (wi,ĵ ,wi,k̂) ̸= (−1, 1)

1 if (wi,ĵ ,wi,k̂) = (1,− 1)

−1 if (wi,ĵ ,wi,k̂) = (−1, 1)

The process described above can be reiterated by considering the matrix [ŵ]. This
obviously implies that the sum s1 has to be considered among the possible elements. In
particular, this procedure can be repeated until each line of the matrix contains only one

95

A – DCT5 via DFT for longer lengths

element different from zero. When this happens, all the additions needed to compute all
the significant elements of the matrix [Z], have been performed.

Moreover, the whole process can be reiterated so that different random numbers can be
generated to select one of the couples which, at each step, satisfy one of the two conditions
with the maximum number of occurrences. The obtained number of post-additions can
therefore be compared to the one achieved at the end of the previous iterations. Hence,
the set of equations derived from the iteration, which guarantees the lowest number of
post-additions, can be selected.

Post-Normalization

The multiplication
Mn2 = CnormM0 =

1√
2
M0

is performed.

Final Algorithm

The procedure described above yields an algorithm, which requires 52 multiplications,
304 sums and 5 shifts.

A.2 PFA for longer lengths
This section presents how the DCT5 can be computed via PFA for N = 32.

A.2.1 PFA for DCT5 (N = 32)
A DCT5 of length 32 can be mapped into a DFT of length 63 as described in section 2.1.

In particular, the DCT5 equation can be written as

Yn = c32TnRe(YFn) for n = 0,1,...,31

where

• c32 = 2√
63

• Re(YFn) = Re
(

62∑
k=0

lke−jnk 2π
63

)
and

l =
[
l0 l1 l2 l3 . . . l29 l30 l31 l32 l33 l34 l35 . . . l60 l61 l62

]T

=
[
x̂0 0 x̂2 0 . . . 0 x̂30 0 x̂31 0 x̂29 0 . . . x̂3 0 x̂1

]T

=
[
x0Tk|k=0 0 x2 0 . . . 0 x30 0 x31 0 x29 0 . . . x3 0 x1

]T

=
[
x0√
2

0 x2 0 . . . 0 x30 0 x31 0 x29 0 . . . x3 0 x1
]T

96

A – DCT5 via DFT for longer lengths

For the sake of simplicity, we can neglect c32 and consider:
Tn = 1 Tk = 1 ∀n,k

As a consequence, the vector l can be redefined as
l =

[
l0 l1 l2 l3 . . . l28 l29 l30 l31 l32 l33 l34 l35 . . . l60 l61 l62

]T

=
[
x0 0 x2 0 . . . x28 0 x30 0 x31 0 x29 0 . . . x3 0 x1

]T

The input permutation matrix is therefore applied to this vector in order to obtain the
vector l̂, which is used as input for the first stage of the PFA. Hence, the scheme shown in
figure A.1(a) is derived. The real part of the elements YFn represented in this figure, are
the outputs generated by the DCT5 (considered in non-normalized form). Alternatively,
the scheme presented in figure A.1(b) can be considered.

The simplifications made for the case N = 8 can be adopted also in this case. More-
over, it should be noticed that 7-point DFTs are required in the algorithms presented in
figures A.1(a) and A.1(b). Since a 4-point DCT5 can be mapped into a 7-point DFT,
the modules used to implement the 7-point DFTs can also be employed for the computa-
tion of the 4-point DCT5. Finally, it should be highlighted that the 9-point DFTs can be
implemented by following the Winograd algorithm as well as the Radix-3 algorithm.

A.3 Rader’s algorithm for longer lengths
This section presents how Rader’s algorithm can be adopted to compute the DCT5 for

N = 16.

A.3.1 Rader’s algorithm for DCT5 (N = 16)
A DCT5 of length 16 can be mapped into a DFT of length 31 as described in section 2.1.

In particular, the DCT5 equation can be written as
Yn = c16TnRe(YFn) for n = 0,1, . . . ,15

where
• c16 = 2√

31

• Re(YFn) = Re
(

30∑
k=0

lke−jnk 2π
31

)
and

l =
[
l0 l1 l2 l3 . . . l14 l15 l16 l17 l18 . . . l28 l29 l30

]T

=
[
x̂0 0 x̂2 0 . . . x̂14 0 x̂15 0 x̂13 . . . x̂3 0 x̂1

]T

=
[
x0√
2

0 x2 0 . . . x14 0 x15 0 x13 . . . x3 0 x1
]T

The computation of the DCT5 is therefore translated into the computation of a DFT
of length NDFT = 31. Since NDFT is a prime number, Rader’s algorithm can be adopted
to compute the DFT. Hence, the steps described at page 47 can be followed to compute
the DCT5. In the following, each of these steps will be analyzed.

97

A – DCT5 via DFT for longer lengths

7-POINT

DFT

7-POINT

DFT

7-POINT

DFT

7-POINT

DFT

7-POINT

DFT

7-POINT

DFT

7-POINT

DFT

7-POINT

DFT

7-POINT

DFT

9-POINT

DFT

9-POINT

DFT

9-POINT

DFT

9-POINT

DFT

9-POINT

DFT

9-POINT

DFT

9-POINT

DFT

x0
0
x18
0
x27

0
x9

0
x16
0
x29

0
x11
0

x14
0
x31
0
x13
0
0

0
x30
0
x15
0
0
x12

x28
0
x17
0
0
x10
0

0
x19
0
x1
x8
0
x26

x21

0
x3
x6
0
x24

0

0
x5
x4
0
x22

0
x23

x7
x2
0
x20

0
x25

0

YF0

YF28

YF56

YF21

YF49

YF14

YF42

YF7

YF35

YF36

YF1

YF29

YF57

YF22

YF50

YF15

YF43

YF8

YF9

YF37

YF2

YF30

YF58

YF23

YF51

YF16

YF44

YF45

YF10

YF38

YF3

YF31

YF59

YF24

YF52

YF17

YF18

YF46

YF11

YF39

YF4

YF32

YF60

YF25

YF53

YF54

YF19

YF47

YF12

YF40

YF5

YF33

YF61

YF26

YF27

YF55

YF20

YF48

YF13

YF41

YF6

YF34

YF62

(a) N1 = 9, N2 = 7

7-POINT

DFT

7-POINT

DFT

7-POINT

DFT

7-POINT

DFT

7-POINT

DFT

7-POINT

DFT

7-POINT

DFT

7-POINT

DFT

7-POINT

DFT

9-POINT

DFT

9-POINT

DFT

9-POINT

DFT

9-POINT

DFT

9-POINT

DFT

9-POINT

DFT

9-POINT

DFT

x0
0
x14
0
x28

0
x21

0
x7

0
x16
0
x30
0
x19
0
x5
x2

x18
0
x31
0
x17
0
x3
x4
0

0
x29

0
x15
0
x1
x6
0
x20

x27

0
x13
0
0
x8
0
x22

0

0
x11
0
0
x10
0
x24

0
x25

x9
0
0
x12
0
x26

0
x23

0

YF0

YF36

YF9

YF45

YF18

YF54

YF27

YF28

YF1

YF37

YF10

YF46

YF19

YF55

YF56

YF29

YF2

YF38

YF11

YF47

YF20

YF21

YF57

YF30

YF3

YF39

YF12

YF48

YF49

YF22

YF58

YF31

YF4

YF40

YF13

YF14

YF50

YF23

YF59

YF32

YF5

YF41

YF42

YF15

YF51

YF24

YF60

YF33

YF6

YF7

YF43

YF16

YF52

YF25

YF61

YF34

YF35

YF8

YF44

YF17

YF53

YF26

YF62

(b) N1 = 7, N2 = 9

Figure A.1: PFA for DCT5 with N = 32

98

A – DCT5 via DFT for longer lengths

Computation of YF0

The computation of YF0 is performed according to the following formula:

YF0 =

NDFT−1∑
n=0

ln =
x0√
2
+

15∑
n=1

xn

Hence, Y0 can be obtained from YF0 as follows

Y0 = c16T0Re(YF0) =
2√
31

1√
2
YF0

Definition of a primitive root g of NDFT

A primitive root of 31 is
g = 3

Definition of the vector l̂

The vector l̂ is defined according to the permutation:

l̂n = l(330−n mod 31) for n = 0,1, . . . ,29

Definition of the vector T

The vector T is defined according to the following formula:

Tn = W (3n mod 31) for n = 0,1, . . . ,29

Computation of the circular convolution c of l̂ with T

The circular convolution c can be computed according to the Circular Convolution
Theorem. Hence, we have:

c = IDFT(DFT(l̂) ◦ DFT(T))

Since T contains only constants, TF = DFT(T) can be precomputed. On the contrary, the
DFT of the vector l̂ can be computed according to the WFTA or the PFA. In fact, l̂ has
length M = 30 = 2 × 3 × 5. Therefore, the Winograd short-N DFT modules of length 2,
3 and 5 can be used to compute the DFT. Moreover, the IDFT can be obtained by using
a forward DFT as depicted in figure 2.19.

Computation of the vector ĉ

The vector ĉ is computed according to the following formula:

ĉn = (Re(cn) + l0) c16

99

A – DCT5 via DFT for longer lengths

Definition of the vector Y

The elements [Y1, . . . ,Y15] of the vector Y are stored in the vector ĉ according to the
following permutation:

Y(3n mod 31) = ĉn

Final Algorithm

The procedure described above leads to the architecture depicted in figure A.3. This
architecture is characterized by the presence of fifteen 2-point DFTs and two 15-point
DFTs. Each of the 15-point DFTs is also used to obtain an 8-point DCT5.

The 2-point DFTs can be implemented by using butterfly units with unitary twiddle
factor. On the other hand, the 15-point DFTs can be implemented by adopting the PFA
or the WFTA. In order to minimize the complexity, we suppose that the WFTA is chosen
and implemented according to the scheme reported in figure A.2 [24].

P

E

R

M

U

T

A

T

I

O

N

3

3

3

3

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

3

3

3

3

P

E

R

M

U

T

A

T

I

O

N

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

0
5
10
3
8
13
6
11
1
9
14
4
12
2
7

0
10
5
6
1
11
12
7
2
3
13
8
9
4
14

3-POINT

PRE-WEAVE

MODULE 5-POINT

PRE-WEAVE

MODULE

5-POINT

POST-WEAVE

MODULE

3-POINT

POST-WEAVE

MODULE
MULTIPLICATION

PHASE

5 5

Figure A.2: WFTA for 15-point DFT

The computational complexity can therefore be analyzed by making the assumptions
reported above. In particular, each 15-point DFT module requires 81 complex additions
and 18 complex multiplications. Each complex addition is performed by means of two real
additions. Moreover, since the multiplicative constants are purely real or purely imaginary,
each complex multiplication needs 2 real multiplications. Hence, each 15-point DFT re-
quires 162 real additions and 36 real multiplications. On the other hand, each 2-point DFT
requires 4 real additions. Furthermore, 50 multipliers and 16 adders are needed to pro-
cess the outputs. Finally, 30 complex multiplications must be performed by the constants
stored in the vector TF. Each of these multiplications needs at least 3 real multiplications
and 5 real sums or 4 real multiplications and 2 real sums. The number of multipliers
(Nmult) and adders (Nadd) can therefore be computed as follows:

Nmult = 36× 2 + 50 + 30× 3 = 212

100

A – DCT5 via DFT for longer lengths


0 / 2x
x1
x2

x15

.

.

.

M
U
X

M
U
X

2-POINT
DFT

M
U
X

M
U
X

2-POINT
DFT

M
U
X

M
U
X

2-POINT
DFT

M
U
X

M
U
X

2-POINT
DFT

M
U
X

M
U
X

2-POINT
DFT

M
U
X

M
U
X

2-POINT
DFT

M
U
X

M
U
X

2-POINT
DFT

M
U
X

M
U
X

2-POINT
DFT

M
U
X

M
U
X

2-POINT
DFT

M
U
X

M
U
X

2-POINT
DFT

M
U
X

M
U
X

2-POINT
DFT

M
U
X

M
U
X

2-POINT
DFT

M
U
X

M
U
X

2-POINT
DFT

M
U
X

M
U
X

2-POINT
DFT

M
U
X

M
U
X

2-POINT
DFT

0

x1

0

x7

x13

0

x2

0

x14

0

0

x5

x4

0

x3

0

x10

0

x8

0

0

x6

x11

0

x15

0

0

x12

0

x9

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

2-POINT
DFT

15-POINT
DFT

15-POINT
DFT

M
U
X

M
U
X

0

M
U
X

x2

M
U
X

0

M
U
X

x4

M
U
X

0

M
U
X

x6

M
U
X

0

M
U
X

x7

M
U
X

0

M
U
X

x5

M
U
X

0

M
U
X

x3

M
U
X

0

M
U
X

x1

M
U
X

M
U
X

0

M
U
X

x10

M
U
X

0

M
U
X

x12

M
U
X

0

M
U
X

x14

M
U
X

0

M
U
X

x15

M
U
X

0

M
U
X

x13

M
U
X

0

M
U
X

x11

M
U
X

0

M
U
X

x9

0 / 2x

8 / 2x

×

×

×

×

TF16

TF0

TF2

TF18

×

×

×

×

TF20

TF4

TF6

TF22

×

×

×

TF8

TF24

TF10

×

×

×

×

TF12

TF26

TF28

TF14

×

×

×

×

TF1

TF15

TF17

TF3

×

×

×

×

TF5

TF19

TF21

TF7

×

×

×

TF23

TF9

TF25

×

×

×

×

TF27

TF11

TF13

TF29

Re() ×

16c / 30

+

16 0c / 2x

Y1

Re() ×

16c / 30

+

16 0c / 2x

Y2

Re() ×

16c / 30

+

16 0c / 2x

Y3

Re() ×

16c / 30

+

16 0c / 2x

Y4

Re() ×

16c / 30

+

16 0c / 2x

Y5

Re() ×

16c / 30

+

16 0c / 2x

Y6

Re() ×

16c / 30

+

16 0c / 2x

Y7

Re() ×

16c / 30

+

16 0c / 2x

Y8

Re() ×

16c / 30

+

16 0c / 2x

Y9

Re() ×

16c / 30

+

16 0c / 2x

Y10

Re() ×

16c / 30

+

16 0c / 2x

Y11

Re() ×

16c / 30

+

16 0c / 2x

Y12

Re() ×

16c / 30

+

16 0c / 2x

Y13

Re() ×

16c / 30

+

16 0c / 2x

Y14

Re() ×

16c / 30

+

16 0c / 2x

Y15

Re() ×

Re() ×

Re() ×

Re() ×

Re() ×

Re() ×

Re() ×

Re() ×

8c / 2

8c

8c

8c

8c

8c

8c

8c

8
0Y

8
1Y

8
2Y

8
3Y

8
4Y

8
5Y

8
6Y

8
7Y

× Y0

16c / 2

Figure A.3: Architecture for DCT5 (N = 16) based on Rader and Prime Factor algorithms. Two
8-point DCT5 are also obtained by exploiting the 15-point DFTs. The outputs of only
one of these are reported in the figure.

101

A – DCT5 via DFT for longer lengths

Nadd = 162× 2 + 4× 15 + 16 + 30× 5 = 550

Unfortunately, even if the number of multipliers is lower than the one needed by the
direct implementation of the matrix-vector multiplication, the number of required adders
makes this architecture unpractical for most of applications.

102

Appendix B

DCT5 via DCT2 for longer lengths

This appendix presents how the DCT5 can be computed via DCT2 for N = 16 and
N = 32.

B.1 DCT5 via DCT2 (N = 16)

An algorithm for the 16-point DCT5 can be derived from algorithms for the 31-point
DCT2. More in detail, the computation of a 16-point DCT5 can be translated into the
computation of a 16-point DCT6 as described in section 3.1 and the 16-point DCT6 can
be derived from the 31-point DCT2 as illustrated in section 3.2. The following paragraphs
will illustrate the steps involved in the derivation of the algorithm.

B.1.1 Reordering of the input vector

According to what is described in section 3.1, the input vector x is reordered so that
the vector

xr = [J16]x =


x15
x14
...
x1
x0



is obtained.

103

B – DCT5 via DCT2 for longer lengths

B.1.2 Definition of the vector xR

According to what is described in section 3.2, the vector xR is obtained as

xR =

 [I15] [J15]
1

− [J15] [I15]

−1



x15
x14
...
x1
x0
−x1
...

−x14
−x15


=



x15
0
x13
0
...
x1
x0
0
x2
0
...

x14
0



B.1.3 Computation of the 31-point DCT2

The vector Y II is obtained by computing the DCT2 of the vector xR. A possible
algorithm for the 31-point DCT2 can be produced by using the software Spiral [25]. Several
simplifications can be made to this algorithm. In fact:

1. 15 out of 31 inputs are equal to zero;

2. only the even-indexed outputs of the DCT2 are of interest.

Hence, the computation of the DCT2 leads to the vector:

Y II =



Y II
0

U
Y II
2

U
...
U
Y II
28

U
Y II
30


104

B – DCT5 via DCT2 for longer lengths

where the elements labeled as U are not of interest for the computation of the 16-point
DCT5. More in detail, the output vector produced by the computation of the DCT6 is

Y VI =


Y VI
0

Y VI
1
...

Y VI
14

Y VI
15

 =


Y II
0

Y II
2
...

Y II
28

Y II
30



B.1.4 Definition of the output vector Y

According to what is described in section 3.1, the output vector Y can be obtained
from the vector Y VI as follows:

Y = [D16]Y
VI

B.1.5 Final Algorithm

The procedure reported above leads to an algorithm that requires 72 multiplications
and 144 sums.

B.2 DCT5 via DCT2 (N = 32)

An algorithm for the 32-point DCT5 can be derived from algorithms for the 63-point
DCT2. More in detail, the computation of a 32-point DCT5 can be translated into the
computation of a 32-point DCT6 as described in section 3.1 and the 32-point DCT6 can
be derived from the 63-point DCT2 as illustrated in section 3.2. The following paragraphs
will illustrate the steps involved in the derivation of the algorithm.

B.2.1 Reordering of the input vector

According to what is described in section 3.1, the input vector x is reordered so that
the vector

xr = [J32]x =


x31
x30
...
x1
x0


is obtained.

105

B – DCT5 via DCT2 for longer lengths

B.2.2 Definition of the vector xR

According to what is described in section 3.2, the vector xR is obtained as

xR =

 [I31] [J31]
1

− [J31] [I31]

−1



x31
x30
...
x1
x0
−x1
...

−x30
−x31


=



x31
0
x29
0
...
x1
x0
0
x2
0
...

x30
0



B.2.3 Computation of the 31-point DCT2

The vector Y II is obtained by computing the DCT2 of the vector xR. A possible
algorithm for the 63-point DCT2 can be derived by adopting the PFA as illustrated for
the case N = 8 in section 3.4.3. Several simplifications can be made to this algorithm. In
fact:

1. 31 out of 63 inputs are equal to zero;

2. only the even-indexed outputs of the DCT2 are of interest.

Hence, the computation of the DCT2 leads to the vector:

Y II =



Y II
0

U
Y II
2

U
...
U
Y II
60

U
Y II
62


106

B – DCT5 via DCT2 for longer lengths

where the elements labeled as U are not of interest for the computation of the 32-point
DCT5. More in detail, the output vector produced by the computation of the DCT6 is

Y VI =


Y VI
0

Y VI
1
...

Y VI
30

Y VI
31

 =


Y II
0

Y II
2
...

Y II
60

Y II
62


B.2.4 Definition of the output vector Y

According to what is described in section 3.1, the output vector Y can be obtained
from the vector Y VI as follows:

Y = [D32]Y
VI

B.2.5 Final Algorithm
The procedure reported above leads to an algorithm that requires 93 multiplications

and 302 sums if N1 = 7 and N2 = 9 are chosen or 103 multiplications and 320 sums in
case N1 = 9 and N2 = 7 are selected.

107

Appendix C

Direct Factorization for N = 32

This appendix presents the derivation of the algorithm obtained starting from the
direct factorization of the 32-point DCT5.

C.1 Direct Factorization of the DCT5 (N = 32)
The factorization described in section 5.1 can be applied to the 32-point DCT5. More

in detail, it can be written:

[
CV
32

]
=

[
Q32

10

]([
CV
11

]
⊕
[
CIII
21

(
2

3

)])[
B

(C5)
32

]
In the following each of the terms present in the right-side of the equation will be described.

C.1.1 Thirty-two-point permutation matrix
The permutation matrix

[
Q32

10

]
can be obtained by following the procedure illustrated

in section 5.1.1.

C.1.2 Eleven-point non-normalized DCT5 matrix
The eleven-point non-normalized DCT5 can be, for instance, computed by recursively

adopting the factorization proposed in equation 5.1. In particular, it can be written:

[
CV
11

]
=

[
Q11

3

]([
CV
4

]
⊕

[
CIII
7

(
2

3

)])[
B

(C5)
11

]
where:

•
[
Q11

3

]
and

[
B

(C5)
11

]
can be obtained by respectively referring to sections 5.1.1 and 5.1.5.

•
[
CV
4

]
is the 4-point non-normalized DCT5 matrix. The 4-point DCT5 can therefore

be computed according to one of the algorithms presented in the previous chapters.

108

C – Direct Factorization for N = 32

•
[
CIII
7

(
2
3

)]
can be computed according to the following formula:[

CIII
7

(
2

3

)]
=

[
CIII
7

] [
X

(C3)
7

(
2

3

)]
where:

–
[
CIII
7

]
is the seven-point DCT3 matrix;

–
[
X

(C3)
7

(
2
3

)]
can be obtained according to what is described in section 5.1.4.

A possible algorithm for the seven-point DCT3 can be found in [21]. This will be
presented in the following.

Algorithm for the 7-point DCT3

The seven-point DCT3 can be computed according to the following factorization:

[
CIII
7

]
=

[I3] − [J3]
1

[J3] [I3]

[
[J4] ·

[
CV
4

]
· [D4] [

SVII
3

]T

]
[R7]

T

where:

• [In] and [Jn] are respectively the n-point identity matrix and backward identity
matrix;

•
[
CV
4

]
is the 4-point non-normalized DCT5 matrix;

• [D4] =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


•

[
SVII
3

]
is the non-normalized 3-point DST7 matrix. This is defined as:

[
SVII
3

]
=

 sin
(
π
7

)
sin

(
2π
7

)
sin

(
3π
7

)
sin

(
3π
7

)
sin

(
6π
7

)
sin

(
9π
7

)
sin

(
5π
7

)
sin

(
10π
7

)
sin

(
15π
7

)


• [R7] =



1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 −1 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0


109

C – Direct Factorization for N = 32

According to what is described in the previous chapters, several algorithms can be
adopted to compute the 4-point DCT5. On the other hand, a possible algorithm for the
transposed 3-point DST7 is presented in [21]. The SFG of this algorithm is shown in figure
C.1 while the value of the constants and the list of operations needed are respectively
reported in tables C.1 and C.2.

x0

x1

x2

C1

C2

C3

C4

Y0

Y2

Y1

Figure C.1: Non-normalized transposed 3-Point DST7 SFG

Table C.1: Constants for the transposed 3-point DST7 algorithm

Constant Value
C1 −0.340 872 93
C2 0.533 969 36
C3 0.874 842 29
C4 0.440 958 55

Table C.2: Algorithm for the non-normalized transposed 3-point DST7

Op. Name Operation
a0 −x0 − x2
a1 x0 + x1
a2 x1 − x2
a3 x0 − x1
a4 a3 − x2
M1 C1a0

Op. Name Operation
M2 C2a1
M3 C3a2
M4 C4a4
a5 M1 +M2

a6 a5 −M4

Y0 a6

Op. Name Operation
a7 M2 −M3

a8 a7 +M4

Y2 a8
a9 M1 +M3

a10 a9 +M4

Y1 a10

110

C – Direct Factorization for N = 32

C.1.3 Twenty-one-point non-normalized skew-DCT3 matrix
According to what is described in [20], the 21-point non-normalized skew-DCT3 matrix

(
[
CIII
21

(
2
3

)]
) can be expressed as:[

K21
7

]([
CIII
7

(
2

9

)]
⊕

[
CIII
7

(
4

9

)]
⊕

[
CIII
7

(
8

9

)])([
CIII
3

(
2

3

)]
⊗ [I7]

)[
B

(C3)
3,7

]
where:

•
[
K21

7

]
is a permutation matrix;

•
[
CIII
7

(
2
9

)]
,
[
CIII
7

(
4
9

)]
and

[
CIII
7

(
8
9

)]
are non-normalized 7-point skew-DCT3 matri-

ces;

• ⊕ is the direct sum operator;

•
[
CIII
3

(
2
3

)]
is a non-normalized 3-point skew-DCT3 matrix;

• ⊗ is the symbol of the kronecker product;

• [I7] is the 7-point identity matrix;

•
[
B

(C3)
3,7

]
is a base change matrix.

Permutation matrix
[
K21

7

]
The permutation matrix

[
K21

7

]
is such that:[

K21
7

]
= ([I3]⊕ [J3]⊕ [I3]⊕ [J3]⊕ [I3]⊕ [J3]⊕ [I3])

[
L21
7

]
where

[
L21
7

]
is defined as[

L21
7

]
: i 7→ 7i mod 20 for 0 ≤ i < 20

20 7→ 20

Non-normalized 7-point skew-DCT3 matrices

The considered non-normalized 7-point skew-DCT3 matrices are:[
CIII
7

(
2

9

)]
=

[
CIII
7

] [
X

(C3)
7

(
2

9

)]
[
CIII
7

(
4

4

)]
=

[
CIII
7

] [
X

(C3)
7

(
4

9

)]
[
CIII
7

(
8

9

)]
=

[
CIII
7

] [
X

(C3)
7

(
8

9

)]
where the 7-point DCT3 can be computed according to the algorithm described in sec-
tion C.1.2 and

[
X

(C3)
7

(
2
9

)]
,
[
X

(C3)
7

(
4
9

)]
,
[
X

(C3)
7

(
8
9

)]
can be found by following what is

illustrated in section 5.1.4.

111

C – Direct Factorization for N = 32

Non-normalized 3-point skew-DCT3 matrix

The non-normalized 3-point skew-DCT3 matrix can be obtained as:[
CIII
3

(
2

3

)]
=

[
CIII
3

] [
X

(C3)
3

(
2

3

)]
The 3-point DCT3 can be calculated by adopting the algorithm described in [21]. The
SFG of this algorithm is shown in figure C.2 while the value of the constants and the list
of operations needed are respectively reported in tables C.3 and C.4.

x0

x1

x2

Y1

Y2

Y0

C1

C2

Figure C.2: Non-normalized 3-Point DCT3 SFG

Table C.3: Constants for the 3-point DCT3 algorithm

Constant Value
C1 −0.866 025 40
C2 1.500 000 00

Table C.4: Algorithm for the non-normalized 3-point DCT3

Op. Name Operation
a0 x0 − x2
Y1 a0
M1 C1x1

Op. Name Operation
M2 C2x2
a1 a0 +M2

a2 a1 +M1

Op. Name Operation
a3 a1 −M1

Y2 a2
Y0 a3

The matrix
[
X

(C3)
3

(
2
3

)]
can be derived according to what is described in section 5.1.4.

Base change matrix
[
B

(C3)
3,7

]
The base change matrix is defined as:

[
B

(C3)
3,7

]
= ([I7]⊕ ([I2]⊗ diag(1,2, . . . ,2)))

[I7] − [Z7]
[
I
′
7

]
[I7] − [Z7]

[I7]


112

C – Direct Factorization for N = 32

where
[
I
′
m

]
= diag(0,1, . . . ,1) and

[Zm] =


0

0 1

. .
.

. .
.

0 1


C.1.4 Thirty-two-point base change matrix

The 32-point base change matrix is:

[
B

(C5)
32

]
=


1 1

[I10] [J10] [I10]

−1/2
[I21] − [I10]

− [J10]



113

Appendix D

16-Point DCT5 Algorithm

This appendix presents a MatLab implementation of both the floating point and
fixed-point versions of the algorithm obtained by following the procedure described in
section A.1.1. More in detail, the algorithm is obtained by following that procedure and
making some manipulations in order to avoid cascading the multiplier that is needed for
the pre-normalization.

D.1 MatLab Implementation (Floating-Point)

function [OUTPUT]=Burrus_DCT5_N16_simpl_floating(INPUT)

OUTPUT=zeros(16,1);
s1 = INPUT(2)+INPUT(7);
s2 = INPUT(2)-INPUT(6);
s3 = s1+INPUT(6);
s4 = INPUT(7)-INPUT(6);
s5 = INPUT(16)+INPUT(4);
s6 = INPUT(16)-INPUT(14);
s7 = s5+INPUT(14);
s8 = INPUT(4)-INPUT(14);
s9 = INPUT(9)+INPUT(15);
s10 = INPUT(9)-INPUT(10);
s11 = s9+INPUT(10);
s12 = INPUT(15)-INPUT(10);
s13 = INPUT(5)+INPUT(8);
s14=INPUT(5)-INPUT(12);
s15 = s13+INPUT(12);
s16 =INPUT(8)-INPUT(12);
s17 =INPUT(3)+INPUT(13);
s18 = INPUT(3)-INPUT(11);
s19 = s17+INPUT(11);
s20 = INPUT(13)-INPUT(11);

114

D – 16-Point DCT5 Algorithm

s21 =s3+s7;
s22 = s3-s19;
s23=s21+s11;
s24= s7-s19;
s25=s23+s15;
s26=s11-s19;
s27=s25+s19;
s28=s15-s19;
s29=s2+s6;
s30=s2-s18;
s31=s29+s10;
s32=s6-s18;
s33=s31+s14;
s34=s10-s18;
s35=s33+s18;
s36=s14-s18;
s37=s4+s8;
s38=s4-s20;
s39=s37+s12;
s40=s8-s20;
s41=s39+s16;
s42=s12-s20;
s43=s41+s20;
s44=s16-s20;
m42=0.254000254000381*INPUT(1);
m1=0.359210604053550*s27;
s45=m1+m42;
m2=-0.371184290855335*s27;
s46=s35+s43;
m3=0.090171514658534*s35;
m4=0.229210235490481*s43;
m5=-0.106460583383005*s46;
s47=m3+m5;
s48=m4+m5;
s49=s22+s26;
s50=s24+s28;
s51=s22+s24;
s52=s26+s28;
s53=s49+s50;
m6=-0.036100033196720*s22;
m7=-0.078100047944899*s24;
m8=-0.116772960840795*s51;
m9=0.286861819809839*s26;
m10=-0.280541341615715*s28;
m11=-0.091988811024145*s52;
m12=0.060884183013370*s49;
m13=0.255757191799065*s50;
m14=-0.021575920589499*s53;
s54=m6+m12;

115

D – 16-Point DCT5 Algorithm

s55=m9+m12;
s56=m7+m13;
s57=m10+m13;
s58=m8+m14;
s59=m11+m14;
s60=s54+s58;
s61=s56+s58;
s62=s55+s59;
s63=s57+s59;
s64=s30+s38;
s65=s32+s40;
s66=s34+s42;
s67=s36+s44;
s68=s30+s34;
s69=s32+s36;
s70=s38+s42;
s71=s40+s44;
s72=s64+s66;
s73=s65+s67;
s74=s30+s32;
s75=s34+s36;
s76=s68+s69;
s77=s38+s40;
s78=s42+s44;
s79=s70+s71;
s80=s64+s65;
s81=s66+s67;
s82=s72+s73;
m15=0.472972261217078*s30;
m16=0.477863351912534*s32;
m17=-0.138340176742113*s74;
m18=-1.062784397189376*s34;
m19=-0.910707361134637*s36;
m20=0.723261222018955*s75;
m21=0.388629137543990*s68;
m22=0.049105962373569*s69;
m23=-0.204531229038880*s76;
m24=-0.094201906554648*s38;
m25=0.721961433523775*s40;
m26=-0.416450310827657*s77;
m27=0.226075551590858*s42;
m28=0.441581943060109*s44;
m29=-0.531586674286976*s78;
m30=-0.020934456904672*s70;
m31=-0.326445579600790*s71;
m32=0.259083404324019*s79;
m33=-0.126256784887477*s64;
m34=-0.399941595145436*s65;
m35=0.184930162523257*s80;

116

D – 16-Point DCT5 Algorithm

m36=0.278902948532839*s66;
m37=0.156375139358176*s67;
m38=-0.063891515910660*s81;
m39=-0.122564893546439*s72;
m40=0.092446539075740*s73;
m41=-0.018184058428379*s82;
s83=m15+m33;
s84=m24+m33;
s85=m16+m34;
s86=m25+m34;
s87=m17+m35;
s88=m26+m35;
s89=m18+m36;
s90=m27+m36;
s91=m19+m37;
s92=m28+m37;
s93=m20+m38;
s94=m29+m38;
s95=m21+m39;
s96=m30+m39;
s97=m22+m40;
s98=m31+m40;
s99=m23+m41;
s100=m32+m41;
s101=s83+s95;
s102=s89+s95;
s103=s85+s97;
s104=s91+s97;
s105=s87+s99;
s106=s93+s99;
s107=s84+s96;
s108=s90+s96;
s109=s86+s98;
s110=s92+s98;
s111=s88+s100;
s112=s94+s100;
s113=s101+s105;
s114=s103+s105;
s115=s102+s106;
s116=s104+s106;
s117=s107+s111;
s118=s109+s111;
s119=s108+s112;
s120=s110+s112;
s121=s45+m2;
s122=s121+s60;
s123=s121-s60;
s124=s121+s61;
s125=s123-s61;

117

D – 16-Point DCT5 Algorithm

s126=s121+s62;
s127=s125-s62;
s128=s121+s63;
s129=s127-s63;
s130=s47+s113;
s131=s47-s113;
s132=s47+s114;
s133=s131-s114;
s134=s47+s115;
s135=s133-s115;
s136=s47+s116;
s137=s135-s116;
s138=s48+s117;
s139=s48-s117;
s140=s48+s118;
s141=s139-s118;
s142=s48+s119;
s143=s141-s119;
s144=s48+s120;
s145=s143-s120;
s146=s122+s130;
s147=s122-s130;
s148=s122+s138;
s149=s147-s138;
s150=s124+s132;
s151=s124-s132;
s152=s124+s140;
s153=s151-s140;
s154=s126+s134;
s155=s126-s134;
s156=s126+s142;
s157=s155-s142;
s158=s128+s136;
s159=s128-s136;
s160=s128+s144;
s161=s159-s144;
s162=s129+s137;
s163=s129-s137;
s164=s129+s145;
s165=s163-s145;
m43=s45*0.707106781186547;

OUTPUT(1)=m43;
OUTPUT(2)=s165;
OUTPUT(3)=s161;
OUTPUT(4)=s146;
OUTPUT(5)=s157;
OUTPUT(6)=s164;
OUTPUT(7)=s162;

118

D – 16-Point DCT5 Algorithm

OUTPUT(8)=s154;
OUTPUT(9)=s153;
OUTPUT(10)=s152;
OUTPUT(11)=s160;
OUTPUT(12)=s156;
OUTPUT(13)=s158;
OUTPUT(14)=s148;
OUTPUT(15)=s150;
OUTPUT(16)=s149;

end

D.2 MatLab Implementation (Fixed-Point)

function [OUTPUT]=Burrus_DCT5_N16_simpl(INPUT)

OUTPUT=zeros(16,1);
s1 = INPUT(2)+INPUT(7);
s2 = INPUT(2)-INPUT(6);
s3 = s1+INPUT(6);
s4 = INPUT(7)-INPUT(6);
s5 = INPUT(16)+INPUT(4);
s6 = INPUT(16)-INPUT(14);
s7 = s5+INPUT(14);
s8 = INPUT(4)-INPUT(14);
s9 = INPUT(9)+INPUT(15);
s10 = INPUT(9)-INPUT(10);
s11 = s9+INPUT(10);
s12 = INPUT(15)-INPUT(10);
s13 = INPUT(5)+INPUT(8);
s14=INPUT(5)-INPUT(12);
s15 = s13+INPUT(12);
s16 =INPUT(8)-INPUT(12);
s17 =INPUT(3)+INPUT(13);
s18 = INPUT(3)-INPUT(11);
s19 = s17+INPUT(11);
s20 = INPUT(13)-INPUT(11);
s21 =s3+s7;
s22 = s3-s19;
s23=s21+s11;
s24= s7-s19;
s25=s23+s15;
s26=s11-s19;
s27=s25+s19;
s28=s15-s19;
s29=s2+s6;
s30=s2-s18;
s31=s29+s10;

119

D – 16-Point DCT5 Algorithm

s32=s6-s18;
s33=s31+s14;
s34=s10-s18;
s35=s33+s18;
s36=s14-s18;
s37=s4+s8;
s38=s4-s20;
s39=s37+s12;
s40=s8-s20;
s41=s39+s16;
s42=s12-s20;
s43=s41+s20;
s44=s16-s20;
m42=130*INPUT(1);
m1=183*s27;
s45=m1+m42;
m2=-190*s27;
s46=s35+s43;
m3=46*s35;
m4=117*s43;
m5=-55*s46;
s47=m3+m5;
s48=m4+m5;
s49=s22+s26;
s50=s24+s28;
s51=s22+s24;
s52=s26+s28;
s53=s49+s50;
m6=-18*s22;
m7=-40*s24;
m8=-60*s51;
m9=147*s26;
m10=-144*s28;
m11=-47*s52;
m12=31*s49;
m13=131*s50;
m14=-11*s53;
s54=m6+m12;
s55=m9+m12;
s56=m7+m13;
s57=m10+m13;
s58=m8+m14;
s59=m11+m14;
s60=s54+s58;
s61=s56+s58;
s62=s55+s59;
s63=s57+s59;
s64=s30+s38;
s65=s32+s40;

120

D – 16-Point DCT5 Algorithm

s66=s34+s42;
s67=s36+s44;
s68=s30+s34;
s69=s32+s36;
s70=s38+s42;
s71=s40+s44;
s72=s64+s66;
s73=s65+s67;
s74=s30+s32;
s75=s34+s36;
s76=s68+s69;
s77=s38+s40;
s78=s42+s44;
s79=s70+s71;
s80=s64+s65;
s81=s66+s67;
s82=s72+s73;
m15=242*s30;
m16=245*s32;
m17=-71*s74;
m18=-544*s34;
m19=-466*s36;
m20=370*s75;
m21=199*s68;
m22=25*s69;
m23=-105*s76;
m24=-48*s38;
m25=370*s40;
m26=-213*s77;
m27=116*s42;
m28=226*s44;
m29=-272*s78;
m30=-11*s70;
m31=-167*s71;
m32=133*s79;
m33=-65*s64;
m34=-205*s65;
m35=95*s80;
m36=143*s66;
m37=80*s67;
m38=-33*s81;
m39=-63*s72;
m40=47*s73;
m41=-9*s82;
s83=m15+m33;
s84=m24+m33;
s85=m16+m34;
s86=m25+m34;
s87=m17+m35;

121

D – 16-Point DCT5 Algorithm

s88=m26+m35;
s89=m18+m36;
s90=m27+m36;
s91=m19+m37;
s92=m28+m37;
s93=m20+m38;
s94=m29+m38;
s95=m21+m39;
s96=m30+m39;
s97=m22+m40;
s98=m31+m40;
s99=m23+m41;
s100=m32+m41;
s101=s83+s95;
s102=s89+s95;
s103=s85+s97;
s104=s91+s97;
s105=s87+s99;
s106=s93+s99;
s107=s84+s96;
s108=s90+s96;
s109=s86+s98;
s110=s92+s98;
s111=s88+s100;
s112=s94+s100;
s113=s101+s105;
s114=s103+s105;
s115=s102+s106;
s116=s104+s106;
s117=s107+s111;
s118=s109+s111;
s119=s108+s112;
s120=s110+s112;
s121=s45+m2;
s122=s121+s60;
s123=s121-s60;
s124=s121+s61;
s125=s123-s61;
s126=s121+s62;
s127=s125-s62;
s128=s121+s63;
s129=s127-s63;
s130=s47+s113;
s131=s47-s113;
s132=s47+s114;
s133=s131-s114;
s134=s47+s115;
s135=s133-s115;
s136=s47+s116;

122

D – 16-Point DCT5 Algorithm

s137=s135-s116;
s138=s48+s117;
s139=s48-s117;
s140=s48+s118;
s141=s139-s118;
s142=s48+s119;
s143=s141-s119;
s144=s48+s120;
s145=s143-s120;
s146=s122+s130;
s147=s122-s130;
s148=s122+s138;
s149=s147-s138;
s150=s124+s132;
s151=s124-s132;
s152=s124+s140;
s153=s151-s140;
s154=s126+s134;
s155=s126-s134;
s156=s126+s142;
s157=s155-s142;
s158=s128+s136;
s159=s128-s136;
s160=s128+s144;
s161=s159-s144;
s162=s129+s137;
s163=s129-s137;
s164=s129+s145;
s165=s163-s145;
m43=floor(bitsra(s45*362,9));

OUTPUT(1)=m43;
OUTPUT(2)=s165;
OUTPUT(3)=s161;
OUTPUT(4)=s146;
OUTPUT(5)=s157;
OUTPUT(6)=s164;
OUTPUT(7)=s162;
OUTPUT(8)=s154;
OUTPUT(9)=s153;
OUTPUT(10)=s152;
OUTPUT(11)=s160;
OUTPUT(12)=s156;
OUTPUT(13)=s158;
OUTPUT(14)=s148;
OUTPUT(15)=s150;
OUTPUT(16)=s149;

end

123

Bibliography

[1] K. R. Rao, P. Yip, V. Britanak, Discrete Cosine and Sine Transforms: General Prop-
erties, Fast Algorithms and Approximations Elsevier, 2007.

[2] S. Winograd, “On Computing the Discrete Fourier Transform” in Mathematics of
Computation, v. 32, n. 141, pp. 175–199, Jan. 1978.

[3] ——, Arithmetic Complexity of Computations Philadelphia, Pennsylvania, SIAM
CBMS-NSF, 1980.

[4] K. R. Rao, D. N. Kim, J. J. Hwang, Fast Fourier Transform: Algorithms and Appli-
cations Springer, 2010.

[5] C. S. Burrus, M. Frigo, S. Johnson, M. Pueschel, I. Selesnick, Fast Fourier Transforms
Rice University, Houston, Texas, Connexions, 2008.

[6] R. E. Blahut, Fast Algorithms for Signal Processing Cambridge, United Kingdom,
Cambridge University Press, 2010.

[7] U. Meyer-Baese, Digital Signal Processing with Field Programmable Gate Arrays Hei-
delberg, Germany, Springer, 2014.

[8] W. W. W. Community. [Online]: https://wikipedia.org

[9] E. Chu, Discrete and Continuous Fourier Transforms: Analysis, Applications and
Fast Algorithms Boca Raton, Florida, CRC Press, 2008.

[10] R. Lyons. Four ways to compute an inverse fft using the forward fft algorithm.
[Online]: https://www.dsprelated.com/showarticle/800.php

[11] P. Duhamel, B. Piron, J. M. Etcheto, “On computing the inverse DFT” in IEEE
Transactions on Acoustics, Speech, and Signal Processing, v. 36, n. 2, pp. 285–286,
Feb. 1988.

[12] H. J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms Heidelberg,
Germany, Springer-Verlag, 1981.

[13] M. Masera, M. Martina, G. Masera, “Odd type DCT/DST for video coding: Relation-
ships and low-complexity implementations” in 2017 IEEE International Workshop on
Signal Processing Systems (SiPS), Oct. 2017, pp. 1–6.

124

https://wikipedia.org
https://www.dsprelated.com/showarticle/800.php

BIBLIOGRAPHY

[14] Y. A. Reznik, “Relationship between DCT-II, DCT-VI, and DST-VII transforms”
in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
May 2013, pp. 5642–5646.

[15] M. T. Heideman, “Computation of an odd-length DCT from a real-valued DFT of
the same length” in IEEE Transactions on Signal Processing, v. 40, n. 1, pp. 54–61,
Jan. 1992.

[16] G. Bi, Y. Zeng, Transforms and Fast Algorithms for Signal Analysis and Representa-
tions New York, Springer Science & Business Media, 2004.

[17] C. S. Burrus. Programs for short ffts. [Online]: https://cnx.org/contents/eL72ctwp@
4/Appendix-4-Programs-for-Short-FFTs

[18] G. Bi, “Index mapping for prime factor algorithm of discrete cosine transform” in
Electronics Letters, v. 35, n. 3, pp. 198–200, 1999.

[19] K. R. Rao, P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications
San Diego, California, Academic Press, Inc., 1990.

[20] M. Puschel, J. M. F. Moura, “Algebraic Signal Processing Theory: Cooley-Tukey
Type Algorithms for DCTs and DSTs” in IEEE Transactions on Signal Processing,
v. 56, n. 4, pp. 1502–1521, Apr. 2008.

[21] J. Kello, “DCT-V for Video Coding: A reconfigurable implementation for length 32
and 4” Tesi di laurea, 2018.

[22] I. W. Selesnick, C. S. Burrus, “Automatic generation of prime length FFT programs”
in IEEE Transactions on Signal Processing, v. 44, n. 1, pp. 14–24, Jan. 1996.

[23] I. Selesnick. Fft programs for prime lengths. [Online]: https://www.ece.rice.edu/
dsp/software/pfft.shtml

[24] J. H. McClellan, C. M. Rader, Number Theory in Digital Signal Processing Englewood
Cliffs, New Jersey, Prenctice-Hall, 1979.

[25] M. Puschel, J. M. F. Moura, J. R. Johnson, D. Padua, M. M. Veloso, B. W. Singer,
J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, N. Rizzolo,
“SPIRAL: Code Generation for DSP Transforms” in Proceedings of the IEEE, v. 93,
n. 2, pp. 232–275, Feb 2005.

125

https://cnx.org/contents/eL72ctwp@4/Appendix-4-Programs-for-Short-FFTs
https://cnx.org/contents/eL72ctwp@4/Appendix-4-Programs-for-Short-FFTs
https://www.ece.rice.edu/dsp/software/pfft.shtml
https://www.ece.rice.edu/dsp/software/pfft.shtml

	Summary
	Discrete Cosine Transform Type V
	DCT5
	Definition

	Algorithms for the DCT5

	DCT5 via DFT
	Direct Mapping between DCT5 and DFT
	The Winograd Fourier Transform Algorithm (WFTA)
	Winograd Short-N DFT Modules
	WFTA for DCT5 (N=4)
	The Winograd large fast Fourier transform
	WFTA for DCT5 (N=8)

	The Prime Factor Algorithm (PFA)
	The steps of the PFA
	PFA for DCT5 (N=8)

	Bluestein's Algorithm
	Bluestein's algorithm steps
	Bluestein's algorithm for DCT5

	Rader's Algorithm
	Rader's algorithm steps
	Rader's algorithm for DCT5 (N=4)

	DCT5 via DCT2
	Relationship between the DCT5 and the DCT6
	Relationship between the DCT6 and the DCT2
	Derivation of the 4-point DCT6 from the 7-point DCT2

	DCT5 via DCT2 (N=4)
	Reordering of the input vector
	Definition of the vector bold0mu mumu xRxR2005/06/28 ver: 1.3 subfig packagexRxRxRxR
	Computation of the 7-point DCT2
	Definition of the output vector bold0mu mumu YY2005/06/28 ver: 1.3 subfig packageYYYY
	Final Algorithm

	DCT5 via DCT2 (N=8)
	Reordering of the input vector
	Definition of the vector bold0mu mumu xRxR2005/06/28 ver: 1.3 subfig packagexRxRxRxR
	Computation of the 15-point DCT2
	Definition of the output vector bold0mu mumu YY2005/06/28 ver: 1.3 subfig packageYYYY
	Final Algorithm

	DCT5 via Givens Rotations
	Givens Rotations
	DCT5 via Givens Rotations (N=4)

	DCT5 via Direct Factorization
	Direct Factorization of the DCT5
	Permutation matrix
	Non-normalized DCT5 matrix
	Direct sum operator
	Non-normalized skew-DCT3 matrix
	Base change matrix

	Direct Factorization of the DCT5 (N=8)
	Eight-point permutation matrix
	Three-point non-normalized DCT5 matrix
	Five-point non-normalized skew-DCT3 matrix
	Eight-point base change matrix
	Computational Complexity

	Comparison of the algorithms
	Algorithms for the 4-point DCT5: a comparison
	Algorithms for the 8-point DCT5: a comparison
	Algorithms for the 16-point DCT5: a comparison
	Algorithms for the 32-point DCT5: a comparison

	16-Point DCT5 Implementation
	Algorithm Selection
	Fixed-Point Algorithm
	C-Model
	JEM Simulations
	Architecture Development
	HDL Description and Simulation
	Logic Synthesis
	Post-synthesis simulation and power estimation

	Appendix DCT5 via DFT for longer lengths
	WFTA for longer lengths
	WFTA for DCT5 (N=16)
	WFTA for DCT5 (N = 32)

	PFA for longer lengths
	PFA for DCT5 (N=32)

	Rader's algorithm for longer lengths
	Rader's algorithm for DCT5 (N=16)

	Appendix DCT5 via DCT2 for longer lengths
	DCT5 via DCT2 (N=16)
	Reordering of the input vector
	Definition of the vector bold0mu mumu xRxR2005/06/28 ver: 1.3 subfig packagexRxRxRxR
	Computation of the 31-point DCT2
	Definition of the output vector bold0mu mumu YY2005/06/28 ver: 1.3 subfig packageYYYY
	Final Algorithm

	DCT5 via DCT2 (N=32)
	Reordering of the input vector
	Definition of the vector bold0mu mumu xRxR2005/06/28 ver: 1.3 subfig packagexRxRxRxR
	Computation of the 31-point DCT2
	Definition of the output vector bold0mu mumu YY2005/06/28 ver: 1.3 subfig packageYYYY
	Final Algorithm

	Appendix Direct Factorization for N=32
	Direct Factorization of the DCT5 (N=32)
	Thirty-two-point permutation matrix
	Eleven-point non-normalized DCT5 matrix
	Twenty-one-point non-normalized skew-DCT3 matrix
	Thirty-two-point base change matrix

	Appendix 16-Point DCT5 Algorithm
	MatLab Implementation (Floating-Point)
	MatLab Implementation (Fixed-Point)

