
Politecnico di Torino

Corso di Laurea Magistrale in Ingegneria Elettronica

Tesi di Laurea Magistrale

FPGA-based acceleration of a particle
simulation High Performance Computing

application

Relatore: Candidato:
Prof. Luciano Lavagno Aldo Conte

Tutor aziendale:
Dott. Giuseppe Piero Brandino

ANNO ACCADEMICO 2018-2019

FPGA based acceleration of a particle simulation

High performance computing application

Aldo Conte

Acknowledgements

Now that this work is completed it is the time to re�ect and express my apprecia-
tion to those who supported me along the way. I would like to thank Prof. Luciano
Lavagno for allowing me have this great opportunity. I'm pleased to be your stu-
dent. I also want to thank my tutor Giuseppe Brandino to have me patiently helped
along the whole Master Thesis's period.

The last six months have been a very special opportunity for my own personal
growth and consequently for my life. "[...] therefore whosoaver heareth these say-
ings of mine, and doeth them, I will liken him unto a wise man, which built his
house upon a rock [...]" Matthew 7, 24. All of this has been possible thanks to me
but especially to the whole Background that has shown love for me. Thank you
Mum and Dad if it weren't for your continuous support and all the opportunities
you gave me, i could have never gotten this far.Thank you Valeria for giving me
the great opportunity to really be myself, thank you for your loving patience that
you have shown me. I want to thank you Friar Francesco for the "strong hand"
with which you guided me.

I would like to thank my dear friends Adriano and their brothers Vittorio, Eleonora
and Carmine. Thank you Francesco for your sincere friendship and support. I have
to thank my electronic classmates,Deborah, Mattia and all my friends and every-
one who has allowed me accomplishing such huge goal.

Last, but certainly not least, a special thanks to all of you of the choir that you
have, recently given me several exciting moments and that you made me rediscover
how living together is more beautiful. Thank you all!!

2

Abstract

This thesis studies the possibility to use FPGAs in the world of High Performance
Computing (HPC) systems. Such systems currently use hybrid platforms that ex-
ploit the huge parallel computing power of GPUs in order to reach very high perfor-
mances. Nevertheless, GPU-based systems are power-hungry and require a power
consumption so large, that running and maintaining such systems could be tech-
nologically and economically infeasible. This thesis is in the context of ExaNeSt
H2020 project which has the purpose to prototype energy e�cient solutions to pro-
duce exascale-level supercomputers. Low power consumption requirement will be
achieved using a Multiprocessor System-on-Chip, namely an Integrated Circuit in-
cluding both a an ARM Cortex multi-processor and an Ultrascale+ FPGA: the
whole module has been speci�cally designed with special attention to power con-
sumption.

High performance computer systems are very important in the �eld of computa-
tional science; this thesis investigated the possibility of using FPGA accelerators to
o�oad the compute intensive parts of a Molecular Dynamic simulator. The min-
iMD is a simple, parallel molecular dynamics (MD) code composed of �ve di�erent
OpenCL kernels (neighbor_bin, neighbor_build, force_compute, integrate_initial,
integrate_�nal) designed for studying the physical movements of particles such as
atoms or molecules. In the �rst part of this thesis, each kernel has been stud-
ied in order to understand how it could be accelerated using the FPGA portion of
the Multiprocessor SoC architecture. After a pro�ling of the full miniMD applica-
tion, we showed that the task that identi�es neighbour particles for each particle
of the system (neighbor_build kernel) and the one related to the force computation
(force_compute kernel) are the most compute intensive ones and have a prominent
role in the total execution time of the application.

Moreover,the most important optimizations were related to the reading and writ-
ing of the o�-chip DRAM memory by the kernels, moving this data in and out of
the on-chip SRAM memory of the FPGA. These optimizations were meant to ex-
ploit the burst memory transactions and to improve the access bandwidth between
the External DDR memory and the Programmable Logic (PL) therefore reducing
the access time of the external memory. It is important to notice that these op-
timizations were not trivial due to two main aspects: (1) not all DRAM arrays
were accessed sequentially by the kernels, and (2) not all the loops that accessed
arrays were perfectly nested, thus preventing some burst inference by the HLS tool.
In the end all the kernels have been implemented and a single Vivado design of
the miniMD application has been obtained for execution on the Zynq Ultrascale+
device.

4

Contents

List of Figures 7

List of Tables 9

1 Introduction 10

2 FPGAs in HPC systems 12

2.1 FPGA Use Models in HPC and the ExaNeSt Project 12

2.1.1 ExaNeSt european project 14

2.2 FPGA: very good competitor of GPUs in HPC systems 16

2.3 OpenCL . 20

2.3.1 The OpenCL Execution model 21

2.3.2 The OpenCL Memory model 22

2.4 System types in High Performance Computing and FPGA platforms
descriptions . 23

2.5 Software work�ow . 27

2.5.1 Vivado HLS . 27

2.5.2 Vivado Design Suite . 29

2.5.3 SDAccel Build process . 30

3 MiniMD application and Kernels presentation 33

3.1 Molecular Dynamics . 34

3.2 Leapfrog Algorithm and miniMD kernels' description 39

4 FPGA-based approach for OpenCL kernel acceleration 43

4.1 OpenCL development for FPGAs 43

4.1.1 Data Movement Optimization 44

4.1.2 Kernel process Optimization 46

4.1.3 Intra-FPGA memory optimizations 54

5

5 MiniMD porting on FPGA 57

5.1 Base-lining of the MiniMD Application 57
5.2 Neighbor_build kernel optimization 59

5.2.1 Preparation of Kernel Arguments 59
5.2.2 Kernel's optimization . 61

5.3 Force_compute kernel optimization 69
5.3.1 Kernel's optimization . 72

5.4 Further optimizations . 78

6 Conclusions and future work 80

Bibliography 82

6

List of Figures

2.1 Block Diagram of Example os sensors network 13
2.2 Logo of the ExaNeSt project . 14
2.3 The Quad FPGA daughterboard 15
2.4 The building blocks of the ExaNeSt interconnect and the di�erent

Tiers . 16
2.5 High-Level Block Diagram of FPGAs 18
2.6 Historical Advancement of FPGA Technology 20
2.7 openCL platoform and memory model 22
2.8 Traditional structure of an High-performance server type 23
2.9 Trenz Starter Kit 80 . 24
2.10 Xilinx Zynq ultrascale+ EG . 25
2.11 AXI Interconect . 26
2.12 Vector addition kernel . 29
2.13 Vivado IDE project Design . 29
2.14 Host-Code/kernel build process in SDAccel 31
2.15 SDAccel based FPGA design methodology �ow.l 32

3.1 Energy function versus space coordinates 34
3.2 Group of atoms with their coordinates and velocities 35
3.3 Strength versus distance for the Lennard-Jones potential 36
3.4 Computation of total force acting on atom1 due to the presence of

its neighbours . 37
3.5 A simpli�ed description of the standard molecular dynamics simu-

lation algorithm . 38
3.6 Leapfrog Algorithm . 40
3.7 The simulation box with side length L and its sub small cells with

side length l. 41

4.1 Execution of the Listing 4.3 into a GPU 47
4.2 Execution of the Listing 4.4 into an FPGA 49
4.3 Execution of the Listing 4.5 into an FPGA 50

7

4.4 Execution of the Listing 4.5 into an FPGA 51
4.5 Execution of the Listing 4.6 into an FPGA 53
4.6 Internal memory access . 54
4.7 Internal memory access optimized 56

5.1 Base-lining of MiniMD application 58
5.2 System overview and example of a Write operation onto FPGA

address memory space . 62
5.3 Look for neighbour particles . 64
5.4 Pipelining technique applied to all Loops of neighbor_build kernel . 68
5.5 Resource utilization of both original and optimised version of neigh-

bor_build kernel . 69
5.6 force_compute kernel variables' provision 71
5.7 Graphical description of the optimised force_compute kernel 74
5.8 Optimised loops in force_compute kernel 76
5.9 Analysis perspective of Vivado_HLS about loop4 76
5.10 Comparison about Resource Utilization between original and opti-

mised version of force_compute kernel 78
5.11 Design with two compute-units for neighbor_build and force_compute

kernels . 79

8

List of Tables

5.1 Execution times of the original and optimised version of neigh-
bor_build kernel . 68

5.2 Execution times of the original and optimised version of force_compute 77
5.3 execution time reduction cause of multiple compute units 79

9

Chapter 1

Introduction

The world of HPC systems has always had the goal to improve the performance
various applications, in numerous application areas. For long time, the increment
in performance was obtained by relying solely on the increase clock of newer CPUs.
When the clock reached a sort of plateau, the increment in performance was ob-
tained by exploiting the multicore scaling, topically using several homogeneous
cores. However, the slow down of Moorse's law required new approaches to be
explored. So it was used the idea of o�oading some of the workload from the
main processor to a co-processor which saw in Graphics Processing Units (GPUs)
the optimal candidate, due to their increasing programmable capabilities. Still
today they are excellent solutions due to the very high �oating point through-
put, a favourable architecture for data parallelism and higher memory bandwidth
with respect to processors [20].Thanks to the aforementioned skills they �nd very
large usage in the world of High-Performance-Computing (HPC). Such systems are
nowadays hybrid platforms that exploit the parallel architecture of GPUs in order
to reach very high performances. Nevertheless, GPU-based systems are power-
hungry and require a power consumption so large, that running and maintaining
such systems could be technologically and economically too expensive.

Moreover, reaching exa�op performance with state of the art technology will have
energy and cost requirements so high that would make an exascale system unfea-
sible. The Exanest project [16] tries to explore the idea to greatly lower the power
comsumption while increasing the overall performance. These designs are essen-
tially based on the combination of multi-core processors along with FPGA fabric
in the form of accelerator and the whole module has been speci�cally designed
with special attention to power consumption.

In the present thesis, it has been studied the possibility to exploit FPGAs in the
world of High Performance Computing (HPC) systems. In particular it has been

10

1 � Introduction

investigated the possibility of using FPGA accelerators to o�oad the compute
intensive parts of a Molecular Dynamic code.The miniMD is a simple, parallel
molecular dynamics (MD) code composed of �ve di�erent OpenCL kernels (neigh-
bor_bin, neighbor_build, force_compute, integrate_initial, integrate_�nal) de-
signed for studying the physical movements of atoms and molecules. In the �rst
part of this thesis work, each kernel has been studied in order to understand which
of the kernels could be accelerated into the FPGA of the Multiprocessor SoC archi-
tecture. After a pro�ling of the full miniMD application, it has been demonstrated
that the task related to the building of the neighbour particles for each molecule of
the system (neighbor_build kernel) and the one related to the force computation
(force_compute kernel) are the most compute intensive ones and have a prominent
role into the total execution time of the application.

As the following chapter 4 will present, the optimization process required at �rst,
a deep understanding of Vivado_HLS logs and reports, in order to ensure the cor-
rect match between the optimizations actually performed by the compiler and the
corresponding lines in the code. Since code is not well supported by Vivado_hls,
it is possible to run into interpretation problems in analysing logs and reports, in
particular regarding which lines of code have been optimized and which not. Once
it has been sorted out, it has been possible to notice that the most important opti-
mizations,for what concern OpenCL miniMD kernels, can be be performed in the
downloading and uploading processes of the data handled by the kernels, directly
into the memory of the FPGA. These optimizations were meant to promote the
burst memory transactions and to exploit e�ciently the low bandwidth between
the External DDR memory and the Programmable Logic (PL) therefore reducing
the access time of the external memory. It is important to notice that in the afore-
mentioned optimizations, loops have not been so easy to be speeded up due to
their not perfect bounded nature, in fact Viavo_HLS is able to perform the best
optimizations on loops that have particular requirements like a �xed upper-bound.
If these requirements are not met, the obtained increased performance will not be
the best ones. At the end, all the kernels have been merged and a single Vivado
design of the miniMD application has been obtained to be later executed onto the
Zynq Ultrascale+ device.

11

Chapter 2

FPGAs in HPC systems

In this chapter it will be analysed the main motivations that support the idea
of using FPGAs as good candidates for HPC systems. It will be analysed the
potentials and drawbacks of these low power devices with respect to GPUs, going
from the performance point of view up to the critical issues about design �ow that
has to be used to create applications with it. Furthermore it will be presented
the ExaNeSt European project which aims to practically research solutions for the
feasibility of low power HPC systems. Going on, the OpenCL (Open Computing
Language) framework will be brie�y described in order to clarify its Execution and
Memory model. Subsequently it will be discussed the main di�erences between the
SoC platforms versus the PCI-e ones, in order to make clear their di�erent �eld of
usage and the stages in which they have been used during this work. In the rest of
the chapter it will be clari�ed the meaning of High Level Synthesis (HLS) as the
technique that makes possible the synthesis of OpenCL Kernels in RTL (VHDL
or Verilog) models suitable to program FPGAs. Finally, a very brief focus will be
devoted to the software work�ow followed to compile and run applications with
the Xilinx SDAccel tool.

2.1 FPGA Use Models in HPC and the ExaNeSt

Project

FPGAs have di�erent use models in the world of high performance computing
thanks to their re-con�gurable nature:

� Connectivity use model: In this mode it is used the connectivity and
integration qualities of FPGAs to connect di�erent logic components of a
system, that may use unusual logic and connectivity standards and proto-
cols. This is possible thanks to the I/O features available in IOBs of the

12

2 � FPGAs in HPC systems

FPGAs, designed to support multi-voltage, multi-standard parallel process-
ing connectivity technologies. The supported protocols are di�erent: PCIe
(Gen 1/Gen2/Gen3), PCI, Intel's Front Side Bus, Serial Rapid I/O, XAUI,
and Intel's Quick Path Interconnect (QPI). Moreover, FPGA I/O blocks are
suitable to interface with a variety of Memory types like DRAM and SRAM
implementing multiple memory controllers that adjust their data rates and
width in dependence of the required performance [2]. A possible example
of application of this use model in the �eld os sensors network is presented
in �g.2.1. Here can be noticed as FPGA is able to interface to both sensor

Figure 2.1: Block Diagram of Example os sensors network

Network (thanks to the Interface to Data Source) processor and memory at
the same time thanks to the usage of multi-gigabit rate transceivers or high
speed interconnects.

� Fixed function hardware acceleration use model: In many application
speci�c architectures, it is very common to see large usage of ASICs or other
dedicated platforms that are able to ensure an high performance specialized
work. In this �eld FPGAs are used as well and are an highly �exible alterna-
tive to application-speci�c integrated circuits. In this use model the feature
of low-latency and high-throughput data processing is useful to accelerate
certain �xed functions of a prede�ned work�ow of computations like FFT,
DCT and so on [2].

� Software acceleration use model: This is the second most famous use
mode of FPGA in the world of the HPC. The goal is to o�oad compute

13

2 � FPGAs in HPC systems

intensive portions of code that natively run on CPU to FPGAs (typically,
as described in the following pages, the compute intensive parts of code are
speci�c C/C++ functions that are suitable to be accelerated on parallel or
semi-parallel architectures). This is very useful for all that customers that
want to accelerate their simulation analysis codes into high performance
servers. There are di�erent kinds of �eld of application like weapon simu-
lations, nuclear waste simulations or molecular dynamic simulations like in
this thesis. Following this use model in the following section 2.2 will be dis-
cussed as the FPGA is becoming a very good competitor in this application
�eld with respect to GPUs (that instead, are natively thought to work with
this way).

2.1.1 ExaNeSt european project

Figure 2.2: Logo of the ExaNeSt project

The building block of the ExaNeSt system the so called Quad-FPGA Daughter
Board (QFDB) showed in Fig.2.3. It is composed of four FPGAs Zynq Ultrascale+
MPSoCs, 64 GB of DRAM and 512 GB SSD storage. Each Zynq Ultrascale+ in-
tegrates four 64-bit ARMv8 Cortex-A53 cores running at 1.5 GHz and an FPGA
module. The QFDBs are then attached to the so called mezzaine boards, which
can host 16 of QFDBs. A blade of the system is then composed of 16 QFDBs
plus the mezzanine. The con�gurable aspect of FPGA is used at the blade level
to delegate the networking task of transferring data among all QFDBs. As can be
appreciated from Fig.2.3 one of the four FPGA is indicated as Network, and has

14

2 � FPGAs in HPC systems

the role to manage with very high performances the intra-QFDB data transferring
and the communication within the Mezzanine among all four QFDBs. At this
level, di�erent protocols have been used: low-latency exchanges with Low-Voltage
Di�erential Signaling (LVDS) channels, AXI protocols and high-throughput trans-
missions with High Speed Serial links (HSS). Another important application of the
recon�gurable property of FPGAs has been used to o�oad the operations of down-
loading/uploading processed data from NVMe m2 local SSD storage to a further
FPGA among the four. This is indicated as "Storage" FPGA in Fig.2.3.

Figure 2.3: The Quad FPGA daughterboard

Finally, 12 blades will be accommodated per row in the rack, and up to four can
be �t in the rack itself, for a grand total of 48 blades, 768 QFDBs and 3072 cores
maximum per rack. Moreover, ExaNeSt created its own Top-of-Rack switch, to
handle communication between di�erent racks. Regarding the scienti�c software,
the ExaNeSt project wants also to provide real HPC applications to validate the
system. Among the application to tested on such a system, the Large-scale Atom-
ic/Molecular Massively Parallel Simulator (LAMMPS) is the representative for the
�eld of material science application. Being an application with good scaling on
GPUs, it has been considered for the execution of its compute-intensive parts onto
FPGA accelerators. In this particular goal can be inserted this master thesis work,
with the study of the feasibility of porting the OpenCL kernels of a simpli�cation
of LAMMPS application called miniMD onto the last two FPGAs of the QFDB.

15

2 � FPGAs in HPC systems

In this regard,it will be discussed in next section, how FPGAs are increasing their
prominent role in the world of accelerators as good alternatives to the so common
GPUs.

Figure 2.4: The building blocks of the ExaNeSt interconnect and the di�erent
Tiers

2.2 FPGA: very good competitor of GPUs in HPC

systems

At the beginning the HPC applications were run on processing systems based on
general purpose single-core CPU-based systems. Until the early of 2000s ,perfor-
mance scaled with frequency in accordance with Moore's Law. But the technique
of simply scaling a single-core processor's frequency to improve performance has
soon met his end. This because if the frequency increases the corresponding power
consumption of the device grows quadratically, reaching impractical levels. So the
HPC industry has decided to change completely the method to increase perfor-
mance relying on multicore architectures. These last ones have forced developers
to adopt a parallel programming model to exploit the multi-core CPU perfor-
mances. Then, the Von Neumann bottleneck and the memory wall [17] problems
along with the doubt that the performance growth expected by the HPC end user
would be delivered, have forced the industry to another big change in order to
solve the multicore scaling: the development of CPU-based systems augmented
with hardware accelerators as co-processors.

16

2 � FPGAs in HPC systems

These are heterogeneous architectures that generally consist of a combination of
multi-core processors and a variety of hardware accelerators to speed up the ex-
ecution of data- and compute- intensive applications [2]. In the large world of
accelerators, Graphical processing units (GPUs) occupy a very important place in
the classi�cation of most powerful accelerators due to their very higher �oating
point throughput and favourable architecture for data parallelism with respect to
processors (namely they have an higher memory bandwidth than processors).

The HPC systems using GPU-based accelerators however, are ine�cient in terms
of power consumption [13]. So, a good solution can be the replacement of GPU
with the modern �eld programmable gate array (FPGA) devices that, in com-
parison to GPUs, can reach good processing speed with only a fraction of their
operating power consumption [18]. In order to better understand the actual mo-
tivations for which FPGAs can be a good solution in the world of HPC it can be
useful to brie�y remember its structure. The general architectural layout of an
FPGA is showed in Fig.2.5.

As can bee seen it is composed of a large array of con�gurable logic blocks (CLBs),
digital signal processing blocks (DSPs), block RAM, and input/output blocks
(IOBs). CLBs and DSPs can be programmed to perform arithmetic and logic
operations personalized for the speci�c application to be run. This results in an
higher compute e�ciency than normal general purpose ALUs in CPUs. In general
CLBs and DSPs can perform integer, �oating point, and bitwise operations whose
results are stored in block RAMs (BRAMs) or in the registers present in CLBs
and DSPs.

17

2 � FPGAs in HPC systems

Figure 2.5: High-Level Block Diagram of FPGAs

Since the output of one operator can directly feed the next one it can be noticed
as the FPGA architecture give us the possibility to increase both instruction- and
data- level parallelism creating arrays of application speci�c ALUs. Thanks to this
recon�gurable property, data can be streamed between operators which can be, in
turn, pipelined, increasing performances with respect to normal multicore-systems.
Moreover if data can be streamed between operators, this implies the exclusion of
problems like processor cache misses. In addition, the control logic of the FPGA
is con�gured into the logic itself, thus leading fetch and decode instructions to
be unnecessary. It is important to note that in all of these architectures, not all
the components of the device are used, but only ones needed for the application
speci�c operation run. All the other components are o� and consequently have
negligible power consumptions.

As can be noticed, FPGAs have their "killer feature" in their power-e�ciency
with respect to multi-core CPUs and GPU-based HPC systems. Actually, FPGAs
have an average power consumption of tens of Watts in comparison to the hun-
dreds of watts of multi-cores and GPUs systems. In di�erent tests performed [19]
about the execution of the K-nearest neighbor (KNN) algorithm in both a GPU
(AMD Radeon HD7950 graphics card) and FPGA (Stratix IV 4SGX530 FPGA
from Altera) has been noticed that GPU consumes about 100 W against the 3 W of
the FPGA. This demonstrates the e�ectively energy saving and the consequential
preservation of money in cooling systems due to a very much lower emission of

18

2 � FPGAs in HPC systems

heat with respect to GPUs [18].
There are di�erent reasons for which this can be possible. One of the primary
ones is related to the operation's frequency that, in FPGAs is around 100-300
MHz while in high-performance multicore processors is much more higher: 2-3
GHz.

The other reasons, instead, can be found in the advancements in process technol-
ogy that have allowed an increased logic cell-count and consequently an increase of
FPGA logic compute performance [2]. In fact, if we consider that Xilinx FPGAs
double their device density from one generation to the next and if we are able
to program them in a very "dedicated way" promoting parallelization of executed
codes, it can be enlarge the performance gap with respect to multi-core CPUs and
reach the same performances of GPUs or, sometimes, overcome them [18]. More-
over big performances are reached especially for low-precision computations.
In general one of the reason for which a GPU is more powerful than an FPGA
resides in its very-high bandwidth DRAM interface. Since the access to DRAM
is a very expensive operation in terms of power consumption, it can be said that
this is one of main moments in which GPUs consumes more power. In order to
contrast this energy consumption, in the FPGAs is mandatory to try to use a
sort of on-chip resources especially for kernel to kernel communication by means
of streaming data with on-chip bu�ers. Following this approach they reach GPU
performances in all codes in which is required a very little external DRAM access
[18] because the time spent to access an external memory is avoided and also the
energy to compute this action is not present. Regardless newer studies have al-
lowed to show as the IOBs shown in Fig.2.5 can be used to support various memory
and processor-interface standards [2] as the support for multiple DDR3 memory
controllers which would increase the bandwidth to the external memory also for
the FPGA case.

The only limitation to a very large usage of these devices in HPC is related to their
cost that is not so a�ordable and has historically limited the usage to a very narrow
set of HPC applications. But now, the direction that all the major companies of
HPC are undertaking in the use of this device would increase its production and
consequently reduce its cost [18]. The overall performances of newest FPGA are
drastically grown due to the increase of the logic cell count and speed and thanks
to all the architectural enhancements. As can be noticed in �g.2.6, to an average
improvement of 25% of clock frequency per year corresponds a Logic compute
performance increase (clock frequency increase x logic cell count increase) of 92X
on a decade. In the same time the price per logic cell has experienced a decrease

19

2 � FPGAs in HPC systems

of almost 90% [2].

Figure 2.6: Historical Advancement of FPGA Technology

All of these solutions and considerations are not feasible if we don't face with
the main obstacle in the utilization of FPGAs for acceleration: the complexity of
programming them. In-fact the FPGAs are in general programmed by means of
hardware description languages (HDL) such as Verilog or VHDL in the �eld of
hardware Design. If we consider that FPGAs used in HPC would averagely be
programmed by Scientists that don't know in very deep way the world of HDL,
this becomes a very big problem. This hurdle however can be overcome by a
technique called High-Level-Synthesis that enable designers to program FPGA
using high-level languages like C/C++, System C or, like in our case, in OpenCL.
So, in this way accelerate portions of codes for FPGA accelerators becomes much
more a�ordable and not restricted only for hardware engineers.

Before explaining the concepts of High-Level-Synthesis, the Software work�ow
and the hardware platforms used, it is useful to better introduce the OpenCL
framework.

2.3 OpenCL

Open computing language (OpenCL) is a single parallel programming model, based
on C (developed by Khronos� Group). It can be seen as a system-level abstraction

20

2 � FPGAs in HPC systems

for all hardware platforms that supports this standard. It is suitable for all types
of multi-core and heterogeneous parallel compute platforms and the Xilinx com-
pany collaborates actively with the Khronos Group in order to allow a better and
easier execution of programs into the Xilinx FPGA devices [15]. The OpenCL can
be used in di�erent devices and is not restricted to particular platforms as CUDA
for Nvidia GPUs and guarantees the functional correctness of its code executed on
di�erent platform. Nevertheless the performance portability is not guaranteed and
instead is strictly dependent on the speci�c architecture [15] on which the code is
run. So the performance of an OpenCL code will depend on how we are able to
adapt the coding style to the architecture of the hardware platform on which it
will run.

OpenCl coded-routines, as stated before, are particular portions of a general sci-
enti�c code (host-code) that are actually compute intensive. So these portions of
code are functions (kernels) that, in order to increase the performance of code and
so reduce its time of execution, are translated from the original C/C++ language
into OpenCL in order to allow its execution into accelerators (devices) as GPUs or
FPGAs (actually FPGAs can run both C/C++ and OpenCL codes). Basically the
OpenCL version of these functions are programmed in order to allow the largest
possible parallelization execution. The host code has the role to handle and syn-
chronize the execution of the kernels. Moreover it has to send and retrieve the
data processed by the accelerator devices from the memory.
In order to appreciate the programming model of OpenCL codes it is mandatory
understand the OpenCL Memory model and the Execution Model. It is very im-
portant to make clear this because on these concepts will be given, in the next
chapters,the main motivations for which OpenCL codes in FPGA run di�erently
with respect to GPUs.

2.3.1 The OpenCL Execution model

A view of the OpenCL platform is shown in Fig.2.7. We can notice the presence
of the CPU that is in general a multi-core processor on which the host-code is
run. The di�erent kernels are executed, instead, on the device that is composed
of di�erent Work-items (Processing Elements) grouped into Work-groups. Many
work-groups can be launched into a single Compute-Unit.
The same kernel can be run by all the work-items into a single compute unit and
also by other compute-units. In other words: in order to further increase the
parallelism of the application the same kernel function can be executed by all the
work-items within all the work groups of a compute-unit and also by di�erent
compute-units. In order to uniquely identify each work-item from the other ones
in the compute unit, each PE has a global-ID. Moreover, it is important that each

21

2 � FPGAs in HPC systems

Compute_Unit#1-Kernel_Instance
Work-Group#1

Work-Item#1

Local_Memory

Private_Memory

Global/Constant_Memory

Compute Device#1 (GPU of FPGA)

Work-Item#2
Private_Memory

Work-Item#3
Private_Memory

Work-Group#2

Work-Item#1

Local_Memory

Private_Memory

Work-Item#2
Private_Memory

Work-Item#3
Private_Memory

Compute_Unit#2-Kernel_Instance
Work-Group#1

Work-Item#1

Local_Memory

Private_Memory

Work-Item#2
Private_Memory

Work-Item#3
Private_Memory

Work-Group#2

Work-Item#1

Local_Memory

Private_Memory

Work-Item#2
Private_Memory

Work-Item#3
Private_Memory

CPU

Host-Memory

Compute Device#2

Compute_Unit#1-Kernel_Instance
Work-Group#1

Work-Item#1

Local_Memory

Private_Memory

Work-Item#2
Private_Memory

Work-Item#3
Private_Memory

Work-Group#2

Work-Item#1

Local_Memory

Private_Memory

Work-Item#2
Private_Memory

Work-Item#3
Private_Memory

Global/Constant_Memory

Compute Device#3

Compute_Unit#1-Kernel_Instance
Work-Group#1

Work-Item#1

Local_Memory

Private_Memory

Work-Item#2
Private_Memory

Work-Item#3
Private_Memory

Work-Group#2

Work-Item#1

Local_Memory

Private_Memory

Work-Item#2
Private_Memory

Work-Item#3
Private_Memory

Global/Constant_Memory

Figure 2.7: openCL platoform and memory model

work-item can be addressable with respect to all the other work-items in the same
work-group. so at this scope it has also another identi�er :the local-ID. Of course
we can have also multiple devices (Fig.2.7) that share the same Host. This is
another option to further increase the parallelism level of the application or to run
di�erent kernels at the same time.

2.3.2 The OpenCL Memory model

As far as memory-model concerned we can notice from Fig.2.7 an Host memory
used directly by the CPU to save local variables and then all the other memories in
the device. In this last ones it can be seen the global/constant memory used to save
data shared between the CPU and the accelerator device. In fact this can be read
from and written to by both the host and the device [3].The Access to this memory
by means of single Processing element is very slow because is usually an external
DRAM and it is the largest into an OpenCL region. So other faster memories are
present: the local-memory that is shared among all the processing elements (work-
items) into the same work-group. It usually resides in on-chip SRAM and can be

22

2 � FPGAs in HPC systems

accessed 100x faster than global/constant memory. Finally we have the private-
memory exclusively thought for each work-item to save local variable useful only
for it. This is implemented by means of local registers composed of LUT or BRAM
and it can be accessed faster than local or global memory.

2.4 System types in High Performance Computing

and FPGA platforms descriptions

There are two main di�erent system types in HPC. The �rst one is related to High-
performance servers. These are usually used in big supercomputers suitable to run
data intensive applications. For this reason they need of a big amount of power
and bandwidth to global/constant memory. In these systems FPGA's architecture
provides di�erent advantages from the interface point of view, as the support
for PCIe® Gen1/Gen2/Gen3 protocol suitable to communicate with processors
through very high bandwidth and speed. An example of such system can be seen
in �g.2.8.

Figure 2.8: Traditional structure of an High-performance server type

As can be noticed the communication between the processors and the FPGA plat-
form occurs across the PCIe® bus.

The second system type, is instead related to Embedded applications. These are
the high-performance embedded systems. Such architectures don't rely on PCIe®
to perform the communication between a processor and the FPGA because they

23

2 � FPGAs in HPC systems

are usually based on System-on-chip architectures used for heterogeneous embed-
ded systems applications.
The PCI-express based system FPGA is not soldered on the same chip where are
also the other components (CPU, peripherals, etc..) but is externally connected
by means of the PCI-express high bandwidth connection. By contrast System on
chip houses and integrates microprocessor, graphics,memory, memory interfaces
and also advanced peripherals like FPGA accelerators for speci�c purposes into a
single electronic substrate. These are mainly thought for embedded systems im-
proving performance and reducing power consumption [4] and are the ones chosen
by the ExaNeSt project to build the aforementioned supercomputer.

During the prototyping phase of the board Tier1, the ExaNeSt project has em-
ployed the Trenz Starter Kit 808 as testbed. This is composed of di�erent compo-
nents:a Trenz TE0808-03 module equipped theXilinx Zynq Ultrascale+ XCZU9EG
MPSoC and " GByte of DDR memory (see Fig.2.9[a]) and the Trenz TEBF0808-
04A carrier board, which mounts the Trenz TE0808-03 module shown in Fig.2.9[b].
Then the carrier board is hosted into an ATX case (see Fig.2.9[c]).

Figure 2.9: Trenz Starter Kit 80

Nevertheless, during this thesis work, all the tests have been performed on PCIe
based FPGA systems. In particular AWS services have been utilized with Virtex
Ultrascale+ FPGAs.
As it has been said before, the unit of application is a Zynq UltraScale+� MPSoC
(see �g.2.10). The XCZU9EG SoC combines two main parts: a Processing system
and the Programmable Logic. The processing system (PS), in general, contains all
the fundamental components to run the Host-code of an HPC application and also
other peripherals like GPUs, High-Speed Connectivity, Con�guration and security
unit, Real-Time processing unit. In particular we have:

24

2 � FPGAs in HPC systems

� An Application Processing Unit APU equipped of quad-core ARM Cortex-
A53 with 32KB L1 Cache and 1MB L2 Cache.The ARM cores embed the
advanced SIMD technology NEON in order to support the Single/Double
precision Floating Point computing [5]. This multi-processor is usually used
to run general purpose tasks or, like in our speci�c case, to run an host
code.This also controls the functional blocks built in the programmable logic
by setting/reading speci�ed signals in a reserved memory location.

� Real Time Processing Unit (RPU) ARM Cortex-R5 used for all applications
that need to respond in deterministic time.

� A GPU ARM Mali-400 MP2 with 64KB L2 Cache working with a frequency
of 664 MHz

� Dynamic memory Controller ()DDRC) used to allow the communication
between the PS and PL.

Figure 2.10: Xilinx Zynq ultrascale+ EG

The programmable logic contains the FPGA used in our case to accelerate some
kernels of the molecular dynamic (miniMD) code. The connection between the

25

2 � FPGAs in HPC systems

PL and PS in the Zynq ultrascale+ device counts a total of 12 among Master
and Slave interfaces. The master interfaces are the M_AXI_HPM0_LPD and
M_AXI_HPM[0-1]_FPD shown in �g.2.11. These are used by the processors in
PS to control the PL by writing/reading the control status registers in a reserved
memory location for each instance of kernel (functional_block). In other words
each functional block has some control registers in memory that are used by the
ARM processor to see when the computation is started/�nished and so launch
the command to transferring data from/to FPGA device (by means of the slave
interfaces).

The Slave interfaces are used by the PL to retrieve/send data to PS and in
particular to the DDR memory subsystem. These are S AXI_HPC[0-1]_FPD,
S_AXI_HP[0-3]_FPD and S_AXI_LPD in Fig.2.11. In this thesis only the
S_AXI_HP[0-3]_FPD 128bit-width interfaces have been used beacuse are
related to the speci�c function to exchange with high performance large data be-
tween DDR memory and FPGA. It is important to note as the bandwidth between
external DDR Memory and PL is, in case of SoC, lower than PCIe based systems
in which each AXI interface can have up to 512 bit-width buses.

AXI protocol and PS-PL Communication

Figure 2.11: AXI Interconect

26

2 � FPGAs in HPC systems

In the Fig.2.11 above it can be noticed all the connections between PL and PS
based on the AXI protocol: an on chip interconnect protocol used to manage and
connect di�erent functional units into a System on Chip. There are three types of
AXI-4 interfaces [6]:

� AXI4/AXI4 for high performance memory-mapped transactions.Memory
mapped transactions means that data transfers are performed over a mem-
ory space mapped by addresses. It is used in our case to allow the transfer
of data between all the functional units (implementing the kernels) in the
FPGA and the External DDR memory [6].

� AXI4-Lite for simple, low-throughput, single memory mapped transactions.
It is ised in our case to control and set the status of the functional blocks in
the FPGA (PL) [6].

� AXI4-Stream for high performance stream (not mapped) transactions that
enable the stream transfer of data. In other words stream transactions do
not use the mapped memory space [6].

2.5 Software work�ow

As stated before in section 2.2, in order to ensure the translation of OpenCL code
into Register-Transfer-Level (RTL), the High-Level-Synthesis technique is largely
used. This can be de�ned as "an automated design process that interprets an
algorithmic description of a desired behaviour and creates digital hardware that
implements that behavior "[7]. In our case the "algorithmic description" is about
the compute-intensive functions (kernels) written in OpenCL that will be directly
transformed into a RTL implementation. This RTL version is generally obtained
in VHDL or Verilog languages.
The implementation of kernels on FPGA device includes the high-level-synthesis
step into a more general work�ow performed, in this thesis-work, by means the
software's tools of Xilinx. Each step will be described in the following subsections.

2.5.1 Vivado HLS

Vivado HLS is the Xilinx Software related to the synthesis of C/C++/SystemC and
OpenCL codes into VHDL- or Verilog-described digital circuits. This automated
process consists of three main stages:

� Scheduling :During this step are determined which operations have to be per-
formed in each clock cycle considering di�erent factors like the clock fre-
quency and the latency of the operation itself. In dependence of the of the

27

2 � FPGAs in HPC systems

clock period of the targeted FPGA the operations will be sheduled in one or
more clock cycles [8].

� Binding : It is used to select which hardware resource has to be implemented
for each scheduled operation. in order to perform this operation in an opti-
mized way Vivado HLS needs to know the output target device [8].

� Control logic extraction: A �nite state machine is implemented in order to
generate the control logic used to regulate the operations before scheduled
[8].

After these steps Vivado HLS is able to create an optimal implementation of the
original code based on the default behaviour and constraints. At the end of this
step the user can control if the design generated meets its requirements reviewing
the performance metrics reported in the synthesis report generated by high-level-
synthesis. This report contains di�erent informations about the Area used by the
hardware resources implemented, the Latency of the function to compute all out-
put values, the number of clock cycles brfore the function can accept new input
data (initiation interval) and so on. If these metrics are not su�ciently good the
user can decide to use optimization directives to modify and control the default
behaviour of the internal logic and I/O ports of the RTL generated.
This is a very important feature that guarantees to the FPGA acceleration devel-
opment, a further degree of freedom to ensure a strong increase of performance
in the execution time of the kernel. The optimal results obtained by adopting a
"personalized programming style" into writing OpenCl codes with the right opti-
mizations directives are able to guarantee performances sometimes even gather
than that of GPUs. Nevertheless, this topic will be better analyzed in Chapter 3
where will be presented all the possible optimizations available for OpenCl codes
and the e�ort needed to generate optimized compute architecture for FPGA rather
than GPUs.[18]

After the execution of Vivado HLS, we are able to extract from the output �les
a synthesized functional block representing the kernel as a black box with
its output and input ports in accordance with its hardware description language.
Moreover C control driver are emitted and are used by the programmable system
to control the functional block in the PL.

An example of a functional block implementing a vector addition kernel can be
seen in the following image (Fig.2.12):

28

2 � FPGAs in HPC systems

Figure 2.12: Vector addition kernel

2.5.2 Vivado Design Suite

After that the kernel has been synthesized, the design environment Vivado IDE
is used to merge the functional block with the rest of greater design including the
FPGA. An example of an implemented design is in Fig.2.13

Figure 2.13: Vivado IDE project Design

After that the whole design has been completed, a logic synthesis is performed
translating the RTL-level design of each functional block into a netlist of primitive
FPGA logical elements connected between them. This phase is called synthesis.
Then implementation step places and routes the functional blocks in the FPGA
device using the previous generated netlist. During this phase the focus is on
meeting the logical, physical and timing constraints given by the user during the
set-up of the project. Finally the con�guration design of the FPGA resources is
transformed into a bitstream that is a binary representation of the resources and
the way through which they are connected to each other. This binary �le along
with the functional block driver generated by vivado HLS and other platform �les
are grouped in an Hardware Platform Speci�cation File (*.hdf �le) used �ash the
FPGA fabric.

Overall, we can say that, the �rst action that has to be performed when we want
to speed up the execution of an application, is to select the functions (kernels)

29

2 � FPGAs in HPC systems

which need to be accelerated and process each of them by means of Vivvado HLS.
Later, when the functional blocks of each kernel has been generated we have to
use Vivado Design suite to aggregate them in a toatl �nal design. This kind of
work�ow can result a little bit slow in case the number of synthesized kernels
becomes larger. So, in these cases the Xilinx SDAccel and SDSoC tools helps
to boost this process. As a matter of fact, these tools do nothing but analyse
the Host Code of an application, identify all the C/C++/OpenCL kernels and
process each of them with Vivado HLS. At the end the tool is able to merge all
the kernels together automatically recalling Vivado Design Suite and to generate
the �nal bitstream useful to �ash the FPGA.
During this work has been more convenient to use SDAccel rather than SDSoC. The
di�erence between them is very minamal and essentially consist on the di�erent
platform architecture target. In fact, while SDAccel has been thought for FPGAs
in High performance server systems (as stated here 2.4) SDSoC, insted, is suitable
for FPGAs in High performance embedded systems. Nevertheless, during the
whole development phase of the thesis work , it has been used SDAccel but at the
end SDSoC has been used to generate the right �les for the Zynq Ultrascale+ (this
being a platform falling within the category of embedded architectures).
Further details about the functioning of SDAccel will be given in the following
subsection.

2.5.3 SDAccel Build process

Xilinx SDAccel software tool is a particular environment o�ering an optimized
compiler to analyze Host Codes and cross-compiler to menage Kernels for FPGA.
The SDAccel build process can be viewedd in the following Fig.2.14. The build
process is essentially based on a standard compilation and linking processes per-
formed for both Host-Code and FPGA Kernel. As can be seen from the image
above, at �rst, the Host-Code (topically written in C/C++) is compiled and then
linked by means of a variant of the GCC compiler called xcpp. The same stage in
SDSoC is performed by a di�erent variant called sds++. At the end of this stage
the host application executable (.exe) is generated. Then each FPGA kernel (top-
ically written in C/C++ or OpenCL C as in our case) in dependence of the build
target selection will be compiled and linked by means of xocc compiler (the same
compiler is used in SDSoC). During the compile stage Vivado HLS is run generat-
ing for each kernel,one object �le with *.xo extension . Follows, the linking stage
during which Vivado Design Suite is run. It merges all the *.xo �les previously
generated with the FPGA platform �les, producing at the end, the FPGA binary
�le with extension *.xclbin [9]. It is important to note that, while in GPUs, the
compiling of kernels is performed at running time, in FPGAs this doesn't happen.
FPGA design o�ers much more customizations with respect to GPU design, but,

30

2 � FPGAs in HPC systems

by contrast requires synthesis , place and route times much more longer. As a
matter of fact the host code has to read the xclbin binary �le that has already
been produced before during compilation and linking phase. This is called O�ine
compilation approach [18].
There are di�erent types of FPGA binary �les generated in dependance of the
build target selected. SDAccel provides di�erent build target: Software Emula-
tion, Hardware emulation and System. It is much more useful to analyse their
utility and the moment in which they have to be used, by means of the following
methodology work�ow (see Fig. 2.15).

Figure 2.14: Host-Code/kernel build process in SDAccel

The �rst goal to be reach is to guarantee the functional correctness of the syn-
thetized OpenCL code by means of a CPU or Software emulation. This means
that both host-code and kernel code are compiled to run on the x86 processor.
This phase is useful to solve syntax issues and perform source-level debugging [9].
In the meanwhile a system estimate report has been generated by Vivado HLS and
this document reports an early idea of the performance and resources related to
each kernel. In order to obtain much more detailed and cycle-accurate view of the

31

2 � FPGAs in HPC systems

kernel the hardware emulation has to be executed.During this stage an RTL sim-
ulation model of each kernel is generated in order to ensure more accurate results.
Of course, if after this stage the performances obtained do not meet the required
ones, further optimization directives can be applied to the original OpenCl kernel
code. So, all the stages performed up to this point have to be repeated.

Figure 2.15: SDAccel based FPGA design methodology �ow.l

If, instead, the performances are satisfactory, it can proceed to the build system
step to link all the generated custom units with the processor and DDR DRAM in-
terfaces related to the target hardware [18]. �nally the package to �ash the FPGA
platform is generated.

Both SDAccel and SDSoC can be executed by means of the GUI Interface or
my command-line. During this Thesis work the command-line approach has been
preferred.

32

Chapter 3

MiniMD application and Kernels

presentation

In order to give actual benchmark simulations to test the performance of the
exascale supercomputer, the ExaNeSt project has decided to use, among other
simulation packages, the LAMMPS classical molecular dynamics simulation pack-
age. Nevertheless, with the purpose of promoting an easier porting of the OpenCL
kernels of LAMMPS to FPGA has been decided to use a simpli�ed mini-app ex-
tracted from LAMMPS and called miniMD. This, having a limited collection of
potentials and minimal post-processing, is suitable to allow to focus onto the pos-
sibility on �nding optimizations aimed to properly speed up the execution time of
the above kernels. Following this solution further advantages can be found in the
matching between the kernels' structure and the architecture of the given Zync
Ultrascale+ MPSoC.
So this chapter will, at �rst, analyse the molecular-dynamic (MD) numerical sim-
ulation with a very basic explanation of the physical concepts on which it is based.
Then, each miniMD kernel will be presented paying attention to explain their
behaviours and how they interact with each other.

33

3 � MiniMD application and Kernels presentation

3.1 Molecular Dynamics

Figure 3.1: Energy function versus space coordinates

Molecular dynamics (MD) is a technique for computer simulation of complex sys-
tems, modelled at the atomic level. It is used for studying the movements of par-
ticles (atoms or molecules) that can interact between each other for a �xed period
of time. Particles interact through forces that can be calculated using interatomic
potentials or molecular force �elds. In general, assuming a given potential energy
function and assuming that every atom has a unique position and velocity (see
Fig.3.2), the molecular dynamic simulation mimic what atoms do into the space
under the presence of the forces experienced by any other atom in the same space.
These forces can be computed thanks to the energy function itself (see Fig.3.1).

34

3 � MiniMD application and Kernels presentation

Figure 3.2: Group of atoms with their coordinates and velocities

In such complex system of particles, the interatomic forces and the atom's poten-
tial energies lead atoms to move. Since, molecular systems typically consist of huge
number of particles, it is impossible to determine such trajectories and the general
properties of molecules, analytically. Given the total force acting on each particle,
the numerical solution of Newton's equations provides the dynamic evolution of
the system. [10].
The potential energies, are often calculated using interatomic potentials or molec-
ular mechanics force �elds [10]. In particular it can be computed as a sum of the
interactions between the atoms of the system. One of the common choice is the
pair potential for which the total potential energy is computed as "the sum of
energy contributions between pairs of atoms"[10]. A good example of such pair po-
tential is the Lennard-Jones potential useful to calculate the Van-der Waals
forces among all particles.

35

3 � MiniMD application and Kernels presentation

Figure 3.3: Strength versus distance for the Lennard-Jones potential

The Lennard-Jones potential is a mathematical model that approximates the in-
teraction potential between a pair of neutral atoms or molecules with given
spatial coordinates and velocities that uniquely identify them in the system [10].
The most common expressions of the L-J potential are:

V (r) = 4ε
[(σ
r

)12 − (
σ

r
)6
]

= ε
[
(rm/r)

12 − 2(rm/r)
6
]

(3.1)

where V (r) is the potential energy, ε is the depth of the potential well, σ is the
�nite distance at which the inter-potential is zero and r is the distance between
two particles. Instead rm is the distance at which the potential function has the
value −ε and is related to σ by means of the following expression : rm = 1.122σ.
As can be noticed the L-J potential is the result of due main terms. The �rst
fraction is elevated to the power of 12 and indicates the repulsive term describing
the Pauli repulsion at short ranges due to the overlapping of electron orbitals. So
the inter-molecular force between two particles when r is very small and so at short
distances is repulsive. The second term is the one with power of 6 which is the
attractive long-range term, describing the attraction at long ranges due to van der
Walls forces.
In general the L-J potential is particularly suitable for simulations about the cal-
culation of properties of gases and especially noble gas atoms. The L-J potential

36

3 � MiniMD application and Kernels presentation

is very simple and for this reason is largely used in computer simulations where is
preferred to use this simpli�ed expression:

VLJ(r) = (A/r12)− (B/r6) (3.2)

where A = 4εσ12 and B = 4εσ6 .

Now, given the (3.2) expression of the potential, the force between two particles
can be computed as

Fr = −∇V (r) = − d

dr
V (r)~r = 4ε

(
12
σ12

r13
− 6

σ6

r7

)
~r (3.3)

The total force acting on a particle is obtained by the summation (integration)
of (3.4) computed for each particle neighbours. The particle neighbours are all
molecules within a given (not so high) distance of the considered particle (see
Fig.3.4).

Figure 3.4: Computation of total force acting on atom1 due to the presence of its
neighbours

After the computation of the resultant force applied by all the neighbours onto one
single particle, this will change its spatial coordinates and its velocity. Itself, with
its movement will cause the change of the total force applied to one or more of
its neighbours updating also their coordinates and velocities thanks to Newton's
laws of motion. In fact, the Newton's second law asserts that the force applied

37

3 � MiniMD application and Kernels presentation

onto an atom is proportional to its mass m and to the acceleration a consequently
imposed on it. Now if we consider that the velocity is the derivative of position (x
indicates the coordinates of the atom) and acceleration is the derivative of velocity
we can write the equations of motion as:

dx

dt
= v

dv

dt
= F (x)/m (3.4)

As can be seen this is a system of ordinary di�erential equations. In order to solve
this, numerical solution is used implementing the following molecular dynamic
algorithm:

Figure 3.5: A simpli�ed description of the standard molecular dynamics simulation
algorithm

38

3 � MiniMD application and Kernels presentation

3.2 Leapfrog Algorithm and miniMD kernels' de-

scription

Actually, the algorithm expressed in Fig.3.5 is nothing more than the application
of Leapfrog integration algorithm that is a second order method for updating
position and velocity following these equations:

ai = F (xi), (3.5)

vi+ 1
2

= vi + ai
∆t

2
, (3.6)

xi+1 = xi + vi+ 1
2
∆t, (3.7)

vi+1 = vi+ 1
2

+ ai+1
∆t

2
(3.8)

where xi is the position at step i, vi+ 1
2
is the velocity, or the �rst derivative of x,

at step i + 1
2
, ai = F (xi) is the acceleration, or second derivative of x, at step i,

and, �nally ∆t the size of each time step.

MiniMD is a simple and lightweight C++ code composed of �ve main kernels:

� neighbor_bin

� neighbor_build

� force_compute

� integrate_initial

� integrate_�nal

What is important to understand is the way through which these codes interact
among each other into the miniMD simulation code. A summary scheme of such
algorithm can be viewed in Fig.3.6

39

3 � MiniMD application and Kernels presentation

CREATE ATOMS

NEIGHBOR.BUILD

xi,vi

FORCE COMPUTE
fi=ai

INTEGRATE INITIAL
Vi+1/2=vi+fi*dt/2

Vi+1=Vi+1/2 +ai+1*dt/2

20
timesteps

pass?

NEIGHBOR.BUILD

COMMUNICATE ATOMS

YESNO

FORCE COMPUTE
fi+1=ai+1

INTEGRATE FINAL

Xi+1=xi+Vi+1/2*dt

Figure 3.6: Leapfrog Algorithm

As can be seen, the �rst step of the algorithm deals with the creation of all the
atoms that will participate on the simulation, saving for each of them the spatial
coordinates and their initial velocities. This creation is performed by allocating
the particles into a general reticle of bins. This forms the so called simulation box.
After This stage, the neighbour list of atoms for each particle is developed. This
means that, if each atom is associated to an integer identi�er, all their neighbours

40

3 � MiniMD application and Kernels presentation

will be indicated as a list of indexes. From a theoretical point of view the miniMD
algorithm computes the interactions of each of the N particles in the simulation
with all other N − 1. This leads the computational complexity, for computing the
total force acting of a determine dparticle , to become proportional to N2. But,
this can be largely improved considering the actual possible ranges of interactions.
In fact for all short range interactions the better approximation wants to neglect
all particles that are outside a cut-o� radius. Now if we call with d the dimension
order in which we are performing the simulation (if d=3 we are in the 3Dimensional
case) and with rc the cut-o� radious, the computational complexity down to nrc

d.
Therefore the searching of neighbours is very important and the short-range case
is especially good situation that can be used by making sure that interactions are
only calculated between those particles having a chance to interact due to their
mutual distance. This can be better seen if we imagine to have a computational box
(with side L)and divide it into smaller cells with side length l that �ll completely
the computational box. Each particle is located in exactly one of the smaller cells
. If we set the length of l so that it is at least as large as the cut-o� , l ≥ rc we
can be sure that all the potential neighbours of each atom can be found in each
small cell and in each of the 3d − 1 cells that are adjacent to the primary region.
(Each small cell can be called primary cell and all its neighbours cell neighbour
cells) (see Fig.3.7).

Figure 3.7: The simulation box with side length L and its sub small cells with side
length l.

In Fig.3.7 it can be noticed a 2D system with a simulation box of side length L
and all its sub small cells of side length l.The light grey coloured cell indicates the

41

3 � MiniMD application and Kernels presentation

primary region and all the dark-grey cells are the possible regions in which can be
possible to �nd potential neighbours particles. It is important to underline, that
the assumption of approximately uniform particle density has been presumed. So
in these conditions the computational work for calculating the force on a particle
is proportional to the volume that force calculation algorithm searches for possi-
ble interactions. Given the aforementioned assumptions, these interactions can be
much lower.

At this point all the particles have been indexed and saved in the DDR memory of
system. The following step if the total force computation relative to each atom due
to the acceleration ai induced by each one of its neighbours. So the Integrate initial
kernel will run. Knowing the velocity of the atom at time step i, vi, it will compute
the velocity at time step i + 1/2 and so the new position xi+1 assumed. This is
the moment in which the program controls if 20 time-steps hav been elapsed. If
this control returns success, it means that the particles have been moved so much
that the list of neighbours for each atom has to be re-populated. Otherwise the
algorithm will directly pass to a newer computation of force compute.This because
the atoms have experienced a movement with respect to their original positions
(after integrate initial) and also would have been completely changed cause of the
last execution of neighbour_build kernel. Finally the velocity at time step i + 1
will be calculated thanks to Integrate_�nal and the generated data will be used
to execute again the �ll Leapfrog algorithm, starting by integrate_initial.
The algorithm will be executed until the required number of time-steps will be
elapsed.

42

Chapter 4

FPGA-based approach for OpenCL

kernel acceleration

The OpenCL kernel acceleration methods for the world of FPGAs is di�erent with
respect to the one of GPUs because of architectural di�erences between the two
devices. In this chapter it will be explained the OpenCL development from the
point of view of FPGA, considering the possible optimizations that can be done by
means Vivado HLS, by using both manual standard annotations and Xilinx-speci�c
OpenCL attributes.

4.1 OpenCL development for FPGAs

The �rst thing to clarify is that the same OpenCL code is executed in di�erent
manners in FPGA devices with respect to GPUs. This because of many reasons,
mainly dealing with External DRAM memory access bandwidth and execution-
modes of each work item within work-groups. Therefore, the goal is to insert into
the OpenCL code some directives that will guide the Xilinx OpenCL compiler to
create the best mapping between the FPGA architecture and the code itself. Any-
way, this e�ort is largely justi�ed beacuse these optimizations will be able to reach
very good performances almost equal to ones of GPUs but saving a lot of energy.
In general GPU devices have a very high bandwidth DRAM interfaces that over-
come those of FPGA. For this reason the �rst optimization that has to be done
for FPGA-based systems, is the one aimed to make more e�cient the movement
of data between external memory and the programmable logic.

43

4 � FPGA-based approach for OpenCL kernel acceleration

4.1.1 Data Movement Optimization

In order to maximize the system-level data throughput it is important initially to
isolate, within our OpenCL kernels, the data transfer portions of code from the
computational ones because potential ine�ciencies in the former one can compro-
mise the good execution of the latter [15]. It is important to remember that in case
of Zynq Ultrascale+ architecture the Programmable logic and the Programmable
System share the same DDR memory space. This means that the step aimed to
transfer data between the host and the device memories by means of OpenCL APIs
in not needed. For our special case, the global DDR external memory is a DDR
chip soldered onto the Trenz TE0808-09 module outside of the Zynq Ultrascale+
device.

When an OpenCL kernel is synthesized for FPGA, the compiler will create two
main conventional memory interfaces: an AXI4-Lite Slave interface in order to
manage the functional block control (management of start, end and interrupt sig-
nals of each kernel instance) and an AXI4 Master interface (m_axi_gmem) for
the connection of the functional block to the DDR Memory (see Fig.2.12). While
for C/C++ and System C codes the compiler makes available the possibility to
choose more di�erent interface type, in case of OpenCL only conventional inter-
faces are available. By means of the m_axi_gmem master interface the kernel
instance is able to reach the external DDR memory by accessing the slave in-
terface S_AXI_HP[0-3_FPD of the programmable system (PS). Just to better
understand this communication we can take the example 4.1.

1 __kernel void dwn_upl (__global i n t * in , __global i n t * out) {
2 __local i n t in_loca l [1 2 8] ;
3 __local i n t out_loca l [1 2 8] ;
4 read (in , i n_loca l) ;
5 proce s s (in_loca l , out_loca l) ;
6 wr i t e (out_local , out) ;
7 }

Listing 4.1: Subdivision of kernel code in the data movement and process parts

As can be noticed the kernel has, as attributes, two global pointers of type integer.
It is important to underline the subdivision within the kernel's code between the
computational part and the one related to the downloading/uploading of man-
aged data. In fact, a local version of in and out attributes, are created: in_local
and out_local. After this declaration the read function download all the needed
data through the global pointer in from the global memory and save them into
the local memory version in_local of this variable. Then, after that the data are

44

4 � FPGA-based approach for OpenCL kernel acceleration

processed by the process function and saved in the local version of out, out_local,
the write function move them in the external DDR memory by means of the out
global pointer. By performing the separation of the read/write functions from
the computational results it has been simpli�ed the following optimization of the
computation part of the kernel. Moreover, since the internal variables are mapped
to on-chip memories, the retrieving of their values can be performed much more
faster then the AXI interfaces.
The global pointers passed as kernel arguments determines the width of the
m_axi_gmem interface. In fact its width is equal to the largest type de�ne as
global pointer in kernel arguments. This is a very important aspect related to the
third further improvement obtained as consequence of the previous computational
division: the burst memory transfers from external DDR is promoted. Trans-
ferring data in bursts, instead of multiple single-memory-transactions, hides the
memory access latency because they need to exchange less control-synchronization
messages. In general a burst transfer is characterized by the following �elds:

� Burst size: it describes how many bytes are sent within one transaction

� Burst Size: it describes the number of burst-size transactions are performed
in the burst.

Therefore,it is useful to use burst in all the cases in which the data to retrieve from
the memory are in consecutive address locations and multiple requests of them are
performed. Moreover, in order to maximise the data throughput it is raccomended
to choose data types that �ll the full width of the S_AXI_HP[0-3_FPD inter-
faces. For example in previous example, the in global pointer is an integer pointer
of 4 bytes (32 bits). If it had been implemented the int4 vector-data-type (four
integers in only one variable) data type the full bandwidth of 128bit of the inter-
face would be used.
Overall, one of the available methods to infer burst transfer in FPGAs, as also in
GPU, is the usage of async_work_group_copy function. An example implement-
ing it, is the following Listing 4.2.

1 __kernel void dwn_upl (__global i n t * in , __global i n t * out) {
2 __local i n t in_loca l [1 2 8] ;
3 __local i n t out_loca l [1 2 8] ;
4

5 //download phase
6 event_t e_in = async_work_group_copy (in_loca l , in , 128 , 0) ;
7 wait_group_events (1 , &e_in) ;
8

45

4 � FPGA-based approach for OpenCL kernel acceleration

9 // proce s s phase
10 proce s s (in_loca l , out_loca l) ;
11

12 // upload phase
13 event_t e_out = async_work_group_copy (out , out_local , 128 , 0) ;
14 wait_group_events (1 , &e_out) ;
15 }

Listing 4.2: Optimized code

At line 6, it can be noticed the call to this OpenCL function which has to role to
promote the burst downloading of 128 elements of data type int addressed by global
pointer in and saving them into in_local. Then process phase is called. At the
end the same function is called to write in burst mode the results from out_local
to out. The wait_group_events function is used to wait that the copy operations
performed by the previous async_work_group_copy is successfully completed.

4.1.2 Kernel process Optimization

Once all the needed data to be processed have been downloaded and saved into
local memories of work-groups, we are ready to process them optimizing the com-
putation �ow.
The �rst very big di�erence between the GPUs and FPGAs, in the guise of OpenCL
accelerators, consists on the di�erent manner by means work-items interact to each
other during their execution. In fact, in GPUs work-items execute the kernel-code
in a pure parallel manner, in FPGAs they execute in a sequential mode. In other
words, it can be said that all the work-items of a work-group will execute the kernel
code sequentially as if they are inserted in a loop over their global identi�er. The
loop we are talking about is the one that have as upper bound the total number of
work-items in the work-group. If this upper bound is �xed by means of appropri-
ate directives, Vivado HLS is able to promote many optimizations about the size
of internal local memories and about the overall execution time of the kernel. Just
to better understand what is happening is useful to see the following example 4.3.

1 #de f i n e WG_SIZE (64)
2

3 __kernel void dwn_upl (__global i n t * ina , __global i n t * inb , __global
i n t * out) {

4

5 __local i n t in_loca la [6 4] ;
6 __local i n t in_loca lb [6 4] ;
7 __local i n t out_loca l [6 4] ;
8

46

4 � FPGA-based approach for OpenCL kernel acceleration

9 //download phase
10 async_work_group_copy (in_loca la , ina , get_group_id (0) *WG_SIZE, 0) ;
11 event_t e_in = async_work_group_copy (in_localb , inb , get_group_id (0) *

WG_SIZE, 0) ;
12 wait_group_events (1 , &e_in) ;
13

14 // proce s s phase
15 LOOP_1: f o r (i n t i =0; i < FIXED_UPPERBOUND; i++)
16 {
17 out_loca l [get_local_id (0)] += in_loca la [get_loca l_id (0)] *

in_loca lb [get_local_id (0)]+ i * 3 ;
18 }
19

20 // upload phase
21 event_t e_out = async_work_group_copy (out , out_local , get_group_id (0)

*WG_SIZE, 0) ;
22 wait_group_events (1 , &e_out) ;
23 }

Listing 4.3: example

Let's imagine to have two integer arrays of 128 elements. The �rst thing to be
noticed is that the work-group dimension has been set to 64. This means that
each work-group will process only 64 elements of the two 128-width arrays. The
task is multiply each element of �rst array with each element of the second into
the LOOP1. This multiplication is then summarized to the value 3 ∗ i. Then
outlocal[getlocalid(0)] is updated. If this operation is performed by a GPU, what
happens is something like in Fig.4.1.

out[0]+=a[0]*b[0]+3*i

ti
m
e

i:0

out[0]+=a[0]*b[0]+3*i
i:1

out[0]+=a[0]*b[0]+3*i
i:2

out[1]+=a[1]*b[1]+3*i
i:0

out[1]+=a[1]*b[1]+3*i
i:1

out[1]+=a[1]*b[1]+3*i
i:2

out[2]+=a[2]*b[2]+3*i
i:0

out[2]+=a[2]*b[2]+3*i
i:1

out[2]+=a[2]*b[2]+3*i
i:2

Work-Item#1 Work-Item#2 Work-Item#3

WG_SIZE

~
7

Figure 4.1: Execution of the Listing 4.3 into a GPU

Is important to note that the �rst action that the work-group will do is to down-
load in local memory 64 elements 128 of each input array. In order to do so, the
expression getgroupid(0) ∗WGSIZE in line 10 is pointing to the �rst element at
which the single work-group can access and from this position it is saying that the
amount of data to be transferred consists of WG_SIZE elements of type int. In

47

4 � FPGA-based approach for OpenCL kernel acceleration

the meanwhile the waitgroupevents waits until the copy operations will be com-
pleted. Now, it can start the process phase of the kernel in which, each of the 64
work-items will operate on one of the 64 elements of the two arrays by execut-
ing one time the content of the FOR LOOP1. In this operation each work item
will retrieve the element to be processed from each local array by means of the
get_local_id(0) then will perform the multiplication and the sum. The pure par-
allel approach of GPUs leads them to execute the code of all the 64 work-items at
the same time. Moreover, it can be noticed that the latency about the execution
of LOOP1 by each work-item is more or less of seven time-steps.

1 #de f i n e WG_SIZE (64)
2

3 __kernel __attribute__ ((reqd_work_group_size (WG_SIZE, 1 , 1)))
4

5 void dwn_upl (__global i n t * ina , __global i n t * inb , __global i n t *

out) {
6

7 __local i n t in_loca la [1 2 8] ;
8 __local i n t in_loca lb [1 2 8] ;
9 __local i n t out_loca l [1 2 8] ;

10

11 //download phase
12 async_work_group_copy (in_loca la , ina , get_group_id (0) *WG_SIZE, 0) ;
13 event_t e_in = async_work_group_copy (in_localb , inb , get_group_id (0) *

WG_SIZE, 0) ;
14 wait_group_events (1 , &e_in) ;
15

16 FOR: 0 −> WG_SIZE
17 {
18 // proce s s phase
19 LOOP_1: f o r (i n t i =0; i < FIXED_UPPERBOUND; i++)
20 {
21 out_loca l [get_local_id (0)] += in_loca la [get_loca l_id (0)] *

in_loca lb [get_local_id (0)]+ i * 3 ;
22 }
23

24 }
25

26 // upload phase
27 event_t e_out = async_work_group_copy (out , out_local , 128 , 0) ;
28 wait_group_events (1 , &e_out) ;
29 }

Listing 4.4: example

As far as FPGA is concerned, as stated before, although the OpenCL compiler

48

4 � FPGA-based approach for OpenCL kernel acceleration

can de�ne the work-group-size, the speci�cation of the reqd_work_group_size
attribute, at the beginning of the kernel, is able to promote performance optimiza-
tion during the generation of the custom logic for a kernel [11]. Thanks to this
attribute, it can be seen how Vivado HLS pay attention to loops. In fact, this
attribute is de�ning the dimension of the work-group in order to clarify to the
xocc compiler the work-item loop iteration count. By applying this directive, the
compiler is transparently transforming the previous kernel code in the Listing 4.4.
The same behaviour can be seen from a graphical point of view in Fig.4.2.

out[0]+=a[0]*b[0]+3*i
i:0

out[0]+=a[0]*b[0]+3*i
i:1

out[0]+=a[0]*b[0]+3*i
i:2

Work-Item#1

out[1]+=a[1]*b[1]+3*i
i:0

out[1]+=a[1]*b[1]+3*i
i:1

out[1]+=a[1]*b[1]+3*i
i:2

Work-Item#2

out[2]+=a[2]*b[2]+3*i
i:0

out[2]+=a[2]*b[2]+3*i
i:1

out[2]+=a[2]*b[2]+3*i
i:2

Work-Item#3

ti
m
e

Figure 4.2: Execution of the Listing 4.4 into an FPGA

Nevertheless, the development onto FPGAs by means of High-level-Synthesis allow
to use many OpenCL standard and Xilinx-speci�c OpenCL manual annotations in
order to improve the performance. These are essentially based on loop optimization
techniques like pipelining and unrolling.

49

4 � FPGA-based approach for OpenCL kernel acceleration

Before we go into detailed explanation of the examples it is useful to remember
some de�nitions about loops and the parameters that manage their performances.
The Loop iteration latency is de�ned as the number of clock cycles the loops takes
to complete one iteration of the loop. If this number is multiplied by the number
of trip count (th e number of loops that the LOOP has to implement) it can be
obtained the total latency of the loop [8]. Furthermore, when pipelining is applied
to kernel's loops, Vivado HLS will always try to reduce the Loop Initiation Interval
(II). This is the number of clock cycle before the next iteration of the loop starts
to process data [8] and the target value that you always want to reach is II = 1.
In fact in this way, the total latency becomes TotalLatency ≈ IterationLatency+
(II ∗ LoopCount) instead of TotalLatency = IterationLatency ∗ LoopCount.

out[0]+=a[0]*b[0]+3*i
i:0

out[0]+=a[0]*b[0]+3*i
i:1

out[0]+=a[0]*b[0]+3*i
i:2

Work-Item#1

out[1]+=a[1]*b[1]+3*i
i:0

out[1]+=a[1]*b[1]+3*i
i:1

out[1]+=a[1]*b[1]+3*i
i:2

Work-Item#2

out[2]+=a[2]*b[2]+3*i
i:0

out[2]+=a[2]*b[2]+3*i
i:1

out[2]+=a[2]*b[2]+3*i
i:2

Work-Item#3

ti
m
e

Figure 4.3: Execution of the Listing 4.5 into an FPGA

For what concerns the pipelining directives, there are available two main kind of
optimizations.
The �rst one a�ects the FOR loop in Listing 4.4 by pipelining the work-item loop
iteration count. This means that each work-item will no longer work in a sequential
mode but they will be pipelined as in Fig. 4.3. It can be noticed that, by executing
this new code, the potential performance improvement has been increased a lot
because the e�ect of pipelining is to reduce the total latency of loops. In fact in
this way the FPGA can almost reach the pure parallel approach performances of
GPUs but saving a lot of power consumption due to its nature. The Initiation
Interval (II) about the execution of one work-item and the following one has been
reduce.

50

4 � FPGA-based approach for OpenCL kernel acceleration

The second loop optimization a�ects, instead, the LOOP1 within each work-item
(see Fig.4.4). In this case, each work item will not execute its code in more or less
seven time steps like GPUS, but will be able to decrease the initiation interval of
LOOP1 targeting the best performances (II = 1).

i:0
i:1

Work-Item#1

ti
m
e

code@(i=0)
code@(i=1) i:2

code@(i=2) i:0
i:1

Work-Item#2

code@(i=0)
code@(i=1) i:2

code@(i=2)

i:0
i:1

Work-Item#

code@(i=0)
code@(i=1) i:2

code@(i=2)

Figure 4.4: Execution of the Listing 4.5 into an FPGA

The �nal code, after the application of all the aforementioned directives, can be
seen in Listing 4.5. Regardless, it is important to note that Vivado HLS will be
able to perform pipelining optimizations only if perfect or semi-perfect loops will
be available. This means that, the compiler will be able to pipeline a loop in the
only case in which this has a �xed upper bound .In fact in the following code, the
LOOP1 trip count has been �xed to FIXED_UPPERBOUND in order to allow
the good work of the annotation. Whenever, the most external loop hosts nested
loops that cannot be unrolled or there are some data-dependencies, the pipelining
of this one will not success. Actually there is a possibility to apply at the same,the
pipelining technique, but the �nal initiation interval will not be the minimal one
but will be greater.
This �xed loop upper bound is very important and the absence of �xed bounded
loops drastically decrease the possibility of code's improvement.

1 #de f i n e WG_SIZE (64)
2 #de f i n e FIXED_UPPERBOUND 3
3

4 __kernel __attribute__ ((reqd_work_group_size (WG_SIZE, 1 , 1)))
5

6 void dwn_upl (__global i n t * ina , __global i n t * inb , __global i n t *

out) {
7

8 __local i n t in_loca la [1 2 8] ;

51

4 � FPGA-based approach for OpenCL kernel acceleration

9 __local i n t in_loca lb [1 2 8] ;
10 __local i n t out_loca l [1 2 8] ;
11

12 //download phase
13 async_work_group_copy (in_loca la , ina , get_group_id (0) *WG_SIZE, 0) ;
14 event_t e_in = async_work_group_copy (in_localb , inb , get_group_id (0) *

WG_SIZE, 0) ;
15 wait_group_events (1 , &e_in) ;
16

17 // proce s s phase
18

19 __attribute__ ((xcl_pipel ine_workitems)) {
20

21 __attribute__ ((xc l_pipe l ine_loop))
22 LOOP_1: f o r (i n t i =0; i < FIXED_UPPERBOUND; i++)
23 {
24 out_loca l [get_local_id (0)] += in_loca la [get_loca l_id (0)] * in_loca lb [

get_loca l_id (0)]+ i * 3 ;
25 }
26

27 }
28

29

30 // upload phase
31 event_t e_out = async_work_group_copy (out , out_local , 128 , 0) ;
32 wait_group_events (1 , &e_out) ;
33 }

Listing 4.5: example

Another useful technique to optimize performances of kernels is unrolling loops. In
general the goal of this directive is to perform all the loop iterations of a loop at the
same time like the case of GPUs. This will lead to a extreme reduction of latency
(the latency of only one iteration loop) but will consume, at the same time, a lot
of FPGA resources. Typically pipelining is better then unrolling because returns
the best cost/performance trade-o�, but sometimes unrolling loops can use more
e�ciently the resources of the device. Also in this case it can be unrolled both the
work-items within a work-group of the loops into loops in each work-item.
The OpenCL attribute that can perform the unrolling of loops is the
opencl_unroll_hint(n) . The value of n indicates the factor of unrolling and in
case it is not present , it means that the loop will be completely unrolled.

1 #de f i n e WG_SIZE (64)
2 #de f i n e FIXED_UPPERBOUND 3
3

52

4 � FPGA-based approach for OpenCL kernel acceleration

4 __kernel __attribute__ ((reqd_work_group_size (WG_SIZE, 1 , 1)))
5

6 void dwn_upl (__global i n t * ina , __global i n t * inb , __global i n t *

out) {
7

8 __local i n t in_loca la [1 2 8] ;
9 __local i n t in_loca lb [1 2 8] ;

10 __local i n t out_loca l [1 2 8] ;
11

12 //download phase
13 async_work_group_copy (in_loca la , ina , get_group_id (0) *WG_SIZE, 0) ;
14 event_t e_in = async_work_group_copy (in_localb , inb , get_group_id (0) *

WG_SIZE, 0) ;
15 wait_group_events (1 , &e_in) ;
16

17 // proce s s phase
18

19 __attribute__ ((opencl_unrol l_hint))
20 LOOP_1: f o r (i n t i =0; i < FIXED_UPPERBOUND; i++)
21 {
22 out_loca l [get_local_id (0)] += in_loca la [get_loca l_id (0)] * in_loca lb [

get_loca l_id (0)]+ i * 3 ;
23 }
24

25 // upload phase
26 event_t e_out = async_work_group_copy (out , out_local , 128 , 0) ;
27 wait_group_events (1 , &e_out) ;
28 }

Listing 4.6: example

Just to have an idea about the work performed by unrolling technique, it can be
noticed in Listing. 4.6 that the LOOP1 is completely unrolled. This means that,
the three loops will be executed at once (see Fig.4.5).

i:0

Work-Item#1

ti
m
e

code@(i=0)
i:1
code@(i=1)

i:2
code@(i=2)

i:0

Work-Item#2

code@(i=0)
i:0

Work-Item#

code@(i=0)
i:1
code@(i=1)
i:1
code@(i=1)

i:2
code@(i=2)
i:2
code@(i=2)

Figure 4.5: Execution of the Listing 4.6 into an FPGA

53

4 � FPGA-based approach for OpenCL kernel acceleration

4.1.3 Intra-FPGA memory optimizations

As stated before, in case of applications dominated by DRAM access FPGAs will
loose the challenge with respect to GPUs. This is related to higher bandwidth of
GPUs between the device and the global memory. On the other hand, FPGAs
have a very high potential in the internal memory bandwidth. In fact the private
and local memories in the context of FPGAs are represented by BRAM and LUT
inside the programmable logic. Their dimension is largely higher then the internal
memories in GPUs and the access to them can be performed with very high speed
and bandwidth. As a matter of fact, for this reason, when an application has to be
accelerated onto FPGAs is highly recommended to download at �rst all the needed
data in local memories and then access them with a very high throughput. Just to
better understand we can see Fig.4.6. In the moment in which the previous code
(Listing 4.6) retrieves the internal local version in_locala and in_localb it acces a
BRAM with a single port. This means that one work-item at a time will access
the local memory because of a single memory port.

out[0]+=a[0]*b[0]+3*i

ti
m

e

i:0

out[0]+=a[0]*b[0]+3*i
i:1

out[0]+=a[0]*b[0]+3*i
i:2

out[1]+=a[1]*b[1]+3*i
i:0

out[1]+=a[1]*b[1]+3*i
i:1

out[1]+=a[1]*b[1]+3*i
i:2

out[2]+=a[2]*b[2]+3*i
i:0

out[2]+=a[2]*b[2]+3*i
i:1

out[2]+=a[2]*b[2]+3*i
i:2

Work-Item#1

Work-Item#2

Work-Item#3~
7

in
_
lo

ca
la

in
_
lo

ca
lb

single memory port

a[0] b[0]

a[1] b[1]

Figure 4.6: Internal memory access

54

4 � FPGA-based approach for OpenCL kernel acceleration

Nonetheless, any from of internal memory like BRAMs can provide two memory
access to di�erent locations at the same clock cycle. This is possible by calling a
speci�c directive: xcl_array_partition . This optimization allows to the code to
access more than two times per clock cycle to the same local BRAM thanks to an
increase of its number of port. This technique improves data throughput inside
the programmable logic because more data can be accessed in each clock cycle.
Moreover di�erent types of partitioning exist:

� cyclic:"Cyclic partitioning is the implementation of an array as a set of
smaller physical memories that can be accessed simultaneously by the logic
in the compute unit. The array is partitioned cyclically by putting one el-
ement into each memory before coming back to the �rst memory to repeat
the cycle until the array is fully partitioned" [11].

� block : "Block partitioning is the physical implementation of an array as a set
of smaller memories that can be accessed simultaneously by the logic inside
of the compute unit. In this case, each memory block is �lled with elements
from the array before moving on to the next memory" [11]

� complete:"Complete partitioning decomposes the array into individual ele-
ments. For a one-dimensional array, this corresponds to resolving a memory
into individual registers" [11]

The application of this directive to the previous code can be seen in Listing 4.7.
What happens, instead, from the physical point of view can be appreciated in Fig.
4.7.

1 #de f i n e WG_SIZE (64)
2 #de f i n e FIXED_UPPERBOUND 3
3

4 __kernel __attribute__ ((reqd_work_group_size (WG_SIZE, 1 , 1)))
5

6 void dwn_upl (__global i n t * ina , __global i n t * inb , __global i n t *

out) {
7

8 __attribute__ ((xc l_array_part i t ion (c y c l i c , 2 , 1)))
9 __local i n t in_loca la [1 2 8] ;

10

11 __attribute__ ((xc l_array_part i t ion (c y c l i c , 2 , 1)))
12 __local i n t in_loca lb [1 2 8] ;
13

14 __local i n t out_loca l [1 2 8] ;
15

16 //download phase
17 async_work_group_copy (in_loca la , ina , get_group_id (0) *WG_SIZE, 0) ;

55

4 � FPGA-based approach for OpenCL kernel acceleration

18 event_t e_in = async_work_group_copy (in_localb , inb , get_group_id (0) *
WG_SIZE, 0) ;

19 wait_group_events (1 , &e_in) ;
20

21 // proce s s phase
22

23 __attribute__ ((opencl_unrol l_hint))
24 LOOP_1: f o r (i n t i =0; i < FIXED_UPPERBOUND; i++)
25 {
26 out_loca l [get_local_id (0)] += in_loca la [get_loca l_id (0)] * in_loca lb [

get_loca l_id (0)]+ i * 3 ;
27 }
28

29 // upload phase
30 event_t e_out = async_work_group_copy (out , out_local , 128 , 0) ;
31 wait_group_events (1 , &e_out) ;
32 }

Listing 4.7: example

out[0]+=a[0]*b[0]+3*i

ti
m

e

i:0

out[0]+=a[0]*b[0]+3*i
i:1

out[0]+=a[0]*b[0]+3*i
i:2

out[1]+=a[1]*b[1]+3*i
i:0

out[1]+=a[1]*b[1]+3*i
i:1

out[1]+=a[1]*b[1]+3*i
i:2

out[2]+=a[2]*b[2]+3*i
i:0

out[2]+=a[2]*b[2]+3*i
i:1

out[2]+=a[2]*b[2]+3*i
i:2

Work-Item#1 Work-Item#2

Work-Item#3

~
7

in
_
lo

ca
la

in
_
lo

ca
lb

double memory port

a[0] b[0]

a[2]

b[1]a[1]

a[3] b[2] b[3]

Figure 4.7: Internal memory access optimized

56

Chapter 5

MiniMD porting on FPGA

this chapter aims to describe the work done for porting the full miniMD application
onto FPGA. Particular care has been taken to the analysis of each kernel composing
the application and, after a �rst base-lining, it has been identi�ed which of them
could be optimized, in order to speed up the execution time of the whole molecular
dynamics code. Then, after the optimization of some of the main �ve kernels
available in the application, a �nal execution of the code has been performed in
order to control the �nal performances. In the beginning, the focus has been to
optimize the performance of each kernel. Later, in order to maximize the usage
of the parallelization on the FPGA, some tests were run to understand if using
multiple instance of some of the kernel would globally speed up the code.

5.1 Base-lining of the MiniMD Application

As told before, the miniMD application consists of two main parts: the Host-Code
1 and kernels that will operate within the Leapfrog algorithm.
The �rst thing that has been performed, in order to better understand the actual
relation in terms of execution time among all the kernels, has been the simulation
of the full miniMD application onto an aws-FPGA. This is an FPGA platform
made available by amazon web services that has made possible a detailed pro�ling
of the code. As stated before all of the following tests and simulation, have been
carried out by means of the Xilinx SDAccel software tool in order to manage all
the steps about high-level-synthesis, vivado design and writing of the application
in an automatic approach.

1The Host-Code is indicated in the list of available miniMD �les as lgs.cpp

57

5 � MiniMD porting on FPGA

st
ar

t
of

 t
h
e

n
ex

t
n
ei

g
h
b
ou

r_
b
u
ild

2
0
 t

im
e-

st
ep

s

F
ig
u
re

5.
1:

B
as
e-
li
n
in
g
of

M
in
iM

D
ap
p
li
ca
ti
on

58

5 � MiniMD porting on FPGA

The results about the pro�ling of the miniMD application can be viewed in Fig.5.1.
In accordance with Leapfrog algorithm (see Fig.3.6) the �rst kernel executed is
Neighbor_build (�rst purple block in the �gure above), related to the creation
of neighbour's list for each atom. Then there is the �rst execution of the Inte-
grate_initial kernel. Then, for 20 time-steps,there will be the loop execution of
integrate_initial , force_compute and integrate_�nal. After that time, there is a
need for re-build the neighbours' list for each atom due to a the high quantity of
particle's movements. Finally, all of afore-mentioned steps will be executed again
till the end of the simulation.
This simulation has been used a total number of atoms equal to 10976 and as can
be noticed, the time spent for the execution of Neighbor_build is almost 4.850s,
while the one related to force_compute is 395.67ms. These two kernels are the
ones that appear to mainly impact on the total execution time of the leapfrog
algorithm and so it has been decided to optimize their execution.
Therefore in the following sections we will present a deeper explanation of the logic
of neighbor_build and force_compute and their related optimizations.

5.2 Neighbor_build kernel optimization

If we consider that the execution of neighbor_build kernel,it lasts 4.80s that is
almost the 35% of the total execution of neighbor_build plus 20 time-steps of
the other kernels. Moreover this kernel is linked to the number of particles used
in the application as N2 and so it would be very useful to increase its performance.

Regardless, before explaining the actual logic of the kernel, we will introduce a very
brief clari�cation of the method through which the general kernel's arguments are
prepared and in which way the host code is able to manage to upload/download
data from the programmable logic (PL).

5.2.1 Preparation of Kernel Arguments

The host code of the application is the ljs.cpp C++ code and has the role to
setup all the needed variables required by the OpenCL framework and then all
the needed objects after managed by each kernel. As has been told before in
Chapter 2, the molecular dynamic simulation has the solve, at the beginning, the
simulation-box in that will be �lled by all the atoms that will participate to the
simulation. As a matter of fact, after the initialisation of some OpenCL variables
the code runs the following piece of code (see Listing 5.1):

59

5 � MiniMD porting on FPGA

1 . . .
2

3 create_box (atom , nx , ny , nz , rho) ;
4 p r i n t f ("# ****** CREATE_BOX DONE ****** \n") ;
5

6

7 neighbor . setup (atom) ;
8 p r i n t f (" ne ighbor . setup (atom) DONE\n") ;
9

10 i n t e g r a t e . setup () ;
11 p r i n t f (" i n t e g r a t e . setup () DONE\n") ;
12

13 f o r c e . setup () ;
14 p r i n t f (" f o r c e . setup () DONE\n") ;
15

16 create_atoms (atom , nx , ny , nz , rho) ;
17 p r i n t f (" create_atoms (atom , nx , ny , nz , rho) DONE\n") ;
18

19

20

21

22 thermo . setup (rho , i n t eg ra t e , atom , un i t s) ;
23 p r i n t f ("thermo . setup (rho , i n t eg ra t e , atom , un i t s) DONE\n") ;
24

25 c r ea t e_ve l o c i t y (t_request , atom , thermo) ;
26 p r i n t f (" c r ea t e_ve l o c i t y (t_request , atom , thermo) ; DONE\n") ;
27

28 atom .d_x−>upload () ;
29 atom .d_v−>upload () ;
30 atom . d_vold−>upload () ;
31 p r i n t f ("atom .d_x−>upload () atom .d_v−>upload () atom . d_vold−>upload ()

DONE\n") ;
32 . . .
33 }
34

35 // upload phase
36 event_t e_out = async_work_group_copy (out , out_local , 128 , 0) ;
37 wait_group_events (1 , &e_out) ;
38 }

Listing 5.1: example

Here, it can be noticed the createbox function aimed to create the simulation-box
thanks to the parameters nx,ny,nz set at the beginning of the code. These are
very important because are related to total number of atoms (natoms) that will be
considered in the simulation. In the following simulation nx = 14,ny = 14,nz = 14
with a total of nx ∗ ny ∗ nz ∗ 4 = 10976 particles. The number 4 in previous ex-
pression stands for the number of particles inside each box of the simulation-box,

60

5 � MiniMD porting on FPGA

while nx,ny,nz are the numbers of boxes along each direction. After that all the
boxes have been �lled by means of the create_atom function and after that all
the variables needed by each object related to the kernels have been set the up-
load method of the class atom is called. Since this is the same host-code that
can eventually be run for GPU simulations it is curious to analyse what happens
when the OpenCL APIs about uploading/writing of data are executed. In this
code, the upload/download methods will actually call the OpenCL methods clEn-
queueWriteBu�er/clEnqueueReadBu�er that have the task to enqueue a command
to copy the contents of host memory into a bu�er pre-allocated region into the de-
vice's memory. In the case of the Zynq Ultrascale+ this functions don't work in
the same way. The external DDR memory is shared by the x86 CPU and by the
programmable Logic. This means that it is like the DDR memory has two address
space, one addressable only by CPU and one only by FPGA. As a matter of fact,
as will be more clear in the following sections, the clEnqueueWriteBu�er function
does nothing but send a copy of the pointer to the data saved in the addressable
CPU part of memory, to the FPGA addressable one. At the same time whenever
the host-code run the clEnqueueReadBu�er function, what is received by the CPU
is the group of pointers to the data in the FPGA addressable part of memory. Just
to clarify the functioning see Fig.5.2.

5.2.2 Kernel's optimization

In order to better understand the optimizations performed in the kernel, it is best
to explain the logic of its original version (see Listing 5.2).
It can be noticed that all the pointers in the kernel's arguments are preceded by the
__global identi�er. This means that all of these variables are pointers copied by
the clEnqueueWriteBu�er OpenCL API into the region of external DDR memory
addressable by the FPGA. As a matter of fact this is the region recognised by the
FPGA device as the OFF-chip global memory (see Fig. 5.2). These are pointers
2 to the standard OpenCL memory-objects created by OpenCL APIs when they
prepare the allocation of bu�ers to transfer onto the device.

2These pointers have a weight of 8 bytes that is the dimension of a general OpenCL
mem_object

61

5 � MiniMD porting on FPGA

DDR Memory Controller

n
x=

1

n
y=

1

n
z=

2

n
lo

ca
l=

n
at

o
m

s=
8

W
G

S
IZ

E
=

5

m
ax

n
ei

g
h
s=

3

x8
6

ar
m

C
PU

D
D

R

x
y

z
0

x
y

z
1

x
y

z
2

x
y

z
3

x
y

z
4

x
y

z
5

x
y

z
6

x
y

z
7

x

d
ev

d
at

a
M

E
M

_
O

B
JE

C
T

C
PU

 A
d
d
re

ss
S
p
ac

e

FP
G

A
 A

d
d
re

ss
S
p
ac

e

d
_
n
ei

g
h
b
or

s
M

E
M

_
O

B
JE

C
T

n
u
m

n
ei

g
h

3
2

33
3

2
3

2
333

1
2

0
1

2
3

4
5

6
7

d
_
n
u
m

n
ei

g
h

M
E
M

_
O

B
JE

C
T

_
_
g
lo

b
al

 M
M

D
_
fl
oa

tK
3
*
 x

1
2
8

S_AXI_HP0_FPD

S_AXI_HP1_FPD
S_AXI_HP2_FPD

S_AXI_HP3_FPD

FP
G

A

LO
C
A
L

M
E
M

O
R
Y

PR
IV

A
TE

 M
E
M

O
R
Y

W
I1

W
I2

W
I3

W
I4

W
I5

0
1

2

3
4

clEnqueueWritebuffer

W
or

k-
G

ro
up

 1
 W

G
_
S
IZ

E=
5

C
om

pu
te

_
U

n
it
1

3 4 5

6 7 /

0 5 3

7 6 /

1 3 6

4 3 /

1 / /

0 1 /

n
ei

g
h
b
or

s

maxneighs

numneigh[i]

0
1

2
3

4
5

6
7

O
th

er
 n

ei
g
h
b
o
r_

b
u
ild

's
 a

rg
u
m

en
ts

LO
C
A
L

M
E
M

O
R
Y

PR
IV

A
TE

 M
E
M

O
R
Y

W
I1

W
I2

W
I3

W
I4

W
I5

0
1

2

3
4

W
or

k-
G

ro
up

 1
 W

G
_
S
IZ

E=
5

_
_
g
lo

b
al

 i
n
t*

 n
ei

g
h
b
or

s
_
_
g
lo

b
al

 i
n
t*

 n
u
m

n
ei

g
h

_
_
g
lo

b
al

 i
n
t*

 b
in

co
u
n
t

_
_
g
lo

b
al

 i
n
t*

b
in

s
_
_
g
lo

b
al

 i
n
t*

 i
b
in

s
..

.

O
FF

-c
h
ip

G
lo

ba
l M

em
or

y

F
ig
u
re

5.
2:

S
y
st
em

ov
er
v
ie
w
an
d
ex
am

p
le
of

a
W
ri
te

op
er
at
io
n
on
to

F
P
G
A
ad
d
re
ss
m
em

or
y
sp
ac
e

62

5 � MiniMD porting on FPGA

1 __kernel void neighbor_bui ld (__global MMD_floatK3* x , __global i n t *
numneigh , __global i n t * neighbors ,

2 __global i n t * bincount , __global i n t * bins , __global i n t * i b in s ,
__global i n t * f l a g ,

3 __global i n t * s t e n c i l , i n t n s t en c i l , MMD_float cutne ighsq , i n t
atoms_per_bin , i n t maxneighs , i n t n l o c a l)

4 {
5 i n t i = get_global_id (0) ;
6 i f (i>=n l o c a l) r e turn ;
7 i n t i b i n = i b i n s [i] ;
8 MMD_floatK3 xtmp = x [i] ;
9 i n t n = 0 ;

10

11 loop1 : f o r (i n t k = 0 ; k < n s t e n c i l ; k++)
12 {
13 i n t j b i n = ib i n + s t e n c i l [k] ;
14

15 loop2 : f o r (i n t m=0;m<bincount [j b i n] ;m++)
16 {
17 i n t j = bins [j b i n *atoms_per_bin+m] ;
18 MMD_floatK3 de l = xtmp − x [j] ;
19 MMD_float rsq = de l . x* de l . x + de l . y* de l . y + de l . z* de l . z ;
20 i f ((r sq <= cutne ighsq)&&(j != i)) ne ighbors [i+n++* n l o c a l] = j ;
21

22 }
23

24 }
25

26 numneigh [i] = n ;
27 i f (n>maxneighs)
28 f l a g [0] = 1 ;
29 }

Listing 5.2: Original version of neighbor_build

Among these arguments we can notice the important variables
__global MMD_�oatK3* x,__global int* numneigh and __global int* neighbors.
The variable x is a pointer to an array of �oat4 vector data-type containing the
spatial coordinates x,y and z of each atom (Despite the �oat4 can handle 4 dif-
ferent �oats values, only 3 of them are occupied for compatibility reasons. The
MMD_FFloatK3 data type is a re-de�nition of �oat4). Then we have the variable
__global int* numneigh. this indicates the number of di�erent neighbours parti-
cles for each atom. Since each particle is distinguished by the other ones by means
of an identi�er each neighbour of a given atom will be recognisable by means of its
id. The lists of neighbours's ids are saved in the __global int* neighbors variable.
The actual organization of variables can be clearly viewed in Fig. 5.2. Here, at

63

5 � MiniMD porting on FPGA

th top of the Figure can be observed the array of coordinates x associated to each
atom indexed with the red value upon each sub-block. As can be seen the upon
example deals with only 8 atoms in order to make simpler the sketch. For each
indexed-atom the neighbors data-structure, reports in each column all the neigh-
bours particles of each particle. The total number of neighbours can be di�erent
in dependence of the atom and its actual value is reported in the same format in
the numneigh data-structure. The maximum number of neighbours is maxneighs.

Now we are ready to analyse the Listing 5.2. The �rst thing that each work-items
does, is to download its global address (line 5) in order to control if it will process
an atom that doesn't actually exist because exceeds the total number of atoms
natoms. The rest of code is executed only if the atom i exists. A this point
the kernel perform the �rst transfer of data from global memory by downloading
the value of ibin and xtmp processed by each single work-item. It is important
to remember that in all these cases the programmable logic will, at �rst, send
the address of data to retrieve and then it will download it. This consumes a
considerably amount of time, especially if performed by all the work-items of all
the work-groups. The variable xtmp, now contains the coordinates of the atom
processed by the i -th work-item. Then two for loops will execute with the goal to
�nd the neighbours particles.
In order to better �gure out the algorithm see Fig.5.3.

k=0

k=1 k=2 k=3

k=4 k=5

k=6k=7k=8

m=1

m=2

m=3

i

j

del
cu
tn
eig
hs
q

Figure 5.3: Look for neighbour particles

64

5 � MiniMD porting on FPGA

Let's suppose that the atom i at the center of the �gure is the one processed by the
i -th work-item. What is performed by the loop1 is to look for particle's neighbours
in the box where it already is the processed i-th atom and in each of the boxes sur-
rounding it. Once one of the surrounded boxes has been selected, the loop2 starts
looking for neighbours by examining the 3D distance del between the i -th atom
and the j -th. Pay attention that the j index ranges among all atoms of one box.
At this point, if the distance del doesn't exceed the cut-o� ray cutneighsq of the
i-th atom then the j-th particle will be added to its neighbour's list. At the same
time the number of neighbours n is incremented (n++). Just to be more clear,
if we imagine to process the particle with index 0, the algorithm will add, at �rst
the atom 3 then the 4 and �nally 5. At the end the number of total neighbours is
3 and consequently numneigh variable will have 3 in the position related to index
0.
After the update of the numneigh variable with n, the algorithm will control if
total amount of neighbour particles is increased. If this is true a �ag is set.

As stated in Chapter 3, the methodology to optimize a kernel deals with a �rst
optimization of data transfers and then follows the optimization of computation
part. All the optimization can be viewed in Listing 5.5.

1 #de f i n e WG_SIZE 32
2 #de f i n e STENCIL_LENGTH 125
3

4 ke rne l __attribute__ ((reqd_work_group_size (WG_SIZE, 1 , 1)))
5 void neighbor_bui ld (__global f l o a t 4 * x , __global i n t * numneigh ,

__global i n t * neighbors ,
6 __global i n t * bincount , __global i n t * bins , __global i n t * i b in s ,

__global i n t * f l a g ,
7 __global i n t * s t e n c i l , i n t n s t en c i l , f l o a t cutne ighsq , i n t

atoms_per_bin , i n t maxneighs , i n t n l o c a l)
8 {
9 i n t n = 0 ;

10 __local i n t i b i n_ lo ca l [WG_SIZE] ;
11 __local f l o a t 4 xtmp_local [WG_SIZE] ;
12 __local i n t l o c a l_ s t e n c i l [STENCIL_LENGTH] ;
13 __local i n t local_numneigh [WG_SIZE] ;
14 i n t i = get_global_id (0) ;
15

16 i f (i<n l o c a l) {
17

18 event_t e0 =async_work_group_copy (xtmp_local , x + WG_SIZE*
get_group_id (0) , WG_SIZE, 0) ;

65

5 � MiniMD porting on FPGA

19 event_t e1 =async_work_group_copy (ib in_loca l , i b i n s + WG_SIZE*
get_group_id (0) , WG_SIZE, 0) ;

20 event_t e2 = async_work_group_copy (l o c a l_ s t en c i l , s t e n c i l ,
STENCIL_LENGTH, 0) ;

21 ba r r i e r (CLK_LOCAL_MEM_FENCE) ;
22

23 My_LOOP: f o r (i n t k = 0 ; k < n s t e n c i l ; k++)
24 {
25 i n t j b i n = ib in_ lo ca l [get_local_id (0)] + l o c a l_ s t e n c i l [k] ;
26

27 My_internal_LOOP : f o r (i n t m=0;m<bincount [j b i n] ;m++)
28 {
29 i n t j = bins [j b i n *atoms_per_bin+m] ;
30 f l o a t 4 de l = xtmp_local [get_loca l_id (0)] − x [j] ;
31 f l o a t r sq = de l . x* de l . x + de l . y* de l . y + de l . z* de l . z ;
32 i f ((r sq <= cutne ighsq)&&(j != i)) ne ighbors [i+n++* n l o c a l] = j ;
33 }
34

35 }
36

37 local_numneigh [get_loca l_id (0)] = n ;
38

39 i f (n>maxneighs)
40 f l a g [0] = 1 ;
41

42 ba r r i e r (CLK_LOCAL_MEM_FENCE) ;
43

44 async_work_group_copy (numneigh + WG_SIZE*get_group_id (0) ,
local_numneigh , WG_SIZE, 0) ;

45 }
46 }

Listing 5.3: Original version of neighbor_build

For what concerns the data movement, it has been created a local version of all
the variables that in the original code had to be downloaded by each work-item
of all the work-groups by means of a single transaction memory. This means that
all the lines in the original code, in which there was an access to the o�-chip
global memory by means one pointer available among kernels arguments, are re-
placed with a local arrays saved in the work-group's local memories (blue regions
in Fig.5.2). For example,in the original code (Listing 5.2)at line 8,the single work-
item retrieves the coordinates of the processed particle by downloading a �oat4
variable from global memory. The creation of a local array xtmp_local in Listing
5.5 at line 8, allows to download in burst all the particle's coordinates belonging to
a whole work-group. The download is performed by using the single 128 bit-width
axi interface S_AXI_HP0_FPD and the corresponding line in the code is the
15-th. The async_work_group_copy function allows the download of WG_SIZE

66

5 � MiniMD porting on FPGA

elements of type �oat4 from the address x+ WG_SIZE*get_group_id(0).
The same optimization is also carried out for ibin, stencil and numneigh pointers.
It is important to note as vivado_hls sees all these async_work_group_copy calls
as many loops. As a matter of fact, it is referring to the loop over all the work-
group's work-item that is optimized by the compiler by means of the pipelining
technique. In fact from the vivado_hls log �le it can be noticed the following lines:

1 INFO: [SCHED 204−61] P i p e l i n i n g loop 'Loop 1 ' .
2 INFO: [SCHED 204−61] P i p e l i n i n g r e s u l t : Target I I = 1 , F ina l I I = 1 ,

Depth = 3 .
3 INFO: [SCHED 204−61] P i p e l i n i n g loop 'Loop 2 ' .
4 INFO: [SCHED 204−61] P i p e l i n i n g r e s u l t : Target I I = 1 , F ina l I I = 1 ,

Depth = 136 .
5 INFO: [SCHED 204−61] P i p e l i n i n g loop 'Loop 3 ' .
6 INFO: [SCHED 204−61] P i p e l i n i n g r e s u l t : Target I I = 1 , F ina l I I = 1 ,

Depth = 137 .

Listing 5.4: Vivado_HLS log about pipelining of async_work_group_copy

where 'Loop-1', 'Loop-2' and 'Loop-3' are referring to the �rst three calls of
async_work_group_copy functions at lines 18,19 and 20.
Then at line 21, the barrier(CLK_LOCAL_MEM_FENCE) function is run in
order to wait that all the work-items �nish the download of all needed variables.
Also this line is viewed by Vivado_hls as a loop and in most of the cases, into the
log �le, it is signed as XCL_WG_DIM_X.
All the needed variables to execute the process part are now available. In this part
of the code there are two for loops with a not-�xed upper bound. The �rst one is
My_LOOP. Di�erent executions of the code showed that its upper bound nstencil,
has a minimum of 27 and a maxim of 125. For this reason, it has been allowed
the download of 125 elements from the stencil pointer in the array local_stencil
but the actual value used in the code depends on the single execution and ranges
between 27 and 125.
The second loop is the most internal one: My_internal_LOOP. Also in this case
bincount[jbin] is not a �xed value because depends on the variability of the lo-
cal_stencil element's values. These are the cases in which vivado_hls is not able
to pipeline loops, or in case it is able to do it the Initiation Interval is not the
minimum one but is higher.

67

5 � MiniMD porting on FPGA

Figure 5.4: Pipelining technique applied to all Loops of neighbor_build kernel

As a gesture of such, in Fig.5.4 can be noticed that while My_LOOP has not been
pipelined, the My_Internal_LOOP yes but with a �nal Initiation Interval of 137.
This happens because of a carried dependence constraint between line 29 and 30.
Finally, the value of n is saved into the local version of numneigh. Then with a
burst access (seep Loop5 in Fig. 5.4) local_numneigh array is uploaded into the
o�-chip global memory.

Overall the optimizations done on this code have been deeply limited by the no-
bounded loops but in general an increase of performance was detected. Another
simulation on 10976 atoms has been performed and the execution time of neigh-
bor_build became of 4.3s against the previous 4.856s. This improvement is
mainly due to the burst access memory optimizations. The frequency at which
the kernel has been synthesised is 250 MHz and the resource utilization about the
original code and the optimized one can be viewed in Fig.5.5.

original_code
(exec_time)

optimized_code
(exec_time)

improvement natoms kernel_frequency

4.856 s 4.3 11% 10976 250 MHz

Table 5.1: Execution times of the original and optimised version of neighbor_build
kernel

The main di�erences concern the increased usage of internal BLOCK_RAM and
Flip-Flops. This is probably due to the enhanced presence of internal arrays cre-
ated in local memories of work-groups. The increase of FFs is, instead probably due
to the pipelining technique applied in the process part and during the application
of burst upload/download commands.

68

5 � MiniMD porting on FPGA

original version optimised version

Figure 5.5: Resource utilization of both original and optimised version of neigh-
bor_build kernel

5.3 Force_compute kernel optimization

The force compute kernel has the role to calculate the forces acting on each parti-
cle of the stimulation. It is a step executed into every step of the simulation and
it is compute intensive from both the computational and memory access points of
view. For this reasons it is easy to understand that it needs to be optimized. A
�rst explanation of kernel will be presented along with its original version code.

1 #de f i n e WG_SIZE 32
2

3 __kernel void force_compute (__global MMD_floatK3* x , __global
MMD_floatK3* f , __global i n t * numneigh ,

4 __global i n t * neighbors , i n t maxneighs , i n t n loca l , MMD_float
cu t f o r c e s q)

5 {
6 i n t i = get_global_id (0) ;
7 i f (i<n l o c a l)
8 {
9 __global i n t * ne ighs = ne ighbors + i ;

10 MMD_floatK3 ftmp ;
11 MMD_floatK3 x i = x [i] ;
12 MMD_floatK3 f i = {0 .0 f , 0 . 0 f , 0 . 0 f } ;
13

14 f o r (i n t k = 0 ; k < numneigh [i] ; k++) {
15 i n t j = ne ighs [k* n l o c a l] ;
16 MMD_floatK3 de lx = x i − x [j] ;
17

18 MMD_float rsq = delx . x* de lx . x + delx . y* de lx . y + delx . z* de lx . z ;
19 i f (r sq < cu t f o r c e s q) {

69

5 � MiniMD porting on FPGA

20 MMD_float s r2 = 1 .0 f / r sq ;
21 MMD_float s r6 = sr2 * s r2 * s r2 ;
22 MMD_float f o r c e = 48 .0 f * s r6 * (sr6 −0.5 f) * s r2 ;
23 f i += f o r c e * de lx ;
24 }
25 }
26 f [i] = f i ;
27

28 }
29 }

Listing 5.5: Original version of force_compute

The �rst thing that can be noticed is that also in this case the single work-item
will execute the kernel only if its global address is lower than the total number of
atoms,with the purpose to avoid ghost particles. After this �rst control each work-
item will download the spatial coordinates relatives to the i-th processed atom (line
11) and will also save (line 9) in the neighs variable, the pointer to the array with
the indexes of all of its neighbours. The situation is similar to the one presented
in Fig.5.2. Subsequently, the actual force computation algorithm starts. In each
cycle of the loop,the variable j hosts the index of one of the neighbour particle and
after the computation of the distance between them, the algorithm will continue
with the computation of the force acting on the i-th particle, only if the previous
distance is lower than a threshold cutforcesq. The same computation is performed
on all the neighbours particle of the i-th atom that is equal to numneigh[i]. Of
course, at the end, the total force contribution acting on the examined atom will
be obtained (line 26).
A simulation of this original version of the kernel leads to an execution time of
395.6ms associated to an single istance of the kernel and an IP synthesized at
250MHz.

70

5 � MiniMD porting on FPGA

DDR Memory Controller

n
x=

1

n
y=

1

n
z=

2

n
lo

ca
l=

n
at

om
s=

8

W
G

S
IZ

E
=

5

m
ax

n
ei

g
h
s=

3

x8
6

ar
m

C
PU

D
D

R
x

y
z

0
x

y
z

1
x

y
z

2
x

y
z

3
x

y
z

4
x

y
z

5
x

y
z

6
x

y
z

7

x
y

z
0

x
y

z
1

x
y

z
2

x
y

z
3

x
y

z
4

x
y

z
5

x
y

z
6

x
y

z
7

x f

d
ev

d
at

a
M

E
M

_
O

B
JE

C
T

C
PU

 A
d
d
re

ss
S
p
ac

e

FP
G

A
 A

d
d
re

ss
S
p
ac

e

3 4 5

6 7 /

0 5 3

7 6 /

1 3 6

4 3 /

1 / /

0 1 /

n
ei

g
h
b
or

s
d
_
n
ei

g
h
b
or

s
M

E
M

_
O

B
JE

C
T

n
ei

g
h
b
or

.n
u
m

n
ei

g
h

3
2

33
3

2
3

2
333

1
2

0
1

2
3

4
5

6
7

d
_
n
u
m

n
ei

g
h

M
E
M

_
O

B
JE

C
T

cu
tf

or
ce

sq

n
ei

g
h
b
or

.m
ax

n
ei

g
h
s

at
om

.n
lo

ca
lM

M
D

_
fl
oa

t

in
t

in
t

maxneighs

numneigh[i]

0
1

2
3

4
5

6
7

cl
_
m

em

*
d
ev

d
at

a
d
_
x

cl
_
m

em

*
d
ev

d
at

a
d
_
f

cl
_
m

em

*
d
_
n
ei

g
h
b
or

s
p
oi

n
te

r
to

d
_
n
u
m

n
ei

g
h

M
M

D
_
fl
oa

t
*
cu

tf
or

ce
sq

in
t

*
n
lo

ca
l

in
t

*
m

ax
n
ei

g
h
s

1
2
8

S_AXI_HP0_FPD
S_AXI_HP1_FPD
S_AXI_HP2_FPD

S_AXI_HP3_FPD

M
M

D
_
Fl

oa
tK

3

*
x

M
M

D
_
Fl

oa
tK

3

*
f

in
t

*
n
ei

g
h
b
or

s
in

t
*
n
u
m

n
ei

g
h

8
8

8
8

in
t

*
cu

fo
rc

es
q

4

in
t

*
m

ax
n
ei

g
h
s

4
in

t
*
n
lo

ca
l

4

clEnqueueWritebuffer O
FF

-c
h
ip

G
lo

ba
l M

em
or

y

FP
G

A

LO
C
A
L

M
E
M

O
R
Y

PR
IV

AT
E
 M

E
M

O
R
Y

W
I1

0

W
G

1
W

G
_S

IZ
E=

5

C
om

pu
te

_
U

n
it
1

3 4 5

6 7 /

0 5 3

7 6 /

1 3 6

n
ei

g
h
_
id

x
0

1
2

3
4

3
2

333
3

2
3333

0
1

2
3

4

lo
ca

l_
n
u
m

n
ei

g
h

d
el

x
xj

sr
2

sr
6

fo
rc

e
1

d
el

x
xj

sr
2

sr
6

fo
rc

e

d
el

x
xj

sr
2

sr
6

fo
rc

e

d
el

x
xj

sr
2

sr
6

fo
rc

e

W
I5

d
el

x
xj

sr
2

sr
6

fo
rc

e

W
I2

W
I3

2

W
I4

33

4

LO
C
A
L

M
E
M

O
R
Y

PR
IV

AT
E
 M

E
M

O
R
Y

W
I1

5

W
G

2
W

G
_S

IZ
E=

5

d
el

x
xj

sr
2

sr
6

fo
rc

e
6

d
el

x
xj

sr
2

sr
6

fo
rc

e

d
el

x
xj

sr
2

sr
6

fo
rc

e

W
I5

W
I2

W
I3

7

W
I4

4 3 /

1 / /

0 1 /

5
6

7

2
1

2
5

6
7

lo
ca

l_
n
u
m

n
ei

g
h

n
ei

g
h
_
id

x

4 3 /

1 / /

0 1 /

5
6

7

2
1

2
5

6
7

lo
ca

l_
n
u
m

n
ei

g
h

n
ei

g
h
_
id

x

4 3 /

1 / /

0 1 /

5
6

7

2
1

2
5

6
7

lo
ca

l_
n
u
m

n
ei

g
h

n
ei

g
h
_
id

x
lo

ca
l_

fi

xi

x
y

z
0

x1

x
y

z
0

x1

lo
ca

l_
fi

xi

x
y

z
0

x1

x
y

z
0

x1

rs
q

rs
q

rs
q

rs
q

rs
q

rs
q

rs
q

rs
q

F
ig
u
re

5.
6:

fo
rc
e_

co
m
p
u
te

ke
rn
el
va
ri
ab
le
s'
p
ro
v
is
io
n

71

5 � MiniMD porting on FPGA

5.3.1 Kernel's optimization

Also for the optimization of the force_compute kernel have taken place two stages.
The �rst one is related to the download by means of burst memory transaction of
all the needed variables. Listing 5.8 shows these �rst optimizations. First of all,
it is clari�ed that the work-group is based on 32 work-items in order to promote
the future optimizations in the process part. Then a local version of the spatial
coordinates of each atom, processed by each work-item and the respective initial
values of forces and their neighbours are created (see line 6,8,11 and 13).

1 #de f i n e WG_SIZE 32
2 ke rne l __attribute__ ((reqd_work_group_size (WG_SIZE, 1 , 1)))
3 void force_compute (__global f l o a t 4 * x , __global f l o a t 4 * f , __global

i n t * numneigh , __global i n t * neighbors , i n t maxneighs , i n t n loca l ,
f l o a t cu t f o r c e s q)

4 {
5

6 __local f l o a t 4 x i [WG_SIZE] ;
7

8 __local f l o a t 4 f i_ l o c a l [WG_SIZE] ;
9 f i_ l o c a l [get_local_id (0)]=(0 .0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f) ;

10

11 __local i n t local_numneigh [WG_SIZE] ;
12

13 __local i n t neigh_idx [WG_SIZE] ;
14

15 i f (get_global_id (0) < n l o c a l)
16 {
17

18 event_t e3 = async_work_group_copy (xi , x + WG_SIZE*get_group_id (0)
, WG_SIZE, 0) ;

19 event_t e0 = async_work_group_copy (local_numneigh , numneigh +
WG_SIZE*get_group_id (0) , WG_SIZE, 0) ;

20 wait_group_events (1 , &e0) ;
21

22 MY_LOOP_FOR: f o r (i n t k = 0 ; k < maxneighs ; k++)
23 {
24

25 async_work_group_copy (neigh_idx , ne ighbors + WG_SIZE*
get_group_id (0) + k* n loca l ,WG_SIZE, 0) ;

26

27 i f (k < local_numneigh [get_loca l_id (0)])
28 {
29

30 f l o a t 4 de lx ;
31 f l o a t 4 x j = x [neigh_idx [get_loca l_id (0)]] ;

72

5 � MiniMD porting on FPGA

32 de lx=x i [get_loca l_id (0)]−xj ;
33 f l o a t r sq = delx . x* de lx . x+ de lx . y* de lx . y + delx . z* de lx . z ;
34 i f (r sq < cu t f o r c e s q)
35 {
36 f l o a t s r2 = 1 .0 f / rsq ;
37 f l o a t s r6 = sr2 * s r2 * s r2 ;
38 f l o a t f o r c e = 48 .0 f * s r6 * (sr6 −0.5 f) * s r2 ;
39 f i_ l o c a l [get_local_id (0)] += f o r c e * de lx ;
40 }
41 }
42

43 }
44 async_work_group_copy (f + WG_SIZE*get_group_id (0) , f i_ l o c a l ,

WG_SIZE, 0) ;
45 }
46

47 }

Listing 5.6: First optimization of force_compute kernel

Just to better understand the organization of variables in the memory hierarchy
it can be possible to analyse Fig. 5.6. Here it can is represented the case of
ntoms = 8 particles processed by work-groups of size 5 (WG_SIZE=5). In the
CPU address space of RAM (yellow region),it can be noticed the presence of arrays
of spatial coordinates x and forces f associated to each atom indicated with the red
numbers. Moreover, there are the array of neighbours' number for each atom saved
in numneigh and the the indexes of such neighbours saved in neighbors . Apart
from these, there are also the other variables that will be requested in the kernel
arguments : cutforcesq, maxneighs, nlocal (nlocal = natoms). It is important
to remember that every time the OpenCl API clEnqueueWriteBu�er is called the
memory objects or the pointer of all the aforementioned variables are transferred
in the FPGA address space (blu region). Also in this case the MMD_floatK3
data type is a re-de�nition of a �oat4 data type.
After this �rst delacation of variables, the algorithm executes the usual control
about the out-of-bound particle and then starts to infer burst download of the
coordinates x and the number of neighbours for each of the atoms in the work-
group (line 18 and 19). At this point, starts MY_LOOP_FOR that is in charge
of compute the actual total forces acting of each atom. At line 25 is inferred the
burst download of all the neighbour's indexes of all the work-items belonging to
the same work-group. A better graphical explanation can be found in Fig.5.7.

73

5 � MiniMD porting on FPGA

128

S_AXI_HP0_FPD

128

128
3 2333 3 2 3333

0 1 2 3 4
local_numneigh

WG_SIZE

a
sy
n
c_
w
o
rk
_
g
ro
u
p
_
co
p
y

128 neigh_idx 3 6 0 7 1
0 1 2 3 4

xi=x[i]

3
3

x[3]
128

2
6

x[6]

2
6

x[6] 3
0

x[0]x[

3
0

x[0]x[2
7

x[7]x[x[x[

2
7

x[7]x[x[x[3
1

x[1]x[x[x[x[x[x[

k=0

128 neigh_idx 3 6 0 7 1
0 1 2 3 4

3
3

x[3]
128

2
6

x[6]

2
6

x[6] 3
0

x[0]x[

3
0

x[0]x[2
7

x[7]x[x[x[

2
7

x[7]x[x[x[3
1

x[1]x[x[x[x[x[x[

k=0

128 neigh_idx
WG_SIZE

0 1 2 3 4

3
4

x[4]
128

2
7

x[7]

2

x[3
5

x[5]x[

3

x[x[2
6

x[6]

2

3
3

x[3]

k=1

128 neigh_idx
WG_SIZE

0 1 2 3 4

3

x[
128

2

x[

2

x[3

x[x[

3

x[x[22

3

k
4 7 5 6 3

128 neigh_idx
WG_SIZE

0 1 2 3 4

3
5

x[5]
128

3
3

x[3]x[

3

x[x[

3
6

x[6]

k=2

128 neigh_idx
WG_SIZE

a
sy
n
c_
w
o
rk
_
g
ro
u
p
_
co
p
y

0 1 2 3 4

3
128

3

x[x[

3

x[x[

3

k
5 / 3 / 6

128

128

t

WG_SIZE

128

128

128

128

128

128

128

128

128

128

128

128

128

128

128

*

*

*

k < local_numneigh[get_local_id(0)]
j=neigh_idx[get_local_id(0)
MMD_floatK3 xj = x[j];
COMPUTE FORCE fi_local

*

3
4
5

6
7
/

0
5
3

7
6
/

1
3
6

neigh_idx
0 1 2 3 4

X
C
L_

W
G

_
D

IM
_
X
 P

IP
E
LI

N
E
D

Burst Download

a
sy
n
c_
w
o
rk
_
g
ro
u
p
_
co
p
y

X
C
L_

W
G

_
D

IM
_
X
 P

IP
E
LI

N
E
D

X
C
L_

W
G

_
D

IM
_
X
 P

IP
E
LI

N
E
D

a
sy
n
c_
w
o
rk
_
g
ro
u
p
_
co
p
y

a
sy
n
c_
w
o
rk
_
g
ro
u
p
_
co
p
y

Burst Download

a
sy
n
c_
w
o
rk
_
g
ro
u
p
_
co
p
y

Burst Upload

f[i]=fi

loop2

loop1

MY_LOOP_FOR.1

MY_LOOP_FOR

loop4

Figure 5.7: Graphical description of the optimised force_compute kernel

74

5 � MiniMD porting on FPGA

There is represented the algorithm executed from the point of view of a single work-
item and of the work-group at which it belongs. The �rst two bursts download
are viewed by Vivado_hls's compiler as loop1 and loop2, and for this reason are
pipelined. Then If we imagine that we are in the �rst work-group, the particles
processed will be the number 0,1,2,3 and 4. The maximum number of neighbours
is maxneighs equal to 3 in this example, so the trip count of MY_LOOP_FOR
will be 3 (cycle number 0 with k=0 and so on). At k=0,the �rst neighbours
are downloaded in burst by means of an async_work_group_copy function so,
the �rst rows of the neigh_idx matrix is downloaded. Subsequently, each atom
will control if it has �nished to control the force contribution from its neighbours
atoms (line 27). If not, the partial force computation will be performed only if the
distance between the i-th atom and its neighbour j is less then cutforcesq. all these
calculations (from line 27 up to 39) are seen from Vivado_hls as something that can
be pipelined from the point of view of work-group. In other words, by referring
to Fig.5.7 the green boxes represent al the 5 work-items that are executing the
previous lines of code in a pipelined fashion. This is indicated in the vivado_hls's
report as XCL_WG_DIM_X-loop and it is pipelined.
After the execution of all the trips of the most external loop, the situation of
handled variables in the FPGA is the one represented in the FPGA region of
Fig.5.6. Here, can be appreciated that the local arrays save in local memories of
the two work-groups instantiated. Of course, it is interesting to note as, since the
second work-group has to process only 3 out of 5 potential atoms, two work items
will not do anything due to the control at line 27.

Finally, when the total force acting on each atom has been saved into �_local a
burst upload in inferred at line 44, as can be noticed with the green box at end of
Fig. 5.7.

A further optimization was possible for what concern the download of spatial co-
ordinates of all the neighbours of each atom, at once at the beginning of code. At
the state of art, at every cycle each work-item downloads this coordinates at line
31. This optimization has not been possible because, in order to infer the burst of
all these data the exact dimension of the neigh_idx matrix was should have been
�xed. This means that the total number of rows maxneighs and the total number
of columns natoms of the previous matrix, should have been �xed. This has not
been possible because the previous data are variables and so, degrees of freedom
of a molecular dynamic simulation.
Also in this case, the single instance of the kernel communicates with only one of
the 128 bit axi interfaces with the DDR.

After the synthesis of the previous Listing, Vivado_hls reports the following info

75

5 � MiniMD porting on FPGA

about the optimised loops. It is important to note that MY_LOOP_FOR cannot
be pipelined because of its not-�xed upper bound maxneighs .

Figure 5.8: Optimised loops in force_compute kernel

What can be noticed is that loop4 is the only one that is pipelined with and an
achieved II of 2. As a matter of fact, by further analysing the loop by means of
the analysis perspective of Vivado_HLS what emerges is in Fig.5.9.

Figure 5.9: Analysis perspective of Vivado_HLS about loop4

In general, read operations take 2 clock cycles: a cycle to generate the address for
the block RAM and a cycle to read the data. In the �gure above, it can be noticed
that the algorithm wants to access to new other values of �_local (�_local_load_3
and �_local_load_4) before that the second cycle about �_local_load_1 and
�_local_load_2 is �nished. This fact is further veri�ed by the log �le that notify
(see Listing 5.7) that the number of memory ports to the local BRAM has to be
increased in order to promote better optimizations.

76

5 � MiniMD porting on FPGA

1 INFO: [SCHED 204−61] P i p e l i n i n g loop 'Loop 4 ' .
2 WARNING: [SCHED 204−69] Unable to schedu le ' load ' opera t i on ('

f i_local_load_3 ') on array ' f i_ l o c a l ' due to l im i t ed memory por t s .
P lease con s id e r us ing a memory core with more por t s or

p a r t i t i o n i n g the array ' f i_ l o c a l ' .

Listing 5.7: Portion of log �le about force_compute kernel synthesis

Therefore the complete array partitioning of the �_local array has been performed
by adding the following directive:

1 #de f i n e WG_SIZE 32
2 ke rne l __attribute__ ((reqd_work_group_size (WG_SIZE, 1 , 1)))
3 void force_compute (__global f l o a t 4 * x , __global f l o a t 4 * f , __global

i n t * numneigh , __global i n t * neighbors , i n t maxneighs , i n t n loca l ,
f l o a t cu t f o r c e s q)

4 {
5 . . .
6

7 __attribute__ ((xc l_array_part i t ion (complete , 1)))
8 __local f l o a t 4 f i_ l o c a l [WG_SIZE] ;
9

10 . . .
11 }

Listing 5.8: First optimization of force_compute kernel

After all of these optimizations the kernel has reached a signi�cant increase of
performance by pipelining with an II =1 also the loop4. The execution time was
reduced from 395.67ms down to 111ms.

original_code
(exec_time)

optimized_code
(exec_time)

improvement natoms kernel_frequency

395.67 ms 111 ms 28% 10976 250 MHz

Table 5.2: Execution times of the original and optimised version of force_compute

As for Resource utilization, in Fig. 5.10 we report a comparison between the
original version of the code and the optimised one (@300 MHz).

77

5 � MiniMD porting on FPGA

original version optimised version

Figure 5.10: Comparison about Resource Utilization between original and opti-
mised version of force_compute kernel

It can be noticed an increase of BRAM utilization, but also an increase of DSP48Es
and FFs. Also in this case this is probably due to the increased management of
local variables handled in work-group's local memories. Instead, the portions of
code relative to the computation of total forces are so consistent that allow an
considerable rise of logic units like DSPs promoted by a deep utilization of the
pipeline technique.

5.4 Further optimizations

Up to this point, every e�ort has been made to optimise the execution time of
the most-compute intensive kernels:neighbor_build and force_compute. This has
consequently reduced the time to complete the full miniMD algorithm.
But there are other solutions to improve the overall performance. The SDx soft-
ware tool allows to create onto the FPGA a customized area called OpenCL region
(OCL region) that allows to implement the OpenCL parallel model [18]. This
meeans that multiple compute units (instances) of the same kernel can be created,
in order to actually parallelize the work. This technique allows to use much more
e�ciently the bandwidth between external memory and programmable logic al-
lowing parallelism on a coarse-grained level [10].
As to this particular application, it could be useful to promote the parallel ex-
ecution of neighbor_build and force_compute. As a matter of fact, it has been
implemented a version of the application with two compute units instantiated for
each of these kernels (see Fig.5.11).

78

5 � MiniMD porting on FPGA

CU1
neighbor_build

CU2
neighbor_build

128

S
_
A
X
I_

H
P
0
_
FP

D

S
_
A
X
I_

H
P
1
_
FP

D

128

CU1
force compute

CU2
force compute

CU1
integrate initial

Figure 5.11: Design with two compute-units for neighbor_build and
force_compute kernels

As it can be noticed from the �gure above, both the instances of the kernels are
linked to the external memory by means of two S_AXI_INTERFACES. This
implies a doubling of bandwidth to transfer data. Since, most of the time spent by
the above kernels is related to the data transfer, this new architecture is able to
almost halve their execution times. The performance comparison is presented in
table 5.3. While force_compute has reached a �nal value of 64ms, neighbor_build
a decrease to 2.1s.

Single CU Two CUs
force_compute 111 ms 64 ms
neighbor_build 4.3 s 2.1 s

Table 5.3: execution time reduction cause of multiple compute units

79

Chapter 6

Conclusions and future work

In the present thesis, it has been explored all the main approaches to e�ciently
perform the porting of native OpenCL kernels onto FPGA. Since the original ker-
nels were intended to execute onto pure-parallel architecture like GPUs, the main
e�ort has mainly a�ected the research for optimizing the code to the FPGA's ar-
chitecture and vice versa. As a matter of fact the code optimized to execute on
FPGA is signi�cantly di�erent from the one optimized for GPU. This is mainly
caused to the di�erent memory bandwidths and the di�erent approach to optimize
the process part of the kernel code. While for GPU exits the Single-instruction-
Multiple-Data parallelism, for FPGA the goal is reached by completely change the
code in order to better guide the Vivado HLS's compiler into optimizations with
the insertion of some directives.

The �rst kind of optimization done, has increased the data transfer between the
programmable logic and the external DDR-Memory. This has been mandatory
because the main performance limiter in case of Zynq Ultrascale+ is related to the
limited bandwidth of the gmem AXI interfaces of only 128 bit instead of the com-
mon 512-bit of PCI-e based FPGAs. For this reason the some of the variables man-
aged by each of compute intensive kernels (neighbor_build and force_compute)
have been re-arranged into local-variables in order to infer as much as possible
burst memory-transfers.
The second optimization step has instead a�ected the re-organization of the "core"
kernels' portions, in order to e�ciently process all the previously downloaded data.
In this case, it has been noticed as the not-�xed upper-bound of loops has limited
a lot improvements. In fact Vivado HLS always rely onto �xed-bounded loops
in order to promote the pipelining and unrolling techniques. This limitation of
the miniMD kernels has not allowed a perfect application of the aforementioned
techniques but has equally guaranteed a speed-up of their overall execution. In

80

6 � Conclusions and future work

this context, it is important to remember that the use of OpenCL language into
the high-level-synthesis often leads to less optimizations directives with respect to
C codes.

Since the main problem in these application, is related to data transfer, it could
probably be a good idea to implement a sort of On-chip global memories [18]. This
means, to create inside the programmable logic a global memory region with on-
chip pipes or bu�ers in order to speed up the inter-communication of data among
all the kernels, and consequently avoid excessive transfer to the external o�-chip
global memory that requires much more time.
Moreover, in order to obtain further optimizations, it is probably a good solution,
to move the focus onto a more general system-level point of view. This implies that
there are still global compute unit allocation opportunities that can be exploited in
order to use a larger bandwidth with the external memory. That means, direct the
optimisation work-�ow to a more parallel approach also in case of FPGA world.
However, these are beyond the scope of this thesis and are left to future work.

81

Bibliography

[1] url: http://www.exanest.eu/.

[2] url: https://www.xilinx.com/support/documentation/white_papers/
wp375_HPC_Using_FPGAs.pdf.

[3] url: http://www.drdobbs.com/parallel/a-gentle-introduction-to-
opencl/231002854?pgno=2.

[4] url: https://www.xilinx.com/support/documentation/sw_manuals/
ug1228-ultrafast-embedded-design-methodology-guide.pdf.

[5] url: https://www.xilinx.com/support/documentation/user_guides/
ug1085-zynq-ultrascale-trm.pdf.

[6] url: https://www.xilinx.com/support/documentation/ip_documentation/
axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf.

[7] url: https://en.wikipedia.org/wiki/High-level_synthesis.

[8] url: https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2014_1/ug902-vivado-high-level-synthesis.pdf.

[9] url: https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2017_1/ug1023-sdaccel-user-guide.pdf.

[10] url: https://en.wikipedia.org/wiki/Molecular_dynamics.

[11] url: https://www.xilinx.com/support/documentation/sw_manuals/
xilinx2017_1/ug1253-sdx-pragma-reference.pdf.

[12] url: http://www.hpctoday.com/state-of-the-art/when-are-fpgas-
the-right-choice-to-improve-hpc-performance/.

[13] Christian De Schryver et al. �An energy e�cient FPGA accelerator for monte
carlo option pricing with the heston model�. In: 2011 International Confer-
ence on Recon�gurable Computing and FPGAs. IEEE. 2011, pp. 468�474.

[14] Martin C Herbordt et al. �Achieving high performance with FPGA-based
computing�. In: Computer 40.3 (2007).

82

http://www.exanest.eu/
https://www.xilinx.com/support/documentation/white_papers/wp375_HPC_Using_FPGAs.pdf
https://www.xilinx.com/support/documentation/white_papers/wp375_HPC_Using_FPGAs.pdf
http://www.drdobbs.com/parallel/a-gentle-introduction-to-opencl/231002854?pgno=2
http://www.drdobbs.com/parallel/a-gentle-introduction-to-opencl/231002854?pgno=2
https://www.xilinx.com/support/documentation/sw_manuals/ug1228-ultrafast-embedded-design-methodology-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug1228-ultrafast-embedded-design-methodology-guide.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/v13_4/ug761_axi_reference_guide.pdf
https://en.wikipedia.org/wiki/High-level_synthesis
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug1023-sdaccel-user-guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug1023-sdaccel-user-guide.pdf
https://en.wikipedia.org/wiki/Molecular_dynamics
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug1253-sdx-pragma-reference.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug1253-sdx-pragma-reference.pdf
http://www.hpctoday.com/state-of-the-art/when-are-fpgas-the-right-choice-to-improve-hpc-performance/
http://www.hpctoday.com/state-of-the-art/when-are-fpgas-the-right-choice-to-improve-hpc-performance/

BIBLIOGRAPHY

[15] Xilinx Inc. SDAccel Development Environment Methodology Guide: Perfor-
mance Optimization. 2016.

[16] Manolis Katevenis et al. �Next generation of Exascale-class systems: ExaN-
eSt project and the status of its interconnect and storage development�. In:
Microprocessors and Microsystems 61 (2018), pp. 58�71.

[17] Rene Mueller, Jens Teubner, and Gustavo Alonso. �Data processing on FP-
GAs�. In: Proceedings of the VLDB Endowment 2.1 (2009), pp. 910�921.

[18] Fahad Bin Muslim et al. �E�cient FPGA implementation of OpenCL high-
performance computing applications via high-level synthesis�. In: IEEE Ac-
cess 5 (2017), pp. 2747�2762.

[19] Yuliang Pu et al. �An e�cient knn algorithm implemented on fpga based het-
erogeneous computing system using opencl�. In: Field-Programmable Custom
Computing Machines (FCCM), 2015 IEEE 23rd Annual International Sym-
posium on. IEEE. 2015, pp. 167�170.

[20] Rick Weber et al. �Comparing hardware accelerators in scienti�c applica-
tions: A case study�. In: IEEE Transactions on Parallel and Distributed Sys-
tems 22.1 (2011), pp. 58�68.

83

	List of Figures
	List of Tables
	Introduction
	FPGAs in HPC systems
	FPGA Use Models in HPC and the ExaNeSt Project
	ExaNeSt european project

	FPGA: very good competitor of GPUs in HPC systems
	OpenCL
	The OpenCL Execution model
	The OpenCL Memory model

	System types in High Performance Computing and FPGA platforms descriptions
	Software workflow
	Vivado HLS
	Vivado Design Suite
	SDAccel Build process

	MiniMD application and Kernels presentation
	Molecular Dynamics
	Leapfrog Algorithm and miniMD kernels' description

	FPGA-based approach for OpenCL kernel acceleration
	OpenCL development for FPGAs
	Data Movement Optimization
	Kernel process Optimization
	Intra-FPGA memory optimizations

	MiniMD porting on FPGA
	Base-lining of the MiniMD Application
	Neighbor_build kernel optimization
	Preparation of Kernel Arguments
	Kernel's optimization

	Force_compute kernel optimization
	Kernel's optimization

	Further optimizations

	Conclusions and future work
	Bibliography

