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Glossary

1T1R One transistor, one resistor: a memory cells’ implementation used in RRAM
to isolate the current of the selected cell from the others. 11, 51, 54, 58, 93,
94

ACCA Accumulation array. 107

AlexNet AlexNet is a convolutional neural network, which competed in the Ima-
geNet Large Scale Visual Recognition Challenge in 2012. The network achieved
a top-5 error of 15.3% [1].. 9, 11, 12, 23, 24, 28, 32, 48–50, 101, 109–116, 122,
124, 125, 250

BCNN Binary convolutional neural network. 48, 49, 102, 103

BNN Binary neural network. 11, 13, 61, 70, 71

CIFAR-10 The CIFAR-10 dataset (Canadian Institute For Advanced Research) is
a collection of images. The CIFAR-10 dataset contains 60000 32x32x3 images
in 10 different classes. The 10 different classes represent airplanes, cars, birds,
cats, deer, dogs, frogs, horses, ships, and trucks. [2]. 12, 25, 32, 34, 38, 39, 58,
60, 62, 103, 112

CIM Computation in memory. 45, 49, 126

CNN Convolutional neural network. 7, 9–11, 14, 23, 27–29, 35, 37, 39, 45, 49, 52,
53, 58, 62, 74, 75, 82, 95, 99, 101, 102, 107, 108, 113, 119, 121, 123, 128, 137

DPU Digital processing unit: a separated unit (external from memory) used to
perform computations which are not executable in-memory. 49

DW Domain wall (magnetic). 50, 51, 53

FMEM Filter memory. 107
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Glossary

IFMAP Input feature map. 7, 8, 10, 62, 91, 98, 99, 101, 105, 108, 133, 134, 136,
201, 203

ImageNet The ImageNet project is a large visual database designed for use in
visual object recognition software research. It contains about 14 million images
[3]. 6, 10–12, 23, 27, 28, 32, 39, 49, 110–112

IMEM Image memory. 107

IPNE Input parallel neural engine, inputs are in parallel, while outputs are deliv-
ered in serial. Output of this configuration is compatible with OPNE’s input.
12, 72–74, 115, 118–120, 123, 126–130

ISU Input feature map summation unit. 107

LeNet LeNet is a type of convolutional neural network. 86, 90, 91, 116

MLC Multi level cell, more then one bit can be hold into a single cell. 11, 12, 41,
42, 55–57, 94, 115, 118–120, 122, 126, 130

MLCS Memory logic conjugated system. 75–78

MLP Multilayer perceptron is a class of artificial neural network. Each node is a
neuron that uses a nonlinear activation function, except for the inputs. MLP
uses backpropagation for training. [4]. 8, 9, 12, 14, 23, 58, 60, 61, 66, 67, 86,
113, 115, 121–123, 134, 137, 146, 235, 236, 246

MLSA Multi level sense amplifier. 60–62, 123

MNIST The MNIST database (Modified National Institute of Standards and Tech-
nology database) is a dataset of handwritten digits with 60000 images in B/W.
[5]. 13, 19, 34, 45, 58, 60–62, 66–68, 75, 81, 86, 91, 119, 131, 133, 138, 139,
201, 235

MRAM Magnetoresistive random-access memory (MRAM) is a non-volatile random-
access memory technology. Data in MRAM is not stored as electric charge or
current flows, but by magnetic storage elements. 6, 10, 41, 42, 46, 47

MSC Modified sensing circuit, designed for logic and full-add operations. 10, 42,
43, 45

MTJ Magnetic Tunnel Junction is a component composed by two ferromagnets
separated by an insulator. Electrons can tunnel from one ferromagnet into the
other.[6]. 6, 10, 41–43, 45, 47, 48, 50–53, 93, 117, 119, 120, 126, 129
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Glossary

NDP Near Data Processing. 95

NPU Neuron processing unit. 106, 107

NVM Non-volatile memory. 46, 92, 93

OFMAP Output feature map. 7, 8, 10, 37, 46, 62, 75, 91, 105, 132, 133, 136

OOM Out of memory implementation.. 7, 8, 16–20, 87, 117, 121, 127, 148, 156,
171, 174, 188, 192, 205–208, 210, 211, 214, 218, 219, 221–223, 241–250, 252–
254

OPNE Output parallel neural engine, inputs are in serial, while outputs are deliv-
ered in parallel. Output of this configuration is compatible with IPNE’s input.
12, 72–74, 115, 118–120, 123, 126–130

PIM Processing in memory module: it is formed by the combination of an OPNE
and an IPNE. 74, 115, 123, 128

PU Processing unit. 105

ReLU Rectified linear unit, a type of neuron’s activation function which consists
into ReLU(x) = max(0,x). In terms of training time, it is the best choice..
24, 25, 34, 102–104, 106

RRAM Resistive switching random access memory. 6, 7, 10–12, 54–58, 61, 67, 69,
92–94, 115, 117, 123, 124, 126–130

SC Stochastic computing. 87, 88, 91

SCT Synapse configuration table. 70–72

SGD Stochastic gradient descent method. 37, 66, 67, 133

SOT Spin-orbit torque: a type of magnetic RAM. 6, 10, 12, 46, 47, 50, 115, 118,
120, 122, 126, 128–130

stride stride, in the context of CNNs, is the distance between the receptive field
centers of neighboring neurons in a kernel map. 8–10, 24–26, 35, 99

STT Spin-transfer torque is an effect in which the orientation of a magnetic layer
in a MTJ can be modified using a spin-polarized current [7]. 6, 12, 41, 42, 50,
92, 115, 118, 119, 122, 126, 130
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SVHN SVHN (Street View House Numbers) is a dataset. It consists in a training
set of 604K and a test set of 26K 32x 32 color images representing digits
ranging from 0 to 9.. 34

top-1 top-1 error is measured by checking if the top class (the one having the
highest probability) is the same as the target label.. 10, 11, 25, 26, 39, 109,
110, 112

top-5 top-5 error is measured by checking if the target label is one of your top 5
predictions (the 5 ones with the highest probabilities).. 10, 12, 25, 26, 39, 111
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Summary

In this thesis, an In-Memory architecture of a binary neural network is presented.
The concept of ”In-Memory” is related to the possibility to place near-memory
very simple computational units, such as logic gates or full-adders, to implement a
distributed circuit instead of Von Neumann’s classical one. This choice brings to
relevant benefits such as lower energy consumption/delay, since the computation is
performed very close to memory, the wasted energy and the corresponding latency
caused by the data fetching are heavily reduced, allowing an higher parallelization.

Figure 1: Convolutional neural network used as starting model. MNIST database
is used, which is composed by handwritten digits in range 0÷ 9.

As computational models, Convolutional Neural Networks (Figure 1) have been
chosen. They are a class of neural networks that are able to recognize/classify
raw data, such as images, sounds, natural language etc. The key parameters of a
neural network are the number of layers and their dimensions, that influence the
accuracy achievable and the usable dataset’s complexity. A ”binary” approximation
called XNOR Net is considered, in which weights (W) and inputs (I) are binarized
between {−1,+ 1} by taking the sign, reducing the multiply-accumulate operations
used in convolution into XNORs-popcounting sequences. The term ”pop-counting”
refers to the following operation: number of 1s - number of 0s. The value computed
is then multiplied by two scaling factors (K and α), obtaining the approximated
convolution. This choice reduces memory required and computational cost, but
degrades the achievable accuracy (from ∼ 97% to ∼ 84% for the model in Figure 1).
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Architectures

Figure 2: Classical implementation. In
Binary input RF, the binary signs are
precharged and then fetched one row per
clock cycle to compute the XNORs. The
incoming bit selected goes to pop-counting
unit.

Figure 3: In-Memory implementation.
Inputs are precharged into the mem-
ory cells and the XNOR gates per-
form the xnor operation between the
binary weights (W0,W1,...) and inputs.
Xnor results are then fetched from
pop-counting parts.

Two architectures based on 45nm CMOS technology (In-Memory and classical
implementations respectively), have been developed. The classical implementation
has been used as reference architecture to compare the performance achieved in
the In-Memory case. The computational model is well-suited for an In-Memory
implementation, since XNOR gates and pop-counting circuits are very simple units
that can be integrated into a memory array. In the classical implementation in
Figure 2, a traditional memory has been used, in which data are simply stored
and the computation is done out-of-memory (OOM). In the In-Memory alternative
(Figure 3), the traditional structure has been replaced with a CAM-like array and the
computation is perfomed inside the mesh by computing the xnors between binarized
weights-inputs. One of the main advantage in the In-Memory alternative is the
parallelization of the XNOR/pop-counting computations, which reduces the time
required by the algorithm and the energy consumed.
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Validation flow

Since the neural networks are often realized in software (for example Python with
TensorFlow and Keras), a MATLAB model that computes both in floating point
and fixed point representation has been carried out to convalidate the correctness of
the VHDL implementation: when the floating point results are validated, the fixed
point model is then verified, obtaining the validation flow depicted in Figure 4.

VHDL

Floating point

neural network model

Floating point

neural network model

Fixed point

neural network model

Figure 4: Validation flow of the neural network model.

Performance

The results show that the classical implementation needs ∼ 2.5× more compu-
tational time than the In-Memory architecture with an higher energy consumed
(∼ 1.7×), for the model in Figure 1. The architectures implemented have the possi-
bility to realize any kind of neural network, with more complex models or datasets.
For the model depicted in Figure 1, the framerate achieved in the In-Memory case
is 16337 fps with 0.79 µJ consumed, while for the OOM case is 6652 fps with
1.33µJ and a clock frequency of 4.22ns for both cases. By evaluating the architec-
tures’ perfomance for different neural network models, the In-Memory alternative
is able to consume ∼ 3.7× less energy and to save up to ∼ 5.7× computational
delay than the classical counterpart. Roughly comparisons have been performed
with the state-of-the-art based on innovative technologies (such as RRAMs, MTJs
Memristors,etc), showing very good computational delay with relatively low energy
consumption results for the In-Memory architecture: the perfomance estimations for
this case are pessimistic, since the memory array has been synthesized by Synopsys
Design Compiler as a register file and each cell as a flip-flop, that is more complex
than a custom memory cell. However, the resulting normalized energy and delay
for the In-Memory case are ∼ 650pJ/neuron and ∼ 17ns/neuron respectively, that
are comparable to an analog MTJ-based single-level-cell solution with an energy
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value of ∼ 450pJ/neuron and a normalized delay of ∼ 16ns/neuron. Choosing
beyond-CMOS technologies, enables the realization of very efficient solutions.

Thesis structure

This work is composed by the following chapters:

1. State-of-the-art, in which actual neural network implementations and tech-
nologies are reported (both In-Memory and OOM solutions);

2. Comparisons: the implementations discussed in the state-of-the-art are com-
pared in terms of perfomance;

3. Software implementation: an explanation of the starting neural network
model is provided, in which Python code is analyzed and discussed;

4. Hardware implementations: a detailed explanation on how the neural net-
work has been realized in VHDL is given, for both the computational model
(OOM and In-Memory respectively). In this part, the neural network model
depicted in Figure 1 is used, because it is easier to understand. Next, it is
demonstrated how the circuit can be used to implement different neural net-
work models, with any kind of structure and dimension;

5. Verification: the results are compared and the correspondence between Python-
Matlab-VHDL is tested, as already described in Figure 4. Here, three different
neural network models are tested to demonstrate the capability of the circuits
to implement any kind of neural network model and dataset: the original one
(Figure 1), an MLP network and a fashion-MNIST based CNN;

6. Synthesis - Place&Route: performance results are provided for the models
analyzed in the verification part. Moreover, by performing several synthesis,
a parametric sweep is performed on the key parameters of the neural network
(such as IFMAP sizes, OFMAP sizes, contemporary input channels and so
on), to evaluate the trend of Power, Area, Timing and energy for both In-
Memory and OOM architectures respectively. Roughly comparisons with the
state-of-the-art are performed in this part;

7. Conclusions and future work: conclusions and improvements are proposed.
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4.21 Timing diagram for the K computation considering only one input
channel. When Enable K is asserted during initial stage, K com-
putation starts to address one out of w2

filter inputs with Count K,
and the corresponding sum is obtained in OutRegSum. This phase
lasts for w2

filter clock cycles, that in this example it is equal to 4. After
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4.24 Timing diagram for multiple output channels handling. From in-
crease batch (IB), the FSM moves toward wait for last result,
since the Counter SRAM has reached the end of counting. The last
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Chapter 1

State of the art

1.1 Introduction

1.1.1 Artificial neural network [8]

Neuron

An artificial neural network is used to process very complex informations and in

particular to give a classification. Its structure is based on the biological brain way-

of-computation.[8] It is composed by ”neurons”, which are the basic blocks:

Neuron

Figure 1.1: Neuron’s structure
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Neurons are organised in an interconnected network that is able to take decisions and

to learn when these decisions are wrong [41]. Considering its equivalent structure

from an ”electronic” point of view (Figure 1.1), the following terms are used:

• Bias: additive term;

• X1,X2: inputs of the neuron;

• W1,W2: weights. For each synapse there is a different weight. They can assume

any value so they can be:

1. Floating point weights: the values are represented in floating point, so

the network can work at fully precision;

2. Binarized weights: the weights can only assume ±1 values;

3. Ternary weights: the weights can assume {1,0, − 1}. When a weight

assumes the value 0 means that a particular neuron is not connected to

another one.

• f : activation function of the neuron. There are different kind of activation

functions, in particular the most used ones are:

1. Sigmoid function: represented by the following equation

f(x) =
1

1 + e−x
(1.1)
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Figure 1.2: Sigmoid activation function

2. Hyperbolic tangent: given by

f(x) = tanh(x) (1.2)
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Figure 1.3: Hyperbolic tangent activation function
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3. ReLU function: the term means ”rectified linear unit” and it is given

by

ReLU(x) = max(0,x) (1.3)

This kind of activation is often used because it represents a good trade-

off between accuracy and simplicity since, as it is possible to see in the

plot in Figure 1.4, it is quite similar to the sigmoid or hyperbolic tangent

functions.
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Figure 1.4: ReLU activation function

4. Sign function: this is used in binary/ternary neural networks and, con-

sidering the type of network, two different kinds of sign functions can be

used:

sign(b)(x) =

1, if x ≥ 0

−1, if x < 0
(1.4)

sign(t)(x) =


1, if x ≥ ρ

0, if − ρ ≤ x < ρ

−1, if x < −ρ

(1.5)
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1.1 – Introduction

Neural network

In order to realize a neural network, it is possible to use multiple neurons into a

neat structure composed by many layers. An example is reported in the following

figure:

Figure 1.5: Neural network example from [32]

As it is possible to see in Figure 1.5, the network has 3 layers:

1. Input layer: it simply reports the inputs to the following layer, by applying

the neurons’ activation fuction;

2. Hidden layer: the most important layer in the network, because it is used to

do the computations explained before. Each neuron propagate in output the

following quantity:

output(i) = f

(
#inputs∑
j=0

(input(j) · w(j)) + bias

)
(1.6)

3. Output layer: executes the same computations of the hidden layer, but the

outputs coming from these neurons represent the classification, and so the

result coming from the computations.
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It is possible to have two different situations: the first one, when all the (N-1)-th

neurons are connected to the following N-th neurons the network is called fully

connected; otherwise, if this condition is not satisfied, the network is not fully

connected. It is important to notice that a non fully-connected network is easily

implementable by a ternary network, because in the ternary approach, weights can

assume {1,0,− 1}.

Size of the NN [42] The size of a neural network has to be chosen considering

the application in which it will be used. For example, the usage of multiple hidden

layers implies the capability to perform very difficult computations. Also the number

of neurons in the hidden layers has to be chosen properly, in fact choosing many

of them can imply overfitting, in which the number of the elements is very high

and the dataset is not sufficient to update them all, reaching very low accuracies.

On the contrary, if the number of neurons are minimal, the consequence is that the

network is not capable anymore to perform complex computations and to process

complex datasets (underfitting). A simple rule from [42] to choose the number of

neurons is the following:
#input neurons < #hidden neurons < #output neurons

#hidden neurons =
2

3
·#input neurons + #output neurons

#hidden neurons < 2 ·#input neurons

(1.7)

Forward pass The first step in a NN is to ”forward pass” the inputs towards

the outputs. Inputs are propagated inside the neural network, which elaborates

the partial results as explained before until the output is not reached. Once the

outputs are computed, two different classifications are carried out from the NN,

which represent the actual computation result with its original configuration (initial

weights). The outputs are compared with the expected result and, if they are not

the same, the network needs to be trained with a backward pass.

Backward pass Starting from output layer, the weights of the network needs to

be updated, in order to reach the target output. To do this, it can be used the

backpropagation algorithm method that will be explained later in subsection 1.1.4.
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1.1.2 Convolutional neural networks

A convolutional neural network is a particular type of neural network which is able

to process a very large data (such as an image) and to give a proper classification

in output [34]. A CNN is composed by input, output and multiple hidden layers

such as convolution, pooling, normalization and fully connected layers as depicted

in Figure 1.6:

Figure 1.6: CNN example from [33]. There are several layers such as convolution,
pooling, fully connected (already described) and normalization that can be trained
in order to classify the input. In this case, an image is used but the CNNs can be
used for different applications, such as natural language and speech recognition [34].

• Convolutional layers: a convolutional layer takes in input an image (con-

sidering the first layer, the IFMAP is represented by 3 matrices of pixels

representing the RGB values) and gives in output a convolved group of matri-

ces with a particular set of weights (called kernels). An example of kernel is

depicted in the following figure:

Figure 1.7: Example of a kernel in a CNN with 3x3 size.

The input image is also called input feature map (IFMAP) and the corre-

sponding processed output is called output feature map (OFMAP). The

7
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general equation that defines the OFMAP can be formulated considering [31]

and [16]:

y(l)
o (j,i) = b(l)

o +

#channels−1∑
c=0

#rows(kernel)−1∑
m=0

#cols(kernel)−1∑
t=0

k(l)
o,c(m,t)x

(l)
c (j +m+ j(stride− 1),i+ t+ i(stride− 1))

Where:

– (l) is the layer. In this example, the first layer is considered;

– b0 is the bias term;

– c is the input channel. As said previously, there can be more than one

input channel in a convolutional neural network (RGB case);

– k
(l)
o,c is the kernel weight of the channel and layer considered;

– x
(l)
c is the corresponding input;

– stride is the corresponding step size used in the convolution.

This equation considers the case of a batch size equals to 1, where the batch

size is the number of images in input [43]. Considering a simpler case, with

a kernel size of 3x3, 5x5 IFMAP, only one channel and evaluated in the first

layer, the equation that defines the OFMAP becomes:

y0(j,i) = b0 + k(0,0)x(j,i) + k(0,1)x(j,i+ 1) + k(0,2)x(j,i+ 2)+

+k(1,0)x(j + 1,i) + k(1,1)x(j + 1,i+ 1) + k(1,2)x(j + 1,i+ 2)+

+k(2,0)x(j + 2,i) + k(2,1)x(j + 2,i+ 1) + k(2,2)x(j + 2,i+ 2)

By looking at this equation, it is possible to observe that it is quite similar to

the neuron’s equation, in fact:

Conv = b+

#cols(kernel)−1∑
t=0

#rows(kernel)−1∑
m=0

k(m,t) · x(j +m,i+ t) (1.8)

Neuron =

#inputs∑
t=0

k(t)x(t) + b (1.9)
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1.1 – Introduction

It is possible to realize a convolutional layer by employing a fully connected

neural network, in particular considering that a single convolved output can

be realized as:

Figure 1.8: Convolution example with FC network. The weights used in the fully
connected part are the same of the kernel.

9



1 – State of the art

Each element in the OFMAP is defined as the sum of products between the

weights and the IFMAP.

• Pooling layers: Pooling is an important feature of CNNs, because it reduces

the dimensions of the feature map, but maintaining the most important infor-

mations [35], allowing to reduce the size of the network and the parameters

used, preventing overfitting. Considering the max pooling, it can be defined

a window size (2x2 for example) and slide it into the OFMAP elaborated by

the convolutional layer and take the largest element inside that window [35].

An intuitive example of max pooling is reported in the following figure:

8

9

0 2 3

7 9

7 9

MAX POOLING

STRIDE=1

Figure 1.9: Example of max-pooling 2x2 and stride of 1 [35]

• Batch normalization [44]: it is a technique which is not reported in Fig-

ure 1.6 and it allows to reduce the problems coming from the training (such

as slow convergence), in particular in very deep networks such as CNNs. The

technique is based on the normalization of the inputs of each layer, in such a

way that they will have mean output activation of 0 and standard deviation of

1 [44][45]. Main benefits are faster training, easier weights’ initialization and

the possibility to design deeper networks without losing precision[44].

The last part that composes a CNN is the fully connected layer, which has been

explained previously.
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1.1.3 Binary neural network [9]

As already mentioned, BNN has binary weights/activations. However, as analyzed

in subsection 1.1.4, the fully precision weights are needed to compute the gradients.

The main steps that characterize a BNN are the following ones:

1. Weights/inputs binarization [9]: the incoming activations and the weights are

binarized as illustrated below:

Figure 1.10: Binarization process based on the sign function of the input weight-
s/activations.

2. Pass inputs in the neural network [9]: the binary matrices pass in the neural

network, producing a result. Taking for example the following computation:

11
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- -

Figure 1.11: Binary XNOR-Popcount based computation.

The result can be obtained by considering a series of XNOR operations and a

final pop-count (number of ones - number of zeros). Considering the XNOR

truth table:

Table 1.1: XNOR Truth table

A B OUT
0(-1) 0(-1) 1(+1)
0(-1) 1(+1) 0(-1)
1(+1) 0(-1) 0(-1)
1(+1) 1(+1) 1(+1)

As it is possible to see, ”0” is considered as -1 and ”1” as +1, so the bit-

wise multiplication corresponds to XNOR’s output. The final result of the

computation in Figure 1.11 is given by:

y(0) = popcount(xnor(001,010)) = popcount(1,0,0) = −1 (1.10)

12



1.1 – Introduction

Similarly, this procedure is applied to all the remaining rows.

3. Realization: BNN is then implemented as shown in the following figure:

ReLU Binarize ReLU Binarize out
Input

Figure 1.12: BNN implementation. The green boxes are fully connected layers.

The first layer of the BNN reported in Figure 1.12 is not binarized, because

the correlation between unbinarized-binarized weights is weaker than the other

layers [9].

It is possible to demonstrate that the accuracy of a BNN trained with MNIST

dataset, compared to a fully precision neural network, slowly converges to the FP’s

one and this is a very important fact: BNN allows to reduce the resources and the

computation complexity and are well suited for in-memory implementation [9].

1.1.4 Backpropagation algorithm [10]

In this part, the backpropagation algorithm is explained from [10]. If Ternary/Bi-

nary neural networks are considered, since the activation function is the sign(t), the

derivative has to be approximated in some way: the approximation from [36] can

be used.

Example of a 2x2x2 network [10]

The back-propagation algorithm is used to train a neural network, by computing

the gradient that is needed in the calculation of the weights. [46] Backpropagation

requires the derivative of the loss function (also known as error function) w.r.t.

the network’s output to be known. Consider the following neural network:
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Figure 1.13: Neural network example. It is analyzed an MLP, in order to simplify
the explanations. The same approach can be used in CNNs.

It has three layers (input layer, hidden layer and output layer) that are indicated

as (1) for input, (2) for hidden and (3) for output.

Forward pass The first step of the backpropagation is to forward pass the inputs

through the neural network and to see what is the result. This will be compared to

the expected one (target), by considering the total error [10]:

Etotal =

#outputs∑
o=1

1

2
(target(o)− out(3)

o )2 = (1.11)

=
1

2
(target(1)− out(3)

1 )2 +
1

2
(target(2)− out(3)

2 )2 + ... = (1.12)

= Eo1 + Eo2 + ... (1.13)

Backwards pass The errors obtained in output are backward-passed toward the

input. The first layer encountered is the output layer:

• Output layer: considering for example the first output neuron depicted in

Figure 1.14:

14
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b2

Figure 1.14: First output neuron

The neuron itself is divided into the input part (called net) and the output part

(called out) [10]. In order to realize an algorithm which can be implemented

in high-level language, the weights of each layer are stored into matrices in the

following way:

W(2) =

[
w1 w3

w2 w4

]
W(3) =

[
w5 w7

w6 w8

]
(1.14)

The input net can be defined as the weighted sum of all neuron’s inputs (which

correspond to the outputs of the previous layer), with their corresponding

weights:

net(3)
o =

#colW(3)∑
i=1

x(2)(i) · W(3)(o,i) (1.15)

And out as:

out(3)
o = fact(net

(3)
o ) (1.16)

The activation function into a binary/ternary neural network is the sign. In

those particular case, outo is defined as:

out(3)
o = sign(net(3)

o ) (1.17)

To determine the new value of w5, the backpropagation algorithm computes

15
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the quantity
∂Etotal
∂w5

and applies the chain rule from [10] expressed in Fig-

ure 1.14:
∂Etotal
∂w5

=
∂Etotal

∂out
(3)
1

· ∂out
(3)
1

∂net
(3)
1

· ∂net
(3)
1

∂w5

(1.18)

By expanding all the elements:

∂Etotal

∂out
(3)
1

=
∂

∂out
(3)
1

(
#outputs∑
o=1

1

2
(target(o)− out(3)

o )2

)
= −(target(1)− out(3)

1 )

= out
(3)
1 − target(1)

(1.19)

∂net
(3)
1

∂w5

=
∂

∂w5

#colW(3)∑
i=1

x(2)(i) · W(3)(i,1)


=

∂

∂w5

(
x(2)(1) · w5 + x(2)(2) · w6 + bias

)
= x(2)(1)

(1.20)

The last term
∂out

(3)
1

∂net
(3)
1

considers the derivative of the activation function fact(x).

In the Binary/Ternary case, it can be approximated as indicated in Figure 1.15

from [36]. In formulas:

∂Sign(x)

∂x (c)
=

1/2a, if r − a ≤ |x| ≤ r + a

0, others
(1.21)

∂Sign(x)

∂x (d)
=


−1

a2
(|x| − (r + a)), if r ≤ |x| ≤ r + a

1

a2
(|x| − (r − a)), if r − a ≤ |x| < r

0, others

(1.22)

To simplify the equations,
∂fact(x)

∂x (d)
is expressed as:

f ′act(x) =
∂fact(x)

∂x (d)
(1.23)
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Figure 1.15: Approximation of the derivative of the sign function from [36]

Finally, the original equation of
∂Etotal
∂w5

can be rewritten as:

∂Etotal
∂w5

= (out
(3)
1 −target(1))·x(2)(1)·f ′act

#colW(3)∑
i=1

x(2)(i) · W(3)(1,i)

 (1.24)

In order to simplify the expression, the following equality is imposed:

δo = (out(3)
o − target(o)) · f ′act(net(3)

o ) (1.25)

The final expression for w5 is given by:

∂Etot
∂w5

= δ1 · x(2)(1) (1.26)
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The update rule for the weight w5 is the following:

w+
5 = w5 − η ·

∂Etotal
∂w5

(1.27)

Where η is the learning rate, which is an important parameter that indicates

how much the weights are adjusted with respect the loss function. By using

a very small value of learning rate, it means that the algorithm moves very

slowly and takes very long time to converge: typically the accuracy achievable

is higher in the case of small learning rates. Trying now to provide a general

expression for a weight w connected to a specific neuron (in particular the first

output one), the following equation can be considered:

∂Etot
∂w

= δ1 · x(2)(k) (1.28)

To simplify the equations,
∂Etot
∂w

= ψ. The computation for all the weights

becomes:

for k=1:#rows(W(3))

ψ = δ1 · x(2)(k)

W(3)+(k,1) =W(3)(k,1)− η · ψ

end

Extending this concept to all the output neurons in the last layer, the final

steps for the output layer becomes:

for o=1:#cols(W(3))

for k=1:#rows(W(3))

ψ = δo · x(2)(k)

W(3)+(k,o) =W(3)(k,o)− η · ψ

end

end
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• Hidden layer: for the hidden layer, the concept is more complicated, since

it has to use all the computations done in the previous layer. So, considering

for example the computation of w1:

Figure 1.16: Example of w1 (W (2)(1,1)) computation from [10]. Biases are not
reported because they are not used in the computation.

The term needed to be figured out is [10]:

∂Etot
∂w1

=
∂Etot

∂out
(2)
1

∂out
(2)
1

∂net
(2)
1

∂net
(2)
1

∂w1

(1.29)

The contribution of Etot is given by the sum of the errors in output, so:

Etot =

#cols(W(3))∑
o=1

E0(o) (1.30)

∂Etot

∂out
(2)
1

=
∂

∂out
(2)
1

#cols(W(3))∑
o=1

E0(o)

 (1.31)

By exploiting the j-th element of the sum, the derivative can be rewritten as:

∂E0(j)

∂out
(2)
1

=
∂E0(j)

∂net
(3)
j

·
∂net

(3)
j

∂out
(2)
1

(1.32)

∂net
(3)
j

∂out
(2)
1

=W(3)(1,j) (1.33)
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Now
∂E0(j)

∂net
(3)
j

can be computed as:

∂E0(j)

∂net
(3)
j

=
∂E0(j)

∂out
(3)
j

·
∂out

(3)
j

∂net
(3)
j

(1.34)

∂E0(j)

∂out
(3)
j

= out
(3)
j − target(j) (1.35)

∂out
(3)
j

∂net
(3)
j

= f ′act(net
(3)
j ) (1.36)

Putting all together:

∂Etot

∂out
(2)
1

=

#cols(W(3))∑
o=1

(out(3)
o − target(o)) · f ′act(net(3)

o ) · W(3)(1,o)

 (1.37)

By remembering:

δo = (out(3)
o − target(o)) · f ′act(net(3)

o ) (1.38)

The term
∂Etot

∂out
(2)
1

becomes:

∂Etot

∂out
(2)
1

=

#cols(W(3))∑
o=1

δo · W(3)(1,o) (1.39)

The final expression is:

∂Etot
∂w1

=

#cols(W(3))∑
o=1

δo · W(3)(1,o) · f ′act

#rows(W(2))∑
i=1

x(1)(i) · W(2)(i,1)

 · x(1)(1)

(1.40)
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The final expression can be further reduced for a single neuron’s weights con-

sidering:

δ(L)(1,o) =W(L)(1,o) · f ′act

#rows(W(L−1))∑
i=1

x(L−2)(i) · W(L−1)(i,1)

 (1.41)

For a generic weight w of the same neuron (the first one of the hidden layer):

∂Etot
∂w

= ψ =

#cols(W(3))∑
o=1

δo · δ(3)(1,o) · x(1)(k) (1.42)

From an algorithm point of view, each weight of the hidden layer’s neurons

can be obtained as follows:

for p=1:#cols(W(2))

for k=1:#rows(W(2))

ψ =

#cols(W(3))∑
o=1

δo · δ(3)(p,o) · x(1)(k)

W(2)+(k,p) =W(2)(k,p)− η · ψ

end

end

General case: N-layers network

The procedure is the same as described above, so in order to define the equation in

the general case, a generic U-th neuron is considered. The ψ =
∂Etot
∂w

for a single

weight w is defined as following in the different cases:

• N-th layer: ψ = δU · x(N−1)(k)

• (N-1)th layer: ψ =
∑#cols(W(N))

o=1 δo · δ(N)(U,o) · x(N−2)(k)
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• (N-2)th layer: ψ =
∑#cols(W(N))

o=1

∑#cols(W(N−1))
p=1 δo·δ(N)(p,o)δ(N−1)(U,p)·x(N−3)(k)

As it is possible to see, everytime the equation goes down by 1 layer, the number of

sums increases and the equation considers the term δ of the previous layers. So it is

not possible to define a-priori an equation that determines all the weights, because it

depends on the number of layers and on the weights’ values updated in the previous

cycle. It is important to consider that this algorithm works well if the weights’

values are in floating point representation: before binarizing, the neural network

have to be trained.
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1.2 – Software based neural networks

1.2 Software based neural networks

1.2.1 ImageNet Classification with Deep Convolutional Neu-

ral Networks [11]

Introduction

This approach describes AlexNet, which is a convolutional neural network that is

able to process a very large dataset such as ImageNet[11]. With a standard feedfor-

ward approach, the recognition task made on thousands of images in input requires

a very big neural network with a very large number of parameters (weights). Con-

sidering in fact:

#parametersFF =

#layers−1∑
i=1

#neurons(i) ·#neurons(i+ 1) (1.43)

Where i indicates the current layer analyzed. CNNs instead are well suited for very

large inputs, because the number of parameters are less than the MLP solution, but

the precision is a little bit degraded. AlexNet-CNN is implemented with 2 Nvidia

GTX 580 3GB GPUs with an algorithm optimized to train faster the network itself,

to reduce overfitting and to achieve very good results on these datasets [11]. The

images from ImageNet in input are prescaled to 224x224.

Architecture

The architecture consists into 8 layers (5 convolutional and 3 fully connected)[11]

as reported in Figure 1.17:
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Figure 1.17: AlexNet architecture from [11]. The architecture is divided into two
parts handled by the two GPUs respectively, with some layers in which they commu-
nicate with a DMA (direct memory access) approach. The two parts are identical
and so the dimensions reported are the same.

In Figure 1.17, the output of the last fully-connected layers is connected to a

final layer with softmax activation (a derivable function which simply takes the

maximum of its inputs), which gives 1000 classification labels. ReLU is applied

where specified and also after the fully connected part: this activation function is

preferred to the others like tanh(x) or sigmoid(x), because the training time is

improved. The layers are organized as follows:

• The first convolutional layer has 224x224x3 input image, processed by 96 ker-

nels of size 11x11x3 with a stride of 4 pixels. The output dimensions can be

determined considering:

tout =
tin − tfilter
stride

+ 1 =
224− 11

4
+ 1 ' 55 (1.44)

hout =
hin − hfilter
stride

+ 1 =
224− 11

4
+ 1 ' 55 (1.45)

• The second layer takes as input the output of the first layer, which has been

pooled and normalized, and convolves it with 256 filters of size 5x5x48;
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1.2 – Software based neural networks

• The third, fourth and fifth layers have 384,384 and 256 kernels of size 3x3x256,

3x3x192 and 3x3x192 respectively;

• The fully-connected layers have 4096 neurons.

Using two GPUs in this configuration reduces top-1 and top-5 error rates by 1.7%

and 1.2% w.r.t other solutions with only one GPU[11]. A local response normaliza-

tion in [11] is used in order to reduce the top-1 and top-5 error rates by 1.4% and

1.2%, respectively, and it is used after applying ReLU in some layers. This has been

tested also on CIFAR-10, producing an error of 11% w.r.t 13% without it.

Overlapping pooling Pooling procedure has already been explained in the in-

troduction, but here it is used the overlapping pooling. Considering for example a

pooling region of ZxZ: if the stride is larger than or equal to Z, the pooling windows

does not overlap. Here it is presented a simple example:

Pooling window 2x2

stride = 2x2 (2)

Figure 1.18: Example of a non-overlapped pooling and pooling procedural steps
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If s < z, we obtain overlapping pooling. In particular [11] uses a solution in

which stride = 2 and z = 3, reducing top-1 and top-5 error rates by 0.4% and 0.3%,

respectively w.r.t non-overlapping scheme.

Figure 1.19: An example of a 3x3 window with an overlapping pooling with stride
s = 2 and z = 3

Reducing overfitting

Since in this network there are 60 millions parameters [11] and it has to classify

among 1000 different classes, overfitting problem could introduce a significant over-

head in terms of performance.

Data augmentation One of the possible ways to reduce the overfitting is to

expand the dataset using some transformations [11]:

1. Generation of image translations and horizontal reflections. 224x224 patches

and their translations/reflextions from the 256x256 dataset images are used

and training is performed, which size is improved by a factor of 2048;

2. Alternate the intensities of the RGB channels in images used in the training set,

by means of an important property of natural images that consists on objects’

identity-invariance to changes in the intensity and color of the illumination.
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Dropout Dropout is a useful technique which consists to selectively turn off some

neurons in the hidden layer with p probability, in order to speed up the training

[11]. In fact, the inputs are sampled by a different network at each iteration step,

allowing the backpropagation algorithm to converge faster. However, even if the

architecture is different at each step, the weights are shared in the network.

Figure 1.20: Example of Dropout technique from [37]

Results

Several results are reported in [11]. They are summarized in the following table:

Table 1.2: Classification results from [11]

Competition top-1[%] top-5[%] Dataset/year Network structure Details
ILSVRC-2010 37.5 17 ImageNet 5 layers CNN -

ILSVRC-2012 40.7 18.2 ImageNet 5 layers CNN -

- 67.4 40.9 ImageNet 2009
(10184

categories,
8.9 million

images)

5 layers CNN Half images for
training, half

for classification
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1.2.2 XNOR-Net: ImageNet Classification Using Binary Con-

volutional Neural Networks [12]

Introduction

The CNNs are very good in activities like speech recognition, image classification

and so on. The main CNNs’ drawback is the high amount of computational power

and memory required to perform all the computations, which are mainly based on

millions of parameters as explained in the AlexNet. The goals are to enable mobile

devices and low-power embedded systems to handle a neural network (such as a

convolutional one), to recognize with an high accuracy and to save power due to the

limited capacity of the batteries. One of the possible ways to reach these objectives

is to binarize the neural network, in such a way that the accuracy will be comparable

to the original implementation. Two alternatives can be analyzed:

1. Binary-Weight-Networks: only the weights are approximated to a binary value

(±1). The MAC operations are simply reduced to additions/subtractions.

This kind of CNN can be easily integrated into an embedded system;

2. XNOR-Networks: both the weights and the inputs are approximated to the

binary values. As already mentioned in the introduction, if weights and in-

puts are binarized, the MAC operation become simply a XNOR + popolation

counting.

Differences between different types of networks are reported in the following table:

Table 1.3: Comparison between network types from [12]

Network type Operations used Memory saving Computation saving Accuracy
on ImageNet
% (AlexNet)

Standard (FP) +,-,x 1x 1x 56.7
Binary weight +,- 32x 2x 56.8

XNOR-Net XNOR,bitcount 32x 58x 44.2
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Binary convolutional neural network [12]

• I: represents the input tensor for each layer. I ∈ <c×win×hin , where (c,win,hin)

represents channel, width and height respectively;

• W: represents the weight tensor of each layer. W ∈ <c×w×h, where w ≤ win,

h ≤ hin.

inputs

c=1
c=2

c=3

layer 1

channels

weights

I
W

layer 1

Figure 1.21: Weights and inputs represented as tensors.

Binary weight network In order to constraint a CNN to have binary weights,

the following approximation is imposed from [12]:

W ≈ αB (1.46)

where B is the binary filter and α is a scaling factor. So a convolution operation

can be transformed from [12]:

I ∗W ≈ (I ~ B)α (1.47)
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Estimating binary weights [12] The α value can be estimated considering the

loss function, which is defined as:

Loss function = ‖W− αB‖2 (1.48)

α,B = argmin(Loss function) (1.49)

It is possible to demonstrate that this equation brings to an optimization based on

the following assumptions [12]:Bi = +1, if Wi ≥ 0

Bi = −1, if Wi < 0
(1.50)

So B = sign(W). While for the scaling factor α, the derivative of the loss function

w.r.t. α is considered and set it to 0 from [12]. The result obtained is:

α =
WTB

n
=

WT sign(W)

n
=

∑
|Wi|
n

=
1

n
‖W‖l1 (1.51)

Training The algorithm proposed by [12] to train the binary networks is the

following:

1. Binarization of the weight filters at each layer by computing B,A;

2. Forward propagation with binary weights and their corresponding scaling fac-

tors;

3. Backward propagation, where the gradients are computed w.r.t. the estimated

weight filters W̃ = α× Sign(W);

4. Parameters and the learning rate gets updated.

XNOR-Networks

A convolution operation, which consists in dot products and shifts, can be performed

by binarizing both inputs and weights. By doing this, convolution becomes a simple

XNOR-Bitcounting sequence, which can be implemented with low cost. To approx-

imate the dot product (X,W) in a binary form in which X ≈ βHT and W ≈ αB,
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the following equation can be considered from [12]:

α∗,B∗,β∗,H∗ = argmin‖X ·W− βαH ·B‖ (1.52)

It is possible to demonstrate that the best solution is achieved when :

H = sign(X) (1.53)

B = sign(W ) (1.54)

β =

(
1

n
‖X‖l1

)
(1.55)

α =

(
1

n
‖W‖l1

)
(1.56)

For the binarizing input procedure, a more efficient procedure than computing β for

all the combinations can be used, and it is based on K and α values. Once binarizing

is completed, the convolution can be approximated as [12]:

I ∗W ≈ (sign(I) ~ sign(W)) ·Kα (1.57)

where ~ represents XNOR-Bitcount operations and K and α are defined as:
K =

∑
channels |inputs|
#channels

∗ 2D Matrix

(
1

w2
filter

)
α =

∑
‖weights‖

#weights

(1.58)

B
N
o
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B
in
A
c
ti

B
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C
o
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P
o
o
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n
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Figure 1.22: Structure of the XNOR-Net from [12]

By looking at Figure 1.22, max-pooling is placed after the convolution because the

pooling itself reduces the accuracy in a binary solution (almost often returns +1).
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Normalization of the inputs before binarization is done to improve the accuracy.

The binary activation layer (BinActiv) computes K and sign(I), and in BinConv,

given K and sign(I), binary convolution is performed.

Results

Here are reported some graphs which represents the various results obtained by

measuring the efficiency,speedup,memory required,accuracy

Table 1.4: Required memory for different architectures from [12]

Architecture Double precision [MB] Binary precision [MB]
VGG-19 1000 16

ResNet-18 100 1.5
AlexNet 475 7.4

Table 1.5: Classification accuracy from [12]

Architecture Dataset Implementation Error rate [%] TOP-1 [%] TOP-5 [%]
- CIFAR-10 BWN 9.88 - -
- CIFAR-10 XNOR-NET 10.17 - -

AlexNet ImageNet BWN - 56.8 79.4

AlexNet ImageNet BinaryConnect - 35.4 61.0

AlexNet ImageNet XNOR-NET - 44.2 69.2

AlexNet ImageNet Binary Weight
Binary Input

- 27.9 50.42

AlexNet ImageNet Fully precision - 56.6 80.2

1.2.3 BinaryConnect: Training Deep Neural Networks with

binary weights during propagations [13]

Introduction

BinaryConnect is an approach that enables low-power computations in a neural

network adapted to be ”binary”. The following parts explain how this network

works.
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BinaryConnect [13]

The key is to impose the values of the weights to ±1, as already seen previously:

as a result, all MAC operations are reduced to only additions-subtraction, bringing

less power consumption.

Deterministic/stochastic binarization One of the possibility to binarize the

weights is to choose a very simple approach, based on taking the sign of the real-value

weight from [13]:

wb =

+1, if w ≥ 0

−1, otherwise
(1.59)

Another possibility is to use a statistical approach [13]:

wb =

+1, with probability p = σ(w)

−1, with probability p = 1− σ(w)
(1.60)

Where σ is the ”hard sigmoid” function from [13]:

σ(x) = max

(
0,min

(
1,
x+ 1

2

))
(1.61)

About training, the network works exactly as the previous analyzed cases, but here

no α,K values are used as in XNOR-Net. Weights during backpropagation have

to be at fully precision, because otherwise the algorithm does not work anymore.

Batch normalization is used here to accelerate training and ADAM [13] as learning

rule is employed, which is a different algorithm than stochastic gradient descent, in

fact ADAM produces a smaller error rate (10.47%) w.r.t 11.45%. ADAM learning

rule has been reported in section 1.2.4.

Results In this part, the accuracy of BinaryConnect has been reported from [13],

which uses three different approaches and some datasets:

1. Use the resulting binary weights wb;

2. Use the real-valued weights w (binarized weights helps only to reduce training
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time);

3. Stochastic case: different networks can be obtained in this case and their

accuracy can be computed by averaging the output of all of them.

Table 1.6: Resulting error rates and network structures used in [13]

Method used MNIST [%] CIFAR-10 [%] SVHN [%]
No regularizer 1.30 ± 0.04 10.64 2.44

BinaryConnect(Det.) 1.29 ± 0.08 9.90 2.30
BinaryConnect(stoch) 1.18 ± 0.04 8.27 2.15

50% dropout 1.01 ± 0.04 - -
Details 3 hidden layers

1024 neurons
Exponential
Decay rate

Network
structure:

(2x128 C3)-
MP2-

(2x256C3)-
MP2

(2x512C3)-
MP2

(2x1024FC)-
10SVM

Network
structure:

(2x128 C3)-
MP2-

(2x256C3)-
MP2

(2x512C3)-
MP2

(2x1024FC)-
10SVM

The meaning of the terms indicated in the Table 1.6 are the following from [13]:

• C3: ReLU convolutional layer with 3x3 size;

• MP2: Max pooling (2x2 size);

• FC: fully connected;

• SVM: Support vector machine, a supervised learning model.

1.2.4 A Ternary Weight Binary Input Convolutional Neural

Network: Realization on the Embedded Processor [14]

Introduction

Ternary network has three values of weights ({0,1, − 1}) respectively: the value of

”0” means that the computation can be skipped, improving the network speed. As

already mentioned, this solution enables very low power architecture to work into
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an embedded system. If CNN’s network structure is considered, the equation that

is able to determine the output for the convolutional layer is reported again, but

also considering the stride in the case of only one input channel from [16]:

y0(j,i) =

#rows(kernel)−1∑
m=0

#cols(kernel)−1∑
t=0

k(m,t)x(j+m+ j(stride−1),i+ t+ i · (stride−1)

(1.62)

Training methods for the CNN [14]

Back-Propagation method As discussed in subsection 1.1.4, the backpropaga-

tion method is the most used one and it allows to compute the weights by considering

the Loss function. By applying the chain rule already explained, the new values of

the weights can be computed by using the stochastic gradient descent (SGD).

[14] uses modified algorithms to support weights’ update in ternary neural networks

and compares them:

• Adam: learning rule based on the following equation taken from [14], in which

the weights are updated as:

wt+1 = wt − α
E[ ∂

∂w
Loss]√

E[( ∂
∂w
Loss)2] + ε

(1.63)

Where E is the mean and α the learning rate.

• AdaDelta The update rule by the AdaDelta is given by [14]:

ht = βht−1 + (1− β)E

[
(
∂

∂w
Loss)2

]
(1.64)

vt = wt −
√
st + ε√
ht + ε

E

[
∂

∂w
Loss

]
(1.65)

st+1 = βst + (1− β)vt (1.66)

wt+1 = wt − vt (1.67)

Batch normalization Batch normalization speedups the training and has to be

considered in the neural network’s structure. In particular, taking into account the
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binary output of a neuron from [14]:

Y = y(b) = f
(b)
act

(
N∑
i=1

w
(b)
i x

(b)
i

)
(1.68)

The activation function is the sign(x). Applying the batch normalization means to

add an additional term into the activation function of the neuron itself as reported

in [14]:

Y ′ = y′(b) = f
(b)
act

(
γ
Y − µB√
σ2
B + ε

+ β

)
(1.69)

Where γ, µB, σ2
B, ε and β are parameters for BN and are mean, variance of the batch

considered, correction term and offset terms respectively. By performing mathemat-

ical transformations used in [14], batch normalization’s terms can be transformed

into biases as follows:

Y ′ = fact

(
γ√
σ2 + ε

(
Y −

(
µB −

√
σ2
B + ε

γ
β

)))
(1.70)

As performed in [14], since the output takes the sign, γ√
σ2
B+ε

can be ignored if:

f ′sgn(Y ) =

1

(
if Y < −µB +

√
σ2
B+ε

γ
β

)
−1 (otherwise)

(1.71)
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The final equation that defines a neuron’s output (considering also that x0 = 1) is

the following from [14]:

Yfinal = Y − µB +

√
σ2
B + ε

γ
β (1.72)

=
n∑
i=0

wixi − µB +

√
σ2
B + ε

γ
β (1.73)

=
n∑
i=1

wixi +

(
w0 − µB +

√
σ2
B + ε

γ
β

)
(1.74)

=
n∑
i=1

wixi +W ′ (1.75)

Training the binary/ternary weights Since the SGD is not usable with binary

weights, hidden weights whid are required, which correspond to the real floating point

values of the corresponding binarized weights. During the training phase, only the

hidden weights are updated, while binary weights are used at inference. This also

happens in ternary networks, in which the only difference is the definition of the sign

function as already explained. In order to train a ternary network, the AdaDelta

algorithm is more suitable, because it generates an higher concentration of ”0”

weights, reducing the computational overhead and the power required in the CNN.

However [14] proposes a comparison between AdaDelta and ADAM optimizers, in

order to see the differences in terms of accuracy.

Realization Ternary Weight Binary Input CNN on Embedded Processor

Binary 2D convolutional operation Considering an architecture with multiple

channels, the output of the convolutional layer is given by [16]:

y(l)
o (j,i) = b

(l)
0 +

#channels−1∑
c=0

#rows(kernel)−1∑
m=0

#cols(kernel)−1∑
t=0

k(l)
o,c(m,t)x

(l)
c (j +m+ j(stride− 1),i+ t+ i(stride− 1))

(1.76)

In Figure 1.23 it is shown the computation of y
(l)
o (j,i) at coordinates (j,i) for the

o-th OFMAP.
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Figure 1.23: Example of the 2D convolutional operation for the ternary weight and
binary input

Nx3x3 MAC operations are needed to compute a 2D convolution, so if the feature

map becomes larger, more computation time will be required [14].

Results

The results of the network are determined by imposing an initial distribution of

the weights (-1,0,1) of 2.5%:95%:2.5% respectively, in order to speedup the training,

since most of the connections are set to 0 [14]. ρ is imposed to 0.2 in Equation 1.5

and the dataset used is CIFAR-10 (50,000 images as training set and 10,000 as test

one). Two kinds of optimization algorithms are used as described before: Adam and

AdaDelta. The architecture used to realize these networks is the VGG16, reported

in the following figure:
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Figure 1.24: VGG16 architecture from [38]. It is composed by 16 layers and it is able
to reach up to 70% on top-1 and 90% in top-5 recognition accuracies respectively
on ImageNet.

Comparison Ternary Weight CNN with Binary One In order to do a com-

parison between binary/ternary networks, both of them have been trained by using

Adam optimizer in [14]. The parameters evaluated are the error rate and the non-

zero weight density, which gives an important indication of how many connections

are present in the network. Ternary net has been trained also with AdaDelta, in

order to see what are the main differences w.r.t the Adam. Here are reported the

results:

Table 1.7: Comparisons between networks from [14] on CIFAR-10 and VGG16

Algorithm used Network Error rate [%] Non-zero weight density[%]
Adam Binary 19.6 100
Adam Ternary 17.1 73.9

AdaDelta Ternary 19 5.3
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In Table 1.7 it is possible to see the differences between the optimizers, and in

particular the results obtained in the ternary network in terms of accuracy are worse

than binary ones in the case of Adam optimizer. But, if AdaDelta is considered,

it is possible to see a similar error rate with only 5.3% of non-zero weights: that

means that a ternary network trained with AdaDelta is able to achieve a similar

result of a binary one but only with 5.3% of active connections [14]. This is a very

important result, that indicates the possibility to implement very small, low power

and embedded networks without losing accuracy.

Table 1.8: Comparison of required time on ARM Cortex-A53 1.2GHz and 1 GB
DDR2 SDRAM from [14]

Convolutional neural network Time required [s]
Binary weight 6.103
Ternary weight 0.750

40



1.3 – MTJ-Based BNN

1.3 MTJ-Based BNN

An MTJ (magnetic tunnel junction) is a device composed by two ferromagnets

separated by a thin insulator [6], in which electrons can flow through by means of a

tunnel injection.

Figure 1.25: Magnetic tunnel junction (schematic) from [6]

The magnetizations of the two ferromagnets determines the intensity of the current

flowing: if they are parallel, the current will be higher (Rp: low resistance state),

while if they are anti-parallel the current will be lower (RAP : high resistance state).

1.3.1 A Multilevel Cell STT-MRAM-Based Computing In-

Memory Accelerator for Binary Convolutional Neural

Network [15]

The classical Von-Neumann implementation in which the memory (SRAM for exam-

ple) and the computations are performed separately, has many problems in terms of

delay and power consumption. The key idea to use another type of memories based

on a NV (non-volatile memories) approach, consisting on MRAM such as MLC-

STT-MRAM, could be a substitute for SRAMs: these are able to perform memory

and computing operations and could solve Von Neumann bottlenecks. MLC means

that multiple bits can be stored into a single cell and some logical computations can

be made inside the memory. [15]
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MLC-STT-MRAM

The goal of this implementation is to integrate two bits into a single memory cell.

An example from [15] has been reported, that corresponds to a 2x2 array with the

corresponding cells’ structure:

Figure 1.26: Cell structure and example of a 2x2 array from [15]. MSC stands
for ”modified sensing circuit” and it is able to do some computations based on the
current of the source/bit lines. The mode controller is able to choose which operation
to perform, while the row decoder handles the word lines. In order to write into the
MTJ, a current has to flow through it, and the direction is expressed here. If ”1”
has to be stored, the current has to magnetize the layers in a parallel way, resulting
less MTJ resistance (LRS), so a positive voltage is applied between BL and SL;
otherwise, with ”0”, the magnetizations must have antiparallel direction.

42



1.3 – MTJ-Based BNN

The cells have 4 different configurations (RP−P ,RAP−P ,RP−AP ,RAP−AP ) repre-

senting all the combinations given by two bits. The ISL has four possible values,

since the two MTJs are different from each other (RAP−P > RP−AP ). The modified

sensing circuit is simply composed by a set of comparators that compare the in-

coming current (Isl) with three different currents Iref1,Iref2,Iref3 with the following

relation from [15]:

Isl,11 > Iref1 > Isl,10 > Iref2 > Isl,01 > Iref1 > Isl,00 (1.77)

With them, it is possible to realize some logic functions such as OR,NOR,XOR,NAND

and AND.

Working mechanisms

1. Write Mode: This process is realized in two steps. The first one, with a large

current, the state of the largest MTJ is changed and the second one if needed,

a small current is used to modify the state of the smallest one;

2. Read Mode: to read, the source lines are connected to the comparators of the

MSC circuit and the current of the SL is simply compared with the reference

currents explained before;

3. Logic Mode: the sense amplifiers can realize some logical operations as already

mentioned. Taking for example Iref1, this is the largest current and if the Isl

is larger than Iref1, it means that the cell is in the ”11” configuration(parallel-

parallel), that is translated in into the logical operation AND;

4. Full-Adder mode: it is possible to implement a full adder by considering that:

Sn = An ⊕Bn ⊕ Cn (1.78)

Cout = (An&Bn)|((An ⊕Bn)&Cn) (1.79)

Since the MSC is composed by comparators that realizes basical logic func-

tions, its structure can be extended in order to implement a full-adder. This

is done by adding three additional gates.
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BCNN accelerator

Figure 1.27: CNN architecture used in [15]

Considering a binary neural network, the computation of the convolution is per-

formed by considering the PopCounting of the XNOR as follows:

I ∗W = PopCount(I(B)&W (B)) (1.80)

This can be fully implemented by the architecture described and depicted in the

following figure:

Figure 1.28: BCNN Accelerator from [15]. The logical computations are performed
inside the memory array, while other intensive operations, such as batch normaliza-
tion or scaling factors computations are performed outside the memory in a separate
unit.

As it is possible to see, the part of Batch normalization, Binary operation, Scaling
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factors, Multipliers and Pooling are designed into a separate processing unit, that

is not included into the CIM array [15]. The detailed calculation process is the

following:

1. Batch normalization is perfermed on the inputs to reduce information loss;

2. Inputs and weights are binarized (sign);

3. Binarized inputs/weights are stored into the CIM to perform in-memory com-

putations. Weights into a CNN are shared and so they are stored into the

largest MTJ, while inputs in the smaller one; The colored lines indicated into

the Figure 1.28 [15] have the following meanings:

• Green line: represents AND data flow and its result coming from MSC is

written directly into the CIM array;

• Orange line: represent the popcounting data flow using MSC full-add

operation;

4. Tensors I and W are sent to scaling factors to calculate α and K from subsec-

tion 1.2.2;

5. Convolutional results and scaling factors are delivered to Multiplier to com-

plete the convolutional layer. At the end of the chain, the results goes into a

Pooling layer, in which they will be reduced.

Experimental results

This architecture is tested on MNIST dataset and it is realized with parameters

of CMOS 45nm. The resulting energy consumption of this design is only 0.38 µJ ,

while the cycle time (entire convolution performed) is 27.24 ns. Since the structure

realized is a XNOR-NET, here there are reported some useful results:
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Table 1.9: Results of the XNOR-NET implementation on the architecture from
[15]. The energy reported refers to a convolutional layer with number of kernels
that indicates number of OFMAPs coming from the convolution.

Layer Number of kernels # convolution operations
Energy Consumption

Layer(uJ) Operation (nJ)

C1 6 4704 0.278 0.059

C3 16 1600 0.094 0.059

C5 120 120 0.007 0.059

F6 84 84 0.0003 0.003

Total - - 0.38 -

1.3.2 Energy Efficient In-Memory Binary Deep Neural Net-

work Accelerator with Dual-Mode SOT - MRAM [16]

Introduction

An architecture based on a NVM system is employed in [16], in particular a solution

SOT - MRAM that enables the computation in memory with zero standby leakage

and very high integration density.

In-memory processing platform

SOT-MRAM This kind of MRAM is based on the scheme represented in Fig-

ure 1.29
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Figure 1.29: SOT-MRAM device structure and an example of 2x2 crossbar array
from [16]

As shown in Figure 1.29 , depending on the direction of the current, the MTJ

changes its magnetization in the free layer: as a consequence two states are possi-

ble: antiparallel and parallel. These two states, as already said, correspond to two

resistances (HRS and LRS respectively). In Figure 1.29 it is shown the structure of

the array cell, which has respectively RBL,WWL,WBL,SL that enable in-memory

operations, like write/read and computation. Also here the data are fetched from

the cells in form of current, and so the current on the RBL is fed to a current sense

amplifier that gives the corresponding logical output.

Memory write [16] In order to write a data inside the cell, a write current has

to be injected in the heavy metal substrate. The current has to flow from 2 to 3

terminals of the MTJ (or viceversa), in order to obtain the different magnetizations’
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states (Figure 1.29). So the operational steps are:

1. WWL is activated by row decoder;

2. SL is grounded;

3. Voltage driver on the WBL is set to positive (/negative) in order to obtain

HRS (LRS).

Memory read [16] To perform a read operation, a read current has to flow from

1 to 3 terminals of the MTJ. The operational steps are the following:

1. Sense voltage generated in the SA used to read the values from the cells;

2. SA compares Vsense (which is determined by the current on the RBL multiplied

the resistance of the MTJ) with Vref , by selecting one of the possible enables;

3. SA’s output is high when path resistance is higher than ref (Rref ) resistance.

Computing mode [16] The computing mode is performed by selecting two or

multiple rows. If multiple rows are selected, the equivalent resistance on the RBL

is given by the parallel of the individual resistances in the selected cells. This

equivalent resistance is then compared with another specific reference, which has

been selected by the enable signals (for instance ENOR,ENAND) . In this case,

the reference is chosen properly to obtain a SA output, which corresponds to the

selected logic function. In particular:

• AND logic function: Rref midpoint of RP//RAP and RAP//RAP , and so only

if both cell resistances are HRS (corresponding to ”11”), the output will be

high;

• OR logic function: Rref midpoint of RP//RP and RP//RAP .

BCNN accelerator [16]

To demonstrate how this architecture well-suites the computations inside a BCNN,

[16] uses AlexNet architecture, which has 5 convolutional layers and 3 fully con-

nected layers. In particular here it is adopted the variant AlexNet BCNN which
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is composed by 8 convolutional layers (no fully-connected layers used), with the

first and the last that are not binarized. Each convolutional layer corresponds to

Batch Normalization, Scaling factor computation, Multiplier, Pooling (handled by

an external DPU) and Sign function, Binary-AND, Bitcount (handled by CIM).

Figure 1.30: Inputs and weights are in ImageBanks and then it will be computed
the binary convolution by performing an In-Memory AND logic operation followed
by a Bitcounting. Source: [16]

Results [16]

Energy, area, delay and Memory usage estimation The computation energy,

area, execution time and memory usage of different implementations of AlexNet

BCNN/CNN on ImageNet dataset are tabulated:

Table 1.10: Memory usage of AlexNet DP (Double precision), SP and BCNN from
[16]

Architecture Required
memory [MB]

Energy [uJ/img] Area [mm2] Execution
time/img (ms)

AlexNet DP 476.4 - - -
AlexNet SP 238.2 - - -

AlexNet BCNN (this) 39.7 310.42 5.28 10.7
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About memory usage, there is a significant improvement w.r.t AlexNet DP and

AlexNet SP (x12 and x6 respectively), because the binary architecture occupies less

space in memory.

1.3.3 A Logic-in-Memory Design with 3-Terminal Magnetic

Tunnel Junction Function Evaluators for Convolutional

Neural Networks [17]

Introduction

[17] uses magnetic DW devices, which are able to perform logical and memory

operations: the concept is based on a variable resistor that is read and written

electrically in such a way that complex functions can be obtained, if the device is

designed with particular conditions. The variable resistor is an MTJ and when there

is a moving DW in the free layer, the MTJ resistance value RMTJ can assume one

of many values between RP and RAP depending on the position of the DW. The

reference technology is the SOT, which has better motion properties than STT (DW

requires less current to move). The positions of the DW are discrete and limited and

they determine how many resistive values can be obtained from the MTJ function

evaluator. If a sufficiently high resolution of resistive values is available, particular

functions (activation functions like sigmoid or hyperbolic tangent) can be obtained

by using MTJ as function evaluator, avoiding the usage of very complex digital

circuits.

The MTJ function evaluator [17]

In [17] there is a mathematical explanation of how an MTJ can be designed to obtain

a particular function in output, based on the DW motion. The resistance of an MTJ

is defined as follows from [17]:

RMTJ = RP

(
x0(IIN)

L

)
+RAP

(
1− x0(IIN)

L

)
(1.81)

With x0(IIN) the final position of the DW w.r.t. the input current IIN and L is the

length of the MTJ. In [17], it is considered the domain wall velocity and derived the
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equation of the MTJ’s width, assuming also that the current is applied in a finite

pulse t0. The resulting w(x) equation is reported from [17]:

w(x0) =
ηt0
d

(
dI

dx0

)
(1.82)

I(x0) is the inverse function of x0(IIN) and d is the thickness of the MTJ. In [17]

it is used a shifted sigmoid function, and so the goal is to obtain the DW position’s

equation that is proportional to the sigmoid. The only way to do this, is to find

Wthe width equation, that defines the shape of the MTJ. Considering the shifted

sigmoid function from [17]:

x0(I) = xAtanh

(
I − I1

I2

)
+ xB (1.83)

Now by using the equation of the sigmoid (Equation 1.83), and applying it to the

width equation (Equation 1.82) by doing the inverse derivative, an equation for w(x)

can be obtained. The MTJ designed will have a resistive behavior proportional to

the shifted sigmoid.

Logic in memory system design [17]

Crosspoint array The memory array is organized as a crosspoint composed by

1T1R cells. The output coming from one column of the crosspoint array is the

following:

Ij =
∑
i

ViG(i,j) (1.84)

The corresponding output voltage coming from the MTJ function evaluator is:

VOUT,j = f(Ij) (1.85)

The crosspoint array structure and architecture is defined in Figure 1.31:
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Figure 1.31: Crosspoint array architecture from [17]; two different types of MTJs
are used in [17]: the synaptic MTJs are the classical ones, with two possible values
of resistances(RP and RAP ); while the thresholding MTJs are the ones discussed
so far. The last MTJ (indicated by an arrow) acts as function evaluator and it
implements the activation function of the neuron. This crossbar can be seen as an
array of variable resistances.

The network can be larger, and this configuration allows the connection between

multiple arrays simply by taking the output of the function evaluator MTJ of the

previous array, without the need of using ADC/DACs, speeding up the system.

Connections between CNN subarrays are programmed with multiplexers.

Perceptron mode [17] The steps to use the architecture in perceptron mode are:

1. The function evaluator MTJs are reset by imposing RSTj = 1 and a Domain
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wall is injected with RSTP;

2. Both RSTj = 0 and WLi = 0. On RLi there is an input voltage that allows

the MTJ to set its resistance;

3. BLj = 0: the output is passed to the next layer or, if in the final cycle, sense

the thresholding MTJ.

Memory mode [17] For reading operation:

1. One row is selected with RLi = 0, others to ’Z’;

2. WLi = 0 set;

3. Sense the resistance MTJ on BLj.

While for writing:

1. Write one row WLi = 1, RLi = Z, SLj = 0;

2. Inject a DW current with BLj.

Results

The architecture has been implemented in [17] with CMOS 45nm and magnetic

tunnel junction process. This implementation is able to save energy up to 50x w.r.t

a CPU-Based CNN. In this part they will be presented the results coming from the

architecture:

Table 1.11: Results for 2 convolutional layers from [17]

Operations/Parameters Feed forward operations Memory write Memory read

Power
Static [uW] 68.6 68.6 68.6

Dynamic [nW] 15.4 10.7 129000

Latency per layer[ns] 4 4 2
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1.4 RRAM Based

RRAM is a non-volatile random-access memory that changes its resistance based on

the voltage applied across it [47]. A dielectric could conduct, if the voltage applied

is sufficiently high to form a conduction path through it (dielectric breakdown)

which in this case is temporary and reversible because of the materials used. Once

the conduction path is formed, it may be reset (broken, resulting in high resistance)

or set (re-formed, resulting in lower resistance) by another voltage.

These types of cells can be implemented into a 1T1R configuration as following:

Figure 1.32: 1T1R configuration from [39]

Generally a V/2 scheme is adopted to avoid write disturbance, that is, Vset or Vrst

is applied across the selected cells and Vset/2 or Vrst/2 is applied across all the

unselected cells. For read operations, a voltage smaller than the threshold, Vread is

applied on the selected cell: current coming from it, is compared with a reference

to determine the output. It is possible to have an undesiderable current flow due

to the non-isolation of cells, which is known as the sneak current: 1T1R is able to

reduce this drawback.
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1.4.1 The application of Non-volatile Look-up-table Opera-

tions based on Multilevel-cell of Resistance Switching

Random Access Memory [18]

Introduction

In the approach presented by [18], the MLC is used, enabling multiple bits per cell.

The resistance of the RRAM can be easily switched by varying pulse duration/am-

plitude of write voltage. In [18] it is discussed a ROM LUT-based implementation,

where outputs are pre-stored and the input bits are used as the address, by means

of a decoder to access to them. A novel approach to implement a multiplier is

presented by [18], which is based on a LUT in-memory model.

Circuits design and implementation [18]

As it is possible to see by looking in Figure 1.33, the cells are organized in a crossbar

configuration.

SL

BL

Figure 1.33: Crossbar array cell’s organization from [18]. Each memory cell is a
RRAM.
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Figure 1.34: Architecture of the multiplier based on MLC RRAM from [18]

The circuits in Figure 1.34 is composed by:

• Row decoder: selects the specific row for read/write;

• LUT RAM on the right, stores the multiplication results (precharged);

• The MLC RRAM consists on a set of resistances which assume the following

values:

→ ”11” corresponds to 1kΩ;

→ ”10” corresponds to 10kΩ;

→ ”01” corresponds to 100kΩ;

→ ”00” corresponds to 10MΩ.
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• The programming block programs the two crossbars (writes values of the mul-

tiplier in the arrays for example);

• The write control circuit handles the multiplier in two steps:

1. Initializes the two crossbars to ”00” (high impedance) and verify the

written values through write-verify circuit;

2. Write data into the crossbars to accomplish a specific digital function,

and verify the input data via write-verify circuit.

2x2 multiplier output bits will be stored into the LUT at the right hand of the

Figure 1.34 and the 4-16 line decoder will address the LUT. The input interface (at

the bottom of Figure 1.34) contains inverters (that are able to do the logic inversion

if needed), buffers and level shifters, because the voltage level for a MLC RRAM

is different from the CMOS’s one. The row decoder is used to address the LUT:

the columns of the crossbar array are used as inputs, while the rows as outputs

that produce a read voltage. The interface circuit controls the read voltage on

the selected address of the LUT, and the corresponding results pass through sense

amplifiers and 4-2 level converters.

Simulation

[18] implements three types of multiplier (4x4,8x8 and 16x16 respectively) based

on a CMOS 65nm process. Also a 1bit/Cell multiplier has been implemented to

compare the results between the two different approaches. In the following table are

reported the results:

Table 1.12: Results of the LUT-based multiplier from [18], with different configura-
tions.

Multiplier RRAM Type Delay[ns] Area[µm2]

4x4
1bit/cell 1.01 166.87

2bit/cell 1.21 137.86

8x8
1bit/cell 1.03 738.23

2bit/cell 1.21 650.73

16x16
1bit/cell 1.06 2811.25

2bit/cell 1.24 2460.75
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1.4.2 XNOR-RRAM: A Scalable and Parallel Resistive Synap-

tic Architecture for Binary Neural Networks [19]

Introduction

[19] proposes RRAM based architecture, that is able to implement the XNOR-

Bitcounting operations, enabling the realization of very deep binary neural networks.

Both MLP and CNNs are implemented in [19], so the datasets used are MNIST

and CIFAR-10 respectively. Also a novel architecture based on a parallel reading is

employed in [19], which results more efficient than the sequential one. The structures

of the network used in [19] are the following:

• MLP: 784-512-512-512-10 (MNIST dataset). The accuracy w.r.t floating point

implementation passes from 99.0% to 98.77%;

• CNN: 6 convolutional layers and 3 fully connected layers (CIFAR-10 dataset).

The accuracy is 88.47 % and in floating point implementation is 89.98%.

This architecture is implemented with 65nm node.

RRAM Based Synaptic Array [19]

In the following figure, it is shown the cell structure based on 1T1R implementation:
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Figure 1.35: Bit cell structure from [19]

In Figure 1.35:

• -1: top/bottom cells are in HRS/LRS respectively;

• +1: reverse pattern.

For the WLs instead, the following representations are used:

• -1: input pattern (0,1);

• +1: input pattern (1,0).

The output current coming from the cell depends on the input pattern and the cell

configuration For example:

- Input vector is -1 (0,1);

- Cells selected with weight -1;

- The activated row is LRS causing a large current, seen as ”1” (XNOR);

If multiple WLs are selected in parallel, the LRS-cells will dominate the bitline

current. So IBL is proportional to the number of LRS-cells in the column, realizing

the pop-counting. For example:
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• Column’s length = 64;

• Iref = 32LRS activated cells for the sense amplifier;

• If IBL < Iref the output is -1 that represents the neuron’s activation function.

Two kind of approaches can be made to realize the previous functions: in sequential

approach, only one WL is activated per time and during the read, VBL = GND,

current sense amplifier injects a current on the bitline that will be compared with

Iref . This procedure is done for all the rows in the crossbar array, so MAC units

and registers are needed. The final sum is sent to a comparator which generates the

digital output. In the parallel architecture, a WL switch matrix enables multiple

WLs usage simultaneously based on the input vector. The most important compo-

nent in this architecture is the current sense amplifier, because it can be affected

by unwanted offset that degrades the sensing pass rate[19]. This is worse when the

bitline current is higher. The design of the current sense amplifier has to consider

that the offset could change completely the output of a neuron and, consequently,

producing a wrong result. Considering an array size of 512x512, the accuracy is only

15.04%: one of the possibilities to reduce the offset problem is to divide the initial

array into subarrays in order to reduce the current IBL and to perform a non-linear

quantization on the partial sums. All of these considerations are discussed in detail

in [19].

Array Partitioning After array partitioning, each array generates a partial sum

that has to be added with the other ones. A partial sum has to be very precise,

because it affects the whole accuracy in the final sum: ADC-like MLSA carries out

partial sums in fixed point. Another important parameter is the number of bits

of MLSA, which heavily influences the accuracy: bit-level of 2- bit imply >98%

accuracy for MLP on MNIST, when sub-array dimensions are 32x32 or 64x64.

Benchmark results on MNIST and CIFAR-10 [19]

[19] reports also area, latency and energy efficiency per each subarray size:
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Table 1.13: Parameters of the different architectures from [19]

Subarray size MLSA bit-width Area [mm2] Latency [ns] TOPS/W

64x64 3 0.0832 12.7 81.79

128x128 3 0.047 13.69 141.18

MNIST In this part the results obtained in [19] from the benchmarks will be

analyzed. In particular, considering the variations of MLSA offset and RRAM cell

resistance (Gaussian distribution with a mean of 200kΩ and a standard deviation

of 3kΩ from [19]), it is possible to demonstrate that the sensing pass rate is small

when the bitcounting value is close to a sensing reference. When the bit-counting

is far enough from a sensing reference, the pass rate can achieve 100%. There are

reported the results in terms of accuracy on MNIST dataset from [19]:

Table 1.14: MNIST-based implementations results from [19]

Implementation Sub-array size MLSA Bit level Network
structure

Dataset Accuracy[%]

XNOR-RRAM 64x64 2 MLP MNIST 95.81

XNOR-RRAM 64x64 3 MLP MNIST 98.56

XNOR-RRAM 128x128 3 MLP MNIST 98.43

BNN Algorithm - - MLP MNIST 98.77

NN Algorithm (FP) - - MLP MNIST 99

The total number of subarrays used in both cases (64x64 and 128x128) are 136 and

36 respectively from [19]. With these data, it is possible to determine the total area

as:

Table 1.15: Total latency of MLP based on MNIST from [19]

# employed Subarray size MLSA bit-width Area [mm2]

136 64x64 3 11.315

36 128x128 3 1.686
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CIFAR-10 The results on CIFAR-10 dataset are reported in the following table:

Table 1.16: Results on CIFAR-10-Based implementations (CNN) from [19]

Implementation Sub-array size MLSA Bit level Network
structure

Dataset Accuracy [%]

XNOR-RRAM 64x64 3 CNN CIFAR-10 86.12

XNOR-RRAM 128x128 3 CNN CIFAR-10 86.08

CNN Algorithm - - CNN CIFAR-10 88.47

CNN FP - - CNN CIFAR-10 89.98

The convolutional neural network has the following structure in details:

Table 1.17: CNN structure from [19]

Layer Type # IFMAP # OFMAP kernel size #
subarrays

64x64

#
subarrays
128x128

1 Convol 3 128 3x3 - -

2 Convol 128 128 3x3 36 9

3 Convol 256 256 3x3 72 18

4 Convol 256 256 3x3 144 36

5 Convol 256 512 3x3 288 72

6 Convol 512 512 3x3 576 144

7 F.Conn 8192 1024 - 2048 512

8 F.Conn 1024 1024 - 256 64

9 F.Conn 1024 10 - 16 8

Total - - - - 2436 863

The parameters related to this network are reported in the following table:

Table 1.18: Parameters on the CNN based on CIFAR-10 from [19]

# employed Subarray size MLSA bit-width Area [mm2]

2436 64x64 3 202.67

863 128x128 3 40.5

The best solution is the 128x128 array size with 3 bit-level MLSA in both cases

(MNIST and CIFAR-10) and in particular for the last one, the energy efficiency is

141.18 TOPS/W from [19].
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1.4.3 MAGIC-Memristor-Aided Logic [20]

Introduction

A memristor is a device which changes its resistance depending on the current flowing

through it. It is possible to realize some logic functions considering that memristors

have two different resistance states which can be used as ”1” and ”0”: if the current

is higher, then it is considered logic ”1”, otherwise logic ”0”.

Resistance decreases

Resistance increases

Figure 1.36: Memristor behavior from [20] depending on the current flow direction.

A NOR Gate can be implemented as shown in the following figure:

Resistance decreases

Resistance increases
Resistance decreases

Resistance increases

Resistance increases

Resistance decreases

V0

Figure 1.37: NOR Gate with memristors from [20]
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Considering Figure 1.37, the two parallel memristors are considered as the inputs,

while the last one (on the right) is the output. The operations to perform a NOR

can be summarized as follows:

1. Initialization of the output memristor low resistance (logic 1);

2. A voltage V0 is applied. If the input memristors are in high impedance, the

current flowing through the output resistor is not sufficient to change the state,

so it remains low (logic 1). If the input combination is different (10 or 01),

the current will be higher than the threshold of the output memristor, and so

it changes its state;

For the input combination ”00”, the voltage across the output memristor should be

lower than VT,OFF . In the other cases, it should be higher than this value. When

an input memristor is ”0”, the voltage applied V0 can change the input to logic ”1”

in the meanwhile. So, V0 has to be less than the threshold voltage VT,ON : V0 has to

be designed properly, as indicated in [20].

In-Memory structure

These memristors can be placed inside a crossbar array in order to be integrated in

an in-memory solution.

Figure 1.38: Memristor-based crossbar array: configuration for NOR logic gate from
[20]
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In Figure 1.38, the memristors are organized in a crossbar array. The NOR

function is implemented by imposing on the inputs the voltage V0 and on the output

GND. The result of the NOR function is a current that flows through the row lines

into a proper analog circuit, which translates the input current into a logical state.

From [20], it is reported the delay of the NOR operation, which depends on V0: if

V0 = 1V , it is equal to 1.3ns, considering the slowest computation. This approach

enables also the realization of other logic gates.

1.4.4 Mixed-precision architecture based on computational

memory for training deep neural networks [21]

Introduction

[21] proposes a mixed approach based on a crossbar array of memristors and an high

precision digital unit, which is able to perform both in memory and high precision

computations. In particular, the second ones are useful in the training phase, in

which an high grade of precision is required and so the weights are not binarized.

The modifications of the weights in the crossbar array are obtained by changing the

resistances by means of programming impulses.

The architecture

The architecture of the system is presented in the following figure from [21]:

SL

BL

High precision

unit

program

ADC/DAC

D
A
C
/A

D
C

crossbar array

Figure 1.39: Principle scheme of the mixed precision architecture. Source: [21]
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In Figure 1.39, the crossbar array on the right performs multiplications and stores

the weights and on the left the high precision computational unit trains the neural

network. The working principle is the following:

1. The inputs (neurons’ activations) are fed to the crossbar array from the high

precision unit and converted in analog voltages by means of DACs;

2. The crossbar array performs its evaluations and each column carries out a

current, which is proportional to the multiplication between the weight stored

in the crossbar (considered as a conductance) and the input voltage;

3. The currents are then converted into digital by means of ADCs. The digital

vector is the result of the computation.

The same crossbar can be used to perform the backpropagation, in which the errors

are converted in voltages. All the considerations done in subsection 1.1.4 are still

valid, so the learning rule is applied also in [21]. Since the conductances are subjected

to variations, the update is performed only when the accumulated weights updates

reaches a multiple of the smallest and reliably achieved change of the conductance

itself [21].

Neural network structure The MLP network in [21], is realized considering

MNIST dataset. Its structure is 784-250-10 and the inputs are images of 28x28 size.

The hidden layer and the output layer have sigmoid as activation function. The

NN is trained for 10 epochs and the corresponding floating point implementation

(64 bit) achieves an accuracy of 98% with SGD.

Inaccuracies The inaccuracies arising from this architecture are a lot. Starting

from the conductances, they do not have precise values because they depends on

the physical properties of the material used, in particular they are subjected by

granularity, stochasticity and asymmetric conductance responce. The weights up-

date process is heavily influenced by the conductances and also the computations

regarding the output classification/weights update depend on these variations, in

fact, as mentioned before, the crossbar array is also used to compute multiplications

regarding the backpropagation. The noise (in particular the read noise) is another
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important factor that has to be considered, because it degrades the accuracy [21].

Also the DAC/ADC inaccuracies influence the system behavior, and in particular,

choosing a small resolution brings to a very low values of accuracy (about 50% from

[21]). In [21] it is chosen 8-bit resolution for both DAC/ADCs, in order to avoid

degradation. The architecture has been tested and trained, taking into account

all these variations. After 10 training epochs, the architecture reaches 97.78% of

accuracy.

1.4.5 A hardware neural network for handwritten digits recog-

nition using binary RRAM as synaptic weight element

[22]

Introduction

[22] proposes a binary neural network based on RRAM devices, which implements

a 784-10 MLP network for handwritten digit recognition (MNIST dataset). The

network is realized as a resistive crossbar array, in which the columns are the outputs

and the rows the inputs. The architecture achieves 81% accuracy with a custom

training procedure, instead of the classical SGD based one.

Network structure

The network structure is the classical crossbar array, in which the input is a MNIST

image which has been vectorized (from 28x28 to 784x1). The greyscale input values

have been adapted to the voltage range (0;0.1V) and the outputs are currents which

are compared with each other. The classification in output is given by the maximum

current incomings from the columns. The following figure reports the structure from

[22]
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Figure 1.40: Network structure from [22]

Training strategy [22]

The memristors can modify their resistances according to the applied voltage: in

particular, if the voltage is positive and larger than a certain threshold VT,on, the

resistance of the memristor becomes LRS and so the bit stored is a zero (Set). Oth-

erwise, if the applied voltage becomes negative and less then VT,off , the resistance

will be reset to HRS. To train this network, the recognition result is considered: if

it is not correct, the corresponding column that gives the result and the other one

which is correct will be ”stochastically reset” and ”stochastically set” respectively,

in order to decrease the current in ”recognition result” node and increase the cur-

rent in expected node. The ”stochastic reset” process is performed by a sweeping

increase voltage in the output node, in order to generate a negative voltage across

the interested memristors. If any is reset, the applied voltage is removed. The

threshold voltages of the memristors were chosen randomly from [22].

Results

Table 1.19: Results from [22]. When more than 1 arrays are used, the recognition
result is improved. They are used in parallel and the output is evaluated in the
same way explained before.

Total images Training images Dataset Array size # arrays Accuracy[%]

60000 10000 MNIST 784x10 20 81

60000 10000 MNIST 784x10 1 62
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Also the network robustness has been evaluated in [22] w.r.t Vset/Reset changes,

and they demonstrated that it works well also when 50% of the RRAM is disabled.

1.4.6 Challenges of emerging memory and memristor based

circuits: Nonvolatile logics, IoT security, deep learn-

ing and neuromorphic computing [23]

Introduction

[23] explores the NVM technology and its real applications and proposes a com-

parison between different realizations (such as RRAM, ReRAM, Memristors,PCM,

STT etc). [23] has been reported in this section because it provides very interesting

considerations on memory technologies.

Write voltages of emerging NVM

Figure 1.41 shows all recent emerging NVM technologies which are better in terms

of performance than Flash:

Figure 1.41: Write voltages of different technologies. Source: [23]
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The analyzed parameters are the write voltage and the write time and, as it is

possible to see, only three kind of NVMs are included in the flash area. So resistive-

based memories are very good in terms of energy efficiency, because the required

write voltage and write time are less than the flash memories.

NvLogics: non-volatile computational units

In a classical system, when the power is turned off, the logic circuits have to move

their data to NVM, in order to keep them saved for the next operations. The systems

discussed in [23] instead, use local NVM inside the computational part and since

the new technologies based on RRAM, MTJs etc enables fast writing data at low

power consumption, the operation of switching off-on a circuit is not so expensive.

Another important parameter that has to be considered is the resistance ratio of the

resistive memories: if it is small, there is not an evident difference between on-off

state and so circuits able to sense small resistance difference has to be employed,

considering also the presence of the sneak current between cells and other leakage

currents. These last parasitic effects are reduced by using solutions such as 1T1R

cells or similar. In the following figure, it is reported a simplified implementation

of a 3-2 network with RRAMs in 1T1R configuration from [23]: the products are

performed by the array itself and the weights are stored into the RRAMs, so by

applying the binary inputs V0,V1,V2, the corresponding word line is enabled and

the current flowing through the bitline is sensed by a sense amplifier which generates

the binary output.
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Figure 1.42: Simplified 3-2 neural network implemented with RRAMs 1T1R config-
uration. Source: [23]

But there are some problems that have to be solved [23]:

1. High performances and MLC cells with low power consumption are not reached

yet;

2. Parasitic currents (like sneak current) are still present also with 1T1R config-

uration;

3. Since the computation in the array is based on an analog approach, a good

interface between the array itself and CPU is needed.
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1.5 SRAM based

In this section it will be discussed a solutions based on SRAM implementations.

1.5.1 In-Memory Area-Efficient Signal Streaming Processor

Design for Binary Neural Networks [24]

Introduction and architecture

[24] proposes an in-memory architecture which is based on BNN, so operations of

XNOR and bitcounting are performed. In the implementation, it is used the con-

cept of synapse configuration table SCT which is explained in the following parts.

The NN depicted in Figure 1.43 has 3 input activations (named A11,A12,A13) and

2 output activations (A21,A22). As it is possible to see, there are also some num-

bers reported next to the output neurons (in this case +2 and -1): these represents

the bias values that have to be added to the neuron’s function to obtain the cor-

responding output activation. In Figure 1.43, the network is not fully connected:

a general representation of these kinds of networks is needed. By considering the

ternary networks, the NN in Figure 1.43 can be implemented by performing some

transformations illustrated in the same image. The steps to compute a neuron’s

output are the following:

1. XNOR bitwise operation to compute the products between input-weight;

2. The sum in a BNN is computed by a pop-counting operation:

PopCount = number of 1s− number of 0s (1.86)

3. Biases are added with the pop-count;

4. Activation function: the output of a neuron is the sign of the previous calcu-

lations.
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Figure 1.43: An example of a 3-2 BNN from [24] and the transformation into a fully
connected configuration. The Synapse configuration table is reported indicating the
meaning of the connections. The fully connected network has been implemented
considering also bias and mask signals. At the end, three popcounting results will
be added together and it is taken the sign of the result, that defines the output.

An implementation of these steps has been represented in Figure 1.43. For each

neuron, there is a set of (weight,bias,mask) bits that determines the meaning of

the connection and the corresponding value of the weight to be multiplied with the

input activation. In the example in Figure 1.43, the SCT is the following [24]:
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Table 1.20: SCT of the NN depicted in Figure 1.43 from [24]

A21 A22

Weight Bias Mask Weight Bias Mask

A11 W11 1 1 W12 1 0

A12 X 0 1 W22 0 0

A13 W31 1 1 X 0 1

As it is possible to see in Table 1.20, the input activations are disposed on the

rows, while the outputs on the columns. If this SCT is implemented into a SRAM,

the rows correspond to the address, while the columns to the bitlines: if one row is

accessed per time, it means that only one input per time can be processed. In fact

this SCT configuration is called OPNE [24] (output parallel neural engine), in which

the inputs are given serially, while the outputs are generated simultaneously when

the scanning over all the inputs has finished. Moreover, if the network is extended

into a 3-2-3 structure, the hidden layer takes the inputs (coming from the previous

layer) in parallel and so a new SCT configuration has to be considered. In this case

the synapse configuration table is called IPNE (input parallel neural engine) [24]:

Table 1.21: IPNE SCT from [24]

A21 A22

A31 Weight Bias Mask Weight Bias Mask

A32 Weight Bias Mask Weight Bias Mask

A33 Weight Bias Mask Weight Bias Mask

The inputs now address multiple columns and only one output is provided per time.

After an IPNE layer (which gives outputs in serial and takes inputs in parallel), an

OPNE (which takes input in serial and provide outputs in parallel) can be connected

without any interface circuitry [24].

General case OPNE and IPNE configurations can be also used in general with

NNs different from the 3-2 example discussed before, in fact they can be extended

to a general H-output/input case. In particular an OPNE takes 1bit serially and
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produce H outputs in parallel, while an IPNE takes H inputs in parallel and gives 1

output serially.

Additional details [40]

In this part, there are presented some additional details from [40], that implements

the same architecture, but with more detailed explanations.

Batch normalization The batch normalization is an essential element in the

binary/ternary neural networks in order to obtain an high accuracy with weights

extremely approximated [40]. From section 1.2.4 in the introduction, the sign acti-

vation function to the formula of the batch normalization can be applied as follows:

Ŷ = sign

(
γ

(
Y − µ
σ

)
+ β

)
from [40] (1.87)

Where:

• Y is the weighted sum between W and activations (output of a neuron without

activation function applied);

• µ,σ2 are mean and variance of Y (over all input images);

• γ,β are scaling and offset factors

As done in section 1.2.4 in the ternary network explanation, the original Equa-

tion 1.87 can be transformed in:

Ŷ = sign

(
Y +

(
−µ+

σ

γ
β

))
= sign (Y + bias) from [40] (1.88)

The bias value is added after the pop-counting, requiring an additional space of

memory for the bias term.

Computation cycle Considering a network with LxH size (where L is the number

of rows in the SRAM and H is the number of outputs which an OPNE produces per

time), from [40]:

• OPNE produces a result after L+1 cycles;
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• IPNE can start computing and, in the meanwhile, OPNE can fetch another

data;

• IPNE produces a result after only 1 cycle (when all the inputs are available

from OPNE) and this output is used immediately from the OPNE of the next

layer.

Results

In [24] is an OPNE-IPNE is considered as a PIM. Some parameters are reported:

Table 1.22: Results from [24]

#PIMS 6

H 144

L 484

Frequency [MHz] 400

Peak performance [GSOPS] 691

#neurons 3768

#synapses 836000

Power consumption [W] 0.6

Area [mm2] 3.9

Energy efficiency [TSOPS/W] 1.2

Area Efficiency [TSOPS/mm2] 0.177

In the table, the term SOPS indicates ”synapse operation per second” which is

simply a multiplication and an addition. H is the number of inputs in parallel into

an IPNE, while L is the number of words into an SRAM array. Since there are 6

PIMs, the network structure is the following: 484-144-484-144-484-144-484-144-484-

144-484(10). The critical path of this architecture is in the IPNE adder tree, since

all the computations are performed in parallel. An additional implementation of a

CNN has been analyzed by [40], in which the structure used is the following:
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Table 1.23: Accuracy results of a CNN implementation from [40]

# Layers Type Kernel sizes Stride # output channels OFMAP size # of OFMAP

0 Input - - - 22x22 1

1 Conv 5x5 4 4 6x6 4

2 Conv 5x5 4 12 6x6 12

3 F.Conn 432-144 - - - -

4 F.Conn 144-10 - - - -

Accuracy [%] 80

Dataset MNIST

1.5.2 Deep learning consideration with novel approach -

look-up-table based processing conjugated memory [25]

Introduction

The MLCS solution is able to implement some operations in memory, because it

combines SRAM with look-up tables. A particular memory cell can be viewed as

LUT logic or a simple memory element. If LUT functionality is considered, the

result of the operation is simply obtained by using the inputs as addresses and so

no computation are performed with this approach.

Typical structure

The typical structure used to implement an in-memory neural network is illustrated

in Figure 1.44 from [25]:
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Figure 1.44: DL calculation structure at 700MHz from [25]

The image is fed to the array on the left, while the weights are precharged from

the upper side, so the multiplication is then performed by the array. This operation

is repeated for all the cells with an operating frequency of 700 MHz. An MLCS

is a simple unit based on a SRAM (256words x 8 bits from [25]) which is used as

a LUT and so it is addressed in order to give in output the result of a specific

logic function, in particular it is able to perform a multiplication between two 4 bits

numbers (28 = 256Words).

Structure of MLCS for DL

Taking as example a 16x16 image in input (256 pixels), the inputs should be con-

nected to the second layer and so there are required 256 multiply-accumulate oper-

ations. If the clock is 700MHz, since there are 256 units, the speed is reduced to

2.7MHz. By using 256 parallel architectures, the maximum frequency of 700MHz

per layer can be achieved also with low power because LUT based multiplier is only

addressed without any calculation.
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Roughly Performance Estimation

These results have been taken from another paper ([48]) that is focused on the same

approach. It is not guaranteed the correctness of these results, in fact they are

reported only as reference.

Power Consumption [48] A comparison between pure logic vs FPGA vs LUT

approach is reported in the following Table 1.24:

Table 1.24: Relative power results from [48]

Power Pure logic MLCS FPGA

Relative ratio 1 0.05 0.1

MLCS’s power is less than one twentieth of conventional pure logic’s one, because

the just one address access of the LUT memory is enough for the calculation.

Processing speed [48] The maximum SRAM frequency is fixed to 1GHz, due

to SRAM wiring penalties. The pure logic approach with pipeline achieves 4GHz.

Here is reported a comparison among different architectures:

Table 1.25: Speed comparison from [48]

Band frequency Pure logic (8/64bits)
8bits 64bits

MLCS FPGA MLCS FPGA

Speed 4GHz 1GHz 500MHz 1GHz 250MHz

Area Comparison [48] This comparison is done on a 8 bit multiplier. LUT

based SRAM circuit needs 4096cells of SRAM (0.5um2/memory cell [48]). In total

2.05kum2 (TSMC 65nm). SRAM memory cell often is 1/3 smaller than logic gate

but 4× memories are needed for making LUT plus overheads coming from registers,

I/Os etc [48]. As a consequence, the area of the SRAM-LUT is 7 times larger than

pure logic.
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Table 1.26: Area comparison from [48]

Area Pure logic MLCS FPGA

Ratio 1 7 20

1.5.3 A digital neurosynaptic core using embedded crossbar

memory with 45pJ per spike in 45nm [26]

Introduction

[26] proposes an implementation of a neurosynaptic core based on a SRAM cross-

bar array. The architecture is event-based that corresponds to the brain’s way of

computation. The real neuron’s model is implemented in [26], in which synapses

(connections between neurons), axons and neurons’ core are integrated in-memory,

in particular the chip has 256 digital neurons, 1024 rows (axons) and so the array

dimensions is 1024x256.

Table 1.27: Parameters from [26]

Network structure Area [mm2] Technology Energy per spike [pJ]
1024x256 4.2 45nm SOI 45

Architecture specification [26]

In Figure 1.45, the neurosynaptic core is composed by K axons (rows), KxM synapses

and M neurons. The blue circles indicate the intersection between axons and

columns, which represents the weight. At the end of a column there is a neuron

indicated by the red box. In each time instant t, there is an activity bit Aj(t) which

indicates if a particular neuron has been fired or not in the previous time t-1. Con-

nected to each each axon, there is a Gj value, which indicates what is the type of

connection (0,1,2) (inhibitory,excitatory [26]). The synapse value of a neuron i is

indicated as S
Gj

i from [26], so a neuron’s input is defined as in [26]:

Aj(t)×Wji × S
Gj

i (1.89)

80



1.5 – SRAM based

The membrane potential of the neuron is considered from [26]:

• V (t): membrane potential;

• L: leak;

• θ: threshold;

Vi(t+ 1) = Vi(t) + Li +
K∑
j=1

[
Aj(t)×Wji × S

Gj

i

]
from [26] (1.90)

When V(t) is higher than θ, the neuron produces a spike and its membrane potential

is reset to 0.

Implementation [26]

In the following figure it is reported the architecture of the neurosynaptic core:
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Figure 1.45: Structure of the neurosynaptic core from [26]

The communication between each block of the architecture is event-driven based,

and so without any clock. In order to correctly synchronize all the operations,
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handshake signals have been implemented. All the neurons are implemented as

stand-alone elements: no multiplexed structure has been used in [26] to realize

all the computations in parallel. The steps that the architecture executes in the

processing flow are the following:

1. The addresses are fed to the crossbar one at a time. The corresponding row is

activated and the connections (weights) and the type of connection (Gj) are

read;

2. All the connections of type 1, are sent to the neuron that perform the mem-

brane update in Equation 1.90;

3. Once all the neurons are updated, the address read procedure has finished;

4. Everytime 1ms has passed (after the completion of the steps described so far),

a Sync signal is sent to the neurons, which controls if the membrane potential

is higher than θ or not. If so, the membrane potential is reset to 0 and a spike

is produced (logic ”1” coming from the corresponding neuron).

Results

The results and some useful parameters from [26] are reported:

Table 1.28: Network parameters for 1024x256 crossbar array dimensions from [26]

Parameters

Network structure 1024x256

# Transistors 3.8 million

# Neurons 256

Neuron’s area [µm2] 3325

Bitcell area [µm2] 1.3

Delay [ms/img] 1

Vdd [V] 0.85

Energy per spike [pJ/spike] 45

Worst case energy [pJ] 11520
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The accuracy results from [26], considering a network structure of 484x256, are

the following:

Table 1.29: Accuracy results from [26]

Accuracy test Details

Dataset MNIST -

# neurosynaptic cores 2 (excitatory and inhibitory)

Network structure 484x256 -

# Training images 50000 -

# Test images 10000 -

Accuracy [%] 89 Neurosynaptic core

Accuracy [%] 94 Real value weights

The network is realized with 2 neurosynaptic cores of 484x256 which are configured

with excitatory and inhibitory Gj bits.
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1.6 DRAM Based

1.6.1 XNOR-POP: A processing-in-memory architecture for

binary Convolutional Neural Networks in Wide-IO2

DRAMs [27]

Introduction

[27] proposes a novel architecture based on DRAM, which is able to implement a

XNOR-NET: XNOR operations are performed inside the memory and are trans-

ferred to the logic layer by TSVs, in which the popolation-counting computing is

performed. TSVs enable power saving, reduction of wires’ length and consequently

the delay.

Figure 1.46: Architecture proposed by [27]. Source: [27]

The architecture is depicted in Figure 1.46: each DRAM layer (8Gb) has 8 channels

with 64 bits and each channel has 4 banks[27].

XNOR-NET CNN The XNOR-NET CNN has the following building blocks:
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Figure 1.47: Building blocks of a XNOR-NET from [27]

The convolution in output is obtained as:

Yconv = (I ~W ) ·Kα (1.91)

As already mentioned, the batch normalization applied to a XNOR-NET can be

reduced simply into the following equation:

y(batch) =


1, if x ≥ µ− β

γ
√
σ2 + ε

0, otherwise

(1.92)

So a simple comparator can be used.

Binary Convolution: XNOR-Popcount

XNOR-Dram The structure of a bank is reported in the following figure from

[27]:
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Figure 1.48: Bank structure. Source:[27]

The functional steps are the following from [27]:

1. At the beginning, all lines are precharged to 1/2 Vdd;

2. WL is activated: the local sense amplifier senses the difference between Local bit line,

Local bit line;

3. Cell content is restored by Local sense amplifier. The local bit lines are at-

tached to global bit lines through switches.

A XNOR operation is performed considering an additional block inserted after the

global sense amplifier. The operational steps to compute A⊕B are the following

from [27]:

1. A and A are fetched from the subarray 0 and memorized in Global sense

amplifier;

2. Global sense amplifier/Sub0 connection is detached;

3. Local sense amplifier charges subarray 1;

4. B is read from subarray 1 and sent to the XNOR engine;

5. The connection between XNOR engine/global sense amplifier is attached and

a result is produced and memorized;

6. XNOR/Subarray 1 are disconnected from global bit lines;
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7. Local sense amplifier precharges subarray 1 again;

8. Global sense amplifier precharges the global bitlines.

The banks are organized in such a way that the input is stored in subarray0, while

in subarray1 the corresponding weight. From [27] the total latency of this operation

is 128ns that can be reduced to 78ns, when loop unrolling technique is used [27].

The results elaborated in the DRAM are sent to the logic die by means of TSVs

to perform the popcount adopted in [49]: two of them are required to count 1s and

0s respectively. For the pooling technique, a 16 bit comparator is used and in the

pooling phase also the matrix K and α are computed.

Results

At the beginning, the architecture has to fetch the weights and to dispose them in

the banks in order to perform all the operation explained so far. If the network is

very deep, weights could occupy a lot of memory. In the following table, there are

reported the results from [27]. There are also presented comparisons between the

floating point network accuracy and its corresponding XNOR-Net implementation:
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Table 1.30: Accuracy and performance results of the architecture with different
neural network models. Source:[27]

DRAM area [mm2] Logic
die area
[mm2]

Power
logic die

[mW]

Power
DRAM
layers
[W]

77.24 2.24 237 1.99

Network
used

Dataset Structure Accuracy
(FP)
[%]

Accuracy
XNOR

[%]

Frame
per

second

LeNet-5 MNIST

Layer Type

99.1 97.2 -
1 to 3 Conv

4 to 5 Pooling

6 Fully connected

MLP MNIST 1 to 5 Fully connected 98.5 96.9 -

CNP MNIST

1 to 3 Conv

97 96.1 -4 to 5 Pooling

6 Fully connected

SCNN MNIST
1 to 2 Conv

99 97.8 -
3 to 4 Fully connected

MCDNN MNIST

1 to 3 Conv

96.8 95.7 -4 to 6 Pooling

7 to 9 Fully connected

AlexNet ImageNet

1 to 5 Conv

80.2 69.2 33906 to 8 Pooling

9 to 10 Fully connected

ResNet-18 ImageNet

1 to 18 Conv

89.2 73.2 139119 to 20 Pooling

21 Fully connected
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1.7 OOM implementations

Particular mixed implementations or computation methods are presented in this

section, that can be employed to realize a neural network. The NNs implemented in

the following part are not realized in-memory but as hardware accelerators, in fact

the term OOM means out of memory.

1.7.1 Energy-Efficient Hybrid Stochastic-Binary Neural Net-

works for Near-Sensor Computing [28]

Introduction

[28] proposes a solution in which raw data (such as data coming from sensors)

have to be processed. One of the possible ways to operate on such data is the

NN employment combined with near-data computing. [28] introduces a new way

of computation based on a stochastic-binary approach (SC), where a bit sequence

represents a probability. Its implementations is cheaper than the classical binary

approach, but it requires longer computation time and consequently higher energy

[28]. The precision in this case can be reduced in order to save energy/time. The

stochastic approach is used only in the first layer of the neural network.

Architecture and considerations

The SC is based on the probabilities, and so a bitstream in SC has the following

meaning:

X = 01101010→ Probability =
#1s

length
=

4

8
= 1/2

The probability in this case is, 0.5 because there are four 1s out of 8 possibilities.

The arithmetic functions are easily implemented: multiplication is simply realized
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with an AND logic gate.

p1 = 0.5→ X1 = 0110

p2 = 0.25→ X2 = 0100

p1 · p2 = 0.5 · 0.25 = 0.125

Y = X1ANDX2 = 0100→ pY = 0.125

In the following figure are reported the stochastic circuits used in [28]:

r
P(r) = 0.5

x

y
z

P(z) = (P(x)+P(y))/2

0

1

x

y
TQ 1

0

z

x

y z

P(z) = P(x)P(y)

Random
gen.

Binary input

k

k

A

B

out = 1

if B>A x
P(x) = B/2^k

Bitstream B

x

B
k

Binary

counter

(a) (b) (c)

(d)
(e)

Figure 1.49: (a) Multiplier; (b) Binary - Stochastic converter; (c) Stochastic - Binary
converter; (d) Multiplexer adder with random input r; (e) Improved version of the
adder, without the random input. Source: [28]

This kind of computation presents some errors, depending on the positions of the

incoming bits. One way to improve the precision is to enlarge the bit sequence, in

fact the precision of the SC is given by:

Precision = log2(length) (1.93)

The probability is only in the range [0,1], but this problem can be easily solved

by considering the value of X as 2pX − 1 [28]. The term length in the formula is

the bitstream size. An adder is implemented from a stochastical point of view as a

multiplexer, in which, as a selector it is used a random value with probability P(r)
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= 0.5 (Figure 1.49 (d)). This implementation has been improved in [28], in such a

way to eliminate the additional random input: considering the circuit in Figure 1.49

(e), at each clock cycle, if X and Y are the same, Y is propagated to the output[28];

otherwise, the state of the TFF is changed. In order to understand its functionality,

consider the following example from [28]:

1. Initial TFF state = 0;

2. X = 0100 1010 (3/8);

3. Y = 0010 0010 (1/4).

By performing all the computations (showed in Figure 1.50), the output bitstream

results to be equal to 00100010 (1/4). In fact:

Z0 = 0.5 · (3/8 + 1/4) = 5/16 ∼ 1/4 (1.94)

In case of initial TFF state equal to 1, the result will be 01001010. Considering the

other circuits depicted in Figure 1.49, the binary to stochastic converter is designed

as a comparator with its input connected to a random number generator and to the

input binary: if this last one is higher than the number randomly generated, the

output will be 1, otherwise 0 (Figure 1.49 (b))[28]. Similarly, the conversion from

stochastic to binary can be performed by a binary counter which counts the total

number of 1s into the bitsequence (Figure 1.49 (c))[28].
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Figure 1.50: Example of computations of the new stochastic adder. Source: [28]

Stochastic binary neural network design

In order to implement the stochastic approach, [28] considers the LeNet-5 neural

network which is composed by:

Table 1.31: LeNet-5 structure Source: [50]

Layer Type #
Chan-
nels

input

IFMAP
size

Kernel
size

OFMAP
size

#
Chan-
nels

output

Details

0 Input - - - 28x28 1 -

1 Conv 1 28x28 5x5 28x28 32 -

2 Max Pool 32 28x28 2x2 14x14 32 -

3 Conv 32 14x14 5x5 14x14 32 -

4 Max Pool 32 14x14 2x2 7x7 32 -

5 FC - - 128 - - 50 % dropout

6 FC - - 10 - - 25% dropout & softmax
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The NN is made by bipolar operations, but the bipolar approach of SC is not

used because the accuracy is degraded. [28] adopts unipolar operations by splitting

the weights into positive/negative bit-streams wpos and wneg and so two different

dot products are computed (negative/positive), converted in binary domain and the

sign function is performed by a simple comparator.

Results

The results from [28] are now reported. The architecture has been tested on MNIST

dataset as reported in the Table 1.32, with different bitstream lengths, in order to

see what are the changes in the evaluated parameters. The power is normalized

to the throughput, because depending on the application, the throughput can be

chosen arbitrarily.

Table 1.32: Performance and accuracy results. Comparison with the classical binary
approach and the discussed one. Source: [28]

Hardware Dataset # Images #Training images #Test images

TSMC 65 nm MNIST 70000 60000 10000

Bitlength 8 7 6 5 4 3 2

S
to

ch
as

ti
c Accuracy [%] 99.06 99.01 98.96 98.88 98.96 97.8 56.18

Power/Throughput [mW] 33.17 33.55 33.26 33.01 33.2 29.96 28.35

Energy efficiency [nJ/frame] 543.42 274.82 136.22 67.6 34 15.34 7.26

Area [mm2] 1.321 1.282 1.24 1.2 1.166 1.11 1.057

B
in

ar
y

Accuracy [%] 99.11 99.14 99.11 99.26 99.21 99.21 98.7

Power/Throughput [mW] 40.95 72.8 121.52 204.96 325.36 501.76 683.2

Energy efficiency [nJ/frame] 670.92 596.38 497.74 419.76 333.17 256.9 174.9

Area [mm2] 1.313 1.094 0.891 0.71 0.543 0.391 0.255
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1.7.2 Towards Near Data Processing of Convolutional Neu-

ral Networks [29]

Introduction

[29] proposes an approach in which the memory wall problem is reduced by introduc-

ing the near-data processing (NDP). However, incorporating memory with logic is

very expensive in terms of performances, but the solution of a 3D stacked structure

connected via TSV is studied and in particular it is applied to CNN architecture.

HMC (Hybrid memory cube) divided into vaults has been chosen by [29].

HMC Structure The technology of the HMC is made by DRAM layers (4 to 8),

in which the image is split. They are stacked on top of each other and connected

by TSV as already mentioned. At the bottom layer there is a computational unit

which performs all the computations that a CNN requires[29]. Each DRAM layer

is divided in 16 parts and a stack of these parts coming from different layers is

called vault [29], which is divided into two parts called banks. The architecture

of the system is reported in the Figure 1.51 from [29]. HMC has 4 layers of 4Gb

each (total 2GB). In each vault controller there is a CLU (CNN logic unit) which

computes the convolution operation for a specific vault. In particular [29] adopts the

floating point double precision representation of the numbers (so it is not a binary

network). The CLU contains a floating point multiplier, adder, some registers (that

stores the bias value and partial results) and an SRAM (which contains the filter

weights, that are the same for all the CLUs): all the needed elements to compute a

convolution.
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Figure 1.51: Architecture structure. Source: [29]

Computational steps When the host processor assert a start signal, the compu-

tation begins and it is performed in the following way:

1. The kernel’s elements are loaded into the CLU SRAM and an image element
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is loaded inside the CLU from DRAM banks;

2. The floating point multiplier in the CLU performs the multiplication between

the weights stored in the SRAM and the incoming image element. Eventually

a bias element is added by means of the floating point adder;

3. Results are sent back to the memory die. Some of them could be partial

results, because the memory is split and so some elements of the image could

be located into a different vault as shown in Figure 1.52.

Complete result

Sent back to the memory die

VAULT 0

VAULT 1Partial result

Stored locally

to complete the

computation

Figure 1.52: Complete and partial result computation. Source: [29]

The partial result is stored locally in order to be considered at the end of

computation of the following vaults.

4. Partial results are then added together by means of inter-vault connections

and then are written in the memory dies.

Results

Here there are reported the results of this implementation from [29]. Also the

network structure employed by [29] is specified.
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Table 1.33: Results and network structure (Source: [29]) of the floating point archi-
tecture

CLU HMC

CLU Frequency [MHz] Technology

Delay [s] Energy [J]
Area [mm2] Power [W]

500 UMC 90nm

CNN STRUCTURE

Layer Type IFMAP size kernel size CPU-Based CLU CPU-Based CLU

1 Conv 128x128x3 5x5x3 1.149 0.0138 11.0619 0.1848

729 11

2 Conv 124x124x3 5x5x3 1.0808 0.0133 10.4054 0.1779

3 Conv 120x120x3 4x4x3 0.6643 0.0086 6.396 0.1148

4 Conv 117x117x4 4x4x4 0.832 0.0165 8.0103 0.2057

5 Conv 114x114x5 3x3x5 0.808 0.0091 7.7793 0.118

6 Conv 112x112x3 5x5x3 0.873 0.0105 8.4049 0.1415

7 Conv 108x108x3 5x5x3 0.809 0.0102 7.7888 0.1354

1.7.3 Chain-NN: An energy-efficient 1D chain architecture

for accelerating deep convolutional neural networks

[30]

Introduction

[30] proposes an energy efficient and reconfigurable architecture which is based on

a chain of processing elements interconnected. There can be different architectures

that implement a CNN:

• Memory-centric[30]: there are not data reuses in the processor, and so the

data are fetched from the memory. PEs in the CPU are simply stacked and

are not interconnected to each other.

(Pro) Reconfigurability;

(Con) Low efficiency.

• 2D Spacial[30]: Data are reused in the processor, since a connection between

one PE and the following one exists. This solution reduces the data fetching

from the memory because the PE maintains locally data frequently used, and

passes them to the following PE if needed.

(Pro) Reduced data movements;

(Con) High power-area cost.
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• 1D-Chain[30]: PEs are arranged as a chain and piloted by an FSM. The

sequential circuit is able to precharge the kernel parameters and, after that,

the IFMAPs are streamed along the chain architecture in order to compute

the CNN results.

(Pro) Better energy efficiency;

(Pro) Data reusability;

(Pro) High reconfigurability and so high performance.

Chain-NN: 1D Chain Architecture

1D Chain architecture An example of chain NN is reported in the Figure 1.53,

considering a kernel size of 3. Each chain is mapped to a convolution kernel window:

the inputs are sent serially to the chain and each PE performs a MAC operation with

kernel weight. This architecture works well, but in the case in which some pixels are

not included in a convolutional window, there are required additional clock cycles

to fetch the new pixels, resulting in a throughput decreasing (in particular with K

= 3 and stride = 2, the maximum number of matching pixels are 6 in two different

convolutional windows, so at least 3 pixels have to be fetched). For this motivation,

dual channel architecture has been designed in [30].
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...

9 processing elements

for K=3

Figure 1.53: Chain NN architecture with k = 3, where k is the kernel size. 9
processing elements are needed because for each PE, a different weight is used.
Inside a PE there are a MAC and a register and eventually the corresponding outputs
can be pipelined, in order to improve performance (red dashed lines). Example of
computation. Source: [30]

Dual channel [30] proposes a solution to this problem by increasing the total

number of fetched data in a single PE. This implementation is called dual channel

architecture, in which the column wise scanning is maintained, but this time at least

2K-1 row elements are fed to the PE. The PE fetches the even columns (evenIF)

and, after K+1 clock cycles, the odd columns (oddIF) with the following order:
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Figure 1.54: Streaming order in dual channel architecture. Source: [30]

In this way the Dual-channel architecture can continuously perform new con-

volutional operations without waiting times. Inside each PE, there is an internal

storage (kMemory) that keeps the kernels (which are the same, since it is a CNN).

Results

From [30] are written the results. The implemented network is AlexNet (only with

the convolutional layers and without the fully-connected part) and its structure is

reported in the following table.

Table 1.34: Results and network structure. Source: [30]. The implementation is in
fixed-point precision. For an OPS (operation per second) is a multiplication and an
accumulation

Floating point precision

Technology # PE Critical path delay [ns] Max frequency [MHz] Batch size

TSMC 28nm 576 1.428 700 128

CNN STRUCTURE (AlexNet) Results

Layer Type IFMAP size kernel size Time
required

[ms]

Memory
required

[MB]

Total
power
[mW]

Throughput [GOPS] Power
effi-

ciency
[GSOP-
S/W]

1 Conv 227x227x3 3x3 29.2 44.9

567.5 806.4 1421

2 Conv 55x55x96 3x3 43.83 175.3

3 Conv 27x27x256 3x3 58.43 312.1

4 Conv 13x13x384 3x3 102.53 234.3

5 Conv 13x13x256 3x3 159.35 156.2
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1.7.4 An Energy-Efficient Architecture for Binary Weight

Convolutional Neural Networks [31]

Introduction

[31] proposes a BCNN architecture, which can be used in an embedded system, since

it is a low power implementation. Very deep CNN architecture can be realized with

this architecture and it is compatible with BinaryConnect or BWN. [31] analyzes

only the convolutional layers.

Background

Binary weight CNN [31] analyze BinaryConnect and BWN. The second one

differs from the first one only by the scaling factor α, given by [31]:

α(`)
o =

‖Wo,fp‖`1
n

(1.95)

So the correspondent output of the BWN is given by [31]:

y
(`)
o,bwn(j,i) = α(`)

o × y
(`)
o,bc(j,i) (1.96)

Where (bc) means BinaryConnect and (fp) floating point. As already mentioned, the

α coefficient requires the fully precision weights in its computation. A basic stage

of a BCNN is reported in the following table:

Table 1.35: Basic stages of a binary convolutional neural network. Source: [31]

Layer Type Operation

1 BCNN Binary convolution

2 Scaling y = αx

3 Batch normalization Apply batch normalization formula

4 ReLU Max(0,x)

5 Max Pooling Downsampling
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Algorithmic optimizations for BCNNs

The following optimizations are implemented in [31]:

1. [31] proposes the 1’s complement to further reduce the complexity of the sys-

tem, since the 2’s complement requires an additional sum. This approximation

introduce an error of 15% on CIFAR-10 with VGG-16 architecture. The error

can be mathematically defined from [31] as:

x∗ = x− n (1.97)

Since ±1 are roughly equal, some considerations in advance can be made and

this error can be compensated by knowing the number of -1s (n)

2. Since the max pooling layer selects only the maximum out of all the possible

outputs, the others computed are useless. An earlier pooling can be made from

[31]. This technique is based simply on the changing the order of the layers,

in fact pooling layer is performed after convolution as shown in the following

table:

Table 1.36: Basic stages with earlier pooling Source: [31]. Compared to Table 1.35,
the pooling layer is placed as second in the order.

Layer Type Operation

1 BCNN Binary convolution

2 Max Pooling Downsampling

3 Scaling y = αx

4 Batch normalization Apply batch normalization formula

5 ReLU Max(0,x)

3. Batch normalization transformation: since the batch normalization is defined

as

ybatch =
yconv × α− µ

σ
(1.98)
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[31] considers the terms m =
µ

α
and n = α/σ and transforms the equation in:

ybatch = (yconv −m)× n (1.99)

So no divisions are performed.

4. Quantization of the activations: the ReLU layer has to be quantized somehow.

[31] proposes a method based on a equal-discance nonuniform quantization

which produces a maximum accuracy loss of 1.7%.

Architecture

Top-level architecture In Figure 1.55 it is reported the architecture proposed

by [31]:

Figure 1.55: Architecture. Source: [31]
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The architecture in Figure 1.55 [31] is composed by an image memory that stores

two rows of the IFMAP (size Cin× 2×win); a filter memory (FMEM) that contains

the filter elements; some PUs that compute convolution operations and each of

them process an OFMAP; an input feature map summation unit (ISU) that adds

all the OFMAPs and produce the neuron’s output; an accumulation array (ACCA)

which accumulates the exceeding IFMAPs, if their number is higher than the PUs

available; a Neuron PU (NPU) that computes scaling, batch normalization, ReLU,

max-pooling and produces 256 output neurons per clock cycle[31]; a central control

unit that schedules the architecture [31].

Processing unit The PU is able to compute the convolution since it is composed

by multiple filters (MFIR) and their outputs are added together in multiple fast

adder units (FAUs), which are made by optimized compressor tree structure based

on 4:2 and 3:2 compressor circuits.

Adder tree All the multiplications have been removed from by the binary con-

volutional layers and so the critical path will be in the accumulation part. In one

convolution, an output neuron is obtained by adding together wkernel × hkernel ×
window size = 36 data.

Full adder

Full adder

Cin

WkZkYkXk

Coutk

SumkCarryk

Figure 1.56: 4:2 compressors used in [31]
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The compressor tree is made by 3:2 and 4:2 compressors, and in particular, the

last ones do not have a carry chain, so the delay is not heavily influenced. The

signals Coutk and Cink are not used, producing an approximated result.

Approximate Binary Multiplier Since the design uses 1’s complement repre-

sentation, an approximated version can be used, in which the adder which adds 1

to obtain the 2’s complement is not implemented.

0

1NOT

Binary weight

Figure 1.57: Approximate multiplier. Source: [31]

This implementation brings a 60% area reduction.

Approximate Adder [31] The adder tree inaccuracies have been alleviated by

dividing the adder into two parts (N:k) part and (k-1:0) respectively. The input

carry bit of the N:k part is taken from the k-th bit of input data in the (k-1:0) part

1. For the higher (N-k) -bits subadder, its input carry bit Cin is approximately

speculated using the k th bit of one of the input data, reducing datapath delay

and hardware complexity;

2. When the k is set to half of the word size, the hardware efficiency gain can

reach the maximum, but the error rate increases with k. The error obtained

with this approach is ±2k , where k is the split position.

NPU, batch normalization unit [31] As already said, the NPU is able to

compute the batch normalization, activation (ReLU) and max pooling, in particular

8 convolved neurons passes through it [31]. In order to save power, a ”disable” signal

is used to turn off the NPU when it is not needed. Since the ReLU function is 0 for

all the elements below 0 (max(0,x)), a latch (piloted by the sign of the incoming bits)
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is introduced before the quantization unit in order to block the data propagation in

the case of negative result coming from the adder.

Implementation results and comparison

Results from [31] are reported in Table 1.38, including the structure of the VGG-

16 CNN model used. The technology used in the 130nm, while it is possible to

demostrate that from 90nm the frequency reaches a maximum value of 650MHz. In

Table 1.37 are reported the bit-lengths and memory sizes of the different building

blocks in the architecture:

Table 1.37: Bit-lengths and memory used. Source: [31]

Bit-Lengths

IMEM ISU Adders(k=3) ACCA Adders (k=4) NPU

6 13 15 16

Memory sizes [KB]

IMEM FMEM ACCA NPU

21.6 295 53.76 2
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Table 1.38: Results Source: [31] with corresponding CNN structure. An OPS is a MAC operation per second.

Technology Dataset

130nm SMIC ImageNet

CNN STRUCTURE Total
Power
[mW]

Frequency [MHz] Peak
perfor-
mance
[TOPS]

Area [mm2] Core
voltage

[V]

Layer Type IFMAP
size

Kernel
size

# oper-
ations

[MOPs]

Time
required

[ms]

Throughput
[GOP-

S/s]

768.7 190 3.5 44.957 1.08

1 Conv 224x224x3 3x3x64 183.04 0.34 549.67

2 Conv + Pooling 224x224x64 3x3x128 3709.01 4.17 882.33

3 Conv 112x112x128 3x3x128 1854.5 1.94 941.53

4 Conv + Pooling 112x112x128 3x3x128 3704.19 3.86 949.03

5 Conv 56x56x128 3x3x256 1852.1 1.94 937.7

6 Conv 56x56x256 3x3x256 3701.78 3.89 941.4

7 Conv + Pooling 56x56x256 3x3x256 3701.78 3.89 941.4

8 Conv 28x28x256 3x3x512 1850.89 2.22 828.16

9 Conv 28x28x512 3x3x512 3700.58 4.45 829.58

10 Conv + Pooling 28x28x512 3x3x512 3700.58 4.45 829.58

11 Conv 14x14x512 3x3x512 925.15 1.3 709.5

12 Conv 14x14x512 3x3x512 925.15 1.3 709.5

13 Conv + Pooling 14x14x512 3x3x512 925.15 1.3 709.5

Total - - - 30733.9 35.05



Chapter 2

Comparisons

In this chapter, it is proposed a comparison in terms of performance among the

different architectures analyzed so far in the state-of-the-art.

2.1 Algorithm accuracies

All the accuracies arising from the different algorithm implementations are com-

pared. In order to compare correctly the results, the same reference architecture

(such as AlexNet) and dataset are chosen.

TOP-1 and TOP-5 errors

The top-1 error comparison is reported in the following plot:
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Figure 2.1: Comparison among different algorithms (ImageNet): top-1. AlexNet:
[11], XNOR-Net: [12], BWN: [12], BinaryConnect: [13]. BW-BI: [13]

The architecture analyzed is the AlexNet for all the cases and the same dataset

(ImageNet) has been chosen. In particular, starting from the left side, the first

refers to the classical floating point implementation, in which the accuracy reaches

56.6% [11]. Passing to binarized alternatives, it is possible to observe that the

accuracy obtained in the BWN [12] (binary weight network) case is very high: here

the weights are binarized with an extra scaling factor, while the inputs are kept

in floating point precision. Reducing the precision of the weights and keeping a

scaling factor, allow to obtain similar accuracy to the ideal floating point case. If

the weights are binarized, the convolution operations (MACs) are transformed into

simple additions/subtractions, because they assume only ±1 values. Similarly for

the cases of XNOR-Net [12] (both weights-input binarized with extra scaling factors

K and α), BinaryConnect [13] (only weights are binarized without any extra scaling

factors) and BW-BI [13] (both inputs and weights are binarized without scaling

factor), it is possible to observe that the first one reaches better results than the
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others, because some additional terms during the convolution operation are used

and they guarantee to reach a good result:

ConvXNOR ' (sign(I) ~ sign(W)) · αK (2.1)

BinaryConnect and BW-BI (BNN) can be used in small datasets, while XNOR-Net

represents a good trade-off between complexity and accuracy.

In the following figure is reported the top-5 error values for the different networks

analyzed:
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Figure 2.2: top-5 errors for the same dataset ImageNet. AlexNet: [11], XNOR-Net:
[12], BWN: [12], BinaryConnect: [13]. BW-BI: [13]
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Also in this case depicted in Figure 2.2, the architecture analyzed is the AlexNet

for the first five cases: the XNOR-Net reaches a very good performance in term of

accuracy. In the last bar, a deeper fully precision convolutional neural network is

reported (ResNet-18), in which there are up to 18 convolutional layers: the precision

is higher than the AlexNet because increasing the number of layers improves the

accuracy. The last graph proposed is the top-1 error in the case of CIFAR-10 dataset,

which is far less complicated than ImageNet and so the accuracy is expected to be

higher than the previous plot for all the cases:
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Figure 2.3: Accuracy comparison for CIFAR-10 dataset. XNOR-Net: [12], BWN:
[12], BinaryConnect: [13], Ternary: [14]

The ternary network has been analyzed: setting to 0 some of the weights of the

network produces an acceptable accuracy result for simple datasets with a lower

power.
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2.1.1 Performance comparisons

B ATTENTION B
The comparisons presented here are rough estimations! The data reported are re-

formulated considering linear dependencies. All the specific cases and distinctions

are not considered (for example area of the array w.r.t area of the entire chip), since

the data provided by the documents may not consider this difference. Some assump-

tions have been made (as described in the following part), but it is not guaranteed

their correctness and accuracy. Unfortunately not all documents analyzed have been

considered for the comparison, since some of them don’t provide the parameters es-

timated, because focused on a different topic (for example accuracy). In order to

correctly reproduce a more accurate comparison, the individual cases should be re-

produced with the same benchmark model (such as AlexNet) and the same neural

network type (CNN or MLP).

Number of neurons

The number of neurons has been computed to compare the architectures in terms

of performance, in fact it is possible to normalize some network parameters (such

as power, energy, area etc.) with different structures. The values obtained with

this normalization are expressed as parameter per number of neurons. To do this

estimation, consider the AlexNet network as an example:
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Figure 2.4: AlexNet architecture from [11]

Taking the first layer, the input has 96 feature maps of 55x55 pixels. Each pixel

can be considered as a neuron, so the total number of neurons in the input layer is:

#neurons1st = 55× 55× 96 = 290400 (2.2)

Adding all the number of neurons of individual stages, it is possible to obtain the

total value, which results equal to:

#neuronsAlexNet = 659272 (2.3)

This parameter depends on which parameter has to be evaluated: for instance,

if area/neuron is considered, the value to use is the effective number of neurons

elaborated by the architecture. If instead the energy is considered, this parameter

becomes the total number of neurons of a particular benchmark model (AlexNet for

instance). In the following parts, each case is analyzed and the number of neurons

(real or effective) is chosen.
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Number of neurons

The other network’s number of neurons has been computed as follows:

1. MLC-STT [15]: by looking at the scheme proposed in section 1.3.1, the con-

volutional neural network has a number neurons which results equal to:

#neuronsMLC = 6× 28× 28 + 16× 10× 10 + 84 = 6388 (2.4)

This is a binary neural network (XNOR-Net).

2. SOT [16]: the SOT architecture uses AlexNet BCNN as reference network as

described section 1.3.2. The total number of neurons is 659272 as already said.

This is a binary neural network (XNOR-Net).

3. OPNE-IPNE [26]: the network realized in [26] is a MLP with 6 PIMs of 484-

144 neurons as described in Table 1.5.1. The total number of neurons is given

by:

#neuronsOPNE-IPNE = 6× (144 + 484) = 3768 (2.5)

This is a ternary neural network (XNOR-Net).

4. Neurosynaptic core [26]: MLP with 1024x256 structure. The total number of

neurons in this case is 256;

5. XNOR-RRAM [19]: only the MLP structure has been considered for the neu-

ron’s count. In particular, as reported in section 1.4.2:

#neuronsXNOR-RRAM = 3× 512 + 10 = 1546 (2.6)

This is a binary neural network (XNOR-Net).

6. Mixed-precision [21]: the network structure is 784-250-10 and so the total

number of neurons is 260. Weights are binary while inputs are converted into

a voltage range;

7. Synaptic weight [22]: two MLPs of 784x10 single layer and 20 parallel layers
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of 784x10 are implemented. The total number of neurons is 10 and 200 re-

spectively. The choice of using parallel arranged layers allows to improve the

accuracy. Weights are binary, while inputs are converted into a voltage range;

8. Stochastic [28]: LeNet-5 network topology is considered. The stochastic ap-

proach is used only in the first layer of this CNN, so the total number of

neurons is obtained as:

#neuronsstochastic = 32× 28× 28 = 25088 (2.7)

9. HMC [29]: convolutional neural network which is computed by fetching one

layer per time into the 3D stacked memory. Since the performance provided

in [29] refers to a single convolutional layer per time, a rough estimation can

be made considering:

#neuronsHMC =mean(124× 124× 3,120× 120× 3,117× 117× 4,

114× 114× 5,112× 112× 3,108× 108× 3) = 46948
(2.8)

This implementation is in floating-point representation.

10. Chain-NN [30]: the first five convolutional layers of the AlexNet fixed-point

are used in this implementation, so:

#neuronsChain-nn = 55× 55× 96 + 27× 27× 256+

+ 13× 13× 384 + 13× 13× 256 = 585184
(2.9)

11. Energy-efficient [31]: the benchmark model used is VGG-16 (section 1.7.4)

with Binary Weight network (BWN) approximation, so α is computed. The
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total number of neurons is given by:

#neuronsee = 224× 224× 64 + 112× 112× 128 + 112× 112× 128+

+ 56× 56× 128 + 56× 56× 256 + 56× 56× 256+

+ 28× 28× 256 + 28× 28× 512 + 28× 28× 512+

+ 14× 14× 512 + 14× 14× 512 + 14× 14× 512+

+ 7× 7× 512 = 9759232

(2.10)

It is presented a comparison in terms of number of neurons of the analyzed imple-

mentations from the state of the art.

Table 2.1: Number of neurons (real) of the analyzed architectures

Architecture Number of neurons (real) Network type Technology

MLC-STT[15] 6388 XNOR-NET (binary) MTJ

SOT [16] 659272 XNOR-NET (binary) MTJ

OPNE-IPNE [24] 3768 XNOR-NET (ternary) SRAM

Neurosynaptic core [26] 256 Binary weight SRAM

XNOR-RRAM (MLP) [19] 1546 XNOR-NET (binary) RRAM

Mixed-precision [21] 260 Binary weight RRAM

Synaptic weight [22]
1 layer 10 Binary weight

RRAM
20 layers 200 Binary weight

Stochastic [28] 25088 Fixed point OOM

HMC [29] 281688 Floating point OOM

Chain-NN [30] 585184 Fixed point OOM

Energy efficient [31] 9759232 BWN OOM
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Normalized energy

In Figure 2.5 it is reported a comparison between the normalized energy of different

architectures:

Figure 2.5: Energy comparison: the higher is better. MLC-STT: [15], SOT: [16],
OPNE-IPNE: [40], Neurosynaptic core: [26], Stochastic: [28], CPU-CLU: [29]

In this case (and in the all the others analyzed after), it is used a normalization

which, scales the different energies between 0 and 1. The value that reaches 1

has better performance in terms of energy. Since the energy values per number of

neurons are very small, on Y axis it is used a logarithm function as follows:

NormEnergy =
Energy[J]

#neurons
(2.11)
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f

(
Energy

1J

)
=

log

(
NormEnergy

1J

)
min
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log

(
NormEnergy

1J

)] (2.12)

The minimum value of the logarithm at the denominator is a negative value and

so the bar chart is projected from negative Y values to positive, resulting into

the Figure 2.5. The absolute energy values of the different architectures are the

following:

Table 2.2: Energy values picked from the documents. The HMC values are com-
puted by taking the sum of the reported energies and the network considered is
the entire CNN proposed by [29]. The OPNE-IPNE energy value has been com-
puted considering [40]: in the result section, the total energy of 0.73J has been
computed considering 1 million transaction of the MNIST dataset. This value has
been obtained by dividing the original value of 0.73J by 1 million.

Architecture Number of neurons Energy [J] Energy/neuron [J]

MLC-STT 6388 380.0n[15] 59.48p

SOT 659272 310.4µ[16] 470.9p

OPNE-IPNE 3768 730.0n [40] 193.7p

Neurosynaptic core 256 - 45.0p[26]

Stochastic 25088 542.4n [28] 21.6p

HMC
CPU 281688 59.8 [29] 0.212m

CLU 281688 1.1 [29] 3.83µ

The results of the in-memory implementations are compatible with the expecta-

tions:

• MLC-STT: since this architecture is based on MTJs which are analog com-

ponents, the energy consumption is not heavily influenced because the opera-

tions are performed with currents manipulations and resistance variations in

the mesh array. A single neuron consists into a couple of resistances and a

modified sensing circuit that performs the product computation required in

the XNOR-net. Additional external units are employed to compute the batch

normalization, pooling, K and α coefficients.
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• SOT: similarly to the previous case, the neuron is composed by a single MTJ,

so two active cells are needed to compute a logic function at the same time,

requiring more energy. The computation is performed by a simple current

comparator, which performs all the logical functions required.

• OPNE-IPNE (SRAM) [24]: the computation cycle in [40] consists in alternat-

ing OPNE and IPNE computation. Once OPNE part finishes, IPNE starts to

produce a serial output. The serial output is then fetched from the following

OPNE, which starts its computation concurrently:

Figure 2.6: Macro-pipeline structure [40]. Once OPNE terminates, IPNE starts
producing a serial output: this is elaborated by the following OPNE.

All the components are working in parallel until the data-stream is not fin-

ished, and considering that an OPNE and an IPNE are composed by XNOR

gates and adders to compute the pop-counting operation, this implies higher

energy consumption. This network is composed by 484 OPNEs, each of them

with a XNOR, an adder and a register for accumulation. The 144 IPNEs

instead are composed by 144 XNORs and an adder tree: by iterating this

consideration to the overall dimension of the neural network, the energy will

reach 730 nJ for a single dataset transaction. Considering the energy/neuron,

this will be worse than the MLC solution (probably because of its compact

structure and multiple bits into a single cell) but better than SOT.

• Neurosynaptic core: this is based on an analog computation, which updates

the membrane potential of the neuron, producing a spike under a particu-

lar condition. SRAM is used as an analog component, reducing the energy

required.
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Considering now the OOM architectures:

• Stochastic [28]: produces the best result in term of energy required per neu-

ron, because of its simple computation. The bit-stream length is 8 bit and

adder/multiplier are replaced by a simple AND gate/multiplexer which are

able to reduce the energy of the system. The architecture is in fixed point

precision and only one layer of the chosen CNN is performed with a stochastic

approach.

• HMC [29]: since the structure of this network is based on hybrid-memory

cube, the data travels along distances that are reduced by means of TSV.

The big drawback in terms of energy of the in-memory structures are the

internal interconnections, which are based on very long bit-lines/word-lines.

By looking at HMC structure, it is possible to see that the data are fetched

from DRAM layers and computed in the floating point units and since the

computation is divided in vaults, all the logic units perform the convolution

simultaneously. The total number of vaults is 16, so considering the worst case

all the computational units are active at the same time. As expected, these

architectures have the worst resulting energies respect to the other cases: the

CLU has better perfomances that the CPU one.

Normalized latency: rough estimation

Also an indication on latency is given in some papers. In order to evaluate properly

the differences between the architectures, the following procedure has been used:

1. A neural network (CNN or MLP) has a certain number of layers, which is

determined by simply counting them. In the case of CNNs, pooling and nor-

malization layers are not considered;

2. The architectures analyzed in the documents are not the same! In certain

cases, the dimensions of the array influence the delay (for example the XNOR-

RRAM implementation in section 1.4.2). In these cases, a normalization has

to be considered, but the dependency between delay-array size could not be

linear. Each architecture is able to process a convolutional window with a

certain number of neurons processed per time. This number influences the
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array dimensions (in case of in-memory architecture). This problem is also

present in MLPs, because they can be considered as convolutional networks

too. The number of effective neurons processed per time could normalize the

resulting delays by rescaling the networks to the same dimensions.

A rough estimation has been done considering all the cases:

• MLC-STT [15]: by looking at MLC architecture in section 1.3.1, it is possible

to observe that there are 7 layers. Excluding pooling layers and the last output

layer (simply gives a classification):

#layersMLC-STT = 4 (2.13)

The number of neurons depends on which layer are considered during the

actual computation, so a mean value can be computed:

#neuronsMLC-STT(eff) = mean(6× 28× 28,16× 10× 10,120,84) = 1627 (2.14)

The delay value given by [15] is a cycle time, in which a single convolu-

tion is performed. It is equal to 27.24ns and it can be considered as a

time/(layer*neurons), since only one convolution provides the output of a sin-

gle neuron, so layer-neurons normalizations are not required.

Delaynormalized(MLC) = 27.24ns (2.15)

• SOT [16]: the SOT architecture uses AlexNet, so the total number of layers

is 8. Also here a mean value is considered, that indicates how many neurons

are processed per time:

#neuronsSOT(eff) = mean(55× 55× 48× 2,27× 27× 128× 2,

13× 13× 192× 2,13× 13× 192× 2,13× 13× 128× 2,

2048× 2,2048× 2,1000) = 82409

(2.16)
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The delay given by [16] is 10.7 ms, which is the total delay with batch nor-

malization, scaling factors and convolution computation. This value can be

divided by the number of layers and the neurons:

Delaynormalized(SOT) =
10.7ms

8 · 82409
' 16.3ns (2.17)

• OPNE-IPNE [40]: since the network is an MLP with 6 PIMs of 484-144 neu-

rons, the total number of layers is 13. The number of neurons processed per

time is always 484 (by observing the macro-pipelined structure in Figure 2.6),

so:

#neuronsOPNE-IPNE(eff) = 484 (2.18)

The clock frequency of 400MHz is given and for this estimation, 1 neuron com-

putes its output after 484 clock cycles, in fact OPNE computation constrains

the required time as indicated in Figure 2.6:

Delaynormalized(OPNE-IPNE) = fck × 484 = 2.5ns× 484 ' 1.21µs (2.19)

• Neurosynaptic core [26]: with an MLP structure, the total number of neurons

is always 256 with only 1 layer. The delay of 1ms indicated by [26] is a cycle

time, and so every millisecond the output is evaluated:

Delaynormalized(Neurosynaptic) =
1ms

256
' 3.91µs (2.20)

• XNOR-RRAM [19]: here the case is a little bit different, because the CNN is

implemented with subarrays having the same dimensions (128x128 as already

said in Table 1.4.2) [19] arranged in parallel. Their outputs are fetched by

the remaining logic, that computes the convolution. Also the MLSA bit level

influences the delay value because of its complexity. For the sake of simplicity,

the total number of layers in the MLP implementation is considered, which

results equal to 4, while the total number of neurons is given by:

#neuronsXNOR-RRAM(eff) = mean(512,512,512,10) ' 386 (2.21)
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The value given by [19] is the delay of a single subarray of 128x128, without

considering the cost of the decoding and other computations normally executed

in a XNOR-Net, and it is equal to 16.69ns, which is already the delay required

for the computation of a single neuron, so:

Delaynormalized(XNOR-RRAM) = 16.69ns (2.22)

• HMC [29]: since the architecture is fetching one layer per time into the 3D

stacked memory, an average delay is estimated, given by [29] and divide it by

1. [29] provides two delay results: one referred to a CPU floating point imple-

mentation while the other to HMC(CLU) (already specified in section 1.7.2).

The mean number of neurons processed per time is given by:

#neuronsHMC(eff) =mean(124× 124× 3,120× 120× 3,117× 117× 4,

114× 114× 5,112× 112× 3,108× 108× 3) = 46948

(2.23)

So the corresponding delays are computed from the data provided in seconds:

Delaynormalized(HMC-CPU) =

1.149 + 1.0808 + 0.6643 + 0.832 + 0.808 + 0.873 + 0.809

7 · 46948
' 18.91µs

(2.24)

Delaynormalized(HMC-CLU) =

0.0138 + 0.0133 + 0.0086 + 0.0165 + 0.0091 + 0.0105 + 0.0102

7 · 46948
' 249.52ns

(2.25)

• Chain-NN [30]: only 5 convolutional layers of AlexNet are used in [30]. The

delay given by [30] of 353.17ms is a total delay, so it has to be divided by the

total number of layers and number of neurons. As specified in [30], the total

number of neurons processed per time is equal to Cin × (2K − 1)×win where

123



2 – Comparisons

K is the kernel size of the AlexNet. Also here an average is considered:

#neuronschain-nn(eff) =mean(224× (2× 11− 1),55× 96× (2× 5− 1),

27× 256× (2× 3− 1),13× 384× (2× 3− 1),

13× 384× (2× 3− 1)) ' 27340

(2.26)

The resulting delay is:

Delaynormalized(Chain-NN) =
353.17ms

5 · 27340
' 2.58µs (2.27)

• Energy-efficient [31]: VGG-16 structure has 13 layers and the value given by

[31] of 35.1ms is the total delay of the architecture that has to be divided by

the total number of layers and by the number of neurons. Considering the

overall benchmark model, the effective number of neurons can be computed

as:

#neuronsee(eff) =mean(224× 4× 64,112× 4× 128,112× 4× 128,56× 4× 128,

56× 4× 256,56× 4× 256,28× 4× 256,28× 4× 512,

28× 4× 512,14× 4× 512,14× 4× 512,14× 4× 512,

7× 4× 512) ' 43008

(2.28)

So the delay is:

Delaynormalized(ee) =
35.1ms

13 · 43008
' 63ns (2.29)

In order to compare the values obtained, a bar plot is provided, in which on the Y

axis there are the normalized latency values rescaled from 0 to 1 as already done in

the previous case:
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Figure 2.7: Delay comparison: the higher is better. MLC-STT [15], SOT [16],
OPNE-IPNE [40], Neurosynaptic core [26], XNOR-RRAM [19], HMC [29], Chain-
NN [30], Energy-efficient [31]

1. MLC-STT [15]: The delay obtained is very small, because of the internal

structure: in fact multiple bits are stored in the same cell and this reduces

the costs. The network used is smaller than the other ones, and this can

affect the delay, since the bit-lines/word-lines lengths increases with network’s

complexity. All the computations are done in parallel, so a convolutional

window is computed by multiple CIM arrays and this speeds up the execution

time. Since it is an analog solution based on current levels comparison to

compute the logic operations, this solution will be faster than a digital one: in

general this concept is valid for all the analog solutions discovered;

2. SOT [16]: This case is very similar to the previous one, since it is an analog

solution. The cells are composed by a single MTJ [16] and multiple cells are
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activated simultaneously to perform a logic function. In general, the perfor-

mance is expected comparable to the previous case based on MLC;

3. OPNE-IPNE [40]: the cost of the neuron’s intrinsic structure (composed by

three ram cells, a XNOR, adder and register as already said) is heavy in

terms of delay. The architecture is constrained by the clock frequency, the

corresponding critical path and the OPNE computation, which influences the

execution time.

4. Neurosynaptic core [26]: the delay is determined by the cycle time of 1ms,

so an entire result is produced with a frequency of 1kHz. The architecture is

based on the neuron’s membrane potential update, which is an analog approach

based on comparators that slows the system;

5. XNOR-RRAM [19]: better results are obtained in this case thanks to parallel

computation with multiple sub-arrays. A logical operation is performed by

fetching data from two RRAM cells and the resulting current is compared

with a reference. Also in this case, the considerations made for an analog

solution are valid;

6. HMC [29]: this case is very interesting, because also the performance that will

be obtained with a CPU are reported. Here the computations are in floating

point and, as expected, the CPU case is the worst in terms of execution time.

The usage of a 3D memory stack (CLU) allows to reduce the execution time

due to the reduced wire lengths: the main characteristic of 3D memories with

logic, allowing to obtain better performance than OPNE-IPNE case, because

by reducing the wire length, the clock frequency can be higher;

7. Chain-NN [30]: good result is obtained also by the Chain-NN, which is a

pipelined structure in fixed point representation. The pipeline allows to reduce

the critical path delay and the fixed-point numbers reduce the computational

cost;

8. Energy-efficient [31]: this architecture is a BWN OOM which is able to reduce

the data fetching from the external memory by using efficient techniques. Com-

putations are performed in an approximate form (CA1 instead of CA2) with
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error compensation: this reduces the multiplier by ±1 into a simple structure

as indicated in section 1.7.4. The usage of simpler logical structures allows to

reduce the clock frequency required and to speed up the operations: the delay

is comparable to an analog solution.

Normalized area: rough estimation

Also in this case, a similar approach has been applied. The area taken from the

documents has been divided by an effective number of neurons that a specific archi-

tecture process per time, in order to obtain a normalized area per number of neurons

which results comparable. The areas are listed below:

Table 2.3: Area values of different architectures.

Architecture Number of neurons (eff) Area [mm2] Area/# neurons [mm2]

SOT [16] 82409 5.28 64.1×10−6

OPNE-IPNE [40] 3768 3.90 1.0×10−3

Neurosynaptic core [26] 256 4.20 16.4×10−3

XNOR-RRAM [19] (MLP) 386 1.686 4.36×10−3

Stochastic [28] 25088 1.32 52.7×10−6

HMC [29] 46948 729.00 15.5×10−3

Energy-efficient [31] 43008 44.96 1.0×10−3

The number of neurons of the OPNE-IPNE [40] are the real number of neurons,

since the area refers to the entire implementations with 6 PIMs. Same for Neurosy-

naptic core. The stochastic case instead considers only the first layer of the CNN, so

also in this case, the effective number of neurons are the real one already calculated.

The other cases’ values are picked from the previous part. All the areas indicated in

the table are obtained from the papers, exception for the XNOR-RRAM, that has

been computed as:

AreaXNOR-RRAM = #sub-arrays · Areasubarray(128x128) = 36× 46824.1µm2 ' 1.69mm2

(2.30)
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Figure 2.8: Area comparison: the higher is better. SOT [16], OPNE-IPNE [40],
Neurosynaptic core [26], XNOR-RRAM [19] (MLP), Stochastic [28], HMC [29],
Energy-efficient [31]

The best results are obtained in the stochastic and SOT [16] case, since the

stochastic [28] is very efficient in terms of computational blocks used. A convolution

operation (which is composed by multiply-and-accumulate sequences) is simply re-

alized with ANDs (multiply) and multiplexers (accumulate). Probably this solution

is also the slowest one, since the number si transformed into a bit sequence (for

example the number 15 represented on 4 bits is transformed into a sequence of 15

bits). The SOT case allows to reach a good area performance, since the structure of

the array is composed by a single MTJ. HMC [29] has bad area performance, due

to its 3D structure and floating point representation, in fact the whole chip has an

area of 729 mm2, in fact floating point units are required and this increases the area

occupation. OPNE-IPNE [40] value is very good, considering the neuron’s structure

and has similar performance to the XNOR-RRAM [19] case. The area provided by
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[40] is the chip area, and so it considers also the control circuit. The neurosynaptic

core [26] occupation is degraded by the analog circuits that perform the membrane

potential update: this is a slow, big but energy efficient solution. Last but not

least, the Energy-efficient solution [31] allows to reach good perfomances in terms

of area (since the implemented neural network is a Binary weight network, so K

computation is not performed).

2.1.2 Conclusions

1. MLC-STT: very good in terms of energy/latency. Since it is an analog so-

lution, it is subjected to noise errors and unwanted parasitic effects. Small

networks (or array partitioning) can be realized with this solution;

2. SOT: good in terms of energy/latency/area. Same considerations of MLC are

valid;

3. OPNE-IPNE: good energy/latency/area. Since it is a synchronous architec-

ture, latency is influenced by critical path but the calculation accuracy is

higher than the previous cases since it is all implemented in digital;

4. Neurosynaptic core: worse latency/area resuts but good energy achieved. The

motivations have been already explained previously;

5. XNOR-RRAM: very good in terms of latency and area, so a fast solution can

be realized with RRAM technology. Partitioning is required to reduces the

parasitic effects;

6. HMC (CLU): worse area/latency/energy performance w.r.t the others, but

reaches the highest precision due to floating point computations. It is an

interesting application of a 3D memory, that allows to reach very good per-

formance w.r.t. the CPU based neural network implementation;

7. Energy-efficient: Good in terms of area/latency due to its optimizations. Com-

putations are performed in fixed point and multipliers are replaced by approx-

imated adders, in order to reduce power/latency and energy.
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Chapter 3

Software implementation

The neural network type that has been chosen is the XNOR-Net with MNIST

dataset, since it has good trade-offs in terms of accuracy, power and latency. The

steps used to implement a XNOR-Net are the following:

1. Neural network implementation and training with Python using Tensorflow

and Keras;

2. Parameters extracted from the Python implementation are fed to a MATLAB

model for verification purposes.

The chosen dataset is the smallest one, because of the shorter simulation/synthesis

time required by the VHDL model.

3.1 Network model

The neural network model that has been used in this analysis is the following one:
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3.1 – Network model

Stride = 1

Kernel size = 2

#Filters = 6

Pool area = 2x2

stride = 2

13 13 13

1
0
1
4

14

14

Figure 3.1: Neural network model

As it is possible to see, the network structure is composed by input-image,

max-pooling, convolution, batch normalization, ReLU, flatten and fully

connected layers. All the layers are zero-padding, it means that the dimensions of

the feature maps, stride and filters have been chosen accordingly, avoiding input-

resizing. In the following part is presented a description of the layers, but before

some notations are introduced:

Symbol Description
win Input image dimension
wfilter Kernel window dimension
wout OFMAP size, output dimension
cout Number of output channels
cin Number of input channels
h Height of the memory
w Width of the memory

Table 3.1: Notations used

• The input layer is a matrix of dimension 28x28x1 pixels which represents a

digit from MNIST handwritten digit dataset;
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• Max-pooling layer is the first computational layer encountered in the neural

network. The parameter used in this layers are the following:

win = 28

wfilter = 2

stride = 2

wout =
win − wfilter

stride
+ 1 =

28− 2

2
+ 1 = 14

The pooling layer has been placed before the convolutional layer: this tech-

nique called earlier pooling already used in [31], decreases the power required

and computational complexity in the following layers, since it reduces the di-

mensions of the input from 28x28 to 14x14 and so the convolutional layer has

to process a smaller input image, without losing too much precision;

• Convolutional layer takes the pooled image and convolves it with 6 different

kernels and so 6 OFMAPs are obtained, one for each kernel. The parameters

used in this layer are the following:

win = 14

wfilter = 2

stride = 1

wout =
win − wfilter

stride
+ 1 =

14− 2

1
+ 1 = 13

Here no bias values have been applied in order to reduce the complexity;

• After the convolutional layer, Batch normalization (”batchnorm”) is real-

ized. Each IFMAP is normalized w.r.t mean and variance that are computed

over a batch. Batchnorm layer is useful during the training phase, because it

speeds up the convergence of the training algorithm (SGD for example) and

improves stability. Another two learnable factors called γ and β are considered

in the batchnorm, producing the following output:

x̂ =
x− µ
σ
· γ + β (3.1)
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3.2 – Network’s computational model

• ReLU is the activation function used in the network to allow better training

performances. Compared to other activation functions, this is the simplest

one, since it simply takes the maximum between 0 and its input. In hardware,

this is simply realized by a multiplexer selecting between input and 0 based

on the sign of the input itself.

ReLU = max(0,x) (3.2)

• Flatten layer transforms the inputs (IFMAPs) into a vector, so if 6 IFMAPs

of 13x13 pixels are considered, the output vector dimension is given by:

wout = w2
in · cout = 13 · 13 · 6 = 1014 (3.3)

This vector is fed to the fully connected part (MLP);

• Fully connected takes the output of the flatten layer and by means of a MLP

with size 1014-10 gives the classification in output. The highest result coming

from the last 10 neurons corresponds to the output classification.

3.2 Network’s computational model

As already said, the network’s model is a XNOR-Net, it means that the convolution

is approximated as

I ∗W ≈ (sign(I) ~ sign(W)) ·Kα (3.4)

Where ~ represents XNOR-Bitcount operations and K and α are defined as:

K = |Input| ∗


1

w2
filter

1

w2
filter

. . .

1

w2
filter

1

w2
filter

. . .

...
...

. . .

 (3.5)
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The size of the 1
w2

filter
-matrix is the same of the kernel’s one.

α =

∑N
i=1 |Wi|
N

(3.6)

As it is possible to see, K is a simple matrix containing the same elements, while α

is a scalar. Here it is reported an example:

0.325 0.26

Figure 3.2: Xnor net computation example

Two computations are reported: the real case, which simply executes the sum of

products of the kernel with the windowed part of the input and the XNOR net. The

steps to compute the output in the second case are:

1. Computation of α as the mean of the absolute sum of the kernel elements;

2. Computation of K as the windowed part of input convolved with the matrix
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3.2 – Network’s computational model

defined before. In this case the computation is defined as:

K(1,1) = | − 0.4| · 1

22
+ |0.2| · 1

22
+ |0.3| · 1

22
+ |0.4| · 1

22
= 0.325 (3.7)

The other values are obtained with the same approach. K is a mean of the

input sub-matrix considered by the convolutional window. If more than one

input channels are evaluated, K is computed as the element-wise absolute sum

over all the IFMAPs divided by the number of channels and convolved with

the 1
w2

filter
-matrix defined before:

K =

∑cin
c=1 |Inputs(:,:,c)|

cin
∗


1

w2
filter

1

w2
filter

. . .

1

w2
filter

1

w2
filter

. . .

...
...

. . .

 (3.8)

3. Binarization of inputs/weights by taking the sign. When the input/weight is

0, the sign function returns -1, so:

Binarize(x) =

−1, when x ≤ 0

+1, when x > 0
(3.9)

4. Binary convolution between the binary-input and binary kernel. Considering,

for example, the first result, this step is perfomed as:

BinConv(1,1) = −1 · (−1) + 1 · 1 + 1 · 1 + (−1) · 1 = 2 (3.10)

5. Xnor-convolution: the output is then computed by the element-wise multipli-

cation between the binary OFMAP and K. This new matrix is then multiplied

by the scalar alpha. Considering the first element of the OFMAP:

OFMAP(1,1) = BinConv(1,1) · α ·K(1,1) = 2 · 0.4 · 0.325 ' 0.26 (3.11)

135
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These assumptions are valid in the case of a convolutional layer. If the fully con-

nected layer is considered, the K computation is different, since the sub-matrix

considered has the size of the entire input.

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

Figure 3.3: Fully connected layer - toy example

In order to compute K, the thing to consider is that the actual dimension of the

kernel is equal to the number of input neurons. K becomes a scalar which is simply

given by the mean of absolute input values:

Kfc =

∑N
i=1 |Ii|
N

(3.12)

3.2.1 Python code

A software implementation of the neural network proposed has been realized in

Python and the source code is based on [51], since python with Tensorflow and

Keras allow a very easy and straight-forward realization and training of every kind

of neural network (from CNNs to MLPs). In order to reduce the complexities of

the synthesis-simulations of the VHDL implementation, the easiest CNN structure

has been chosen, that contains all the most used components in a neural network:

max pooling, convolution, batch normalization, ReLU, flatten and fully

connected. It is reported an extract of the python code used from [51]:

1. # nn parameters: specification of the parameters used in the neural network.

The batch size is the total number of images that passes at the same time dur-

ing forward/backward propagation in the training process; epochs parameter
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3.2 – Network’s computational model

specifies the number of times the entire training batch feed-forwards the neural

network. The training size in this case is equal to 60000; nb channels, img rows

and img cols specify the input dimensions, which are equal to 28x28x1; nb classes

indicates the total number of classifications that can be obtained in output,

so if MNIST is used, 10 classes can be recognized (from 0 to 9).

from binary ops import binary tanh as binary tanh op

2 from xnor layers import XnorDense, XnorConv2D

H = 1.

4 # nn parameters

batch size = 10

6 epochs = 5

nb channel = 1

8 img rows = 28

img cols = 28

10 nb classes = 10

use bias = False

2. # Learning rate schedule specify the behavior of the η learning rate during

the training phase;

# learning rate schedule

2 lr start = 1e-3

lr end = 1e-4

4 lr decay = (lr end / lr start)**(1. / epochs)

3. # BatchNorm: the parameters specified for the batch normalization layer are

epsilon and momentum. The epsilon is an additive term that allows to improve

the stability during the training process and it is used as follows:

x̂ =
x− µ√
σ2 + ε

· γ + β (3.13)

In the VHDL implementation, this term has been neglected, since it is very

small (∼ 10−5). The paramenter momentum indicates how the BatchNorm
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computes the mean and variance in each iteration step. In particular a mo-

mentum of 0.9 is translated as:

µ(t) = (1−momentum) · µ(t− 1) + momentum · batch mean(t)

= 0.1 · µ(t− 1) + 0.9 · batch mean(t)

momentum parameter allows to consider the previous mean value, improving

stability.

# BatchNorm

2 epsilon = 1e-6

momentum = 0.9

4. # MNIST loading: loads the MNIST dataset, which is composed by images

of 28x28 pixels in range 0 to 255. The total numbers of training images and

testing images are set and then scaled between 0 and 1.

# MNIST loading

2 (X train, y train), (X test, y test) = mnist.load data()

4 X train = X train.reshape(60000, 1, 28, 28)

X test = X test.reshape(10000, 1, 28, 28)

6 X train = X train.astype('float32')

X test = X test.astype('float32')

8 X train = X train/ 255

X test = X test/ 255

10

# convert class vectors to binary class matrices

12 Y train = np utils.to categorical(y train, nb classes) * 2 - 1 #

-1 or 1 for hinge loss

Y test = np utils.to categorical(y test, nb classes) * 2 - 1

5. # Neural network realization: each layer is added sequentially. A XNOR-

Net is not a standard network, as a consequence ad-hoc layers are designed,

such as the convolutional and fully connected ones. In the code, they are called

XnorConv2D and XnorDense, which executes the operations already described
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of computing α and K. The Optimizer option is set to Adam already described

in section 1.2.4.

# Neural network realization

2 model = Sequential()

model.add(MaxPooling2D(pool size=(2, 2),strides=(2,

2),name='pool1',input shape=(nb channel, img rows,

img cols)))

4 model.add(XnorConv2D(8, kernel size=(2, 2),strides=(1,1),H=H,

padding='valid',

use bias=use bias,name='conv1'))

6 model.add(BatchNormalization(epsilon=0, momentum=momentum,

axis=1, name='bn1',mode=0, trainable=True))

model.add(Activation('ReLU', name='act1'))

8 model.add(Flatten())

# dense1

10 model.add(XnorDense(nb classes, use bias=use bias, name='dense3'))

12 opt = Adam(lr=lr start)

model.compile(loss='squared hinge', optimizer=opt,

metrics=['acc'])

14 model.summary()

6. Learning rate scheduler and model building: this part trains the network with

the options described. At the end of the training, the accuracy is evaluated

and trained network parameters can be saved.

lr scheduler = LearningRateScheduler(lambda e: lr start *

lr decay ** e)

2 history = model.fit(X train, Y train,

batch size=batch size, epochs=epochs,

4 verbose=1, validation data=(X test, Y test),

callbacks=[lr scheduler])

6 score = model.evaluate(X test, Y test, verbose=0)

print('Test score:', score[0])

8 print('Test accuracy:', score[1])
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Training and binarization

During training, the propagating gradient is computed using derivatives, as already

explained in subsection 1.1.4. The activation functions of the weights/inputs are

sign functions: the derivative results equal to 0 almost everywhere. In binary neural

networks, an alternative binarization process is used and the source code is reported

here from [51]:

def round through(x):

2 rounded = K.round(x)

return x + K.stop gradient(rounded - x)

4 def hard sigmoid(x):

x = (0.5 * x) + 0.5

6 return K.clip(x, 0, 1)

def binary sigmoid(x):

8 return round through( hard sigmoid(x))

def binary tanh(x):

10 return 2 * round through( hard sigmoid(x)) - 1

def binarize(W, H=1):

12 Wb = H * binary tanh(W / H)

return Wb

The operations perfomed in this code are the following:

1. round through(x): takes as input x and rounds the value to the nearest inte-

ger. The return value has the function K.stop gradient that indicates that

the value is computed when the gradient propagation is stopped.

2. hard sigmoid(x): clipping obtained by the function x = 0.5 · x+ 0.5 and the

values 0,1. The corresponding output is:

hard sigmoid(x) =


0, when x ≤ −1

0.5 · x+ 0.5, when − 1 < x < +1

1, when x ≥ 1

(3.14)

3. binary tanh(x): is obtained by applying the round through(x) function to

the hard sigmoid(x) and rescaling the result between ±1.
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When an input/weight has to be binarized, the function binarize(W,H=1) is called

and the final result is:

binarize(x) = binary tanh(x)

binary tanh(x) = 2× round through(hard sigmoid(x))− 1

round through(hard sigmoid(x)) = round(hard sigmoid(x))

By flattening the equations:

binarize(x) =


2× round(0)− 1, when x ≤ −1

2× round(0.5 · x+ 0.5)− 1, when − 1 < x < +1

2× round(1)− 1, when x ≥ 1

(3.15)

Rounding in the (-1,1) interval can be split into two parts, since if the value of x

is less-equal than 0.5 the result is rounded to 0, otherwise to 1. This procedure

provides a piece-wise approximation of the sign function and of the estimators used

in the training process. As it is possible to discover, the value of 0 is approximated

to -1 instead of +1. In VHDL this binarization method is not used, because it is

useful only during the training process: in fact it is sufficient to take the sign of the

incoming input (exception for ”0”, which sign is considered).

Output of the program

At the beginning of the program, Python reports the neural network’s structure
summary:

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

pool1 (MaxPooling2D) (None, 1, 14, 14) 0

_________________________________________________________________

conv1 (XnorConv2D) (None, 6, 13, 13) 24

_________________________________________________________________

bn1 (BatchNormalization) (None, 6, 13, 13) 24

_________________________________________________________________

act1 (Activation) (None, 6, 13, 13) 0
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_________________________________________________________________

flatten_1 (Flatten) (None, 1014) 0

_________________________________________________________________

dense3 (XnorDense) (None, 10) 10140

=================================================================

Total params: 10,188

Trainable params: 10,176

Non-trainable params: 12

_________________________________________________________________

Train on 60000 samples, validate on 10000 samples

During training, the accuracy is continuously evaluated in order to see which is the

trend of the network to achieve good recognition rate (train accuracy). At the end of

an epoch, the network is tested and the corresponding result is called test accuracy.

The accuracy’s behavior of this simple neural network is the following:
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epoch
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Figure 3.4: Accuracies’ trend over 5 epochs and batch size of 10
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Figure 3.5: Accuracies’ trend over 5 epochs and batch size of 100

In general, increasing the number of epochs allows to achieve better accuracy

results, until the network reaches a saturation: this is determined by the complexity

of the network itself and by the total number of learnable parameters available.

Another important parameter is the batch size: the smaller it is, the higher is the

accuracy achievable within an epoch as reported in Figure 3.5. In the following plot,

it is shown how does the number of epochs influences the accuracy:
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0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epoch

0.3

0.4

0.5

0.6

0.7

0.8

ac
cu

ra
cy

model accuracy
train
test

Figure 3.6: Accuracies’ trend over 20 epochs and batch size of 100

As it is possible to see, the train accuracy behaves like a logarithmic function,

so a saturation is always reached.

Approximations

Once the network is trained, some approximations have to be considered, in order to

simplify the VHDL implementation. One of the most computational intensive part

in the neural network is the fully connected layer, in fact the computing resources

of α and K have to consider a very huge number of elements. K computation in

the fully connected layer becomes the mean of the absolute values of the inputs,

so considering the neural network model in Figure 3.1, it is a calculation over 1014

values, while α is the mean of the absolute value of each set of weights considered

separately, as shown in the following figure:
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Figure 3.7: Example of K and αi computation in the fully connected layer

To avoid this computational bottleneck, it is possible to neglect the computation

of K and α for the fully connected layer and to approximate the output of a neuron

as:

I ∗W ≈ (sign(I) ~ sign(W)) ·Kα ≈ (sign(I) ~ sign(W)) (3.16)

In order to evaluate the impact of this approximation, the neural network has been

trained with the original configuration and then in the computational model these

two parameters have been removed:

class XnorDense(BinaryDense):

2 def call(self, inputs, mask=None):

inputs a, inputs b = xnorize(inputs, 1., axis=1,

keepdims=True) # (nb sample, 1)

4 kernel a, kernel b = xnorize(self.kernel, self.H, axis=0,

keepdims=True) # (1, units)

print(K.get value(kernel a))

6 output = K.dot(inputs b, kernel b) *

kernel a * inputs a #<---- Original

8 # output = K.dot(inputs b, kernel b) <--- Approximated

To properly evaluate the effect of this approximation, an MLP network has been

built with a several number of fully connected layers:

145



3 – Software implementation

Classi�cation

output

Figure 3.8: MLP network used to test the approximation drawback. This structure
is able to achieve an accuracy of around 97% after 20 training epochs

Python’s output reports the total number of trainable parameters and the net-

work’s accuracy:

Total params: 10,039,336

Test accuracy: 0.9181

After training with 1 epoch, the network achieves an accuracy of 0.9181. Trying to

neglect K and α in the fully connected computation, the final accuracy is:

Test accuracy: 0.9155

This result is very good because by canceling two very computational-intensive parts

in the neural network does not heavily influence the total accuracy: this is because

the activations coming from the fully connected layer already contains the classi-

fication result without the usage of scaling factors, but batch normalization layers

are required to maintain good accuracy. It is also possible to evaluate the impact of

this approximation on the neural network used as reference (Figure 3.1):

Original accuracy = 0.8332

Approximated = 0.8338
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Chapter 4

Hardware implementations

In this chapter, two different VHDL implementations of the neural network depicted

in Figure 4.1 are reported, in particular an OOM and In-Memory structure.

Stride = 1

Kernel size = 2

#Filters = 6

Pool area = 2x2

stride = 2

13 13 13
1
0
1
4

14

14

Figure 4.1: Neural network model used as starting point.

These implementations are discussed and compared in terms of performance. The

steps used in hardware design flow are the following:

1. VHDL fixed-point implementation is realized and simulated with Modelsim;
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2. Synthesis and network analysis in terms of area, timing and power are per-

formed using Synopsys Design Compiler. Power estimation has been per-

formed considering the worst case: all the switching activities are equal to

1;

3. Place and Route phase with Cadence Innovus;

4. Post Place & Route power estimation using .vcd file.

The possibility to implement any kind of neural network model is discussed after

all the hardware design explanations. The model depicted in Figure 4.1 is used as

a starting point, since it is a very simple and straight-forward example.

4.1 OOM implementation

As it is possible to see in Figure 4.1, the neural network is composed by several

layers, that have different tasks. Each of them are now discussed.

4.1.1 Max pooling layer

Max pooling compute the maximum value of an input’s subset and provide it to

the output. The important parameters that max pooling layer uses are win, wfilter

and stride that determines the size of the input, the overlapped window and the

corresponding step size.

Input selection

Considering that the input’s form is a matrix, it is possible to associate to each cell

an index, representing the address of the considered input value:
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Figure 4.2: Max pooling: indexing example with win = 4, wfilter = 2 and stride = 1

In the example proposed in Figure 4.2, the first output cell (index 0) is obtained
by computing the maximum value of the highlighted input cells with indexes 0,1,4,5.
The second with the maximum value of 1,2,5,6 and so on. In VHDL it is possible
to transform the input image matrix into a vector and to store it into a register file
as shown in Figure 4.2. In general a w2

filter number of inputs are fetched and the
addressing is performed considering the following pseudocode:

current_address[N] = initial_address;

counter = 0;

if (clk’event and clk= ’1’)

counter ++;

if(counter < w_out**2)

for i=1:N

current_address[i] = current_address[i] + stride;

end
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else

for i=1:N

current_address[i] = current_address[i] + w_in*stride-(w_in-w_filter);

end

counter = 0;

end

end

In the pseudocode, the current address is computed considering the stride, win and

wfilter as follows:

1. At the beginning, current_address[N] is set to initial_address, which are

the addresses of the first pooling window (in the example 0,1,4,5);

2. For each positive clock event, a counter is increased;

3. If the value of counter is less than w2
out (output pooling dimensions), the value

added to each current_address[i] is the value of stride. In the example, if

counter < 3 then current_address[i] = current_address[i] + 1;

4. If counter has reached the value of w2
out, it means that the pooling window has

reached the end of the input columns and it has to be shifted also by rows: in
the example, if current_address = {2,3,6,7} the following addresses should
be current_address = {4,5,8,9}. To do this, the current_address has to
be added by 2 instead of 1 and the algorithm becomes

current_address[i] = current_address[i]+w_in*stride-(w_in-w_filter)

This formula has been found experimentally, in fact by multiplying win and

stride and adding to current_address, the address value obtained moves the

pooling window by a number of rows equal to stride. Finally, the pooling

region has to be shifted by columns by subtracting (win − wfilter).

5. counter is reset to 0.
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Figure 4.3: Input selection circuit

The circuit shown in Figure 4.3 works as follows: when enabled, the first multi-

plexer (left) propagates the precharging values toward the output, if enable precharge

is ’1’ and terminal count ’0’. Input preset value is stored into the final register and

the adder adds every clock cycle the input value with the stored one. If terminal

count is ’1’, it means that current_address has to be added by the new value

instead of stride. This circuit is replicated for each element and so there are w2
filter

input selection circuits in parallel that are implemented in an external unit, which

is not synthesized.

Max comparator

Once the w2
filter number of inputs are selected, they are fed to the max comparator.

It takes one input per clock cycle and compares it with a previously stored result: if

it is higher than the stored one, the new value is saved and replaces the older one.

The pseudocode is the following:

previous_value = -2^(n_bit); --minimum

counter = 0;

if(clk’event and clk=’1’)
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if(input(counter) > previous_value)

previous_value = input(counter);

end

counter++;

end

1. At the beginning, the previous_value is set to the minimum value achievable,

which is equal to -2^n_bit;

2. At each clock cycle, an input is selected and compared with the previous_value.

If the input is higher, it will be stored.

Since the comparator works sequentially, the time required to compute a single

comparation is equal to w2
filter × tck.
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Control unit

The FSM that controls the max pooling layer has the following structure:

Figure 4.4: Max pooling layer FSM

As it is possible to see, at the beginning of the algorithm, it is checked the variable

do_pool: if it is equal to 0, the pooling part is skipped by asserting the done signal
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otherwise the computations can start.

• Precharge decoder: the input selection precharges the initial_address reg-

isters (Figure 4.3), in order to select the inputs (enable and enable precharge

window are set to ’1’);

• Do pooling: waiting state, that allows to store the values of initial_address

into the corresponding registers and to start the pooling process;

• Comparator computing: the comparator starts to compute the maximum value

and in the meanwhile a counter starts. The inputs are kept until the compara-

tor has not finished, which is signaled by terminal count cmp;

• Clear comparator: once the comparator has finished, the result will be stored

and the comparator’s register will be cleared. At the same time, the input

selection will be enabled and initial_address will be incremented, pointing

to the new set of data required for the incoming computation;

• Done: once the pooling process has finished (signaled by a counter with

terminal count pool), the FSM passes into a done state, where done signal

is asserted and then into wait for start, in which the system is waiting for

a new start. The counter that asserts the signal terminal count pool counts

until w2
out, in order to process all the outputs of the pooling layer.
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Max pooling layer
clk

current_state idle PD DP comparator computing CC DP comparator computing CC DP comparator computing CC done wait for start

Count out pool 0 1 2 195 0

Terminal count pool

Enable comparator

Count comparator 0 1 2 3 0 1 2 3 0 1 2 3 0

Terminal count CMP

Input pool(0) 10 -45

Input pool(1) 15 45

Input pool(2) -34 23

Input pool(3) 35 2

Output pool 10 15 15 35 -45 45 45 45 data

Store result

RF Pool(0) 35

RF Pool(1) 45

RF Pool(2) data

RF Pool(3) data

RF Pool(195) data
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Figure 4.5: Timing diagram of the max pooling layer. Starting from idle, the FSM moves to precharge decoder
(PD), in which the external decoder is precharged with its initial values. During do pooling, the inputs are provided
to the max pooling layer and the computation starts with comparator computing, in which Count comparator
is increased until it reaches w2

filter(pool) − 1 value, that in the neural network model depicted in Figure 4.1 is equal

to 3 (4-1). When the terminal count CMP is asserted, the FSM migrates to clear comparator (CC), in which
the stored value inside the comparator is reset to the minimum. The result is stored inside the RF Pool, which is
placed outside the chip (see Figure 4.27) and it is addressed by count out pool. The entire procedure is repeated
until count out pool has not reached the terminal count pool, which is asserted when count out pool is equal
to w2

out(pool), that in the neural network model in Figure 4.1 is 196. At this point, done and wait for start are
reached, where FSM waits for a new start signal.
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Scheduling

Since the max-pooling layers are the same for both OOM and In-Memory imple-

mentations, the scheduling is analyzed only once. By looking at the control unit

depicted in Figure 4.4, the duration of the states are the following:

Table 4.1: Required clock cycles computation for max pooling layer.

State Required clock cycles Multiplicity

idle 1 1

weights precharge 1 1

precharge decoder 1 1

do pooling 1 w2
out(pool)

comparator computing w2
filter w2

out(pool)

clear comparator 1 w2
out(pool)

done 1 1

Max pooling fetches data from the RF INPUT Image and perform the pooling oper-

ation. The total number of data fetched depends on stride, win(pooling), wfilter(pooling)

which defines the size of the output data, which is equal to w2
out(pooling). For each

set of data, there is the max comparation which requires w2
filter(pooling) to complete

the computation. In the case of the neural network depicted in Figure 4.1, the total

number of clock cycles required are:

Pool time = (1 + 1 + 1 + w2
out(pool) × (1 + w2

filter + 1) + 1)× tck
= (3 + 196× (1 + 4 + 1) + 1)× tck = 1180× tck

(4.1)

4.1.2 Convolutional and fully-connected layers

The main parts composing a convolutional layer are alpha computation, K compu-

tation and XNOR Unit. Usually after a convolution are placed batch normalization

and ReLU blocks, and so they are integrated inside the convolutional layer entity.

Regarding the fully connected layer, it is quite similar to the convolution, since it

requires the same procedures (except for α and K). Now they will be discussed

the main parts composing the convolutional/fully-connected layer (from now called
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convolutional layer) and how the fully connected part can be integrated in the same

architecture.

XNOR Unit

In order to realize the convolution operation, the signs of weights/inputs are XNORed

and then XNOR results are pop-counted. The inputs that has to be XNORed with

weights are the ones selected by the kernel window, as already discussed in the sec-

tion 4.1.1. By selecting properly the inputs, their sign will be stored into a register

file and the corresponding output is fed to the XNOR circuitry.

Binary

Input

RF

Interface circuit

Figure 4.6: Example of a win = 4,wfilter = 2,stride = 1 input selection and saving
circuits. The inputs are selected from the input selector and their sign is stored into
the register file (s(0),s(1),s(4),s(5)). Then, once the saving procedure is completed,
the inputs are fetched from the Binary Input RF and XNORed with weights’
signs. The XNOR results are selected from a multiplexer (Incoming bit)
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The incoming bit (on the right of Figure 4.6) is fed to the pop-counting circuit,

which is able to transform 1,0 into +1,-1 respectively. Once the multiplexer has

completed the scanning, the final pop-result is obtained. Pop-counting has the

following definition:

Pop-Count = #1s−#0s (4.2)

A very simple circuit is used to perform the pop-counting:

Figure 4.7: Pop-counting circuit: 4 bits example

If the incoming bit is equal to ’1’, Cin of the first FA is ’0’ while the FAs’ inputs

becomes ”0001” which is added to the stored value into the register. Otherwise, if

the incoming bit is ’0’, Cin is ’1’ and the inputs becomes ”1110”. Considering Cin

the final number is ”1111”, which is added to the stored result. The times required

by the entire processes of saving inputs-popcounting are given by:

tsave = w2
out × tck (4.3)

tpop = w2
out × w2

filter × tck (4.4)

Multiple input channels When a convolution has to be perfomed on multiple

input channels, the entire architecture is parallelized in order to process all the
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matrices at the same time. The output equation becomes the following:

Conv =

cin∑
i=1

[(sign(I) ~ sign(W))i ·K · α] =

[
cin∑
i=1

(sign(I) ~ sign(W))i

]
·K · α

(4.5)

Figure 4.8: Multiple input channels architecture. The XNOR and pop-counting
units are replicated for a number of input channels times, obtaining a parallel com-
putation. Each channel contribution is added in the output computer unit.

For each channel there is a pop-counting unit. Each XNOR unit performs the

computations in parallel and the final contribution is added serially in the output
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computer, that fetches one by one the OutPops.

Alpha computation

In order to compute the convolution, also α is required, which is the absolute mean

of the considered kernel. Alpha computation starts during popcounting phase and

in particular it requires w2
filter clock cycles. Alpha unit is very simple and it is com-

posed by an adder, absolute block, register (which saves the partial results) and a

divider.

Figure 4.9: Alpha computational unit: example with wfilter = 2. The input multi-
plexer has been instatiated into an external unit, in order to reduce the total number
of inputs of the chip.

As it is possible to see the multiplexer is piloted by the same counter used in Fig-

ure 4.6, since it has to choice one out of w2
filter possibilities. This multiplexer is

instantiated outside the chip in order to reduce the total number of inputs of the

chip, in fact considering the following example with wfilter = 5 and nbit = 18, the

total number of bits are equal to w2
filter × nbit = 450. By putting the multiplexer

outside the chip guarantees only nbit bits in input. These considerations are applied

also in the following parts. When alpha computation is not required anymore, it is

disabled by using Enable alpha.

Multiple input channels When multiple input channels are considered, before

computing α, the architecture has to consider all the kernels and to perform the

absolute sum of each kernel element as follows:
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for i=1:c_in

abs_weights(:,:) = abs_weights(:,:) + abs(kernel(:,:,i));

end

alpha = mean(abs_weights(:));

In formulas:

α =

∑w2
filter×cin

i=1 |Wi|
w2
filter × cin

(4.6)

To compute it, the alpha circuit has been modified as follows:

Figure 4.10: Alpha computation unit in case of multiple input channels. An adder
tree adds all the multiplexed weights from the cin inputs. The last division is per-
fomed also by the number of input channels. Re-timing technique has been used for
the loop register, in order to reduce the critical path caused by an adder tree and a
divider.
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Multiple output channels When multiple output channels are considered (as in

the Figure 4.1), a multiplexer is placed in alpha unit input for each input channel,

which select the weight-set to consider, obtaining the final architecture which is

depicted in Figure 4.11:

Figure 4.11: Alpha computation unit in case of multiple output/input channels

Depending on the output channel considered (addressed by Channel selected),

the multiplexer selects a weight-set for each input channel and the computational

scheduling of alpha unit is then executed. All the inputs contributions are then

added in the adder tree and divided by w2
filter×cin. Placing the multiplexers outside

the chip is fundamental for very large networks, since this approach reduces the

maximum number of input bits from w2
filter×cout×cin×nbit to cin×nbit. Considering

for example the first layer of AlexNet and imposing nbit = 18, the total number of
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input bits can be computed as:

wfilter(AlexNet) = 11

cin = 3

cout = 96

nbit = 18

Number of bits(Mux inside) = w2
filter × cout × cin × nbit = 34848

Number of bits(Mux outside) = cin × nbit = 54

Division process About the division, some details have to be discussed. By

defining n_bit and n_bit_fractional as two parameters indicating how many bits

are used to represent an input/weight, the resulting fixed point value is split as

follows:

0 1 0 1 1 1 0 0 1 1 0 0 1 1 0 1 1 0

Figure 4.12: Fixed point representation: example with n bit = 18 and
n bit fractional = 10

To compute
1

w2
filter

, the division process has to consider the following steps:

1. Division between 2nbit−1 and the term to divide. The result is on n_bit.

Considering the following example with w2
filter = 4:

Div =
2nbit−1

w2
filter

=
217

4
= 32768 (4.7)

Representing this result on 18 bits:
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17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2. The fixed point division result is obtained by taking from the 16th bit to the
10th bit of the previous calculation and placing it in the 6th position toward
0. In general, the operation perfomed is the following:

to_divide(n_bit-1 downto n_bit_fractional) <= (others => ’0’) ;

to_divide(n_bit_fractional-1 downto 0) <= div(n_bit-2 downto

n_bit-2-(n_bit_fractional-1));

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

K computation

The matrix K has to be computed during the Binary input RF precharging, since,

once it is precharged, the fixed point input values are not considered anymore to

avoid wasting of power caused by data migration. The design is based on the

following considerations:

1. The precharging phase has a duration equal to w2
out, since all the w2

filter inputs

are precharged at the same time in Binary input RF;

2. During this period of time, K unit has to compute all the K values and to

store them into a register file (called k_array);

3. K values must be ready before the convolution computation.

In order to do this, the data precharging is stopped everytime a new input-set is

ready, to allow the K computation unit to complete the computation. A valid output

from K computation unit is achieved after w2
filter clock cycles. The corresponding

scheduling obtained is depicted in Figure 4.13:
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PRECHARGING

PRECHARGING

PRECHARGING

PRECHARGING

...

XIV

XV

XVI

Figure 4.13: K scheduling. Example with win = 4 and wfilter = 2. Everytime a new
data is precharged, K computation starts and lasts for w2

filter clock cycles.

In general, the total number of inputs to be precharged inside the Binary Input RF

is equal to w2
out. As a consequence, the clock cycles required to achieve the end of

computation is equal to:

Max clock cycles = w2
out × (w2

filter + 1)× tck (4.8)

After the completion of the K computation, the data are ready to be processed, so

pop-counting part can start.
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Multiple input channels By looking at the Equation 3.8, the absolute sum of the

inputs has to be considered. In order to reduce the complexity of the Equation 3.8,

the following transformation is applied:

K =

∑cin
c=1 |Inputs(:,:,c)|

cin
∗


1

w2
filter

1

w2
filter

. . .

1

w2
filter

1

w2
filter

. . .

...
...

. . .

 =

=

cin∑
c=1

w2
filter∑
i=1

SelectedInputs(c)(i)

× 1

w2
filter × cin

(4.9)

Where SelectedInputs is the input-set selected in a clock cycle so, considering the

example in Figure 4.13, they will be 0,1,4,5→ 1,2,5,6 etc. Each channel contribution

is added by an adder tree and the corresponding output is divided by w2
filter × cin.

Since each convolutional layer has a variable number of input channels, the output

of the adder tree is chosen by a multiplexer piloted by the conv_z variable, which

indicates how many input channels are used in that layer: if conv_z is equal to 1, it

means that it is considered only 1 input layer so the output is simply given by the

first K scheduled unit. When conv_z is equal to 2, two channels are selected, so

also the contribution of the second parallel K scheduled unit has to be considered.
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x

From alpha unit

Figure 4.14: Example of K unit with wfilter = 2 with multiple input channels. The
input multiplexer has been integrated into an external unit in order to reduce the
number of contemporary inputs into the architecture. Since conv z is fixed, the
multiplexer selects only one input per time: the register indicated by the red arrow
has been moved from its original location by applying re-timing: this technique
avoids to have multiple adders connected to the final multiplier, reducing the critical
path delay. The last term ( 1

w2
filter×cin

) is taken directly from the alpha unit.

Fully connected integration

The fully connected layer has the same computational flow of the convolutional

part, but α, K are not considered for the motivations explained in section 3.2.1. To

compute the fully connected layer, the following example can be considered:
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Figure 4.15: Example of fully connected layer integration. The data precharg-
ing pattern is inverted to compute the outputs values of the neurons o0 and
o1. number of fc parameters indicates the number of input neurons that
in this example is equal to 3. In the real case depicted in Figure 4.1,
number of fc parameters = 1014

In Figure 4.15, the fully connected layer has been implemented in the original

convolutional structure. The data precharging pattern is inverted to compute the

output values as follows:

o0 = Pop(i0 ⊕ w1,i1 ⊕ w3,i2 ⊕ w5)

o1 = Pop(i0 ⊕ w2,i1 ⊕ w4,i2 ⊕ w6)
(4.10)

Since the fully connected layer in the model proposed in Figure 4.1 has 1014 binarized

inputs and 10 outputs, the Binary input RF has to have at least 1014 columns and

a number of rows which is equal to the maximum number of w2
out(i) of all the layers

in the neural network that in Figure 4.1 is equal to:

#Rows = max(w2
out(i)) = 13× 13 = 169 (4.11)

Since the wordlength is very huge, the chip has to have at least 1014 input bits for

each Binary input RF. To eliminate this drawback, the fully connected process has

been serialized to reduce the input data’s bitlength, as depicted in Figure 4.16:
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Figure 4.16: Fully connected layer scheduling. Inputs and weights are divided into subgroups of L elements and
precharged inside the Binary Input RF. At each cycle, once the pop-counting has finished, a new set of input-
s/weights is precharged in the Binary Input RF and the pop-counting part starts again. The register file RF
TMP Pop holds the temporary values of pop-counting and it is addressed by the counter: the total number of
registers used in RF TMP Pop is equal to the number of output neurons that, as in Figure 4.1, it is equal to 10.
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The fully connected scheduling works as follows:

• 1○: a sub-group of inputs/weights are precharged into the Binary Input RF

and fed to xnors’ inputs respectively. The width of the sub-groups (L) is

defined according to the dimensions of the first fully connected layer

(number of fc parameters), that in the model depicted Figure 4.1 is 1014: by

choosing the minimum size that is also a divisor of number of fc parameters

brings advantages in terms of energy and power consumed. The constraint

that has to be respected for the definition of W is:W ≥ w2
filter

W ≥ L
(4.12)

For the neural network depicted in Figure 4.1, W=6. For each fully connected

layer, the value of L is defined dinamically, according to the algorithm. As

it is possible to discover in Figure 4.16, the fully connected layer model ( 5○)

is replicated in the Binary Input RF: the first row is dedicated to the first

neuron’s output, the second to the second neuron and so on. Each row is

fetched and the XNORs between inputs/weights are computed: the XNORs’

results are multiplexed and the Incoming bit is fed to the pop-counting unit;

• 3○: the pop-count result is added with a previously stored value, which is ad-

dressed by the counter: if count=0, it means that the first line of RF TMP POP

is addressed and the pop-counting result refers to the first output neuron.

RF TMP Pop is useful in the OOM implementation, since once the first pop-

count result has been computed, count increments selecting the second line

and the temporary pop-count result is stored;

• 4○: after the pop-counting procedure for the first neuron has finished, count

increments selecting the second line. A new pop-count for the second neuron

starts and finishes when all the inputs have been multiplexed. The temporary

value is stored into the RF TMP Pop;

• The entire procedure is executed for each output neuron: it means that when

count=9, the first fully connected layer cycle has been completed and the
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entire procedure starts again from the first output neuron. A new set of

values (indicated by 2○) are going to be precharged. Considering again the

first output neuron, a new pop-counting procedure starts and the resulting

value is added to the value stored in the RF TMP Pop.

This procedure ends when all the inputs/weights are considered for each output

neuron, requiring a number of iterations that are equal to:

niter =
number of fc parameters

L
(4.13)

Considering the neural network model depicted in Figure 4.1, since the number of

input neurons are 1014 and L = 6, the Time duration can be computed as:

Time duration =
number of fc parameters

L
× (L× wout(fc))× tck =

=
1014

6
× (6× 10)× tck = 10140× tck

(4.14)

Output computation, Batch normalization and ReLU

Once α and K are computed (convolution case) and pop-counting routine has fin-

ished, the output is simply obtained by the product of these three values. Batch

normalization takes the values of the convolution/fully connected layer and com-

putes the batch-normalized output as already explained. ReLU layer is very simple,

since it computes the maximum between 0 and its input. In hardware it is realized

with a multiplexer that chooses between ”0” and input by using the input’s sign as

select.

Multiple input channels In the convolutional case, in order to consider the

contributions of the parallel architectures, an accumulator is used to add all the

contributions. The formula for the output computation becomes:

Conv =

cin∑
c=1

(sign(I) ~ sign(W))c ·Kα (4.15)
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Figure 4.17: Convolution computation unit. Example of a 4 input channels output
computer unit, with batch normalization and ReLU. α is delayed by a register in
order to reduce the critical path. A, B are the batch normalization terms. The path
indicated by the red arrow has been retimed to reduce the critical path delay.

The computational steps executed by this circuit are indicated by the circled

numbers in Figure 4.17:

• 1○: the first multiplexer is able to choose an OutPop(i) out of 4 possible

inputs. Each OutPop(i) indicates a pop-counting result of an input channel

and each of them is added in an accumulator unit;

• 2○: the output computer computes the convolution result by multiplying the
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pop-counting value by α and K, as indicated in Equation 4.15;

• 3○: the multiplexer selects between output computation and ”0”, based on

compute_batch AND do_batch. The signal compute_batch is asserted by the

control unit, when the output computer has finished its computation. The end

of output computer’s calculation is signaled by the counter’s terminal count,

which is reached when the counting value is equal to the number of input

channels of the layer considered, indicated as conv_z (in the convolutional

computation, it has a different meaning respect to the fully connected one,

reported in section 4.1.2). The signal do_batch is handled by the user, who

can decide if the Batch Normalization has to be used in that particular layer

or not, so it is defined in the testbench (discussed in subsection 4.1.5);

• 4○: a multiplexer selects between the output of the register and FcPoP, based

on Fully connected layer, which is a signal that indicates if the layer con-

sidered is convolutional or fully connected. Fully connected layer is han-

dled by the user that defines the neural network model, so it is declared in

the testbench. When Fully connected layer is ’1’, FcPop is chosen, which

is the output coming from the first input channel’s pop-counting (that in the

OOM implementation, corresponds to the output of the RF TMP POP, as de-

picted in Figure 4.19), because in the fully connected part the computations

of α and K are neglected. Only the first channel’s output is required in the

fully connected, since one xnor pop-counting unit is sufficient to perform the

computation because, by definition, the fully connected layer requires an input

vector instead of matrices;

• 5○: a multiplexer choose between the batch normalization output and the

f○’s output: if the batch normalization is disabled, output computation or

FcPop is chosen, depending on the layer’s type. The terms A and B are given

in inputs to compute the batch normalization; the computational cost of the
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BatchNorm layer can be reduced considering:

BatchNorm =
x− µ
σ
× γ + β

BatchNorm =
x

σ
× γ + β − µ

σ
× γ

(4.16)

A =
γ

σ
(4.17)

B = β − µ

σ
× γ (4.18)

BatchNorm = x× A+B (4.19)

• 6○: after ReLU has performed the maximum between 0 and the input, the

user can choose if the ReLU’s output has to be considered or not with do_relu

signal.

Multiplication process To multiply two fixed point numbers it is sufficient to

consider the following scheme:

Figure 4.18: Multiplication scheme: example with n bit=18 and n bit fractional =
10

The multiplication generate an output on 2*n_bit, but since the architecture has a

finite precision, the result is trucated on n_bit as shown in Figure 4.18.

Entire datapath

In the following figure, it is presented an example of a convolutional layer with

Cout = 2 and cin = 4: every component in the dashed red boxes is not included
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in the convolutional layer entity. Since the architecture has multiple input chan-

nels, the number of parallel Max pooling layers, Input selectors, XNOR units

and pop-counting units are equal to cin. Starting from the left side ( 1○), the inputs

are Initial_input provided by Input source, that can be the RF Input Image,

max pooling output or convolutional layer output itself, as depicted in Figure 4.27.

The inputs are fed to Input selector, which fetches the values to be convolved and

stores their sign into the Binary input RF ( 2○). There are cin multiplexers reported

in 2○ that are piloted by count K and they take one of w2
filter inputs: the blue arrow

means that for each multiplexer, there are w2
filter inputs of nbit each. These muxes

have been already discussed in the K computation unit part (Figure 4.14), and they

fed the architecture with one input pixel per time. Binary values are fetched from

Binary input RF and convolution-α computation processes start. When the pop-

count terminates ( 3○), the output is computed by Convolution computation unit

and batch normalization-ReLU are finally applied ( 4○). At the end, the result is

finally stored into the Temporary RF CNV and the new binary values are fetched

from Binary input RF and the entire process is repeated. Once an entire OFMAP

has been computed, the results are moved in parallel from Temporary RF CNV to

Output register files. After that, a new output channel is processed: since the

architecture depicted in Figure 4.19 has Cout = 2, multiple output kernels are used.

For this purpose a multiplexer which selects the kernel values depending on the

output channel considered (signaled by Channel selected) is employed and the

entire procedure is repeated. The functionality of the convolutional layer entity is

explained in the control unit part.
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Figure 4.19: Entire convolutional layer datapath: example with Cout = 2, Cin = 4.
The area highlighted by the red dashed line is implemented in an external unit.

176



4.1 – OOM implementation

Control unit

Figure 4.20: FSM of the convolutional/fully connected layers. The term ”TC”
indicates terminal count.

177



4 – Hardware implementations

Convolution algorithm The convolutional part of the control unit is now ex-

plained. Fully connected layer is a signal that indicates if the layer considered

is a fully connected or a convolutional, so in this part Fully connected layer is

’0’.

• 1○: dummy state that allows to precharge the first row of the Binary input RF

and to met timing requirements. This state is particularly useful in the IN-

MEMORY architecture, since also the weights are stored inside the

Binary input RF;

• 2○: during the Initial stage, K computational unit starts its computation.

Terminal count K is reached when the first useful result of K is available

after w2
filter clock cycles (in the example proposed in Figure 4.13, after 4

clock cycles, since wfilter = 2). When it is reached, Terminal count SRAM

is tested and, if it is ’0’, the FSM moves to Input precharge, where a new

input set is provided, stored inside the Binary Input RF and the computed

value of K is saved inside k_array. The FSM turns back to Initial stage,

where a new value of K is computed with a new input-set. This routine ends

when Terminal count SRAM is asserted, meaning that all the values from

Binary Input RF have been precharged. In Figure 4.21 it is reported the

timing diagram of the K computation unit;
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K computation unit 
clk

current_state WP initial_stage IP initial_stage IP initial_stage

InputK 1 -123 124 16 1 2 45 -32

Count K 0 1 2 3 0 1 2 3

Enable K

OutRegSum 0 1 124 248 264 0 1 3 48 80

Address 0 1 2

K array(0) 264

K array(1) 80

K array(2)

K array(3)

K
 c

o
m

p
u
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r

K
 a
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Figure 4.21: Timing diagram for the K computation considering only one input
channel. When Enable K is asserted during initial stage, K computation starts
to address one out of w2

filter inputs with Count K, and the corresponding sum is
obtained in OutRegSum. This phase lasts for w2

filter clock cycles, that in this
example it is equal to 4. After that, during Input precharge (IP), a new input set
is provided and the just computed value of K is stored inside K array.

• 3○: during Input precharge, the binary inputs are precharged

in Binary input RF and K array starts to store the K results;

• 4○: Dummy state that waits for the last precharge in the Binary Input RF;
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Figure 4.22: Example of timing diagram for Evaluation state, considering only
one pop-counting unit. When Counter SRAM has terminated, terminal count
SRAM is ’1’, allowing the FSM to move from Initial stage toward Evaluation.
During this state, pop-counting is enabled and Count pop starts. OutPop(0)
changes its value according to the xnor values: this procedure terminates when
all the filter elements have been considered, so after w2

filter clock cycles. In the
meanwhile, alpha can start its computation.

• 5○: during evaluation, the columns of the Binary Input RF are scanned

and the pop counting procedure is performed. This state reaches the end

when Terminal count pop is asserted: the value of count pop is equal to

w2
filter;

• 6○: output computer starts to perform its evaluation. The output computa-

tion phase has a duration given by the total number of input channels in the

layer considered: Counter (Figure 4.17) asserts terminal count OC when all
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the inputs have been scanned, so cin × tck cycles are required. Once the out-

put computer has finished its computation (signaled by Terminal count OC),

batch normalization and ReLU computations can start. During the state

highlighted by 7○, the result is stored in the temporary convolutional reg-

ister (Temporary RF CNV) depicted in Figure 4.27 and the Counter SRAM is

increased, allowing to address another row of the Binary Input RF: if the

Terminal count SRAM is equal to 1, it means that the Binary Input RF has

been completely scanned and the convolution is completed, otherwise the FSM

returns on Evaluation, in which pop-counting operation is executed again;

• 9○ and 10○: once all the outputs have been computed, the FSM waits for a

clock cycle and then stores the results by moving in parallel the content of

Temporary RF CNV inside Output register files (Figure 4.27);

• 11○: since it is possible to have more than one output channels, during the

state Change channel out a counter is increased which is able to select the

other set of weights by piloting the signal Channel selected (Figure 4.27). If

the Terminal count ch out is not reached, meaning that there still remain

output channels to consider, the FSM goes to Alpha computing, in which the

new value of alpha is going to be computed and so the alpha unit is enabled

to process new weights (Figure 4.9). The entire procedure for the new channel

is repeated;

• 13○: once all the output channels are processed, the convolutional layer has

finished and asserts the Done signal. In this state, the FSM is waiting for a

new start signal;
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Figure 4.23: Timing diagram for the convolution computation. As it is possible to see, the FSM moves from Evalu-
ation (IE) to output computation when terminal count pop counting is ’1’. During output computation,
the values of K (selected by the counter SRAM) and alpha are fed to the output computer, which performs
the product between the OutPop result and these two values, obtaining Output computation (reference Fig-
ure 4.17). The FSM waits until terminal count OC, which is asserted when the output computer has scanned
all the parallel input channels (Figure 4.17), so after cin clock cycles. Since in the reference architecture depicted in
Figure 4.1 there is only one parallel input channel, the FSM passes immediately to batch normalization state, which
computes Batch Normalization/ReLU within a clock cycle. Moving to increase batch state, the Counter SRAM
is enabled and the counting is increased, in order to consider another Binary input set from Binary Input RF and
a new value of K, which is addressed by the counter itself. At the same time the convolution result is saved inside
a temporary register file (Temporary CNV RF in (Figure 4.27)). The procedure restarts with evaluation.



Figure 4.24: Timing diagram for multiple output channels handling. From increase batch (IB), the FSM moves
toward wait for last result, since the Counter SRAM has reached the end of counting. The last valid data
is saved inside the Temporary CNV RF (Figure 4.27) and, consequently, the entire content of the register file
is stored in the output register files (Figure 4.27) during store results. At this point the channel is changed by
increasing channel selected, which selects another weights set. Alpha is computed again and the entire process
described in the previous parts is repeated.
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Fully connected algorithm Now the functionality of the FSM when

Fully connected layer is ’1’ is analyzed.

• 3○: when fully connected layer is considered, the Input precharge phase is

executed until the terminal count SRAM is not asserted. The Binary values

are stored inside the Binary Input RF, without the execution of K computa-

tion;

• a○: The evaluation of the fully connected part starts and terminates when

Terminal count pop is asserted. This is ’1’ when all the L elements defined

in the FC scheduling (section 4.1.2) are selected by the multiplexer, which

is addressed by Counter Pop in Figure 4.6, so considering Figure 4.16, when

count pop reaches 5 (0 to 5);

• b○: once the pop-counting for FC has finished, the temporary result will be

saved into the RF TMP POP (Figure 4.19);

• c○: when the Terminal count SRAM is asserted, meaning that the precharg-

ing of Binary Input RF has finished, a counter that handles the FC input

scheduling (as depicted in Figure 4.16) is increased. This counter allows to

choose a new set of fc inputs/weights as follows:

InputRed = Inputs_fc(L*(count_fc+1)-1 downto L*(count_fc));

WeightsRed = Weights_fc(L*(count_fc+1)-1 downto L*(count_fc));

Inputs_fc/Weights_fc refer to the entire word of fully connected input-

s/weights. By analyzing the neural network model depicted in Figure 4.1,

Inputs_fc/Weights_fc have a length of number of fc parameter = 1014

bits, while L (that is the width of the fc word fed into the Binary Input RF,

as described in Figure 4.16), is equal to 6. terminal count fc is asserted

when all the input word is scanned reaching 1014, so translating in formulas:

Terminal count value =
1014

6
= 169 (4.20)

The total number of iterations (niter) is equal to 169.
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• d○: once all the inputs of the fully connected layer are considered, the out-

put pop-counted values are scanned one by one in order to be stored in the

Temporary CNV RES. In this state, compute_batch signal is equal to 1, in

order to perform the batch normalization if requested;

• e○: during this state, data migrates from the Temporary CNV RES to the first

Output register files. Moreover, a .txt file is generated containing the

FC results.
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Figure 4.25: Timing diagram of the fully connected part. After weight precharge (WP), the FSM starts to save the
binary values inside the Binary Input RF during Input precharge, as already discussed. After that, evaluation
can start, in particular the first line addressed by Counter SRAM is pop-counted. The pop-counting procedure
has a time duration equal to L × tck, that in the neural network model depicted in Figure 4.1 is equal to 6 × tck.
Once Count Pop has reached 5, the FSM moves to save tmp results fc (ST), in which the temporary result of
the pop-counting procedure is saved inside the RF TMP POP (depicted in Figure 4.19) and the last register of
the pop-counting unit is cleared (Figure 4.7). A new evaluation procedure starts, but now the second row of the
Binary Input RF is considered, since Counter SRAM is increased. The entire procedure for the first part of
the fc scheduling (discussed in section 4.1.2) ends when the value of Counter SRAM is equal to the number of
output neurons, that in the neural network model depicted in Figure 4.1, it is 10. After that, the state Increase
fc increases the value of Count fc, which allows to select another inputs/weights set, as reported in section 4.1.2.
These computational steps are repeated for niter = number of fc parameters

L
number of times.
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Scheduling

This layer has two different schedulings, since they are both performed convolutional

and fully connected computations. By looking at the control unit depicted in Fig-

ure 4.20, it is possible to compute the clock cycles required by each state, as already

done in the max-pooling part. For this purpose, the neural network model depicted

in Figure 4.1 is considered.

• Convolution: it starts by storing the binary values inside Binary Input RF

and, at the same time, K computation is perfomed requiring w2
out×(w2

filter+1)

clock cycles. The convolutional process takes, one by one, each row of the

Binary Input RF and computes the pop-counting in w2
filter clock cycles. After

that, the output computation, batch normalization/ReLU and storing results

are performed taking cin, 1 and 1 clock cycles respectively: the entire proce-

dure is repeated for each output (w2
out). These steps and alpha_computation,

store_res, change_channel_out and wait_for_last_result have to be per-

formed for each output channel (cout), since everytime a different channel is

considered, a new convolution starts.
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Table 4.2: Clock cycles required by the convolutional algorithm for the OOM archi-
tecture.

State Required clock cycles Multiplicity

idle 1 1

weights precharge 1 1

initial stage w2
filter w2

out

input precharge 1 w2
out

wait for last precharge 1 1

evaluation w2
filter cout × w2

out

output computation cin cout × w2
out

batch normalization 1 cout × w2
out

increase batch 1 cout × w2
out

wait for last result 1 cout

store results 1 cout

change channel out 1 cout

alpha computing 1 cout

done 1 1

Considering the neural network model depicted in Figure 4.1, the total number

of clock cycles of the convolution algorithm is:

Convolution cycles = 1 + 1 + w2
out × (w2

filter + 1) + 1+

+ cout × w2
out × (w2

filter + 1 + cin + 1)

+ cout × (1 + 1 + 1 + 1) + 1 =

= 4 + 169× (4 + 1) + 6× 169× (4 + 1 + 1 + 1)

+ 6× 4 = 7971

(4.21)

• Fully connected: the process starts with the weights and inputs precharging

(weights_precharge, input_precharge) in the Binary Input RF, that re-

quires at least wout(fc) + 1 clock cycles to be performed. After the precharging

phase has finished, the evaluation starts (evaluation_fc) and terminates only

when it has scanned all the fully connected contributions, requiring L clock

cycles (already explained in Figure 4.16): temporary results will be saved into
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the RF TMP POP (save tmp res fc). This procedure based on evaluation and

saving results is repeated for all the output neurons, which are wout(fc). After

all the temporary results are obtained, increase_fc state increases count_fc.

Once the other inputs/weights have been selected, the entire procedure is re-

peated for a number of times equal to niter, which is defined as:

niter =
number of fc parameters

L
=

1014

6
= 169 (4.22)

In fact, as already said in the fc scheduling (section 4.1.2), to fetch 1014 inputs

with a L = 6 are required 169 clock cycles. At the end of the algorithm, the

results are scanned in order to be saved outside the neural_network (scan_fc)

and store_fc_res signals to the datasave to store the FC results.

Table 4.3: Clock cycles required by the fully connected layer algorithm.

State Required clock cycles Multiplicity

idle 1 1

weights precharge 1 niter

input precharge wout(fc) niter

evaluation fc L niter × wout(fc)
save tmp results fc 1 niter × wout(fc)

increase fc 1 niter

scan fc wout(fc) 1

store fc res 1 1

done 1 1

Considering the neural network model depicted in Figure 4.1, the total number

of cycles required is given by:

FC cycles = 1 + niter × (1 + wout(fc)+

+ wout(fc) × (L+ 1) + 1) + wout(fc) + 1 + 1 =

= 1 + 169× (1 + 10 + 10× (6 + 1) + 1)+

+ 10 + 1 + 1 = 13871

(4.23)
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4.1.3 Flatten layer

The flatten layer takes the convolutional results and vectorizes them. Considering

Figure 4.19, output register files placed at the end, store the outputs coming

from the convolutional process with the approach illustrated in Figure 4.2. The total

number of output register files is equal to the maximum cout of the considered

neural network, and the procedure used to flatten the outputs is depicted in the

following figure:
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Figure 4.26: Example of flattening procedure. Each matrix represents a convolu-
tional output channel.

And the corresponding algorithm:

for j=0:w_out**2-1

for i=0:c_out-1

if (output_convolution_stored(i)(j)==zeros)

flat(i+j*(c_out)) = ’0’;

else

flat(i+j*(c_out)) =

not(output_convolution_stored(i)(j)(n_bit-1));

end

end

end
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This layer is simply implemented with two nested generate statements.

4.1.4 Neural network entity

The top entity of the project is called neural_network and contains the convolu-

tional and max pooling layers. In Figure 4.27 it is reported an example of neural

network with cout = 2, cin = 4.
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Figure 4.27: Example of a neural network top entity with cout = 2, cin = 4. The hardware in the dashed border-line
are included in the Neural network top entity. This scheme is valid for both OOM and In-Memory architecture
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Convolutional data flow

• In an external unit are placed several numbers of register files, which are used

to store the values useful to the neural network to work properly. The ex-

ternal inputs such as input image, convolutional weights and so on are fed

together to the neural_network. Starting from the RF INPUT Image, each

output is fed to two multiplexers connected to Input selector POOL and

Input selector CONV respectively ( 1○), since the neural network circuit of-

fers the possibility to perform both pooling/convolution on the input image,

depending on the initial model. By these considerations, the cond1 is defined

as:

cond1 <= do_pool AND to_integer(unsigned(iteration_cycle))=0;

• The variable iteration_cycle indicates the layer considered in the neural

network model: if it is equal to 0, the layer is the first one and so on. During

an iteration cycle, it can be executed either pooling and convolutional/fully

connected layers, meaning that iteration_cycle is increased only when both

pooling/convolution have completed the algorithm asserting their done signals;

• If it is required a max pooling computation in the first layer, the variable

do_pool will be equal to ’1’ allowing to feed the max-pooling layer with

the input image. If pooling is perfomed on the input image (as done in

the neural network model in Figure 4.1), the Input image goes into the

Input selector POOL ( 2○), which selects w2
filter inputs out of w2

in to fed the

max pooling layers. Since the input image has 28x28x1 pixels, only the first

pooling layer has to be considered.

• Once pooling has been computed, the values are stored inside the RF Pool

and, since only one pooling layer has been used in the neural network model

in Figure 4.1, the first register file is precharged. Moving toward point 4○, the

pooled outputs can be selected by two parallel multiplexers, both connected to

the Input preset selector CONV. The first one (piloted by the signal cond4)

selects between the Input image and the pooling result: this is useful at the
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beginning of the algorithm when the Input image has to be processed directly

by the convolutional layer instead of max pooling. The cond4 is defined as:

cond4 <= do_pool AND to_integer(unsigned(iteration_cycle))=0;

When this condition is verified (cond4=1), RF Pool’s outputs are selected and

sent to the multiplexer highlighted by 5○. The cond2 is defined as:

cond2<= to_integer(unsigned(iteration_cycle))/=0;

When the iteration_cycle is higher than 0, it means that the Input image is

not considered anymore since it has been already processed, so the multiplexer

can only choose between the pooling results or the convolutional ones.

• Once the pooling results have been chosen, the Input selector CONV selects

w2
filter out of w2

out input values and propagates them inside the convolutional

layer. The yellow blocks denominated ”MUXES” are placed outside the chip

and they indicate that several muxes selects only one out of w2
filter inputs:

this strategy allows to reduce the number of input bits of the architecture, as

already discussed in K and α computation parts (section 4.1.2).

• The convolutional layer computes the convolution results by taking cin

inputs, depending on the neural network model considered (for example, Fig-

ure 4.1 uses only 1 input channel). In the example proposed in Figure 4.27,

there are 2 output channels: it means that the convolution has to be executed

with two different sets of input weights, that are fetched from RF conv weights.

As it is possible to see in Figure 4.27, there are 4 couples of RF conv weights,

since are required 2 output kernels for each input channel, so cout×cin = 2×4 =

8 register files.

• Once the convolution result has been computed, it is provided one by one

to the Temporary CNV RES, which stores the temporary convolutional results

and, when and entire output channel has been computed, data are transferred

in parallel to one of the output register files (addressed by

channel selected, which indicates the output channel considered). The
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number of output register files are always equal to the maximum num-

ber of output channels in the neural network model, so in this case there are 2

register files, while for the model depicted in Figure 4.1, they must be at least

6.

• The point 6b○ indicates the register files configuration for the A and B inputs

required by the batch normalization: when Fully connected layer=0, each

RF A CONV, RF B CONV outputs are selected by channel selected.

• Once the convolutional results are stored inside output register files, con-

volutional’s done signal is asserted, iteration_cycle is increased, cond2 be-

comes always true, since iteration_cycle is different from 0, and cond3 is

verified, since it is defined as:

cond3 <= do_pool AND to_integer(unsigned(iteration_cycle))/=0;

Fully connected data flow

• When Fully connected layer is equal to ’1’, it means that the layer con-

sidered is the fully connected. In this case the convutional parameters are

completely ignored by the convolutional layer, while the weights FC and the

ones highlighted by 8○ are considered. cond5 selects between the output of

the convolutional layer and the Input image and it is defined as:

cond5<= fully_connected_layer AND

to_integer(unsigned(iteration_cycle))/=0;

It is also possible to have a max-pooling layer followed by a fully connected,

so in this case the multiplexer with cond6 signal as selector is able to choose

also RF Pool’s outputs. cond6 is defined as:

cond6<=fully_connected_layer=’1’ and do_pool=’1’

• The light blue multiplexer selects between the fc weights and the sign of the

convolutional inputs, basing on fully connected layer signal, since the ar-

chitecture has to choose the fully connected binary weights instead of the

convolutional binary inputs to precharge them inside the Binary Input RF.
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• When the iteration_cycle is equal to 0 and fully connected layer is

equal to ’1’, the first layer considered is a fully connected and, consequently,

the input image is considered as FC input. The flatten layers vectorize the ma-

tricial input and the corresponding output vector is fed to the FC scheduling,

already discussed in section 4.1.2 (Figure 4.16).

Register files dimensions

The dimensions of each register file are now analyzed:

• The RF INPUT Image holds the input image values, which are 28x28x1 pixels

of n_bit each;

• RF Conv weights: they hold the weights that are used in the convolutional

process. By looking at the architecture in Figure 4.27, 2 kernels of w2
filter are

needed with a bitlength of n_bit. The outputs are w2
filter weights of nbit each

that are selected by the MUXES, in order to feed only one of them per time

to the convolutional layer;

• RF A conv, RF B conv: hold the values of A,B of the convolutional layer. The

total number of registers with a bitlength of n_bit in each register file is equal

to cout, that in Figure 4.27 is equal to 2. The output is a single value of n_bit

that depends on which output channel is considered;

• RF Weights FC: holds the values of the weights of the fully connected layer.

The total number of weights required is equal to number of fc parameters×
wout(fc) (that in Figure 4.1 is equal to 1014 for each output, so 1014 × 10 =

10140);

• Temporary RF CNV: holds the temporary values of the convolution/fully con-

nected layer. It is a register file with w2
out locations of nbit each;

• Output register files: each register file has a number of registers equal to

w2
out of n_bit each. The total number of register files used is equal to cout,

since each channel has to be stored. In the example proposed in Figure 4.27,

cout = 2;
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• RF A FC, RF B FC: they store A and B parameters for the batch normaliza-

tion in the fully connected layer. BatchNorm applied to a fully connected

layer consists on normalize all the neurons’ outputs, so the registers require at

least wout(fc) number of registers of n_bit each. Considering the example in

Figure 4.1, wout(fc) is equal to 10.

Layer parameters specifies to the convolutional layer what are the dimensions of

the layer examinated, since each layer has different parameters (wfilter, wout, win, ...).

These define the terminal counts of the counters used in the entity, some constant

values (such as 1/w2
filter in the Alpha computer and K unit) and so on.
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Control unit

Figure 4.28: Neural network’s FSM
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• Parameters precharge: all the parameters are precharged in the register files.

They are fetched one by one at the same time. This state terminates when the

signal done acq is asserted: this is piloted from the external data generator

and it is equal to ’1’ when all the inputs are stored. Considering the neural

network in Figure 4.1, this state finishes when all the fully connected weights

are read since they are 10140. This part will be explained in subsection 4.3.1;

• Start pool: pooling layer starts the computation and waits until the end.

If the pooling layer is not performed (do_pool=0), the max-pooling’s control

unit asserts immediately done pooling;

• Start convolution init: once pooling asserts done_pooling, the convolu-

tion/fully connected can start the computation;

• Wait for done: FSM waits until the end of the convolution, signaled by

done conv;

• When done conv is ’1’ it means that the convolutional layer has finished

the computation (convolution or fully connected). At this point, the termi-

nal count of the iteration cycle is tested and if it is ’0’, it means that

the architecture has not processed all the layers defined in the neural net-

work model and the convolutional layer has to be reused for another

computations. At this point the counter that handles iteration cycle is

enabled and the counting value increases. Also the input parameters of the

convolutional layer changes, according to the layer to be examinated. The

FSM moves to the parameters precharge, since the new layer need different

values that are stored again in the register files. This is a very important

concept, because it allows the reusability of the architecture;

• Done: the neural network has finished and the classification result is available.

4.1.5 VHDL implementation

From a VHDL point of view, a package has been defined, giving the possibility to

implement every kind of neural network. Once the model has been designed, two
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different parameter-sets (called fixed and variable parameters) are chosen accord-

ingly:

• Fixed parameters: define the worst case dimensions of the network, such as

the Binary Input RF size, the wout, win and wfilter values and so on;

• Variable parameters: define the actual layer’s dimensions and type. They are

addressed by iteration_cycle and allow to dinamically program the behavior

of the architecture, based on the layer examinated.

Fixed parameters

In order to implement the neural network model depicted in Figure 4.1, the following
fixed parameters have been used:

-----------------FIXED PARAMETERS---------------------

constant w_out : integer := 14 ;

constant h_max : integer := 169 ;

constant w_in : integer := 28 ;

constant w_filter : integer := 4 ;

constant w_filter_s : integer := 2 ;

constant width_sram : integer := 6 ;

constant number_of_output_channels : integer := 6 ;

constant number_of_input_channels : integer := 1 ;

constant number_of_fc_parameters : integer := 1014 ;

constant number_of_sum_elements : integer := 11 ;

constant number_of_neurons_output : integer := 10 ;

constant input_image_size_x : integer := 28 ;

constant input_image_size_z : integer := 1 ;

constant flatten_x : integer := 169 ;

constant flatten_z : integer := 6 ;

---------- counters and other parameters ------------

constant n_bit_channel_sel : integer := 8 ;

constant n_bit_cnw_pos_type : integer := 9 ;

constant n_bit_counter_k : integer := 8 ;

constant n_bit_counter_sram : integer := 8 ;

constant number_of_bits_counter : integer := 10 ;

constant count_fc_terminal_count : integer := 169 ;
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• w_out: the maximum output dimension is defined by the pooling, which

takes in input a matrix of w_in**2=28x28 pixels and elaborates them with a

stride= 2 and w_filter = 2, so:

wout =
win − wfilter

stride
+ 1 =

28− 2

2
+ 1 = 14 (4.24)

Since the convolutional layer after the max-pooling has as input a 14x14 ma-

trix, the corresponding output dimension is 13x13, which is less than the

required output size of max-pooling. For this motivation, w_out is fixed to 14;

• h_max: defines the number of rows (H) of the Binary Input RF, which has to

be equal to the maximum w2
out dimension of the convolutional layer. Since in

the neural network model depicted in Figure 4.1 there is only one convolutional

layer, h_max is fixed to 13× 13 = 169;

• w_in: defines the input size dimension, which is equal to 28, since the input

image has 28x28 pixels;

• w_filter_s and w_filter: they represent wfilter and w2
filter respectively.

They define the maximum number of contemporary inputs given in input to

the convolutional/max pooling layers. Considering the neural network model

depicted in Figure 4.1, the maximum number of inputs are equal to 2x2=4,

since both max pooling and convolutional layers have the same kernel size;

• width_sram: represents the W dimension of the Binary Input RF. For the

motivations explained in section 4.1.2, this is imposed equal to 6. This di-

mension must be greater-equal than L and the maximum kernel’s dimensions

(w_filter), that in the model depicted in Figure 4.1 is 4;

• number_of_output_channels: defines the maximum number of output chan-

nels in the model. Considering Figure 4.1, the maximum number of output

channels is 6;

• number_of_input_channels: maximum number of contemporary input chan-

nels in the architecture. Considering Figure 4.1, only 1 channel is fed to the
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convolutional/pooling layers. After the convolutional layer, it is placed a fully

connected layer which takes the vectorized input;

• number_of_fc_parameter: total number of inputs required by the fully con-

nected layer. This number is defined by the vectorization process, which takes

in input 13x13x6 IFMAPs and vectorizes them into a 1014 elements vector;

• number_of_sum_elements: defines the maximum number of bits required to

perform the pop-counting operation. This value has been computed consid-

ering the worst case, which is the fully connected layer, since a sum among

1014 elements (number_of_fc_parameters) has to be computed. If they are

all equal to -1, the number of bits has to be at least:

number of sum elements = log2(| − 1014|) + 1 = 11 (4.25)

• number_of_neurons_output: maximum number of output neurons of the fully

connected part. In the model proposed in Figure 4.1, it is equal to 10;

• input_image_size_x and input_image_size_z: define the maximum input

dimensions. Since MNIST has been used, they are equal to 28 and 1;

• flatten_x and flatten_z: define how to transform the output matrix convo-

lution into a vector. The vectorization procedure has been already presented

in subsection 4.1.3.

The other parameters are the number of bits required by the counters in the archi-

tecture.

Variable parameters

The variable parameters play an important role in the architecture, since they allow
to dinamically program the behavior of the neural network:

-----------------VARIABLE PARAMETERS---------------------

constant n_layers : integer := 2 ;

constant number_of_layers : std_logic_vector ( n_layers-1 downto 0 ) := "01";

constant conv_layer_size_x : int_vect ( n_layers-1 downto 0 ) := ( 1 ,14 );
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constant conv_layer_size_x_pow : int_vect ( n_layers-1 downto 0 ) := ( 1 ,196 );

constant conv_layer_size_z : int_vect ( n_layers-1 downto 0 ) := ( 169 ,1 );

constant kernel_size_xy_pow : int_vect ( n_layers-1 downto 0 ) := ( 6 ,4 );

constant kernel_size_xy : int_vect ( n_layers-1 downto 0 ) := ( 1 ,2 );

constant kernel_size_z : int_vect ( n_layers-1 downto 0 ) := ( 1 ,6 );

constant stride_sel_c : int_vect ( n_layers-1 downto 0 ) := ( 1 ,1 );

constant output_size_conv : int_vect ( n_layers-1 downto 0 ) := ( 1 ,13 );

constant output_size_conv_pow : int_vect ( n_layers-1 downto 0 ) := ( 10 ,169 );

-------------

---------------POOLING-------------

constant pool_filter_size : int_vect ( n_layers-1 downto 0 ) := ( 1 ,4 );

constant pool_x_size : int_vect ( n_layers-1 downto 0 ) := ( 1 ,28 );

constant pool_out_size : int_vect ( n_layers-1 downto 0 ) := ( 1 ,196 );

constant pool_filter_size_s : int_vect ( n_layers-1 downto 0 ) := ( 1 ,2 );

constant pool_stride : int_vect ( n_layers-1 downto 0 ) := ( 1 ,2 );

constant pool_x_size_pow : int_vect ( n_layers-1 downto 0 ) := ( 1 ,784 );

constant pool_z_size : int_vect ( n_layers-1 downto 0 ) := ( 1 ,1 );

-------------

-------------Layer types-------------

constant do_batch_layer : std_logic_vector ( n_layers-1 downto 0 ) := "01" ;

constant do_pool_layer : std_logic_vector ( n_layers-1 downto 0 ) := "01" ;

constant do_relu_layer : std_logic_vector ( n_layers-1 downto 0 ) := "01" ;

constant fully_connected : std_logic_vector ( n_layers-1 downto 0 ) := "10" ;

As it is possible to see, they are all vectors. Each element is selected by the vari-

able iteration_cycle, which takes trace on what layer is going to be computed.

Layer types parameters defines the behavior of the network:

1. do_batch_layer: when ’1’, the variable do_batch that is used in the

convolution computation unit (Figure 4.17), obtained by

do_batch <= do_batch_layer(to_integer(unsigned(iteration_cycle)))

it is equal to ’1’. In the first layer, batch normalization is computed;

2. do_pool_layer: defines if the pooling layer has to be computed or not. From

this vector, the variable do_pool is obtained, which is useful in the FSM of

the pooling layer (Figure 4.4).
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do_pool <= do_pool_layer(to_integer(unsigned(iteration_cycle)));

3. do_relu_layer: defines the variable do_relu as:

do_relu <= do_relu_layer(to_integer(unsigned(iteration_cycle)))

It is used in the convolution computation unit (Figure 4.17). In the first

layer, ReLU is computed;

4. fully_connected_layer: when ’1’, fully connected computation is consid-

ered.

The other parameters have the following meanings:

• n_layers: defines the dimensions of the parameters’ vectors;

• number_of_layers: maximum number of layers to be considered in the neural

network. Considering Figure 4.1, there are only three layers (max-pool, convo-

lution, fully connected). Since the variable iteration_cycle is incremented

everytime a convolution/fully connected layer terminates the computation,

number_of_layers is equal to 2 (”01”), in fact max pooling computation is

integrated in the convolution computation. This is also the terminal count for

the iteration_cycle variable, so only the first two elements of each vector

can be selected;

• convolutional_layer_size_x: defines the dimensions of the IFMAP of the

layer considered. The first layer is a convolutional with the dimensions defined

in Figure 4.1: win = 14. The second layer is a fully connected and, since it is

a different type of computation, these values are equal to 1 and they are not

considered;

• kernel_size_xy and kernel_size_xy_pow are wfilter and w2
filter respectively.

Considering Figure 4.1, the first convolutional layer has a kernel size of 2x2,

so kernel_size_xy = 2 and kernel_size_xy_pow = 4. The value

kernel_size_xy_pow defines also the terminal count pop used in the con-

volutional layer’s control unit (Figure 4.20) and indicates how many columns
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of the Binary input RF have to be considered for the pop-computation. In

the case of the convolutional layer, this is equal to 4, while for the fully con-

nected layer it is equal to 6 for the motivations explained in the fc scheduling

in section 4.1.2: kernel_size_xy_pow for the fully connected layer, indicates

the L value, reported in Figure 4.16;

• convolutional_layer_size_z: defines the number of contemporary input

channels processed by the convolutional layer. The first convolutional layer

has only 1 input channel. In the case of a fully connected layer, it has a different

meaning: this value is equal to 169 and indicates the total number of times

the FC scheduling divides the fc inputs (niter) (discussed in section 4.1.2).

Considering number_of_fc_parameters =1014 and kernel_size_xy_pow =

6:

niter = convolutional layer size z =
1014

6
= 169 (4.26)

6 out of 1014 FC inputs/weights have to be elaborated 169 times.

• stride_sel_c: stride values used in the convolutional layers. In the fully

connected layer this value is not used;

• output_size_conv and output_size_conv_pow: refer to wout and w2
out re-

spectively. Considering Figure 4.1, the convolutional layer has wout = 13 and

w2
out = 169. The value of output_size_conv_pow is used as

terminal count SRAM in the convolutional layer’s control unit (Figure 4.20)

and defines how many rows of the Binary input RF have to be considered in

the computation. In the fully connected layer, since there are only 10 output

neurons (Figure 4.1), output_size_conv_pow is equal to 10.

The same considerations are valid for the pooling layer.
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Figure 4.29: Parameter generation entity. In base on the value of iteration cycle,
that changes everytime a done signal from the convutional layer is asserted, the
parameters are chosen accordingly.

4.2 In-memory implementation

The original OOM circuit has been reviewed, in order to implement an In-Memory

alternative. The XNOR Unit is integrated into a memory array, allowing the com-

putation near-data and reducing the Von Neumann’s bottleneck. Since the Pop-

counting circuitry is composed by very simple elements (memory element + full

adder), it is possible to implement it in a memory-like structure, as already made

for the XNOR Unit. All the other components (such as K,α and convolution com-

putational units) remain the same.

4.2.1 Convolutional/fully connected layer

In Figure 4.30, it is reported the XNOR part integrated in memory: as it is pos-

sible to see, for each memory cell (represented by a rectangle and implemented

as a flip-flop), there is a XNOR gate that execute wi ⊕ inj. Once the memory is

precharged, the computation starts and all XNOR gates provide a result at the same
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time: for each wordline, there is a multiplexer piloted by count pop, that selects

which xnor result to consider for the pop-counting part. At the end of pop circuits,

there is a multiplexer that selects one of the pop result to be considered for the

output computer. By having only one result per time, enables the reutilization

of the convolution computation unit of the OOM implementation, depicted in Fig-

ure 4.17. The remaining parts are the same of the Figure 4.19.

WL(0)

WL(1)

WL(2)

WL(3)

Incoming bit 0

Incoming bit 1

Incoming bit 2

Figure 4.30: Example of XNOR in memory with win = 4, wfilter = 2 and W = 4.
For each memory cell there is a XNOR gate that computes the xnor between the
binary weights (first row) and the corresponding binary inputs. At the end of each
row (excluding the first one reserved to the binary weights), there is a multiplexer
which selects the Incoming bit as discussed in the OOM implementation. For each
incoming bit there is a pop-counting unit and each pop-output is selected by a final
multiplexer.

In the following figure it is reported the entire convolutional layer in-memory archi-

tecture:
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Figure 4.31: Example of an in-memory convolutional layer architecture with cin = 4
and cout = 2.
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To implement the fully connected layer, the same approach of OOM architec-

ture has been used, which has been already described in section 4.1.2. The main

difference respect to OOM architecture is that the RF TMP pop is not used, because

the temporary values are already stored inside of each pop-counting unit. It is suffi-

cient to switch the output multiplexer, depicted in Figure 4.30, to have directly the

correct pop-counting value.

Control unit

In the following figure, it is reported the FSM of the convolutional/fully connected

layer for the In-Memory implementation. The numbers and letters depicted in Fig-

ure 4.32 indicate the differences between the OOM control unit (Figure 4.20) and

the In-Memory one. The other states execute the same operations already described

in the OOM implementation.

• 1○: after batch normalization, change cnv res (change convolution result)

state is executed. This state is useful, because it allows to change the result se-

lected by the last multiplexer depicted in Figure 4.30, since the count mux out

is increased;

• 2○: the terminal count change cnv res is tested. It is equal to ’1’ when all

the pop-counting outputs are scanned by the last multiplexer in Figure 4.30

that, in the neural network model in Figure 4.1, happens when count mux out

is equal to 169. In this case, the output will be stored to Temporary RF CNV,

otherwise a new output computation is performed;

• a○: the most important difference between the In-Memory and the OOM ar-

chitectures is located in the fully connected part. Since the in-memory archi-

tecture has multiple pop-counting units, the temporary result is already stored

inside them. Once the evaluation fc phase has terminated, the FSM moves

directly to increase fc, allowing to select another set of fc inputs/weights

(as already described in section 4.1.2) and to speed-up FC computation.
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Fully connected Convolution

Figure 4.32: FSM of the convolutional/fully connected layer of the In-Memory im-
plementation.
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Figure 4.33: Timing diagram of convolution computation in the In-Memory architecture. Starting from Weights
precharge (WP), the binary weights are precharged inside the first row of the XNOR UNIT. During Initial stage,
K computation starts requiring w2

filter clock cycles. Binary inputs are precharged inside the memory array during
Input precharge (IP), in which also the Counter SRAM is increased. During evaluation, α starts and the
pop-counting results will be computed in parallel, requiring w2

filter clock cycles: this is the most important difference
respect to OOM architecture, in which the evaluation process has to be repeated for each output (Figure 4.23). After
pop-counting has finished, output computation (OC), batch normalization (BN) and ReLU computations are
perfomed and repeated for each output. In Change CNV Res (CNV), the count mux out is increased and the
final multiplexer in Figure 4.30, addresses another output. The procedure finishes when count mux out is 168 and,
at this point, the second weight set is selected, α is computed again and the FSM restarts with evaluation (EV).



Figure 4.34: The algorithm starts with Weights precharge (WP) state, in which the binary fc inputs are precharged
in the first row of the XNOR Memory, because of the inverted precharging order between weights-inputs (sec-
tion 4.1.2). During input precharge, also the fully connected weights are stored inside the memory. Evaluation
fc starts and ends within 6 clock cycles, since L = 6: in this phase, all the parallel pop-counting units are comput-
ing, obtaining at the same time the partial results of the wout(fc) neurons, which it is equal to 10, considering the
neural network model depicted in Figure 4.1. After evaluation fc, the FSM increases count fc during increase
fc (IFC), for the fc scheduling already explained in section 4.1.2. At this point the algorithm start again from
weights precharge. Considering the timing diagram of the fully connected layer for the OOM case (Figure 4.25),
it is possible to see the big difference between them: OOM needs to perform serially the pop-counting calculations
by storing the partial results inside the RF TMP POP, while the In-Memory alternative can do the computation
in parallel, without the need of storing the partial results, since they are maintained by the last register of the
pop-counting units (Figure 4.7).



4.2 – In-memory implementation

Scheduling

Also in the In-Memory case are provided the clock cycles required to compute both

the convolutional and fully connected parts:

• Convolution: the process starts with the binary inputs/weights precharging

(states weights_precharge, initial_stage, input_precharge

and wait_for_last_precharge), that requires at least 3 +w2
out× (w2

filter + 1)

clock cycles, as already explained in the OOM part. After that, the data

are ready to be processed: Evaluation begins and performs all the pop com-

putations in parallel, obtaining the outputs ready within w2
filter clock cycles.

These values are chosen by the last multiplexer, piloted by count mux out in

Figure 4.30, and output computation is performed, requiring cin clock cycles

for each output. After output computation, batch normalization and ReLU

are performed and need only 1 clock cycle to be executed. This procedure

is repeated for all the w2
out outputs. When all the outputs have been com-

puted, the results can be stored (store_results) and the output channel

can be changed (change_channel_out). By changing the kernel, the entire

procedure is repeated for cout number of times, requiring also a new alpha com-

putation. Detailed informations on time durations of each state are reported

in Table 4.4.
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Table 4.4: Clock cycles required by the convolutional algorithm for the In-Memory
architecture.

State Required clock cycles Multiplicity

idle 1 1

weights precharge 1 1

initial stage w2
filter w2

out

input precharge 1 w2
out

wait for last precharge 1 1

evaluation w2
filter cout

batch normalization 1 cout × w2
out

output computation cin cout × w2
out

change cnv res 1 cout × w2
out

store results 1 cout

change channel out 1 cout

alpha computing 1 cout

done 1 1

For the neural network model depicted in Figure 4.1, the total convolution

delay clock cycles are equal to:

Convolution cycles = 1 + 1 + (w2
filter + 1)× w2

out + 1+

+ cout × (w2
filter + w2

out × (1 + cin + 1))+

+ cout × (1 + 1 + 1) + 1 =

= 1 + 1 + (4 + 1)× 169 + 1 + 6× (4 + 169× (1 + 1 + 1))+

+ 6× 3 + 1 = 3933

(4.27)

• Fully connected: weights/inputs are precharged requiring wout(fc) + 1 clock cy-

cles. Evaluation starts (evaluation_fc) and terminates when all the columns

of the custom memory have been scanned (L clock cycles). The results are al-

ready stored inside the pop-counting units, so the algorithm moves to increase_fc,
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in which count_fc is increased. The entire procedure is repeated niter times,

in order to complete the entire fully connected layer. After that, the outputs

are scanned to be saved inside the external memory, requiring wout(fc) clock

cycles.

Table 4.5: Clock cycles required by the fully connected layer algorithm for the In-
Memory architecture.

State Required clock cycles Multiplicity

idle 1 1

weights precharge 1 niter

initial stage wout(fc) niter

evaluation fc L niter

increase fc 1 niter

scan fc wout(fc) 1

store fc res 1 1

done 1 1

Where niter:

niter =
number of fc parameters

L
=

1014

6
= 169 (4.28)

Considering the neural network model depicted in Figure 4.1, the total number

of cycles required is given by:

FC cycles = 1 + niter × (1 + wout(fc) + L+ 1) + wout(fc) + 1 + 1 =

= 1 + 169× (1 + 10 + 6 + 1)+

+ 10 + 1 + 1 = 3055

(4.29)

4.3 Memories’ sizes

As reference, it is used the neural network model depicted in Figure 4.1. These

considerations are valid for both the in-memory and OOM architectures, since they

are very similar to each other.
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4.3.1 Parameters precharging

During the parameters precharge phase, executed at the beginning of the algorithms,

the values are stored inside the register files. Each parameter is fed to them in

parallel and only one per clock cycle. Taking for example the convolutional weights

precharging:

data_elaboration_weights.vhd

ch0

-1.0
-0.99
-0.99

0
ch1

0.98
0.017

...

...

....output

channels

-1.0
-0.99
-0.99

0

Data precharge scheduling

clock

cycles

RF conv weights

Figure 4.35: Data precharging scheduling. One data of nbit per clock cycle is stored
in the register files.

This scheduling is valid for all the parameters of the network, exception for the

fully connected weights, in fact they are fed to the memory already binarized, in

order to reduce the total number of input bits and the required memory. However,

since a wordlength of 1014 is very long, because it requires at least 1014 input bits,

the precharge scheduling of the fully connected part has been changed making the

following considerations:

1. For the fully connected computation are required at least 1014 weights for the

total number of neurons in output, which for the model considered in Figure 4.1

is 10, producing 10x1014 total bits, where the first number indicates the rows

and the second one the columns of a matrix. The straight-forward way to save

them is to feed them by columns, i.e. 1014 bits for each output neuron;

2. By inverting the precharging order and selecting the rows instead of columns,

only 10 bits are given in input for 1014 times.

The total time required by data precharging is given by the maximum precharging

time of all the required parameters, which are:

• Input image: w2
in = 784 clock cycles required;
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• Convolutional weights: w2
filter × cout = 4× 6 = 24 clock cycles required;

• Fully connected weights: number of fc parameters = 1014 clock cycles re-

quired;

• A,B convolutional parameters: the batch normalization parameters are used

for each output channel, so cout = 6 clock cycles required;

• A,B fully connected parameters: not considered in the neural network model

depicted in Figure 4.1, but in general, they are needed wout(fc) batch normal-

ization parameters in the fully connected computation (one for each output).

The precharge time is equal to:

Precharge time = max(1014,784,24,10,6)× tck = 1014× tck (4.30)

4.3.2 Memory required

The total memory required to store all the parameters required by the architecture,

can be computed considering the Table 4.6. The values used for the evaluations

refers the neural network model depicted in Figure 4.1 and are the following:

win = 28

image size z = 1

wout = 14

wfilter = 2

cout = 6

cin = 1

wout(fc) = 10

number of fc parameters = 1014

nbit = 18
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Table 4.6: Memory required with nbit = 18. All the parameters used in these
computations are defined in the fixed parameters part in section 4.1.5 and the model
used is depicted in Figure 4.1

Parameter Size Memory [kB]
Output convolution nbit × (cout + 1)× w2

out 3.0870
Output pooling nbit × w2

out × cin 0.441
Convolution weights nbit × w2

filter × cout × cin 0.054

Aconv,Bconv nbit × cout 0.027
AFC ,BFC nbit × wout(fc) 0.045

Fully connected weights wout(fc) × number of fc parameters 1.268
Input image w2

in × image size z × nbit 1.764
Total 6.686

The number of bits n_bit is fixed to 18, as discussed in section 4.5. In general,

the trend of required memory in function of n_bit is reported in the following plot:
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Figure 4.36: Memory required in function of n bit for the neural network model
depicted in Figure 4.1
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4.4 Timing comparison

To perform a timing comparison between the OOM and the In-Memory architec-

tures, the neural network model depicted in Figure 4.1 is used.

4.4.1 OOM implementation

The OOM architecture requires an amount of time that can be defined by considering

all the stages of the neural_network and the time durations of each state of the

FSMs, that have been already computed. The total time required by the algorithm

is given by the sum of the following contributions:

1. Data acquisition: the time required is equal to the maximum number of param-

eters that has to be fetched from the data generator. In the case reported

in Figure 4.1 is equal to number of fc parameters = 1014. This procedure is

performed everytime a done signal from the convolutional layer is asserted. At

the beginning, the image is precharged and, once it has been stored, it will be

not precharged anymore. The precharging phase delay contribution is given

by:

Delaydata(acq) = [max(w2
filter,number of fc parameters,w

2
in,Aconv,AFC)+

+(nlayers − 1)×max(w2
filter,number of fc parameters,Aconv,AFC)]× tck

(4.31)

Where nlayers is the number of convolutional/fully connected layers in the

network. To reduce the equation’s length:

Delaydata(acq) = (φ+ (nlayers − 1)× ψ)× tck
φ = (max(w2

filter,number of fc parameters,w
2
in,Aconv,AFC)

ψ = max(w2
filter,number of fc parameters,Aconv,AFC)

(4.32)

2. Max pooling: the total Pool time, already reported by Equation 4.1, is given
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by:

Pool time = (1 + 1 + 1 + w2
out(pool) × (1 + w2

filter + 1) + 1)× tck
= (3 + 196× (1 + 4 + 1) + 1)× tck = 1180× tck

(4.33)

3. Perform convolution: from Equation 4.21:

Convolution cycles = 1 + 1 + w2
out × (w2

filter + 1) + 1+

+ cout × w2
out × (w2

filter + 1 + cin + 1)

+ cout × (1 + 1 + 1 + 1) + 1 =

= 4 + 169× (4 + 1) + 6× 169× (4 + 1 + 1 + 1)

+ 6× 4 = 7971× tck

(4.34)

It is possible to distinguish between the precharging values time and perform

convolution as follows:

• The term 3 + w2
out × (w2

filter + 1) is formed by the contributions of idle,

initial_stage, input_precharge and wait for last precharge states.

During these periods, the Binary input RF is precharged so:

Precharging V alues = 3 + w2
out × (w2

filter + 1) (4.35)

• The remaining terms in the Equation 4.34 come from the convolution

computation delay:

Perform convolution = cout×w2
out×(w2

filter+cin+2)+cout×4+1 (4.36)

4. Fully connected layer:

FC cycles = 1 + niter × (1 + wout(fc)+

+ wout(fc) × (L+ 1) + 1) + wout(fc) + 1 + 1 =

= 1 + 169× (1 + 10 + 10× (6 + 1) + 1)+

+ 10 + 1 + 1 = 13871× tck

(4.37)
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Table 4.7: Timing of the OOM architecture. The reference neural network model is
in Figure 4.1

Operation Time required Value

Data acquisition (φ+ (nlayers − 1)× ψ)× tck 2× 1014× tck
Max Pooling (3 + w2

out(pool) × (2 + w2
filter) + 1)× tck 1180× tck

Convolutional layer

Precharge binary values 3 + w2
out × (w2

filter + 1)× tck 848× tck
Perform convolution (cout × w2

out × (w2
filter + cin + 2) + cout × 4 + 1)× tck 7123× tck

Fully connected layer

Perform computation [3 + niter × (2 + wout(fc) + wout(fc) × (L+ 1)) + wout(fc)]× tck 13871× tck
Total 25050× tck

4.4.2 In-memory implementation

Here the main differences are in the convolutional-fully connected layers:

1. Perform convolution: after the binary values are precharged, since there are

w2
out pop-counting units in parallel, the pop operation has a time duration

equal to w2
filter × tck. Once pop-counting has been performed, the final mul-

tiplexer (Figure 4.30) needs w2
out clock cycles to select all the inputs. This

procedure is repeated for each output channel, but the inputs coming from

the XNOR UNIT in memory are not fetched because the computation is already

performed inside the memory: the evaluation phase can start reducing the

total number of clock cycles required.

Convolution cycles = [3 + (w2
filter + 1)× w2

out+

+ cout × (w2
filter + w2

out × (cin + 2))+

+ cout × 3 + 1]× tck

(4.38)

2. Fully connected layer: for the same motivations, the fully connected layer,

once the inputs/weights are precharged, can be computed in parallel, without

the need to fetch each row of the XNOR UNIT in memory.

FC cycles = [3 + niter × (2 + wout(fc) + L) + wout(fc)]× tck (4.39)
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Table 4.8: Timing of the In-Memory architecture. The reference neural network
model is in Figure 4.1

Operation Time required Value

Data acquisition (φ+ (nlayers − 1)× ψ)× tck 2× 1014× tck
Max Pooling (3 + w2

out(pool) × (2 + w2
filter) + 1)× tck 1180× tck

Convolutional layer

Precharge binary values (3 + (w2
filter + 1)× w2

out)× tck 848× tck
Perform convolution (cout × (w2

filter + w2
out × (cin + 2)) + cout × 3 + 1)× tck 3085× tck

Fully connected layer

Perform computation ((1 + niter × (wout(fc) + L+ 2) + wout(fc) + 2)× tck 3055× tck
Total 10196× tck

The main differences in terms of timing are located in the convolutional/fully con-
nected computation in fact, thanks to the parallel In-Memory computation, time
can be saved up to ∼ 2.46× (considering the same clock period for both the archi-
tectures). By looking at the convolutional delay expressions:

Delay OOMconvolution = (cout × w2
out × (w2

filter + cin + 2) + cout × 4 + 1)× tck (4.40)

Delay In-Memoryconvolution = (cout × (w2
filter + w2

out × (cin + 2)) + cout × 3 + 1)× tck (4.41)

Since the data are computed directly in the memory array and w2
out parallel pop-

counting units are used, there is no need to fetch them from the memory and to pop-
counts them one by one as OOM does. This allows to the In-Memory architecture
to reduce the computational time by transforming the a part of the delay equation
from cout × w2

out × (w2
filter + cin + 2) to cout × (w2

filter + w2
out × (cin + 2) + 1). In the

fully connected layer instead, the gain is much more evident:

Delay OOMFC = [3 + niter × (2 + wout(fc) + wout(fc) × (L+ 1)) + wout(fc)]× tck (4.42)

Delay In-MemoryFC = ((1 + niter × (wout(fc) + L+ 2) + wout(fc) + 2)× tck (4.43)

The In-Memory architecture has a big advantages in terms of delay w.r.t. the OOM,

because of the usage of multiple pop-counting units and XNOR gates for each couple

binary weight/input. As already said, once the pop-counting procedure has finished,

there is no need to save them into an external register file (RF TMP POP). In the In-

Memory architecture, at the end of the algorithm, they are simply multiplexed by

the last multiplexer in Figure 4.30. These motivations brings to a delay ratio of

∼ 4.54× for the FC layer. In the following figures are reported the total required
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time in both OOM and In-Memory case, in order to verify the correctness of the

computations:

Figure 4.37: Computational delay of the OOM architecture with tck = 5.5ns

The delay ratio is given by:

Figure 4.38: Computational delay of the In-Memory architecture with tck = 5.5ns

Delay Ratio =
150.333µs

61.209µs
' 2.456 (4.44)

There is a small difference w.r.t the computed value (2.46) and the simulated one

(2.456): the reason is that some states of the neural network’s control unit are not

considered in the computation (such as reset state, idles, etc).

4.4.3 General cases

General cases are analyzed by sweeping the parameters of the network, in order to

evaluate the timing ratio between the two alternatives (OOM/In-memory), consider-

ing the same clock period and the reference architecture in Figure 4.1. The accuracy
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4 – Hardware implementations

is evaluated in all the cases, with batch size of 100 and 5 epochs training, in order

to see what is the impact of the different choices on the architecture’s precision:
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Figure 4.39: Speedup vs Cout: higher number of Cout increases the time ratio, but
the complexity of the architecture is badly influenced (higher number of parameters
required)
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Figure 4.40: Speedup vs stride conv: the consequence of increasing the stride are
worse accuracy and speedup, but the complexity of the network decreases.
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Figure 4.41: Speedup vs wfilter(pool): speedup ratio decreases, but the accuracy is
worse since the higher is the wfilter(pool), the lower is the input quality image.
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Figure 4.42: Speedup vs stride pool: speedup ratio decreases, but the accuracy is
worse since an higher stride implies bad quality input image.
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Figure 4.43: Speedup vs wout(fc): the higher is better, but in the case reported in
Figure 4.1, no more than 10 outputs are used. If the neural network is structured
with more than one fully connected layer, this brings some advantages.
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Figure 4.44: Speedup vs wfilter(conv): increasing wfilter(conv) also the speedup in-
creases, but the accuracy is degraded.
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4.4 – Timing comparison

Regarding the total delay of the architectures, it can be demonstrated that the

delay of the OOM case is always higher than the In-Memory alternative, considering

the following equations for the convolution algorithm from the timing computation:

DelayOOM(convolution) = [3 + w2
out × (w2

filter + 1)+

+ (cout × w2
out × (w2

filter + cin + 2) + cout × 4 + 1)]× tck
(4.45)

DelayIn−Memory(convolution) = [3 + w2
out × (w2

filter + 1)+

+ (cout × (w2
filter + w2

out × (cin + 2)) + cout × 3 + 1)]× tck
(4.46)

By imposing the DelayIn−Memory(convolution) equation less than DelayOOM(convolution):

DelayIn−Memory(convolution) < DelayOOM(convolution)

w2
filter + w2

out × (cin + 2) + 3 < w2
out × (w2

filter + cin + 2) + 4

w2
filter + 3 < w2

out × w2
filter + 4

w2
filter +��−1 < w2

out × w2
filter

1 < w2
out

(4.47)

By neglecting the -1 in the equation, it is demonstrated thatDelayIn−Memory(convolution)

is always less than DelayOOM(convolution). By performing the same steps for the fully

connected computational delay:

DelayOOM(FC) = [1 + niter × (wout(fc) + 3 + wout(fc) × (L+ 1))+

wout(fc) + 2]× tck
(4.48)

DelayIn−Memory(FC) = ((1 + niter × (wout(fc) + L+ 2) + wout(fc) + 2)× tck (4.49)
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Imposing the inequality, it results always verified:

DelayIn−Memory(FC) < DelayOOM(FC)

����wout(fc) + L+ 2 <����wout(fc) + 3 + wout(fc)(L+ 1)

L < 1 + wout(fc)(L+ 1)

L− 1

L+ 1
< wout(fc)

(4.50)

wout(fc) is always greater-equal than 1 and, since the ratio L−1
L+1

is always less than

1, the equation is verified. The following plots represent both convolutional/fully

connected delay ratios between the OOM and In-Memory architectures. Delay ra-

tios have been evaluated by sweeping two parameters per time. Starting from the

convolutional computation, the X-Y meshes used are cin - wfilter (fixed parame-

ters are win = 28, stride = 1 and cout = 1); cin - cout (win = 28, wfilter = 2,

stride = 1); wfilter - cout (win = 28, stride = 1, cin = 1); win - wfilter (cin = 1,

cout = 1, stride = 1). Regarding the fully connected computation, the depen-

dency of the delay ratio has been evaluated respect to wout(fc) and niter, considering

number of fc parameters = 1000. niter is chosen with the divisors function in

MATLAB, that generates the following vector:

niter =
(

1 2 4 5 8 10 20 25 40 50 100 125 200 250 500 1000
)

(4.51)
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4.4 – Timing comparison

Figure 4.45: cin - wfilter plot for a convolutional computation. By increasing the cin,
the delay ratio decreases, because by looking at Equation 4.45 and Equation 4.46,
the ratio tends towards 1 for high values of cin. Delay ratio increases with higher
values of wfilter.
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Figure 4.46: cin - cout plot for a convolutional computation. For cin, the same
considerations made in Figure 4.45 are valid. Regarding cout, by increasing it the
delay ratio slowly rises as a logarithm-like function until it reaches a saturation,
since by performing the limit of the Delay ratio function for cout →∞, the result is
a constant.
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4.4 – Timing comparison

Figure 4.47: wfilter - cout plot for a convolutional computation. The big advantage of
the In-Memory architecture in terms of delay respect to OOM one, is obtained with
high values of wfilter and cout. Considering for example the first layer of AlexNet,
the total number of OFMAPs are 96 with wfilter = 11 and the delay ratio will be
∼ 27×.
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4 – Hardware implementations

Figure 4.48: win - wfilter plot for a convolutional computation. By increasing win,
the delay ratio remains approximately the same, while wfilter dependency is the
same described in Figure 4.47
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4.4 – Timing comparison

Figure 4.49: wout(fc)-niter plot, considering a fully connected layer. By increasing
both the quantities brings relevant benefits in terms of Delay ratio. In particular it
is demonstrated that with high values of niter, the In-Memory architecture takes ad-
vantages of a more scheduled FC computation (Figure 4.16): this is a very important
result, since high niter implies a smaller array, since W ≥ number of fc parameters

niter
= L,

allowing to further reduce power consumption/area/energy consumption of the In-
Memory architecture.
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Considerations

From the previous plots, the following considerations can be made for convolutional

computation:

1. By increasing wfilter, the delay ratio increases, taking advantages of a more

complex network (such as AlexNet, in which the first layer has a kernel size

of 11x11). In combination of an higher number of output channels (cout), this

behavior is much more evident (Figure 4.47);

2. An higher value of win (which is translated in wout =
win − wfilter

stride
+ 1), do

not brings relevant advantages in terms of delay ratio, since it has a constant

behavior;

3. Higher values of cin reduce the delay ratio, because of the similar delay ex-

pressions.

Regarding the FC layer, an higher value of niter allows to increase the delay ratio and

also the power consumption. The In-Memory architecture takes relevant advantages

when fully connected computation is performed.

4.5 Choosing the number of bits (n bit)

An important parameter is the number of bits for the fixed point implementation.

In order to properly choose this value, a fixed-point neural network model has been

implemented in MATLAB (discussed in chapter 5). Following Figure 4.1, the MAT-

LAB code takes the pre-trained parameters, input images and labels from Python

and computes the accuracy for each combination [n bit,n bit fractional] simply con-

sidering:

Accuracy =
Score

#Mnist images
(4.52)

The total number of bits dedicated to the integer part are fixed and contrained to

the fractional ones, and to have a full precision computation, these have to be at

least equal to floor(log2(number of fc parameters) + 1), since the pop-counting
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4.5 – Choosing the number of bits (n bit)

part counts all the inputs:

n_bit_integer = n_bit− n_bit_fractional

n_bit_integer = floor(log2(number of fc parameters) + 1) = 11

The analysis is focused on the accuracy which derives from a different number of

fractional bits. The result is reported in Figure 4.50:

Chosen

case

Figure 4.50: Accuracy vs number of bits. The total number of images tested are
10000. The reference accuracy is set to 0.8338 from section 3.2.1

If a new neural network model is considered, the nbit analysis can be performed

again in order to find the best trade-off between accuracy-complexity.
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Chapter 5

Verification

In order to check the results given by the VHDL fixed point model, the verification

steps include:

1. The realization of the Python program, from which the results of the single

layers have been extracted;

2. Design of MATLAB floating point model and validity verification by compar-

ing the Python results and the MATLAB ones;

3. Derivation of a fixed-point MATLAB model;

4. Comparison between the VHDL results and MATLAB ones.

VHDL

Floating point

neural network model

Floating point

neural network model

Fixed point

neural network model

Figure 5.1: Verification flow

In order to convert a floating point value to a fixed point, the following formula has

been used:

quantization(x) = fix
( x

2−n bit fractional

)
(5.1)
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Where fix(y) rounds toward 0 both positive and negative results. For a multipli-

cation result, the steps to compute its fixed-point equivalent can be derived by the

following example with A = 0.25, B = 0.125 and n_bit_fractional = 4:

• Full precision multiplication gives 0.03125:

A = 00.0100 x

B = 00.0010 =

-------------

00|00.0000|1000

• The result is truncated after the 4th fractional bit, giving 0 as final result.

From a software point-of-view, the corresponding operation is floor(x), so:

tmp = X.*2ˆ(n bit fractional);

2 tmp = floor(tmp);

quantized = tmp.*2ˆ(-n bit fractional);

Now the entire MATLAB program is reported and explained:

1. Loading of the the Python trained parameters by using readNPY function, that

allows MATLAB to read Numpy vectors:

Image = readNPY('./Image.npy'); % Input images: 10000

testing images

2 Ws Conv = readNPY('./Parameters/Ws 1.npy'); % Convolutional

layer's weights

Ws FC = readNPY('./Parameters/Ws 2.npy')'; % Fully connected

layer's weights

4 mu = readNPY('./Parameters/mu.npy'); % Mean for batchnorm

sigma = readNPY('./Parameters/sigma.npy'); % Std deviation for

batchnorm

6 scale = readNPY('./Parameters/scale.npy'); % Scale for batchnorm

offset = readNPY('./Parameters/offset.npy');% Offset for batchnorm

8 labels = readNPY('./Parameters/labels.npy');% Labels for the

accuracy

2. Saving the extracted parameters for the VHDL simulation:
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path = '../VHDL MODEL/INPUT PARAMETERS VHDL/';

2 s = strcat(path,'Ws Conv.txt');

s1 = strcat(path,'*.txt');

4 delete(s1)

sz = size(Weights NN);

6 for i=1:sz(4)

vect = Ws Conv(:,:,i)';

8 mat = vect(:)';

dlmwrite(s,mat,'delimiter','\t','precision','%.6f','-append');
10 end

A = scale.*(sqrt(sigma).ˆ(-1));

12 B = -mu.*(sqrt(sigma).ˆ(-1)).*scale + offset;

dlmwrite(strcat(path,'Ws FC.txt'),Ws FC,...

14 'delimiter','\t','precision','%.6f','-append');
dlmwrite(strcat(path,'Aone.txt'),A,...

16 'delimiter','\t','precision','%.6f','-append');
dlmwrite(strcat(path,'Bone.txt'),B,...

18 'delimiter','\t','precision','%.6f','-append');
dlmwrite(strcat(path,'Image.txt'),...

20 Image(:,:,1),'delimiter','\t','precision','%.6f','-append');

3. Reading of Python results:

conv out = readNPY('./Parameters/conv.npy'); %

Convolutional layer output

2 fully = readNPY('./Parameters/fully.npy'); % Fully

connected layer output

batch norm output = readNPY('./Parameters/batch.npy');% Batch

normalization output

4 ReLU out = readNPY('./Parameters/ReLU.npy'); % ReLU

output

4. Setting the fixed-point number of bits by using two global variables (n_bit

and n_bit_fractional respectively) with SetGlobals(18,7). By choosing

SetGlobals(0,0), the computation is performed in floating point representa-

tion;

SetGlobals(18,7); % 18 = n bit; 7 = n bit fractional
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5. Parameters’ quantization. Ws_FC are not quantized since only the sign is taken:

if to quantize == 1

2 QntImage = quantization(Image);

QntWS Conv = quantization(Ws Conv);

4 QntA = quantization(A);

QntB = quantization(B);

6 end

6. Neural network’s realization:

XNOR NET = 1; % Sets the computational model to the XNOR NET one.

2 %% Max pooling layer %%

pool = Max pooling layer(QntImage,2,2); % The first parameter is

the w filter size, while the second the stride.

4 %% Convolutional layer %%

[K conv,alpha conv,conv xnor] =

Convolutional layer(pool,QntWS Conv,1,1,XNOR NET,0); %

(Input argument, Weights, Number of input channels, stride,

XNOR NET computational model, disable k computation).

6

%% Batch normalization layer %%

8 [conv xnor,vectors] = Batchnorm(conv xnor,A,B); % (Input

argument, A,B constants)

10 %% ReLU %%

conv xnor = max(0,conv xnor);

12 %% Flatten layer %%

input fc = flatten layer(conv xnor);

14

%% Fully connected %%

16 disable k = 1;

[K,alpha,output full] =

Fully connected layer(input fc,XNOR NET,Ws FC,disable k);

7. To perfom the validation of the results, the absolute difference is taken between

the Python/Floating-Point MATLAB and Fixed-Point MATLAB/VHDL. If
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any of the difference values is higher than a certain threshold, the computa-

tional model is considered wrong.

5.1 VHDL’s output

To ease the verification procedure, the results have been printed on a file in matricial
form by using a data save. It is reported a toy example of convolutional/fully con-
nected outputs with 5x5 input image, 2x2 kernel sizes, stride=1, 3 output channels
and 4 output neurons. The last results are produced by the fully connected layer
and the maximum value represents the final classification result.

convolution.txt

1.250000e-01 1.250000e-01 1.250000e-01 1.250000e-01

1.250000e-01 1.250000e-01 1.250000e-01 1.250000e-01

1.250000e-01 1.250000e-01 1.250000e-01 1.250000e-01

1.250000e-01 1.250000e-01 1.250000e-01 1.250000e-01

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

3.281250e-01 3.281250e-01 3.281250e-01 3.281250e-01

3.281250e-01 3.281250e-01 3.281250e-01 3.281250e-01

3.281250e-01 3.281250e-01 3.281250e-01 3.281250e-01

3.281250e-01 3.281250e-01 3.281250e-01 3.281250e-01

-5.200000e+01

-1.200000e+02

-3.200000e+01

-6.200000e+01

MATLAB just read these values with the directive dlmread and compares with its

approximated fixed-point computation.
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5.2 MATLAB’s output

First of all the, floating point model is verified and the output of all layers is com-

pared with the Python’s ones. For demonstration purposes, it has been reported

only the convolutional layer’s first result, after performing Batch normalization and

ReLU:

if(validation python==1)

2 diff = abs(conv xnor-conv out); % conv xnor is the output given by

the MATLAB model, while conv out the python's one

fprintf('Maximum Convolution difference between python-MATLAB

is:');

4 max(diff(:))

end

Maximum Convolution difference between python-MATLAB is:

ans =

single

3.3930e-07

As it is possible to see, a very small difference between the two models exists due

to the saving procedure precision, but it can be neglected.
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MATLAB FP model’s first ReLU output



0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127
0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127
0.127 0.127 0.385 0.127 0.127 0.211 0.127 0.127 0.127 0.127 0.127 0.127 0.127
0.127 0.127 0.127 0 0 0 0.127 0.127 0.127 0.127 0.481 0.127 0.127
0.127 0.127 0.481 0.127 0 0 0 0 0 0 0.127 0.127 0.127
0.127 0.127 0.127 0.127 0.151 0.127 0.127 0 0 0 0.127 0.127 0.127
0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0 0 0.243 0.127 0.127
0.127 0.127 0.127 0.127 0.127 0.127 0.303 0 0 0.127 0.127 0.127 0.127
0.127 0.127 0.127 0.127 0.127 0.154 0 0 0 0.208 0.127 0.127 0.127
0.127 0.127 0.127 0.127 0.127 0.127 0 0 0.127 0.127 0.127 0.127 0.127
0.127 0.127 0.127 0.127 0.313 0 0 0 0.176 0.127 0.127 0.127 0.127
0.127 0.127 0.127 0.127 0.127 0 0 0.127 0.127 0.127 0.127 0.127 0.127
0.127 0.127 0.127 0.127 0.127 0 0 0.2 0.127 0.127 0.127 0.127 0.127



(5.2)

Pythons model’s first ReLU output



0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127
0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127
0.127 0.127 0.385 0.127 0.127 0.211 0.127 0.127 0.127 0.127 0.127 0.127 0.127
0.127 0.127 0.127 0 0 0 0.127 0.127 0.127 0.127 0.481 0.127 0.127
0.127 0.127 0.481 0.127 0 0 0 0 0 0 0.127 0.127 0.127
0.127 0.127 0.127 0.127 0.151 0.127 0.127 0 0 0 0.127 0.127 0.127
0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127 0 0 0.243 0.127 0.127
0.127 0.127 0.127 0.127 0.127 0.127 0.303 0 0 0.127 0.127 0.127 0.127
0.127 0.127 0.127 0.127 0.127 0.154 0 0 0 0.208 0.127 0.127 0.127
0.127 0.127 0.127 0.127 0.127 0.127 0 0 0.127 0.127 0.127 0.127 0.127
0.127 0.127 0.127 0.127 0.313 0 0 0 0.176 0.127 0.127 0.127 0.127
0.127 0.127 0.127 0.127 0.127 0 0 0.127 0.127 0.127 0.127 0.127 0.127
0.127 0.127 0.127 0.127 0.127 0 0 0.2 0.127 0.127 0.127 0.127 0.127



(5.3)

Considering the VHDL results, the MATLAB model is switched to fixed-point
computation and the outputs are compared:

MATLAB Fixed point model’s first ReLU output



0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
0.125 0.125 0.375 0.125 0.125 0.195 0.125 0.125 0.125 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0 0 0 0.125 0.125 0.125 0.125 0.461 0.125 0.125
0.125 0.125 0.461 0.125 0 0 0 0 0 0 0.125 0.125 0.125
0.125 0.125 0.125 0.125 0.133 0.125 0.125 0 0 0 0.125 0.125 0.125
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0 0 0.227 0.125 0.125
0.125 0.125 0.125 0.125 0.125 0.125 0.281 0 0 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 0.125 0.133 0 0 0 0.195 0.125 0.125 0.125
0.125 0.125 0.125 0.125 0.125 0.125 0 0 0.125 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 0.289 0 0 0 0.156 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 0.125 0 0 0.125 0.125 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 0.125 0 0 0.18 0.125 0.125 0.125 0.125 0.125



(5.4)

VHDL model’s first ReLU output



0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125
0.125 0.125 0.375 0.125 0.125 0.195 0.125 0.125 0.125 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0 0 0 0.125 0.125 0.125 0.125 0.461 0.125 0.125
0.125 0.125 0.461 0.125 0 0 0 0 0 0 0.125 0.125 0.125
0.125 0.125 0.125 0.125 0.133 0.125 0.125 0 0 0 0.125 0.125 0.125
0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0 0 0.227 0.125 0.125
0.125 0.125 0.125 0.125 0.125 0.125 0.281 0 0 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 0.125 0.133 0 0 0 0.195 0.125 0.125 0.125
0.125 0.125 0.125 0.125 0.125 0.125 0 0 0.125 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 0.289 0 0 0 0.156 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 0.125 0 0 0.125 0.125 0.125 0.125 0.125 0.125
0.125 0.125 0.125 0.125 0.125 0 0 0.18 0.125 0.125 0.125 0.125 0.125



(5.5)
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5.3 – Other neural network models

MATLAB checks the values given by the VHDL and, if the model is correct, should
report the following messages:

First convolution (1) is correct!

First convolution (2) is correct!

First convolution (3) is correct!

First convolution (4) is correct!

First convolution (5) is correct!

First convolution (6) is correct!

Output FC results are correct!!

By comparing the results given by the fixed point model and the floating point

one, the difference is not so evident, since the number of layers is reduced and the

approximation imposed by the fixed point representation does not influences so much

the calculations. Trying now to recognize some inputs, the resulting fully connected

VHDL outputs are the following. The maximum value out of 10 is the classification

result: the first one refers to ”0” and the last one to ”9”.

-6.400000e+01 -7.800000e+01 2.000000e+01 -5.600000e+01

-6.400000e+01 -2.600000e+01 -1.040000e+02 -2.800000e+01

-4.400000e+01 -2.200000e+01 -6.000000e+01 -2.800000e+01

-3.800000e+01 4.000000e+00 -2.600000e+01 -3.400000e+01

-3.400000e+01 -3.200000e+01 -7.000000e+01 -3.000000e+01

-3.400000e+01 -2.000000e+01 -6.000000e+00 -2.600000e+01

-8.000000e+01 -1.400000e+01 -3.600000e+01 1.600000e+01

4.600000e+01 -3.200000e+01 -7.000000e+01 -4.600000e+01

-7.400000e+01 -5.200000e+01 -3.000000e+01 -4.200000e+01

-4.000000e+01 -4.600000e+01 -4.400000e+01 -5.200000e+01

It’s 7!! It’s 3!! It’s 0!! It’s 6!!

-4.600000e+01 -4.000000e+01 -6.200000e+01

-5.400000e+01 -9.600000e+01 1.800000e+01

-3.800000e+01 -3.200000e+01 -4.200000e+01

-8.000000e+01 -8.200000e+01 -2.800000e+01

1.200000e+01 -2.200000e+01 -4.400000e+01

-4.800000e+01 -7.000000e+01 -4.800000e+01

-4.600000e+01 -4.400000e+01 -4.200000e+01

-2.400000e+01 -1.400000e+01 -2.800000e+01

-5.600000e+01 -5.000000e+01 -5.200000e+01

-3.400000e+01 0.000000e+00 -5.000000e+01

It’s 4!! It’s 9!! It’s 1!!

5.3 Other neural network models

To demonstrate the capability of the VHDL architecture to implement every kind

of neural network, in the following part are proposed other neural network models.
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5.3.1 MLP Implementation

The network structure is the following:

Classi�cation

Input

image

Figure 5.2: MLP model. The network has 15 layers and it is able to achieve ∼ 90%
of accuracy on MNIST dataset.

To implement an MLP, the variable and fixed parameters discussed in subsec-
tion 4.1.5, must be changed according to the new structure. For comparison pur-
poses, these values are reported for both MLP and original neural network models.

-----------------FIXED PARAMETERS---------------------

-----------------MLP NETWORK-----------------

constant w_out: integer:=14;

constant h_max: integer:=196;

constant w_in: integer:=28;

constant w_filter: integer:=4;

constant w_filter_s: integer:=2;

constant width_sram:integer:=14;

constant number_of_output_channels: integer:=1;

constant number_of_input_channels: integer:=1;

constant number_of_fc_parameters:integer:=798;

constant number_of_neurons_output: integer:=196;

constant input_image_size_x:integer:=28;
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5.3 – Other neural network models

constant input_image_size_z:integer:=1;

constant flatten_x:integer:=196;

constant flatten_z:integer:=1;

-----------------FIXED PARAMETERS---------------------

-----------------ORIGINAL NETWORK-----------------

constant w_out: integer:=14;

constant h_max: integer:=169;

constant w_in: integer:=28;

constant w_filter: integer:=4;

constant w_filter_s: integer:=2;

constant width_sram:integer:=6;

constant number_of_output_channels: integer:=6;

constant number_of_input_channels: integer:=1;

constant number_of_fc_parameters:integer:=1014;

constant number_of_neurons_output: integer:=10;

constant input_image_size_x:integer:=28;

constant input_image_size_z:integer:=1;

constant flatten_x:integer:=169;

constant flatten_z:integer:=6;

1. h_max has changed into 196 respect to 169 of the initial neural network model

(Figure 4.1), since in this case there are 196 maximum output neurons. For

this motivation, 196 rows of memory are required;

2. The width_sram chosen is 14, since it is a divider of both 784 (input layer size)

and 196 (hidden layers size). The iterations required for input and hidden

layers are given by:

niter(MLP−Input) =
784

14
= 56 (5.6)

niter(MLP−hidden) =
196

14
= 14 (5.7)

3. number_of_output_channels: in a MLP network, no output channels are

required, since it is an operation performed on vectors instead of matrices;

4. number_of_fc_parameters: in the MLP case, the maximum input size of the

fully connected layer is 784. For motivations related to the VHDL implemen-

tation, it is incremented to 798 to avoid addressing problems;

245



5 – Verification

5. flatten_x and flatten_z: since there is only one output register file,

the flattening procedure has to be performed only on 1 register file of size 196.

Considering now the variable parameters:

-----------------VARIABLE PARAMETERS---------------------

-----------------MLP NETWORK-----------------

constant n_layers:integer:=4;

constant number_of_layers: std_logic_vector(n_layers-1 downto 0):= "0011";

constant conv_layer_size_x: int_vect(n_layers-1 downto 0):=(1,1,1,1);

constant conv_layer_size_x_pow:int_vect(n_layers-1 downto 0):=(1,1,1,1);

constant conv_layer_size_y: int_vect(n_layers-1 downto 0):=conv_layer_size_x;

constant conv_layer_size_z: int_vect(n_layers-1 downto 0):=(14,14,14,56);

constant kernel_size_xy_pow:int_vect(n_layers-1 downto 0):=(14,14,14,14);

constant kernel_size_xy: int_vect(n_layers-1 downto 0):=(1,1,1,1);

constant kernel_size_z: int_vect(n_layers-1 downto 0):=(1,1,1,1);

constant stride_sel_c: int_vect(n_layers-1 downto 0):=(1,1,1,1);

constant output_size_conv: int_vect(n_layers-1 downto 0):=(1,1,1,1);

constant output_size_conv_pow: int_vect(n_layers-1 downto 0):=(10,196,196,196);

-------------------------------------------------------------------------------

---------------POOLING-------------

constant pool_filter_size:int_vect(n_layers-1 downto 0):=(1,1,1,1);

constant pool_x_size:int_vect(n_layers-1 downto 0):=(1,1,1,1);

constant pool_out_size:int_vect(n_layers-1 downto 0):=(1,1,1,1);

constant pool_filter_size_s:int_vect(n_layers-1 downto 0):=(1,1,1,1);

constant pool_stride:int_vect(n_layers-1 downto 0):=(1,1,1,1);

constant pool_x_size_pow:int_vect(n_layers-1 downto 0):=(1,1,1,1);

constant pool_z_size:int_vect(n_layers-1 downto 0):=(1,1,1,1);

-------------------------------------------------------------------------------

-------------Layer types-------------

constant do_batch_layer: std_logic_vector(n_layers-1 downto 0):="1111";

constant do_pool_layer:std_logic_vector(n_layers-1 downto 0):="0000";

constant do_relu_layer: std_logic_vector(n_layers-1 downto 0):="0111";

constant fully_connected:std_logic_vector(n_layers-1 downto 0):="1111";

-----------------VARIABLE PARAMETERS---------------------

-----------------ORIGINAL NETWORK-----------------

constant n_layers : integer := 2 ;

constant number_of_layers : std_logic_vector ( n_layers-1 downto 0 ) := "01";

constant conv_layer_size_x : int_vect ( n_layers-1 downto 0 ) := ( 1 ,14 );
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5.3 – Other neural network models

constant conv_layer_size_x_pow : int_vect ( n_layers-1 downto 0 ) := ( 1 ,196 );

constant conv_layer_size_z : int_vect ( n_layers-1 downto 0 ) := ( 169 ,1 );

constant kernel_size_xy_pow : int_vect ( n_layers-1 downto 0 ) := ( 6 ,4 );

constant kernel_size_xy : int_vect ( n_layers-1 downto 0 ) := ( 1 ,2 );

constant kernel_size_z : int_vect ( n_layers-1 downto 0 ) := ( 1 ,6 );

constant stride_sel_c : int_vect ( n_layers-1 downto 0 ) := ( 1 ,1 );

constant output_size_conv : int_vect ( n_layers-1 downto 0 ) := ( 1 ,13 );

constant output_size_conv_pow : int_vect ( n_layers-1 downto 0 ) := ( 10 ,169 );

-------------

---------------POOLING-------------

constant pool_filter_size : int_vect ( n_layers-1 downto 0 ) := ( 1 ,4 );

constant pool_x_size : int_vect ( n_layers-1 downto 0 ) := ( 1 ,28 );

constant pool_out_size : int_vect ( n_layers-1 downto 0 ) := ( 1 ,196 );

constant pool_filter_size_s : int_vect ( n_layers-1 downto 0 ) := ( 1 ,2 );

constant pool_stride : int_vect ( n_layers-1 downto 0 ) := ( 1 ,2 );

constant pool_x_size_pow : int_vect ( n_layers-1 downto 0 ) := ( 1 ,784 );

constant pool_z_size : int_vect ( n_layers-1 downto 0 ) := ( 1 ,1 );

-------------

-------------Layer types-------------

constant do_batch_layer : std_logic_vector ( n_layers-1 downto 0 ) := "01" ;

constant do_pool_layer : std_logic_vector ( n_layers-1 downto 0 ) := "01" ;

constant do_ReLU_layer : std_logic_vector ( n_layers-1 downto 0 ) := "01" ;

constant fully_connected : std_logic_vector ( n_layers-1 downto 0 ) := "10" ;

1. The number of layers n_layers are four, since there are 4 fully connected

computations: batch normalization and ReLU are considered inside the fully

connected layer. Dropouts layers are not useful for classification routine, since

are used during training to prevent overfitting;

2. The useful parameters of the convolutional part are conv_layer_size_z,

kernel_size_xy_pow and output_size_conv_pow. conv_layer_size_z, as

already said, indicates the number of iterations (niter) required by the con-

sidered layer to compute the fully connected output. kernel_size_xy_pow

indicates the size of the FC input (L) (discussed in section 4.1.2): in this net-

work, L is equal to 14 for all the cases. output_size_conv_pow indicates the

number of output neurons of the considered layer;

3. Since pooling layer is not performed in the neural network model depicted in
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Figure 5.2, the values specified in the vectors are not considered;

4. Batch normalization and Fully connected layer are always performed, conse-

quently do_batch and fully connected layer are always enabled. Same

considerations can be made for ReLU and max pooling.

Results verification

With the same approach described in Figure 5.1, the results are verified. Since

the fully connected layers have vectors that flows into the architecture, the saving

format is a vector, that is compared with the result provided by MATLAB. The

vectors have a size of 196, 196, 196, 10 for the four layers respectively, which are

separed by ---------------. In the following part it is reported an output exam-

ple with the number ”7”: as it is possible to see, the classification in output, which

is given by the maximum number of the last fully connected layer, is 7 in both cases.

MATLAB Results

FC1 =



0

0

0

0.414

0.484

0.32

0

...


FC2 =



0

0

0

0.719

0

0.227

0.195

...


FC3 =



0

0.703

0

1.04

0

0

0

...


FC4 =



−1.6

−1.31

−0.906

−1.05

−1.44

−1.04

−1.21

0.875

−1.12

−1.51


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VHDL Results

0.000000e+00 0.000000e+00 0.000000e+00 -1.601562e+00

0.000000e+00 0.000000e+00 7.031250e-01 -1.312500e+00

0.000000e+00 0.000000e+00 0.000000e+00 -9.062500e-01

4.140625e-01 7.187500e-01 1.039062e+00 -1.046875e+00

4.843750e-01 0.000000e+00 0.000000e+00 -1.437500e+00

3.203125e-01 2.265625e-01 0.000000e+00 -1.039062e+00

0.000000e+00 1.953125e-01 0.000000e+00 -1.210938e+00

..... ..... .... 8.750000e-01

------------ ------------ ------------ -1.125000e+00

-1.507812e+00

The output of the MATLAB program is the following:

(1) fully connected layer is correct!

(2) fully connected layer is correct!

(3) fully connected layer is correct!

Classification is correct!

5.3.2 Fashion-MNIST neural network model

To validate the VHDL implementation with another CNN network and Dataset,

the following neural network model depicted in Figure 5.4 has been implemented

with Fashion-MNIST. This is a dataset containing 60000 greyscale images of 28x28

representing 10 classification classes, that are identified by the following one-hot

positions:

1. T-shirt/top;

2. Trouser;

3. Pullover;

4. Dress;

5. Coat;

6. Sandal;

7. Shirt;
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8. Sneaker;

9. Bag;

10. Ankle boot.

Figure 5.3: Fashion MNIST dataset
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Figure 5.4: CNN model used for fashion-MNIST dataset. All convolutional layers have a kernel size of 5x5x6 with
stride 1. Max pooling layers have a kernel size of 2x2 with stride 1. After each fully connected layer there is a batch
normalization computation, in order to reduce the inaccuracies caused by the approximated computation introduced
in section 4.1.2. This model is able to achieve up to 70% of accuracy.
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This neural network has been designed to verify the possibility to implement any
kind of CNN configuration, since max-pooling layers have been placed after convo-
lutional layers respect to the original neural network model depicted in Figure 4.1.
In Figure 5.4 there are multiple input channels used, since the first convolution
has 6 OFMAPs that are fed to the following stages. The package that defines the
variable/fixed parameters is:

-------------FIXED PARAMETERS---------------

------------FASHION MNIST CNN---------------

constant w_out: integer:=24;

constant h_max: integer:=576;

constant w_in: integer:=28;

constant w_filter: integer:=25;

constant w_filter_s: integer:=5;

constant width_sram:integer:=32;

constant number_of_output_channels: integer:=6;

constant number_of_input_channels: integer:=6;

constant number_of_fc_parameters:integer:=152;

constant number_of_neurons_output: integer:=120;

constant input_image_size_x:integer:=28;

constant input_image_size_z:integer:=1;

constant flatten_x:integer:=16;

constant flatten_z:integer:=6;

constant n_layers:integer:=5;

-----------------VARIABLE PARAMETERS---------

constant number_of_layers: std_logic_vector(n_layers-1 downto 0):= "00100";

---------------------------------------------------------------------------

constant conv_layer_size_x: int_vect(n_layers-1 downto 0):=(1,1,1,12,28);

constant conv_layer_size_x_pow:int_vect(n_layers-1 downto 0):=(1,1,1,144,784);

constant conv_layer_size_y: int_vect(n_layers-1 downto 0):=conv_layer_size_x;

constant conv_layer_size_z: int_vect(n_layers-1 downto 0):=(6,6,3,6,1);

constant kernel_size_xy_pow:int_vect(n_layers-1 downto 0):=(14,20,32,25,25);

constant kernel_size_xy: int_vect(n_layers-1 downto 0):=(1,1,1,5,5);

constant kernel_size_z: int_vect(n_layers-1 downto 0):=(1,1,1,6,6);

constant stride_sel_c: int_vect(n_layers-1 downto 0):=(1,1,1,1,1);

constant output_size_conv: int_vect(n_layers-1 downto 0):=(1,1,1,8,24);

constant output_size_conv_pow: int_vect(n_layers-1 downto 0):=(11,84,120,64,576);

---------------------------------------------------------------------------

---------------POOLING-------------

constant pool_filter_size:int_vect(n_layers-1 downto 0):=(1,1,4,4,1);
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constant pool_x_size:int_vect(n_layers-1 downto 0):=(1,1,8,24,1);

constant pool_out_size:int_vect(n_layers-1 downto 0):=(1,1,16,144,1);

constant pool_filter_size_s:int_vect(n_layers-1 downto 0):=(1,1,2,2,1);

constant pool_stride:int_vect(n_layers-1 downto 0):=(1,1,2,2,1);

constant pool_x_size_pow:int_vect(n_layers-1 downto 0):=(1,1,64,576,1);

constant pool_z_size:int_vect(n_layers-1 downto 0):=(1,1,6,6,1);

---------------------------------------------------------------------------

constant do_batch_layer: std_logic_vector(n_layers-1 downto 0):= "11100";

constant do_pool_layer:std_logic_vector(n_layers-1 downto 0):= "00110";

constant do_relu_layer: std_logic_vector(n_layers-1 downto 0):= "10000";

constant fully_connected:std_logic_vector(n_layers-1 downto 0):= "11100";

Starting from fixed parameters:

• w_out: the maximum output dimension is given by the first convolutional

layer, which convolves 28x28 IFMAP with 6 kernels of 5x5 and stride 1.

wout(max) =
win − wfilter

stride
+ 1 = 24 (5.8)

• h_max: maximum number of rows of the custom memories, which is equal to

w2
out(max), so 576;

• w_filter: maximum kernel size used in the architecture, which is 25;

• width_sram: fixed to 32. Considering the W contraints:W ≥ w2
filter = 25

W ≥ L
(5.9)

In this architecture there are 3 fully connected layers, and the values of L are

different for each of them. The first one takes 96 inputs, the second 120 and

the last one 84: for the first case, L is fixed to 32, since it is the first divisor

of 96 after w2
filter = 25. In the second case, L is fixed to 20 and in the third

one L = 14. Consequently, W=32.

• number_of_output_channels: the architecture produces 6 output channels

in both convolutions;
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• number_of_input_channels: the second convolution takes 6 channels in input

and produces 6 OFMAPs. For this motivation, both architectures should be

replicated 6 times, imposing cin = 6;

• number_of_fc_parameters: the maximum size of the fully connected layers

is 120, but in the VHDL implementation it is imposed equal to 152 to avoid

indexing errors in the fc scheduling. This value has been obtained as 120 +

32, where 32 is W;

• flatten_x and flatten_z: since the output sizes before the first fully con-

nected layer are 4x4x6, the flatten layer has to consider 16 elements of each

Output register files.

Regarding variable parameters, only the relevant changes are discussed, since for

the others the same considerations made before are valid:

• conv_layer_size_x: the first layer takes in input the entire image with 28x28

pixels. The second one, takes the convolved and pooled image with size 12x12.

The remaining numbers refer to the fully connected layers, in which this pa-

rameter is not used;

• kernel_size_xy_pow: in the convolution computation, it indicates the kernel

size which is 25, while in the FC part the L sizes;

• kernel_size_z: 6 kernels are used in the convolutions, since 6 OFMAPs are

produced in both the cases;

• conv_layer_size_z: the first layer takes in input only one channel, since the

image has 28x28x1 pixels. The second one takes 6 input channels, as reported

in Figure 5.4. The number in position 3 is equal to 3 and indicates niter in the

fully connected computation: since the first FC layer takes 96 inputs, with L

fixed to 32, the total number of iterations required to perform the fc scheduling

(section 4.1.2) is equal to 3 (32*3=96). Same considerations have been made

for the other cases.

The MATLAB’s output is the following:

254



5.3 – Other neural network models

First convolution (1) is correct!

First convolution (2) is correct!

First convolution (3) is correct!

First convolution (4) is correct!

First convolution (5) is correct!

First convolution (6) is correct!

Second convolution (1) is correct!

Second convolution (2) is correct!

Second convolution (3) is correct!

Second convolution (4) is correct!

Second convolution (5) is correct!

Second convolution (6) is correct!

(1) FC is correct!

(2) FC is correct!

(3) FC is correct!

For demonstration purposes, it is reported only the first OFMAP of the second max

pooling layer, since the other matrices are very big:

VHDL output

7.812500e-03 9.375000e-02 5.234375e-01 1.039062e+00

3.320312e-01 4.648438e-01 6.718750e-01 5.546875e-01

7.382812e-01 6.718750e-01 -6.523438e-01 -9.804688e-01

-8.945312e-01 -1.554688e+00 -1.492188e+00 -1.625000e+00

MATLAB’s output

Pool2(: , : ,1) =


0.00781 0.0938 0.523 1.04

0.332 0.465 0.672 0.555

0.738 0.672 −0.652 −0.98

−0.895 −1.55 −1.49 −1.62


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Chapter 6

Synthesis - Place & Route

6.1 Original architecture

In this section, are reported the synthesis and place&route results obtained for the

neural network model depicted in Figure 4.1. The dimensions of the architecture

are summarized in the following table:

Table 6.1: Dimensions of the top entity in terms of # input bits, XNOR Gates, Pop
units etc. The reference neural network is depicted in Figure 4.1.

Layer Type Parameter Formula Value

C
O

N
V

O
L

U
T

IO
N

A
L

L
A

Y
E

R

Memory sizes

W
number of fc parameters

n iter
6

H hmax 169

Z cin 1

Number of XNOR GATES
IN MEMORY W ×H × cin 1014

OOM W × cin 6

Number of POP Units
IN MEMORY H × cin 169

OOM cin 1

Input sizes [# bits]

Input filters cin × nbit 18

Input image cin × nbit 18

Input weights FC W 6

Input image FC W 6

A,B nbit 18

Binary inputs/Binary weights W × cin 6

Output sizes [# bits] Output convolution nbit × cin 18

P
O

O
L Input sizes [# bits] Input pool cin × nbit 18

Output sizes [# bits] Output pool cin × nbit 18
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6.1 – Original architecture

6.1.1 Synthesis

The two circuits are synthesized with Synopsys Design Compiler with CMOS 45nm,

and, in particular, are analyzed the differences in terms of area, timing and power.

Power estimation is performed in the worst case: switching activity is equal to ’1’

in each node of the network. The options used for the synthesis are the following:

1. Chosen clock period of 5.5ns:

create_clock -name MY_CLK -period 5.5 clk;

2. Clock uncertainty (jitter) is applied:

set_clock_uncertainty 0.07 [get_clocks MY_CLK];

3. Delay of inputs/outputs:

set_input_delay 0.5 -max -clock MY_CLK [remove_from_collection [all_inputs] clk]

set_output_delay 0.5 -max -clock MY_CLK [all_outputs]

4. For sake of simplicity, the input capacitance of BUF_X4 (which is equal to 3.40

fF) is chosen as load for the outputs:

set OLOAD [load_of NangateOpenCellLibrary/BUF_X4/A]

set_load $OLOAD [all_outputs]

Results

Table 6.2: Results in terms of area, critical path delay, power, total energy and
time required by the two architectures for the neural network model depicted in
Figure 4.1

Area[mm2] Critical path delay[ns] Power [mW] Time required [µs] Total energy [nJ]

In Memory architecture

0.0923 4.22 12.9 61.209 789.6

OOM architecture

0.0564 4.38 8.85 150.333 1330.4
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Critical path delay The critical path is formed by a multiplier and an adder of

the batch normalization unit, as depicted in Figure 4.17. The values of the critical

path delays are different because of the different synthesis choices that Synopsys

has made. In the following figure it is reported a part of the timing report of both

architectures:

Figure 6.1: Part of timing reports for both architectures. The main differences are
highlighted by the red dashed circles. The same logic gate has been implemented
into two different ways in the architectures.

The worst case is analyzed: critical path delays of both architectures are equal. The

other results are now discussed.

Area An analysis of the main contributions that defines the area of the designs is

performed, taking into account only the main differences between the two architec-

tures:

1. Number of XNOR gates: since the architectures are different from each other,

they have a different number of XNOR gates, that can be defined considering

the dimensions of the XNOR UNIT and XNOR UNIT in memory for OOM and

In-memory structures respectively:

#XNOR Gates(in memory) = w × h = 6× 169 = 1014

#XNOR Gates(OOM) = w × 1 = 6

XNOR Gate ratio = 169

2. Pop-counting units: in the OOM architecture there is only one pop-count unit,

since the structure is serialized, while for the in-memory architecture there are

169 of them:

Pop ratio = 169 (6.1)
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6.1 – Original architecture

These two contributions produce the following area ratio:

AR =
AreaOOM

AreaIn−Memory

=
0.0564

0.0923
' 0.611 (6.2)

Power As expected, the resulting power is worst in the case of in-memory im-

plementation, since Synopsys is not able to perform in-memory designs for XNOR-

UNIT and pop-counting parts. The estimations performed in the In-Memory case

are pessimistic, since the memory has been implemented as a register file and a

flip-flop is more complicated than a custom memory cell, composed by a memory

element and a XNOR gate. The in-memory architecture consumes ≈ 1.45× more

power than the OOM counterpart.

Total energy Taking the power and total delay values, the total energy of both

architectures has been evaluated. The energy ratio is given by:

ER =
1330.4nJ

789.6nJ
= 1.7 (6.3)

The In-Memory architecture consume ∼ 1.7× less energy than the OOM counter-

part. This is a very good result, because the main goal of an In-Memory architec-

ture is to change the design approach in order to find a solution with lower energy

consumed and computational delay, since the computational elements (in this case

XNOR gates and full-adders) are placed near-memory element. Consequently, the

Von Neumann’s bottleneck is reduced.

6.1.2 Place & Route

In this section are reported the Place & Route results for both the architectures:
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Figure 6.2: Physical chip of OOM ar-
chitecture

Figure 6.3: Physical chip of In-Memory
architecture

By looking at Figure 6.2, it is possible to see that the structure is less complex

than the In-Memory alternative: this confirms the expectations also on the power

consumption, as discussed in the synthesis part. Now there are reported the power

reports for a clock period of 5.5ns of the two architectures. They are performed with

.vcd files, in order to take into account also the switching activities of the circuits.

OOM implementation

* Power Units = 1mW

-----------------------------------------------------------------------------

Cell Internal Switching Total Leakage

Power Power Power Power

-----------------------------------------------------------------------------

Total ( 26504 of 26504 ) 6.747 0.2858 8.08 1.047

Total Capacitance 1.444e-10 F

In-memory implementation

* Power Units = 1mW

-----------------------------------------------------------------------------

Cell Internal Switching Total Leakage

Power Power Power Power

-----------------------------------------------------------------------------
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6.2 – MLP architecture

Total ( 46104 of 46104 ) 10.98 1.861 14.54 1.705

Total Capacitance 2.554e-10 F

In the OOM case, the capacitance load used by Synopsys influences the power con-

sumption, producing an higher result than the real one, computed by Innovus. In

the second one, the interconnections have a big impact in terms of power consump-

tion, increasing the synthesis estimated one by 1.64 mW. The energy ratio can be

evaluated considering the interconnections contributions:

ERPlace&Route =
8.08mW × 150.333µs

14.54mW × 61.209µs
=' 1.37 (6.4)

Since the In-Memory architecture has a more complex structure than the OOM
counterpart, the energy is much more degraded: as a consequence the energy ratio
increases by ∼ 0.33. Regarding the critical path delay, after the Place&Route phase,
the worst slack values have been analyzed for both architectures with tck = 5.5ns.
Their values are reported from neural_network_postRoute_hold.slk:

Worst slack (In-Memory) = 0.005 ns

Worst slack (OOM) = 0.005 ns

The interconnections increase the clock period from 4.22ns to ∼ 5.5ns.

6.2 MLP architecture

The results for the MLP architecture depicted in Figure 5.2 are reported. The

dimensions of both the architectures (OOM and In-Memory) are the following:
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Table 6.3: Dimensions of the top entity. The reference neural network is depicted
in Figure 5.2. The (-)s indicate don’t care, since it is a MLP architecture, they are
fixed to the minimum size.

Layer Type Parameter Formula Value

C
O

N
V

O
L

U
T

IO
N

A
L

L
A

Y
E

R

Memory sizes

W
number of fc parameters

n iter
14

H hmax 196

Z cin 1

Number of XNOR GATES
IN MEMORY W ×H × cin 2744

OOM W × cin 14

Number of POP Units
IN MEMORY H × cin 196

OOM cin 1

Input sizes [# bits]

Input filters cin × nbit -

Input image cin × nbit -

Input weights FC W 14

Input image FC W 14

A,B nbit 18

Binary inputs/Binary weights W × cin -

Output sizes [# bits] Output convolution nbit × cin 18

P
O

O
L Input sizes [# bits] Input pool cin × nbit -

Output sizes [# bits] Output pool cin × nbit -

6.2.1 Synthesis & Place-Route chips

Figure 6.4: OOM chip implementing
the neural network model depicted in
Figure 5.2

Figure 6.5: In-Memory chip imple-
menting the neural network model de-
picted in Figure 5.2
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6.2 – MLP architecture

By performing the synthesis, the results obtained in terms of area, critical path

delay and power are reported in Table 6.4. The time required by the two algorithms

can be computed considering that are 4 fully connected layers. The steps are the

following:

1. At the beginning of the algorithm, the data are precharged inside the memo-

ries. The total number of clock cycles required can be computed also consid-

ering that this procedure is performed everytime iteration_cycle increases:

DelayDataacq = (φ+ (nlayers − 1)× ψ)× tck = 4× 798× tck (6.5)

2. The fully connected layers have the following delays for the In-Memory and

OOM alternatives:

DelayFC(In−Memory) = ((1 +niter× (wout(fc) +L+ 2) +wout(fc) + 2)× tck (6.6)

DelayFC(OOM) = [3 + niter × (2 + wout(fc) + wout(fc) × (L+ 1))+

+ wout(fc)]× tck
(6.7)

The computations of the layers are the following:

(a) First layer niter = 56, wout(fc) = 196, L = 14:

DelayFC(In−Memory) = ((1 + 56× (196 + 14 + 2) + 196 + 2)× tck
= 12071× tck
DelayFC(OOM) = [3 + 56× (196 + 2 + 196× (14 + 1)) + 196]× tck
= 175927× tck

(b) Second layer niter = 14, wout(fc) = 196, L = 14:

DelayFC(In−Memory) = ((1 + 14× (196 + 14 + 2) + 196 + 2)× tck
= 3167× tck
DelayFC(OOM) = [3 + 14× (196 + 2 + 196× (14 + 1)) + 196]× tck
= 44131× tck
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(c) Third layer niter = 14, wout(fc) = 196, L = 14:

DelayFC(In−Memory) = ((1 + 14× (196 + 14 + 2) + 196 + 2)× tck
= 3167× tck
DelayFC(OOM) = [3 + 14× (196 + 2 + 196× (14 + 1)) + 196]× tck
= 44131× tck

(d) Fourth layer niter = 14, wout(fc) = 10, L = 14:

DelayFC(In−Memory) = ((1 + 14× (10 + 14 + 2) + 10 + 2)× tck
= 377× tck
DelayFC(OOM) = [3 + 14× (10 + 2 + 10× (14 + 1)) + 10]× tck
= 2281× tck

The final delays of the FC layers are:

DelayFC(In−Memory) = 18782× tck
DelayFC(OOM) = 266470× tck

Considering all the contributions:

DelayOOM = (21974 + overheads)× tck
DelayIn−Memory = (269606 + overheads)× tck

DR =
269606

21974
' 12.27

From Modelsim, the real times required by the architectures to perform the algo-

rithm with a clock period of 6ns are given by:
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6.2 – MLP architecture

Figure 6.6: Computational delay of the In-Memory architecture, implementing the
neural network model depicted in Figure 5.2.

Figure 6.7: Computational delay of the OOM architecture, implementing the neural
network model depicted in Figure 5.2.

Giving a ratio of ∼ 12.26. From a delay point of view, the In-Memory ar-

chitecture is very efficient to perform the fully connected computations w.r.t the

OOM, because of the parallelization technique and the possibility to perform the

XNORs/pops directly inside the memory array.

Table 6.4: Results in terms of area, critical path delay, power, total energy and
time required by the two architectures for the neural network model depicted in
Figure 5.2

Area[mm2] Critical path delay[ns] Power [mW] Time required [ms] Total energy [µJ]

In Memory architecture

0.1055 4.220 15.1 0.132 1.99

OOM architecture

0.0876 4.32 14.32 1.62 23.2

The powers in Table 6.4 are comparable, which is a very good result considering
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the dimensions and gate count of the In-Memory architecture respect to OOM. The

energy ratio is given by:

ER =
23.2µJ

1.99µJ
' 11.7× (6.8)

Also from the energy consumption point of view, the In-Memory is far more efficient

than the OOM one.

6.3 Fashion-MNIST CNN

The case of fashion-MNIST CNN depicted in Figure 5.4 is now discussed. The

parameters chosen for this model assume the following values:

1. The number of bits used in this architecture is 16, with 8 fractional bits and

8 integer bits;

2. The number of input channels is equal to 6, since there are 2 convolutional

layers and the second one takes in input 6 channels;

3. w2
filter is fixed to 25 for the convolutional part, while max-pooling has only

2x2 kernel size;

4. W is fixed to 32, for the motivations already explained in subsection 5.3.2;

5. H is 576 from the first convolutional layer’s output size, which is given by

24x24 OFMAPs.
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6.3 – Fashion-MNIST CNN

Table 6.5: Dimensions of the top entity. The reference neural network is depicted
in Figure 5.4.

Layer Type Parameter Formula Value

C
O

N
V

O
L

U
T

IO
N

A
L

L
A

Y
E

R

Memory sizes

W
number of fc parameters

n iter
32

H hmax 576

Z cin 6

Number of XNOR GATES
IN MEMORY W ×H × cin 110592

OOM W × cin 192

Number of POP Units
IN MEMORY H × cin 3456

OOM cin 6

Input sizes [# bits]

Input filters cin × nbit 96

Input image cin × nbit 96

Input weights FC W 32

Input image FC W 32

A,B nbit 16

Binary inputs/Binary weights W × cin 192

Output sizes [# bits] Output convolution nbit × cin 16

P
O

O
L Input sizes [# bits] Input pool cin × nbit 96

Output sizes [# bits] Output pool cin × nbit 96

This network is composed by 2 convolutional layers, 2 pooling layers and 3 fully

connected layers. The total delay can be computed as:

1. Precharge

DelayDataacq = (φ+ (nlayers − 1)× ψ)× tck = (784 + 4× 152)× tck (6.9)

2. First convolutional layer: w2
filter = 25, w2

out = 576, cout = 6, cin = 1

DelayIn−Memory(convolution) = [3 + w2
out × (w2

filter + 1) + (cout × (w2
filter+

+ w2
out × (cin + 2)) + cout × 3 + 1)]× tck

= 25516× tck
DelayOOM(convolution) = [3 + w2

out × (w2
filter + 1)+

+ (cout × w2
out × (w2

filter + cin + 2) + cout × 4 + 1)]× tck
= 111772× tck
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3. Max pooling: w2
filter = 4, w2

out(pool) = 144

DelayPooling = (4 + w2
out(pool) × (2 + w2

filter))× tck
= (4 + 144× (2 + 4))× tck = 868× tck

(6.10)

4. Second convolutional layer: w2
filter = 25, w2

out = 64, cout = 6, cin = 6

DelayIn−Memory(convolution) = [3 + w2
out × (w2

filter + 1) + (cout × (w2
filter+

+ w2
out × (cin + 2)) + cout × 3 + 1)]× tck

= 4908× tck
DelayOOM(convolution) = [3 + w2

out × (w2
filter + 1)+

+ (cout × w2
out × (w2

filter + cin + 2) + cout × 4 + 1)]× tck
= 14364× tck

5. Max pooling: w2
filter = 4, w2

out(pool) = 16

DelayPooling = (4 + w2
out(pool) × (2 + w2

filter))× tck
= (4 + 16× (2 + 4))× tck = 100× tck

(6.11)

6. First fully connected layer: Wout(fc) = 120, L = 32, niter =
96

32
= 3

DelayFC(In−Memory) = ((1 + niter × (wout(fc) + L+ 2) + wout(fc) + 2)× tck
= 585× tck
DelayFC(OOM) = [3 + niter × (2 + wout(fc) + wout(fc) × (L+ 1))+

+ wout(fc)]× tck
= 12369× tck
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7. Second fully connected layer: Wout(fc) = 84, L = 20, niter =
120

20
= 6

DelayFC(In−Memory) = ((1 + niter × (wout(fc) + L+ 2) + wout(fc) + 2)× tck
= 723× tck
DelayFC(OOM) = [3 + niter × (2 + wout(fc) + wout(fc) × (L+ 1))+

+ wout(fc)]× tck
= 11187× tck

8. Third fully connected layer: Wout(fc) = 11, L = 14, niter =
84

14
= 6

DelayFC(In−Memory) = ((1 + niter × (wout(fc) + L+ 2) + wout(fc) + 2)× tck
= 176× tck
DelayFC(OOM) = [3 + niter × (2 + wout(fc) + wout(fc) × (L+ 1))+

+ wout(fc)]× tck
= 1082× tck

Considering all the contributions:

DelayOOM = (34268 + overheads)× tck
DelayIn−Memory = (153134 + overheads)× tck

DR =
153134

34268
' 4.47
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Figure 6.8: Computational delay of the OOM architecture, implementing the neural
network model depicted in Figure 5.4.

Figure 6.9: Computational delay of the In-Memory architecture, implementing the
neural network model depicted in Figure 5.4.

The real delay ratio is ∼ 4.4×. The synthesis results are the following:

Table 6.6: Results in terms of area, critical path delay, power, total energy and
time required by the two architectures for the neural network model depicted in
Figure 5.4

Area[mm2] Critical path delay[ns] Power [mW] Time required [ms] Total energy [µJ]

In Memory architecture

1.68 4.11 254.5 0.210 53.445

OOM architecture

1.10 4.14 193.30 0.923 178.41

The energy ratio is ∼ 3.34×, which is a very good result considering the dimensions

of the network.
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6.4 General cases

To evaluate the performance of the network with different parameters, several syn-

thesis have been performed. In each of them are evaluated power, energy, area and

timing and the results are compared between the In-Memory and OOM architec-

ture’s ones. The same architecture implemented for the neural network model in

Figure 4.1 is used and it is sweeped only two values per time. The parameters chosen

are the following:

1. nbit: considering the plot in Figure 4.50, the evaluation can start from 12 bits

(11 integer and 1 fractional) to 21 bits (11 integer and 10 fractional);

2. The wfilter parameter has been sweeped from its initial value (wfilter = 2)

to wfilter = 11, emulating the kernel size in deeper neural networks, such as

AlexNet;

3. cin number of input channels are sweeped from 2 to 7, in order to evaluate the

cost in terms of performance of having parallel architectures working at the

same time;

4. H size to evaluate the impact of having a bigger OFMAP.

Regarding the energy estimations, it has been considered only a convolution com-

putation with cout = 1 (exception for the H case, in which also the fully connected

algorithm case is considered), because it represents the worst case in terms of delay

ratio respect to fully connected, which is depicted in Figure 4.49. Taking the delay

ratio trend, energy ratio is given by Power ratio multiplied by Delay ratio. This

procedure produces the worst case energy results, since a neural network (CNN or

MLP) is always composed by fully connected layers, in which there is the effective

gain in terms of delay. To better understand this consideration, the original network

depicted in Figure 4.1 is taken as example.

1. The power values for OOM and In-Memory architectures are 8.85 mW and

12.9 mW respectively, producing an energy ratio of ∼ 1.7, as already discussed

in section 6.1.1;
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2. Considering only one convolution computation with cout = 6 and the same

dimensions of the model (Figure 4.1), the resulting delay ratio is:

DR =
3 + w2

out × (w2
filter + 1) + (cout × w2

out × (w2
filter + cin + 2) + cout × 4 + 1)

3 + w2
out × (w2

filter + 1) + (cout × (w2
filter + w2

out × (cin + 2)) + cout × 3 + 1)

=
3 + 169× (4 + 1) + (6× 169× 7 + 6× 4 + 1)

3 + 169× 5 + (6× (4 + 169× 3) + 6× 3 + 1)
=

7971

3933
= 2.03

(6.12)

Delay ratio is degraded respect to its real value (∼ 2.46), with also fully

connected part, reducing the energy ratio to ER = 1.39 (from ∼ 1.7). In

general, by having less cout, delay ratio becomes worse, in fact by performing

the same computation with cout = 1, DR = 1.49.
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Figure 6.10: Area, CP delay, Power vs cin - wfilter for the OOM architecture (H = 169, cout = 1, W = w2
filter). Power

vs cin - wfilter: power increases almost linearly with cin, because more parallel architectures are working at the same
time. With higher wfilter, the power rises almost exponentially, because it is required a larger memory array and
more XNOR gates are used. Area vs cin - wfilter behaves in the same way. CP delay vs cin-wfilter: remains almost
constant, since it is caused by a multiplier-adder sequence. For an higher amount of cin, more adders are used in
the adder trees in K-α computations (Figure 4.11 and Figure 4.13), but the critical path remains the same.



Figure 6.11: Area, Critical path delay, Power vs cin - wfilter for the In-Memory architecture (H = 169, cout = 1,
W = w2

filter). Same considerations made in Figure 6.10 are valid here. The maximum power achieved in this case
is ∼ 260mW respect to ∼ 230mW of the previous case. Considering the higher number of logic gates required in
the In-Memory architecture, it is a very good result that allows also to reduce also the computational time normally
required by the OOM architecture.



Figure 6.12: Area ratio, Critical path delay ratio, Power ratio vs cin - wfilter obtained as OOM/In-Memory (H = 169,
cout = 1, W = w2

filter). Increasing cin brings to power/area ratios reductions, since In-Memory architecture requires
more building blocks than OOM case. wfilter’s rise brings power benefits in the In-Memory architecture, since
the registers start to have a predominant contribution respect to the sequential/combinational powers: since the
architectures have approximately the same number of registers, the power ratio tends towards 1 for wfilter → ∞.
From a power consumption point of view, it is convenient to implement an In-Memory architecture with high cin
and wfilter.
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The plot reported in Figure 6.12 reports an important consideration: the higher

is wfilter and cin the lower are power ratio and area ratio. It means that for the

In-Memory architecture it is convenient to realize an architecture with high wfilter

and cin, as already said. To understand the behavior of the PR, it is sufficient to

analyze the following power reports:

OOM architecture’s power report with cin = 7, wfilter = 11

Internal Switching Leakage Total

Power Group Power Power Power Power ( % )

-------------------------------------------------------------------------------------------

io_pad 0.0000 0.0000 0.0000 0.0000 ( 0.00%)

memory 0.0000 0.0000 0.0000 0.0000 ( 0.00%)

black_box 0.0000 0.0000 0.0000 0.0000 ( 0.00%)

clock_network 0.0000 0.0000 0.0000 0.0000 ( 0.00%)

register 1.9380e+05 22.3686 1.1818e+07 2.0563e+05 ( 90.96%)

sequential 5.5253e-02 7.8112e-03 2.7743e+03 2.8373 ( 0.00%)

combinational 1.7291e+03 7.9070e+03 1.0788e+07 2.0425e+04 ( 9.04%)

-------------------------------------------------------------------------------------------

Total 1.9552e+05 uW 7.9294e+03 uW 2.2609e+07 nW 2.2606e+05 uW

In-Memory architecture’s power report with cin = 7, wfilter = 11

Internal Switching Leakage Total

Power Group Power Power Power Power ( % ) Attrs

--------------------------------------------------------------------------------------------------

io_pad 0.0000 0.0000 0.0000 0.0000 ( 0.00%)

memory 0.0000 0.0000 0.0000 0.0000 ( 0.00%)

black_box 0.0000 0.0000 0.0000 0.0000 ( 0.00%)

clock_network 0.0000 0.0000 0.0000 0.0000 ( 0.00%)

register 2.0721e+05 64.1904 1.2895e+07 2.2016e+05 ( 83.71%)

sequential 8.9353e-03 2.7972e-03 38.9396 5.0672e-02 ( 0.00%)

combinational 8.3320e+03 1.6143e+04 1.8368e+07 4.2838e+04 ( 16.29%)

--------------------------------------------------------------------------------------------------

Total 2.1554e+05 uW 1.6207e+04 uW 3.1263e+07 nW 2.6300e+05 uW

The highest power contribution is related to the registers, so the combinational

power overhead for the In-Memory case decreases with higher cin,wfilter.
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Figure 6.13: Energy ratio vs cin-wfilter (H = 169, cout = 1, W = w2
filter). Taking the

delay ratio respect to cin-wfilter depicted in Figure 4.45, it has been multiplied by the
obtained power ratio. The result shows that the In-Memory architecture becomes
more efficient in terms of energy for higher values of wfilter. Consequently, the effect
of cin’s rise is reduced. This is a very good result, since for very deep networks such
as AlexNet, the In-Memory architecture reaches better energy results.
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Figure 6.14: Area, Critical path delay, Power vs nbit - wfilter for the OOM architecture (H = 169, cout = 1,
W = w2

filter, cin = 1). Increasing nbit, also power and area rises, since an higher number of bits implies more
complicated operators (adders, multipliers etc). In the critical path delay case, it is possible to see a peak located
at 19 bits: from the timing report, the critical path is located in the divider of the α unit. As already seen in
Figure 6.10, with high values of wfilter, both area and power rise exponentially.



Figure 6.15: Area, Critical path delay, Power vs nbit - wfilter for the In-Memory architecture(H = 169, cout = 1,
W = w2

filter, cin = 1). Same considerations of Figure 6.14 are valid here.
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In Figure 6.15 and Figure 6.16 there is a peak located in nbit = 19. By looking

at the timing reports for nbit = 19 and nbit = 20 of OOM architecture, it is possible

to see that the critical path delay in the first case is located in the divider of the α

computation unit, while in the second one in the batch normalization unit (adder-

multiplier):

OOM architecture’s timing report with nbit = 19, wfilter = 11

cnv_layer/alpha_computation/div_103/U27/ZN (OR2_X1) 0.06 0.15 f

cnv_layer/alpha_computation/div_103/U26/ZN (NOR3_X1)

0.06 0.21 r

cnv_layer/alpha_computation/div_103/U25/ZN (NAND2_X1)

0.03 0.24 f

cnv_layer/alpha_computation/div_103/U24/ZN (NOR3_X1)

0.06 0.30 r

...

clock MY_CLK (rise edge) 5.50 5.50

clock network delay (ideal) 0.00 5.50

clock uncertainty -0.07 5.43

cnv_layer/alpha_computation/r2/dout_reg[0]/CK (DFFR_X1)

0.00 5.43 r

library setup time -0.04 5.39

data required time 5.39

--------------------------------------------------------------------------

data required time 5.39

data arrival time -5.28

--------------------------------------------------------------------------

slack (MET) 0.11

In-Memory architecture’s power report with nbit = 20, wfilter = 11

cnv_layer/batch_normalization/U10/Z (BUF_X1) 0.06 0.73 f

cnv_layer/batch_normalization/U6/Z (BUF_X1) 0.04 0.77 f

cnv_layer/batch_normalization/U3/ZN (INV_X1) 0.13 0.90 r

cnv_layer/batch_normalization/U16/ZN (AOI22_X1) 0.06 0.96 f

cnv_layer/batch_normalization/U51/ZN (INV_X2) 0.11 1.07 r

cnv_layer/batch_normalization/bb/inputs[1] (bnorm_n_bit20_multiplication_sx_extreme28)

0.00 1.07 r

...

clock MY_CLK (rise edge) 5.50 5.50

clock network delay (ideal) 0.00 5.50

clock uncertainty -0.07 5.43

output external delay -0.50 4.93

data required time 4.93

--------------------------------------------------------------------------

data required time 4.93

data arrival time -4.57

--------------------------------------------------------------------------

slack (MET) 0.36
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Figure 6.16: Area ratio, Critical path delay ratio, Power ratio vs nbit - wfilter obtained as OOM/In-Memory (H = 169,
cout = 1, W = w2

filter, cin = 1). For an high value of nbit, area-power ratios increases. This implies that the In-Memory
architecture takes performance advantages, if a more precise representation is used.



Figure 6.17: Area, Critical path delay, Power vs
√
H - cin for OOM architecture (cout = 1, W = w2

filter = 4). The

higher is the
√
H size, the higher are power consumption and area, since registers have very big sizes (exponential

trend). Regarding cin, as already said, power/area increase almost linearly. Critical path delay remains almost the
same for each value of

√
H − cin.



Figure 6.18: Area, Critical path delay, Power vs
√
H - cin for In-Memory architecture (cout = 1, W = w2

filter = 4).
Same considerations made for Figure 6.17 are valid in this case. The power/area values reached are higher than the
previous case, because of the higher number of registers/logic gates.



Figure 6.19: Area ratio, Critical path delay ratio, Power ratio vs
√
H - cin, obtained as OOM/In-Memory (cout = 1,

W = w2
filter = 4). By increasing both cin and

√
H, power/area ratios decrease, because of the higher amount of logic

gates inside the In-Memory architecture.



6.4 – General cases

Figure 6.20: Energy ratio vs
√
H - cin, obtained as OOM/In-Memory (cout = 1,

W = w2
filter = 4). This is the worst case, because by increasing both cin and

√
H

the energy ratio decreases, because of the higher amount of logic gates inside the
In-Memory architecture. With higher values of both wfilter and cout, the energy ratio
will decrease for the motivations explained before.
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6 – Synthesis - Place & Route

Figure 6.21: Energy ratio vs
√
H - cin for the fully connected algorithm, obtained as

OOM/In-Memory (cout = 1, W = w2
filter = 4, number of fc parameters = 1000,

niter = 250). In this case, the energy ratio increases a lot, since the fully connected
algorithm is far more efficient in the in-memory case respect to OOM one. Depending
on the algorithm type, the performance can be better or worse: an higher number of
fully connected layers with an high value of niter, implies a more efficient In-Memory
architecture than OOM counterpart.
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6.5 – State-of-the-art comparisons

It is possible to delineate the behavior of the performance in both cases, by consid-

ering a mean of the obtained values of energy, power, area, delay and timing:

Figure 6.22: Mean Delay, Power, Area, Timing and Energy ratios, obtained as
OOM

In−Memory
. If the ratio value is higher than 1, it means that the In-Memory ar-

chitecture obtained a better result. As expected, In-Memory alternative is more
efficient in terms of Energy/Delay than OOM counterpart.

Figure 6.22 gives an important confirmation of the advantages coming from an

In-Memory design respect to a classical Von-Neumann’s based one: by placing near-

memory very simple elements (such as XNOR gates and full-adders), allows to reduce

fetching latency, energy consumption and computational delay.

6.5 State-of-the-art comparisons

B ATTENTION B
The following performance comparisons are based on the assumptions made in chap-

ter 2, in which a linear dependency between the evaluated parameter and the net-

work’s complexity is used. The correctness of the obtained values is not guaranteed.
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6.5.1 Number of neurons

The examinated architecture is the original one, which implements the model de-

picted in Figure 4.1. The total number of layers is 3 while the # of neurons can be

computed as:

#NeuronsO.W. = 14× 14 + 13× 13× 6 + 10 = 1220 (6.13)

Where the acronym O.W. stands for Our Work.

6.5.2 Results

In the following part are reported the results in terms of energy consumption, latency

and area rescaled by the number of neurons, as already did in chapter 2:

Figure 6.23: Energy comparison: the higher is better. MLC-STT: [15], SOT: [16],
OPNE-IPNE: [40], Neurosynaptic core: [26], Stochastic: [28], CPU-CLU: [29].
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6.5 – State-of-the-art comparisons

The energy values obtained for the two architectures are given by:

NormEnergyIn-Memory =
0.79µJ

1220
' 647.5pJ

NormEnergyOOM =
1.33µJ

1220
' 1.09nJ

The resulting perfomance is very good, especially for the In-Memory case. The pos-

sibility to binarize the network and to transform MAC operations into Xnor-Pop

counting sequence, decreases the energy required. By designing a custom memory

cell, the energy consumed can be further reduced, because the performance ineffi-

ciency coming from the usage of a flip-flop in the model, will be cancelled.

Figure 6.24: Delay comparison: the higher is better. MLC-STT [15], SOT [16],
OPNE-IPNE [40], Neurosynaptic core [26], XNOR-RRAM [19], HMC [29], Chain-
NN [30], Energy-efficient [31].
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Also the delay values obtained are very good compared to the other implemen-

tations. They are obtained as:

Delaynormalized(O.W.(In-Memory)) =
0.061ms

3× 1220
' 16.7ns

Delaynormalized(O.W.(OOM)) =
0.15ms

3× 1220
' 40.98ns

The parallelization of the Xnor-Pop procedure allows to reach very high efficiency in

terms of latency, obtaining results that are comparable with RRAM implementations

which, by their nature, are very fast.

Figure 6.25: Area comparison: the higher is better. SOT [16], OPNE-IPNE [40],
Neurosynaptic core [26], XNOR-RRAM [19] (MLP), Stochastic [28], HMC [29],
Energy-efficient [31]
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6.5 – State-of-the-art comparisons

AreaNormalized(O.W.(In-Memory)) =
0.0923mm2

1220
' 75.6× 10−6mm2

AreaNormalized(O.W.(OOM)) =
0.0564mm2

1220
' 46.2× 10−6mm2

In this last case, area performance in the O.W. In-Memory case reaches a value

which is comparable with SOT In-Memory architecture [16] and Stochastic [28] cases

(in fact, this last one has a similar computation complexity, since multiplication is

performed by an AND gate and the sum by a multiplexer). The O.W. OOM case

reaches the best resulting area, because of its simplicity and serialization.
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Chapter 7

Conclusions and future work

As already discussed, the In-Memory architecture allows to reduce the Von Neu-

mann’s bottlenecks. In general, by increasing the sizes of the neural network, by

choosing a deeper model, the dimensions of the circuit increase and, consequently,

power consumption/area of both solutions. The In-Memory architecture has a big

advantage respect to OOM counterpart: in Synthesis & Place&Route chapter, the

estimations represent the worst case values, since the XNOR-Unit part & Pop-

Counting can be realized inside a memory array, without employing discrete gates

and flip flops, which are far more complicated than a custom memory cell. The

power reports show that for an higher dimensionality, the most important power

contribution is given by the registers: by designing a custom memory cell, it is

possible to reduce this drawback.

7.1 Future work

New pop-counting design Regarding the pop-counting unit, it is possible to

optimize the design for the In-Memory part considering the following equations:

Pop− Counting = #1s−#0s

Pop− Counting = #1s− (length(Word)−#1s)

Pop− Counting = 2#1s− length(Word)

(7.1)
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7.1 – Future work

It is sufficient to count the number of ones inside the word, that can be performed

by a chain of half-adders, instead of full-adders. A circuit that can perform this

operation is the following:

HAHAHAHA

R0 R1 R2 R3
Incoming bit

HAHAHAHA

R0 R1 R2 R3
Incoming bit

HAHAHAHA

R0 R1 R2 R3
Incoming bit

HAHAHAHA

R0 R1 R2 R3
Incoming bit

-

L
s
h
if
t

length(word)

PopOut

Figure 7.1: Modified pop-counting circuit for the In-Memory architecture.

The reduction in terms of logic gates used is equal to 5/2, since FA contains 5 logic

gates and HA only two.

Beyond-CMOS technology By employing Beyond-CMOS technologies, it is

possible to further improve the performance: resistive-based technologies, such as

MTJ, RRAM etc can be used to realize the XNOR-Unit and pop-counting parts.
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