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Summary

Artificial intelligence and the world of the Machine and Deep learning are in the
center of the most frequent researches in engineering and even other fields. The
analysis of ”Big data” and the new automatic platforms (also referred to IoT) are
more and more of interest. In particular, the world of the Artificial and Computer
Vision bases its applications on this aspect very much.
The main source of studies is that of Neural Networks, created to identify the rela-
tions that link the elements of a set of data, by using a similar process to the human
nervous system. They have many fields of application (Automotive, Biomedical and
so on). So, they can re-elaborate and even modify the inputs to extract a lot of
useful information to recognize an object in an image, recognize numbers or words
written by hand, and so on...
In this work, the Deep Convolutional Neural Network will be analyzed, and overall
a detailed analysis of the convolution operation will be done. This operation allows
to perform matrix-matrix multiplication in a very efficient way. It is a way to fil-
ter the input and to extract useful information. For this reason, these networks can
provide a classification for a set of images in order to recognize the images belonging
to a specific class. However, these networks have to compute many convolutional
operations based on their depth. The proposed work focuses on the implementation
of an Hardware accelerator referred to a single layer of the Network, able to perform
convolution operation of the RGB inputs. The goal is trying to increase its speed
of execution and to reduce its power consumption. About that, the operation of
multiplication has been analyzed in detail, by trying to optimize it in a low power
way. The idea is to understand when this operation can be skipped to improve
the power consumption (since the multiplication is the most onerous operation of
the convolution) without worsening the throughput. So, some techniques have been
applied to reach it, some of which have required an approximation of the results.
Then, the implemented architectures have been simulated and synthetized.
Finally, an hardware validation phase has been necessary to verify that the applied
optimizations were suitable to an already trained and tested network. About that,
a software model has been implemented and its results have been scheduled.
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Chapter 1

Introduction

1.1 The world of the Machine and Deep learning

Nowadays people often hear about Artificial Intelligence, but also about Machine-
learning and Deep-learning, terms sometimes used improperly as synonyms of the
first. The term ”Artificial Intelligence” (AI or IA) was first used in the 1950s and
involves all those computational machines capable of performing tasks that are char-
acteristic of human intelligence. These concern about planning, language compre-
hension, objects and sounds recognition, learning and solving problems [1]. But at
the same time, the world of the Machine-learning and Deep-learning is constantly
in evolution. Indeed these two techniques are simply some ways to achieve Artificial
Intelligence. But there is a particular difference between two mechanisms.
Machine learning (ML) is a kind of AI subgroup that focuses on the ability of the
machines to receive a specific set of data and to learn by themselves, by modify-
ing algorithms as they receive some information about what they are processing.
Therefore it is a way to ”educate” an algorithm so that it can learn from various
environmental situations. Education, or even better training, involves the use of
enormous amounts of data and an efficient algorithm in order to adapt and improve
the machine according to the situations that occur.
On the other hand, Deep learning (DL) is one of the ML approaches (based on
the representation of feature learning of Machine learning theory) that refers to the
structure of the brain and precisely to the interconnection of the various neurons.
The ”deep” in Deep learning depends on the many layers that are inserted into the
deep learning models, which are typically neural networks [2]. For this reason, it
exploits computational advances and training techniques to learn complex models
by means of an enormous amount of data.
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1 – Introduction

Figure 1.1. Different fields of Artificial Intelligence [3]

Both ML and DL base their applications on artificial vision, also called computer
vision, that is the ability of a computational system to recognize objects digitally
acquired by image sensors. The most recent studies base on the research of an
efficient way to extract useful information from huge datasets that often contain
billion of images or audio files. The algorithm used in these particular systems
can recognize certain objects, differentiating them between different classes such as
animals, things and people; at the same time learning from situations, or having a
memory of what has been done to effectively use it in the next artificial acquisitions.

1.2 Importance of CNNs and Hardware accelera-

tors

The most commonly used DL algorithm is the Convolutional Neural Network (to
which reference will be made from now on, with the acronym CNN) that bases on
Neural Networks specialized in data processing that have a grid or matrix struc-
ture such as black and white images (two-dimensional grid where the single value
represents the intensity of the pixel in grey scale) or, as in the case of this thesis,
color images where the grid is three-dimensional (typically RGB image). These par-
ticular Neural Networks use a mathematic linear operation called convolution. It
is considered a state of art technique for object recognition in images and sound,
and it is necessary in applications such as video surveillance, mobile robot vision,
image search in data centers, and more [4] [5] [6] [7]. Nowadays there is a huge
amount of devices able to capture pictures and videos; so the potential for CNNs
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1 – Introduction

have enormously increased. For this reason, there could be a lots of potential inter-
esting applications in the DL world.
Therefore CNNs are excellent algorithms in terms of accuracy and their computa-
tional structure is highly parallelizable, which, when exploited, can greatly increase
performance. Indeed General-Purpose Central Processing Units (GPCPUs) are not
optimized when computing such networks, because they are designed for mainly
serial computations, and cannot exploit their parallel structure.
In the contrary Graphic processor Units (GPUs), Field-Programmable Gate Arrays
(FPGAs) and Application-Specific Integrated Circuits (ASICs) are hardware archi-
tectures that can be designed to strongly exploit parallelism, and are surely better
than CPUs in parallel applications.
However, GPUs perform very well on parallel applications, but their drawback is
related on power consumption. Since lots of data centers consider power being the
mainly financial cost and all mobile devices such as computers and mobile phones
operate on limited power budget [8], GPUs could not used for several applications.
So, FPGA and ASIC accelerators have become surely the most popular for CNN
applications because they are suitable for applications that require lower power and
high performance.
For this reason many researchers are focusing on development on FPGA and ASIC
accelerators in order to achieve excellent performances (speeding up the computa-
tion) and to optimize their power consumption at the same time. Indeed convolution
operation requires many multiplications and sums that increase based on the com-
plexity of the structure and size of the Neural Network. A similar system causes a
certain consumption. What is more, the accelerators often require a large number
of memory accesses to save and read partial results to obtain the correct result of
the algorithm.
But, as it has been discussed before, parallelized approach allows to compensate
this drawback, because the major part of the CNNs patterns are similar, so the en-
tire structure can be pipelined to improve it in terms of throughput and frequency.
However, after the memory accesses, the multipliers executing represent the greatest
source of energy expenditure and for this reason, some techniques can be applied
to improve this aspect. The goal will be to optimize the number of multipliers that
must actually be performed, because in the convolution there could be unnecessary
products based on specific conditions.
All in all, in this thesis it will discuss on how a specific architecture can be im-
proved, by reducing the memory accesses and the number of multipliers performed,
for reasons that will be explained in the next chapters.
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1.3 Proposed work and contributions

The aim of this thesis is to design and analyze a hardware accelerator which per-
forms the convolution operation in order to be suitable in each layer of a CNN.
What is more, the next goal is to apply some techniques to modify the accelerator
in order to achieve significant low power results. These techniques would allow to
minimize the number of accesses to the external DRAMs to fetch and to save data
and reduce the number of multipliers, by skipping the unnecessary ones, without
causing penalties in terms of speed and errors in terms of accuracy.
The main aim of this thesis focuses of the convolution operation and for this reason
first, many researches have been investigated to study the Neural Networks the-
ory (with a biological and physical analysis), the analytical model of this operation
and how it can be represented in terms of hardware architecture. What is more,
some techniques such as Zero Skipping [9], Predict Multiplier Skipping [10] already
studied in the past and a new possible technique, that exploits Equal Consecutive
Weights Skipping, have been elaborated and merge to understand how an efficient
low power hybrid architecture could be created. Subsequently, synthesis logic has
been executed to compare the different architectures in terms of speed, area and
power. Finally, the hardware has been validated by using an already trained and
tested Neural Network with a specific dataset to verify which architectures are bet-
ter than others between different layers.
The following part of this thesis work is organized in other 6 Chapters whose topics
are reported as follows.
In Chapter 2, the Neural Networks theory will be presented briefly and an intro-
duction to the mathematical model of the Convolutional Neural Networks will be
given. Thus the thesis enters into the heart of the proposed model, trying to explain
in detail the functioning of CNNs.
In Chapter 3, a focus on the possible ways to create an hardware accelerator will
be described, by starting from a detailed analysis of the 2D convolution showed in
a previous work based on the rescheduled Data Flow Diagram [11]. Then the differ-
ent architectures developed in VHDL will be described focusing in all the internal
blocks.
In Chapter 4, the next step will be to simulate the hardware accelerators to verify
their correct behavior. So a comparison of the results by applying different kernel
filters is done by means of a Matlab script, in order to analyze the reduction of the
number of executed multipliers among the various architectures.
In Chapter 5, the logic synthesis phase will be analyzed, showing how to obtain
information about area, speed and power. Then the different architectures will be
classified and compared between them and with similar architectures.
In Chapter 6, there is the functional validation of the Hardware accelerators where
the different architectures will be applied to an already trained and tested Neural
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1 – Introduction

Network model [12] in order to decide which architectures are better than others in
the specific layers.
Finally Chapter 7 draws the conclusions of this thesis work, also including outlined
considerations and suggestions about future works.
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Chapter 2

Background on Neural Networks
and Convolutional Neural
Networks

2.1 Neural Networks

The concept of Deep/Depth learning is often associated simply to ”Deep Neural
network”, in reference to the many levels involved. But what is a Neural Network?
The first model of Neural Network was born in the 80s but they had a relatively
short period of popularity. After they re-emerged in 2010 with the improvement of
computational resources and the beginning of the DL world.
A Neural Network bases on the concept of neuron that is the basic element of ner-
vous system and also the most important because it can be considered the primary
calculation unit of the human intelligence. The human nervous system is made up of
approximately 86 billion neurons connected to each other by a number of synapses
(particular structures that connect neurons with other biological cells) of the order
of 1014-1015. The diagram below shows a drawing of a biological neuron (on the left)
and a common mathematical model associated to the connection among neurons (on
the right).

6



2 – Background on Neural Networks and Convolutional Neural Networks

Figure 2.1. Drawing of a biological neuron (left) and a common mathematical
model associated to the connection between neurons (right) [13]

Each neuron receives as input the signal from its dendrites (the minor fibers that
branch out from the neuron) and, once processed, produces an output signal along
its one axon. It branches off itself and connects the output to the next neurons
through the synapse.
This biological activity can be represented by a mathematic model where signals
that move along the axons (e.g. xo) interact with dendrites of neurons that are
connected through synapses (e.g. wo). This interaction is a product (e.g. woxo).
The idea is that the synaptic strengths (the weights w) can be learned and can
control, in reference to the sign, the intensity and the influence of one neuron on
another. In the basic model, the dendrites carry the signal to the cell body where
they are summed. If the final result exceeds a certain threshold, the neuron send
a spike through its axon. The precise timing of the spikes is not relevant, and it
is assumed that the information is contained in the sum of the spikes. This sum
is modelled as an activation function that typically is the sigmoid function
(σ(x) = 1

1+e−x ) but other times it is the hyperbolic tangent (tanh(x) = ex−e−x

ex+e−x )
[13].
So each neuron executes a vector product among its inputs and its set of weights,
adds a distortion term and finally applies a non-linear activation function (in the
contrary case the Neural network would be a generalized linear model). The reason
these functions are used is that their non-linear property increases the expressiveness
of the network.
Neural Networks are structures that contain sets of neurons connected in an acyclic
graph (cycles are not allowed). In particular, the outputs of some neurons can
become inputs to other next neurons. For this reason, Neural Network models are
often organized into different layers of neurons. Generally, the most used layer type
is the fully-connected layer where there is a fully connection between neurons of
two adjacent layers; instead there is not a sharing of connections between neurons
within the same layer.
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2 – Background on Neural Networks and Convolutional Neural Networks

The two following pictures show two example Neural Network topologies made up
from fully-connected layers:

Figure 2.2. Fully connected layers Neural Network topologies [13]

As it can note in the images, the two Neural Networks are structured in a certain
number of layers, each containing a set of neurons. The first layer is named the input
layer, and the last layer is named the output layer. Intermediate layers are named
the hidden layers. The input layer contains the initial input and uses it to compute
the activation function for each of its neurons. Its outputs are carry out to the first
hidden layer, and propagates until it reaches the output layer, where the final result
is provided. The depth of the network depends on how many hidden layers there
are. More hidden layers belong to network, more the network is deep.
People use the number of neurons, or more commonly the number of parameters to
measure the size of neural networks. Referring to the two networks shown in the
above picture, and if the inputs are excluded:

• The left network has 4 + 2 = 6 neurons, [3 x 4] + [4 x 2] = 20 weights (because
each neuron receives the results of the previous layer) and 4 + 2 = 6 biases,
for a total of 26 learnable parameters;

• The right network has 4 + 4 + 1 = 9 neurons, [3 x 4] + [4 x 4] + [4 x 1] = 12
+ 16 + 4 = 32 weights and 4 + 4 + 1 = 9 biases, for a total of 41 learnable
parameters.

The most modern Convolutional Networks provide about 100 million parameters
and are usually contain approximately 10-20 layers. However, more parameters are
shared, the number of effective connections is considerably greater [13].
What is more, Neural Networks can evidently be considered as probabilistic clas-
sifiers. Indeed, once all the features of the network have been established, such as
topology, number of neurons, connections, and so on, the weights of the connections
have to be chosen in order to build a classifier, by using a training set: this operation

8



2 – Background on Neural Networks and Convolutional Neural Networks

is called neural network training. This technique allows to update the weights
based on the mistakes that network makes from time to time. So it can recognize
different classes by being provided a specific set of training data, e.g. a set of cars
and a set of non-cars. The training phase is necessary because the network can then
learn to decide if a picture contains a specific object or not. For this reason, it will
calculate the probability that the data belongs to a certain class based on the input
data.
However neural network training is not a topic of this thesis, but the testing is
the main one. But, first of all a detailed excursus about the Convolutional Neural
Networks has to be done.

2.2 Convolutional Neural Networks

The Convolutional Neural Networks are extensions of the Neural Networks models,
where object recognition in images or speech recognition are the main applications
on which they work. As mentioned earlier, their name depends on the fact that in
at least one of its layers a convolution is performed.

2.2.1 Inadequacy of the fully connected structure

As seen in the previous paragraph, the traditional Neural Networks transform their
input, that is a single vector, through a series of hidden layers, where each neuron
is connected to each neuron of both the previous layer and the next one (fully
connected). The behavior of each neuron in the same layer is completely independent
because they do not share connections with closer neurons.
In CIFAR-10 [14] there are small size images 32×32×3 (32 height, 32 width, 3 color
channels), a single neuron connected with this system would cause 32×32×3 = 3072
weights, that is a very large amount but still manageable. However, the problems
would occur if the dimensions of the images become important: for images that have
256 pixels for side, there would be a load of 256 × 256 × 3 = 196608 weights for
single neuron. If the network contains many hidden layers the number of parameters
would become too huge, so the fully-connected architecture would be too expensive
for this context and would quickly lead to overfitting [15].
The CNNs exploit the fact that the inputs consist of images and the architecture
can be created in a more sensible way. In particular, the layers of a CNN have
neurons arranged in 3 dimensions: width, height, depth. (depth refers to the third
dimension of an activation volume). As next paragraphs will explain, the neurons
in a layer will only be connected to a small part of the previous layer, instead
of a completely fully-connected architecture. But the architecture fully-connected
allows to obtain the final result, in the output layer. For instance, CIFAR-10, that
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2 – Background on Neural Networks and Convolutional Neural Networks

shows activation inputs with a volume 32× 32× 3, would obtain an output layer of
dimensions 1×1×10, because the end of a CNN architecture reduces the full image
into a single vector of class scores, arranged along the third dimension (depth).

Figure 2.3. Arrangement of neurons in three dimensions (width, height, depth)
[15]

2.2.2 Architecture of a CNN

The CNN model shows some different types of layers, in addition to the standard
Neural Network layers: a convolution layer (that is often followed from a ReLU
layer) and a subsampling/pooling layer. The presence of these new layers allows
to handle particularly the local 2D structure of images, where there is an high
correlation between pixels close to each other. Local correlation allows to extract
and combine some features of images (e.g. points, edges, corners) to define specific
features (e.g. wheel, windscreen, headlights) in order to recognize a specific object
(e.g. a car). Following Figure shows a full network:

Figure 2.4. Architecture of a CNN [16]

10



2 – Background on Neural Networks and Convolutional Neural Networks

As it can be seen, the Hidden layers perform a series of operations to detect the
features. In the contrary, the classification part contains the fully connected layers
that classify these extracted features. They will assign a probability for the object
on the image in order to obtain a good prediction for the next images.
So the simplest CNN is able to perform four main operations, shown in the list
below, that are also used to perform the most complex networks:

• Convolution operation

• ReLU

• Subsampling/pooling

• Fully Connected Layer

In the following paragraphs these operations will be described and analyzed to un-
derstand better the functionality of a CNN.

Convolution Operation

The convolution operation defines the convolution layer and is the core of a CNN.
In discrete problems, the convolution operation is nothing more than the sum of the
Hadamard product elements [17] between a set of parameters (which is called a
filter) and a portion of the input that has the same size.
To give a detailed description of this operation when input are images, it is necessary
to talk about image processing. As it has been anticipated before, a generic image
is a matrix of pixel values. If there is a color image each pixel is associated to three
different channels Red, Green and Blue (RGB); in case of grayscale images, there
is a single channel where each pixel can be represented. This operation is a prod-
uct between two matrices where the first is the image and it is called Input feature
map (iFMAP) and the second is the filter (also called kernel), necessary to extract
the features of image. The figure below helps to understand better this operation
by showing an example that concerns about a two-dimensional input with a kernel
2 × 2.

11



2 – Background on Neural Networks and Convolutional Neural Networks

Figure 2.5. Convolution Operation in a two-dimensional case with filter 2×2 [16]

A 2 × 2 kernel is multiplied element by element for a portion of the input of the
same size. The output of this operation is the sum between these products. The
convolution operation is repeated by moving the filter along the entire surface of
the input, both in height and in width. Its result is called Output features map
(oFMAP) which is the first hidden layer of the network.
On the other hand, oFMAP is made up of neurons connected locally to the input
by means of the parameters of the filter that generated them. Moreover there is the
same process when there is a three-dimensional input, but the filter is extended in
depth at the same way of the input, while maintaining the same spatial dimensions
(width and height).
The following example shows a convolution operation of two 3 × 3 kernels (W0 and
W1) applied at a three-dimensional input (7 × 7 × 3).

12



2 – Background on Neural Networks and Convolutional Neural Networks

Figure 2.6. Convolution Operation in a three-dimensional case with two filters
3 × 3 [15]

For representative reasons, the volumes have been divided in two-dimensional ma-
trices, but the depth of the filter is the same of the input one, because it operates
for the entire depth while it is moving on the entire surface. For this reason there
are two different approaches between the three dimensions: height and width have
an interaction with the filter that is called sparse, while the depth maintains a fully
connected approach.
Therefore, the values of the Output Volumes will depend on the different products
between pixels and values of the filters that are performed and then added, but also
b that is the bias associated at each specific operation that is always added at each
result of the convolution.
So in a two-dimensional case, if X is the input image, W is the kernel matrix, X ∗W
is the convolution operation, the resulting feature map is defined as:

oij =
nX

t=1

nX
s=1

xi+t,j+swts + b (2.1)
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2 – Background on Neural Networks and Convolutional Neural Networks

Where xij is a value of the input matrix, wts is a value in the n× n kernel matrix,
b is the bias and oij is a value of the resulting feature map matrix.
Now one question could be ask: how many neurons are there in the output volume
and how are they arranged? There are three hyperparameters that control the size
of the output volume: the depth, stride and zero-padding.

• Depth: it corresponds to the number of filters NF that compose the layer,
that look for different features in the input.

• Stride: is a very important parameter because indicates the sliding size and in
particular the number of pixels for which the filter can be translated for each
movement. Indeed stride is a system for regulating the output dimensions.
If stride is one so the filter moves one pixel at a time, and for this reason
each portion of the input is examined. Higher values move the filter by using
greater jumps. Generally, the greater the stride, the smaller the output size
will be. In the example above, the stride is equal to 2.

• Zero-padding: is a system that allows to a border of zeroes to the input
volume in order to control the output sizes and to avoid inconsistencies during
operations. This parameter indicates the width of this border, and it is often
used to have the same dimensions between input and output.

So, width (OW ) and height(OH) of the oFMAP can be computed how function of the
relative dimension of the input (IW or IH), the relative dimension of the filter (FW

or FH that are almost always equal), the stride (S) that is applied to the movement
of the filters, and the amount of zero-padding (P ) that is used for the borders:

OW =
(IW − FW + 2P )

S
+ 1 (2.2)

OH =
(IH − FH + 2P )

S
+ 1 (2.3)

Instead the depth is equal to NF used inside layer. So if the input is WI ×HI ×DI

and the filter has the same dimensions in height an width, the convolutional layer
will perform an output WO ×HO ×DO where:

WO =
(WI − F + 2P )

S
+ 1 (2.4)

HO =
(HI − F + 2P )

S
+ 1 (2.5)
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DO = NF (2.6)

The choice of the stride and zero-padding has to be made in order that 2.2 and 2.3
return an integer. For instance, Krizhevsky architecture [12] (that will be described
after) receives images with size [227 × 227 × 3] and uses 96 filters [11 × 11] in the
first convolutional layer, stride 4 and no zero-padding. For this reason the output
of the first layer will have a size [55 × 55 × 96], so each neuron of this volume is
connected to a single region with size [11 × 11 × 3]; all 96 neurons, that belong to
the same depth column, are connected at the same region [11 × 11 × 3], but with a
different set of weights.

ReLU

Until now the sigmoid function and the hyperbolic tangent have been presented
as the possible choices for the activation function, but these solutions have been
progressively set aside due to some practical problems, even if hyperbolic tangent is
still used by some researchers [13].
The Rectified Linear Unit (ReLU) has become very popular in the last few years
thanks to the increased performance that offers in providing a non-linearity. It com-
putes the function f(x) = max(0,x). So, each negative result of the convolution
operation is simply thresholded at zero. One of the main advantage of the ReLU is
its simplicity, because compared to tanh/sigmoid neurons that depend on expensive
operations, the it simply consists of approximating to zero the negative elements of
a matrix of activations. Moreover, it is a fast way to train the network, without
losing much accuracy.

Figure 2.7. ReLU activation function and difference of velocity with hyperbolic
tangent [13] [12]

It could have some problems during training due its fragility that can cause its

15



2 – Background on Neural Networks and Convolutional Neural Networks

”death”. Leaky ReLU represents an improvement of the ReLU because inserts a
small negative slope (of 0.01, or so) in its null region but this aspect is not treated
in this thesis.

Subsampling/pooling layer

When a specific feature of the image has been detected, its exact position loses
its importance. For instance, the distance between two lighthouses of two cars de-
pends on the type of the car and so it can be different. For this reason, the sensitivity
of the network to the relative placement of features could be decreased, by reducing
the accuracy of the all feature maps. So the feature map can be subsampled into
S × S windows (submatrices) by means of subsampling operation, and then a
pooling operation is performed on each respective matrix.
The pooling operations, which are used for CNNs, are deterministic without using
weights. There are two types of pooling operations:

• Max-pooling (that is the most used) extracts the higher value of the analyzed
window.

• Average-pooling obtains the average value between all the elements of the
analyzed window.

Even in this case, the computation of the final output volume depends on both
W ×H ×D and the two request hyperparameters, stride (S) and dimensions of the
window.
The following picture shows an example of max-pooling :

Figure 2.8. Example of max-pooling [15]

As it can be seen, the filter operates independently on each feature map, so the
depth of the volume doesn’t change. Instead, width and height are resized by a
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factor F = 2 and S = 2, because each max is taken over 4 numbers. So 75% of the
activations are discarded and the computational load is reduced for the next layers.

Fully-Connected Layer

The Fully-Connected Layer (FC) is exactly equal to any hidden layer that com-
poses the traditional Neural Networks and operates on the output of the previous
layer. These layers complete the structure of network and their main function is to
execute a sort of grouping of information detected in the previous layers. So they
associate to these information a number which will be useful to next computations
necessary to obtain the final classification.
The idea behind this is that the network learns filters which activate themselves
when specific types of features are detected (e.g corners, lines or blocks of color),
that are called low level features ; moreover they can still activate themselves when
complex combinations are detected (high level features).

Figure 2.9. Different steps of a CNN architecture [15]

The figure above shows the different steps of a CNN architecture before that the FC
guesses the object of the image. The different layers extract some information from
the image and send them to next layers. In this case, there is always a ReLU after a
convolutional layer, while the pooling layer is inserted after each two groups (CONV
and ReLU layers). The final stage of the FC layer stores a statistic where the sorted
top 5 scores are visualized and printed, after that machine has been tested more
times. The architecture shown here is a tiny VGG Net [15].
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2.3 Convolution Neural Network in Hardware

As it has been said before, today, CNNs can be employed in a wide range of applica-
tions, ranging from autonomous driving to industrial and medical applications. In
this applications, indeed, CNNs are now able to emulate human performance and
even overcome them. Therefore CNNs allow to obtain excellent results in term of
accuracy even if this last one implies an high computational complexity. All CNN
networks are extremely exacting from a computational point of view and require
billion of calculations. For instance, the largest CNNs (from the VGG neural net-
works software models) [15] [18], when have to process an input image, require more
than 30 billion computations. This could be a problem because an huge number of
calculations often could reduce the use of CNNs in embedded/edge devices.
What is more, all CNNs also need memory, since their network parameters must
be stored into megabytes of memory space. For instance, AlexNet[12] and VGG-
16 CNN[18] have respectively about 63 million and more than 138 million network
parameters which, if represented on 16-bit fixed-point, require respectively 126 and
more than 276 Mbytes of memory for their allocation only. In addition, significant
memory resources are required from intermediate feature maps, that can also have
very large dimensions. For instance, the VGG-16 CNN requires about 6 Mbytes to
store the largest input feature map [18]. Thus, since VGG-16 CNN extends on 21
layers, the required memory increases during processing of the input image. It is
certainly less than the network parameters, but it may not fit to many embedded
applications.
So the complexity of calculation and the large required memory can have a signif-
icant impact on both velocity of the network and its power consumption. For this
reason, design and implementation of CNNs in hardware have to respect all these
aspects in order to be preferred to General Purpose systems and GPUs on mobile
applications and low power systems. Even if the complexity of the computation
causes some drawbacks, the future of CNNs appears to be prosperous. Specialized
hardware architectures for processing CNNs must be developed, by exploit their
width, their depth, their ability to process great amount of input data, and their
use to define the most complex classification by showing higher speeds, without ex-
ceeding low-power restrictions.

18



2 – Background on Neural Networks and Convolutional Neural Networks

2.3.1 Hardware Acceleration of CNNs

During the last decade, there have been several proposed hardware architectures of
CNNs that focused their design on the concept of Acceleration. The high compu-
tational complexity of CNNs, as well as their considerable memory requirements,
causes an high demand for methods to obtain a faster computation and more effi-
ciency both from the point of view of the resources used and the power consumption.
One of these methods is the use of dedicated hardware accelerators.
To increase the speed of the architecture, the clock period must be optimized by
reducing the critical path as much as possible without worsening latency too much
(because these applications require a fast promptness of response). There are many
techniques to reduce the critical path, but they must be applied without increasing
power consumption, since an efficient hardware accelerator also must be optimized
energetically. Therefore, the main objective of researchers is to reduce energy ex-
penditure while respecting real-time constraints on speed and accuracy.
So, taking into consideration what has been said above, this work of thesis focuses
on other aspects to create a good Hardware Accelerator of CNNs:

• First, convolution is a particular operation where there is an high repetitiveness
of the data. Indeed, when a specific window of computation is executed, some
data have to be reused in another window of computation. Moreover, also
the weights have to be reused in the same channel. For this reason, CNN
architecture can be pipelined and parallelized.

• The second aspect concerns about memory. Although the parallelization and
pipeline can resolve the problem of velocity, a enormous amount of power
consumption depends on off-chip and on-chip memory accesses. So, energy
efficiency can be maximized by reducing redundant memory accesses. For
instance, the use of registers and on chip memories can be a good way to store
input and filter data. Thus, they can be reused without accessing to off-chip
memory that contain them at the start. However, off-chip and on-chip memory
accesses can also be reduced by studying a specific dataflow in order to avoid
too accesses to off-chip memory and to use on-chip memories only for partial
results and no for inputs.

• Then, parallelism of the data is another important aspect. Therefore, the
appropriate parallelism must be chosen according to the type of application
of the network. This choice could have many advantages on speed and energy
efficiency. Indeed, the speed and cost in terms of energy of some operations,
such as multipliers and sums, depend on parallelism of the input data. Also the
cost of memory depends on parallelism of the data. For this reason, the choice
of the parallelism can be done based on hardware components and it can have
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some differences into the same architecture. For instance, the parallelism of
the internal data to input memory can be different with respect to internal one
to output memory; the multipliers can have input data with lower parallelism
than sums because they are more onerous operation; and so on. Obviously the
choice also depends on the required accuracy (the greater the parallelism, the
more precise the data will be).

• Finally, some techniques can be used to reduce the number of multipliers of
the convolution operation, by skipping redundant ones. Therefore, based on
inputs or filters some multipliers of the convolution operation are unnecessary
or negligible and for this reason, it can be skipped. For instance, a possible
technique used to understand which multipliers can be skipped is Zero-skipping
(where the multiplication can be skipped when at least one between a specific
activation of the input matrix and the respective weight which have to be
multiplied, is zero). Also the prediction of the result of multiplier can help
in choosing if which specific multiplier is useful or no (it can be skipped if its
result is less then a threshold fixed, which would be negligible for the final
calculation of the oFMAP). Moreover, other techniques can be designed to
skip a multiplication by analyzing activations and filters. Obviously, even in
this case, the best technique is which that allows to have the best accuracy
and the most efficient power consumption (more techniques can be merged
to obtain the best results). However, the possible techniques to reduce the
number of multipliers will be discussed in detail in the next chapter.

Some of these aspects also concern about subsampling/pooling operation but this
thesis will focus on the detailed analysis of a hardware accelerator for the convolution
operations which occupy more than 95% of CNN operations.
The general scheme of the Hardware accelerator proposed in this thesis is illustrated
in the following figure:
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Figure 2.10. Hardware Accelerator Architecture

Externally to accelerator there is the off-chip memory that contains input features
and filter weights which it sends to convolution accelerator. This contains:

• Multiple Processing elements (PEs) working in parallel by executing the con-
volution operation;

• Some on-chip memories to store inputs, weights and the partial and output
results;

• A system of bus that allows to obtain a good interface between Convolution
Accelerator and off-chip memory, and with other layers such as ReLU and
subsampling/pooling by means of the external bus BUS CNN. Moreover, it
also allows to have an internal communication between various components of
the hardware accelerator.

The internal structure of each component will be described in detail in the next
chapter. Of course, this structure can have different implementations and it can be
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designed from scratch by keeping in consideration each aspect of design described
before. The project discussed in this thesis starts from a general architecture such
as the described one above, and it reworks past works [9] [10][11] to create a new
optimized hardware accelerator.

2.3.2 Implementation choice

As it has been introduced in the previous chapter, the best method to implement
an hardware accelerator for CNN applications are FPGA and ASIC (discarding
CPU and GPU). The FPGA (Field Programmable Gate Array) is a semiconductor
device, made up by a matrix of configurable blocks, connected via programmable
interconnection. The FPGA is configured by using an Hardware Description Lan-
guage (HDL). Because it is very reprogrammable, a FPGA offers an high flexibility
on the possible hardware solutions that can be designed even after manufacturing.
What is more, in order to get excellent potential performances, FPGAs need to be
described at the low hardware level and not at the application level.
So FPGAs are different with respect Application Specific Integrated Circuits (ASICs),
which are integrated circuits (ICs) manufactured for a specific use (they are not flex-
ible). Reprogrammable hardware for CNN applications in the form of ASICs and
FPGAs has been proposed to exploit the parallelism of the convolution operation
and to achieve efficient performances. ASICs structures were preferred in the past to
implement hardware accelerators for their high performances in making faster archi-
tectures (better than FPGAs) even if they cause a non-recurring cost (NRE). But
nowadays FPGAs are more used because they represent a proper trade-off between
flexibility of the applications, cost, performances and power consumption.

Figure 2.11. CPU vs GPU vs FPGA vs ASIC [19]

22



2 – Background on Neural Networks and Convolutional Neural Networks

This thesis compares various hardware accelerators implemented through an ASIC
structure since convolution operation is designed without many degrees of flexibility.
What is more, it is the best solution for the logic synthesis to report each information
about performances and energy efficiency regardless of the cost. The project will be
described in VHDL and Verilog.

2.4 Previous work on CNNs and others hardware

accelerators

Their accuracy and performance are the main reasons that make CNNs the most
used systems for image processing and objects recognition; so their applicative fields
increase. The most important projects about CNNs involve specific databases used
to verify their ability in recognizing objects. For example, ImageNet is a large
visual database that contains about 14 million images and it is one of the most used
one to train and test a CNN (it will be the same database to which the project of
this thesis refers). A part of this dataset is shown in the following picture, where
there is a large choice about cars:

Figure 2.12. ImageNet Dataset [20]

What is more, there is also an ImageNet project that is a large visual database
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designed for the use in visual objects recognition and in the software researches.
Every year, it runs a global software contest, the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), where there is a competition between soft-
ware programs to correctly classify and to detect specific objects and even scenes
and landscapes. Here the CNN architectures of ILSVRC top competitors will be
described:

• LeNet-5[21], a 7-level convolutional network by LeCun et al in 1998, was used
to classify digits and applied by several banks to recognize hand-written num-
bers (in 32x32 pixel greyscale input images). It was a network that achieved
good results in those years but it had the problem of the low resolution of
images;

• In 2012, AlexNet[12], developed by Krizhevsky from the University of Toronto,
won the challenge against prior competitors by reducing the top-5 error from
26% to 15.3%. The top-5 error indicated the percentage of times that the
correct prediction was not between the first 5 choices of the classification. It
had a very similar architecture to LeNet-5 but it was deeper;

• ZFNet[22] won the challenge one year later, by achieving a top 5-error rate
of 14.8%;

• The winner of the ILSVRC 2014 competition was GoogleNet[23] by Google.
It reduced the top 5-error rate to 6.67%. A result very close to human perfor-
mances. Moreover, the network had less parameters than AlexNet (from 60
to 4 millions);

• The second place of the same year was wan by VGGNet[18], an uniform
architecture made up by 16 convolutional layers with many more parameters
than AlexNet (138 millions). Its top 5-error rate was 7.3%;

• Kaiming He with his Residual Neural Network (ResNet)[24] introduced an
innovative architecture thanks to ”skip connections” and the batch normaliza-
tion for features. His results were excellent because the top 5-error rate was
3.57%, by training 152 layers but with lower complexity than VGGNet.

The following table schedules these results:
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Figure 2.13. Summary table of ILSVRC

Subsequent works focused mainly on the search for efficient architectures to im-
plement hardware accelerators. For instance, in 2017 Yu-Hsin Chen proposed an
hardware accelerator Eyeriss [25], where the energy efficiency was optimized includ-
ing off-chip memory into the architecture. This work implemented multiple PEs of
the architecture in matrix form, where the particular dataflow exploited was called
Row Stationary (RS). This approach allowed that the rows of the filters were as-
sociated to PEs horizontally while the rows of iFMAP values were associated to
PEs diagonally. Instead, the rows of partial sum of the convolution window were
accumulated across PEs vertically, and there was a system to reuse and accumulate
data within a PE in order to reduce accesses to off-chip memory.
The following figure shows this approach by applying a convolution between 5 × 5
iFMAP and 3 × 3 weight filter:

Figure 2.14. Dataflow in PE matrix in Eyerris [25]
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Other works such as Desoli’s one [26] and Kim’s one [9] starts from Eyerris to obtain
ultra low power optimization. Then there are other works, such as Huan’s one [10]
where parallel multipliers compute all products necessary to an output at the same
clock cycle and there is their aggregation by means of an adder tree.
Instead, the proposed work in this thesis exploits a rescheduled dataflow to obtain
further improvements. It will use a new approach different with respect Row Sta-
tionary by associating a different weight to each PE while the same activation is
sent to each of ones. So there is a reduction of the data movement, by achieving
excellent results in terms of speed and power. The next chapter will be about this,
while the penultimate chapter will describe AlexNet, that is the used network to
validate the work in question.
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Chapter 3

The proposed work

In this chapter, the developed architectures for hardware accelerators will be pre-
sented. First, there will be a detailed analysis about the Data Flow Diagram of the
convolution operation and how it can be rescheduled to obtain an efficient reduction
of the memory accesses.
After, the whole implemented architecture will be described, by focusing on each
block, its state machine (Control Unit) and the interaction between them. Then the
starting architecture will be modified, by applying different techniques to improve
it in the power consumption.

3.1 Rescheduled Data Flow Diagram

When an algorithm has to be studied in each its aspect, drawing its Data Flow
Diagram (DFD) is the best way to start its analysis. Indeed, it provides a graphic
overview of the system without going into detail too much, but that allows to know
data dependencies, their real movement and how various operative blocks are con-
nected.
For sake of simplicity, the DFD of the 2D convolution, represented in the following
figure, will be analyzed.

27



3 – The proposed work

Figure 3.1. 2D Convolution [11]

The picture refers to a convolution between a 3 × 3 iFMAP and a 2 × 2 weight
filter. As it can be seen, many input features are reused multiple times in the 2D
convolution. For instance, f11 is necessary to compute c00, c01, c10 and c11. So it
is loaded four times. For this reason, in a 2D convolution the number of reuses is
generally proportional to K2, where K is the number of the filter weights, by causing
a big impact on memory-accesses.
Now a dependence graph of 2D convolution is illustrated in the following figure:

Figure 3.2. 2D Convolution DFD [11]

The circle indicates a multiply-and-accumulate (MAC), that represents the core of
the convolution operation in hardware. It executes the product between a feature
input and a weight and adds the result to a partial sum. The DFD is divided
into two parts associated differently to two weight rows. Instead, only f10, f11 and
f12 are common to the upper and lower parts of the graph because they have to
be multiplied for each weight. What is more, the intermediate partial sums are
computed separately. So the final output feature is obtained by adding together the
partial sums computed at the same column of the graph.
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However, the portion of the input features that is common to the two separate graphs
is loaded redundantly and it increases the number of the memory accesses. Previous
approaches [25][26][10] focus on this kind of DFD. Although they were successful
from the point of view of speed, their drawback consisted of high energy consumption
due to the redundant memory accesses. Since the energy consumed for memory
accesses is greater than that due to computational units, a rescheduled dataflow
becomes necessary to improve energy efficiency of the algorithm, by minimizing
unnecessary memory accesses.
Among the various rescheduling architectures proposed, that Jihyuck Jo’one [11]
seemed to be the most interesting. The following figure shows Jo’s rescheduled
DFD of the convolution 2D:

Figure 3.3. Rescheduled Data Flow Diagram [11].

As it can be seen, input features of the iFMAP are loaded just once. The partial
sums obtained in the first and in the second filter rows are not added immediately,
but they are accumulated waiting for the execution of the next input row. This
accumulation that produces an incremental process is shown by black tick diagonal
arrows in the picture. However, the time which the accumulated value must wait
before being added depends on the size of the iFMAP; so this accumulation cannot
be obtained through registers, but on-chip memories are needed. The use of the
latter increases on-chip memory accesses but at the same time it reduces off-chip
memory accesses because input features are loaded in the architecture once. This
choice is surely a good solution because working with on-chip memories is better
than working with off-chip memories. Next paragraphs show better this aspect.
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3.2 Different architectures of accelerator based

on rescheduled DFD

After the detailed analysis about rescheduled DFD, now some types of architecture
can be presented to understand as rescheduled DFD can be applied to them. Indeed,
previous researches analyzed different architectures for an hardware accelerator to
apply in a CNN. There are three possible architectural implementations in fetching
and transferring input and weight data from memories to PEs:

• The first is called Broadcast, where data are fetched one by one and they are
sent to multiple PEs every clock cycle. Therefore, in the same clock cycle each
PE receive the same data. Even if an Input Memory is often only required,
some registers can be used to separate the data flow between memory and
PEs;

• The second scheme is called Forwarding, where data are fetched one by one
from memory but each PE receives the same data in different clock cycles, by
transferring and delaying them through registers;

• The last scheme is called Stay, where data, once loaded, are kept fix in a PE
for the entire convolution. This is a good way to reduce the number of memory
accesses, because data are reused by the same PE. It is like there is a register
that keeps the same data coming into the PE.

The following figure shows these architectural choices:

Figure 3.4. Transferring input and weight data. (a) Broadcast, (b) Forwarding,
(c) Stay [11].

What is more, there are also three architectural methods to classify the process of
partial-sum accumulation:
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• The first method is Aggregation, where all partial-sum data are added at
the same time by means of an adder tree. Nowadays this system is the least
used due to its not efficiency in a parallel structure although it requires less
memory resources. Moreover, it is very difficult to support when input sizes
are very large;

• The second method is Migration, where partial sum is transferred to a neigh-
boring PE or the same PE that generated it;

• The last method is Sedimentation where each partial sum is stored into an
on-chip memory associated to each PE.

These architectural choices are shown in the following figure:

Figure 3.5. Output accumulation schemes. (a) Aggregation, (b) Migration, (c)
Sedimentation [11].

As it can be seen, these choices involve the use of on-chip memories and registers,
even if in different amounts and ways. Different convolution accelerators can be
realized by choosing different loading and storing schemes and then adapting them
to a rescheduled dataflow.
Among all possible configurations, the most ones investigated by Jihyuck Jo [11] are:
BSM, BFS, FSM and FFS. The BSM (Broadcast Input, Stay Weight and Migration
Output) and FSM (Forwarding Input, Stay Weight and Migration Output) are the
two most efficient architectures. They are different only in input loading. In BSM
inputs are loaded through a Broadcast configuration while FSM is characterized by
input loading with a Forwarding configuration.
The BFS (Broadcast Input Forwarding Weight and Stay Output) and FFS (For-
warding Input, Forwarding Weight and Stay Output) are less used due to their lower
efficiency in terms of power and area. Moreover, they can also cause higher normal-
ized energy consumption than previous hardware accelerators [25][26] based on the
different sizes of iFMAP and filter.
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Fig. 3.6 and Fig. 3.7 show the normalized energy consumption of the previous ar-
chitectures and the four different proposed ones, relative to two models, where both
have input size 64 × 64 and filter size respectively 5 × 5 and 3 × 3.

Figure 3.6. Normalized energy con-
sumption for Input size 64 × 64 and

Filter size 5 × 5 [11].

Figure 3.7. Normalized energy con-
sumption for Input size 64 × 64 and

Filter size 3 × 3 [11].

As it can be noted, both cases show as BFS and FFS, even if reduce energy due
to on-chip memory, are worse with respect Desoli’s accelerator, and in the case
with Filter size 3 × 3 consume more than Eyeriss. Instead, BSM and FSM are
the most efficient architectures in terms of energy. Even if the BSM architecture
is the best approach for what concerns energy consumption, the final choice of the
proposed work is FSM architecture because its approach results easily modifiable
with further low power techniques. So the Forwarding approach, applied to iFMAP
inputs loading, allows a delayed parallelization of all the computations (it is a form
of parallelization worse than the BSM, but still effective). The idea is to load an
input at a time and to sent it to all PEs with a certain delay given by the registers.
This system also makes sure that input is fetched from the input memory once only.
Instead for the weights, since the kernel does not change during a convolutional
operation, the Stay approach is an optimum choice, because weights are loaded just
once and remains inside architecture for the entire operation.
Finally Migration is the chosen approach for the output process, since it allows to
use internal registers to transfer partial sum between PEs, by reducing memory
operations. It is a good solution for what concerns the energy efficiency, since
working with the registers is less energy expensive than working with the memories.
The next sections will show how this architectural choice is applied to create the
proposed accelerators.
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3.3 Architecture Design

This section will show the suggested architecture for a hardware accelerator of a
Convolutional Neural Network used for recognizing image of the dataset ImageNet.
The architecture is related to a single convolutional layer and it will be presented
through the following approach.
First of all, the off-chip elements have to be presented:

• There are one Activations Memory and one Weights Memory which
contain activations and weights respectively (in other works a single memory
is used to store both).

• An other element off-chip is Output Memory that is necessary to store the
final result product by architecture.

• Then, there is a control block Controller, that handles off-chip memory ac-
cesses.

What is more, the on-chip elements that create the architecture are:

• The 3 channels Datapath that is designed by means of a FSM approach.

• A Control Unit that manages the functioning of the internal elements of the
Datapath.

Each element has been described in VHDL with a behavioral approach but only the
Datapath results such as a top entity (structural approach).
Before describing various components, the general block diagram of the proposed
architecture and even of the optimized ones have to be analyzed. It is shown in the
following figure:
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Figure 3.8. Block Diagram of the proposed accelerator

As it can be seen, the proposed accelerator is divided in two parts: off-chip and
on-chip. The input RGB image is loaded into Activations Memory while Weights
Memory receives kernels useful to perform convolution. Both memories can be writ-
ten and read thanks to a enable signal generated by a specific controller. So, the
Datapath receives pixel activations and weights respectively by Activations Memory
and Weights Memory and associates them to respective channels. At the same time,
the Control Unit handles the reception of these data and controls the processing of
the Datapath by means of control-flags. After a certain time, Datapath generates
the final oFMAP and it is stored into Output Memory, enabled by external con-
troller.
In the next paragraphs the off-chip components used will be described but also the
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on-chip ones associated currently to the starting proposed accelerator.
However the descriptions and the figures will be simplified to avoid complex discus-
sions and explanations. There will rather be a focus on the important ideas behind
the design and optimizations chosen.

3.3.1 Off-chip architecture

The off-chip elements are common to all proposed accelerators. They are described
in the following paragraphs.

Activations Memory

The Activations Memory is a particular kind of memory where the input image
is loaded. Its matrix structure allows to read some txt files that contain all the
pixels of the RGB image represented in hexadecimal. In this thesis 128 × 128 im-
age have been analyzed. As it is mentioned in other works [25] [9], this memory is
usually a DRAM and it can be described in order to send data to on-chip Datapath
with a specific order. For instance, both accelerators shows the matrix structure of
the Datapath. But in Eyerris each PE receives activations of the same row, while
in Zena each PE has to compute the result of a specific window of the convolution
operation; so a zig zag scan reading of the memory is necessary to obtain that. In
this thesis the design choice consists of reading activations column by column seri-
ally so that each input is sent to Datapath only once (it is a very important choice
to implement Forwarding input configuration)
The memory is described in order to read a word of 27 bits every clock cycle because
the pixels of each channel are quantized into 9 bits. For this reason, in the memory
a word contains the pixels of the same matrix position of all channels.
So this memory has 16384 rows and 27 columns and an Output enable signal is used
to start memory reading.
The following image shows an example of this memory structure, where pixels of
the different RGB channels form the word:
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Figure 3.9. Activations Memory srtucture

Weights Memory

The Weights Memory has a similar functioning and structure of the Activations
Memory. Also, it reads some text files that contain the kernel weights represented
in hexadecimal. In this thesis 3×3 kernels are analyzed, so a smaller memory needs.
Since a Stay configuration is chosen for loading weights into Datapath, this memory
has to read all weights at the same clock cycle. So this memory is like a Register File
composed by 9 registers and its 9 outputs are directly connected to Datapath of the
architecture. Even in this case, each word is composed by three pixels associated
to different channels. It is on 18 bits because the weights used have a small range
of values and they can be represented on signed vector of 6 bits. Generally the
kernels of the most tested Neural Networks have easily representable values on 6
bits. Reading of the memory depends on a control signal generated by the off-chip
controller.
The following image shows the Weights Memory structure:
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Figure 3.10. Weights Memory srtucture

Output Memory

The Output Memory contains the oFMAPs of the layer. In this thesis, the oFMAP
computed is 126 × 126 since there are a 128 × 128 input, a 3 × 3 kernel and a
stride equal to one, without zero-padding. Moreover, since the analyzed layer has
to handle 3 channels, this memory can be designed such as a three-banks memory.
Each bank has 15876 addresses and their words are on 16 bits that is the internal
parallelism chosen for the architecture. Both reading and writing are controlled by
Off-chip controller but instead to previous memory, the final results are written in
a txt file.
When all values stored have been written into this file, a particular signal, named
End Sim is activated, to indicate that writing is finished. This signal is very im-
portant during simulation and during synthesis to extract switching activity of the
architecture and after to evaluate the real power consumption.
The following image shows the Output Memory structure:
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Figure 3.11. Output Memory srtucture

Controller

The off-chip controller is a state machine which handles the functioning of the
off-chip architecture. It has three states: Idle, Loading inputs/writing outputs and
finally Managing output, as it can be seen in Figure 3.12. In Idle the architecture is
reset and all control flags are deactivated. The second state is achieved by a START

signal. First, it involves loading activations and weights by respectively Activations
Memory and Weights Memory. So a signal Output Enable is activated to read by
Activations Memory for sequential clock cycles, while the signal that control weights
loading is activated only in one clock cycle and then it is deactivated. But, while
the activations are read, at a specific clock cycle the first output, that is generated,
is written into oFMAP memory by means of a control generated in the same state,
and so on. The last state handles oFMAP reading of the final results. It is achieved
when an internal counter counted 16402 Clock cycles from the beginning (when the
START signal is received). So START signal is deactivated and the machine returns in
idle. However, when RESET is active, the machine always returns in idle whatever
the state it is in.
What is more, when there is the passage from Idle to Loading inputs/writing out-
puts the signal START is also sent to the Accelerator Controller internal to the chip.
In the following image, the state machine is shown.
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Figure 3.12. Off-chip State Machine

3.3.2 Datapath

The heart of the Hardware accelerator is into the Datapath where the entire convo-
lution of the layer is computed. The goal is exploiting the parallelism of its structure
in order to manage more channels in parallel. So the proposed accelerator is applied
to handle 3 channels and to analyze RGB images even if the analysis is done on
single channel.
By following the FSM architecture chosen, previously described, the Datapath is
composed by three different elements: Processing Elements (PE), internal registers
and On-chip memories. The rescheduled dataflow allows to delay of a certain num-
ber of clock cycles before performing useful multiplication, by using registers that
store activations data. The number of registers inserted between the inputs of the
Datapath and various PEs depend on size of kernel. For instance in the proposed
work, input data are pipelined every time by means of 2 registers before reaching
each PE, because 3 × 3 kernels are used. Moreover 9 PEs are necessary to perform
the whole convolution. The idea is to divide all PEs in three groups, each of which
manages the sum of the products of the column analyzed. A very important as-
pect concerns how weights are associated to each PE. In [11] is shown how the filter
columns are distributed in opposite order with respect BSM, because FSM approach
is more ALAP than BSM one. The common aspect is that the Stay approach allows
to load them once. But in every PEs group of FSM approach, the first PE receives
the last weight of each filter column, while the last one receives the first weight.
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Thus, in every PEs group, the useful multiplications are executed when each PE re-
ceives the right activation which characterizes a column-by-column product between
the convolution window and the filter one.
However other registers are necessary to store the partial result of each PE and to
transfer it to neighboring PE of the same group. So the Migration method is ex-
ploited by delaying the partial sum every time for one clock cycle. Thanks to it, a
Multiply Accumulator (MAC) is created. Indeed when the second and the third PE
of the group receive the right activation to compute the useful column-by-column
product, they receive the right partial sum at the same time.
Finally two On-chip memories need to store the partial result of each group and send
it to the first PE of the next group to emulate a MAC even in this case. So they are
connected at the end of each group and they are also separated from the last PE of
the group by means of a register. On the other hand, the last group allows to obtain
oFMAPs that are stored in a register and then directly in the Output Memory.
To better understand the data flow of the Datapath, the 3 groups of PE must be an-
alyzed separately, through some schemes. The scheme in Fig.3.13 shows an example
of the dataflow in the first group of PEs. As it can be seen, each row indicates the
flow associated to each PE of the group. The oblique arrows indicate the registers
used in the architecture. In particular, the red ones represent the registers that
store partial sum of each PE and take it to neighboring PE. Instead the blue ones
indicate the registers that store the final result of the group before it is stored into
the first on-chip memory.

Figure 3.13. Example of the dataflow of 1st group of PE

The next schemes in Fig.3.14 and 3.15 show some examples of the dataflow asso-
ciated to the other 2 groups of PEs. The vertical arrows indicate that data are
read by on-chip memory and added to the product referred to the same window of
convolution. The other arrows have the same function than the ones shown in the
previous scheme.
Therefore, the last scheme shows how the oFMAPs are stored into a register con-
nected to the last PE of the third group and then stored directly into the Output
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Memory.

Figure 3.14. Example of the dataflow of 2nd group of PE

Figure 3.15. Example of the dataflow of 3rd group of PE

FSM approach consumes more cycles to set up the activation data, but the resulting
throughput is the same as that of BSM. This approach is an original way to im-
plement a convolution by using few resources. As previously mentioned, this choice
is necessary to apply the low power techniques which will be explained in the next
sections.
The following image shows the block diagram of the Datapath:
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Figure 3.16. Block Diagram of the Datapath
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As it can be seen, there are two groups of registers. The first group contains 9-bit
registers that are used to forward the activations to each PE. Instead, the second one
contains 16-bit registers since the partial sums are represented on 16 bits. Moreover,
as said before, 9 PEs are divided into three groups. Finally, there are 2 On-chip
Memories to store the partial result of the first two groups of PEs.
Now the PE and the OM are described in detail.

Processing Element

The PE is the most important element of the Datapath, because it allows to com-
pute the product activation-weight and to add the result to the partial sum of the
previous PE. So it contains a multiplication block followed by an addition block,
that is named Multiply and Accumulate (MAC). In the most used software Neural
Networks, activations and weights have a Floating-point representation, but in the
proposed work a fixed-point representation has been preferred to reduce the com-
plexity. However a signed multiplication 10 × 6 (and not 9 × 6) is executed to have
a major precision. This choice is also motivated by the fact that, due to a Batch
Normalization, often used in the first layer of networks, negative inputs can be gen-
erated; so a further extension of sign inside the multiplier is necessary.
So the product result is represented on 16 bits and it is an input of the adder. It
adds the partial product to the partial sum of the previous PE of the same group
or to the partial result of the previous group, in the case of PE3 and PE6. Instead,
only PE0 computes a sum between its partial product and zero. For this reason,
the internal parallelism of the architecture is 16 bits. This choice allows to reduce
the power consumption.
The following picture shows the PE architecture:

Figure 3.17. Block Diagram of the PE
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On-chip Memory

The On-chip Memory is necessary to store the partial results obtained during the
computation of each convolution window. As it has been said before, in the Dat-
apath there are two On-chip Memories associated to the first two groups of PEs.
Thanks to them, FSM approach is executed to achieve the final and the correct re-
sult. Its structure is very simple. It is similar to a Dual-port FIFO of 128 locations
of 16 bits. Indeed, the first data stored is the first data that is read. As it will
be seen in the next section, in some cases this memory has to be written and read
at the same clock cycle. So it has to be a Dual-port Memory. Its size depends on
the iFMAP that in this work is 128 × 128 pixels. Generally the size of the iFMAP
impacts in a linear way on the dimensions of the On-chip memory. As Figure 3.19
shows, this memory, in addition to CLK and RESET, has the following control signals:
Write Enable (WE) and Output Enable (OE). They handle respectively writing
and reading of the memory and they can be active at the same time since the mem-
ory is Dual-Port. These signals arrive from the Accelerator Controller.
Below, the structure and the block diagram of the On-chip Memory are shown:

Figure 3.18. On-chip Memory struc-
ture

Figure 3.19. Block Diagram of the
On-Chip Memory

3.3.3 Accelerator Controller

The Accelerator Controller is the part of the Hardware Accelerator that allows to
handle the working of the internal elements of the Datapath and its dataflow. It is
the state machine that works in parallel to the Off-chip Controller. Instead of the this
latter, the Accelerator Controller is composed by two states: Idle and Processing.
Idle has the same features seen in the Off-chip Controller, where the machine waits
that START signal is active, and where all internal registers and memories are reset
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(internal values are zero). When START = 1, the Machine goes to Processing where
dataflow is processed. The following image shows the on-chip state machine:

Figure 3.20. State Machine of the Accelerator Controller

In the Processing state, the internal registers are enabled to store new values and WE

and OE are activated and deactivated based on some delays to handle writing and
reading of On-chip Memories in order to limit the number of accesses inside them.
Indeed, for some clock cycles, On-chip Memories have not be written and read. For
instance, some products are not useful to obtain the final result since they do not
belong to the convolution windows; so the partial result depending on them must
not be stored. Moreover, when each column of the iFMAP is sent to the Datapath,
126 partial results have to be stored inside the On-chip Memory. So WE has to be
active for at least 126 consecutive clock cycles, then to be deactivated for the next 2
clock cycles and after to be reactivated again for the next 126 cycles and so on. The
same system is also used for reading, when data stored inside On-chip Memories
need. About that, Dual-port Memories can be written and read at the same time,
so for most of the time the two WE and OE signals are active together. All enable
signals are deactivated when On-chip Memories have not be used anymore.
Finally, the whole Control Unit is synchronized by CLK and RESET. When RESET =
1 the Machine goes to Idle whatever the state it is in.
What is more, this controller is also used in the next proposed architectures, with
some changes in terms of delays.
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3.4 Low Power Architectural techniques

As highlighted in [11], On-chip Memories Accesses are the most energetically onerous
but the rescheduled dataflow chosen allows to have an optimized architecture that
reduces the number of accesses. The second component that causes major power
consumption is the PE and precisely the Multiplication internal to it. Indeed, Mul-
tiplication is a very onerous operation both in term of time and power and for this
reason the architecture, previously described, could be optimized furtherly. First,
the previous architecture executes all possible operations to perform the convolution
operation. A possible optimization is to avoid unnecessary operations which are of-
ten performed the same. For instance, activations and weights can be analyzed to
understand which operations can be skipped and to create low power architectures.
These choices can increase latency and throughput, but they are drawbacks that can
be easily compensated. However, the worsening would be minimal, and therefore
negligible in the face of low power improvements.
This thesis resumes low power techniques that have already been used in past works
[9] [10], even if they have been applied in array structures; it also shows new tech-
niques to create new hybrid architectures. For this reason, in the next sections,
4 changes applied to the starting architecture are presented: Zero Skipping Archi-
tecture, Equal Weights Skipping Architecture, Approximation Skipping Architecture
and Hybrid Equal Weights and Approximation Skipping Architecture.

3.4.1 Zero Skipping Architecture

The Zero Skip is the first technique that can be applied to starting architecture
to decrease its power consumption. It takes inspiration by ZeNA [9], even if it is
applied with an original way. It allows to skip ineffectual operations caused by both
zero weights and zero activations to reduce energy consumption of convolutional
layers. When in a convolution window there are multiplications between zeros and
no-zeros, these operations are unnecessary and can be skipped by obtaining the
correct result the same. Indeed, by analyzing the common Neural Networks both
filters and activations can be zero. Especially the last ones, since the ReLUs are
often many, are often null in the subsequent layers of the Network. For this reason,
a new block is necessary inside the architecture. Its name is Zero Input Recognizer
(ZIR). It checks if at least one of the inputs to be multiplied is zero. In the positive
case, the PE, that has to perform that operation, does not execute the multiplication
but only the sum with the partial sum, as said before. What is more, also PE must
be modified, because the multiplication has to be controlled.
The following image shows the Block Diagram of Zero Skipping Architecture:
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Figure 3.21. Block Diagram of Zero Skipping Architecture
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As it can be seen, 9 ZIRs are inserted to recognize if the weights or activations are
zero. Its generated flag is pipelined by means of a 1-bit register before to reach the
respective PE. So 9 1-bit registers are furtherly necessary. However, except for the
changes of PEs, described below, the architecture remains the same.
Now the block of ZIR and the new PE are described in detail.

Zero Input Recognizer

The Zero Input Recognizer (ZIR) receives activation and weight as inputs and ana-
lyzes them. There are two equal units that set their output to zero when the input
is zero. The final ”and” port sets to zero a Zero Flag if at least one between acti-
vation and weight is zero. This system provides a prevision of the null result of a
multiplication. This block is used to avoid a unnecessary multiplication. For this
reason, in the architecture it is inserted before each PE to analyze its inputs before
performing multiplication.
The following image shows the Block Diagram of ZIR:

Figure 3.22. Block Diagram of ZIR

Modified Processing Element

In the Zero Skipping Architecture and in the next proposed architectures, the PE
is modified because it must allow to skip the multiplication when the Zero Flag,
generated by ZIR, is 0. The new PE has 4 inputs and an output. Activations and
Weights are stored inside a register before arriving at the multiplier. These registers
are enabled by the Zero Flag only if both activation and weight are not zero (Zero
Flag is 1); otherwise the new inputs are not loaded (Zero Flag is 0). Since the
multiplier, which is made up of combinational logic, consumes only when its inputs
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change, the use of these registers is a system to skip the operation when it is unnec-
essary. So a multiplexer needs to select to 0 the result of the multiplier when it is
not executed. This multiplexer is selected by Zero Flag that is delayed by means
of a 1-bit register. This PE has a critical path slightly slower but it is a drawback
that can be accepted. The following picture shows the Block Diagram of modified
PE where the red arrows indicate the path of the Zero Flag, that plays the role of
Enable of registers and selects the multiplexer.

Figure 3.23. Block Diagram of modified PE

3.4.2 Equal Weights Skipping Architecture

The second low power proposed technique consists of an analysis of the weights.
In a convolution window there is a sum of products between the activations and
weights. For instance, in this thesis each convolution window is 3×3 (it depends on
kernel) and each group of PEs must compute 3 multiplications and 3 sums. When
two consecutive weights are equal a multiplication can be skipped because it can be
replaced by a sum, that is less onerous. For instance, in the following image there
is an example where in a window of convolution two consecutive weights are equal:

Figure 3.24. Convolution Window with W2 = W1
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Generally, the highlighted column of the window of convolution is managed in this
way:

PartialResult = A2W2 + A1W1 + A0W0 (3.1)

But with W2 = W1 it can be described in this way:

PartialResult = (A2 + A1)W2 + A0W0 (3.2)

This expression obtains the same result but an unnecessary multiplication is skipped.
As it can be seen, this mathematical simplification can be executed independently
by the value of W0. But, for instance another simplification can be applied when
W1 = W0 and W2 6= W1. In this case the equation can be described:

PartialResult = A2W2 + (A1 + A0)W1 (3.3)

So this technique can be applied by modifying the starting architecture. A new
block Equal Weights Recognizer (EWR) has to be inserted to verify that two con-
secutive weights in each group of PEs are equal. At the same time this block has
to execute the sum between the two consecutive activations to create a possible
activation input of the PE. The correct input of each PE is generated by this block
depending on the comparison between weights.
Some combinational logic is necessary to enable the multiplication of each PE, with
the same mechanism said before. The first PE of each group is always enabled;
the others are controlled by the comparison between weights. The Stay approach
for weights is a good system to avoid that this system is onerous in term of power,
because weights are loaded in the Datapath once and the energy consumption of
their comparison is irrelevant.
The following image shows the Block Diagram of Equal Weights Skipping Architec-
ture:
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Figure 3.25. Block Diagram of Equal Weights Skipping Architecture
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As it can be seen, 6 EWRs are inserted to verify if two consecutive weights are equal
in each group of PEs. They generate a Flag that by means of a combinational logic
controls the last two PEs of the group. So 4 ”or” and 4 ”not” ports are necessary to
handle all possible cases. However, most PEs are similar to ones of the Zero Skipping
Architecture, except for the sign extension of the activation which is executed only
in PE2 ,PE5 and PE8. Then the architecture remains the same of the starting one.
Now the block of EWR is described in detail.

Equal Weights Recognizer

The Equal Weights Recognizer (EWR) receives two consecutive activations and
two consecutive weights as inputs and generates two outputs (Zero Flag and Act).
The Zero Flag is generated by an equal unit that sets its output to zero when the
two consecutive weights are equal. At the same time an adder computes the sum
between the two consecutive activations. A multiplexer, controlled by the generated
Zero Flag, selects the current activation or the sum between it and the previous
activation loaded in the Datapath. The output of the multiplexer is on 10 bits in
order it can handle the possible overflow of the sum. So the comparison between
the weights decides what to send to PE. However, this block is used to avoid an
unnecessary multiplication, even if an extra sum is performed. It is an irrelevant as-
pect if the filter contains many equal weights and many multiplications are skipped,
otherwise the computational weight can make this architecture heavier than the
starting one without providing the desired results. What is more, as for ZIR, it is
inserted in the architecture before each PE to analyze its inputs before performing
multiplication.
The following image shows the Block Diagram of EWR:

Figure 3.26. Block Diagram of EWR
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3.4.3 Approximation Skipping Architecture

The third low power proposed technique consists of an approximation of the con-
volution operation. In a convolution window some products could be irrelevant to
obtain the final result, so they could be skipped. Some previous works, such as
[10], have already presented a system to skip a multiplication that produces a too
low result. So this thesis starts from Huan’s work and applies an approximation to
the starting architecture, previously presented. The idea is to understand when a
product activation-weight can be negligible.
A rule that can be followed is that of Leading Zeros. Indeed when a product is com-
puted, the number of Leading Zeros of the result is almost always the sum between
the number of Leading Zeros of the operands. So a result could be discarded if its
number of the Leading Zeros is less than a fixed threshold. Two examples of a 10×6
multiplication are shown in the following figures:

Figure 3.27. Case 1. Sign bit of the
result is included in the total leading

zeros of the operands

Figure 3.28. Case 2. Sign bit of the
result is not included in the total lead-

ing zeros of the operands

As it can be seen, the two operands have 4 leading zeros (including the sign bit).
The images shows two cases: the right image shows that the result has 8 leading
zeros (the sum of the leading zeros of the operands), and the position of the sign
bit is determined by the total leading zeros of the operands; on the left, instead, the
obtained result has 9 leading zeros, so the position of the sign bit is determined by
the total leading zeros of operands + 1.
The proposed architecture exploits the second case for the approximation to apply.
Indeed, since the approximations must be limited to maintain the correct functioning
of the Network, the types of multiplication that could be skipped are as the ones
of the second case, where the sign bit is external to the total number of leading
zeros. So in this work, the fixed threshold is always compared to the total number
of leading zeros, by excluding the sign bit of the result.
The idea is to send a threshold to the Datapath, besides weights and activations,
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that indicates the maximum number of leading zeros that each partial product
can have (by excluding its sign bit). So one further block, named Leading Zeros
Recognizer (LZR) is needed to count the leading zeros of operands and to compare
their sum with given threshold. If this sum is larger or equal than the threshold the
multiplication will can be skipped (approximated to 0), otherwise the multiplication
will be computed. This system is an improvement of the Zero Skipping Architecture,
because the multiplications that can be skipped are both those where at least one
operand is zero and those where the partial product is a low value.
What is more, this system also can be applied to partial product negative, because
the rule of leading zeros can be still applied to its absolute value. Therefore if
at least one of operands, or both are negative, LZR can count the leading zeros
of its 2-complement. Thus, this system allows to skip all the multiplications that
product a result with a range nearest to zero (negative and positive). However,
it can not involve all the intervals. In fact, the given threshold could indicate
multiple quantized integer values. For example, a threshold of 14 indicates 0, 1, -1;
a threshold equal to 13 indicates 0,1,2,3, -1, -2, -3 and so on. So the various ranges
of approximation depend on the powers of 2. Then:

• Threshold = 14 indicates a range [-1,1];

• Threshold = 13 indicates a range [-3,3];

• Threshold = 12 indicates a range [-7,7];

• And so on...

This aspect makes little flexible this architecture, if a major precision is required.
But it is a good way to obtain a further low power optimization. The following
image shows the Block Diagram of the Approximation Skipping Architecture:
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Figure 3.29. Block Diagram of Approximation Skipping Architecture
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As it can be seen, 9 LZRs are inserted (3 for group) to provide a prevision of each
partial product result. They generate a Flag that controls each PE of the group.
The threshold is equal for each LZR, and it is loaded in the Datapath with a Stay
approach like for the weights. So Weights Memory could have an extra register
to store also thresholds, since they are represented on 6-bits such as the weights.
What is more, even if this architecture is similar to the Zero Skipping’s one, no
1-bit register is necessary to pipeline the Zero Flag. It is due to the presence of a
register in the main path inside the LZR block. However, except for the changes of
PEs, described before, the architecture remains the same of the starting one.
Now the LZR block is described:

Leading Zeros Recognizer

The Leading Zeros Recognizer (LZR) receives the two operands of the mutlipli-
cation that must be forecasted (activation and weight) and the threshold of leading
zeros as inputs and generates a Zero Flag. This block computes the 2-complement
of the activation and of the weight; then it sends them or the not complemented
input to a Leading Zeros Counter, based on their sign (the sign of the activation or
of its 2-complement is also extended). These counters have been implemented with
a carry-lookahead Leading Zero Counting, proposed by Giorgos [27], which is used
for the normalization of the floating point operations. In this thesis, it is used to
obtain a fast low power prediction and approximation of the multiplication. The
following image shows the adopted logic circuit to count leading zeros of a 16-bit
input:

Figure 3.30. Schematic of the leading zero counter [27]
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This counter adds dummy zeros to create a 16 bit data (6 and 10 zeros for activa-
tions and weights respectively) and obtains the number of leading zeros on 4-bits.
The flag V is active when the input is 0, but it does not propagate itself in the
architecture. This combinational structure could generate some glitches, so one reg-
ister is necessary at the end of the structure. The leading zeros of the operands are
added; the result is on 6-bits (to avoid overflow) and it is compared to threshold.
The Zero Flag is generated by the comparator that sets its output to zero when the
total leading zeros are larger or equal than threshold; otherwise it is set to 1. So the
comparison between total leading zeros and threshold decides what to send to PE.
However, this block is used to avoid an unnecessary multiplication, if an approxi-
mation has to be applied. What is more, as for ZIR and EWR, it is inserted in the
architecture before each PE to analyze its inputs before performing multiplication.
The following image shows the Block Diagram of LZR:

Figure 3.31. Block Diagram of LZR

3.4.4 Hybrid Equal Weights and Approximation Skipping
Architecture

The last low power proposed architecture is an hybrid architecture between Equal
Weights Skipping Architecture and Approximation Skipping Architecture. It links
the advantages of both architectures in order to skip more multiplications. In this
case, the combinatorial logic is modified thanks to the addition of 6 ”and” ports to
handle the flag generated by the 5 EWRs and the 9 LZRs. What is more, more
registers need to synchronize the data arriving to PEs and LZR0, LZR1, LZR3,
LZR4, LZR6 and LZR7 receive the activation inputs on 10 bits.
The following image shows the Block Diagram of this Hybrid Skipping Architecture:
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Figure 3.32. Block Diagram of the Datapath
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Chapter 4

Simulations

The simulation phase is one of the most important during a design implementation
since it allows to analyze the design flow step by step. The Hardware simulator that
will be used in this thesis is ModelSim of the Mentor Graphics. In the following
sections the simulations of the proposed architectures will briefly analyze by showing
the main feature of their timing diagram.
What is more, the various testbenches have been written in Verilog while the entire
architectures are written in VHDL. Thanks to ModelSim, VHDL and Verilog blocks
can be mixed in a single design.
Finally, a Matlab script, necessary to generate inputs (as txt files by ImageNet
dataset) to send to architecture, will be described in order that its simulations are
reported, comparing the results with an exact Matlab model. So the behavior of the
accelerator will be verified.

4.1 Modelsim Simulations

The Modelsim Simulation has been done by creating two further VHDL blocks:
Simulation and CLK Generator. The first manages the start of the simulation
by sending the START signal to each block. Then, when the simulation is ended, it
receives an END SIM signal generated by the Output Memory (this signal will result
necessary in the computing of the switching activity for the power consumption,
described in the next chapter). So it sets to 1 an END signal that is sent to CLK
Generator. This latter always generates a CLK signal until the END signal arrives.
Moreover, a RESET signal is generated to initialize the entire architecture. The
following image shows the Block Diagram of the simulation chosen:
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Figure 4.1. Block Diagram of the simulation

The inputs are sent to architecture by means of the txt files generated by Matlab.
Now the various architectures can be simulated and their timing diagrams can be
analyzed.

4.1.1 Starting Architecture

The Starting Architecture has a latency of 16404 clock cycles. It mainly depends
on the size of the input feature map, that is represented on 128x128 = 16384 pixels.
So from the last input, inserted into architecture, pass 20 extra clock cycles. They
represent the internal latency of the architecture due to the forwarding registers, the
partial sum accumulated inside registers and the partial result accumulated inside
the on-chip memories.
What is more, the three channels work in parallel and their result are computed in
the same time. In the following timing diagrams the entire simulation and a close
look of the start and of the end of the simulation are shown:
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Figure 4.2. Full Simulation of the Starting Architecture.

Figure 4.3. End of the Simulation.

61



4 – Simulations

Figure 4.4. End of the Simulation.

As it can be seen, the control flags generated by the Accelerator Controller create
the correct internal timing of the architecture. The initial part of the simulation
shows the activation of the RESET, necessary to initialize the machine. The START

signal is active when the RESET goes down, at the next rising edge of the clock the
loading of the inputs inside the architecture starts. At the end of the simulation the
writing of the results into txt files is executed and the CLK is blocked; after that, a
script of Matlab will be able to read the results and to provide information about
all the image processing.

4.1.2 Low Power Architectures

The other architectures described in this thesis show a worse latency (16405 clock
cycles) since an additional register is inserted in the main path of the architecture.
Indeed, the control flags generated by Accelerator Controller are delayed with re-
spect the previous architecture.
In the following timing diagram the a close look made at the end of the simulation
of the Approximation Skipping Architecture is shown:
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Figure 4.5. End of the Simulation of the Approximation Skipping Architecture.

4.2 Matlab Processing

An important part of this thesis has been the Matlab processing of the images. In
the Chapter 6, Matlab has been used to create AlexNet model to validate Hardware
implementation, while in this section the Matlab has been used to generate an exact
software model of the various implemented architectures in order to verify the results
that the ASIC designs generate.
This script can be used to analyze any images but in this work the processed images
belong to the ImageNet dataset.
The image processing follows some steps. First, a script allows to read an image of
the dataset; then it allows to resized the image in 128×128 pixels; so, the resolution
of the image has been reduced, but this step is necessary to adapt the input to the
proposed architecture. This choice allows to have low resolution but at the same
time smaller On-chip memories inside the Datapath. The following images show the
loss of resolution to pass by 227 × 300 to 128 × 128 pixels:
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Figure 4.6. (a) The initial image with maximum resolution 227 × 300. (b) The
input for the architecture with low resolution 128 × 128.

Then three txt files that contain the hexadecimal values of the pixels for each RGB
channel have been generated. The following images show the different inputs sent
to each channel with grayscale representation:

Figure 4.7. (a) Grayscale image of Red channel; (b) Grayscale image of Green
channel; (c) Grayscale image of Blue channel.

Thus, these txt files and the txt files of the weights are sent to architecture in order
to compute the various oFMAPs.
Another script defines the exact model of the various architectures. It applies two
types of kernels to the three channels and computes the various oFMAPs. The next
figures show the kernels applied in the exact model and in the ASIC architecture:
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Figure 4.8. (a) Kernel 1 applied to the RGB image; (b) Kernel 2 applied to the
RGB image.

In the next step, various oFMAPs are computed and compared with the results of
the ASIC structures, by verifying that results are the same. What is more, in the
Approximation Skipping Architecture and in the Hybrid Equal Weights Approxi-
mation Architecture more ranges of the approximation are used.
Now the obtained oFMAPs are shown in the following images and the reduction of
the number of the multipliers is reported in order to verify the different impact of
each architecture.

4.2.1 Results of architectures without approximation

The oFMAPs are computed and linked into a single image by means of Matlab (an
array concatenation is executed). The following images shows them computed with
different kernels:

Figure 4.9. Linked oFMAPs with
Kernel 1

Figure 4.10. Linked oFMAPs with
Kernel 2
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The tables below show the number of multipliers executed:

Number of Multipliers computed by no-approximated architectures with Kernel 1
Architectures Total Multipliers Multipliers Channel 1 Multipliers Channel 2 Multipliers Channel 3
Starting 428652 142884 142884 142884
Zero Skipping (18.5%) 349272 (0.0%) 142884 (33.3%) 95256 (22.2%) 111132
Equal Weigths Skipping (25.9%) 317520 (33.3%) 95256 (22.2%) 111132 (22.2%) 111132

Number of Multipliers computed by no-approximated architectures with Kernel 2
Architectures Total Multipliers Multipliers Channel 1 Multipliers Channel 2 Multipliers Channel 3
Starting 428652 142884 142884 142884
Zero Skipping (14.8%) 365148 (0%) 79380 (0.0%) 142884 (0.0%) 142884
Equal Weigths Skipping (7.4%) 396900 (0.0%) 142884 (22.2%) 111132 (0.0%) 142884

As it can be seen, the impact of two filters is different. Indeed, the low power tech-
niques allow to obtain some advantages based on the image and the kernel which
are used. For instance, the Kernel 1 allows to reduce the number of multipliers
more than Kernel 2 for both architectures. Moreover, the use of Kernel 1 makes the
Equal Weights Skipping Architecture better than Zero Skipping one; on the other
hand the use of Kernel 2 makes the Zero Skipping Architecture better than Equal
Weights Skipping one.

4.2.2 Results of architectures with approximation

For the architectures with approximation, various thresholds have been applied to
involve more ranges of approximation.

Range [-1,1] with Threshold = 14

Figure 4.11. Linked oFMAPs of Ap-
proximation Skipping Architecture
with Kernel 1 and range of approxi-

mation [-1:1]

Figure 4.12. Linked oFMAPs of Ap-
proximation Skipping Architecture
with Kernel 2 and range of approxi-

mation [-1:1]
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Figure 4.13. Linked oFMAPs of Hy-
brid Equal Weights and Approxima-
tion Skipping Architecture with Ker-
nel 1 and range of approximation [-

1:1]

Figure 4.14. Linked oFMAPs of Hy-
brid Equal Weights and Approxima-
tion Skipping Architecture with Ker-
nel 2 and range of approximation [-

1:1]

Number of Multipliers computed by approximated architectures with Kernel 1
Architectures Total Multipliers Multipliers Channel 1 Multipliers Channel 2 Multipliers Channel 3
Approximation Skipping (18.5%) 349265 (0.0%)142884 (33.3%) 95256 (22.2%) 111125
Hybrid EW and APP Skipping (40.7%) 254013 (33.3%) 95256 (44.4%) 79380 (44.4%) 79377

Number of Multipliers computed by approximated architectures with Kernel 2
Architectures Total Multipliers Multipliers Channel 1 Multipliers Channel 2 Multipliers Channel 3
Approximation Skipping (14.8%) 365144 (44.4%)79380 (0.0%) 142884 (0.0%) 142880
Hybrid EW and APP Skipping (22.2%) 333392 (44.4%)79380 (22.2%) 111132 (0.0%) 142880

Range [-3,3] with Threshold = 13

Figure 4.15. Linked oFMAPs of Ap-
proximation Skipping Architecture
with Kernel 1 and range of approxi-

mation [-3:3]

Figure 4.16. Linked oFMAPs of Ap-
proximation Skipping Architecture
with Kernel 2 and range of approxi-

mation [-3:3]
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Figure 4.17. Linked oFMAPs of Hy-
brid Equal Weights and Approxima-
tion Skipping Architecture with Ker-
nel 1 and range of approximation [-

3:3]

Figure 4.18. Linked oFMAPs of Hy-
brid Equal Weights and Approxima-
tion Skipping Architecture with Ker-
nel 2 and range of approximation [-

3:3]

Number of Multipliers computed by approximated architectures with Kernel 1
Architectures Total Multipliers Multipliers Channel 1 Multipliers Channel 2 Multipliers Channel 3
Approximation Skipping (18.5%) 349230 (0.0%)142875 (33.3%) 95244 (22.2%) 111111
Hybrid EW and APP Skipping (40.7%) 253996 (33.3%) 95253 (44.4%) 79372 (44.4%) 79371

Number of Multipliers computed by approximated architectures with Kernel 2
Architectures Total Multipliers Multipliers Channel 1 Multipliers Channel 2 Multipliers Channel 3
Approximation Skipping (14.8%) 365112 (44.4%)79376 (0.01%) 142868 (0.01%) 142868
Hybrid EW and APP Skipping (22.2%) 333368 (44.4%)79376 (22.2%) 111124 (0.01%) 142868

Range [-7,7] with Threshold = 12

Figure 4.19. Linked oFMAPs of Ap-
proximation Skipping Architecture
with Kernel 1 and range of approxi-

mation [-7:7]

Figure 4.20. Linked oFMAPs of Ap-
proximation Skipping Architecture
with Kernel 2 and range of approxi-

mation [-7:7]
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Figure 4.21. Linked oFMAPs of Hy-
brid Equal Weights and Approxima-
tion Skipping Architecture with Ker-
nel 1 and range of approximation [-

7:7]

Figure 4.22. Linked oFMAPs of Hy-
brid Equal Weights and Approxima-
tion Skipping Architecture with Ker-
nel 2 and range of approximation [-

7:7]

Number of Multipliers computed by approximated architectures with Kernel 1
Architectures Total Multipliers Multipliers Channel 1 Multipliers Channel 2 Multipliers Channel 3
Approximation Skipping (18.6%) 349093 (0.0%)142875 (33.4%) 95142 (22.3%) 111076
Hybrid EW and APP Skipping (40.7%) 253996 (33.3%) 95253 (44.4%) 79304 (44.4%) 79354

Number of Multipliers computed by approximated architectures with Kernel 2
Architectures Total Multipliers Multipliers Channel 1 Multipliers Channel 2 Multipliers Channel 3
Approximation Skipping (14.9%) 364950 (44.4%)79376 (0.1%) 142732 (0.03%) 142839
Hybrid EW and APP Skipping (22.3%) 333271 (44.4%)79376 (22.3%) 111056 (0.03%) 142839

Range [-15,15] with Threshold = 11

Figure 4.23. Linked oFMAPs of Ap-
proximation Skipping Architecture
with Kernel 1 and range of approxi-

mation [-15:15]

Figure 4.24. Linked oFMAPs of Ap-
proximation Skipping Architecture
with Kernel 2 and range of approxi-

mation [-15:15]
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Figure 4.25. Linked oFMAPs of Hy-
brid Equal Weights and Approxima-
tion Skipping Architecture with Ker-
nel 1 and range of approximation [-

15:15]

Figure 4.26. Linked oFMAPs of Hy-
brid Equal Weights and Approxima-
tion Skipping Architecture with Ker-
nel 2 and range of approximation [-

15:15]

Number of Multipliers computed by approximated architectures with Kernel 1
Architectures Total Multipliers Multipliers Channel 1 Multipliers Channel 2 Multipliers Channel 3
Approximation Skipping (19.3%) 346001 (0.1%)142776 (35.3%) 92394 (22.4%) 110831
Hybrid EW and APP Skipping (41.2%) 251926 (33.4%) 95220 (45.8%) 77459 (44.5%) 79247

Number of Multipliers computed by approximated architectures with Kernel 2
Architectures Total Multipliers Multipliers Channel 1 Multipliers Channel 2 Multipliers Channel 3
Approximation Skipping (15.8%) 361076 (44.5%)79331 (2.7%) 139068 (0.14%) 142677
Hybrid EW and APP Skipping (22.7%) 331206 (44.5%)79331 (23.6%) 109198 (0.14%) 142677

Range [-31,31] with Threshold = 10

Figure 4.27. Linked oFMAPs of Ap-
proximation Skipping Architecture
with Kernel 1 and range of approxi-

mation [-31:31]

Figure 4.28. Linked oFMAPs of Ap-
proximation Skipping Architecture
with Kernel 2 and range of approxi-

mation [-31:31]
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Figure 4.29. Linked oFMAPs of Hy-
brid Equal Weights and Approxima-
tion Skipping Architecture with Ker-
nel 1 and range of approximation [-

31:31]

Figure 4.30. Linked oFMAPs of Hy-
brid Equal Weights and Approxima-
tion Skipping Architecture with Ker-
nel 2 and range of approximation [-

31:31]

Number of Multipliers computed by approximated architectures with Kernel 1
Architectures Total Multipliers Multipliers Channel 1 Multipliers Channel 2 Multipliers Channel 3
Approximation Skipping (24.3%) 324293 (0.8%)141705 (45.7%) 77532 (26.5%) 105056
Hybrid EW and APP Skipping (44.3%) 238743 (33.6%) 94848 (53.0%) 67143 (46.3%) 76752

Number of Multipliers computed by approximated architectures with Kernel 2
Architectures Total Multipliers Multipliers Channel 1 Multipliers Channel 2 Multipliers Channel 3
Approximation Skipping (21.3%) 337337 (44.8%)78855 (16.5%) 119250 (2.55%) 139232
Hybrid EW and APP Skipping (26.1%) 316559 (44.8%)78855 (31.1%) 98472 (2.55%) 139232

As it can be seen, when the threshold increases, the number of skipped multipliers
increases too. But the errors also increase, so the thresholds can not be chosen
above a certain value. However, when the thresholds are high, the skipped multi-
pliers do not change the oFMAPs too much, because the concatenated results seem
almost identical to the oFMAPs obtained without approximation. Instead, lower
thresholds cause many errors in the oFMAPs, even if they exploit a more low power
architecture. Then, these architectures allow to have the major reduction of com-
puted multipliers than the no-approximated architectures.
In the Chapter 6, the choice of thresholds is analyzed based on the correct function-
ing of already tested Neural Networks, such as AlexNet.

-
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Chapter 5

Synthesis

Synthesis is a necessary task to provide information about area, speed and power
of the proposed Hardware accelerators. It is composed by many phases. For this
reason, many commands have been studied to manage the synthesis phase in the
correct way. The software used to do that is Synopsys Design Compiler by using a
particular library that is UMC 65 nm which is provided by Politecnico of Turin.
In the next sections, the basic flow of Synopsis will be described and the netlist of
each proposed architecture will be generated, by comparing their results in term of
area, speed and power.

5.1 Design Compiler Flow

The Design Compiler is a tool that exploits the Synopsys synthesis. It allows to
perform the logic synthesis by optimizing HDL designs into technology-dependent,
gate-level designs. What is more, it supports various hierarchical designs to represent
really the hardware description that HDL design provides. So the logic synthesis is
very important because it is a necessary step to optimize the hardware design (both
combinatorial and sequential cells) by providing information about speed, area, and
power.
The logical synthesis process follows a specific flow in order to generate the netlist
that will be simulated after to obtain power information. The first analysis that
allows to start the logical synthesis is shown in the following scheme (in this thesis
not all the commands shown have been used):
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Figure 5.1. Synthesis stages and commands [28]

This thesis uses the following main tasks: reading VHDL source files and defining
of the technology library (umc 65 nm), applying constraints (only on the clock),
compiling and optimizing the design, save the results and generate the netlist.
After, the next step will be the power analysis that is useful to compare the power
consumption of each architecture by giving them the same input. To do that,
an estimation of the switching activity of each netlist will be done by using both
Modelsim and Synopsis Design Compiler.
Now the results obtained by synthesis will be reported, by analyzing before speed
and area. The power will be analyzed subsequently.

5.2 Logic Synthesis

The Design Compiler flow has been followed step by step by using some scripts
containing the commands to use. Because Design Compiler can not synthesize the
memories directly (unless the use of a memory generator), a Top Entity of each
architecture has been created without incorporating on-chip memories. This choice
not only simplifies the synthesis but it allows to obtain true results as any synthesis
of the memories, without memory generator, would not provide correct information.
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So the VHDL project has been modified and the VHDL source files have been read
and analyzed to elaborate the synthesized architectures.
The following pictures show the schematic of the Top Entity and the Datapath of
the Hardware accelerator of the starting architecture (it has more input and output
to communicate with the on-chip memories that are not included):

Figure 5.2. Schematic of the Top
Entity of the starting architecture of

the Hardware Accelerator. Figure 5.3. Schematic of the Datap-
ath of the starting architecture of the

Hardware Accelerator.

In the Design Compiler there is the possibility to apply constraints to the design.
This thesis shows how only some constraints of the clock have been applied and
the load of each output has been set by choosing the input capacitance of a buffer
available in the UMC 65 nm technology. Then, the compilation allows to optimize
the entire architectures. However the clock period that is given to each design can
be modified in order to find the maximum one that does not violate the constraints.
The following table shows the maximum clock, the respective frequency and the
area of each architecture:
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Architecture Tclock[ns] Fmax[MHz] Area[µm2]

Starting 1.45 689.65 40948.20
Zero Skipping 1.53 653.59 41575.76

Equal Weights Skipping 1.53 653.59 42182.64
Approximation Skipping 1.53 653.59 47296.08

Hybrid EW and APP Skipping 1.53 653.59 51039.68

As it can be noted, the modified architectures have a lower maximum frequency than
the starting one; even if the difference is very subtle. At the same time, the area have
increased because more registers and more logical elements are used. However, the
Hybrid architecture has the largest area since it is the most complex architecture.
The next step is to generate the netlists of each architecture. A netlist is a description
of the connectivity of an electronic circuit. In its simplest form, a netlist consists
of a list of the electronic components in a circuit and a list of the nodes they are
connected to. [29]
By following a specific flow of Design Compiler, each netlist has been generated.
What is more, also a sdf file has been generated. Sdf file contains the delay value
of each timing arc corresponding to each cell in the netlist.[30] These delay values
are necessary to obtain the correct real-time beahavior of the netlist. This file has
been generated based on the library of technology that has been used.
So the netlist of each architecture has been simulated by means of Modelsim to verify
its correct behavior. This step is always mandatory since even if the architectures
directly simulated in Modelsim seem to work correctly, after the logic synthesis they
could have undefined nets. The following timing diagram shows the simulation of
the netlist of the starting architecture (only it has been reported but all produced
netlists have been simulated):
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Figure 5.4. Timing Diagram that shows the correct behaviour of the Starting
architecture

5.3 Power estimation

The final step of the synthesis phase was the estimation of power consumption by
using the switching activity model. In this phase working with both Synopsys and
Modelsim is necessary. The switching activity is the measurement of changes of
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signal values in a determined clock cycle (indeed it can change from 0 to 1 or 1 to
0). It is also essential to measuring power in digital circuits.
After creating a saif file where Synopsys extrapolates the technological libraries,
the Verilog testbench has been modified in order to manage some statements to get
the switching activity of each design. Its information have been written in another
saif file at the end of the simulation. The following scheme shows this approach:

Figure 5.5. Dynamic power-frequency graph in different architectures. [31]

To do that, a End Sim signal, generated from the Output Memory, has been used.
It has been necessary to indicate that the simulation could be stopped. Indeed
the end of the Simulation generates the END signal that blocks the generation of
the clock. This step is necessary to obtain a correct estimation of the switching
activity. Indeed Verilog testbench has been modified in order to define the window
of the simulation where the power simulation had to be performed. The following
table shows the average values of power estimation of the each architecture at the
maximum operating frequency, obtained by testing more inputs.

Architecture Dynamic Power [mW ] Leakage Power[µW ]

Starting 21.01 3.92
Zero Skipping 20.18 3.77

Equal Weights Skipping 20.51 3.86
Approximation Skipping [-31:31] 19.29 3.96

Hybrid EW and APP Skipping [-31:31] 20.07 4.36

Table 5.1. Power consumption of different architectures

As it can be seen, the low power techniques applied to the Starting Architecture
allows to reduce the switching activity and so the power consumption due to it. The
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increase of the number of skipped multipliers allows to reduce the Dynamic power.
The different areas do not influence the power even if they are the cause of its low
reduction. Moreover, the Leakage Power also depends on the type of architecture.
More complex architectures have higher leakage.
The Approximation Skipping architecture produces the most reduced power con-
sumption; for this reason is the best low power technique that can be applied.
Particular is the case of the Equal Weights Skipping Architecture that although it
has lower switching activity it provides more consumption than the Approximation
Skipping one due to its larger area and its internal cells.
However, the Dynamic Power has been computed also at lower frequency and the
results have been represented by means of the following graph:

Figure 5.6. Dynamic power-frequency graph in different architectures

As it can be noted, the Approximation Skipped Architecture still provides the best
results even at lower frequencies. But there is a reduction of the overall power con-
sumption for each architecture. This reduction can not be linear due to the Leakage
power. The choice of working at lower frequency can be correct since the most recent
video-processing camera (that need in any possible application) have a throughput
of 1 thousand frames per second (FPS). So there is no need to push too much on
the frequency. This aspect is very important because it allows to decrease not only
the power but even the area.
However, since all results obtained do not depend on on-chip memories, the real
consumption have a further contribution due to them, that is equal for all architec-
tures.
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5.4 Comparison with other works

Finally, the information given in the previous sections, can be useful to do a com-
parison between the proposed work and other previous Hardware accelerators. The
structural differences of Eyerris [25] and ZeNA [9] can not be compared due to
difference in terms of technology, speed and area, since they represented an entire
network.
An useful comparison can be done with Huan’s work [10] because both analyze a
single layer even if they have some structural differences. Moreover, a useful com-
parison with more complex platforms (CPU, GPU, and so on) can be done.

Accelerators Technology node [nm] Bid Width CLK Frequency [MHz] Power [mW ]

Starting (Huan) 65 16 500 59
Starting (This work) 65 16 689.65 21
Zero Skipping (Huan) 65 16 500 38

Zero Skipping (This work) 65 16 653.39 20
Approximation Skipping (Huan) 65 16 500 31

Approximation Skipping (This work) 65 16 653.59 19
CPU Core-i7 5930k [32] 22 not given 3500 73000

GPU GeFore Titan X [32] 28 not given 1075 159000
mGPU Tegra K1 [32] 28 not given 852 5100

Table 5.2. Comparison with existing platforms

The proposed work provides better results than the Huan’one even if there is no the
contribution of the on-chip memories in the analysis. But the number the multipliers
in the architectures are different (9 vs 256); the maximum frequency is higher in the
proposed work thanks to the Migration output accumulation used with respect the
adder tree of Huan’s work. However, both ASIC works allows to decrease the power
consumption with respect CPU for PC, GPU and mobile GPU even if the speed is
necessarily reduced.
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Functional validation

The functional validation phase allows to verify how the hardware optimizations,
which have been done, can be applied to an already trained and tested neural net-
work to obtain a validation of the choice of the hardware. This concept should
mainly concern architectures where an approximation has been applied because only
in this case the result of each layer would be influenced by the approximation inter-
val. In fact, this step is necessary, because without hardware validation there could
be a problem. For example, an image may be recognized by means of low-power
no-approximated architecture, but may not be recognized after some low-power op-
timizations from the same architecture. Thus low power optimizations may not be
suitable for the specific network or even for other networks.
However, validation can help to choose the right threshold to approximate the cal-
culations without altering the operations of the network; but it can also help to
understand which architectures can be better than the other ones depending on the
level in which they are to be applied. This last choice may depend on the analy-
sis of the number of skipped multipliers at each layer. It allows to understand the
right combination of architectures within the network without stressing the machine
where it is not necessary.
To obtain a good validation, first an already trained and tested Neural Network
has been analyzed. In this thesis, AlexNet has been chosen [12] thanks to its sim-
plicity and its small number of layers. In the following section the AlexNet will be
presented, while the validation process will be described in the next sections.

6.1 AlexNet

As it has been said in the Chapter 2, the AlexNet[12], developed by Krizhevsky
from the University of Toronto, won the ILSVRC in 2012 by obtaining better results
than the previous networks. The following image shows its structure:
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Figure 6.1. AlexNet network design [12]

The network contains 8 layers. The first five are convolutional and they represent the
main computational power of the entire networks. On the other hand, the remaining
three layers are fully-connected. The 5 convolutional layers are divided so:

• In the first layer, the convolution is computed by applying to a 224 × 224 × 3
input 96 kernels of size 11 × 11 × 3 with a stride of 4 pixels;

• The second convolutional layer receives as input the output of the previous
layer and filters it with 256 kernels of size 5 × 5 × 48 with a stride of 1;

• The third layer computes the convolution between the output of the previous
layer and 384 kernels of size 3 × 3 × 256 with a stride of 1;

• The fourth convolutional layer has 384 kernels of size 3×3×192 and it applies
them to the output of the previous layer with a stride of 1;

• Finally the fifth layer computes the convolution between the output of the
fourth layer and 256 kernels of size 3 × 3 × 192 with a stride of 1.

What is more, a particular response-normalization, said Batch-normalization [12], is
applied to the first two layers. On the other hand, Max-pooling layers are applied to
the layers where Batch-Normalization is applied and in the fifth; instead the ReLU
is applied to the output of every convolutional and fully-connected layer. In the
second, fourth and fifth layer the kernels are connected only to those kernel maps
in the previous layer which reside on the same GPU; instead in the third layer the
kernels are applied to all kernel maps in the previous layer.
The fully-connected layers have 4096 neurons each. Therefore, the output of the last
fully-connected layer depends on 1000-way softmax which produces a classification
and distribution over the 1000 class labels.
The next section will show how a Matlab model of the AlexNet, already trained
and tested with ImageNet Dataset, has been modified to recreate the hardware
optimizations in software in order to proceed with the validation.
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6.2 AlexNet Software Model

An already trained and tested Matlab model has been analyzed to understand the
structure and to extract the weights and the biases used. So the DAG network model
(a particular system to implement Neural Networks in Matlab) has been divided in
more parts in order to replace only the convolutional layer with the hardware modi-
fies implemented in software, and reuse the DAG structure for the other operations
(Normalization, ReLU and Max pooling).
The following scheme shows the DAG network structure of the entire AlexNet Soft-
ware Model:

Figure 6.2. DAG network structure of the AlexNet

As it can be seen, all layers and their parameters are scheduled. The layers that
have been modified are conv1, conv2, conv3, conv4, conv5 ; they are replaced with
all proposed architectures implemented in software.
First, the standard operation of convolution has been implemented by means of
”for” cycles. The following code implements the convolution operation in the third
layer:
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Figure 6.3. Matlab code that implements the standard convolution in layer 3

In the code N34 = 384 (number of kernels), K345 = 13 (input size), D3 = 256 (num-
ber of channels) and C345 = 3 (filter size). The input CONV LAYER3 is convoluted
with the kernel FF3 to obtain the oFMAP O 3 after the sum with the bias.
From this structure, the other software architectures can be elaborated. The Zero
Skipping model is described in the following code, where the check of the inputs is
done and the multiplications are skipped when at least one input is zero :

Figure 6.4. Matlab code that implements the Zero Skip convolution in layer 3
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The Equal Weights Skipping model of the third layer is described in the following
code:

Figure 6.5. Matlab code that implements the Equal Weights Skip convolution in
layer 3

The code focuses only on the internal part of the for cycles. In the Equal Weights
Skipping model the check of the weights is done. Since the AlexNet networks often
have consecutive filters, which differ very little (about 0.00001), a system has been
adopted to consider them the same (since in hardware, the quantization of the
values would make them practically equal ones). So a flag is used to manage which
multiplications to skip, and the value EQ, used to check, is 0,00001.
The Approximation Skipping model of the third layer is described with the following
code:
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Figure 6.6. Matlab code that implements the Approximate Skip convolution in
layer 3

The described system analyzes the range given by the comparison with TH3.
Finally the Hybrid model of Equal Weights and Approximation Skipping is written
to involve the previous 2 models. Even in this case the following code focuses only
on the internal part of the for cycles.
The following code shows the Hybrid model of the third layer:
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Figure 6.7. Matlab code that implements the Equal Weights and Approximate
Skip convolution in layer 3

Thus, these models have been written for each layer, by following the AlexNet
structure previously described. What is more, a system that counts how many
multipliers are executed allows to track the efficiency of each algorithm. In the
next section the validation phase will be described and the obtained results of the
simulations will be shown.
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6.3 Validation phase

To validate hardware accelerators proposed, this thesis uses a dataset of the Ima-
geNet, already trained and tested in the AlexNet model. So the various models will
be compared among the various layers to classify which is better than other ones.
Now, as it has been done in the Chapter 4, the validation phase will be divided
in two parts: an analysis of the application of architectures without approximation
and that where the approximations are applied.

6.3.1 Applications on AlexNet without approximation

The first analysis is done on the Zero Skipping Architecture. The following im-
age shows how this architecture influences the number of multipliers in the entire
network, by using the specific dataset:

Figure 6.8. Reduction of number of multipliers among various layer with Zero
Skipping Architecture

As it can be seen, the number of multipliers executed in the standard architecture
is reduced in the Zero Skipping Architecture. The most important reduction is in
the Layer 4 and Layer 5 where there is a reduction of about the 85%. In the first
layer of the AlexNet, ZeroPadding is not applied such as in the other layers, so no
multiplier can be skipped. Instead, Layer 2 and Layer 3 show good results with a
reduction of the 60% (ReLU and ZeroPadding increase the number of zeros in the
deeper layers).
Then, another analysis concerns about the Equal Weights Skipping Architecture.
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The following image shows how this architecture influences the number of multipliers
in the entire network, by using the specific dataset:

Figure 6.9. Reduction of number of multipliers among various layers with Equal
Weights Skipping Architecture

As it can be seen, in the AlexNet this architecture is less efficient than the previous
one, because only Layer 2, Layer 4 and Layer 5 show a significant reduction of the
number of multipliers; but it is lower than the Zero Skipping architecture (about
50 percent in each named layer). This aspect is very important, because it shows
how the efficiency of an architecture depends on the type of the Network where it
is applied (an other network could report inverse results).

6.3.2 Applications on AlexNet with approximation

The architectures with approximation have been applied in order to involve a large
range of approximation [−2 : 2], by starting by a low threshold that approximates
the results of multiplications inside the range [-2−5:2−5]. The idea is to verify which
is the minimum range of thresholds where the dataset is still recognized by the net-
work in order to discard the thresholds that are not suitable. The application of the
thresholds inside the network can be done, in different ways. The idea is to mea-
sure the impact of approximation on the accuracy of the network and the possible
reduction of the number of executed multipliers, not only with various threshold
values, but also with uniform and non-uniform thresholds for different layers. A
possible method is to use a mono-threshold, common to each layer in order to verify
the behavior of each layer depending on the same threshold. Otherwise, different
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thresholds can be applied to different layers in order to understand which layers can
accept the highest errors, by obtaining the correct operating of the network.

Mono-threshold method

First, the mono-threshold method can be applied to the approximate architectures.
A Matlab simulation has been done, by providing to architectures 64 different thresh-
olds in order to modify the boundary of the approximation range from 2−5 to 2.
The following graph shows how the probability of the dataset recognizing changes
based on the application of the thresholds in the both architectures.

Figure 6.10. Probability that Dataset is recognized by the Network when thresh-
old changes

As it can be seen, the dataset is recognized by using a wide range of boundaries of
approximation ([2−5:2−1]). What is more, the range [2−1:20] still provides acceptable
results while admitting some mistakes that reduces slightly the probability. But,
the range [20:2] can not accepted due to a high reduction of the probability of
recognizing. So 2−1 is the maximum threshold that can be accepted to always
obtain the recognizing of the dataset.
Then the reduction of the number of multipliers can be explored. The following
graph shows it, by using the Approximation Skipping Architecture:
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Figure 6.11. Reduction of number of multipliers among various layers with Ap-
proximation Skipping Architecture

As it can be seen, there are some improvements with respect the best result ob-
tained in the applications without approximation. If the analysis focuses only on
the threshold 2−1, the improvement is clear overall in the first layer where there is
a passage of reduction from about 0% to more than 30%. In the Layer 2 and Layer
3 there is an improvement of the 20% while in the last two layers the improvement
is of the 10/15%. This aspect shows how in the depth of the Network there are
many zeros with respect the first layers, so the major number of skipped multipliers
depends principally on their presence.
The following graph shows the errors due to the approximation applied:

Figure 6.12. Errors due to approximations
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This graph shows how the errors increase as the threshold increases. Indeed, the
highest errors are done in the critical region of the range, and they are the reason
of the mistakes of the network.
However, in the AlexNet the Hybrid solution (Equal Weights and Approximation
Skipping Architecture) does not provide some clear improvements with respect the
previous architecture, for the same reasons for which the Equal Weights Architecture
is not better than Zero Skipping one.
The following graph shows how the results of both approximated architecture are
almost similar, overall in the interesting regions.

Figure 6.13. Difference between various architectures in the AlexNet

Those shown are average values calculated between all the layers. The values of no-
approximated architectures are constant because they do not depend by thresholds.
It is clear how the Hybrid solution could be avoided in order to reduce the stress
of the network, considering that the results of the approximated applications are
very similar. However no-approximated architectures provide worse results than
approximated ones. So the approximated approach are surely better in low power
terms.

Different threshold method

The application of different threshold does not produce expected results. The sim-
ulations done can be useful to understand which layers can accept higher threshold
than others ones. The goal of the AlexNet is always trying to bring as much infor-
mation as possible to the end. For this reason, the management of the thresholds is
certainly delicate.
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More test have been done:

• First, an uniform threshold has been applied in the first layers while in the
others the thresholds have been changed;

• Then, an uniform threshold has been applied in the last layers while in the
first ones the thresholds have been changed;

• And so on...

Overall, the results did not improve ones obtained with a mono-threshold method.
But these tests have been useful to understand how thresholds could be managed
among different layers.
So, the thresholds can not increase in the first layers since the inputs contain the
most important information. So the last layers could have thresholds higher, by
reducing the thresholds in the others layers. But this approach is not very useful
because in the last layers there are many zeros and a Zero Skipping architecture
may already be enough. For instance, if the threshold in the first layer defines the
range of the approximation [−20:20], the dataset is not still recognized by reducing
the thresholds in the other layers. On the other hand, if the last layer has a range
of approximation [−20:20], the dataset is still recognized with a reduction of the
number of executed multipliers of further 10%. So some solutions can be discarded,
while others provide good results.
Thus, even if the last layers can be approximated more than the first layers, the
mono-threshold is a simpler approach and it already allows to reduce the number of
multipliers significantly.

6.4 Evaluations

Then, the proposed accelerators can be applied to an AlexNet model by obtain-
ing interesting results, by doing some changes (number of PEs, number of on-chip
memories and so on). From Validation phase, it is clear that the approximated ar-
chitectures and specially, the Approximation Skipping Architecture can be applied
at the first layer with a threshold that allows to skip all multiplications that produce
a result inside the range [−2−1:2−1]. This condition allows to reduce the number of
executed multipliers of more than 30%.
On the other hand, even if the Approximation Skipping Architecture allows to re-
duce more the amount of executed multipliers, the Zero Skipping Architecture is
the best choice to decrease the power consumption without stressing the network,
by reducing the cost and maintaining the accuracy. This choice is due to the fact
that the major number of skipped multipliers depends on presence of zeros.
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The Following graph shows how this choice influences the number of multipliers in
the entire network, by using the specific dataset of the ImageNet:

Figure 6.14. Reduction of number of multipliers among various layers with Ap-
proximation Skipping Architecture in the first layer where the range of approxi-

mation is [-2−1:2−1] and with Zero Skipping Architecture in the others layers
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Chapter 7

Conclusions and future works

This chapter completes this thesis work by providing an overall analysis and its
possible future works or applications. The core of the proposed work is the design
of different hardware accelerator prototypes for a Convolutional Neural Network.
The different architectures are referred to the first layer of a CNN but they can
be adapted for any layers thanks to some changes. For instance, the size of on-
chip memories could be increased based on the input feature map of the layer and
also the number of channels could increase if the number of kernels are more than
one. However the proposed architectures have been described in detail, by showing
the particularities of one compared to another. Then their performances have been
demonstrated before with a Logical Synthesis and after by using them to compute
a AlexNet inspired software network, in order to classify some images. They have
still been compared in order to understand which architecture was the best in terms
of power consumption without neglecting the area and above all the speed.
From the previous chapter, it is clear that the Approximation Skipping Architec-
ture is the best to reduce power consumption of an AlexNet network overall in the
first layer. The Zero Skipping Architecture provides good results in the other layers
thank to sparsity due to ReLU and MaxPooling that generates always more zeros
in the deep layers.
But this work could be applied to other Software Network models to verify its im-
pact in terms of reduction of multipliers. For instance, various models of ResNet
(ResNet18 and ResNet50 ) [24] could be used to a further functional validation. Even
new datasets could be used. For instance MNIST dataset [33] and CIFAR dataset
[14] could be used as a validation set with nearly 80% sparse input data.
What is more, a possible future work could be to apply a similar system in the
training phase in order to obtain different weights. This could be a good system
to obtain a correct prevision already in the training phase in order to reduce the
complexity of the computation in the test phase.
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However, the proposed architectures could be still improved in order to skip the mul-
tiplication during the computation, not only with a reduction of the power but also
with a reduction of the latency. Indeed, if a multiplication has not to be executed,
the multiplier of that PE could be used for the next multiplication. This aspect is
enough complex since the dataflow should be still modified and a similar architec-
ture could not be able to perform a convolution without wasting more resources and
not increasing the critical paths (many multiplexers could be inserted in a possible
critical path). So the optimization could be done at the external memory level. New
researches are analyzing the concept of the sparse memory in order to send inside
the Datapath of an hardware accelerator, directly the useful data to compute the
convolution.
Also, future extensions of this work could be to add other types of operation (ReLU,
Max Pooling and so on) trying to optimize them in low power terms. Moreover,
the internal parallelism could be reduced based on the applications, maintaining a
fixed-point precision. So, these architectures could be improved making a trade off
between latency and resource utilization. What is more, a possible future work of
this thesis could be to implement the various architectures or the best one at level
of FPGA in order to synthetize and to verify their performances, by comparing the
two different approaches (ASIC and FPGA). [9] and [25] work at FPGA level; for
this reason, a precise comparison between this work and them can not be done.
Finally, a similar architecture with all these optimization could improve the IoT
devices. Indeed, nowadays the IoT world involves the Machine Learning and Deep
learning world very much. For instance, many machine learning methods and algo-
rithms are applied to the data in order to extract higher level information even in
IoT purpose [34].
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