
POLITECNICO DI TORINO

Master’s Degree in Electronic Engineering

Master’s Degree Thesis

WINNER
Weights In-memory Neural Network Embedded Ram

Supervisors:
Prof. Maurizio Zamboni
Prof. Mariagrazia Graziano
Ph.D. Giovanna Turvani

Candidate:
Simone Domenico Antonietta

April 2019

Acknowledgments

With these short rows, I want to thank people supported me in my thesis experience;
I cannot explain how much they helped me, but I can remember them using this
page.
A first thank to my parents, who permitted me to realize my dream to study in
Politecnico di Torino, and a second one for my sister with the baby Emma, who
cheered up her uncle also when he was tired or unhappy. Another special thank
to Beatrice, who encouraged me in the worst moments, and a thought for all my
friends who believed in me from the beginning.
Last but not least I want to remember my grandma, I cannot see her with my eyes
but I know she helps me each day, and my grandpa, who told me many times that
I could finish.
I don’t know where I could be without the people I remembered here, but I know
where I am now, that is the place I wanted to reach, so thank you for helping me
to be here.

I

Abstract

Neural Networks can be a good solution to implement complex problems as image
or speech recognition, so nowadays they are often used in many applications, like
security, biomedicine and robotics. However Neural Networks are very big circuits,
requiring high performance hardware.
The platform of choice for these circuits is a microprocessor, on which is possible
to write software that implements the algorithm wanted. However, the capability
of a microprocessor based on the standard Von Neumann architecture is severally
affected by the memory bottleneck problem: the CPU spends the most of its time
waiting the data provided by the main memory. This problem is more relevant in
high performance systems. An important difference between Neural Networks and
standard microprocessors is the organization of the memory: in the first case it is
distributed on all the internal blocks of the system, in the second one it is placed
into a unique block.
The solution proposed is the Weights In-memory Neural Network Embedded Ram
(WINNER) architecture, an ASIC implementation of one of the most studied Neu-
ral Networks. The name WINNER is chosen because it is an innovative hardware
solution that represents the starting point for a new generation of hardware Neural
Networks, based on the same approach of the WINNER one.
The work of this thesis consists in the implementation of a Convolutional Neural

Figure 1: WINNER Neuron Block Scheme

1

0 – Abstract

Network for image recognition, the AlexNet, implemented on dedicated hardware.
It is divided into two main blocks: the first one contains the network weights and
implements the computational logic near them, while the latter controls the first
one, generating the inputs and temporarily storing the internal output of the net-
work.
The main innovation of this architecture is the hardware implementation of a Neu-
ral Network using the In-Memory approach: part of the computation is therefore
evaluated inside the memory. Figure 1 represents the structure of a single neuron
of the network composed of:

• the WL0, WL63 and BIAS blocks, that are memory rows where network
weights (W0,...,Wsize−1) and bias (B0,...,Bsize−1) are stored

• the trapezoidal blocks, that are multiplexers used to select the proper values,
depending on the algorithm step executed

• the PPU blocks, that make a pre-evaluation of the memory data selected

• the adder blocks, that sum the PPU outputs together

• the REG block, that is a register that can store temporarily a partial result

Figure 2: Comparison between the WINNER architecture and the main PIM ones

Each neuron, composed of 64 words, contains the weights needed for all the algo-
rithm steps, so, fixing the step, the proper part of the word is selected.

2

The hardware obtained has a generic architecture, so it is possible to implement
every type of neural network only changing the size of the words. The main reason
why this organization is characterized by high performance relies on the fact that it
combines the Logic In Memory approach with the Neural Network structure.
Figure 2 shows a comparison between the energy per frame obtained on the WIN-
NER architecture and on other two in-memory solutions that implement the AlexNet:
the Neurocube and the XNOR-POP. The picture reports also the accuracy reached
by the networks and the Frame Per Second (FPS) used by the reference architec-
tures; in order to compare the performance of this work with the state of the art. In
particular, it is possible to see that the best performance is reached by the XNOR-
POP; however, it implements an approximated version of the AlexNet, reaching
around 10% less accuracy respect on the other two. The WINNER architecture, on
the contrary, implements the full version of the AlexNet while using bigger tran-
sistors. The results are better than the Neurocube in every aspect. According to
these considerations, it is possible to say that the WINNER approach represents
a good starting point to implement big Neural Networks on a chip, while a large
set of optimizations are still possible. For example, by using smaller transistors the
energy efficiency can be greatly increased.

3

Table of contents

Acknowledgments I

Abstract 1

Introduction 1

1 State of the art 3
1.1 Neuromorphic Architectures . 4
1.2 Technology choices . 9

Memristor . 10
General purpose neural memristor-based processor 10
Power efficient structure for RRAM-based CNN 12

MTJ . 12
Fully connected Signle-Layer STT-MTJ based SNN 13
STT Magnetic Neuron for Low Power Neuromorphic Computing 15
STT-RAM for Precision-Tunable General-Purpose NN Accel-

erator . 17
ASANN based on CSS and CSN 21

PIM . 22
Neurocube . 22
RTNN: Real-Time scheduling technique for convolution NN

on 3D neuromorphic PIM architecture 23
XNOR-POP . 25

Many-core . 27
Loihi . 27
DaDianNao . 29
SpiNNaker . 30
TrueNorth . 30

CMOS . 31
Embedded Crossbar Memory in a Digital Neurosynaptic Core 32
ROLLS . 35
A Neuromorphic Event-Based Neural Recording System using

ROLLS . 36
HICANN . 37
BrainScaleS . 38
Neurogrid . 41

I

Neuromorphic Accelerator for Autonomous Robots 42
1.3 Comparison between technologies . 44

2 Software Implementation 46
2.1 Metodology . 46
2.2 Very Big NN: AlexNet . 47
2.3 Software implementation . 48

General organization . 48
Classes description . 49

Neuron . 49
Convolutional layer . 50
Cross-channel normalization layer 52
Max Pooling layer . 52
Fully connected layer . 53

Time requirement to classify an image 54
Parallelism of the data into the hardware 54
Example of software output . 57

3 Hardware Implementation 59
3.1 Block scheme . 61
3.2 Weight-Block . 63

Block Scheme . 63
Neuron . 64

Standard Neuron . 64
Optimized Neuron . 66

The parallelism problem . 67
Cross Channel Normalization Layer 68

3.3 In/Out-Block . 71
Block Scheme . 71

4 Simulation 73
4.1 Weight-Block . 73

Word loading . 75
MBE Multipliers . 75
Adder reversed tree . 76
Cross-channel normalization layer . 77

4.2 In/Out-Block . 79
Initial input loading . 79
Hidden layers result storage . 80
Zero-padding operation . 81
Max-Pooling operation . 83

II

Stride verification . 84
Outputs selection . 85

5 Synthesis 86

6 Results 88
6.1 Comparison between Adder-tree solution and a standard one 88
6.2 performance of the WINNER architecture 89

Power and Area Weight-Block estimation 89
In/Out Block . 90
MUX Vs Wired-OR Neuron . 90
Frame Per Second (FPS) . 93
Power, Frequency and Area comparison 94
EAT and ET comparison . 95
Energy per Frame . 96

7 Conclusions and Future Works 97

A AlexNet Neural Network 99
A.1 Convolutional Layers . 100
A.2 Cross-Channel Normalization Layers 101
A.3 Max-Pooling Layers . 102
A.4 FC Layers . 102
A.5 Dropout Layers . 103
A.6 Softmax Layer . 103

B Modified Booth Encoder Multiplier 104
B.1 Partial Product block . 104

C Approximations with Taylor’s series expansions 106

Bibliography 107

III

List of figures

1 WINNER Neuron Block Scheme . 1

2 Comparison between the WINNER architecture and the main PIM
ones . 2

3 Neural Network and Von Neumann architectures 1

1.1 Von Neumann Architecture . 3

1.2 Schematic representation of a Neuron. Image adapted from [1] 4

1.3 An example of Neural Network topology 5

1.4 Representation of a generic neuron (on the left) and an example of
possible NN implementation (on the right) 6

1.5 Neuron output functions: (a) Threshold, (b) ReLu, (c) Hyperbolic
tangent. 8

1.6 (a) Usage of the TG to connect two tiles. (b) Tiles combined to form
a bigger array. [11] . 11

1.7 Differential amplifier used in the general purpose architecture. [11] . . 11

1.8 (a) Traditional decoder. (b) SEI decoder. [12] 12

1.9 pMTJ structure: Free Layer (FL),Thin oxide Barrier (TB), Pinned
Layer (PL). [2] . 13

1.10 SNN architecture. [3] . 14

1.11 Recognition error of the SNN implemented as a function of the train-
ing set size, changing the synapse number of element. [3] 15

1.12 Synapses and neurons in the architecture proposed in [4]. 16

1.13 Neuromorphic architecture with memristors as synapses and STT-
MTJ as neurons. [4] . 17

1.14 Iso-throughput comparison between the architecture proposed and a
45nm CMOS solution. A. Sengupta and K. Roy[4] 18

1.15 Description of MLC STT-RAM cell and its read procedure. (a) Struc-
ture of MLC. (b) Procedure of the MLC read operation.[5] 19

1.16 Data mapping in the reconfigurable MLC cell. (a) Bit mapping. (b)
Low precision mode (SLC) mode. (c) Intermediate precision mode
(SR-MLC mode). [5] . 20

1.17 (a) CSS with 8 discrete synaptic weights. (b) CSN that implements
a multiple-step transfer function. [6] 21

1.18 HMC Architecture. [7] . 22

1.19 (a) Programming Neurocube Flow. (b) Neurocube Architecture. [8] . 23

1.20 Generation of the scheduling. [9] . 25

1.21 Wide IO2 DRAM architecture. [10] 26

IV

1.22 XNOR-POP flow. [10] . 26

1.23 Loihi core architecture.[13] . 28

1.24 Mesh operation: first box, initial state for time-step t; second box,
neurons n1 and n2 in cores A and B generate spikes; third box, spikes
from all other neurons firing on time-step t in cores A and B are
distributed to their destination cores; fourth box, each core advances
its algorithmic steps to t+1. [13] . 28

1.25 Block Diagram of the DianNao accelerator. [14] 29

1.26 Tile-based organization of a node (left) and tile architecture (right).
[14] . 30

1.27 Organization of the SpiNNaker [15] 31

1.28 TrueNorth architecture, analysing in details multi-chip, chip and core
level to the neuroscience, structural, functional and physical point of
view. [16] . 32

1.29 Internal blocks of the core include axons (A), crossbar synapses imple-
mented with SRAM, axon types, that can be excitatory or inhibitory
(G), and neurons (N). An incoming address event activates axon 3,
which reads out that axon connections, and results in updates for
neurons 1, 3 and M. [17] . 33

1.30 (left) Input figure to be classified. (middle) 16 x 16 grid of neurons
spike in response to the digit stimulus. Spikes are indicated as black
squares and encode the digit as a set of features. (right) An off-chip
linear classifier trained on the features, and the resulting activation.
Here, the classifier predicts that 3 is the most likely digit, whereas 6
is the least likely.[17] . 34

1.31 ROLLS architecture., with the two synapses arrays (emulating the
long-term and short-term synapses of a brain), an additional row of
synapses (the virtual ones) and a row of neurons (somas). There
are peripheral circuits as asynchronous digital AER (Addres Event
Representation) blocks, ADCs and a programmable on-chip bias gen-
erator. [18] . 35

1.32 (a) Neurons in the NN implemented to recognize only motorbikes
and cars; only the top half part of the neurons is used because it is
sufficient to demonstrate the right behaviour of the NN. [18] 36

1.33 Results of the application of BOS and REV songs to the SNN imple-
mented. [19] . 37

1.34 Schematic diagram of the ANC. [20] 37

1.35 Schematic diagram of a synapse. [20] 38

1.36 BrainScaleS system. [21] . 39

V

1.37 (a) BrainScaleS wafer module. A: wafer. B:48 FPGAs. C: position-
ing mask to align connectors from the wafer to the PCB. D: large
main PCB. E,F: power supply. G: access to analog dynamic vari-
ables. H: edges on which there are connectors for inter-wafer and
off-wafer/hosts communications. I: aluminium frame. (b) Fully as-
sembled module. [21] . 40

1.38 BrainScaleS results.[21] . 40
1.39 (a) Analog implementation of a neuron: spikes go through the axon

reaching the synapse, that modulates the charges flowing through the
dendrite, whose capacitance integrates them. The comparator (soma)
compare the signal obtained with a threshold; if it is exceeded, a
spike is produced and the capacitance is discharged (with the reset)
to restart the cycle. (b) Classical digital implementation of a neuron,
composed by a RAM, a counter and a comparator. [22] 41

1.40 Comparison between Neurogrid and other equivalent hardware solu-
tions. [22] . 42

1.41 Micro-robot for which the NN is developed. [23] 43
1.42 General architecture of the chip. [23] 43
1.43 Power per neuron, frequency and area comparison between the main

paper presented . 45
1.44 EAT and ET product for the solutions analysed 45
2.1 Design flow . 47
2.2 (a) Cliff image covered by a waterfall (b) A commercial soap dispenser

(c) Pizza (d) Goldfish (e) Three images of the same cat reproduced
in different colours tone in the same image (f) Picture of a sports car
with high noise . 55

2.3 Example software window . 58
3.1 AlexNet 3D representation . 59
3.2 Topological view of a standard layer 62
3.3 WINNER Block Scheme . 63
3.4 Weight RAM of the WINNNER architecture 64
3.5 Block scheme of a standard neuron implementation 65
3.6 Block Scheme of the WINNER neuron implementation 68
3.7 Example of a Cross-Channel Normalization Layer evaluation on a

specific point of an output pattern . 69
3.8 Taylor approximations of the cross channel formula denominator in

the AlexNet values range . 70
3.9 In/Out-Block block scheme . 72
4.1 Test-bench flow-chart . 74
4.2 Weight loading example . 75
4.3 MBE partial product values in a fixed time instant 76

VI

4.4 Theoretical evaluation of the partial product of the MBE 76
4.5 (a)Software output for a specific time-step (b)Hardware output for

the same simulation-step . 77
4.6 Cross-Channel Normalization Layer waveform example: (a) Software

(b) Hardware (c) Test-bench used as debug instrument 78
4.7 Example of an input loading phase for the In/Out Block RAM 80
4.8 Example of the writing phase for the first hidden layer 81
4.9 Zero-padding example with a frame of one ’0’ 82
4.10 Max pooling example . 83
4.11 Sequential outputs of the In/Out Block: the squared blocks are the

sequential subsets . 84
4.12 Outputs of a single evaluation: on the left there are the three input

channel values, on the right the division in sequential subsets 85
5.1 Synthesis flow-chart . 87
6.1 Comparison between a conventional solution and a reversed-tree one . 88
6.2 Power ans area forecasts for the RAM of single neuron 89
6.3 Power and Area of the In/Out Block internal components 90
6.4 Power of the internal blocks of a neuron 91
6.5 Area of the internal blocks of a neuron 92
6.6 Power ans Area for a single neuron changing the type of selectors . . 93
6.7 Power, Area and Timing comparison for a single neuron using a Wired

OR selector . 94
6.8 EAT and ET comparison for a single neuron using a Wired OR selector 95
6.9 E · Frame comparison . 96
A.1 AlexNet graphical representation. Image readapted from [24] 99
A.2 Graphical representation of the convolutional parameters 101
A.3 Pooling operation on an input matrix of 5x5 with pooling size 3x3

and stride = 1, generating an output matrix of 3x3 102
B.1 MBE triplets generation . 104

VII

Introduction

Technological applications requiring Neural Networks to recognize and classify im-

ages, sounds and input patterns are quickly increasing. These algorithms are in-

creasing their complexity to implement more features, so their implementations

need many resources to obtain good performance.

A big Neural Network is typically built with a software solution because it is possi-

ble to use a very large memory, the RAM, and it is simple to describe it using pro-

gramming languages. However, this approach puts constraints on the performance

obtained, because a Neural Network evaluates the data in a parallel way, using a

distributed memory; in a software solution it is used a microprocessor system based

on a Von Neumann architecture, characterized by the separation between memory

and the elaboration unit, as shown in figure 3. In order to preserve the memory

Figure 3: Neural Network and Von Neumann architectures

organization of a Neural Network, it is needed dedicated hardware that provides

a simple way to reconfigure its memory, as for the RAM into the Von Neumann

architecture.

The challenge proposed by the modern applications consists of the implementation

1

0 – Introduction

of a system similar to a brain, on which memory and computation are everywhere

distributed, with the flexibility of a microprocessor. The Weights In-memory Neu-

ral Network Embedded Ram (WINNER) architecture wants to solve the problem

described, providing an innovative hardware solution; the name WINNER is chosen

because the purpose is to obtain an architecture that can be the starting point for

a new generation of hardware Neural Networks with very high performance and

computational capability.

The thesis is divided into 7 chapters:

• chapter 1, the State of the Art, contains the solutions adopted nowadays,

describing the different technologies they use;

• chapter 2 shows the software implementation of the reference network chosen,

the AlexNet, explaining the features added to make the hardware realization

simpler;

• chapter 3 describes the hardware implementation using block schemes to show

the component organization;

• chapter 4 illustrates the simulation process, reporting simulation images to

explain how it is possible to test the hardware produced;

• chapter 5 contains the synthesis process used;

• chapter 6 shows all the results obtained after the synthesis step;

• chapter 7 reports the conclusions of the work done and analyses of the possible

future improvements.

After these chapters, there are 3 appendices that describe in more details some

arguments used in the project presented:

• appendix A illustrates the AlexNet model used;

• appendix B describes the MBE multiplier implementation;

• appendix C shows Taylor’s series expansions.

2

Chapter 1

State of the art

The classical Von Neumann architecture provides a structure made up by memory,

on which data and instructions are stored, and an elaboration unit, as represented in

figure 1.1. This kind of approach is affected by an important problem: the bottleneck

Figure 1.1: Von Neumann Architecture

between the two main blocks. In fact, what happens is that the Central Processing

Unit (CPU) spends the most part of its time waiting for the data arriving from the

memory, due to the fact that actual CPUs operate at a very high frequency and the

memory storage capacity is very high, causing a non-negligible latency.

Engineers dedicate a lot of their time searching other possible architectures because

of this strong performance limit. The ideal solution is to merge the two units into

one big black-box containing logic and memory at the same time. This concept is

called in literature Logic-In-Memory (LIM) or Processing-In-Memory (PIM), and

consists of a big memory array, on which each cell or group of cells is made up by a

part of memory and a part of logic.

There are several possible PIM implementations, one of these takes inspiration to

the human brain: it is a unit with memory and evaluation mixed into the same

3

1 – State of the art

structure. An architecture that is organized as the brain is called Neuromorphic

Architecture, and the network that implements is a Neural Network (NN).

1.1 Neuromorphic Architectures

The brain is probably the oldest calculator in the world. Its structure is created

to reach very high parallelism and to have a low power dissipation, so it is a good

example of energy-efficient architecture.

There are several internal components into the brain, but to understand how it

works it is possible to consider only two of them: neurons and synapses.

In figure 1.2 is represented the scheme of a neuron: there are several arrows

Figure 1.2: Schematic representation of a Neuron. Image adapted from [1]

in input and output, called synapses, each one with a specific weight (W). The

neuron is drawn as a circle containing the activation function, that is the function

to provide the output. The value generated is transported through the synapses to

the next neurons, generating a network as in figure 1.3. The scheme obtained can

be divided into different layers, each one containing neurons and synapses at the

same topological level.

A neuron evaluates the stimuli received from its synapses and, considering them

4

1.1 – Neuromorphic Architectures

Figure 1.3: An example of Neural Network topology

with different weights, provides an output that becomes an input for another neuron

passing through another synapse. This output consists of a spike produced only if

the internal evaluation provides a result higher than the neuron threshold.

In this simple brain view there is a hierarchy of neuron: the meaning of the output

provided by a neuron depends on its hierarchy level. According to this, it is simple

to identify sequential layers, each one with a specific role; the last of them classifies

the input stimuli into a class selected by a set of known classes. In this way, the

brain can recognize known images, smells, sounds and situations.

The architecture described was the first inspiration to provide an alternative to the

Von Neumann approach and took the name of Neural Network (NN); an example

of a four layer NN is reported in figure 1.4.

In literature there are many NN types:

• Artficial Neural Network (ANN), a NN with artificial neurons that use

a certain mathematical function to provide a result; it is the most general

category and each non-biological NN belongs to it. An ANN is made up by

an input layer, an output layer, and one or more hidden layers.

• Spike Neural Network (SNN), a NN that provides spikes instead of values

as neuron outputs; this network is similar to a biological one. In that way

the NN obtained can be artificial or biological, depending on how neurons are

implemented.

• Depp Neural Network (DNN), a NN that has more internal layers; its

5

1 – State of the art

Figure 1.4: Representation of a generic neuron (on the left) and an example of
possible NN implementation (on the right)

depth degree indicates the number of hidden layers that compose it. The

pattern produced by an internal layer (called hidden layer) constitutes the

feature map.

• Fully Connected Neural Network (FC), a topological classification to

identify a NN composed of layers characterized by neurons connected to each

neuron of the next layer.

• Binary Neural Network (BNN), an ANN that provides weights and output

of a neuron in binary mode, indicating them with ’0’ or ’1’.

• Convolutional Neural Network (CNN), an ANN that uses more layers

to classify the input pattern using the convolution operation on the input of

each neuron. Typically a DNN uses different kinds of layer to select specific

information on the input pattern and, elaborating them in other layers, it pro-

vides the final classification. It is very useful to replace a deep fully connected

layer with a CNN because of the reduced number of neurons and connections.

A generic NN can be classified into more than one of these categories: they use

different criteria to characterize that.

In an ANN the main characteristics of the brain are implemented using mathematical

6

1.1 – Neuromorphic Architectures

models; the most important mathematical contribution is on the evaluation of the

neuron output. There are several models to obtain it:

• Threshold function: this function is the most similar to the biological ap-

proach because it provides a null output until the threshold set is reached.

If this limit is equal to the result evaluated, the output becomes a pre-fixed

value. This behaviour, represented in figure 1.5(a), is more useful when the

output is ’0’ or ’1’, as in BNNs.

• ReLu function: it provides a null result for each negative input and a result

equal to the input if it is positive, as in figure 1.5(b). It is commonly used in

CNN to make the inter-layer values non-negative numbers.

• Hyperbolic tangent function: the result of this function is limited between

-1 and +1, so it provides a useful instrument to limit the hidden layer result

range of a DNN; it is represented in figure 1.5(c). It belongs to the Sigmoid

functions family, due to the graphical ”S” form.

Another important part of a NN is the training: the process to assign the

synapses weights. In a human brain the network continuously evolves, changing

the weights due to a learning process that sometimes can happen. In an ANN is

possible to simulate this behaviour using ON-LINE training, that consists on chang-

ing the weights to learn during the working phase of the network. Vice-versa, if the

training is done only before starting to work, the approach is called OFF-LINE

training.

As described for the human brain, the purpose of a NN is to recognize an input

pattern and classify it in a category known. The most diffuse application is the

image classification, which presents some critical points: the determination of the

input images size and the number of output classifiers; increasing one of these two

parameters, the network makes bigger, using more layers. This situation requires a

NN capable to extract from the image analysed certain kinds of information, com-

bining them to establish what is represented. This process is well implemented in

CNNs, composed of several layers, each one with a specific purpose. They form

together a complex structure capable to combine the partial detail extraction of the

7

1 – State of the art

(a) (b)

(c)

Figure 1.5: Neuron output functions: (a) Threshold, (b) ReLu, (c) Hyperbolic
tangent.

first layers to select one output category.

The main layers into a generic CNN are:

• Convolutional Layers: layers that implement filters with a fixed size; each

filter is applied to a portion of the input pattern providing a result. Filters

move with a specific stride; repeating this process many times, they cover all

the input set. Each filter detects a particular characteristic, so its output is

higher if the input set considered presents it.

• Normalization Layers: the result of convolution can reach high value, due

to the fact that it is a sum of multiplications. To limit their output range it is

possible to apply one normalization layer that, considering sequences of results,

8

1.2 – Technology choices

makes them more uniform. It is typically applied after the first convolutional

layers.

• Pooling Layers: in order to reduce the size of a layer, the pooling operation

scans the input matrix as described for the Convolutional Layer. Each input

set is replaced with only one value, usually computed as the average or the

maximum of them.

• FC Layers: generally they are the last layers and they are used to combine

all the previously information together providing the output classification.

There are many possibilities to implement a NN, from a pure software solution

to a pure hardware one. If the algorithm is realized as a program running on a

conventional Von Neumann architecture, the system is affected by the bottleneck of

it, because the network becomes a simulation of a NN. The main consequence is a

limitation on the energy-efficiency due to the reducing of the timing performance.

For this reason, a pure hardware approach can produce a better result. In order to

obtain high performance and maintain the power dissipation low, it’s needed a short

analysis on the main technologies available to realize a NN.

1.2 Technology choices

There are several technology alternatives to realize a neuromorphic architecture; the

main one are:

1. Memristors-based;

2. MTJ-based;

3. PIM-based;

4. Many-core-based;

5. CMOS-based.

Each of these can introduce some advantages and disadvantages, analysed in the

following.

9

1 – State of the art

Memristor

Memristors are electrical components capable to change their conductance respect

on the amount of charge stored into them. To change the resistance of a memristor

is sufficient to apply a current through it: in this way, a flow of charges passes

through the device, varying the quantity of charge stored and causing a conductance

change. The state assumed remains until another changing is externally imposed.

This behaviour is very useful because it is possible to realize a component that

implements a kind of non-volatile memory using only voltage and current, that are

the simplest electrical quantities to manage.

This device can assume any resistance state, so it is an analogical component. In

the digital world all the circuits are typically binary, so it is possible to use only two

resistance values, one to represent the high level of a bit, the other one for the low

level. In this way the standard CMOS memories can be replaced with memristor-

based ones. In a second step, it is possible to use the analogical behaviour of a

memristor to store in the same cell more than one bit, implementing a more compact

layout.

General purpose neural memristor-based processor

Due to the fact that each NN has its specific requirement, as the number of neu-

rons, the layer amount and the quantity of inputs, it is very hard to make a general

purpose neural processor. This argument is fronted by the paper [11], that proposes

a possible architecture to obtain this result.

The first problem to consider is the flexibility that the architecture must have; the

solution shown is to divide the entire circuit into tiles of fixed length, connected

with transmission gates (TGs) between them (figure 1.6) to provide the possibility

to change the main parameters of the network according to what is needed. Imple-

menting a NN with a memristor crossbar provides many advantages; the main one is

to have synapses that are programmable with an external current and neurons that

evaluate the output directly adding the current that flows into the synapses. It is

possible to make it using a differential amplifier (figure 1.7), that has two input: the

positive one is connected to all the synapses that have a positive weight, the nega-

tive one to the synapses associated to negative weights. In this way in the two lines

10

1.2 – Technology choices

(a) (b)

Figure 1.6: (a) Usage of the TG to connect two tiles. (b) Tiles combined to form a
bigger array. [11]

Figure 1.7: Differential amplifier used in the general purpose architecture. [11]

flow respectively the currents sum of positive synapses and the negative synapses

one, so, making the difference between them using the differential comparator, it is

possible to establish the result: if positive, the output will be a high logic level, on

the contrary it will be a low logic level.

11

1 – State of the art

Power efficient structure for RRAM-based CNN

Many times it is useful to put together more crossbars, for example to implement a

higher accuracy circuit, or to manage signed weights in a NN or simply to increment

the size of the crossbar.

The approach proposed in [12] permits to provide these features without adding

additional functions, saving area and power. The key element of the architecture

presented is the decoder that selects the crossbar lines. A traditional decoder turns

on all the transmission gate circuits during the evaluation phase, using the circuit

in figure 1.8a. It is possible to modify this device according to the scheme shown in

figure 1.8b, using a multiplexer: during computation, the Vin signal is selected, so, if

it assumes a high logic level, the TG is enabled, and the extra port, connected to the

added information, can propagate. In this way not all the cells are activated during

the evaluation, but only the ones that have the Vin input at ’1’. This modification

Figure 1.8: (a) Traditional decoder. (b) SEI decoder. [12]

permits to save the energy of all the cells that were enabled in the original structure

and, at the same time, it allows the architecture to add shared informations between

the rows, as the weight sign bit or the precision bias, obtaining a more flexible circuit.

MTJ

Magnetic Tunnel Junction devices (MTJs) are devices that can change their resis-

tance due to an input current. To read the value stored on it, it is needed a read

current, so it is possible to store information as in a traditional CMOS memory, but

associating the bit value to the resistance set.

The structure of a perpendicular-MTJ (pMTJ) is shown in figure 1.9; the two exter-

nal layers are made up by ferromagnetic materials, the internal layer is a very thin

12

1.2 – Technology choices

oxide, in order to generate a tunnel junction. It is possible to change the resistance

associated on it changing the magnetization of the two external layer: a parallel

magnetization causes a low resistance, an anti-parallel one a high resistance. To use

this device as a memory, the bottom layer is used to provide the magnetization cur-

rent and the top one is used to store the information. The operation to write the bit

value into the MTJ is a stochastic process, with a probability that increases with the

amplitude of the current applied. Due to the fact that the information is associated

to the resistance of the tunnel junction, the device consumes low power, because the

tunnel current is very low, so the leakage is near-zero. This characteristic makes the

MTJ very useful in applications as the NNs, that are made up by a high number of

neurons, each one consuming power. There are several neural architectures that use

Figure 1.9: pMTJ structure: Free Layer (FL),Thin oxide Barrier (TB), Pinned Layer
(PL). [2]

this kind of technology; in the following they are reported the most significant ones.

Fully connected Signle-Layer STT-MTJ based SNN

The architecture developed in [3] shows how to use MTJs to produce both neurons

and synapses in a NN, as shown in figure 1.10. The NN implemented is a SNN

designed for pattern recognition, in which the spiking neuron is realized with a MTJ

and an inverting amplifier, implementing three operation mode, selected by three

different transistors, as in figure 1.10b:

• stochastic writing mode: in this mode, the synaptic current is applied to the

MTJ through the amplifier. The probability to switch the MTJ state from

13

1 – State of the art

Figure 1.10: SNN architecture. [3]

parallel configuration, that is the default configuration, to the anti-parallel

one, increases with the input signal amplitude; when the changing happens, a

read operation is needed to propagate the output.

• read mode: a read current is applied in input and the output transmission

gate is enabled, so, if the MTJ threshold is reached, the pulse generator is

triggered, generating a spike.

• reset mode: after the reading step to transfer the information, the MTJ is reset

to the parallel configuration, to initialize the circuit for a new evaluation.

For what concern the synapses, they are implemented as Compound Magneto-

resistive Synapse (CMS), as shown in figure 1.10c. They are made up by N binary

MTJ elements connected in a shunt configuration, so, from an external point of

view, its behaviour is the same of a single synapse with a conductance that is the

sum of the resistive device ones. The result is a synapse with N+1 discrete levels.

14

1.2 – Technology choices

The study conducted in [3] tells that, using synapses with multiple MTJs, the preci-

sion of the NN increases; the same happens using a larger training set. However the

first solution reaches a saturation faster than the second one, so it can be concluded

that it is better to use a larger training set than increasing the number of devices

for synapse. In figure 1.11 there is a graph with the data involved in this consider-

ations. Moreover, the write operation is stochastic, so the learning phase can have

Figure 1.11: Recognition error of the SNN implemented as a function of the training
set size, changing the synapse number of element. [3]

some problem due to the fact that not all the synapses are programmed correctly.

Finally, it is important to consider the process variation in the fabrication process,

because environmental conditions as temperature, pressure and humidity can change

the behaviour of each MTJ device in the network respect to the others, causing a

non-uniform response.

STT Magnetic Neuron for Low Power Neuromorphic Computing

The architecture described in [4] is made up by a hybrid structure, consisting on

memristor synapses and MTJ neurons, as shown in figure 1.12. The structure im-

plemented is a crossbar array; in this way the synaptic weight is associated to the

15

1 – State of the art

Figure 1.12: Synapses and neurons in the architecture proposed in [4].

conductance value at the cross point, where a memristor is placed. The neuron im-

plements the transfer function using a couple of MTJs (one as reference and one for

the neuron considered) to realize an input voltage divider for the threshold output

amplifier, as represented in figure 1.13. The crossbar uses two rows for each input

Vi to implement bipolar weights: when the input value is a logic ’0’, 0V are applied

to both the lines; when the input is a logic ’1’, +Vdd is applied to the positive row

and -Vdd to the negative one.

The use of memristors as synapses causes a bad dependence on the power consump-

tion when the voltage supply changes: in a canonical synapse the relation is linear,

in a memristor is quadratic. In order to solve this problem, that can vanish all the

benefits introduced by MTJs on the energy consumed, it is added a bias row to the

architecture, enabled by a PMOS transistor used as current source. In this way it

is possible to split the evaluation operation in two phases: first the neuron is reset

(the MTJ assumes the anti-parallel configuration), then the current is applied. This

approach reduces the current of the synapses, so the energy-efficiency of the system

increases.

16

1.2 – Technology choices

Figure 1.13: Neuromorphic architecture with memristors as synapses and STT-MTJ
as neurons. [4]

The paper [4] compares this kind of architecture with a CMOS equivalent one,

on which neurons and synapses are implemented with canonical registers, adders,

multipliers and threshold units. The results, considering an iso-throughput imple-

mentation, is a better power consumption for the hybrid memristor/MTJ structure;

the graph is reported in figure 1.14.

STT-RAM for Precision-Tunable General-Purpose NN Accelerator

MTJs are affected by process variations, that can cause different behaviour for the

devices fabricated. This is a hard limit for the application of this technology in

the conventional circuits; however in the approximate computing world this is not

a problem, because the circuit realized has got a certain tolerance to errors and

input noise, and process variations can be seen as the last one. Neural Network

17

1 – State of the art

Figure 1.14: Iso-throughput comparison between the architecture proposed and a
45nm CMOS solution. A. Sengupta and K. Roy[4]

Accelerator (NNA) is a device that uses approximate computing, as all the NNs, to

elaborate data, so the paper [5] proposes a way to use this characteristic to realize

a more compact general purpose NNA.

To generate a compact design, the single cell is made up by two MTJs stacked, one

large and the other small, in order to program and read them with the application

of two distinguishable currents; the cell obtained is called Multi Level Cell (MLC).

Due to the fact that one MTJ can store two values, with this structure is possible to

store four values, so the layout is the half than a conventional one. However, the two

MTJs are connected together, so they are forced to conduct the same current when

a programming pattern is applied; this causes a two-steps write operation: first it is

made a hard transition to switch both the MTJs, then a soft one to switch only the

small. Also the read operation has to be in two steps, comparing the resistance with

a first reference resistance (RR1) and, depending on the result of the comparison,

with another one (RR2 or RR3). The description of this procedure is reported in

figure 1.15. The using of this device provides a more compact layout, but it is slower

than a traditional cell, because to read two bytes it is needed to access to the same

18

1.2 – Technology choices

Figure 1.15: Description of MLC STT-RAM cell and its read procedure. (a) Struc-
ture of MLC. (b) Procedure of the MLC read operation.[5]

cell for two times. Moreover, the MLC memory sometimes can provide wrong results

on the small MTJ due to the process variations and dynamic factors like thermal

fluctuations during the access. These situations can be problems or not, depending

on the application needed. For this reason, the MLC can also be used as a Single

Level Cell (SLC), that is the conventional usage of a MTJ, or in a hybrid mode,

that is the SR-MLC mode:

• MLC Mode: with the two MTJs is possible to store two bits (four resistance

values), but two steps are needed to read and write the cell, and the reliability

of the small bit information is low. In NNs it can be acceptable because the

network accepts an input noise, but for other applications it is not a good

result.

• SLC Mode: only the large MTJ is used, so only one step is needed to program

and read the bit stored, providing better performance and reliability.

19

1 – State of the art

• SR-MLC Mode: this mode provides an intermediate behaviour between SLC

and MLC: each two cell, three bits are stored, using the two small MTJs

to store only one bit; in this way the reliability is improved, conserving the

advantages on the compact layout.

These modes are represented in figure 1.16 and provide a very useful architecture

for general purpose circuits, because it is possible to use it improving reliability,

performance or to have a more compact layout. NNs use approximate computing,

Figure 1.16: Data mapping in the reconfigurable MLC cell. (a) Bit mapping. (b)
Low precision mode (SLC) mode. (c) Intermediate precision mode (SR-MLC mode).
[5]

so there is a tolerance for the signals of each neuron. In general, the LSB is less

useful than the MSB to generate a correct output, so, mapping the LSBs on the

small MTJs, it is possible to obtain results that are similar or equal to the expected

ones.

In order to make the architecture more general purpose, the datapath is divided

into lanes, each one independent to the others, with the possibility to activate or

deactivate part of the hardware, saving power. Also the multipliers implemented,

that support a high parallelism, are made up by smaller multipliers, so it is possible

to select the number of bits to make the computation and switch-off the part of the

circuit that is not useful to provide it, improving energy savings. All this features

make the hardware obtained a general purpose NNA, with the possibility to modify

its behaviour in each moment.

20

1.2 – Technology choices

ASANN based on CSS and CSN

The architectures analysed mainly use MTJs to have a binary behaviour. It is

possible to obtain a MTJ device with multiple states stacking more of them. The

component produced is called Compound Spintronic Synapse (CSS) if it is a synapse

or Compound Spintronic Neuron (CSN) if it is a neuron. In paper [6] it is realized

an All Spin ANN (ASANN), using CSN and CSS to implement a non-binary NN.

In particular, a CSS made up by N MTJs is capable to assume 2N discrete state; on

the contrary, a CSN with the same number of element can have only N+1 states,

due to the fact that it implements a step function, and the possible steps that can

be made are N+1. Both the CSS and CSN behaviour are shown in figure 1.17. The

(a) CSS (b) CSN

Figure 1.17: (a) CSS with 8 discrete synaptic weights. (b) CSN that implements a
multiple-step transfer function. [6]

work done in paper [6] is based on the same crossbar architecture used in [4] and

implement the read, write and reset sequence described in [3], adapted to the ANN

proposed. From the simulation results emerges that the number of MTJs that is

possible to stack is limited due to the process variations: increasing the stack length,

the accuracy decreases, but the ANN acquires higher input noise tolerance, so they

act in two opposite directions. For this reason the result can be better or worse than

the one obtained with a lower number of stacked element, depending on how much

good is the technology used to realize the circuit.

21

1 – State of the art

PIM

A Processing In Memory solution is very useful when the architecture has a large

number of elements, because data that are stored in memory are immediately avail-

able to the evaluation units. A structure of this type is appropriate in the case

of NNs, when the quantity of neurons and synapses are very high, so the latency

of the system could reach unacceptable values. The crossbar configurations seen

previously are easy to implement in a PIM system, because they have a regular

geometry, similar to the standard memory one. Another example of PIM is the Hy-

brid Memory Cube (HMC) [7], fabricated by Micron and made up by a 3D structure

with a layer of CMOS logic on the bottom and more layers of DRAM on the top.

The memory and the logic planes are divided into vaults to reduce the data latency,

so each vertical column becomes a little datapath with a very close memory. This

structure is shown in figure 1.18.

Figure 1.18: HMC Architecture. [7]

Neurocube

Neurocube is a programmable digital neuromorphic architecture based on the HMC

[7], so it is a very dense PIM implementation of a NN. The HMC plane has a finite

logic capacity, so each time is needed a NN with more layers, each one with a large

number of neuron and synapses, it is better to evaluate only one layer, store the

results and evaluate the next one, iterating the process, as in figure 1.19a. This

approach provides a programmable and flexible way to realize NN, but the main

disadvantage is the time spent to store output data, load a new layer on the HMC

plane and apply inputs. However, theoretically is possible to implement each kind

22

1.2 – Technology choices

of NN, independently from the complexity and the number of layers used. The Neu-

(a) (b)

Figure 1.19: (a) Programming Neurocube Flow. (b) Neurocube Architecture. [8]

rocube is composed of a global controller, a programmable neurosequence generator

(PNG) for DRAM, routers for a 2D-mesh network on chip (NoC), Processing Ele-

ments (PEs) and Vault Controllers (VCs) to manage the communication between

PEs and the DRAM vaults. An external host can decide the parameters of the

network programming the HMC with an external link. The implementation of a

generic network is shown in figure 1.19b, on which PEs are made up by Multiply

and ACcumulator blocks (MACs), a cache memory, a temporal buffer and a memory

for the synaptic weights.

RTNN: Real-Time scheduling technique for convolution NN on 3D neu-

romorphic PIM architecture

The most important problem of the Neurocube [8] is the time to store data, load a

new layer and apply inputs. The paper [9] proposes a scheduling technique to op-

timize the execution of CNN layers, obtaining an increasing of performance respect

on the traditional Neurocube.

A CNN is made up by several deterministic processing procedure, each one associ-

ated to a functionality that can be subdivided into a certain number of tasks. The

consequence is that it is possible to represent a CNN application with a data flow

graph (DFG): each task represents a computation operation, such as convolution

or pooling operation. For a computation task, the intermediate processing results

23

1 – State of the art

have to be synchronized in order to produce the correct result for the next task, so

it is needed a rescheduling using a retiming function. The proposed technique is

applied in a static way, because the scheduling is known after the training of the

network; using this approach it is possible to not introduce more latency, so the

benefits obtained are the maximum possible.

The scheduling algorithm uses the PE utilization ratio (U) to establish when the

result obtained is good and the procedure can stop. The definition of the utilization

ratio is reported in equation 1.1: ei is the execution time for the task Ti, p̂ is the

number of steps required to complete one tasks set, Nset is the maximum number of

tasks set allocable in p̂ and M is number of PE available.

U =

Pn
i=1 ei ·Nset

p̂ ·M
(1.1)

If the denominator of the equation is lower than the numerator it means that the

utilization ratio is lower than the maximum one; the scope is to reach a value that is

the closest possible to it. The process can be stopped when is reached a threshold,

that assumes a predefined value set to the minimum utilization ratio acceptable.

In figure 1.20 are shown the steps to reach the maximum U possible considering the

DFG shown in figure 1.20a, a threshold for U set to 0.92, a buffer budget of 9 and

a buffer requirement for the tasks that is T1=2, T2=4, T3=4, T4=2, T5]=2,T6=1:

• the sum of the execution time is 9, so at most 2 sets of tasks can be allo-

cated, otherwise the denominator becomes higher than the numerator. The

utilization ratio obtained is 0.75; in order to preserve the data dependencies

and remove synchronization overhead, the second set is released at time unit

4. In this way, p̂ becomes 10, so it is possible to increase Nset to 4, obtaining

U=0.9. According to this, another set is added, ending the operations at the

time unit 14, reaching a U=0.96, higher than the threshold, so the process can

be stopped. This situation is represented in figure 1.20b.

• due to the buffer requirement of the tasks, the remaining buffer budget is

represented in figure 1.20c. The second step consists to allocate the remaining

tasks, without violating the buffer budget, starting from the tasks that requires

lower time units. The result is shown in figure 1.20d. The remained tasks

24

1.2 – Technology choices

aren’t allocable because of the buffer budget, so they are treated as infeasible

tasks, generating the final scheduling represented in figure 1.20e.

Figure 1.20: Generation of the scheduling. [9]

The conclusion about this scheduling algorithm is that the time used to run it

is higher than the one used by other equivalent solutions, but the advantages in

terms of scheduling optimization can be consistent, depending on the network im-

plemented.

XNOR-POP

Paper [10] proposes an architecture capable to satisfy the constraints imposed by

mobile devices, as the limited hardware resources and the low power budget.

The solution proposed is a CNN that uses the XNOR operation instead of the MAC

one, called XNOR-Net; in this way is possible to reduce consistently the hardware,

25

1 – State of the art

because XNOR are very small logic gates, and also the power efficiency increases.

The problem that can emerge by this circuit is that the results of a XNOR is only

approximately the same of what a MAC provides, so the circuit is affected by a form

of input noise, caused by this lost precision.

The XNOR-Net uses a stacked DRAM memory developed for mobile devices, called

WideIO2 memory, represented in figure 1.21.

Figure 1.22 describes the behaviour of the network: each row of the DRAM is

Figure 1.21: Wide IO2 DRAM architecture. [10]

associated to a block that provides the XNOR operation, then the result is latched

to allow the starting of a new evaluation; the result goes through TSVs to the logic

die, on which is processed with a population count, a pooling stage and finally

reaches the Layer Output Buffer (LOB), implemented with a SRAM. When the

computation is finished or the LOB is full, the pipeline stops and the output data

are rewritten to the DRAM dies.

The results obtained by the implementations of different NNs, comparing with

Figure 1.22: XNOR-POP flow. [10]

other accelerators, show that the performance of the XNOR-Net is about 10 times

better and the power consumption is the 90%. However the disadvantage of this

26

1.2 – Technology choices

solution is the accuracy reduction, but NNs are designed to tolerate some errors and

noise, so, if the NN developed is robust to these negative effects, the architecture

provided becomes better than the other traditional solutions.

Many-core

In order to implement a big NN, it is possible to implement an architecture made

up by many neural cores, connected together to create a unique larger network.

The main disadvantages of this solution are a reduction of performance when more

chips communicates together and an increasing of the area occupied, because the

network developed is distributed on more chips or PE. However there is an important

advantage: the possibility to expand the NN, scaling up the number of neurons,

layers and increasing the precision, without big constraints.

Loihi

Paper [13] presents a neuromorphic manycore processor fabricated by Intel to im-

plement a SNN in a 14nm CMOS technology. The processor is made up by:

• 128 Neuromorphic cores, each one implementing 1024 neural units, grouped

in sets that share configuration and state variables, updated each algorithmic

step;

• 3 embedded x86 processor cores;

• Off-chip communication interface that hierarchically extend the mesh in 4

planar directions to other chips;

• Asynchronous NoC to manage communication between cores.

The features implemented are several; the main ones are the possibility to add

stochastic noise to a neuron synaptic response, the configurable and adaptable

synaptic, axon and refractory delays, the configurable dendritic tree processing,

the neuron threshold adaptation in support of intrinsic excitability homeostasis, the

scaling and saturation of synaptic weights in support of “permanence” levels that

exceed the range of weights used during inference.

27

1 – State of the art

Figure 1.23: Loihi core architecture.[13]

The architecture of a single core is drawn in figure 1.23, on which there are several

blocks:

• Synapse unit processes all incoming spikes and reads out the associated synap-

tic weights from the memory;

• Dendrite unit updates the state variables u and v of all neurons in the core;

• Axon unit generates spike messages for all fanout cores of each firing neuron;

• Learning unit updates synaptic weights using the programmed learning rules.

Figure 1.24: Mesh operation: first box, initial state for time-step t; second box,
neurons n1 and n2 in cores A and B generate spikes; third box, spikes from all other
neurons firing on time-step t in cores A and B are distributed to their destination
cores; fourth box, each core advances its algorithmic steps to t+1. [13]

All the cores are put in a mesh structure on which they can exchange spikes. The

communication is completely asynchronous and event driven, with a synchronization

28

1.2 – Technology choices

barrier: when a core receives it, the communication with the near cores starts,

propagating the spikes received to the internal neurons; after that phase, all the cores

increase the own time-step of one unit. This asynchronous behaviour is possible due

to the fact that in a SNN, inside a single time-step, the result doesn’t change with

the order of the received spikes. The detailed representation of the mesh operation

is reported in figure 1.24.

DaDianNao

The purpose of the paper [14] is to realize a structure capable to achieve high

sustained machine-learning performance. The architecture proposed is called Da-

DianNao and is a multi-chip system made up replicating the DianNao accelerator,

shows in figure 1.25. The “supercomputer” obtained is compared to a GPU-based

Figure 1.25: Block Diagram of the DianNao accelerator. [14]

approach in order to demonstrate that is possible to implement a NN with compa-

rable or higher compute density (number of operations per second divided by the

area) in a cheaper and more compact way.

To realize this purpose the entire structure is divided into tiles: each node contains

16 tiles and two central eDRAM banks; a tile contains a Neuron Functional Unit

(NFU), four eDRAM banks and I/O interfaces to/from the central eDRAM banks.

This structure is shown in figure 1.26.

29

1 – State of the art

Figure 1.26: Tile-based organization of a node (left) and tile architecture (right).
[14]

SpiNNaker

The paper [15] presents the SpiNNaker, a massively parallel computing engine de-

signed to make easier the modelling and simulation of large-scale SNN of up to a

billion neurons and a trillion synapses. It is made up by several nodes, each one

equipped with a Chip Multi Processor (CMP), that is an ARM968 capable to sim-

ulate more than 1000 neurons, and a 128MB SDRAM.

The chip architecture (figure 1.27) is composed of synchronous islands containing

18 ARM968, surrounded by an asynchronous packet-switched communication infras-

tructure, that produces a Global Asynchronous Local Synchronous (GALS) system.

This GALS makes local performance the highest possible. Moreover, all the chips

can communicate with the external world with a 100-Mbit Ethernet interface.

TrueNorth

The TrueNorth architecture [16] is a big multi-chip architecture with many-core

chips; each core implements 256 programmable neurons, 256 axons and 256*256

synapses, realized with a SRAM. The system take inspiration from the Macaque

brain and it is implemented with crossbar arrays. It consists of several blocks, also

shown in figure 1.28:

• A SRAM memory stores all the data for each neuron, a time-multiplexed

neuron circuit updates neuron membrane potentials;

• A scheduler buffers incoming spike events to implement axonal delays;

30

1.2 – Technology choices

Figure 1.27: Organization of the SpiNNaker [15]

• A router relays spike events;

• An event-driven controller orchestrates the core operation.

The authors choose a NN to demonstrate how the architecture works: it is a NN that

divides an input image into two other images, one with low resolution and another

with high resolution. The first one is used with a part of NN to classify where it

is detected a recognizable object (in the example proposed the network can detect

only motorbikes and cars), the second one classifies what was detected.

CMOS

The CMOS technology is the oldest one, so it is not an emerging technology, but

it is very important because the fabrication of a CMOS chip is simple and cheaper

than a chip realized in other technologies. Respect on MTJs and memristors, the

CMOS solutions are less compact in terms of layout and can have a higher power

31

1 – State of the art

Figure 1.28: TrueNorth architecture, analysing in details multi-chip, chip and core
level to the neuroscience, structural, functional and physical point of view. [16]

dissipation, due to the non-negligible leakage current. This is the reason why the

research is moving from CMOS to other technologies, searching the ones that offer

the best compromise between performance, power dissipation and area.

However, the using of CMOS remains important because it can be designed, simu-

lated and fabricated without big problems, and a CMOS-circuit can be a starting

point to make evaluations on how much good are other equivalent circuits produced.

Moreover, it is one of the technologies that produce higher performance, so the big

challenge is, after having selected the CMOS reference circuit, to produce an equiv-

alent solution, with comparable performance and better compactness and/or power

dissipation.

Embedded Crossbar Memory in a Digital Neurosynaptic Core

The purpose of [17] is to realize a neuromorphic core minimizing the active power

consumption, meeting or exceeding real-time performance and neglecting the density

32

1.2 – Technology choices

optimizations. The way choose to reduce the power is to update neurons in an event-

driven manner, realizing asynchronous communications between blocks.

The architecture shows in figure 1.29 is made up by an input decoder with 1024

Figure 1.29: Internal blocks of the core include axons (A), crossbar synapses im-
plemented with SRAM, axon types, that can be excitatory or inhibitory (G), and
neurons (N). An incoming address event activates axon 3, which reads out that axon
connections, and results in updates for neurons 1, 3 and M. [17]

axons, a 1024x256 SRAM crossbar, 256 neurons, and an output decoder.

The working principle of the circuit is based on two phases for each time-step:

• first phase: address-event are sent to the core one at a time as spikes that are

sequentially decoded to the appropriate axon block. The axon activate the

SRAM row on which it is connected; the row reads all the axon connections

of its type, sending to the respective neurons only the ones that exist (they

are classified with ’1’ if there is the connection, ’0’ otherwise). Neurons then

update the membrane potential; when they end this operation, the axon block

deselects the row, so a new address-event for the current time-step can be

processed.

33

1 – State of the art

• second phase: each millisecond a synchronization event is sent to all the neu-

rons, that check if its membrane potential is higher than a threshold and,

in positive case, generate a spike, then reset the membrane potential to 0.

Finally, spikes are sent as a sequence of address-event.

The behaviour so obtained consists on a set of neurons that accumulate received

spikes increasing their membrane potential and synchronise the generation of output

sparks each millisecond using a special barrier event. This behaviour doesn’t match

the real brain working principle for the second phase, because in the brain there isn’t

this form of synchronization; however, the authors decided to use this approach in

order to ensure that the hardware and the software used were always in lock step at

the end of each time-step.

Figure 1.30: (left) Input figure to be classified. (middle) 16 x 16 grid of neurons
spike in response to the digit stimulus. Spikes are indicated as black squares and
encode the digit as a set of features. (right) An off-chip linear classifier trained on
the features, and the resulting activation. Here, the classifier predicts that 3 is the
most likely digit, whereas 6 is the least likely.[17]

An example of how the network works is reported in figure 1.30, on which the

prediction of the input figure tells that ’3’ is the most probable number represented.

The circuit realized is capable to implement a large number of NNs; the procedure

to make the learning is an off-line training, then the weights are transformed in a

hardware compatible format, using the type axon properties, that can be excitatory

(+) or inhibitory (-).

34

1.2 – Technology choices

ROLLS

The paper [18] presents the ROLLS (Reconfigurable On-Line Learning Spiking)

neuromorphic processor, a device that can be used both for research experiment in

computational neuroscience and to develop application solutions as NNs. This is

possible because it implements analogical and digital circuit to emulate exactly the

behaviour of a brain; in this way, all the parts that compose a brain can be replicated

and simulated by the circuit, obtaining a good platform for neuroscience researches.

At the same time, neurons and synapses developed use the same configuration and

behaviour of the NNs, so it is possible to realize a generic neural network on it,

using also the digital circuits that allow the chip to communicate with the external

world. The architecture in figure 1.31 comprises analogical synapses that produce

Figure 1.31: ROLLS architecture., with the two synapses arrays (emulating the long-
term and short-term synapses of a brain), an additional row of synapses (the virtual
ones) and a row of neurons (somas). There are peripheral circuits as asynchronous
digital AER (Addres Event Representation) blocks, ADCs and a programmable on-
chip bias generator. [18]

biologically realistic response properties and spiking neurons that can exhibit several

realistic behaviours; these kinds of neurons are very good to implement also SNNs,

because they work already with spikes.

The circuit implements 256 neurons, an array of 256x256 learning synapses to

model the long-term plasticity mechanism, another array of 256x256 programmable

35

1 – State of the art

synapses to model the short-term plasticity, 256x2 row of linear integrator filters

that are “virtual synapses” to model excitatory and inhibitory behaviours and a

group of peripheral I/O to communicate with the external world.

The authors show an example of NN implementation on the ROLLS chip (figure

(a) (b)

Figure 1.32: (a) Neurons in the NN implemented to recognize only motorbikes
and cars; only the top half part of the neurons is used because it is sufficient to
demonstrate the right behaviour of the NN. [18]

1.32) that can distinguish if the input image contains a car or a motorbike. After

the training and using only the half of the neurons available, the network produces

right results.

A Neuromorphic Event-Based Neural Recording System using ROLLS

Paper [19] proposes a possible usage of the ROLLS architecture; in particular, it

wants to demonstrate that is possible to convert biological audio signals into asyn-

chronous digital events to be applied on a low-power SNN.

To apply real biological signals, a group of birds were anaesthetized and exposed

to two different songs, so the data were measured from electrodes applied on them.

The songs selected were two: the bird’s own song (BOS) and a reversed version of

it (REV). The SNN was tested applying different input sets; the network produced

the main frequency of the song as output, then determined if it was a valid song

or not applying a threshold. The results, shown in figure 1.33, have produced an

36

1.2 – Technology choices

Figure 1.33: Results of the application of BOS and REV songs to the SNN imple-
mented. [19]

error only in three cases of the REV song recognition, generating a false positive,

obtaining an accuracy near 96%.

HICANN

HICANN (High Input Count Analog Neural Network) [20] is a chip that mixes ana-

logical and digital circuits to realize a network made up by realistic neurons that

can be connected together with other chips of the same type to expand the compu-

tational capability of the system.

Figure 1.34 shows the Analog Network Core (ANC) structure, on which the neu-

Figure 1.34: Schematic diagram of the ANC. [20]

37

1 – State of the art

rons are integrated with their synapses. To allow the possibility to have a variable

number of synapse for all neurons, they are divided into several parts, called den-

drite membranes (DenMem), each one connected to 224 synapses. A circuit named

neuron builder combines together neurons group of DenMem, that are configurable

in 23 analog parameter inputs generated by analog memory cells placed between the

DenMem circuit and the neuron builder. Figure 1.35 shows how a synapse is made

Figure 1.35: Schematic diagram of a synapse. [20]

up: it contains a four bit address decoder and it is connected to one out of four pre-

synaptic enable signals, so each synapse in a certain column can receive 64 different

input combination, but shared with the adjacent column. The synapse weight is

realized with a current generated by a four bit multiplying DAC, that converts in

an analogical signal the digital weight stored into a four bit SRAM; there is also

an analogical input to control the maximum conductance (gmax) that a column of

synapses can assume. Two adjacent columns can combine their synapses to reach a

weight high resolution, due to the fact that they have the same inputs and is possible

to program the gmax to be a fixed multiple of each other.

The current that exits to the synapse is transmitted to the neuron through the Den-

Mem circuit, and it is encoded as a current pulse of defined length and an amplitude

proportional to the synapse weight.

BrainScaleS

The purpose of [21] is to demonstrate the successful training of an analog neuromor-

phic system configured to implement a DNN. For this reason, the authors choose to

38

1.2 – Technology choices

realize the network with a large number of HICANN [20], that implement analog

neurons.

The BrainScaleS system (figure 1.36) consists of five cabinets, each containing

Figure 1.36: BrainScaleS system. [21]

four neuromorphic wafer-scale systems. Red cables shown in figure 1.36 provide the

connectivity with a Gigabit speed. An additional rack hosts the infrastructures as

power supplies, servers, control users and the network equipment.

Figure 1.37 shows the BrainScaleS wafer module, that is a silicon wafer with 384

HICANN chips. It comprises 48 reticles, each containing 8 HICANNs; each of them

implements 512 neurons.

The network implemented is a feed-forward directed graph, with an input layer of

100 units used to represent the input pattern. Between the input and label layer

there are two hidden layers composed by 15 units, and the weights are learned dur-

ing several phases of training.

Figure 1.38 shows the results produced by the NN implemented after the training:

on the left there are the pattern in input applied at different time, in the middle it

39

1 – State of the art

Figure 1.37: (a) BrainScaleS wafer module. A: wafer. B:48 FPGAs. C: positioning
mask to align connectors from the wafer to the PCB. D: large main PCB. E,F:
power supply. G: access to analog dynamic variables. H: edges on which there are
connectors for inter-wafer and off-wafer/hosts communications. I: aluminium frame.
(b) Fully assembled module. [21]

Figure 1.38: BrainScaleS results.[21]

is represented in black the neuron activities for the different layers and on the right

there are the results of the classification layer.

40

1.2 – Technology choices

Neurogrid

In order to realize a neuromorphic hardware architecture that is the closest possible

to the real brain one, paper [22] proposes a completely analogical circuit, emulating

all the neural elements except the soma with shared circuits. The usage of analogical

circuits provides an optimization of the energy efficiency; another important param-

eter is made up by the performance of the circuit, so the interconnections between

the neural arrays are organized in a tree network, maximizing the throughput. The

Figure 1.39: (a) Analog implementation of a neuron: spikes go through the axon
reaching the synapse, that modulates the charges flowing through the dendrite,
whose capacitance integrates them. The comparator (soma) compare the signal
obtained with a threshold; if it is exceeded, a spike is produced and the capacitance is
discharged (with the reset) to restart the cycle. (b) Classical digital implementation
of a neuron, composed by a RAM, a counter and a comparator. [22]

Neurogrid project searches to reduce the number of transistors, sharing synapse and

dendritic tree circuits; each Neurogrid board is divided into 16 Neurocores, each one

capable to simulate up to 256x256 neurons.

The neural network elements can be implemented in a digital or analog way, as

represented in figure 1.39. The approach adopted is the analog one for the rea-

sons examined, but all the elementary blocks (axon, synapses, dendrites, somas)

are implemented in a dedicated circuit, in order to emulate in the best way their

real behaviours. To make easier the usage of this board, the project contains also

a Graphic User Interface (GUI) to enable a user to change the model parameters,

view spikes activity into the layers of the network implemented, plot spikes raster

41

1 – State of the art

from a selected layer and enter commands.

The performance, power and size results are reported in figure 1.40, on which there

Figure 1.40: Comparison between Neurogrid and other equivalent hardware solu-
tions. [22]

is a table to compare the Neurogrid architecture with other equivalent projects, as

the BrainScaleS [21] and the GoldenGate, an IBM project with the same purpose of

the Neurogrid one. As shown, the circuit proposed has a more compact layout and

consumes less power than the others, but with higher latency; however, analysing a

general parameter, as the product of A,E and T, the best solution is the Neurogrid.

Neuromorphic Accelerator for Autonomous Robots

The paper [23] focuses on one of the possible application of a NN: the robotics. In

particular, the purpose of the project is to provide a hardware architecture capable

to recognize and classify inputs coming from sensors; in this way, a micro-robot can

move autonomously in the space, without needing a remote driver. These kind of

robots could be applied each time is needed to reach a place on which human people

can’t go, for example in natural disasters as earthquake, or simply for reconnaissance.

A prototype of the robot is shown in figure 1.41, on which are indicated sensors,

motors and the board.

In figure 1.42 is represented the general architecture of the circuit realized: the

ultrasonic sensors provide pulses directly to neurons through an array of synapses,

that realize a time-to-digital conversion to provide valid data. These hidden layer

neurons make a weighted sum of the inputs and produce a pulsed output sent to the

output neurons, that, after a Winner Take All (WTA) operation, produce an action

to move the robot straight, to the left or to the right. The feedback circuit predicts

42

1.2 – Technology choices

Figure 1.41: Micro-robot for which the NN is developed. [23]

the reward (i.e. avoid obstacles and cover maximum distance for area mapping),

compute the loss function and updates the model (synaptic weights) for further

explorations. In order to save power, the MAC operation is implemented in a time-

Figure 1.42: General architecture of the chip. [23]

way with a 21 bit counter, which multiplies the 6 bit input (x) from a pre-synaptic

neuron to the 6 bit weight (w) of the synapse. The input is a pulse of width T=x·T0,

generated by a digital to pulse converter; a Digitally Controlled Oscillator generates

a frequency F=w·F0 and clock up/down the counter, evaluating T·F=x·w. The

usage of the counter makes easily the implementation of negative weights, because

it is sufficient to downcount to implement it.

43

1 – State of the art

1.3 Comparison between technologies

In order to compare the solution analysed, it is needed a parameter that is indepen-

dent to the NN implemented; in fact the papers consider their specific NN, that in

most cases is different from the others, causing a problem comparing them.

The starting point is to detect the interesting values reported: area, power and

timing. These quantities are correlated, due to the fact that a circuit with a higher

number of neurons probably uses higher power, higher timing and more area than

another one, so it is necessary to create a different parameter that contains all the

three cited, but that is independent on the number of neurons.

To do this, it is considered a variation of the power, the power per neuron, dividing

the total power for the number of neurons. In this way, the value obtained considers

not only the power used for a single neuron, but also the overhead that the insertion

of a neuron causes to be managed. The results obtained are reported in figure1.43,

on which are represented the parameters described for a subset of the paper anal-

ysed, due to the fact that not all of them show the quantities described.

The graph shows the three parameters for each solution, but to compare well

the architectures proposed it is better to have only one parameter that combines

them together, so it is possible to define the product energy-delay and the energy-

area-delay one: the lower they are, the better is the solution associated on them.

The figure 1.44 shows these results. It is important to note the behaviour of the

technologies: by the graph emerges that in CMOS there are different behaviours,

depending on the application (TrueNorth is the worst, but has a very high overhead

to manage the large quantity of neurons), in Memristor technology the results are

better due to the reduced area, MTJs seems to be the best due to their reduced area

cost, and PIM solutions present the benefit of an optimized CMOS solution with

lower area than it. The conclusion could be that MTJs technology is the best, but

in the papers analysed there isn’t a presentation of a complete NN built in MTJs,

so the fabrication process could cause a decreasing of these theoretical performance.

44

1.3 – Comparison between technologies

Figure 1.43: Power per neuron, frequency and area comparison between the main
paper presented

Figure 1.44: EAT and ET product for the solutions analysed

45

Chapter 2

Software Implementation

2.1 Metodology

In figure 2.1 is shown the design flow followed to produce the hardware, starting

from a very-high-level software model. In particular, the starting point chosen is

the Matlab environment, that implements by default a lot of pre-trained NNs. These

models are provided with an abstract block view of the network, capable to show

the top-view layer organization: which layers are present, how they are connected

together and the parameters of each one. Before starting the hardware realization,

it is useful to realize another representation of the NN model in a lower software

level, in order to test all the intra-layer mechanisms. The programming language

chosen for this step is the C++, that is a high level language with the possibility

to realize a structure made up by objects and classes, similar to a hardware repre-

sentation. In this way it is possible to realize an architecture that simulates what

the circuit must do, implementing more features than the previous model, as, for

example, the number of bit on which data are represented, and test them before

the implementation, making it easier. In fact, if a changing is required after the

hardware implementation, the software model can be modified to simulate the pos-

sibilities and to select the best one for the specific situation. The software reference

model is very important because software simulations are generally less expensive

in terms of computational cost and time, so this solution can provide a faster tool

to develop the hardware. Finally, when the hardware is tested, the block synthesis

is needed in order to characterize the circuit developed.

46

2.2 – Very Big NN: AlexNet

Figure 2.1: Design flow

2.2 Very Big NN: AlexNet

The pre-trained NN Matlab set contains different networks; one of the most inter-

esting ones is the AlexNet, because it is a very useful NN to recognize images, due to

its high input noise tolerance and the quantity of output classes (1000), as described

47

2 – Software Implementation

in more details in Appendix A. However, its main disadvantage is the very big size,

including more than 34 millions of neurons; this causes a very hard hardware im-

plementation and, also using a pure software solution, the computational cost and

time required to get a classification can be very high.

2.3 Software implementation

The software realized implements an AlexNet with other features added in order

to simulate what happens in hardware before realize it. In particular, the main

important option consists in a parameter to set for each layer the number of bit used

to represents input/output data and weights. In this way, the program produced

is able to make the same image classification with different hardware parallelism,

helping the choice for the hardware implementation.

General organization

The software executes the layers in order, reading an input .txt file, produced by

the previous layer, and generating an output .txt file, that becomes the input for

the next layer. In this way all the internal feature maps are available, but causing

the software to be slower. Each layer is an object instantiated from its class, so it

is needed to set its internal variables during the instantiation or using the setter

functions before starting the layer evaluation. In a second step it is possible to start

the computation function and check, according to its returning value, if the process

is completed successfully or not. An example on how a layer is instantiated and

managed by the main program is reported in list 2.1.

Listing 2.1: Example of the first convolutional layer management

/* ------------Layer1 -----------*/

2 int f_size [2]={11 ,11} , i_size [4]={227 ,227 ,3 ,1} , stride [2]={4 ,4} , padding [4]={0 ,0 ,0 ,0};

int w_bits = 6,bits [2]={8 ,0};

4

convlayer layer1_conv1(f_size ,96,"conv1_weights.txt","conv1_bias.txt",i_size ,

6 stride ,padding ,w_bits ,bits);

8 std:: ofstream out_file ,log_file;

out_file.open("o_c1_file.txt");

10 log_file.open("log_file.txt");

48

2.3 – Software implementation

12 if(layer1_conv1.elaborate (&out_file ,"input_image_averaged.txt" ,&log_file))

cout <<"c1: success!"<<endl;

14 else

cout <<"c1: failure!"<<endl;

The classes structure of the program provides a good instrument to have a set of

possible layers to implement that can be expanded in future, realizing a starting

point for the high-level hardware simulation of all NNs, because if the layer classes

are already present in the set of the ones implemented, it is needed only to instantiate

them, however it is required to expand the set writing the new kind of layer. In both

the cases, the program can work and realize the same behaviour of an hardware with

the parallelism set without implement or simulate the hardware, that normally is a

more expensive operation.

Classes description

All the classes are made up by the couple of header (.h) and source (.c) files, as

the standard C++ implementation establishes. In the header files there are the

declarations of functions and variables used in the source file: the first ones are

divided in constructor, destructor, getters, to get the value of internal variables,

setters, to set them, and the evaluation functions. In the source file it is present the

body of these functions. There is one class for each kind of layer implemented and

the class for the neuron, that is the base block on which several layers are built. On

the following are described the classes realized; to see in more details the specific

role of each layer in the NNs see the Appendix A.

Neuron

The Neuron class is a simple class that realizes a single neuron of a generic NN, so

it is characterized by the internal variables that contain weights and the bias, both

settable during the object instantiation and with setter functions. Their values

can be read from an external class using the proper getter functions. There is

an additional function that, passing the inputs as arguments, evaluates the output

result of the neuron, making a convolution operation between inputs and weights,

49

2 – Software Implementation

due to the formula:

output =
nX
i=1

(inputi · weighti) +Bias

The code that implements the operation described is reported in list 2.2.

Listing 2.2: Neuron elaboration function code

float output = 0;

2 for(unsigned int i=0; i<_weights ->size(); i++)

{

4 float tmp;

tmp= ((* input)[i])*((* _weights)[i]);

6 output += tmp;

}

8 output += _bias;

return output;

Convolutional layer

This is the most common layer in big NN as CNNs: the single layer applies a certain

number of filters of a specified size to the input pattern, moving the filter to it with

a parameter called stride, covering in a finite number of steps all the surface of the

input matrix.

In the constructor the parameters to be initialized are:

• the filter size, that is a parameter made up by two integer values;

• the stride on the x and y directions;

• the padding, that is a frame of zeros added to the input pattern to realize an

output of a specific dimension;

• the number of bits on which output results, weights and biases have to be

represented;

• the number of filters contained by the layer;

• the size of the input pattern;

• the name of the files containing weights and biases.

50

2.3 – Software implementation

All the quantities described above can be modified using the relative setter function.

There is another function, called elaborate, that evaluates the outputs of the con-

volutional layer instantiated; using this function it is required to specify output file,

input file and log file; the steps implemented are:

• to open the files and returns an error if the operation fails;

• to acquire weights, biases and inputs, adding the zero-padding frame is needed;

• to evaluate and write results on the output file: in this step there are loops

to scan all the input pattern, on which there is the code to take the weights

and biases needed in the current step, approximate them due to the number

of bit previously set, use them to instantiate a neuron, to apply the inputs to

the neuron, to represent with the correct number of bits the value generated

and to saturate this number if it exceeds the range limited by the parallelism,

applying also the ReLu function. A portion of this part of code is shown in

list 2.3.

Listing 2.3: Part of code of the elaborate function in the convolutional layer class

std:: vector <float > w,in;

2 // create the weight and input vectors for the current neuron

for(a=m*_input_size [2]/ _input_size [3];a<(m+1)*_input_size [2]/ _input_size [3];a++)

4 {

for(int b=0;b<_filter_size[Y];b++)

6 {

for(int c=0;c<_filter_size[X];c++)

8 {

float w_tmp =

weights[k][a-m*_input_size [2]/ _input_size [3]][b][c];

10 w_tmp *= pow(2, _weights_bits);

w_tmp = round(w_tmp);

12 w_tmp /= pow(2, _weights_bits);

w.push_back(w_tmp);

14 float in_tmp = inputs[a][b+j*_stride[Y]][c+i*_stride[X]];

in.push_back(in_tmp);

16 }

}

18 }

20 float tmp ,tmp_bias;

tmp_bias = biases[k];

22 tmp_bias *= pow(2, _weights_bits);

51

2 – Software Implementation

tmp_bias = round(tmp_bias);

24 tmp_bias /= pow(2, _weights_bits);

26 neuron tmp_neuron (&w,tmp_bias);

tmp= tmp_neuron.neuron_out (&in);

28

// limitation to the number of digits after the dot

30 tmp *= pow(2, _output_bits [1]);

tmp = round(tmp);

32 tmp /= pow(2, _output_bits [1]);

34 // limitation to the number of digits before the dot

if(tmp >pow(2, _output_bits [0]) -1)

36 tmp = pow(2, _output_bits [0]) -1;

else if(tmp <0) // implementation of the ReLu function

38 tmp = 0;

40 if(tmp >mass)

mass=tmp;

42

neuron_out_line.push_back(tmp);

44 *out_file << tmp << "\t";

Cross-channel normalization layer

This layer class implements the cross-channel normalization, a normalization be-

tween values placed in the same position during the output generation of the previ-

ous layer, but generated from different filters.

The internal variables of this class, readable and settable with getters and setters,

are α, β, the window-channel-size (WCS), K and the input pattern size. There is an

elaborate function that reads the input file specified in the arguments and, applying

the normalization to its values, produces the output file with the name specified in

the argument.

Max Pooling layer

This class realizes the pooling operation, that consists in taking a group of input

values and replace them with only one value, that is the highest of them. This

operation is needed to make a resize of the previous layer pattern, putting more in

evidence the main characteristics individuated, that are the largest numbers. The

parameters readable and settable with getter and setter functions are the X and Y

52

2.3 – Software implementation

size of the pooling filter, the input pattern size and the stride used by the filter to

move. An elaborate function scans, according to these parameters, the input values,

producing the result in an output file. A portion of code reporting how the pooling

operation works is reported in list 2.4.

Listing 2.4: Pooling operation

std::vector <float > in;

2 for(int b=0;b<_pool_size [1];b++)

{

4 for(int c=0;c<_pool_size [0];c++)

{

6 in.push_back(inputs[k][b+j*_stride [0]][c+i*_stride [0]]);

}

8 }

float pool_value = in[0];

10 for(unsigned int m=1;m<in.size();m++)

{

12 if(in[m]>pool_value)

pool_value = in[m];

14 }

pool_value = round(pool_value);

16 pool_out_line.push_back(pool_value);

o_file <<pool_value <<"\t";

Fully connected layer

This class implements a generic FC layer. The parameters settable are the input

size and the softmax function enable, a flag that enable or disable a feature that

implements the softmax function, a function that, using all the output values of the

last FC layer, produces the probability that the classification executed is right. It

operates with the formula:

y =
ex

nP
i=1

exi

If this option is not set, a ReLu function is automatically applied after the FC layer.

There is an evaluation function that, taking the input, weights, biases and output

files as argument, produces the outputs after reading them instantiating the neurons

required and representing the values obtained with the number of bits specified in

the last two input arguments of the function (the first one is the number of bits for

the integer part, the second one is for the decimal part).

53

2 – Software Implementation

Time requirement to classify an image

The approach chosen consists to open continuously files previously generated, to read

them, to generate other output files and to close all, in order to leave the control of

this process to another class. This flow requires less memory than other ones, but

it is slower, due to the fact that intermediate results are continuously loaded and

removed from the memory. This causes a time to classify an image that is around

few minutes, depending on the pattern analysed. This time is higher than the one

required for a Matlab script that uses around a half minute to take the classification,

but implements more useful features, as the possibility to set the bit number for the

internal values representation and the generation of the internal layer feature maps

in files, useful when it is needed to test the hardware.

Parallelism of the data into the hardware

As already described, one of the purposes of the software realized is to implement the

same features of an equivalent hardware before realize it to fix some requirements

using shorter simulations. The most important point is the hardware representation

of data, because the software can use floating point data and operations, but the

hardware has got resources limits and constraints, so it is important to establish if

it is possible to operate in fixed point and, in positive case, what is the number of

bit required to correctly represent input, internal and output data. Before apply

these steps to the software it is needed a short analyses of the situation:

• the software uses .txt input files, so it needs to convert an image in its pixel

representation (it is described by three number for each pixel, indicating the

quantity of Red, Green and Blue presents) and to write it into a .txt file before

starting a classification;

• it is important to have some reference cases to make the comparison between

the bits limited version and the non-limited one; the images chosen don’t come

from a database but are a mixture of images with high noise, so containing

high difficult degree to classify them, and simpler figures. Examples of images

used are reported in figure 2.2;

54

2.3 – Software implementation

• it is important to reduce the number of bit in sequential steps to see what is

the behaviour of internal data and if the output classification is affected or not

from the changes.

(a) (b) (c)

(d) (e) (f)

Figure 2.2: (a) Cliff image covered by a waterfall (b) A commercial soap dispenser
(c) Pizza (d) Goldfish (e) Three images of the same cat reproduced in different
colours tone in the same image (f) Picture of a sports car with high noise

In table 2.1 are reported the results for some of the images previously shown

with high difficult classification degree changing the number of representation bits.

The numbers at the beginning of the columns are respectively the number of bits of:

input integer part, input mantissa part, weight mantissa part. The integer part of

weights is fixed to 2 bits because the weights can assume values in the range (-2;2).

Only for fully-connected layers the 8 input bits are divided in 6 bits for the integer

part and 2 for the mantissa one, due to the fact that the previous layers reduce the

maximum representable value and the FC layers are the last ones, so they have to be

more precise. Moreover, the input bits for the first layer have to be be represented in

a signed way, but all the values produced by the internal layers are positive, because

a normalization ReLu function is applied after them. This phenomenon is caused by

the fact that the inputs are pre-elaborated with a simple subtraction, starting from

55

2 – Software Implementation

Layer 20-20-14 8-0-14 8-0-8 8-0-7 8-0-6 8-0-5
Cliff

Conv 1 1470.09 255 255 255 255 255
Conv 2 351.466 255 255 255 255 255
Conv 3 248.321 247 249 247 242 222
Conv 4 126.463 127 130 128 137 122
Conv 5 112.187 114 112 106 112 113
FC 1 30 30 29 30 28 28
FC 2 12 12 12 12 10 11
FC 3 16 16 17 16 15 14
Class Cliff Cliff Cliff Cliff Cliff Cliff

Cat
Conv 1 1591.3 255 255 255 255 255
Conv 2 452.973 255 255 255 255 255
Conv 3 268.13 255 255 255 255 255
Conv 4 161.037 161 163 164 159 179
Conv 5 197.089 199 199 192 202 161
FC 1 45 45 45 40 46 50
FC 2 8 8 8 9 9 10
FC 3 10 10 10 10 10 13
Class Siamese Cat Siamese Cat Siamese Cat Siamese Cat Siamese Cat Tub

Sports car
Conv 1 1437.56 255 255 255 255 255
Conv 2 413.818 255 255 255 255 255
Conv 3 337.291 255 255 255 255 255
Conv 4 361.34 255 255 255 255 255
Conv 5 178.224 166 170 167 172 172
FC 1 32 33 33 33 32 37
FC 2 9 9 9 9 9 7
FC 3 16 16 16 16 15 12
Class Sports car Sports car Sports car Sports car Sports car Sports car

Table 2.1: Examples of classification results and internal maximum value for each
layer changing the bit representation.

positive unsigned values and ending with signed numbers. To avoid this problem it

is possible to represent on 8 bits all the layer inputs, also the first one, but using

a signal that is capable to determine if the values are signed, unsigned or with a 2

bits mantissa. In this way the hardware produced is a generic component that can

56

2.3 – Software implementation

be reused for each of the scenario described.

From the table 2.1, it is possible to conclude that the data can be represented with

8 bits of integer part and the mantissa can be neglected, approximating correctly

the internal results. For what concerns the weights, their mantissa part can be

represented with 6 bits, because the data reported show that with 5 bits some images

produce wrong results, depending on the complexity. The data for 4 mantissa bits

aren’t reported because for the most part of images the results are wrong. The

representation chosen consists in 8 bit of integer part for input and output data

and, for weights, 2 bits of integer part plus 6 bits of mantissa.

Example of software output

In figure 2.3 is reported an example of classification made by the software; on each

line is written an information about the layer evaluated in that moment, specified

by the letters at the beginning of the row:

• cx: stays for convolutional layer of number x;

• crossx: stays for cross channel normalization layer of number x;

• px : stays for pooling layer of number x;

• fcx: stays for fully-connected layer of number x.

57

2 – Software Implementation

Figure 2.3: Example software window

58

Chapter 3

Hardware Implementation

Figure 3.1: AlexNet 3D representation

Image recognition CNNs, as the AlexNet shown in figure A.1, are very interesting

and useful, but are very big, causing high computational cost. If it is needed to

realize an hardware to implement them, the starting point can be to create a chip

with inside the entire network; this solution generates the best choice in terms of

speed, because all the network is simultaneously working. Moreover, due to the fact

that a layer produces valid outputs only after the previous layer makes the same,

the flow of data is sequential, so it is possible to put pipeline registers between

layers to make the critical path littler and increase the throughput. This scenario

however isn’t realizable, because this network is too much big to be implemented

in a chip. In table 3.1 they are reported the quantities of data managed on each

59

3 – Hardware Implementation

Layer type # filters input size # inputs1neuron # neurons TOTmult
Convolutional 1 96 227x227x3 363 290400 105.42x106

Convolutional 2 256 55x55x96 1200 186624 223.95x106

Convolutional 3 384 27x27x256 2304 64896 149.52x106

Convolutional 4 384 13x13x384 1728 64896 112.14x106

Convolutional 5 256 13x13x384 1728 43264 74.76x106

Fully Connected 1 - 13x13x256 9216 4096 37.75x106

Fully Connected 2 - 4096x1x1 4096 4096 16.78x106

Fully Connected 3 - 4096x1x1 4096 1000 4.10x106

TOT - - 62875 663368 724.42x106

Table 3.1: Hardware requirements for the AlexNet CNN

layer of the network; seen these data it is possible to note that the total number

of neurons is more than half million and, considering that a single neuron requires

one multiplier for each input, the total number of multipliers to be instantiated is

over half a billion. Moreover, considering the high number of inputs and outputs for

each layer, it is possible to understand that this architecture has too much internal

and external interconnections; putting together these observations, neglecting other

possible problems, it is possible to conclude that it is very hard to realize a single

chip implementing all the network. In this way, the possibilities to realize this

network become to use more chips, very hard solution due to the high number of

inputs and outputs, or to serialize part of the evaluation, to use less area, power and

interconnections. This last approach is the one chosen in the WINNER architecture,

where there is a trade-off between a complete serial and a complete parallel circuit.

In fact, if it is impossible to implement all the architecture due to power and area

constraints, a solution could be to realize only a subset of neurons and reuse them

to evaluate, in sequential steps, all the values required. This is a good choice, but

the quantity of neurons to implement has to be determined according to certain

considerations:

• to optimize area, this number must be the slowest possible: the littlest number

is one, but in this way the time to realize one image classification becomes very

high;

• the neurons implemented in a single layer are divided into a certain number

60

3.1 – Block scheme

of types, that are the filter types: all the neurons of the same type have the

same weights and bias, so, realizing one neuron for each kind of them, it is

possible to reuse them without change these parameters;

• the neurons of the FC layers are realized in the same way of the convolutional

ones, but typically they present a number of inputs many times higher, making

difficult to analyse all the input pattern simultaneously.

Taking into account the facts analysed, the choice implemented into the WINNER

architecture consists in 384 neurons, that is the highest number of filters in the same

convolutional layer, to warranty the parallel evaluation of all the filters for a fixed

input pattern. Each neuron is connected to the same inputs, that are 64, a number

that is an integer power of 2, useful to optimize internally the neuron and higher

enough to implement the serialization process also on the input evaluation without

making the system too much slower. The steps number to evaluate one neuron

output and all the neuron outputs for each layer are shown in table 3.2: in 52902

steps is possible to classify an image.

Layer type # stepsneuron # stepslayer TOTsteps
Convolutional 1 6 3025 18150
Convolutional 2 19 729 13851
Convolutional 3 36 169 6084
Convolutional 4 27 169 4563
Convolutional 5 27 169 4563

Fully Connected 1 144 11 1584
Fully Connected 2 64 11 704
Fully Connected 3 64 3 192

TOT - - 52902

Table 3.2: Step number for the evaluation of a single neuron and a single layer

3.1 Block scheme

The standard block scheme of a generic NN layer is made up by a certain number

of neurons that, combining the inputs together, produce the outputs, as shown in

figure 3.2. This topological view doesn’t specify how the neurons are implemented,

61

3 – Hardware Implementation

Figure 3.2: Topological view of a standard layer

so there are several possibilities. Considering that a neuron is a unit that implements

a multiplication for each couple of input-weight and that the weights are fixed after

the training for a specific NN, it is possible to conclude that an efficient structure

can be the one reported in figure 3.3, representing two blocks:

• Weight-Block: it consists of a memory that contains all the weights of the

NN, implementing internally the neurons that, making multiplications between

external inputs and internal weights, produce the outputs required;

• In/Out-Block: it is composed of a memory that contains the input image and

store the output of the Weight RAM to use them as input for the next layer,

making also the padding and pooling operations if required.

With this architecture, a user has to initially load all the Weight-Block with the

weights, then to load the In/Out-Block with the image to classify and to start

the computation, waiting its end before loading another image. The In/Out-Block

provides the inputs for the neural hardware implemented into the Weight-Block and

store its outputs to manage the feature maps of the hidden layers.

62

3.2 – Weight-Block

Figure 3.3: WINNER Block Scheme

3.2 Weight-Block

Block Scheme

This block is readable and writeable as a standard RAM and contains the weights;

moreover it has got another input port to acquire the neuron inputs and another

output port to produce their outputs, as shown in figure 3.4. The size of these ports

are 64 Bytes for the input one, because each input is represented on 8 bits, and 384

Bytes for the output one, because there are 384 neurons implemented. The choice

to use a memory to store the weights comes from the observation that normally the

delay problems are caused by the fact that data and the computational blocks are

far, so the consequence is that the critical path becomes very long. Using a memory,

it is possible to allocate these blocks near the data stored, reducing the delay and

improving the performance, implementing in this way a Logic In Memory or Logic

Near Memory architecture.

63

3 – Hardware Implementation

Figure 3.4: Weight RAM of the WINNNER architecture

Neuron

The most important part of the WINNER architecture is into the Weight-Block,

because the neural computation is executed into this part of the system. For this

reason, the block with the biggest relevance is the neuron, that can be implemented

starting with the standard concept of neuron and then moving to a more innovative

solution.

Standard Neuron

The standard implementation of a neuron comes from the convolution formula that

it uses to provide the result:

y =
nX
i=1

(wi · inputi) +Bias

64

3.2 – Weight-Block

On this formula all the inputs are multiplied by the respective weights and, finally,

a term called Bias is added to the sum of these products. The easiest way to realize

this behaviour is to implement a multiplier for each couple of input and weight and

then to add all the results into an adder that sums also the Bias term with them,

as shown in figure 3.5. However this structure has some problems:

Figure 3.5: Block scheme of a standard neuron implementation

• standard multipliers can be slower respects on other kind of solutions;

• the adder has to add simultaneously all the inputs, that in the WINNER

architecture are 64, causing one of the main sources of delay;

• this neuron can process no more than 64 inputs, but very big NNs as AlexNet

have higher number of them, so this structure can’t implement big networks;

• the weights used are fixed, so, if it is needed to implement a higher quantity

of neuron types, it is required to stop the evaluation in a certain point, to

reload all the Weight-Block with the new weights and restart the computation,

causing a very high inefficiency of the system and a very low performance.

65

3 – Hardware Implementation

All these problems are solved using a non-standard implementation, introducing

some blocks and optimizations that make the starting architecture more flexible

and with better performance.

Optimized Neuron

The neuron implementation proposed in the WINNER architecture is made up by

several blocks:

• WordLine: the neuron is part of the Weight-Block, so it contains several

WordLines, each one constituted of all the weights needed to implement the

NN selected, in the specific case the AlexNet. This means that a RAM row has

got a certain number of weights to implement the input data serialization of a

neuron and a certain number of these weights set to implement the neurons of

each layer; considering the results previously shown in table 3.2 and the size

of a weight, that is 1Byte (2 bit for the integer part and 6 bit for the decimal

part), the row size is:

WLsize = 6 + 19 + 36 + 27 + 27 + 144 · 11 + 64 · 11 + 64 · 3 = 2595Bytes

In figure 3.6 the WordLine are the blocks with the orange colour.

• Selector: in order to select the part of the wordline containing only the weight

needed in a certain step, it is necessary a selector externally driven; it can be

implemented with these two alternatives:

– Multiplexer: this choice is more standard one but, considering that the

wordline has a very large size (more than 2kB), it can be expensive in

terms of area and power requirements;

– Wired-Or: this solution uses a decoder to choose which bits to enable; all

the bits with the same weight are connected to the same bitline, modelled

as an OR operation between all of them, so the result is that only the bits

enabled by the decoder take effect on it, obtaining the correct output.

There is another selector, implemented as a multiplexer, to choose the input of

the final adder between the sum of all the multiplications (weight times input)

66

3.2 – Weight-Block

or the Bias term. The first case is chosen if the result obtained is partial and

it is needed to sum it with the result obtained adding other inputs; on the

contrary, if there aren’t other steps to generate the correct result, it is needed

to sum the Bias, and this is the second scenario. In figure 3.6 the selectors are

the yellow blocks: the horizontal ones are the wordline selectors, the vertical

one is the selector between the sum result and the previous one.

• PPU: these blocks are the light blue ones in figure 3.6 and they are responsible

of the generation of the partial products; in fact, a standard multiplier can

be too much slower, so the idea is to implement a Modified Booth Encoder

Multiplier with radix 2, generating the partial products near the wordline and

using them in the adder chain that follows these blocks. To see in more details

how the MBE works refer to Appendix B.

• Adder: they are needed to make correctly the convolution operation; there

is an adder at the end of each PPU to evaluate the multiplication results and

these values become the inputs for an adder reversed tree with each adder

that sums two intermediate results. The final obtained number is one of the

possible input of the last adder, that sums the previous sum value with it or

with the Bias term, depending on the evaluation step.

• Register: it contains the previously evaluated result; if the output evaluation

of a neuron isn’t finished due to the high number of inputs, it is possible to

separate in sequential steps the computation, using this register to temporarily

store the partial sum produced.

The parallelism problem

As described in the software approach, it is important to choose a unique parallelism

for the architecture; in this way it is possible to easily reuse it for the evaluation of

all the layers included into the NN implemented. This choice causes the presence of

an additional signal that sets in this three ways the parallelism:

• for the first layer, it sets the inputs as 8 bits signed.

67

3 – Hardware Implementation

Figure 3.6: Block Scheme of the WINNER neuron implementation

• for the other layers, it sets the inputs as 8 bits unsigned, so the internal

multipliers use an additional bit to evaluate the result if the MSB is ’1’; in

fact, using MBEs the result is signed, so the two inputs are always considered

signed numbers, but, in this case, one of them is unsigned, so adding a ’0’

MSB the problem is solved. This solution is equivalent to add to the MBE

result the other input (that is the weight) multiplied to the MSB.

• for the first FC layer, the inputs are 8 bits signed and the output 6 bits integer

part plus 2 bits mantissa part, causing a shift of two bits in the result respect

on the convolutional evaluations.

• for the other FC layers, both inputs and outputs have got 6 bits integer part

and 2 bits for the mantissa, causing a shift of 4 bits in the result generation

respect on the convolutional case.

Cross Channel Normalization Layer

This layer is used to normalize the values obtained analysing the inputs in a fixed

step using the values provided by the adjacent channels contained into the Win-

dow Channel Size (WCS) to make the process. For this reason, the estimation of

68

3.2 – Weight-Block

this layer is put into the WINNER architecture after the neuron outputs into the

Weight-Block, because, in this way, each time the filter outputs are available the

normalization instantaneously is applied. To see more specification on this layer

into the AlexNet refer to Appendix A. However, this kind of normalization is not

Figure 3.7: Example of a Cross-Channel Normalization Layer evaluation on a specific
point of an output pattern

simple to be evaluated in hardware, due to the formula to be applied:

y =
x

(K + α ·
nP
i=1

x2i)
β

In this evaluation, the critical point is the denominator, that has a power with

coefficient 0.75, very hard to be evaluated in a small hardware circuit without floating

point units. The solution is an approximation of the result, writing the Taylor series

of the term (1 + x)β, shown in Appendix C. In this way the computation becomes:

y = 1 + β · x+
β · (β − 1)

2
· x2

The result so obtained is an approximation of the real value, valid only near the point

x=0, but, analysing the behaviour of the values involved, the term x can assume

69

3 – Hardware Implementation

the values between 0 and 6.25 (number obtained if all the values involved are the

maximum possible on 8 bits, that is 255). This phenomenon causes a possible source

of error in the NN implemented; in figure 3.8 are shown the approximations with

the Taylor’s polynomial changing its degree. The approximations are good only in

Figure 3.8: Taylor approximations of the cross channel formula denominator in the
AlexNet values range

the range (0;1.5), then all the polynomials assume different behaviours. However,

the cross channel normalization is applied only after the two convolutional layers

to reduce the range of the values obtained, that tends to diverge and to saturate.

Considering this, it is possible to say that, choosing a polynomial approximation

that reduces the possible maximum value, if statistically the values that exceeds the

range previously indicated are a little percentage of the total, the approximation

can introduce a tolerable noise on the network that doesn’t affect the result.

Using the software realized to simulate the hardware, this property was verified,

obtaining that the values above the 1.5 threshold are around the 5% ,depending on

the input image. With the same software, the classifications were tested to be sure

that the approximation have no influence on them, and the results were the same

of the ones obtained with the original formula.

70

3.3 – In/Out-Block

3.3 In/Out-Block

This is the block containing all the input and output data from the layers; it stores

the feature maps and it provides all the signals to manage the Weight-Block, ac-

cording to the kind of layer and the parameters associated to it. Moreover, it can

implement the Max-Pooling operation needed by certain kinds of layer and, if a

zero-padding on the current pattern is required, can add it.

Block Scheme

The In/Out-Block is made up by a simple RAM with wordline of size 1 Byte because

input, output and hidden layer values are represented on 8 bits, so it is readable and

writeable as a normal RAM; the output of this memory is managed to implement

or not a Max-Pooling and a zero padding. It has got two identical banks, because

in each step it is required to have a place on which the inputs are taken and another

place to store the outputs generated; for this reason, the two banks are alternatively

used in read or write mode, due to the current step executed. The input parallelism

is 384 Bytes because it is required to store, in the worst case, the outputs of all

the 384 neurons implemented into the Weight-Block; the output parallelism is 64

Bytes due to the fact that the maximum inputs number for the Weight-Block is 64.

Moreover, there is a unit, called Address-Bank selector, responsible to apply the

mathematical rules needed in the current step to select correctly the read and write

blocks and the addresses on which to write and to read; figure 3.9 shows the block

scheme described.

71

3 – Hardware Implementation

Figure 3.9: In/Out-Block block scheme

72

Chapter 4

Simulation

The simulation is one of the most important steps to realize an architecture, be-

cause it provides a way to see what happens into the circuit. Moreover, it is a debug

instrument that permits to discover unwanted behaviours and to fix the bugs, pro-

viding a description code that implements correctly the theoretical one.

The software used to reach this purpose is QuestaSim, a Mentor tool that has many

features, as the wave analyser, that shows the internal signals selected behaviour

versus time as waveforms.

A possible problem during the verification of the architecture implemented is caused

by the fact that there are a very high quantities of values. This very big collection of

signals produces at each time-step partial results, so the verification process is very

hard because in a fixed step not all the quantities have correspondence to the soft-

ware solution. Considering this, it is possible to modify the software code illustrated

in chapter 2 to show or store the partial products and sums during the evaluation of

a hidden layer, for example, and, in this way, providing an instrument to compare

and verify the internal results at each simulation step, making the bug-searching

phase easier and faster.

4.1 Weight-Block

To test the Weight-Block is needed to consider the main blocks that compose it:

• the words;

• MBE multipliers;

• The adder reversed tree to sum them;

73

4 – Simulation

• the mechanism to select the actual correct Weight and the one to sum the

previous partial value or the Bias term.

To verify the correct behaviour of these components, it is needed a test-bench capable

to emulate the typical situation for this block, providing all the input signals that

it requires during its normal working phase. In particular, the steps that this test-

bench has to implement are the loading of the weights into the memory and the

application of the correct input set, due to the specific time-step of the simulation;

its complete behaviour is shown in figure 4.1.

Figure 4.1: Test-bench flow-chart

74

4.1 – Weight-Block

Word loading

This is the first phase of the test-bench and it covers a very important role, because

it initializes the Weight-Block loading all the weights required. The operations

implemented are very simple: the input data is set, the address where storing the

weight is updated and the Write Enable signal has to be active; in this way the first

positive edge of the clock executes the write operation into the memory. Figure 4.2

shows an example with 64 weights loaded and the Write Enable signal put to the

low value to stop the operation; this example uses a reduced number of bits for each

word to make simpler the image. Note that the initial value of the words is a null

number due to an initial reset of the memory.

Figure 4.2: Weight loading example

MBE Multipliers

To test the MBE multipliers it is needed to see if the partial products produced by

the four BEU units are right or wrong, so, for a fixed time simulation step, these

numbers have to be consistent to the inputs, that are the correspondent weight and

input data, as shown in figure 4.3, that shows the first one on the blue waveform,

the second one on the yellow wave and the results with the white color. To verify if

the simulation of the partial product produced is the expected one, it is possible to

evaluate the theoretically result and compare them; as shown in figure 4.4, the two

approaches provide the same results.

75

4 – Simulation

Figure 4.3: MBE partial product values in a fixed time instant

Figure 4.4: Theoretical evaluation of the partial product of the MBE

Adder reversed tree

In order to have a comparison instrument, the software illustrated in section 2

was modified, showing the partial additions equivalent to the ones generated by

the hardware: each 64 input evaluations, the partial sum is shown using a signed

bit representation without considering mantissa, that is the same format used in

QuestaSim. In this way it is possible to compare the hardware and software results,

checking if they match or not. In figure 4.5 it is represented an example of the process

described. Each positive clock edge, the partial sum between the current 64 inputs

and the previous result is evaluated, providing a temporarily result, indicated in

figure 4.5b as tmp sum, that is the signal to compare to the software partial results

of figure 4.5a. The last step before the valid output is characterized by the selection

of the Bias to add to the previous result, so the signal Bias sum n sel becomes

76

4.1 – Weight-Block

(a)

(b)

Figure 4.5: (a)Software output for a specific time-step (b)Hardware output for the
same simulation-step

’1’ in presence of this step. In the next time-step, the signal LE becomes ’1’ to put

in evidence the end of an evaluation and that the output is valid. The output signal

is provided using the tmp sum signal, that now is containing the sum of the last

partial result with the Bias, shifted properly to consider the right bits; the result so

obtained is properly rounded.

For the case shown in figure 4.5, the software result is 1.5625, so, considering the

8-bit representation with only integer part, the hardware expected result is 2, that

is the same value obtained from the simulation.

Cross-channel normalization layer

It is also important to verify the behaviour of this layer, because it is fundamental

for the correct evaluation of the first and second convolutional layers. To test it,

it is possible to use a specific test-bench that applies the inputs generated by the

outputs of the two convolutional layers involved, comparing the outputs so obtained

to the expected ones. In fact, the software used to emulate the hardware behaviour

creates one .txt file for each feature map of the hidden layers, causing the possibility

to access these values everywhere and always. In figure 4.6 it is shown an example

77

4 – Simulation

(a)

(b)

(c)

Figure 4.6: Cross-Channel Normalization Layer waveform example: (a) Software
(b) Hardware (c) Test-bench used as debug instrument

78

4.2 – In/Out-Block

of waveform matching between software and hardware and a case in which the

test-bench is used as debug instrument to discover bugs, generating an output file

containing information about the mismatching results.

In particular, the figure 4.6a is a collage of the first row of the first 6 channels

that are part of the convolutional layer 1; the row portion shown corresponds to

the same simulation steps analysed by the hardware in figure 4.6b. Moreover, in

this last image it can be seen how the input data are modified by the cross-channel

normalization and the presence of two additional initial values fixed to ’0’, to allow

the normalization for the first two channels, that require respectively two and one

values before them that aren’t present, so in this way this possible problem is solved.

4.2 In/Out-Block

The testing of the In/Out Block has to be divided into the verification of each feature

it implements, that are the following:

• The input loading, needed to initialize the memory before doing the compu-

tation;

• The storage of the intermediate results;

• The zero-padding operation, required for some layers;

• The Max-Pooling operation, needed for certain layers;

• The stride operation, that is the step on which the subsets of values are selected

from the original input pattern;

• The output selection, that is the operation to put out the values required

sequentially to cover all the current sub-set.

Initial input loading

This is the first phase needed to use correctly the In/Out-block, because the initial

state of its internal memory is not known. For this reason, it is important to apply

an initial reset, acting on a dedicated input signal, that forces all the bits to the

79

4 – Simulation

’0’ null value. After doing this, it is possible to load into the memory the input

pattern to classify. This operation requires to select the bank on which to write

before starting writing and then, for each clock period, it is possible to change the

input, that will be written into the address specified on the correspondent input. In

figure 4.7 it is shown an example of the scenario described.

Figure 4.7: Example of an input loading phase for the In/Out Block RAM

Hidden layers result storage

An important feature to test is the correct storage of the inputs provided by the

Weight-Block, because they are the inputs for the next layer it will evaluate.

In figure 4.8 they are reported pieces of the In/Out Block RAM with two sequential

writing step applied: it is possible to see that the second step puts the values near

the first ones; the input is maintained the same to obtain a more readable picture.

The addresses on which the first writing phase puts the input values are reported in

table 4.1 and are obtained from the first layer parameters according to the formula:

Address = Xsize · Ysize · FilterNumber

80

4.2 – In/Out-Block

Figure 4.8: Example of the writing phase for the first hidden layer

For the first layer the formula becomes:

Address = 55 · 55 ·N

To obtain the address for the next steps is needed to sum the current step to the

base address obtained by the formula.

Filter Number Memory Location [decimal] Memory Location [hexadecimal]
0 0 0
1 3025 bd1
2 6050 17a2
3 9075 2373
4 12100 2f44
5 15125 3b15

Table 4.1: Memory base address for the first 6 filters

Zero-padding operation

The zero-padding operation consists to add a frame of zeros around the input pattern

to warranty that the output of a certain layer has the specified size wanted. To know

more details about this operation see Appendix A.

81

4 – Simulation

Figure 4.9 shows an example done on the first layer adding a frame of one null value

Figure 4.9: Zero-padding example with a frame of one ’0’

around the input pattern; in the picture there are three situation analysed:

• The downer block of values represents the memory situation between the first

memory address and the first input value; a long sequence of zeros is added

in order to apply the zero-padding, and the first input is put after the last of

them, into the address 230 (e6hex), obtained by the fact that one row of size

229 (the first input block size plus the column zero frame, composed by one

value at the beginning of the row and another one at the end) is added at the

beginning of the pattern.

• The central block of values, representing the situation between two input rows,

on which are present the last number of the previous one, that is the ’0’ of the

zero-padding frame, and the first number of the next one, also zero due to the

application of the zero-padding frame.

• The upper block of values shows the zero-padding frame added at the end of

the input pattern block, that respects the same behaviour used by the initial

frame block.

82

4.2 – In/Out-Block

Max-Pooling operation

The Max-Pooling operation is required after certain convolutional layers to reduce

the amount of output data without loss information about them; in Appendix A are

available more details about this process.

In figure 4.10 it is reported an example of pooling for different input channels: the

Figure 4.10: Max pooling example

left part of the image shows the inputs taken in different parts of the pattern, the

right part shows the correspondent pooling outputs, ordered by the address. The

input pattern for the example is the input of the NN, so it has a size of 227x227x3.

To test the behaviour of the pooling in different situation, six blocks of data are

analysed:

• the red one is the first block on which the pooling is applied; the maximum of

them is 28, that is the one written in binary (00011100) in the right part of

the picture.

• the yellow square put in evidence the second block of data, that starts two

values after the first one due to the pooling stride factor (that is two); the

maximum value is 30, that is the one reported in binary (00011110) in the

second location of the right picture.

• the green section contains the third block analysed by the pooling, on which

the output value has to be 33 (in binary 00100001).

83

4 – Simulation

• the blue block is the first pooling block on which the stride is applied on the

Y direction, that corresponds to the first pooled value of the second row.

• the orange block is the first block of the second input channel, with a maximum

value of 35, stored into the address 31e1 (12769dec), obtained by the formula:

(
Xsize − Poolsize

Poolstride
+1)·(Ysize − Poolsize

Poolstride
+1) = (

227 − 3

2
+1)·(227 − 3

2
+1) = 12769

• the violet one is the last block analysed of the last input channel, that has the

maximum value equal to 41 (in binary 00101001).

Stride verification

Another important feature to test consists into the stride, that is the step charac-

terized by two sequential subset of values extracted from the original input pattern

to obtain the respective convolutional output. In figure 4.11 are shown the first

Figure 4.11: Sequential outputs of the In/Out Block: the squared blocks are the
sequential subsets

84

4.2 – In/Out-Block

eighteen outputs of the In/Out-Block and the New Input signal, that establishes

that a new input is available and ready to process. Moreover, the picture shows the

first subsets analysed, that are of dimension 11x11 and they are divided between

them with a stride of four.

Outputs selection

The last feature to test consists in the fact that a generic input of the Weight-Block

is typically too much big to be applied in one step, so it has to be divided into

subsets used as inputs sequentially.

Figure 4.12 shows the first input of the first layer: the input channels are three and

Figure 4.12: Outputs of a single evaluation: on the left there are the three input
channel values, on the right the division in sequential subsets

the filter size is 11x11, so there are 363 input values to be evaluated. These inputs

are divided into blocks of 64 data, that is the input parallelism of the Weight-Block,

and the inputs not used in the last step are put to a null value.

85

Chapter 5

Synthesis

The synthesis step comes next to the simulation one because, after validating the

architecture produced, it is important to evaluate the main parameters that charac-

terize it: power, frequency and area. To obtain this purpose, it is needed a software

capable to analyse the VHDL code previously produced and transform it into basic

cells with known parameters; this tool, combining them together, can provide the

quantities wanted as sum of the contribution of these blocks.

The program used is the F-2011.09-SP3 version of Design Vision, a Synopsys tool

with many useful features for the synthesis of digital circuits.

In figure 5.1 is represented the process flow used to make the synthesis. The

compilation of the design is the first step, so it is needed a library to fix the tech-

nology node used on the analyses; the library used for this purpose is the Nangate

45nm one.

An important consideration to be evidenced is that the architecture proposed is a

very large circuit, so it wasn’t possible to synthesize it as it is, due to some con-

straints:

• the server used has got 128GB RAM, that is not large enough to load all the

entire design;

• the performance are limited to the capability of the system, so a very large

synthesis can use a very large time to be concluded.

For these reasons, the approach used is a bottom up process: all the smallest com-

ponents are synthesised before, then the results so obtained are used to make the

synthesis of the blocks that use them. Moreover, some components are too much

large to be synthesised themselves, so, finally, for these blocks it is produced a result

on a reduced version and then it is made a forecast of the expected behaviour. The

results are generated combining together all the information so extracted.

86

Figure 5.1: Synthesis flow-chart

87

Chapter 6

Results

6.1 Comparison between Adder-tree solution and

a standard one

In order to establish if the adder-reversed tree solution is an improvement of the

standard architectures, made up by adders not combined together with this topology,

a generic neuron, that implements a convolution of 363 inputs with the respective

weights, is generated using the two solutions. The two versions of this component

are been synthesised to extract the parameters of power, area and critical path delay,

useful to compare them.

Figure 6.1 shows the three quantities analysed for the standard version and the

Figure 6.1: Comparison between a conventional solution and a reversed-tree one

adder-tree one: it is possible to see that the last solution has improvements on all the

88

6.2 – performance of the WINNER architecture

parameters, so it can be concluded that it is a good optimization for the architecture

proposed.

6.2 performance of the WINNER architecture

Power and Area Weight-Block estimation

The memory of the Weight-Block is a critical point during the synthesize step be-

cause it is a very large component: the Design Vision tool has got a limit to the

number of iteration loop on the same object; this value can be increased, but the

synthesis becomes so long and big in terms of RAM space that it is not possible to

see the results before a crash of the software.

To avoid this problem, the parameters of this block are estimated for a different

number of word Bytes and then the results are interpolated to provide a forecast of

the expected behaviour. Figure 6.2 shows the power and area quantities for a neuron

Figure 6.2: Power ans area forecasts for the RAM of single neuron

changing the word size: the columns in blue represent the results of the synthesis

89

6 – Results

made, the red line is the interpolation of them, used to provide the forecast.

In/Out Block

In figure 6.3 are reported the main contributions to the area and power into the

In/Out-Block: the most important parts are the logic, composed by the circuit that

establishes which outputs in which moment have to be selected, and the comparators,

that forms together the pooling layer, used only after certain convolutional layers.

Figure 6.3: Power and Area of the In/Out Block internal components

MUX Vs Wired-OR Neuron

In order to establish if the optimization of the selectors is relevant or not into the

architecture proposed, the power and area parameters of a neuron of the WINNER

architecture realized with the two alternatives were analysed to be compared.

Figure 6.4 shows the contribution of the Weight-Block internal blocks to the total

power of their neuron; in the following some observations are reported:

90

6.2 – performance of the WINNER architecture

Figure 6.4: Power of the internal blocks of a neuron

• the contribution of the cross-channel layer is very small; this block is syn-

thesised separately from the Weight-Block because of the Design Vision con-

straints already discussed, and the results obtained are divided for the number

of neuron implemented to obtain the cost for the single one, that is the quantity

reported into the picture.

• the main contribution in the MUX solution is made up by the MUX selectors,

that are very big, due to the fact that have 2595 inputs; on the contrary, the

main contribution with the wired-OR solution is made up by the memory,

because this solution uses only one bitline decoder for all the words (imple-

menting MUXs there is one decoder for each of them), reducing the hardware

cost.

• the wired-OR solution uses an OR-chain to emulate, for synthesis require-

ments, the behaviour of a single wire with a transistor for each bit cell con-

nected to it and a sense amplifier at the end of it, so the real parameters of

this blocks are better then what is reported in the picture, that is an upper

bound of it.

91

6 – Results

• the neuron has got a relevant part in terms of power contribution because it

has many adders always working.

• the RAM power is the static power of the RAM, because the usage of the

architecture consists into load one time the memory, consuming in this phase

static and dynamic power, and then, without changing the memory values,

make the computations, so there isn’t any dynamic power dissipation during

the normal working of the memory.

Figure 6.5: Area of the internal blocks of a neuron

Figure 6.5 shows the area contribution of the internal blocks of a neuron; the

observations on how these results are provided are the same described for the power

estimation. By the graph it can be seen that the main contribution is the selectors

one; on the contrary, wired-OR solution this contribution is reduced.

Figure 6.6 shows the absolute values of power and area for the two solutions

analysed: both the quantities are lower for the wired-OR implementation, so it can

be concluded that this is a good optimization for the architecture proposed.

92

6.2 – performance of the WINNER architecture

Figure 6.6: Power ans Area for a single neuron changing the type of selectors

Frame Per Second (FPS)

The Frame Per Second parameter is a very important quantity for convolutional NN

as the AlexNet implemented, because it indicates how much input patterns can be

classified in one second. In the case of the WINNER architecture, considering the

clock with the same time period of the critical path, this parameter becomes:

FPS =
1

TOTsteps + SL1 · (NClkCross − SN1) + SL2 · (NClkCross − SN2) · Tclk

FPS =
1

(52902 + 3025 · (51 − 6) + 729 · (51 − 19)) · 3.55 · 10−9
= 1326.5FPS

Where S indicates the number of steps for the execution of the layer number x (if the

subscript is Lx) or the execution of a neuron of the layer number x (if the subscript

93

6 – Results

is Nx), NClkCross the clock period required for the cross channel normalization layer

to be executed and Tclk the clock period.

The number of clock periods used by the Cross Channel Normalization Layer is

obtained by its critical path and it is equal to 51 clock periods; this layer is used

only after the first two convolutional layers, so to the total number of steps required

for the entire NN it has been added these two terms that consider the normalization

layer. All the other quantities are extracted from table 3.2.

Power, Frequency and Area comparison

In order to compare the global performance of the WINNER architecture with the

other technologies implementations analysed in the chapter , it is reported the same

graph proposed at the end of it in figure 6.7, with the additional WINNER archi-

tecture results.

The WINNER architecture (the one evidenced with a red rectangular) has got a

Figure 6.7: Power, Area and Timing comparison for a single neuron using a Wired
OR selector

good frequency and a higher value of area and power respect on the most part of the

94

6.2 – performance of the WINNER architecture

other solutions. The higher value of power and frequency are caused by the differ-

ence between the technology node on which are realized, the FPS reached and the

type of NN that can be implemented, that in most cases have limited size. The ref-

erence architecture for the WINNER are the ones evidenced with a blue rectangular,

because they have the same type of technology: in-memory CMOS.

EAT and ET comparison

Another comparison that can be done, using the results shown in figure 6.7, is

the comparison of the energy-delay product and the energy-area-delay one; these

quantities are good indexes of how much the solution proposed is good, because

provide data that combine together all the performance information.

Figure 6.8 shows with a red rectangular the WINNER results and with blue ones the

Figure 6.8: EAT and ET comparison for a single neuron using a Wired OR selector

Neurocube and XNOR-POP results, that are the main reference for the WINNER

architecture, as already discussed. It can be seen that the two levels of EAT and

ET are comparable to the XNOR-POP ones; remembering that these two solutions

are realized with a different technology node, littler for the XNOR-POP, it is a good

95

6 – Results

result because, scaling the technology, the expected behaviour is an improving of

the performance. The Neurocube has got better EAT and ET because it uses the

HMC [7], that is a general purpose in memory device, to implement NNs, so the

performance are good but the speed in terms of FPS is very low.

Energy per Frame

In order to obtain an application-independent comparison between the architec-

ture realized and the other ones that are implemented using a Logic In Memory

approach, the Energy per Frame quantities is analysed. Figure 6.9 shows the pa-

Figure 6.9: E · Frame comparison

rameter described in association with the FPS and the accuracy reached by the

network implemented, that is the AlexNet for all the three solutions reported. It

is possible to see that the XNOR-POP has got the lowest value of E · Frame, but

implements an approximated version of the AlexNet, with an accuracy in the image

recognition that is around 10% lower than the exact one. Moreover, the picture

shows the technology node, that is very important to consider, because, reducing it,

all the parameters previously analysed improve, generating a better behaviour.

96

Chapter 7

Conclusions and Future Works

The project presented is a starting point for a new way to implement Neural Net-

works: the combination between them and the Processing In Memory principle pro-

vides a good support to realize each kind of NN and make the architecture obtained

easy to scale. Moreover, the PIM solutions, compared to the other ones, typically

provide circuits with better FPS and with a higher capability to implement big NN.

The comparison on the other main actual solutions shows that the WINNER archi-

tecture has the same advantages of a XNOR-POP one, but using a larger technology

and implementing an exact computation of the network; in fact, the XNOR-POP

adopts the pop-counting approximation to make the convolution operation. These

differences are very important because a comparison between the WINNER and the

XNOR-POP with the same behaviour would show different behaviours from what

seen.

Considering the observations presented above, it is possible to understand that there

are a lot of possible improvements, analyses and works starting from the WINNER

architecture; the main ones are:

• the synthesis with a different library that uses smaller transistors, that could

improve all the performance of power, area, frequency and FPS.

• the study of what happens in the WINNER architecture with the substitution

of multipliers with approximated versions of them; this is a very interesting

point because NNs have a good tolerance of the input noise, so make an ap-

proximated computation has the same result of increasing the input pattern

noise, and can provide a solution with better performance.

• to realize a similar architecture with a different kind of technology, as MTJs,

that seems to be a low power technology, but, for now, with reduced possibil-

ities to implement a big hardware.

97

7 – Conclusions and Future Works

• the realization of a hybrid architecture that uses Memristors or MTJs to realize

the part of memory and CMOS near it to make a part or all the evaluation

process, realizing a PIM hybrid solution.

98

Appendix A

AlexNet Neural Network

AlexNet is a CNN developed by Alex Krizhevsky, who won in 2012 the ImageNet

Large Scale Visual Recognition Challenge, a competition to produce the best image

recognition NN. This network has got a very big topology and a large quantity of

neurons, due to its depth, causing very good results but with an expensive compu-

tational cost. A graphical representation of the NN is reported in figure A.1, on

which it can be seen that the network is made up by 8 main layers: the first five

are convolutional, the last three fully-connected. Moreover, the input images to be

processed must have a 227*227 size, with the three color channel (RGB).

In the following it is described in details the default Matlab implementation of the

Figure A.1: AlexNet graphical representation. Image readapted from [24]

AlexNet, on which the first and the second convolutional layers are followed by a

99

A – AlexNet Neural Network

normalization layer and a pooling one, in order to uniform the values and reduce

the number of inter-layer results; also the last convolutional layer is followed by

a pooling layer, and the fully-connected layers have got internally a dropout layer,

that is useful during training to reach the result wanted in a faster way. The last FC

layer has a softmax layer instead of dropout in order to obtain an output probability

linked to the result provided.

A.1 Convolutional Layers

They apply a certain number of filters to subsets of the input pattern with the

dimensions of the filter size, moving them with a specific stride to cover all the input

set. For each of these movements each filter provides an output, that becomes the

input for the next layer. Some layers consider for each filter all the input channels,

others only a subset; typically the possibilities are to consider all the input channels

in one block or in two. Moreover it is possible to add a frame of r rows and c

columns of zeros to the input pattern, in order to maintain the output size equal to

the input one, without information loss.

In figure A.2 are shown the graphical quantities described, and in table A.1 are

reported the relative values for each convolutional layer.

Layer # Filters Xfiltersize Yfiltersize Stride Padding # Filter Blocks
1 96 11 11 4 0 1
2 256 5 5 1 2 2
3 384 3 3 1 1 1
4 384 3 3 1 1 2
5 256 3 3 1 1 2

Table A.1: Convoutional parameters for each layer

100

A.2 – Cross-Channel Normalization Layers

Figure A.2: Graphical representation of the convolutional parameters

A.2 Cross-Channel Normalization Layers

These layers are normalization layers, so they consider a series of input values and

provide the same amount of results changed to make them more uniform. This eval-

uation considers the inputs with same position, but filtered by adjacent filters; for

this reason it is called ”cross-channel”. The formula they use to make this normal-

ization depends on the parameters α , β , K, that are real numbers set to 0.0001,

0.75 and 1 in AlexNet, and the window channel size, that means how much input

channel to consider in the computation of an output, that is 5 for AlexNet:

y =
x

(K + α ·
nP
i=1

x2i)
β

101

A – AlexNet Neural Network

A.3 Max-Pooling Layers

The pooling operation consists on replacing a matrix of input values with the highest

of them; this allows the computation to be less expensive and to put more in evidence

the characteristics found by the filters applied. In fact, this step acts separately for

each input channel, so it consider only groups of number extracted by the same

previously filter. Moreover, it scans the input pattern with a fixed size and stride,

as described for convolutional layers A.1. Figure A.3 shows an example on how a

pooling layer acts on an input matrix; in AlexNet these parameters are:

• Pooling size = 3x3;

• Pooling stride = 2.

Figure A.3: Pooling operation on an input matrix of 5x5 with pooling size 3x3 and
stride = 1, generating an output matrix of 3x3

A.4 FC Layers

These are the last three layers of the AlexNet, producing the classification result; in

table A.2 they are reported the inputs amount and the number of neurons for each

of them.

102

A.5 – Dropout Layers

FC layer # inputs # neurons
1 43264 4096
2 4096 4096
3 4096 1000

Table A.2: Inputs and neurons number for each FC layer on AlexNet

A.5 Dropout Layers

The dropout operation that is implemented in this layers consists in putting to ’0’

some inputs with a certain probability; this layer is used only during the training

to reach the wanted result in a faster way. In the AlexNet analysed the probability

parameter is set to 0.5, so half of the inputs are ’0’ during training.

A.6 Softmax Layer

This layer is the last one of the AlexNet and implements a softmax function, that is

able to transform the output classification in a probability; this is useful in the cases

on which the interest is on the reliability of the result produced, but in other cases

it is required to know only the class identified, so this layer is not implemented in

all applications. The softmax function consists in the formula below, on which k is

the number of output classifiers:

y =
ex

kP
j=1

eaj

103

Appendix B

Modified Booth Encoder

Multiplier

MBE based multipliers are based on two parts: the first is used to obtain the partial

products from the multiplicands and the second one to add these in an array of full

adders.

B.1 Partial Product block

In order to obtain partial product, there is a specific unit that takes the two input

numbers and, slicing the first one, makes the product between the slices and the

second operand, generating the partial results to be added.

MBE multipliers are based on a Radix-2 approach, meaning that 3-bit slices on

the first operand have to be analyzed, where two consecutive slices feature a 1-bit

overlap. In this case, the number of bits used to represent the values is even (8), so

the triplets of bits, that start with a first ’0’ added before the LSB, are completed.

Vice-versa, in case of odd number of bits, a sign extension could be required.

Considering that the first triplet starts with an additional LSB of value ’0’, the

number of slices obtained is 4, as shown in figure B.1 These triplets are used to

Figure B.1: MBE triplets generation

associate with a BEU (Booth Encoding Unit) the input multiplicand to its original

value A, its complemented value −A, the doubles 2A and −2A or zero, according

104

B.1 – Partial Product block

to the bits of the triplet, to realize a partial multiplication.

In table B.1 you can see how this associations are made, on which A is the second

operand.

Xj+1 Xj Xj−1 Operation
0 0 0 0
0 0 1 +A
0 1 0 +A
0 1 1 +2A
1 0 0 -2A
1 0 1 -A
1 1 0 -A
1 1 1 0

Table B.1: BEU truth table

105

Appendix C

Approximations with Taylor’s

series expansions

The Taylor’s series expansion is a mathematical instrument to represent complex

functions with a polynomial with a fixed degree: the higher it is, the more accurate

is the approximation.

The result of this process is a new function that is valid only locally, so around

a point fixed before starting the process. The starting function has to got some

properties in order to apply the series expansion:

• continuous in the point x0 on which the process is applied;

• derivable in the point x0;

• derivable near the point x0.

If these requirements are satisfied, the function can be rewritten using the equation

of a polynomial with coefficients that are the n-order derivative evaluated in the

point x0 for the xn coefficient:

y =
nX
k=0

f (k)(x0)

k!
· (x− x0)

k

In this way is possible to approximate some complex functions, used in Neural

Network for the hidden layer results, in simpler ones, as for the exponent function

described in appendix A to realize the cross-channel normalization, that becomes:

(1 + x)β = 1 + β · x+
β · (β − 1)

2
· x2

106

Bibliography

[1] Alianna J. Maren, Craig T. Harston and Robert M. Pap,“Handbook of Neural

Computing Applications”, Academic Press, 1990.

[2] D. Zhang et al., “Energy-efficient neuromorphic computation based on com-

pound spin synapse with stochastic learning,” 2015 IEEE International Sympo-

sium on Circuits and Systems (ISCAS), Lisbon, 2015, pp. 1538.

[3] E. I. Vatajelu, L. Anghel, “Fully-connected single-layer STT-MTJ-based spiking

neural network under process variability”, Proc. IEEE/ACM Int. Symp. Nanosc.

Archit. (NANOARCH), pp. 21-26, Jul. 2017.

[4] A. Sengupta and K. Roy, “Spin-Transfer Torque Magnetic neuron for low power

neuromorphic computing”, 2015 International Joint Conference on Neural Net-

works (IJCNN), Killarney, 2015, pp. 1-7.

[5] L. Song, Y. Wang, Y. Han, H. Li, Y. Cheng and X. Li, “STT-RAM Buffer

Design for Precision-Tunable General-Purpose Neural Network Accelerator”, in

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no.

4, pp. 1285-1296, April 2017.

[6] D. Zhang et al., “All Spin Artificial Neural Networks Based on Compound Spin-

tronic Synapse and Neuron”, in IEEE Transactions on Biomedical Circuits and

Systems, vol. 10, no. 4, pp. 828-836, Aug. 2016.

[7] J. Schmidt, H. Fröning, U. Brüning. (2016). Exploring Time and Energy for

Complex Accesses to a Hybrid Memory Cube. pp. 142-150.

[8] D. Kim, J. Kung, S. Chai, S. Yalamanchili and S. Mukhopadhyay, “Neu-

rocube: A Programmable Digital Neuromorphic Architecture with High-Density

3D Memory”, 2016 ACM/IEEE 43rd Annual International Symposium on Com-

puter Architecture (ISCA), Seoul, 2016, pp. 380-392.

[9] Y. Wang, R. Chen, R. Mao and Z. Shao, “Optimally Removing Synchronization

Overhead for CNNs in 3D Neuromorphic Architecture”, in IEEE Transactions

on Industrial Electronics.

[10] L. Jiang, M. Kim, W. Wen and D. Wang, “XNOR-POP: A processing-in-

memory architecture for binary Convolutional Neural Networks in Wide-IO2

107

Bibliography

DRAMs”, 2017 IEEE/ACM International Symposium on Low Power Electronics

and Design (ISLPED), Taipei, 2017, pp. 1-6.

[11] D. J. Mountain, M. R. McLean and C. D. Krieger, “Memristor Crossbar Tiles

in a Flexible, General Purpose Neural Processor”, in IEEE Journal on Emerging

and Selected Topics in Circuits and Systems, vol. 8, no. 1, pp. 137-145, March

2018.

[12] L. Xia et al., “Switched by input: Power efficient structure for RRAM-based

convolutional neural network”, 2016 53nd ACM/EDAC/IEEE Design Automa-

tion Conference (DAC), Austin, TX, 2016, pp. 1-6.

[13] M. Davies et al., “Loihi: A Neuromorphic Manycore Processor with On-Chip

Learning”, in IEEE Micro, vol. 38, no. 1, pp. 82-99, January/February 2018.

[14] T. Luo et al., “DaDianNao: A Neural Network Supercomputer”, in IEEE

Transactions on Computers, vol. 66, no. 1, pp. 73-88, Jan. 1 2017.

[15] E. Painkras et al., “SpiNNaker: A 1-W 18-Core System-on-Chip for Massively-

Parallel Neural Network Simulation”, in IEEE Journal of Solid-State Circuits,

vol. 48, no. 8, pp. 1943-1953, Aug. 2013.

[16] Paul A. Merolla et al., “A million spiking-neuron integrated circuit with a

scalable communication network and interface”, science, 08 aug 2014 : 668-673

[17] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar and D. S. Modha,

“A digital neurosynaptic core using embedded crossbar memory with 45pJ per

spike in 45nm”, 2011 IEEE Custom Integrated Circuits.

[18] Qiao Ning et al., “A reconfigurable on-line learning spiking neuromorphic pro-

cessor comprising 256 neurons and 128K synapses”, Frontiers in Neuroscience

2015.

[19] . Corradi and G. Indiveri, “A Neuromorphic Event-Based Neural Recording

System for Smart Brain-Machine-Interfaces,” in IEEE Transactions on Biomed-

ical Circuits and Systems, vol. 9, no. 5, pp. 699-709, Oct. 2015.

[20] J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier and S. Millner, “A

wafer-scale neuromorphic hardware system for large-scale neural modeling”, Pro-

ceedings of 2010 IEEE International Symposium on Circuits and Systems, Paris,

2010, pp. 1947-1950.

[21] S. Schmitt et al., “Neuromorphic hardware in the loop: Training a deep spik-

ing network on the BrainScaleS wafer-scale system”, 2017 International Joint

108

Bibliography

Conference on Neural Networks (IJCNN), Anchorage, AK, 2017, pp. 2227-2234.

[22] B. V. Benjamin et al., “Neurogrid: A Mixed-Analog-Digital Multichip System

for Large-Scale Neural Simulations”, in Proceedings of the IEEE, vol. 102, no. 5,

pp. 699-716, May 2014.

[23] A. Amravati, S. B. Nasir, S. Thangadurai, I. Yoon and A. Raychowdhury,

“A 55nm time-domain mixed-signal neuromorphic accelerator with stochastic

synapses and embedded reinforcement learning for autonomous micro-robots”,

2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Fran-

cisco, CA, 2018, pp. 124-126.

[24] Study and classification of plum varieties using image analysis and deep

learning techniques - Scientific Figure on ResearchGate. Available from:

https://www.researchgate.net/figure/Alexnet-architecture fig4 320511487 [ac-

cessed 26 Jan, 2019]

109

	Acknowledgments
	Abstract
	Introduction
	State of the art
	Neuromorphic Architectures
	Technology choices
	Memristor
	General purpose neural memristor-based processor
	Power efficient structure for RRAM-based CNN

	MTJ
	Fully connected Signle-Layer STT-MTJ based SNN
	STT Magnetic Neuron for Low Power Neuromorphic Computing
	STT-RAM for Precision-Tunable General-Purpose NN Accelerator
	ASANN based on CSS and CSN

	PIM
	Neurocube
	RTNN: Real-Time scheduling technique for convolution NN on 3D neuromorphic PIM architecture
	XNOR-POP

	Many-core
	Loihi
	DaDianNao
	SpiNNaker
	TrueNorth

	CMOS
	Embedded Crossbar Memory in a Digital Neurosynaptic Core
	ROLLS
	A Neuromorphic Event-Based Neural Recording System using ROLLS
	HICANN
	BrainScaleS
	Neurogrid
	Neuromorphic Accelerator for Autonomous Robots

	Comparison between technologies

	Software Implementation
	Metodology
	Very Big NN: AlexNet
	Software implementation
	General organization
	Classes description
	Neuron
	Convolutional layer
	Cross-channel normalization layer
	Max Pooling layer
	Fully connected layer

	Time requirement to classify an image
	Parallelism of the data into the hardware
	Example of software output

	Hardware Implementation
	Block scheme
	Weight-Block
	Block Scheme
	Neuron
	Standard Neuron
	Optimized Neuron

	The parallelism problem
	Cross Channel Normalization Layer

	In/Out-Block
	Block Scheme

	Simulation
	Weight-Block
	Word loading
	MBE Multipliers
	Adder reversed tree
	Cross-channel normalization layer

	In/Out-Block
	Initial input loading
	Hidden layers result storage
	Zero-padding operation
	Max-Pooling operation
	Stride verification
	Outputs selection

	Synthesis
	Results
	Comparison between Adder-tree solution and a standard one
	performance of the WINNER architecture
	Power and Area Weight-Block estimation
	In/Out Block
	MUX Vs Wired-OR Neuron
	Frame Per Second (FPS)
	Power, Frequency and Area comparison
	EAT and ET comparison
	Energy per Frame

	Conclusions and Future Works
	AlexNet Neural Network
	Convolutional Layers
	Cross-Channel Normalization Layers
	Max-Pooling Layers
	FC Layers
	Dropout Layers
	Softmax Layer

	Modified Booth Encoder Multiplier
	Partial Product block

	Approximations with Taylor's series expansions
	Bibliography

