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Chapter 1

Introduction

1.1 Overview

It is common knowledge that, nowadays, Artificial Intelligence (AI) technologies, in
particular Machine Learning (ML) algorithms, are often used in healthcare applica-
tions in order to help physicians in diagnosis or to find possible relations between
measured biomedical parameters. The increasing availability of healthcare data and
the development of big data analytic methods has made possible the success of ML in
different healthcare applications. In this project Artificial Intelligence Machine Learn-
ing Technologies will be used to link parameters that are apparently distant each other.
Some relevant clinical information can be hidden inside the large quantity of data
of many patients and cannot be easily visible even for an expert physician. In these
cases a machine can find connections not predictable without the help of the compu-
tational power of the actual algorithmic technologies [1] [2]. There are several dif-
ferent specialties in medicine that have shown an increase in research regarding AI
and ML in particular. Some of them are radiology and the related image processing,
telemedicine, voice and speech recognition, drug development, personalized medicine,
genetics, robot-assisted surgery and many other (see fig.1.1) [3] [4]. There are many
examples in literature encouraging the implementation of data mining algorithms in
different fields of medicine in order to discover hidden patterns or new information in
large dataset [5] [6].
In this thesis, starting from the AGES-Reykjavik database, predictive analysis is done
using supervised regression and classification ML algorithms. Age Gene/Environment
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1.2. Goal of the thesis

Figure 1.1: Growth of PubMed articles on machine learning [8]

Susceptibility Study (AGES) is a large dataset, designed to examine risk factors and
gene/environment interaction, in relation to disease and disability in old age [7]. It was
never investigated through machine learning methodologies. The database is com-
posed of 11 parameters extracted from Computed Tomography (CT) scans of mid-
femur section of a 65-95 years old population, (4 related to muscle tissues, 4 to the
fat, and 3 to the connective tissues) and by 20 measurements of which the most rele-
vant are Body Mass Index (BMI), Cholesterol (CHOL) and LEF biometric parameters
(normal/fast gait speed, time up-to-go, and isometric leg strength).
Regression and classification are applied in order to predict and classify at first BMI
(parameter used to test the methodology) using tree-based algorithms and then the al-
gorithms are extended also to other measurements.

1.2 Goal of the thesis

The main goal of the work is to find links between the 11 parameters extracted from the
CT scans and the other measurements to prevent or predict possible cardio-circulatory

2



1.3. Thesis organization

or motor disease in elderly people. Machine learning solutions are experimented not
directly on the pixels of the CT images but using Amplitude, Location, Width and
Skewness of the fat, muscle and connective tissue and link these data to biomechanical
measurements, BMI and Cholesterol which are apparently distant from a mid-femur
CT scan.
Different methodology will be tested to predict these physiological measurements.
Considering regression the feature analysis can be useful to understand which are the
most relevant regressors between fat, muscle and connective tissue parameters. Hypo-
thetically, if the regression results are good, also the classification ones should be good
as well, and the latter can be considered as a confirmation of the strong or weak link
between the measurement itself and the initial 11 features.

1.3 Thesis organization

A brief description of the contents of each chapter follows.

Chapter 2: Database Description and Elaboration

The database used in this thesis work is described in all its details.
The main features (columns) are analyzed and all the patients (rows) changes and can-
cellations are explained. In addition, outliers are analyzed and processed and the differ-
ent solutions adopted in case of Not-A-Number (NaN) values in the database are listed.

Chapter 3: Supervised Machine Learning

The theory of the considered algorithms used is described with a particular focus on
the methodologies that can be applied to divide the database in training and testing sets.

Chapter 4: Predictive System

The methodology used to obtain the best possible results is described. Starting from
BMI prediction and classification, all the other parameters are later analyzed following
appropriate processes.

3



1.3. Thesis organization

Chapter 5: Regression and Classification Results

All the results are presented, starting from those obtained with the BMI, both for re-
gression and classification, and continuing with the other parameters. Particular rel-
evance is given to the related deductible biomedical considerations. A sub-section is
completely dedicated to the leg strength results, which are better than all the others
obtained from the LEF parameters and from the cholesterol.

Chapter 6: Conclusions

In this chapter the main conclusive considerations are shown following the obtained
results.

4



Chapter 2

Database Description and Elaboration

The database used in this thesis is denominated AGES (Age Gene/Environment Sus-
ceptibility Study) and it is provided by Icelandic Hearth Association 1 [7] [9]. It is
composed of 11 Nonlinear trimodal regression analysis (NTRA) parameters extracted
from Computed Tomography (CT) scans of mid-femur section of a 65-95 years old
population, (4 related to muscle tissues, 4 to the fat, and 3 to the connective tissues)
and by 25 measurements of which the most relevant are Body Mass Index (BMI),
Cholesterol (SCHOL) and LEF biometric parameters (normal/fast gait speed, time up-
to-go, and isometric leg strength). There are 3157 patients in AGES I and the same
number in AGES II (same measurements on the same patients taken 5-6 after AGES
I), so in total 6314.
The related insights about the features and the number of patients are described in the
following sections.

2.1 AGES Database - Features (columns)

The features of the database are mainly divided in two parts: 11 NTRA parameters
extracted from the CT scans and 20 physiological measurements.

1The AGES dataset cannot be made publicly available, since the informed consent signed by the par-
ticipants prohibits data sharing on an individual level, as outlined by the study approval by the Icelandic
National Bioethics Committee
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2.1. AGES Database - Features (columns)

2.1.1 NTRA parameters

The 11 NTRA parameters are derived from a mid femur CT Scans (example in fig.
2.1) as described in details in [10] [11].

Figure 2.1: Mid-Femur CT scan: on the right FAT is orange, MUSCLE is red and CONNEC-
TIVE TISSUE is blu

The localized scanning region extended from the iliac crest to the knee. For each
patient, a single 10-mm thick transaxial mid-femur section was used in order to gener-
ate HU distributions and calculate fat and muscle cross-sectional area extensions [11].
HU is the Hounsfield unit scale [12]: it is a linear transformation of the original lin-
ear attenuation coefficient measurement into one in which the radiodensity of distilled
water at standard pressure and temperature (STP) is defined as zero Hounsfield units
(HU), while the radiodensity of air at STP is defined as -1000 HU. In a voxel with
average linear attenuation coefficient µ , the corresponding HU value is:

HU = 1000 ×
µ − µwater

µwater − µair
(2.1)

As described in [10], for each patient, HU distribution were derived from each
pixel’s CT number value following the expression:

HU = CT × 2, 26625 − 190 (2.2)

After this operation, HU values were binned into 128 bins and probability density
functions (PDF) were derived consequently [13]. Each PDF was then exported for

6



2.1. AGES Database - Features (columns)

Figure 2.2: From CT scan to PDF [10]

NTRA regression analysis.
NTRA method was developed and described in details in [10]. After a series of

operations, this method can give as results 11 parameters: 4 related to the FAT, 4 to the
MUSCLE and 3 to the CONNECTIVE TISSUE (fig. 2.1) The 4 parameters are shown
in the PDFs of fig. 2.3 and they are:

• N: Amplitude

• µ: Location

• σ: Width

7



2.1. AGES Database - Features (columns)

Figure 2.3: 11 NTRA parameters represented on relative PDFs [10]

• α: Skewness (not for the Connective Tissue)

Each of these 11 parameters is represented by a real number value. table 2.1 is pre-
sented in order to better understand the distributions of this values and the operations
on the outliers that are going to be described in section 2.3. The values are related to
AGES I, but there are not significant differences on AGES II. The reason why these
values are very distant from each other is due to the CT scan itself whose pixels are
different depending on whether you refer to fat, muscles or connective tissue.

2.1.2 Physiological Measurements

In addition the the 11 NTRA parameters the database is composed by other 20 mea-
surements: all of them are numerical, both discrete and continuous values. Here all 20
measurements will be listed, the ones highlighted in bold will be those most used in
subsequent chapters of this thesis :

• Age (on table 2.2 the age difference between the first visit in AGES I and the
second one in AGES II for each patient) - Integer, min=65, max=95

8



2.1. AGES Database - Features (columns)

AGES I
NTRA parameter mean value
N fat 61,9788
µ fat -117,8241
σ fat 8,2447
α fat -2,4914
N muscle 78,0249
µ muscle 61,4488
σ muscle 8,6205
α muscle 2,8307
N conn 41,6360
µ conn -24,0571
σ conn 25,1132

Table 2.1: NTRA parameters mean in AGES I

AGE Difference
AGE difference Number of Patients

2 1
3 0
4 22
5 2537
6 568
7 25
8 3
9 1

Table 2.2: Age difference between AGES I and AGES II

9



2.1. AGES Database - Features (columns)

• Sex (Men=1, Woman=2)

• Smoking Status (never smoked=0, smoke regularly=1, current smoker=2)

• BMI (Body Mass Index= Weight/Height2(kg/m2)) - Float, min=15,57, max=47,12

• DM (Diabete Medication of type 1) (No Diabete=0, otherwise 1)

• DM2 (Diabete Medication of type 2) (No Diabete=0, otherwise 1)

• CHOL (Cholesterol= mmol/L) - Float, min=2,3, max=9,74

• Hypertension (No Hypertension=0, Pre Hypertension=1, Hypertension=2)

• PHYSACTPAST (Category of total past moderate or vigorous physical activity
score - never=1, rarely=2, occasionally=3, moderate=4, high=5)

• PHYSACTPRES (Category of frequency of moderate or vigorous physical ac-
tivities in the past 12 months - never=1, rarely=2, occasionally=3, moderate=4,
high=5)

• TOGOSEC - (TUG) (Time up and go: sec - Time to stand up from a chair, walk
3 m, go back to the chair and sit down, float value) - Float, min=6,73, max=25,8
[14]

• TIMEFAST - (FGait) (Walk 6M Time at fast speed: sec - 2 trial average, float
value) GAIT FAST - Float, min=3,6, max=8,4 [15]

• TIMENORMAL - (NGait) (Average time to walk 6m at standard speed: sec,
float value) GAIT NORMAL - Float, min=4,725, max=12,15 [15]

• ISSOMASTLEG - (ISO) (STRENGTH max strength in leg: Newtons, float
value) - Float, min=212,8, max=245,7 [16]

• CHDEVENTB - CHD (coronary heart disease event before entering AGES -
yes=1, no=0)

• CVDEVENTB - CVD (coronary vascular event before entering AGES (this in-
cludes stroke) - yes=1, no=0)

10



2.2. AGES Database - Patients (rows)

Database Num Patients Deleted ID Total
2923

NTRA I 3160 3268 3157
3672
2923
3268

Meas I 3162 3452 3157
3672
5065

Table 2.3: AGES I - Patient ID cross-check

• CHFBAGES - CHF (coronary heart failure before entering AGES - yes=1, no=0)

• HEALLUNG (Has a doctor or other health provider ever told you that you had
chronic lung disease, chronic bronchitis or emphysema? - yes=1, no=0)

• HEALPRKN (Has a doctor or health professional ever told you that you had
Parkinson’s disease? - yes=1, no=0)

• Mortality (Living=0 or Death=1)

The bold measurements are used both to predict (together with NTRA) and to be
predicted during the machine learning predictive section. BMI is going be used as ”test
parameter” for the search for the optimal strategy for methodology of ML algorithms
and ML train-test division.
All the bold measurements are continuous values and can be obviously different from
the first visit of AGES I to the second one in AGES II.
Normal/fast gait speed, time up-to-go, and isometric leg strength are together called
LEF measurements.

2.2 AGES Database - Patients (rows)

The provided databases are divided in AGES I and AGES II. Each of these is fur-
thermore divided in NTRA (I and II) and Measurements (I and II). Each of these four

11



2.3. Outliers Management

Database Num Patients Deleted ID Total
NTRA II 3158 5065 3157

3268
Meas II 3160 3452 3157

5065

Table 2.4: AGES II - Patient ID cross-check

groups have a different number of patients. Patients are uniquely identified by ID num-
ber, not in a sequential order from 2 to 5859.

To avoid mistakes, the same number of patients, with the same identical ID num-
bers, should be present in all the four groups. A cross-check between the patient indices
was made, as shown in table 2.3 and 2.4. At the end each database has 3157 patients
for a total of 6314.

2.3 Outliers Management

Following an analysis of the distribution of each of the values in the database it was
possible to ascertain the presence of outliers or values far from the average value of
the parameter itself (Table 2.1). The outliers can affect the quality of the prediction but
are absolutely relevant because they have, in this case, a specific biomedical meaning,
referred to the muscle or fat or connective tissue of the patient taken from the CT scan.
Anyway it is possible to spot some values that are extremely distant from the mean
value, especially in the NTRA parameters, so a distinction has to be done. The outliers
can be considered either as wrong values or as simple outliers. The wrong values must
be manually changed. For example in the µconn of the AGES I a single value was more
that 1000 with a mean of -24,057, as shown in fig. 2.4. After a manual modification of
the single value the distribution is more regular even if some outliers can be individu-
ated for example in µmusc as shown in fig. 2.5. The manual modification consists in
a real manual change of the single wrong value: as shown in the example, the value
above one thousand was 1027,34: the first two digits were eliminated in order to obtain
27,34, which is a more reasonable value given the distribution and the average of the

12



2.3. Outliers Management

Figure 2.4: Red circles indicate WRONG VALUES in µconn and µmusc

Figure 2.5: Red circles indicate OUTLIERS in µmusc after the manual modification of the
wrong values
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2.4. NaN Values

Parameter AGES-I AGES-II AGES I+II
BMI 1 7 8
CHOL 0 0 0
TUG 39 106 145
FGait 122 345 467
NGait 44 109 153
ISO 193 229 422

Table 2.5: N◦ NaN for all the measurements in the database

data considered.
The wrong values, which could be caused by a bad transcription, have been identified
mainly in the NTRA values. As far as the other measurements are concerned, the val-
ues distant from the average value are not considered as wrong values but as simple
outliers.

2.4 NaN Values

One of the main problem of the databases used to approach ML algorithms are the
”Not A Number Values” (NaN). In many cases, especially in the medical databases,
where lots of data are collected for thousand of patients, some of them are missing due
to many possible reasons. For the AGES database this happens too: some patients do
not have all the measurements, so the missing ones are considered as NaN values.

The NTRA values are always present for each patient, while for the other measure-
ments is possible to see in Table 2.5 that some measurements as FGait or ISO have
more than 400 NaN values in total. Fig. 2.6 shows the number of patients for AGES I
and AGES II with at least one NaN value.

Two approaches are used to solve the NaN value problem [17]:

• MEAN: if there are not so many NaN values and the data are continuous: in this
case the NaN value is substituted with the mean. This solution was adopted for
BMI (8 NaN values in total).
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2.4. NaN Values

Figure 2.6: N◦ of Patients with at least one Nan value

• DELETE: if there are too many NaN values the best solution is to delete the
patient’s row otherwise the final prediction results can be compromised if Mean
solution is adopted. This solution was adopted for TUG, FGait, NGait, ISO.
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Chapter 3

Supervised Machine Learning

Machine learning is the discipline that studies how computers and machines learn from
data. It is as a section of the Artificial Intelligence field of the Computer Science Area.
[18] The two different types of learning used by machines are called supervised and
unsupervised learning.
In unsupervised learning there are no outputs to predict: the machine divides the
database in n groups or clusters trying to find commonalities in the data, not knowing
if it is right or wrong. These types of algorithms are not going to be used in this thesis.
Supervised learning starts with the goal of predicting an output or a target that is
already known: the goal of supervised learning is to learn a function that, given a
sample of data and known outputs, best approximates the relationships between input
and output which are observable in the data. [19]
Supervised learning is mainly divided in two categories:

• REGRESSION: these algorithms predict a continuous value. It is basically
a statistical approach to find the possible relationships between variables and
predict an outcome of an event based on those relationships.

• CLASSIFICATION: these algorithms classify the data into subsets (classes) of
the database itself.
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3.1. Regression

3.1 Regression

Regression models are used to predict target variables on a continuous scale, which
makes them attractive for addressing many questions in science as well as applications
as relationships between variables, evaluating trends, making forecasts or, like in this
thesis, healthcare application [17].
From the known values y(n)/n = 1, ...N we go back to x(n) that can be used later to
predict y(n), n > N using x(n), n > N.
x(n) is the independent variable while y(n) is the dependent one. The relationship
between those two is unknown and we can define them as:

• y(n) regressand: the continuous value that has to be predicted

• x(n) regressors: all the features that are used to predict the regressand

”When we regress Y on X, we use the values of variable X to predict those of Y”
[20].

In order to evaluate the results of the prediction and to evaluate the model perfor-
mances the Coefficient of Determination is computed: it can be indicated as R2.
It provides a measure of how well future samples are likely to be predicted by the
regression model 1. Best possible score is 1 and the final result can also be nega-
tive (because the regression model can be arbitrarily worse). So if R2 is the unity, all
variation has been explained and there is a perfect fit. If the coefficient is zero, the
regression does not explain anything and the prediction is bad [21]. The definition of
the Coefficient of Determination is:

R2(y, ŷ) = 1 −
Pnsamples−1

i=0 (yi − ŷi)2Pnsamples−1
i=0 (yi − ȳ)2

(3.1)

where:

• ŷi is the predicted value of the i-th sample

1It is often expressed as a percentage by multiplying by 100
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3.2. Classification

• yi is the corresponding true value

• ȳ = 1
nsamples

Pnsamples−1
i=0 (yi)

3.2 Classification

Classification is the problem of identifying to which set of the database an observation
belongs, on the basis of a training set of the database itself composed by features and
containing observations whose category membership is known.

The classification can be binary or with multiple classes (this is going to be the
case addressed in this thesis). Multi-class classification is more difficult from a com-
putational point of view and usually does not give better results compared to the binary
one and in literature is possible to find solutions to reduce multi-class classification to
binary [22] [23]. In this thesis the classes must be considered as more than two because
the binary classification is completely useless for the planned goals: in the healthcare
field the binary classification is usually done in order to identify healthy and sick pa-
tients, which is not the case treated here as explained in the following subsection.
Each measurements, starting from the the BMI, is divided in classes based on the dis-
tribution of the data. Each parameter is divided in 3 (Low, Medium, High) and 5 (Low,
Medium-Low, Medium, Medium-High, High) classes (details is section: 3.2.1).

In order to evaluate the results of the classifications the Accuracy Index is used: it
is also called Jaccard Index (JI) [24]. JI measures similarity between finite sets: it
is defined as the size of the intersection divided by the size of the union of the sets.
It’s a measure of similarity for the two sets of data, with a range from 0% to 100% (if
multiplied by 100). The higher the percentage, the more similar the two sets.

JI(A, B) =
|A ∩ B|
|A ∪ B|

=
|A ∩ B|

|A| + |B| − |A ∩ B|
(3.2)

where 0 ≤ JI(A, B) ≤ 1
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3.2. Classification

3.2.1 Measurements Classification

As already mentioned previously, to proceed with multi-class classification all the
measurements has to be manually divided in 3 (Low, Medium, High) and 5 (Low,
Medium-Low, Medium, Medium-High, High) classes following the distribution of the
data themself. The three-class classification is provided by the AGES database itself,
while the 5-class classification was performed based on the informations obtainable
from the classification already provided.
All the classes for BMI, CHOL, TUG, NGait and ISO are shown in fig. 3.1, 3.2, 3.3,
3.4, 3.5 and tables 3.1, 3.2, 3.3, 3.4, 3.5.
For FGait the classification is not used, because it is useless from a purely biomedi-
cal point of view: we only try to classify NGait, which is more indicative for elderly
patients.

3 Classes 5 Classes

15,65→ 25
< 25 20→ 25

25→ 30 25→ 30
> 30 30→ 35

35→ 47

Table 3.1: BMI -
Class division Figure 3.1: BMI distribution
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3.2. Classification

3 Classes 5 Classes

2,30→ 4
< 5 4→ 5

5→ 6 5→ 6
> 6 6→ 8

8→ 9,69

Table 3.2: CHOL
- Class division Figure 3.2: CHOL distribution

3 Classes 5 Classes

5,15→ 7,5
< 10 7,5→ 10

10→ 12 10→ 12
> 12 12→ 17

17→ 37,33

Table 3.3: TUG -
Class division Figure 3.3: TUG distribution
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3.3. Scikit-Learn library of Python

3 Classes 5 Classes

3,46→ 4,5
< 5, 5 4,5→ 5,5

5,5→ 6,5 5,5→ 6,5
> 6, 5 6,5→ 10

10→ 31,19

Table 3.4: NGait -
Class division Figure 3.4: NGait distribution

3 Classes 5 Classes

34,5→ 200
< 275 200→ 275

275→ 375 275→ 375
> 375 375→ 500

500→ 781,2

Table 3.5: ISO -
Class division Figure 3.5: ISO distribution

3.3 Scikit-Learn library of Python

Scikit-Learn (SL) is the free ML library for the Python programming language used
in this master thesis. It was created and ideated by David Cournapeau in 2007 and it
features various classification, regression and clustering algorithms. It is designed to
interoperate with NumPy and SciPy, the python numerical and scientific libraries [25].
Scikit-Learn 0.20 is the latest version to support Python 2.7.
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3.4. Tree Based ML Algorithms

In the following sections the algorithms used are going to be described in details. All
of them can be found on the SL library with all the default values consulted on [25].

3.4 Tree Based ML Algorithms

In literature lots of supervised ML algorithms are present, more or less effective de-
pending on the use and applications in healthcare [1]. In this thesis 4 Tree Based
Algorithms are considered both for regression and classification analysis. They are
denominated Tree Based because the basic units on which they are built are regression
and classification trees (Decision Trees) [26]. Decision Trees are non-parametric su-
pervised learning methods used for classification and regression. The main goal is to
create a model that predicts the value of a target variable by learning simple decision
rules inferred from the data features. The decision tree is a greedy algorithm that per-
forms a recursive binary partitioning of the feature space. The tree predicts the same
label for each leaf partition. Each partition is chosen greedily by selecting the best split
from a set of possible splits, in order to maximize the information gain at a tree node.
The main advantages of the Decision Trees are:

• Requires little data preparation, but does not support missing values (do not re-
quire normalization or standardization of the initial data)

• The cost of using the tree is logarithmic in the number of data used to train the
tree

• The feature importance is easy to extract

• Simple to understand and to interpret. Trees can be visualised (not in this case
because they are so much big and deep)

In the following subsection the 4 Tree Based algorithms (Random Forest (RF),
Extremely Randomized Tree (EX-T), ADA Boosting (ADA-B), Gradient Tree Boost-
ing (GRAD-B)) used in this thesis are described and all their default parameters are
listed in [25]. The most important parameters are the following:

• n estimators: The number of trees in the forest. The larger the better, but also
the longer it will take to compute. It is expected that the results will stop getting
significantly better beyond a critical number of trees.
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3.4. Tree Based ML Algorithms

• max features: The size of the random subsets of features to consider when
splitting a node. The lower it is, the greater the reduction of variance, but also
the greater the increase in bias.

• max depth: The maximum depth of the decision trees. If None, then nodes are
expanded until all leaves are pure or until all leaves contain less than min samples split
samples.

• min samples split: The minimum number of samples required in a node to be
considered for splitting.

• min samples leaf: The minimum number of samples required at each leaf node.

3.4.1 Random Forest

Random Forests (RF) are ensambles of Decision Trees [27] [28]. They share their
same basic properties and capabilities, and, moreover, the trees combination is helpful
to reduce over-fitting. The training of the set of used decision trees is done separately
so that it can be executed in parallel with the others, but some randomness is injected in
the training process to reduce the variance of the predictions. Randomness is injected
by subsampling the original dataset on each iteration to get a different training set or
considering different random subsets of features to split on at each tree node. To make
a prediction on a new instance, a random forest must aggregate the predictions from its
set of decision trees. In the case of classification, the aggregation is done by majority
vote. Each prediction is counted as a vote for one class. The label is predicted to be the
class which receives the most votes. In the case of regression the mean of the obtained
predictions of the individual trees is evaluated as output [25].

3.4.2 Extremely Randomized Tree

In extremely randomized trees (EX-T), randomness goes one step further in the way
splits are computed [29]. A random subset of candidate features is used exactly like in
Random Forest, but, instead of looking for the most discriminative thresholds, thresh-
olds are drawn randomly for each possible feature and the best of these random thresh-
olds is picked as the splitting rule. The random selection of the threshold allows to
further reduce the variance of the model [25].
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3.4. Tree Based ML Algorithms

3.4.3 ADA Boosting

AdaBoost (ADA-B) is an ensemble method that belongs to the boosting family [30]
[31]. The principle of the boosting algorithms is to convert weak learners (classifiers
or regressors with accuracy just above the random guessing) into strong learners that
predict with high accuracy. The AdaBoost training selects only the features that im-
prove the predictive power of the model, reducing complexity in terms of dimension
and improving execution time as the not relevant features do not need to be processed.
As weak learner the Decision Tree is often used, as done in this thesis. The data mod-
ifications at each boosting iteration consist of applying weights w1,w2...wN to every
training samples. Initially, those weights are all set to wi = 1/N, so that the first step
of the algorithms trains a weak learner on the original training data. For all the other
successive iterations, the sample weights are modified and the learning algorithm is
applied again to the data with the new weight. At a given step, those training exam-
ples that were wrongly predicted by the boosted model at the previous step have their
weights increased, whereas the weights are decreased for those examples which were
predicted correctly. As iterations proceed, examples that are difficult to predict receive
ever-increasing influence. Each subsequent weak learner is then forced to concentrate
on the examples that are missed by the previous ones [25].

3.4.4 Gradient Tree Boosting

Gradient Tree Boosting (GRAD-B) is a generalization of boosting to arbitrary differen-
tiable loss functions [32] [33]. The major difference between AdaBoost and Gradient
Boosting Algorithm is how each of them identifies the lacks of weak learners. While
the ADA-B model identifies the lacks by using high weight points, GRAD-B performs
the same by using gradients in the loss function which is a measure indicating how
good the coefficients of the model are at fitting the data. It supports a number of dif-
ferent loss functions: the default one for regression is ”least squares”, others are for
example ”least absolute deviation” and ”huber” which is a combination of the previous
ones [25]. The default least squares is used in this thesis. The advantages of GRAD-B
are that it can handle heterogeneous features and is robust to outliers in output space,
while the disadvantage is that it is hard to scale due to its sequential nature [34].
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3.5. Train - Test Division

Figure 3.6: K-Fold division [35]

3.5 Train - Test Division

One of the main steps of the ML algorithms is the division of the dataset between Train
and Test. The training set is made of data used for learning while the testing set is used
to evaluate the quality of the regressor or of the classifier. Usually the training set is
between 70% and 80% of a random selection of the data while, at the opposite, the
testing part is usually between 30% and 20%. A training set too small does not allow
the algorithm to learn enough from the data while a testing set too small does not allow
to verify with confidence the success of the prediction, so these percentages are a good
compromise. However, by partitioning the available data into training and testing, the
number of samples which can be used for learning the model is drastically reduced,
and the results can depend on a single particular random choice for the pair of sets.
One possible solution to this problem is the Cross Validation. There are different types
of Cross Validation Techniques but the overall concept remains the same: they firstly
partition the data in a number of subsets, then hold out a set, used for test, and the
model is trained on the remaining sets [35].
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3.5. Train - Test Division

3.5.1 Cross Validation - K-Fold Division

The K-Fold Division is the most common way to apply Cross Validation. This proce-
dure uses a single parameter k that is the number of splits applied to the entire dataset.
As such, the procedure is called k-fold cross-validation. If, for example, like in fig.
3.6, k=5, the dataset is divided into 5 equal splits and the process will run 5 times,
each time with a different holdout set. The selected group is used for the test and the
remaining ones to fit the model, so iteratively the complete dataset is trained and ev-
ery single data is used also for the testing. The value for k is chosen such that each
train/test group of data samples is large enough to be statistically representative. In
this thesis k was chosen equal to 8,12,16 and 18. The results obtained with k=8,12 are
statistically more significant. With k=16,18 the results can, usually, be better because
the training set is bigger but they can not be considered too much significant from a
statistical point of view because the test set would be too little. Cases 16 and 18 are in
any case considered for a greater overview of all the possible results [36].
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Chapter 4

Predictive System

4.1 Organization of the starting system - BMI

The first parameter considered for the regression and classification is the BMI, as,
hypothetically, it could give good results, being intuitively very probable that using
features related to muscle and fat, we can predict the weight to square height ratio,
especially in elderly people.

Considering regression, at first, the 11 NTRA features are taken in consideration
as regressors. In order to reach the best R2, a lot of combinations have been tried using
the 3 databases, the 4 different k-fold divisions and the 4 Tree Based ML algorithms
(fig. 4.1).
For example, using the NTRA features on the AGES I+II database with a k-fold divi-
sion of 8 sets using the ADA-B algorithm, 8 different R2 are obtained, one for each test
set. The same methodology is applied also for the classification obtaining a JI as result
from all the possible combinations.

All the following results are obtained using as Database AGES I+II: employing
only 1 database, the number of patients is about the half, and the results of R2 and
JI are worse than the ones obtained using AGES I+II. The only exception is with the
prediction of ISO for which the best database results AGES I.
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4.1. Organization of the starting system - BMI

Figure 4.1: Basic Prediction System for BMI

4.1.1 BMI - Regression - features=NTRA

This section presents the possible representation of the results using as example R2

results for the BMI using only the 11 NTRA as regressors.
All comments and considerations regarding the results themselves will be further dis-
cussed in the next chapter. The graphs used will be the same for all the following
results.
The same representations can be done for the classification with 3 and 5 classes con-
sidering JI instead of R2.

For all the types of representations each algorithm has a color: blue for RF, orange
for EX-T, green for ADA-B and red for GRAD-B. Fg. 4.2 shows the value of R2 for
each test set with K=1,2,...,k (in this specific case k=16) with the respective mean value
which is visible also in the histogram in fig. 4.3 together with the minimum and the
maximum value obtained for each algorithm. In fig. 4.4 the distribution of the data
printed in fig. 4.2 is represented through a Violin Plot in which the dots are the R2

values obtained for each fold.

4.1.2 Feature importance

For each prediction it is possible to extract the feature importance (see fig. 4.5): it gives
a score for each feature of your data, the higher the score more important or relevant is
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Figure 4.2: R2 BMI - Kfold=16 - features=NTRA

Figure 4.3: R2 Min-Mean-Max BMI - Kfold=8 - features=NTRA
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4.1. Organization of the starting system - BMI

Figure 4.4: R2 distribution BMI - Kfold=16 - features=NTRA

Figure 4.5: RF - Feature importance BMI - K fold=8 - features=NTRA
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4.1. Organization of the starting system - BMI

Figure 4.6: EX-T - Feature importance BMI - K fold=8-features=NTRA

the feature towards your output variable.
The relative rank of a single feature used as a node in a decision tree can be used to
assess the relative importance of that particular feature with respect to the predictabil-
ity of the target parameter. Features used at the top of the tree contribute to the final
prediction decision of a larger fraction of the input samples. The expected fraction of
the samples they contribute to, can be used as an estimate of the relative importance of
the features [37]. In practice those estimates are stored as an attribute in scikit named
f eature importances on the model. This is an array with shape N=number of features,
whose values are positive and sum to 1.0 [25]. Fig. 4.5, 4.6, 4.7, 4.8 show the feature
importances of the BMI Regression using only the 11 NTRA parameters as regressors
with k-fold=8. There is one graph for each of the 4 algorithms. Also in this case all
comments and considerations regarding the results themselves will be discussed in the
next chapter and extended also to other parameters in addition to BMI.
The analysis of the feature importance is useful only when the values of R2 are suffi-
ciently high: if R2 is less than 0.40 or even negative, this extraction is useless as it does
not add any useful information.
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Figure 4.7: ADA-B - Feature importance BMI - K fold=8-features=NTRA

Figure 4.8: GRAD-B - Feature importance BMI - K fold=8-features=NTRA
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4.2. Evolution of the system

Figure 4.9: BMI prediction - Feature Importance mean (with relative std) from 0 to 1 using
only NTRA as regressors.

4.2 Evolution of the system

The approach used to predict BMI just described is extended also to other parameters
both for regression and classification. The measurements considered for the prediction
are CHOL, TUG, NGait and ISO. The scheme of fig. 4.1 described for BMI is the
same also for these other parameters.

In order to improve the system and the possible results both in terms of classifi-
cation and regression, new sets of initial features can be created starting from the 11
NTRA parameters.
Obviously this further selection of features has been carried out in the case in which the
results obtained using only the 11 NTRA are acceptable and not negative. Anticipating
the results that will be described in the next chapter, this section describes the feature
selections to predict BMI and ISO. For CHOL, TUG and NGait, since the results were
negative with only 11 features, no further investigation was carried out.
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4.2. Evolution of the system

Figure 4.10: Prediction scheme for BMI with all the feature selections

4.2.1 Features management - BMI

The features selections used for BMI are based on the results of fig. 4.9 which shows
the feature importance mean using only the 11 NTRA parameters. The mean is ob-
tained with the combination of all k-fold divisions (8-12-16-18) and all the 4 algo-
rithms applied on AGES I+II: practically all the R2 obtained from the scheme of fig.
4.1.

The different selections of features used in addition to the 11 NTRA, are the fol-
lowing:

• NTRA + LEF= 11 NTRA, CHOL and LEF measurements (TUG, ISO, Ngait
and Fgait),

• NTRAS1= a selection of the 11 NTRA based on the results of the mean feature
importance of fig. 4.9 (All the N and the µ),

• NTRAS1 + LEF= NTRAS1, CHOL and LEF measurements.

Fig. 4.10 is illustrates the prediction scheme used for both regression and classifi-
cation for the BMI with all the several possible combinations.
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Figure 4.11: ISO prediction - Feature Importance mean (with relative std) from 0 to 1 using
only NTRAS2 and FGait as regressors.

4.2.2 Features management - ISO

As already mentioned, the prediction results for ISO are satisfactory enough to de-
serve further analysis on the feature selection. After numerous combinations attempts
and observing the results of the feature importance obtained with the 11 NTRA para-
menters, it can be deduced that among the LEF measurements only Fgait contributes to
improve the results and only if combined with a selection of the 11 NTRA (fig. 4.11).
Therefore, to avoid an excessive accumulation of useless results, only 2 further feature
selection are considered:

• NTRAS2= a selection of the 11 NTRA based on the results of the mean feature
importance of fig. 4.11 (All the N, µ musc, µ conn and σ musc),

• NTRAS2 + Fgait

In fig. 4.12 is illustrated the prediction scheme used for both regression and classi-
fication for the ISO with all the several possible combinations combining the features
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4.2. Evolution of the system

Figure 4.12: Prediction scheme for ISO with all the feature selections

selections, the databases, all the 4 k-fold divisions and the 4 tree based algorithms. As
already mentioned previously the best results, which will be explained in detail in the
next chapter, are obtained using only the AGES I database, so with a smaller number
of patients.
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Chapter 5

Regression and Classification Results

In this chapter all the results of the predictions are presented: greater emphasis will be
given to the positive ones, but the negative ones will not be excluded. The negative
results have no significant value in terms of prediction, but they allow us to understand
that there is no relationship between the parameter itself and the starting 11 NTRA
features of the mid-femur CT scan.
The best results are achieved with the test parameter BMI and with ISO while the R2

and JI values for CHOL, TUG and NGait are quite negative.
Regarding classification, as it is conceivable [22] [23], the 3 classes prediction gives
always better results than the 5 classes prediction. If the R2 values for regression are
good, also the JI values are satisfactory, and vice-versa.
From an algorithmic point of view GRAD-B gives always the best R2 and JI in any
occasion: even if the results are negative, the best ones are from GRAD-B. ADA-B,
RF and EX-T rarely give better results than GRAD-B. They work better or worse de-
pending on the parameter taken into account for the prediction. In general, the ADA-B
algorithm is the less effective for classification.
For what concerns the number of k-folds the best values of R2 and JI are achieved with
k=16,18 if we consider the maximum, while in general the mean value is higher with
k=8,12 and the latter also give a more meaningful result from the statistical point of
view as the size of the training and testing set is neither excessively large nor exces-
sively small.
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5.1. BMI

Figure 5.1: BMI - Mean and Max values of R2 for the 4 algorithms (with default values)
obtained combining all feature selections and all the k-fold divisions.

5.1 BMI

In this section the results related to the BMI regression and classification are discussed:
some of them were already anticipated in the previous chapter to explain the prediction
system.
All the BMI results are obtained using as Database AGES I+II.

5.1.1 BMI - Regression

Fig. 5.1 shows the mean and the max R2 obtained for each of the 4 algorithms with all
the combination of features selections and k-fold divisions. Those are obtained using
the default values of the functions in SL [25]. Clearly, GRAD-B gives the best results
followed by the ADA-B algorithm. The others have comparable results.
The maximum obtained without any modification of the default values is R2=0,824
(fig. 5.1) using the 11 NTRA parameters as regressors, k-fold=16 and GRAD-B algo-
rithm. Modifying the default value of this combination setting n estimators=200 the
highest possible R2 of 0,831 can be achieved.
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5.1. BMI

Figure 5.2: BMI prediction - Feature Importance mean (with relative std) from 0 to 1 using
NTRAS1 as regressors.

Using the NTRA selection of features, the R2 results are higher: selecting only
some of the 11 NTRA parameters (NTRAS1) the prediction does not improve. The
same happens if LEF and Chol are added to NTRA or NTRAS1.
The most important features are N conn and N fat. They in each possible combination
always cover more than 50% of the total importance. The importance of Chol and LEF
measurements is always less than 0,016 (from 0 to 1). For GRAD-B and RF the most
important feature is N conn while for EX-T and ADA-B the most relevant is N fat (fig.
4.5, 4.6, 4.7, 4.8) . The high importance of a connective tissue parameter is an unex-
pected result: the muscles and fat are usually analyzed in a CT scan and little or even
no importance is given to the connective tissue. These results that link the amplitude of
the connective tissue extracted from a CT scan to the BMI, in such an important way,
suggest that even for future further applications, such as comorbidity classification, the
connective tissue may have a great importance in predictive process. DM and DM2 or
vascular and cardiac diseases like CHD, CVD, CHF can be considered as comorbidi-
ties.
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5.1. BMI

Figure 5.3: BMI prediction - Feature Importance mean (with relative std) from 0 to 1 using
NTRA + LEF as regressors.

Figure 5.4: BMI prediction - Feature Importance mean (with relative std) from 0 to 1 using
NTRAS1 + LEF as regressors.
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5.1. BMI

ML Algorithm JI (3 Classes) JI (5 Classes)
•Mean •Mean
•Max •Max

Random Forest • 0,701 • 0,642
• 0,756 • 0,712

EXTRA Tree • 0,696 • 0,638
• 0,766 • 0,715

ADA Boosting • 0,631 • 0,565
• 0,714 • 0,618

Gradient Boosting • 0,732 • 0,679
• 0,797 • 0,741

Table 5.1: BMI Classification - JI Mean and Max for the 4 algorithms obtained combining all
feature selections and all the k-fold divisions

In fig. 4.9, 5.2, 5.3, ,5.4, it is possible to see what explained above: the mean of
the feature importances using all the k-fold divisions and all the 4 algorithms for the
different selections of initial features has always as the most important ones N conn
and N fat while CHOL and LEF parameters are not useful for the prediction.
The amplitude N and the width σ for fat, muscle and connective tissue are always at
the first 6 positions while the skewness α in particular does not contribute significantly
to the prediction.

5.1.2 BMI - Classification

Table 5.1 shows the results of the classification using JI as an indicator of the accu-
racy. The results, as expected, are better with 3 classes, but the ones with 5 classes
are not far from the previous ones, so both classifications can be considered reliable.
The maximum JI (0,797) is obtained using GRAD-B with 3 classes, combined with
NTRAS1 and k-fold=18. The maximum JI with 5 classes (0,741) is obtained with the
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same combination. From the results of table 5.1 is also possible to understand that also
for classification GRAD-B is the best algorithm while ADA-B does not work in a good
way.

In the violin plots of fig. 5.5 is possible to see the distribution on the values of JI
with k-fold=8 combining all the feature selections for the 3 and 5 classes classification.
In the 3 classes classification some folds obtain a very low JI and this causes to lower
the final average value. In the 5 classes classification distribution it is easy to notice
the big difference between ADA and the other predictive algorithms.

Figure 5.5: Violin Plot for JI distribution in the 3 (left), 5 (right) classes classification of BMI
with K-fold=8
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5.2. LEF: CHOL, TUG & NGait

Figure 5.6: R2 CHOL - Kfold=16 - features=NTRA

5.2 LEF: CHOL, TUG & NGait

In this section the results related to the LEF parameters, in particular CHOL, TUG and
NGait, both for regression and classification, are discussed. No prediction analysis was
done for FGait: applying the prediction algorithms already to the NGait it is useless to
repeat it for a very similar parameter, which is also not significant for patients as old
as those present in AGES.
Next section is dedicated only to the ISO as its results are so much better than those
presented here. For these three measurements the prediction results both for regression
and for classification are not particularly positive: this, however, allows to deduce that
the parameters of muscles, fat and connective tissue of a mid-femur CT scan are not in
any way predictive for these analyzed data.
The features used for the prediction are always only the 11 NTRA parameters: no
feature selection has been applied due to the bad results.

5.2.1 LEF - Regression: CHOL, TUG & NGait

In fig. 5.6, 5.7, 5.8 it is possible to see the values of R2 for CHOL, TUG and NGait
with k-fold=16. All of them are really low, even below zero (this is possible due to the
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5.2. LEF: CHOL, TUG & NGait

Figure 5.7: R2 TUG - Kfold=16 - features=NTRA

Figure 5.8: R2 NGait - Kfold=16 - features=NTRA
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5.2. LEF: CHOL, TUG & NGait

definition of R2 itself [21]). They do not change with other values of k in the k-fold
division: the mean R2 is never more than 0.1. In this case try to use a selection of
the 11 NTRA or add other parameters as regressor is completely useless as well as the
extraction of the feature importance.

Figure 5.9: Violin Plot for JI distribution in the 3 (left), 5 (right) classes classification of CHOL
with K-fold=16

5.2.2 LEF - Classification: CHOL, TUG & NGait

As it is possible to see in the violin plot of fig. 5.9 and in tables 5.2, 5.3, also the
classification results are completely unsatisfactory: most of the JI values obtained do
not exceed 0.5 and this means that less of half of the classes are predicted correctly. For
the 5-class classification, no value of JI ever exceeds 0.5, reaching the lowest values
even below 0.25.
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5.3. ISO

ML Algorithm CHOL (3 classes) TUG (3 classes) NGait (3 classes)
•Mean •Mean •Mean
•Max •Max •Max

Random Forest • 0,392 • 0,421 0,449
• 0,454 • 0,467 0,506

EXTRA Tree • 0,397 • 0,414 0,444
• 0,460 • 0,490 0,491

ADA Boosting • 0,367 • 0,395 0,411
• 0,410 • 0,427 0,491

Gradient Boosting • 0,432 • 0,464 0,493
• 0,467 • 0,508 0,563

Table 5.2: LEF 3 classes Classification - JI Mean and Max for the 4 algorithms obtained com-
bining all feature selections and all the k-fold divisions

As in the BMI classification also for these three parameters the values in the prediction
with 3 classes are greater than the ones achieved with 5 classes and the best algorithm
is still GRAD-B while the worst is always ADA-B. In any case these comments, given
the low JI values , are not significant: the results are simply negative for every type of
possible combination.

5.3 ISO

In this section the results related to the ISO regression and classification are discussed.
The R2 and JI obtained can be considered satisfactory even if they do not reach the
values achieved with the BMI: it can be said that there is a link, even if not extremely
strong, between the values extracted from the CT scan and the strength of the leg in
elderly people. Moreover, the most important features are different from those of the
BMI, and this confirms the quality of the prediction.
All the following ISO results are reached through all the combination of the four k-fold
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5.3. ISO

ML Algorithm CHOL (5 classes) TUG (5 classes) NGait (5 classes)
•Mean •Mean •Mean
•Max •Max •Max

Random Forest • 0,306 • 0,339 0,375
• 0,346 • 0,385 0,415

EXTRA Tree • 0,306 • 0,333 0,372
• 0,378 • 0,396 0,418

ADA Boosting • 0,294 • 0,306 0,330
• 0,349 • 0,381 0,371

Gradient Boosting • 0,328 • 0,367 0,422
• 0,363 • 0,400 0,462

Table 5.3: LEF 5 classes Classification - JI Mean and Max for the 4 algorithms obtained com-
bining all feature selections and all the k-fold divisions

divisions, the four algorithms and the three different feature selections as shown in fig.
4.12 considering as database AGES-I.

5.3.1 ISO - Regression

Fig. 5.10 presents the R2 values using the 11 NTRA as initial features and k-fold=16:
the maximum R2 mean values is reached with GRAD-B and it is near to 0,55 with a
maximum which exceeds 0,61.
Fig. 5.11 shows the maximum, the mean and the minimum R2 obtained with all
the k fold divisions and the three different features selections (NTRA, NTRAS2 and
NTRAS2+FGait). The maximum mean values is still the one obtained with GRAD-
B but the maximum value (0,614) comes from the EX-T algorithm combined with
NTRAS2 + FGait and k-fold=16. With EX-T it is possible to reach the maximum but
also the lowest value of R2=0.305. The low values derive from the cross validation
with k-fold=16,18: they contribute to lowering the general average which would be
slightly higher if only k=8,12 were supposed to be used.
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5.3. ISO

Figure 5.10: R2 ISO - Kfold=16 - features=NTRA

Figure 5.11: R2 Min-Mean-Max - ISO - All K-fold and Features Selection combinations
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5.3. ISO

Figure 5.12: ISO prediction - Feature Importance mean (with relative std) from 0 to 1 using
NTRAS2 as regressors.

As it is possible to see in fig. 4.11, 5.12, 5.13, N musc covers almost the 50% of
the feature importance while the connective tissue, expecially the µ value, has again a
high importance in the prediction. This strengthens the results obtained with the BMI:
connective tissue is again very relevant and it must be considered as one of the main
prediction factors for the the eventual future applications. The order of importance of
the features is always the same in the case of NTRA and NTRAS2 while in the case of
adding FGait, which allows to reach the best R2 values, it is the third most important
feature. All the other measurements such as LEF and CHOL, following several exper-
iments, do not affect the final results, only FGait allows improving the results if added
to NTRAS2.
All the results achieved for ISO are achieved using the default values of the algorithms
function of SL [25].

5.3.2 ISO - Classification

Table 5.4 shows the results of 3 and 5 classes classification about ISO. As for the
BMI, the JI values are so much better with 3 classes, and, opposite to the BMI, the JI
results for the 5 classes classification are absolutely not reliable and not comparable
with the good ones obtained for BMI. This big difference between the 3 and 5 classes
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5.3. ISO

Figure 5.13: ISO prediction - Feature Importance mean (with relative std) from 0 to 1 using
only NTRA as regressors.

Figure 5.14: Violin Plot for JI distribution in the 3 (left), 5 (right) classes classification of ISO

50



5.3. ISO

ML Algorithm JI (3 Classes) JI (5 Classes)
•Mean •Mean
•Max •Max

Random Forest • 0,566 • 0,366
• 0,604 • 0,412

EXTRA Tree • 0,566 • 0,355
• 0,609 • 0,410

ADA Boosting • 0,486 • 0,319
• 0,543 • 0,362

Gradient Boosting • 0,603 • 0,400
• 0,637 • 0,445

Table 5.4: ISO Classification - JI Mean and Max for the 4 algorithms obtained combining all
feature selections and all the k-fold divisions

is probably due to a wrong previous classification of the ISO itself, but a maximum
for the 5 classes classification of JI=0,445 is even worse than the results obtained for
CHOL, TUG and NGait. On the other hand JI results for the 3 classes classification are
not good as the ones obtained with the BMI but at least good enough: the maximum of
JI= 0,637 is obtained with GRAD-B (which is again the best of the 4 ML algorithms)
combined with NTRAS2 + FGait and k-fold=18. ADA is again the worst of the 4
algorithms while RF and EX-T are comparable: in the case of classification, EX-T
algorithm is not as good as for the regression.
Violin plots of fig. 5.14 shows the big difference between 3 and 5 classes classification
on the values of the y-axis and that the worst results are reached with ADA algorithm.
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Chapter 6

Conclusions and Possible
Developments

The thesis work was focused on the prediction of some physiological measurements
using as initial features 11 parameters called NTRA extracted from a Transaxial Mid-
femur CT scan using the AGES-Reykjavik dataset of 6314 patients provided by Ice-
landic Hearth Association. This was the first investigation of this dataset through ML
methodologies.
Usually the ML technologies applied to medical images work on the image itself (pix-
els) in order to create masks or to do segmentations: in this thesis, we try to link a CT
scan to physiological measurements that are not relative to the image itself and which
apparently may have not connections with a mid-femur CT scan.
The obtained results, especially for BMI, but also for ISO, allow us to say that the 11
NTRA parameters, combined sometimes with other measurements, can have a very
significant predictive value. To confirm this we can also comment on the negative
results that reinforce the predictive value of the 11 NTRA parameters: they are not
predictive for all the parameters but only for some of them, in fact with the used ML
tree based algorithms they cannot predict at all the cholesterol, the gait analysis mea-
surements and the Time up and Go, but with the same methodology they can predict
very well the weight height ratio and the leg strength. The tree based algorithms give
good results, but, eventually, a future exploration of other ML algorithms can be done
in order to improve, or at least confirm, the achieved results.
The results of the features importance for the BMI and for the ISO are particularly rel-
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evant: the very hight ones obtained from the 3 connective tissue parameters deserves a
special mention. Much importance is usually given to muscles and fat in the CT scan
analysis, but these results confirm that in the predictive process the connective tissue
has an importance that is absolutely not negligible, in some cases also primary.
The database contains also other parameters like comorbidities relative to cardiac, lung
or diabete diseases. The same methodology can be applied to classify these comorbidi-
ties: the classification would be binary, so good results could be achieved. In case of
positive results they would further strengthen the predictive value of the 11 NTRA pa-
rameters. For this possible future implementation we could work choosing different
numbers for the k-fold, avoiding k=16,18 and maybe considering k=10.
Finally this thesis can be considered as a starting point for a more in-depth analysis of
the AGES-Reykjavik database: the prediction with high values of JI of any comorbidi-
ties would be an excellent result.
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