
POLITECNICO DI TORINO

Department of Control and Computer Engineering
Computer Engineering

Master Thesis

Autoscaling mechanisms for
Google Cloud Dataproc

Monitoring and scaling the configuration of Spark clusters

Supervisors:
prof. Paolo Garza
prof. Raphael Troncy

Luca Lombardo

Delivery Hero Company Supervisor
Nhat Hoang

Academic year 2018-2019

Contents

1 Introduction 1
1.1 The problem: Hadoop cluster autoscaling 2
1.2 Apache Hadoop . 2

1.2.1 Hadoop HDFS . 3
1.2.2 Hadoop YARN . 4

1.3 Apache Spark . 6
1.3.1 Scheduling of stages and tasks 7
1.3.2 Dynamic Resource Allocation 8

1.4 Google Cloud Platform . 9
1.4.1 Cloud Storage Connector . 9

1.5 Elastic for YARN . 10

2 A piece in the puzzle: OBI 13
2.1 Architecture . 13

2.1.1 Heartbeat . 14
2.1.2 Scheduler . 14
2.1.3 Predictive module . 15
2.1.4 API . 16

2.2 Authentication and authorization . 16
2.3 Fault tolerance . 16

2.3.1 Deployment example on Kubernetes 17

3 State of the art 19
3.1 Google Cloud Dataflow . 19

3.1.1 What we learned . 20
3.2 Shamash . 21

3.2.1 What we learned . 22
3.3 Spydra . 23

3.3.1 What we learned . 24
3.4 Cloud Dataproc Cluster Autoscaler 24

3.4.1 What we learned . 25

iii

4 Design 27
4.1 The core points . 27
4.2 The window logic for scaling up . 28
4.3 Selection of YARN metrics . 30
4.4 Downscaling . 32

5 Implementation 35
5.1 Go in a nutshell . 35
5.2 The autoscaler package . 37

6 Results 43
6.1 About the preemptible VMs . 43
6.2 Job analysis . 45
6.3 Test set I . 46

6.3.1 High scaling factor . 47
6.3.2 Medium scaling factor . 51
6.3.3 Low scaling factor . 54
6.3.4 Conclusions . 58

6.4 Test set II . 59
6.4.1 Fast decommissioning . 60
6.4.2 Slow decommissioning . 63
6.4.3 Conclusions . 65

6.5 Google autoscaler comparison . 65
6.6 Custom job . 67

7 Conclusion 71
7.1 Issues . 72
7.2 Improvements . 73

7.2.1 Node-oriented autoscaler . 73
7.2.2 Weights in the window metrics 73

7.3 Final considerations . 74

References 75

iv

Chapter 1

Introduction

In 2012 the Harvard Business Review article [1] affirmed the Data Scientist profes-
sion as "The Sexiest Job of the 21st Century". We all know the story so far: the Big
Data movement took over and the demand for this new position rapidly increased.
Today all the companies try to squeeze their large amount of data to gain new in-
sights and improve their businesses. All the Cloud Services providers, like Google
and Amazon, met this market demand: nowadays it is really easy for a company,
and specifically who is in charge to analyze data, to create a Hadoop cluster on the
fly where deploying Spark jobs, only a matter of minutes. Unfortunately, it is not
all so easy as it seems. The first big difficulty to face is cluster configuration: the
data scientist skills often do not cover this task, so he needs the technical support
each time he wants to create a cluster for a specific job type; the result is that the
whole process is slowed down. Suppose for a moment to take this path: it would not
work anyway, because even the most careful hand-tuning will fail as data, code, and
environments shift. Another simple solution could be the One size fits all approach:
always the same configuration. It is clear that this solution absolutely does not
work: a configuration with a small set of resources is good for save money but it
will end up making some jobs, that suddenly need computational power during their
execution, too slow. Over-provisioning solves the computational related issue but at
the same time, we waste money, trying to kill a mosquito with a bazooka. All the
big companies operating in the cloud computing services realized these issues, and
they started to offer smarter services, reducing as much as possible the complexity
client-side. We will see in the next chapters that still today these services do not
allow great flexibility in terms of frameworks, especially when Machine Learning
comes. For this reason, we came to the need to have both great flexibility, thanks
to existing and really popular frameworks such as Hadoop and Spark, and also an
agent which takes care, nearly real-time, about the workload and resize the clusters
accordingly. The data scientist simply wants to submit a job, considering.

1

1 – Introduction

1.1 The problem: Hadoop cluster autoscaling
The technical problem we are going to discuss about in this thesis is related to
the Hadoop-cluster created in cloud environment. As we said, in this settings the
approach to submit a job is totally different: the user does not have an on-premise
cluster, with fixed hardware and configuration. He is free to create a tailored cluster,
that he will be shut-down after job completion. It is the so-called "ephemeral model".
The three most important configuration parameters when a user wants to create an
Hadoop cluster are:

1. Hardware configuration for the virtual machine (the node of the cluster)

2. Software configuration

3. Cluster size

Except for software configuration, it is really difficult for a data scientist to make
decision about hardware and cluster size. This task requires low-level knowledge but,
even in that case, the estimation is still approximative. In the context of scaling,
these are two sides of the same coin: if we think about hardware, we talk about
vertical scalability; in the other hand, when we reason on cluster size, we talk about
horizontal scalability. For obvious reasons, it is impossible to change the hardware
in the nodes on the fly. On the contrary, in a cloud environment where we can get
all the resources we need in a few minutes, it is really easy to scale out, i.e. add
and remove nodes in the cluster on the fly. Therefore, the goal of this thesis is
to analyze and discuss all the existing solutions that allow, starting with minimal
resources, to resize the cluster nearly real-time based on the running workload. Then
we will try to do a step further, improving the existing solutions with comparison
tests that validate this. Finally, from the obtained results we will find strengths and
weaknesses, introducing new ideas and features that could be implemented to solve
the latter ones.

1.2 Apache Hadoop
Over the years we have been more and more aware that, using classic and exist-
ing technologies to store and process data, we will not do great things with big
data. Moving around large quantities of data is really expensive, and also scaling
up a machine to handle data processing tasks really computation demanding; in few
words: scalability problems. Here the idea to switch from scale up to scale out:
we have clusters, composed by many machines containing chunks of data, where to
ship the code to execute in an embarrassingly parallel fashion. After all, moving

2

1.2 – Apache Hadoop

computation is cheaper than moving data. In this specific moment, lots of peo-
ple started studying, solving and implementing solutions for distributed systems.
Among these, Apache Hadoop [2] is one of the most important tools in the Big
Data environment. It is a really comprehensive framework, offering solutions to
deal with massive amounts of data under each aspect: from storage to processing,
going through resource managing in the distributed systems. Specifically, we can
highlight these three components:

• Hadoop HDFS

• Hadoop YARN

• Hadoop MapReduce

We going to briefly introduce these modules, immediately highlighting their im-
portance and all the potential issues in the context of autoscaling. We are not going
to cover the processing module, Hadoop MapReduce, because it is not used in our
context (but also, in general, any more) in favour of Apache Spark.

1.2.1 Hadoop HDFS
Storing data in an efficient but reliable way it is the first challenge we have to face.
Hadoop Distributed File System (HDFS) [3] try to solve all the issues in this context.
It has a master/slave architecture, for this reason in classic HDFS cluster we can
highlight:

• The NameNode, the master, that manages the file system namespace and
regulates access to files by clients.

• The DataNodes, the slaves, which manage storage in each node of the cluster.

The existence of a single NameNode in a cluster greatly simplifies the architecture
of the system: a client that wants to access a file, ask NameNode providing the name
and the last one will provide the list of DataNodes to contact to have all the chunks
of that specific big file. Having said that, it is clear that the entire file system will
be unavailable when the NameNode is down: it is the case when we have a Single
Point Of Failure (SPOF). The issue could be solved with technologies that go under
the "High Availability" mode, but they are out of the scope of this thesis.

Hardware failure is the norm rather than the exception. It is one of the most
important concepts to keep in mind when dealing with distributed systems. What
about if a DataNode, containing a specific chunk of data, is temporarily unavailable
or unreachable? Here we can introduce one of the most important key features
of Hadoop HDFS (but also of each distributed system framework in general): the

3

1 – Introduction

replication. In a cluster we have redundant copies of the same chunk, both in the
same rack and off-rack: the purpose of a rack-aware replica placement policy is to
improve data reliability, availability, and network bandwidth utilization.

In the context of autoscaling (and cloud infrastructure, where we have Hadoop
Cluster As A Service), HDFS represents a big issue mainly for two reasons:

1. The initial number of nodes, that should be as small as possible and increased
if necessary, could be insufficient to handle all HDFS data.

2. Adding and removing nodes on the fly means moving data: the scaling update
could be delayed, neutralizing the autoscaler effectiveness

In order to completely solve these issues, it is necessary to rely on other storage
technologies, offered by cloud services provides, that could be easily integrated into
the Hadoop ecosystem.

1.2.2 Hadoop YARN
The main goal of YARN [4] was to generalize the first version of Hadoop, that was
highly coupled with MapReduce jobs, in order to make it more scalable for other
job types. The result is that the resource management and job management run
into separate daemons. In the YARN context, we have the concept of "Container",
representing a piece of resources in terms of memory.

Figure 1.1: The actors in YARN.

As shown in the Figure 1.1, we have these actors:

4

1.2 – Apache Hadoop

• The ResourceManager (RM), that manages resources in the cluster among all
the applications.

• The NodeManagers (NM), agents running on each node of the cluster, that
monitor YARN Containers, local resources and report the same to the RM.

• The ApplicationMaster, a specific framework module, which interacts with
the assigned nodes, through the NM, to execute and monitor the tasks in the
YARN Containers.

Although there is this separation, Hadoop YARN is defined as a monolithic clus-
ter scheduler anyway [5]. That is because the scheduler logic to assign resources, is
implemented only in the ResourceManager: in other words, the application-specific
framework has no control at all in this process. In the context of autoscaling could be
an issue: sometimes it could be useful to exploit autoscaling to maximize the perfor-
mances of a specific job. It is quite hard to make it happen because we do not have
control over the scheduling algorithm. A solution could be creating an ephemeral
cluster to run only a job: it is not so much complicated in a cloud environment after
all.

Monitoring the YARN metrics is the key step for autoscaling: analyzing them we
could understand the current status of the whole cluster and make scaling decision
accordingly. At this point we are in front of two big challenges:

1. Selecting the most significant set of metrics, that capture as much information
as possible about the current cluster status.

2. Implementing a policy that exploits the selected metrics in an effective way.
Here it is really important to have a deep knowledge about how YARN works,
in order to implement a mechanism which harmoniously runs with the sched-
uler running in the RM.

Last but not least, YARN provides us with an important feature: graceful de-
commission [6] of the Node Managers. In a dynamic context, where we can smartly
detect wastage of resources, it is really important to make the deletion of the nodes
in a reliable and safe fashion, in order not to destroy running tasks. Otherwise, we
force the running framework to reschedule failed tasks, making slower the job or, in
unlucky cases, making it fail. Thanks to this feature, we can remove nodes waiting
for the completion of running tasks, avoiding to schedule new ones on them.

YARN metrics

This a quick list of the most relevant YARN metrics exposed by the Resource Man-
ager:

5

1 – Introduction

• AllocatedMB, the amount of allocated memory

• AllocatedVCores, the number of allocated virtual cores

• AllocatedContainers, the number of containers deployed in the cluster

• AggregateContainersAllocated, the cumulative number of containers deployed
in the cluster

• AggregateContainersReleased, the cumulative number of released containers

• AvailableMB, the amount of free memory

• AvailableVCores, the number of free virtual cores

• PendingMB, the amount of requested memory to be fulfilled

• PendingVCores, the number of virtual cores to be fulfilled

• PendingContainers, the number of containers to be fulfilled

• NumActiveNMs, the number of active NodeManagers

• NumDecommissionedNMs, the number of decomissioned NodeManagers

1.3 Apache Spark
After storage and resource management, data processing is the last of the three main
aspects that we should consider when talking about Big Data. Nowadays Apache
Spark [7] is absolutely the most popular framework, thanks to its great performances,
ease to use and flexibility both for supported platforms (YARN, Mesos, Kubernetes)
and use cases (such as SQL, Streaming and Machine Learning tasks). Spark uses a
master/worker architecture. In its domain, as shown in Figure 1.2, we can find two
types of actors:

• The SparkDriver, the master, that negotiate with the cluster manager (i.e.
YARN) for resources where to execute tasks.

• The Executor, the process worker on each assigned node, that runs the tasks
in the spawned threads.

One of the most important Spark features, that actually allows having great perfor-
mances, is the so-called Resilient Distributed Dataset (RDD): it is the abstraction
of the data the frameworks is dealing with. The RDD is split in small partitions,
each of those maintained in the main memory of the Executors and processed in

6

1.3 – Apache Spark

Figure 1.2: The Spark components.

parallel by different tasks. In this way, all the write/read operation from the sec-
ondary memory, which is the case of Hadoop MapReduce, are avoided and we do
not introduce significant overhead which slows down the entire workflow and could
have a huge impact especially in iterative algorithms.

The theory behind Spark is quite vast, but we are going to review the fundamen-
tal concepts to have a general idea about how it works and to properly understand
the following section "Dynamic Resource Allocation".

1.3.1 Scheduling of stages and tasks
The operations that we can use for a Spark job script are classified into two cate-
gories:

• Transformation, where the input and the output is an RDD

• Action, where the input is an RDD and the output is actually data in a file or
variable

The first important concept is that all the Transformations are lazily evaluated.
It means that each processing operation parsed in the code is not immediately
evaluated. The DAG scheduler starts to build the Directed Acyclic Graph, where
the node is a Transformation and the edge the relationship between the two ones.
This approach allows having a global view of the entire workflow to apply many
optimizations, such as reorganizing the order of the operations (in a way that the
final result is not affected, of course) to minimize the size of intermediate data and

7

1 – Introduction

speed-up the process. The relationship between two Transformations could be of
two types: Narrow or Wide. The first one means that each partition of the parent
RDD is used by at most one partition of the child RDD; in few words, the single
thread applies the transformation in its chunk of RDD. The second one means
that multiple child partitions may depend on one partition of the parent RDD;
this is the case when a Shuffling is needed, for example when we have to perform
operations grouping by some keys. For this reason, in the DAG we can notice
the so-called Stages: Wide transformation results in stage boundaries. The DAG
scheduler is actually Stage-oriented because it works on the relationships between
transformations and, as consequence of this, stages. At this point of our journey, we
can focus our attention what is inside a single stage: there are many tasks, that will
be executed in the threads spawned by the Executor. Connecting the dots, a Spark
will request the RM for YARN containers, because each Executor will run within
them. The close relationship between YARN Container and Spark Executor is really
important for the next step when we will introduce a key feature implemented in
Spark, really useful for autoscaling.

1.3.2 Dynamic Resource Allocation

Spark provides a mechanism [8] to dynamically adjust the resources the application
occupies based on the workload. This means that the application may give resources
back to the cluster if they are no longer used and request them again later when there
is demand. Specifically, the Spark engine continuously monitors the pending tasks
queue and, when it realizes that the entire process is going to slow down too much, it
triggers a request to the RM to allocate new Executors that, in turn, will create new
threads to consume the pending tasks. On the contrary, when it realizes that there
are no pending tasks and only a portion of the allocated Executors are actually used,
it will release those idling. The policy to request RM for new resources is inspired
by the "TCP slow start" mechanism: at each time interval the monitoring check is
performed and, if there is the need for new Executors, it will be requested only one,
and then in each round increases exponentially from the previous round until the
number is enough to consume all the pending tasks. Thanks to this approach, an
application should request executors cautiously in the beginning in case it turns out
that only a few additional executors is sufficient; but at the same time, it should
be able to ramp up its resource usage in a timely manner in case it turns out that
many executors are actually needed. It is clear that this job-oriented mechanism
is complementary to our cluster-oriented autoscaler: our mechanism should indulge
its requests, placing new nodes into the cluster to accommodate more Executors,
and then remove them when they are no longer useful.

8

1.4 – Google Cloud Platform

1.4 Google Cloud Platform
The availability of high-capacity networks, low-cost computers and storage devices
as well as the widespread adoption of hardware virtualization, service-oriented archi-
tecture, and autonomic and utility computing has led to growth in cloud computing
[9]. Thanks to cloud computing, companies no longer need to care about their on-
premise infrastructures, spending both economic and human resources for operations
on those. In the world where "everything as a service" is the way, people working at
the companies can focus better on their job and work only on what matters for their
business. Among the most important cloud services providers, such as AWS [10]
and Azure [11], we can find Google Cloud [12]. They provide must-have services in
the categories of computation, storage, databases and data warehousing, big data,
machine learning and so on. In our context we can briefly mention those that we
are going to actually use:

• Compute Engine [13], to deploy different kind of Virtual Machine where the
software is going to run.

• Storage [14], to save important data and scripts.

• Kubernetes Engine [15][16], which expose the Kubernetes cluster where to
deploy our containerized application.

• Dataproc [17], to easily create ephemeral Hadoop clusters where to run Spark
jobs.

Undoubtedly, Google Cloud Dataproc is the "first-class citizen" service, allowing
us to create clusters but also dynamically reconfigure them based on autoscaling
directives.

1.4.1 Cloud Storage Connector
An important problem we raised during the introduction to Hadoop is that we
cannot rely on HDFS because of the not-indifferent overhead it introduces and in
addition, it is possible that during autoscaling actions we will end up with a too
small cluster to store all the data to be processed. It is necessary to store data in a
different place and ship the chunks to Spark Executor only then they need. Apache
Hadoop actually supports different file-systems: it is necessary to implement the
class org.apache.hadoop.fs.FileSystem, in order to expose the requested interface to
perform the required semantics on files. Specifically, this is the list of operations
that should be atomic:

• Creating a file.

9

1 – Introduction

• Deleting a file.

• Renaming a file.

• Renaming a directory.

Of course in this way we are violating the "data locality" principle, a fundamental
concept in the Big Data environment; in this case, we should rely on the perfor-
mances offered by the internal network where our VMs run, inside the Google Cloud
environment. Google Cloud Storage, as mentioned in the previous section, is our
solution to store files to be processed. Using by the Cloud Storage Connector [19]
we could easily access data stored in Storage from our Spark job, simply opening
a file with "gs://<path-to-file>". Be aware that Cloud Storage is not a proper file-
system, it is actually an object store. The interface offered by this kind of service
corresponds to simply HTTP verbs rather than POSIX-like. In addition, they are
design to be really high available so eventually consistent. In few words we should
be aware that they could fail in meeting the following features, guaranteed with
HDFS:

• Consistency, because of eventually consistent design.

• Atomicity, because operations are not atomic.

• Durability, because it relies on the HTTP PUT operation that could fail.

• Authorization, because there is no conventional way to store metadata to
handle owner, group and permissions.

1.5 Elastic for YARN
The validation and evaluation processes, in our scope, requires the visualization of
the YARN metrics. Only in this way we can assess the behaviour of the mechanism,
checking if it meets the requirement about resource savings and perfect utilization of
the cluster. There are existing ready-to-use solutions out there: Google Stackdriver
[20] and Ambari [21]. First, we will briefly discuss the advantages and drawbacks of
these, then explain our solution based on Elastic Stack [22].

Google Stackdriver

Pros:

• No configuration required, it is perfectly integrated for each GCP service.

Cons:

10

1.5 – Elastic for YARN

• Really expensive.

• Metrics not really precise with Google Dataproc.

• Flexibility: no customization and missing single-metric details.

Apache Ambari

Pros:

• Designed for Apache Hadoop.

Cons:

• Incompatibility with Google Dataproc.

• It requires Grafana [23], meaning additional configuration, for more flexibility.

Our approach: Elastic Stack

The solution based on the tools provided by the Elastic Stack is at the same time
the simplest one and really effective. We can leverage the existing Elasticsearch
cluster used in the company; in addition, Elastic provides tools like Kibana [24] and
Metricbeat [25], which allow us to collect metrics in a reliable way and ensure great
flexibility about manipulation and visualization. There is no existing Metricbeat
module for YARN but we can overcome the problem: it is available the module
Jolokia [26], useful to collect metrics from Jolokia agents [27] running on a target
JMX server. Jolokia software is actually a JMX-HTTP bridge that allows you to
access the metrics exposed in the Java Virtual Machine in an easier way. The only
configuration task that we have to perform is to install and configure Metricbeat in
the master node of each cluster and attach a Jolokia agent to YARN JVM: all these
tasks could be easily executed automatically during the start-up of a new cluster,
exploiting Google Initialization Actions [28].

11

Chapter 2

A piece in the puzzle: OBI

The autoscaler that we are going to study is just a module inside a greater schema:
OBI, Objectively Better Infrastracture. It is a software stack focus on cloud re-
sources management. It aims to remove the entity "cluster" for the end-user who
just wants to focus on their analytic applications. The software will take care of both
of the ephemeral Spark clusters, transparently created through the Dataproc API,
and of the incoming jobs, smartly deployed on them. To minimize time and cost ex-
penditures, it implements many resource optimization mechanisms. It was designed
and implemented by a team of three people, myself included, in parallel with my
studies on the autoscaler. In the next chapter, we are going to see the architecture,
the relationship between modules and the importance of the autoscaler.

2.1 Architecture
The two most important objectives are run everywhere and lightweight. Porta-
bility is one of the most important aspects: OBI should be as general as possible, in
order to run on every environment with the minimum effort. To achieve this goal,
the modules will be packed in Docker containers, allowing us to run the software also
on Kubernetes (or other containers orchestrators). In addition, the implementation
of logic and communication should be really simple but effective at the same time.
It should run really fast in order to be really reactive on each change that happens
on the managed clusters. Achieving this goal in the logic implementation of the
modules is really challenging and an ongoing process. In order to make the commu-
nication really efficient but also reliable, we exploited gRPC [29] library: it is the
Google framework to implement Remote Procedure Call, based on Protocol Buffer
[30] to exchange data, a really efficient and cross-platform serialization mechanism.
Last but not least, the programming language: all the modules are implemented in
Go, which allows us to write really efficient code with much less effort compared to

13

2 – A piece in the puzzle: OBI

C++/Java. The Figure 2.1 shows the final architecture:

Figure 2.1: OBI architecture.

2.1.1 Heartbeat
The heartbeat module is crucial to get the current state of all our clusters. Remem-
bering the lightweight principle, the operations of this module are extremely simple:
in each master node of the clusters, a daemon script runs every t seconds, sending
all the metrics. The data is serialized using by Protocol Buffer to achieve high com-
pression and sent on UDP packets in order not to introduce too much overhead.
The receiver listens for these packets and, every time it receives the data from a
specific cluster updates the sliding metrics window in a concurrency-safe fashion. If
it does not receive anything from a cluster within a timeout interval, it will remove
this last one from the pool.

2.1.2 Scheduler
In a cloud-based environment, we have to rethink our approach about job submis-
sion: we do not have long-living on-premise clusters. We work with the so-called
"ephemeral model" [18]: only when the user needs to submit jobs, he will create
a specific cluster on the cloud, submit the jobs and delete it when every task has
finished. In this way, we pay for what we actually use.

The solution implemented by competitors, the "cluster pooling", is based on a
different idea: keeping a pool of existing cluster and, upon job submission, select one
of them. The weakness of this solution is that it is in contrast with the ephemeral

14

2.1 – Architecture

model we have just talked about, and represents a wastage of money. The only
benefit we could have from this approach is cutting cluster initialization overhead.
In the case of Google Dataproc we are talking about 1 minute, that is a negligible
time saving considering that, in general, batch jobs have a "best-effort" priority, with
no strict time constraints (such as in real-time application, front-end services and
so on).

The main goal of the OBI scheduler is grouping together jobs submitted by
different users in the same time period, in order to reduce the number of spawned
cluster. The scheduler can accommodate many little jobs in a single cluster or one
heavy and few light ones, for example. In this way, the module does not affect too
much the performances of every single job.

These are the main concepts of the OBI scheduler:

• There are N priority level

• For each level, we have many bins

• One bin contains many job

• Upon job submission, the new size of the current bin is checked: if it exceeds
the threshold, another empty bin is added in the level

• When the level-timeout expires, all the jobs in a bin will be deployed in
single cluster

The scheduler is really flexible to allow the administrator to properly handle
every kind of job in the platform, setting a longer timeout in order to maximize
the packaging for low-priority jobs and vice versa. At the end of the day, he can
configure:

• The number of levels

• The value type of the bin (count or time duration)

• Threshold for bin size (60 minutes, 10 jobs, for example)

• Timeout for each level

2.1.3 Predictive module
An important feature that allows the software to schedule jobs in a smarter way is
the Predictive Module. Upon a job submission request is received by the master,
before pushing the job into the scheduler logic, the time duration is estimated. The
master sends all the relevant job and cluster details in order to attach in job instance

15

2 – A piece in the puzzle: OBI

the duration received in the answer. Of course, this module is really environment-
dependent and should be adapted to the typical jobs submitted. In general, the
estimation is based on the most significant YARN metrics, such as memory and
v-CPU information, but also and especially job information, like the number of
processed files and their size. Despite its natural specificity, the implementation is
modular, in order to allow external clients to train their own model based on any
kind of Spark job, just implementing the interface with the software.

2.1.4 API
It is the module to expose relevant information for the users. Keeping in mind that
the job is not immediately deployed into a cluster, with a delay-time dependent on
the priority, it is really important to inform the users about the job status, log files
and so on, in order that they could implement the logic for precedence constraints,
failure handling and other related problems. The web server is implemented in
Golang, specifically using the library GIN [31]. All the data are fetched from a
PostgreSQL, as explained in the next section "Fault tolerance".

2.2 Authentication and authorization
All the communications between the client and the master are implemented using by
Remote Procedure Calls. It is necessary to make these communications secure and
only with authorized users. Many authentication mechanisms are built-in to gRPC:
in the case of OBI, we exploited the SSL/TLS mechanism, in order to authenticate
the server and encrypt all the messages exchanged. In addition, we use NGINX as
SSL Termination and Reverse Proxy, in order to simplify the backend services. The
unencrypted packet is then sent to the OBI master: in the header, gRPC allows
to specify the user credentials, and a middleware checks if an account with that
username and password exists in the database.

2.3 Fault tolerance
Every software system has to care about failures, both software and hardware ones.
The main goal is ensuring the entire system is not stopped, but it is capable to
continue its operations introducing as little as possible service outage client-side
and avoiding a total breakdown. Two big steps towards an effective fault tolerance
system are microservices architecture and deploying on Kubernetes. The first one,
among the many advantages, improves fault isolation: in a monolithic architecture
the failure in a specific component leads to the failure of the entire system; on the
contrary, with an architecture where we have many running services loosely coupled,

16

2.3 – Fault tolerance

we can improve fault isolation. It is important to remark the word improve because
we should keep in mind that all the components communicate each other: a severe
failure in one or more service could have a not-indifferent impact on the whole
system. Kubernetes is today one of the best platforms where to run microservices
systems. It offers many solutions in order to make them scalable and reliable. One of
the most simple ones is ReplicaSet: in the case of stateless applications, such as the
Predictive Module in our case, we can just create a Deployment that manages many
replicas of the same software. In this way we can scale out the specific service and
decrease the chance to have an outage for it, having more replicas ready to handle
incoming requests. For the OBI master, we cannot follow this approach, because
it maintains in-memory the state of the entire system. In addition, a failure in the
master means that the entire system is not reachable by the end users: we have
the so-called Single Point of Failure. In this case, the software relies on the Restart
Policy: Kubernetes detects the failure of the OBI Master and will care to restart
the component again. At this point, we need a persistent layer, in order to trigger
a recovery mechanism and recreate the state of the Master just before the failure.
At each action that modifies the current state of the OBI-Master, the new state
is persisted to a PostgreSQL database. The last point in order to tackle failures
completely is the fault-tolerance for the database itself. The system relies on Stolon
[32], an existing platform to ensure High-Availability for PostgreSQL. Of course, it
leverages Kubernetes to achieve this: it uses not only the already mentioned features
but also the so-called StatefulSet [33]. It is the most important Kubernetes Object
to manage stateful applications, that is the case. Stolon maintains many running
PostgreSQL instances, each one in a Pod with a unique identifier, and just only one
is the leader, i.e. the replica in charge to satisfy the write operations. The standby
instances could satisfy only-read operations, because, its state is synchronized with
the master. In addition, to persist the application state on disk, each instance is
bounded to a Persistent Volume, a storage-like resource that is bounded to the pod
unique identifier but has a lifecycle independent of the individual pod that uses it.
Last but not least, Stolon implements the logic to elect a new master when the old
one is declared failed, in order to have nearly-zero downtime service.

2.3.1 Deployment example on Kubernetes
As discussed in the architecture section, the software is able to run on every envi-
ronment with the minimum effort, thanks to containerization. However, we prefer
Kubernetes for all the reasons discussed so far. In this environment we can apply
the microservices architecture discussed so far, with the following components and
respective Kubernetes Objects:

• Master

17

2 – A piece in the puzzle: OBI

– Deployment to manage the Pod with replication factor equal to 1
– NodePort service to expose an endpoint for receiving heartbeats from

clusters.
– LoadBalancer service to expose a public endpoint for accepting new job

requests from the client.
– Ingress NGINX-based to accept secure gRPC communications.
– ConfigMap to load the yaml-like configuration file.
– Secret to store the JSON file containing the Google Cloud credentials.

• Predictive module

– Deployment to manage the Pod with replication factor equal to 2.
– ClusterIP service to expose it to the master.

• API

– Deployment to manage the Pod with replication factor equal to 2.
– LoadBalancer service to expose a public endpoint for accepting requests.
– Ingress NGINX-based to accept only HTTPS requests.

• HA-PostgreSQL

– Deployment to manage the Pods running the Proxies with replication
factor equal to 3.

– Deployment to manage the Pods running the Sentinels with replication
factor equal to 3.

– StatefulSet to manage the Pods running the Keepers with replication
factor equal to 3.

– ClusterIP service to expose the Keepers inside the cluster.
– ClusterIP service to expose the Proxies inside the cluster.

It is really easy to reproduce the same environment on any Kubernetes cluster
because everything is installed using by a Helm [34] chart.

18

Chapter 3

State of the art

In this chapter, we are going to explore existing solutions to perform autoscaling.
We are going to analyze not only mechanisms tailored for Google Dataproc but
even existing solutions in another context as a source of inspiration. At the end
of each section, we will discuss the advantages and disadvantages of the approach,
highlighting the features we should take care of.

3.1 Google Cloud Dataflow
Dataflow [35] is another service by Google for transforming and enriching data in
stream and batch mode. Therefore the goal is data processing for many use cases,
like for Dataproc.

The engine actually powering Dataflow is Apache Beam [36]. The key concepts
are:

• Pipeline, the instance which encapsulates the entire data processing flow

• PCollection, a distributed data set to manipulate

• PTransform, the data processing operations that we can apply on PCollections

The details about Beam are out of the scope of this thesis, but an in-depth
explanation could be found in the programming guide [37]. Despite many similarities
with Apache Spark, there are important differences:

1. Beam unifies Batch and Streaming pipelines. Indeed the PCollection could be
bounded, meaning data come from a fixed source like a file, or unbounded,
meaning data come from a continuously updating source via a subscription
or other mechanism. In Spark, the developer has to implement two different
versions of the code to manage the different pipelines.

19

3 – State of the art

2. API, a higher level of abstraction. The provided methods allow the developer
to focus more on processing flow rather than on implementation details which
could affect performances.

3. Portability. The same code can run everywhere thanks to Runner. We write
once and we can execute it on different environments (on-prem, cloud) choosing
the proper runtime Runners (Spark, Flink and others).

The most important advantage of using it is the abstraction. This service re-
moves complexity on the client-side, managing all the operational tasks (scaling,
availability, security, etc) and allowing the client to focus only on programming. It
was designed with autoscaling in mind. Autoscaling relies on several signals to make
decisions. Most of these assess how busy and/or behind workers are, including CPU
utilization, throughput and the amount of work remaining (or backlog). Workers
are added as CPU utilization and backlog increase and are removed as these metrics
come down.

3.1.1 What we learned

Cloud Dataflow is really convenient when we have to perform classic data processing
workflows, for the reasons we have discussed so far. Of course, we pay these nice
features with flexibility. When we need to perform more complex workflows (itera-
tive processing, notebooks, Machine Learning) we cannot rely on the simplicity of
Dataflow, we have forced to use the classic/popular architecture Hadoop/Spark. It
would be convenient to create the same abstraction level in this last environment,
and OBI represents a step in this direction, exposing a job-oriented interface rather
than cluster-oriented. Of course, we need a mechanism to emulate the autoscaling
feature offered in Dataflow. As discussed in the Paragraph 1.3.2, in Spark there
is the Dynamic Resource Allocation mechanism in order to dynamically adjust the
resources your application occupies based on the workload. The mechanism is re-
ally similar to the autoscaling mechanism implemented in Dataflow but there is a
big disadvantage: it does not care about the cluster. Probably if a job requires
an additional worker for a computationally-intensive state, we will need additional
cluster nodes in order not to affect other jobs which rely on the same resources. In
Cloud Dataflow, on the other hand, the client only cares about jobs; we can imagine
GCP as an autoscaled cluster and this is simply for developers. So, to conclude,
we could implement an autoscaler that lies on top of Dynamic Resource Allocation
mechanism and leverages in a similar way the signals exploited by Dataflow.

20

3.2 – Shamash

3.2 Shamash
Shamash [38] is an autoscaling service tailored for Google Dataproc, developed by
DoIT International.

Figure 3.1: The Shamash workflow.

In the Figure 3.1 the entire workflow is visualized. It is pretty straightforward:

1. Every 5 minutes, in each managed cluster, a monitoring task is scheduled on
the clusters machine.

2. The monitoring task get the current YARN metrics and publishes them into
a Pub/Sub topic.

3. On a new Pub/Sub message, the function check_load is triggered and retrieve
the new message. If yes, another message will be published to another Pub/-
Sub topic.

4. In the should_scale procedure the metrics are analyzed and the software makes
a decision about the scaling action.

5. If a scaling action is required, the do_scale procedure will compute the number
of nodes to add or remove.

After Retrieving the information about the YARN Memory and YARN Contain-
ers, the following metrics are computed:

21

3 – State of the art

• The YARN available memory percentage

• The YARN pending container percentage

At this point, it is possible to apply the scaling decision. The administrator could
set four configuration threshold:

• Up Memory Available percentage

• Down Memory Available percentage

• Up Pending Container percentage

• Down Pending Container percentage

The SCALE_UP action is triggered when:

1. The current pending container percentage is greater than "up pending con-
tainer percentage" threshold

2. The current available memory percentage is less than "up available memory
percentage" threshold

On the contrary, the SCALE_DOWN action is triggered when:

1. The current pending container percentage is less than "down pending container
percentage" threshold

2. The current available memory percentage is greater than "down available mem-
ory percentage" threshold

In addition, there is the last option, that is SCALE_TO_MINIMUM, when the
current available memory percentage is 100The last step to cover is determining the
number of nodes to add or remove. There are two different strategies implemented: if
there is enough historical data in Stackdriver, the new number of nodes is determined
with a linear regression; on the contrary, the task is performed simply looking at
how many containers fits in a single node and consequentially tune this number in
order to have the minimum number of nodes that fit perfectly the current workload.

3.2.1 What we learned
The mechanism to get metrics introduces too much overhead due to the usage of
Pub/Sub just to retrieve metrics: we can use directly StackDriver API to get this
kind of information or custom efficient mechanism, as we did in OBI in the heartbeat
module. The choice to look at YARN Memory and Containers is quite good, they

22

3.3 – Spydra

are the most important and discriminative metrics to get an idea about the actual
utilization of the entire cluster. The scaling decision policy is too simplistic: it is true
that "threshold-based" autoscalers are quite simple and effective, but in this case, it
seems too much naive. In addition the developers do not provide any information
about how they trained the regression model to determine the new number of nodes:
I think that this solution is poorly generic, because it will learn the pattern from
current jobs, that could differ in the workload slope. Last but not least, the idea of
preemptible VMs is really good: for small jobs in duration, we can use them during
scaling, in order to maximize the money saving. It is really important to remember
that they could be killed at any moment, leading to tasks failures. For this reason
it is not recommended for really long jobs: if too many failures occur, Spark will
mark the job as failed, and of course we should run again the entire job.

3.3 Spydra

Spydra [39] is a Google Dataproc wrapper, hiding the complexity of cluster lifecycle
management, configuration and troubleshooting behind. It is really similar to OBI,
actually being the software where we take inspiration from. It was developed at
Spotify, as part of their effort to adopt the GCP platform for the data infrastructure.

Of course, one of the most important module in the Spydra context is the au-
toscaler module. The first important architectural choice to highlight is where the
scaling algorithm runs: it is triggered every n seconds on the master node of each
cluster. This is a completely different approach we have seen so far: this solution
allows to cut off every overhead related to metrics shipment. In addition, despite
what we have seen in Shamash, the logic here is not 2-step-based (check if a scaling
operation is needed and compute how many nodes), but it directly computes the new
size of the cluster, making the module even more efficient. It is an important aspect
not to neglect because the autoscaler should be really fast and reactive following the
workload signal.

The metrics used are always the same, regarding YARN memory and YARN
containers and in addition the number of active nodes. The new number of the
nodes is determined around a configurable value: the factor. It is defined as the
percentage of YARN containers that should be running at any point in time (from
0.0 to 1.0). At each time interval, based on the mentioned metrics, the current
number of containers that the cluster can accommodate is computed, getting in this
way the current factor. If this last indirect metric is less than the specified value,
the autoscaler will scale up the cluster, and vice versa. The new number of nodes
required is simply that size that allows satisfying the factor value. All the nodes
added or deleted are preemptible VMs.

23

3 – State of the art

3.3.1 What we learned
The Spydra autoscaler does not introduce any remarkable characteristic with respect
we have analyzed so far: it uses the same YARN metrics and the preemptible
VMs. Its mechanism to get YARN metrics influenced the OBI heartbeat module,
as discussed in Paragraph 2.1. The autoscaler, every time is triggered, can read
nearly real-time metrics, making decisions that are not "outdated". The configurable
value "factor" is quite interesting, at least the idea it introduces: why do need to
accommodate every pending container immediately? It is a good choice to tune
this value on the job priority, for example: a low-priority job, because of a spike
in its workload, could need a lot of containers; we can wait and satisfy the request
only partially, hoping the spike will vanish after few seconds thanks to the job
characteristics or the completion of other concurrent tasks. We can speculate, and
if the resources demand is still high, it could be satisfied in more than one autoscaling
action.

3.4 Cloud Dataproc Cluster Autoscaler
It is the autoscaler module, tailored for Google Dataproc, developed by Google [40]
and presented during the Google Cloud Next event in late July 2018. We cannot
know all the implementations details, but the general algorithm, as explained in the
documentation, is pretty clear and we can sum up in the following steps.

1. They introduce the concept of "cool down" period, during which the autoscaler
collect all the metrics of cluster

2. The number of nodes to add/remove, called "delta" in this context, is equal to
Equation 3.1.

3. If the delta is greater than the minimum fraction of workers, the scaling op-
eration is performed. For example, if we have 20 nodes and this configurable
value is 0.2, the scaling action is triggered if the delta is greater than 4.

∆N = α
Pm − Am

Wm

(3.1)

where:

Pm = YARN pending memory
Am = YARN available memory
Wm = worker YARN memory
α = scaling factor

24

3.4 – Cloud Dataproc Cluster Autoscaler

Figure 3.2: Google Autoscaler in action.

3.4.1 What we learned

The implementation provided by Google is really simple and general, in order to be
effective in each environment with different jobs shapes. Engineers at Google lever-
aged on the same YARN metrics like the competitor tools, but they introduced a
banal but really important feature not implemented in the other autoscaling mech-
anisms: the concept of windowing, the "cool down" period in this context. Making
decisions based only on the really last metric could be completely misleading: the
module should capture not only the current state of the cluster but even where it is
going to be, trying to figure out the recent trends. In this specific case, the Google
Autoscaler tries to evaluate, on average, how much memory it would have needed in
order to have zero pending jobs during last period. The logic of "window analysis" it
is the most important aspect which will heavily affect the autoscaler performances,
and this is what we should focus on, mainly. One of the big drawbacks of Google

25

3 – State of the art

implementation is the time window size: the minimum interval that could be set is
10 minutes, a huge interval that does not allow to promptly resize the cluster based
on the real-time workflow.

26

Chapter 4

Design

In this chapter, we are going to design the autoscaler. Specifically, we will discuss
what we have inherited from the tools we have discussed about, the approach, the
specific YARN metrics and finally the logic which drives the up/downscaling policies.

4.1 The core points
Based on what we have learned from the state of the art analysis, we can conclude:

1. We absolutely need to get metrics about YARN Memory and Containers (at
least).

2. In order to maximize the saving, we can scale the cluster with preemptible
VMs.

3. The autoscaler could expose a tunable value as a scaling factor, to tune the
chasing degree of the autoscaler based on jobs priorities.

4. The autoscaler could ignore scaling actions that would add/remove a small
number of nodes with respect the size of the whole cluster.

5. The scaling decision should be based on the short-time window analysis, i.e.
considering the last n metrics just before the autoscaler was triggered.

As discussed before, we have to focus on the logic that analyzes the window of
metrics. All the autoscaler we have seen so far follow a threshold-based approach:
it means the scaling action is triggered when a specific metric (either primary o
secondary) is greater/less than a specified value in the configuration. There are
other approaches out there, especially based on Machine Learning models and/or
Time Series Analysis. The problem with these approaches is that they are quite

27

4 – Design

rigid: in order to have good performances, it is necessary to have training data
from the environment, allowing the model to learn the patterns implicitly present
in the characteristics of the jobs. Despite everything, there is no guarantee the
model will work after the big effort to collect data and train the most suitable one.
This is one of the most important reasons that convinces companies to go with a
threshold-based approach for real production services: it is really simple and quite
effective in each environment. The main drawback is that the logic could be too
much naïve, especially when this approach is applied directly on the raw metrics
offered by YARN: it is the case of EMR autoscaling [41]. The autoscaler by Google
tries to do a step further for this approach, changing a little bit the common steps:
it does not simply compare the metrics against a threshold, but it tries to compute
secondary metrics and based on a relationship between them, compute directly the
number of nodes that could be useful to add/remove. In this way, we could have
still a simple design but much smarter and effective. We are going to follow this
path, trying to design a logic capable of making smarter decisions.

4.2 The window logic for scaling up
Once we have fixed the must-have features for the autoscaler, we should focus com-
pletely on the logic we have to apply in each time-window. At this point, we should
take a step back and remember what is the most important goal in this context:
understanding where the cluster is going to go, the future state of it. Technically
speaking, we would design a proactive autoscaler: it means it could anticipate the
future demands for resources. On the contrary, all the autoscaler we have seen so
far could be defined as reactive, meaning that the autoscaler reacts only when a
workload issue occurred (probably too late!). This task is quite difficult without
statistical models but we have already decided not to follow this approach, in order
to apply the platform independence principle. A good trade-off could be an au-
toscaler in the middle between these two classes: neither purely proactive, because
it is impossible with heuristics approach, nor purely reactive, trying to exploiting
the evidence of the metrics to get the future trend of the workload, considering that
in some cases it is actually impossible.

Before diving into our logic, we should take a look at the example shown in the
Figure 4.1: it represents a possible case when the Google Autoscaler misses what
we have discussed so far. It simply relies on the average of the unaccepted mem-
ory requests. In this case, a high memory request at the beginning of the window
influences too much the final scaling decision. The negative average suggests the au-
toscaler to add nodes to bridge the missing memory gap, but from our rational point
of view, we can easily understand that it is a totally wrong decision, as the colour
gradient and the "future" part confirm. The root problem here is that the autoscaler

28

4.2 – The window logic for scaling up

treats the metrics as isolated single points in the time and, as a consequence, it
cannot get any important information about their evolution.

Figure 4.1: The unfavourable case for Google Autoscaler. In each box the metrics
about YARN Pending Memory and YARN Available Memory. The negative average
is in contrast with the actual trend, highlighted by the color gradient.

With a motorist metaphor, we can say that we are interested in average accel-
eration, rather than average speed. We should analyze each metric with respect to
the previous one to get the trend of the workload. We can conclude this part by
saying that we actually need two different kinds of rates:

• The pending rate, to evaluate the trend for pending containers.

• The throughput, to evaluate the trend for containers decommission.

If the pending rate is greater than the throughput, the cluster cannot find enough
resources to allocate new containers because it does not release the existing one, so
it needs more nodes. In the opposite case, the cluster probably is over-provisioned
because it continuously releases resources. Computing the difference between these
two rates, we actually get the rate of containers that the cluster could not allo-
cate immediately. Finally, we can now formulate the new delta returned by the
autoscaling logic, as in Equation 4.1.

∆N = α(T −G) (4.1)

where:

T = Throughput
G = Pending growth rate
α = scaling factor

This first formulation is really high-level but it is just to give the overall idea of
the algorithm. In the next section, we are going to deep into this formula, adding
more details and introducing the YARN metrics that allow us to estimate these two
high-level rates.

29

4 – Design

4.3 Selection of YARN metrics
In the previous chapter, we have seen that all the competitors’ tools leverage on
memory and container YARN metrics. Of course, these ones are really important
and we are going to use them, but we should introduce some other information
to evaluate if the cluster perfectly fits the workload or not. We need a metric to
understand if the currently allocated resources are totally used all the time and,
in case of pending containers at the same moment, we scale up the cluster. It is
one of the biggest differences with respect the competitors: we could have pending
containers but, if at the same moment the autoscaler notices that the resources are
going to be released, we do not need to add new nodes. Among the YARN metrics
mentioned in the introduction, the AggregateContainersReleased might help us. In
order to explain better its importance, we are going to analyze its behaviour during
an expensive Spark job: the K-means, with the following set-up:

• 300000 random sample.

• 40 centroids.

• 25 iterations.

The cluster configuration is the following:

• 1 master node with 4 CPU and 15.0 GB of memory.

• 2 slave node with 4 CPU and 15.0 GB of memory.

The Figure 4.2 shows the result: there are 5 allocated containers (1 is for the Ap-
plication Master e 4 containers to execute tasks). We can conclude that the YARN
Resource Manager actually gave all the available resources to the job because only
2 containers fit in every node at maximum. We can notice these four containers
are never released because of the high workload of the iterative algorithm. There
are pending containers (not showed in the figure) for sure, in order to immediately
execute tasks that could not find free space into the existing ones. But what YARN
actually does is waiting for tasks completion and, instead of satisfying pending con-
tainers requests, schedule the pending tasks in the already allocated containers. At
the end of the job, we can see they all are released at the same time because there
are no longer tasks to schedule.

At this point it is clear that we could use this metric we have introduced to
compute the throughput rate, as shown in Equation 4.2. We have just obtained the
first mentioned rate so far, to evaluate the trend for containers decommission.

T = 1
Nw

NwØ
t=1

Cr(t) − Cr(t− 1) (4.2)

30

4.3 – Selection of YARN metrics

Figure 4.2: The evolution of AggregateContainersReleased and ContainersAllocated
during the execution of a K-means job.

where:

T = Throughput
Cr = The total number of released containers
Nw = The number of metrics points in the time window

At this point, we need to compute the second rate, the pending growth one. This
case is quite simple because we just have to look at the pending-type metrics like the
competitors do. But even in this case, we could introduce a small detail to improve
the actual estimation of the new resources needed. It could happen usually that both
PendingMemory and AvailableMemory are greater than zero. It happens because
YARN is going to use the free resources to satisfy the requests (at least partially)
but this on-going process is not revealed by the metrics, updated only when the
allocation process has done. For this reason, we could a find a third term in the
Equation 4.3, where we compute the number of containers that will be allocated
soon, simply dividing the total available memory by that one used to allocate a
single container.

G = max(0, 1
Nw

NwØ
t=1

Cp(t) − Cp(t− 1) − Ma(t)
Mc

) (4.3)

where:

31

4 – Design

G = Pending growth rate
Cp = The total number of pending containers
Nw = The number of metrics points in the time window
Ma = The available memory
Mc = The memory allocated for a container

In this section we have deepened every term in 4.1, and now we could rewrite it
in details as in Equation 4.4.

∆N = α(1
Nw

NwØ
t=1

Cr(t)−Cr(t−1)−max(0, 1
Nw

NwØ
t=1

Cp(t)−Cp(t−1)−Ma(t)
Mc

)) (4.4)

4.4 Downscaling
Even if it could seem a simple operation, just the opposite of scaling-up, downscaling
is completely another story. For this reason we should rethink the approach discussed
so far. We have designed an algorithm in order to assess how many more nodes the
cluster needs to fit perfectly the workload. All the sophisticated features we have
described are going to fail because here we have a totally different goal. Right now
the main objective was adding the minimum number of nodes as possible to meet
the future demands of resources. In this case, the objective is even simple: remove
unused nodes. And for a simple goal, we possibly need a simple design. In addition,
a decoupled mechanism between scaling-up and scaling-down could be useful to tune
differently the autoscaler in these two different cases. For example, the autoscaler
could be "prudent" at adding nodes but really "aggressive" at removing them, at the
same time. This is a feature that competitors completely ignored. The simplest and
most effective solution could be installing a daemon inside each node of the clusters,
in order to query NodeManager’s metrics and evaluate the activity level over a fixed
time window. This mechanism is actually implemented in the autoscaling module of
other platforms, such as Kubernetes. Unfortunately, we cannot adopt this solution
because of Google API limitations: this mechanism requires the possibility to shut
down a specific node. In "clouds terms", we need to call an API that allows us
to shut down a specific VM where the NodeManager is running. The Dataproc
API actually does not expose this functionality but it permits just to change the
size. For this reason, the adopted solution is slightly different: if and only if the
pending rate is equal to 0 (it means that the cluster is either perfectly sized or
over-provisioned), the autoscaler computes the new size following a "compaction"
approach. From the currently allocated memory information, it determines how
many nodes fit in a single node of the cluster. the minimum number of nodes that
allow having the same quantity of memory. Of course it is just an approximation:
the memory allocation is spread out in the cluster: for example, assuming that a

32

4.4 – Downscaling

node could host 2 containers at maximum, we could have a situation where there
are 2 nodes with only a container allocated each. The Equation 4.5 formalizes what
explained so far:

∆N = N − Ca

Cn

(4.5)

where:

Ca = The total number of allocated containers
Cn = The number of containers that fits in a single node
N = The current size of the cluster

33

Chapter 5

Implementation

In this chapter, we are going to see the implementation in details. As anticipated
in the Paragraph 2.1, the programming language is Golang. It allows us to write
efficient, multi-threaded code with the minimum effort compared to C/C++. As
the first step in the part, we will introduce some of the basic concepts we need to
know before diving in the code. Then we will analyze the most important chunk
of the code and how we have implemented the semantics discussed in the previous
chapter.

5.1 Go in a nutshell
Go is an imperative, statically typed programming language. The syntax is really
similar to C with some modern characteristics (no parenthesis in the if statements,
instant declaration/initialization). Like C/C++ we can work directly with pointers,
but there is no support for pointer arithmetic. In addition, it compiles to native
code to ensure great performances. This is the classic "Hello World" program:

1 package main
2
3 import "fmt"
4
5 func main () {
6 fmt. Println ("Hello Go")
7 }

It is not a proper object-oriented language if we come from C++/Java. The
first big difference is that we do not have classes: we can define structs, embedding
properties, and we can define methods for them. We do not have the most important
OOP concepts like inheritance, because creators tried to push for Composition over
Inheritance[42]. In order to exploit polymorphism, Go offers interfaces: they
work as in C++ and Java, but there is no need for the programmer to explicit the

35

5 – Implementation

interfaces that the struct is going to implement: just implementing all the defined
methods, the interface is satisfied implicitly. One of the key features is concurrency:
Go was born when the multi-threading caught on, for this reason, it was designed
with concurrency in mind. Launching a new thread, in this context goroutine, to
execute a specific function is really easy:

1 // just a function (which can be later started as a goroutine)
2 func doStuff (s string) {
3 }
4
5 func main () {
6 // using a named function in a goroutine
7 go doStuff (" foobar ")
8
9 // using an anonymous inner function in a goroutine

10 go func (x int) {
11 // function body goes here
12 }(42)
13 }

Of course, there are many libraries to solve all the concurrency-related issues, espe-
cially about synchronization. They all are designed to be really easy to use: the idea
is just to write only a few lines and everything will be managed behind the scene,
the developer does not to worry about it. Explaining all these libraries is out of
the scope of this chapter; we are going to introduce only channels: they are typed
conduit through which the different goroutines can send and receive values. In the
following chunk of code, a comprehensive review of the channel usage:

1 ch := make(chan int) // create a channel of type int
2 ch <- 42 // Send a value to the channel ch.
3 v := <-ch // Receive a value from ch
4
5 // Non - buffered channels block. Read blocks when
6 // no value is available , write blocks until there is a read.
7
8 // Create a buffered channel . Writing to a buffered channels
9 // does not block if less than <buffer size > unread values have

been written .
10 ch := make(chan int , 100)
11
12 close(ch) // closes the channel (only sender should close)
13
14 // read from channel and test if it has been closed
15 v, ok := <-ch
16
17 // if ok is false , channel has been closed
18
19 // Read from channel until it is closed

36

5.2 – The autoscaler package

20 for i := range ch {
21 fmt. Println (i)
22 }
23
24 // select blocks on multiple channel operations ,
25 // if one unblocks , the corresponding case is executed
26 func doStuff (channelOut , channelIn chan int) {
27 select {
28 case channelOut <- 42:
29 fmt. Println ("We could write to channelOut !")
30 case x := <- channelIn :
31 fmt. Println ("We could read from channelIn ")
32 case <-time.After(time. Second * 1):
33 fmt. Println (" timeout ")
34 }
35 }

5.2 The autoscaler package
Inside the autoscaler package we could find two different parts:

• The autoscaler module

• Policies

It is really important this separation because it introduces to modularity. The
autoscaler is a general module in the OBI context with pluggable policies. What
we have discussed in the previous chapter it will be the autoscaling policy in this
context. Now, with the following pieces of code, we are going to clarify the roles of
these two complementary parts and what actually they do respectively.

In Go environment, the code is organized in the so-called packages; defining
packages and declaring structs with methods inside, we can implement in a similar
way we got used in an OOP language. In the autoscaler package, first of all, we have
defined the struct for the autoscaler module and the interface Policy that must be
implemented in order to build a pluggable policy.

Listing 5.1: Autoscaler struct and Policy interface
1 package autoscaler
2
3 import ...
4
5 // Autoscaler module resizes the managed cluster
6 // according to the policy .
7 // The policy is a pluggable struct with a well - defined
8 // interface to implement .

37

5 – Implementation

9 type Autoscaler struct {
10 Policy Policy
11 Timeout int16
12 quit chan struct {}
13 managedCluster model. Scalable
14 allowDownscale bool
15 }
16
17 // Policy defines the primitive methods that must be
18 // implemented for any type of autoscaling policy
19 type Policy interface {
20 Apply (* utils. ConcurrentSlice) int32
21 }

In the code 5.1 we can immediately analyze the properties inside the Autoscaler
struct:

1. Policy, in the Policy struct that implements the interface and applied at each
timeout.

2. Timeout, is the time interval in seconds to trigger the policy logic.

3. quit, is the channel to communicate with autoscaler goroutine, used for safely
close the thread.

4. managedCluster, the Scalable cluster to scale periodically.

5. allowDownscale, a setting to allow the downscaling or not.

We can easily understand that this module controls the autoscaling behaviour
from a higher point of view. In the architectural design of the code, we have an
Autoscaler instance for each Cluster instance, and only the first one knows the sec-
ond one. It is important to notice that from the autoscaler point of view, there is
no specification about the cloud platform. It could be from Google Cloud, AWS,
whatever: it must implement the Scalable interface, it means that is a cluster that
provides methods to resize itself during the execution. The boolean to block down-
scaling could be useful sometimes: the downscale operation, as we will discuss in the
next chapters, is quite problematic for already running tasks. In the case where we
are more interested in performances rather than cost saving, it could be exploited.
After the initialization, where we specify the high-level information discussed so far,
we can start and stop (see code 5.2) the goroutine which applies the policy at every
time interval. The struct Policy, in order to be so, must implement the method
Apply that receives the window containing the last metrics and return an integer
the could call delta.

38

5.2 – The autoscaler package

Listing 5.2: The start and stop methods for the autoscaler
1 // StartMonitoring starts the execution of the autoscaler
2 func (as * Autoscaler) StartMonitoring () {
3 logrus . WithField (" clusterName ", as. managedCluster .(model.

ClusterBaseInterface). GetName ()).Info(
4 " Starting autoscaler routine .")
5 go autoscalerRoutine (as)
6 }
7
8 // StopMonitoring stops the execution of the autoscaler
9 func (as * Autoscaler) StopMonitoring () {

10 close(as.quit)
11 }

The Start method essentially executes the goroutine called autoscalerRoutine;
the Stop one closes the quit channel. If we take a look at code 5.3, we can notice
that before applying the policy, after timeout expiration, the routine tries to read
from the channel: it will "read" the closing operation and the goroutine exits. In
case of no closing operations on the channel, the plugged policy is executed getting
the delta to update the cluster and then the goroutine goes to sleep for the timeout.

Listing 5.3: The autoscaler goroutine.
1 // goroutine which apply the scaling policy at each time interval
2 // It will be stop when an empty object is inserted in
3 // the ‘quit ‘ channel
4 // @param as is the autoscaler
5 func autoscalerRoutine (as * Autoscaler) {
6 var delta int32
7 for {
8 select {
9 case <-as.quit:

10 logrus . WithField (
11 " clusterName ",
12 as. managedCluster .(model. ClusterBaseInterface)
13 . GetName ()
14).Info(" Closing autoscaler routine .")
15 return
16 default :
17 delta = as. Policy .Apply(
18 as. managedCluster .(model. ClusterBaseInterface)
19 . GetMetricsWindow ())
20
21 if (delta < 0 && as. allowDownscale) || delta > 0 {
22 as. managedCluster .Scale(delta)
23 }
24 time.Sleep(time. Duration (as. Timeout) * time. Second)
25 }

39

5 – Implementation

26 }
27 }

The last step to do is the implementation of the policy, all the semantics and
design choices that we have already discussed during the previous chapter. The
implementation (see code 5.4) is actually really long. For this reason, we are going
to break it into sections of lines and focusing completely on each one.

Listing 5.4: The implementation of the autoscaling policy.
1 // Apply is the implementation of the Policy interface
2 func (p * WorkloadPolicy) Apply(
3 metricsWindow *utils. ConcurrentSlice) int32 {
4 var previousMetrics model. HeartbeatMessage
5 var throughput float32
6 var pendingGrowthRate float32
7 var count int8
8
9 for obj := range metricsWindow .Iter () {

10 if obj.Value == nil {
11 continue
12 }
13
14 hb := obj.Value .(model. HeartbeatMessage)
15
16 if previousMetrics . ClusterName != "" {
17 throughput += float32 (hb. AggregateContainersReleased -
18 previousMetrics . AggregateContainersReleased)
19 if hb. PendingContainers > 0 {
20 memContainer := hb. PendingMB / hb. PendingContainers
21 containersWillConsumed := hb. AvailableMB /

memContainer
22 pendingGrowth := float32 (hb. PendingContainers -
23 containersWillConsumed -
24 previousMetrics . PendingContainers)
25 if pendingGrowth > 0 {
26 pendingGrowthRate += pendingGrowth
27 }
28 }
29
30 count ++
31 }
32 previousMetrics = hb
33 }
34
35 if count > 0 {
36 throughput /= float32 (count)
37 pendingGrowthRate /= float32 (count)
38

40

5.2 – The autoscaler package

39 workerMemory := (previousMetrics . AvailableMB +
40 previousMetrics . AllocatedMB)/ previousMetrics .

NumberOfNodes
41
42 // compute the number of containers that fit in each node
43 var containersPerNode int32
44 if previousMetrics . AllocatedContainers > 0 {
45 memContainer := previousMetrics . AllocatedMB
46 / previousMetrics . AllocatedContainers
47 containersPerNode = workerMemory / memContainer
48 } else if previousMetrics . PendingContainers > 0 {
49 memContainer := previousMetrics . PendingMB
50 / previousMetrics . PendingContainers
51 containersPerNode = workerMemory / memContainer
52 } else {
53 // unable to estimate the value - let ’s take the

minimum
54 containersPerNode = 2
55 }
56
57 if pendingGrowthRate == 0 &&
58 previousMetrics . AllocatedContainers > 0 {
59 nodesUsed := math.Ceil(
60 float64 (previousMetrics . AllocatedContainers
61 / containersPerNode)
62)
63 return int32(nodesUsed) - previousMetrics . NumberOfNodes
64 }
65 return int32 ((pendingGrowthRate - throughput)
66 * (1 / float32 (containersPerNode)) * p.scale)
67
68 }
69
70 return 0
71 }

Lines 9-37 | Rates computation

In this section. we use the already mentioned metrics inside the window to compute
the rates formulated in Equation 4.2 and 4.3. Of course, we start from the second
one in order to compute, at each iteration, the difference with the previous one. In
the end, we simply divide by the number of differences we summed just to compute
the average. Keep in mind that, from the autoscaler point of view, we do not know
the size of the window and in addition, it could not be completely full of metrics: in
the first seconds of the cluster lifecycle, for example, we could have a window that
contains only partially the metrics. The parameters that affect this aspect are the

41

5 – Implementation

heartbeat time interval and the length of the metrics window, two factor that is not
under the control of the autoscaler.

Lines 39-55 | Computing other information about the cluster

The additional information we need to apply the equations for scaling up/down are:

1. The worker memory

2. The number of containers that fit in a single node.

We cannot get these two parameters directly from YARN, for this reason, we need to
compute them. The worker memory, i.e. the available memory for YARN context in
the machine, is really simple to compute: just dividing the overall memory (the sum
of available and allocated) in the cluster by the number of the nodes. This infor-
mation is still useful to compute the second one we are interested in: the number of
containers in a node is just the division between the worker memory and the mem-
ory allocated for a single container. The container memory size could be computed
simply looking at the ratio between the overall allocated memory in the cluster and
the number of allocated containers. In order to have a resilient implementation,
the code is a little bit complicated: we try to compute this information exploiting
the "allocated-like" metrics; if it is not possible we exploit the "pending-like" ones
otherwise we simply take the worst-case value.

Lines 57-70 | Scaling up/down

At this point, we have all the information we need. As discussed in the previous
chapter we follow two different modelling approaches to distinguish the case of scal-
ing up and down. If the pending rate is equal to 0 but we have allocated containers,
the cluster could be over-provisioned: in this case, we scale to the minimum number
of machines that we need to host the already allocated containers, assuming that
each machine is with 100% utilization. In the opposite case, we could need of a
scaling up action: the function returns the delta defined in the Equation 4.4.

42

Chapter 6

Results

This chapter will be where we discuss the tests performed running real production
jobs, deployed in clusters controlled by the implemented autoscaler We are going
through different testing sets; specifically, we can tune the testing environment with
the following factors:

1. The types of jobs (computational intensive for long periods, with workload
spikes and so on)

2. The scaling factor of the autoscaler

3. Downscaling enabled/disabled

4. Timeout

5. Gracefully Decommissioning Timeout

In addition, we are going to the advantages of using the autoscaler, comparing
costs and execution time with simple fixed-size clusters. Then we will do comparisons
with the autoscaler developed by Google, that is our reference point in terms of
design and platform.

6.1 About the preemptible VMs
One of the most important features in the autoscaler is the usage of preemptible
virtual machines. It allows to cut 80% of the costs with the same hardware [43]. Of
course, this kind of VM could be killed at any moment; we should use them only
when we need to execute really-lived workload or using fault-tolerant frameworks.
It is important to remark that, in the case of preemption, the cluster size decreases
only for a few seconds: all the preemptible VMs in the Hadoop cluster are in the

43

6 – Results

so-called "managed instance group"; if Compute Engine terminates a preemptible
instance in a managed instance group, the group repeatedly tries to recreate that
instance using the specified instance template. In few words, it means that after a
while, depending on the Google Cloud service, we will have again a cluster with the
original size and the same name nodes. From the YARN point of view, a preemption
is a temporary outage in one (or more) in its nodes.

We can actually use preemptible VMs thanks to Spark fault-tolerant mechanisms.
Regarding what we have explained in the introduction, tasks are executed inside
the Executors. In our case, if a node dies, all the tasks of executors allocated
in that specific node will be marked as "failed". The tasks will be scheduled in
another executor and the entire workflow will go on. We should not think that the
preemption does not affect performances at all; on the contrary, it heavily affects
performances. In the case, the task is really computational intensive, recomputing
the portion of the RDD is expensive in terms of time and money. In addition, if a
big preemption wave happens inside the cluster, killing many machines all at once,
the rescheduling of many tasks could fail many times: in this case, the job will
be aborted due to stage failure. We can increase the spark.task.maxFailures (the
default value is 4) in order to make less likely the failure of the job, but of course, it
is not free, as explained just before. There are many additional Spark configuration
parameters, at the moment in the "experimental" state, the could be useful to tune
to limit the performance degradation:

1. spark.blacklist.task.maxTaskAttemptsPerNode

2. spark.blacklist.stage.maxFailedExecutorsPerNode

3. spark.blacklist.application.maxFailedExecutorsPerNode

Essentially, setting a low value for these three metrics we can immediately detect
killed nodes and schedule tasks in the other nodes. Of course, we should not to keep
these nodes in the blacklist forever because, as we said before, they will come back
after a while. For this reason we can also tune the spark.blacklist.timeout, in order
to blacklist the preempted nodes just for a few minutes.

Google Cloud does not provide any specific information about the logic behind
the preemption mechanism. According to the documentation, "generally, Compute
Engine avoids preempting too many instances from a single customer and will pre-
empt instances that were launched most recently. [...] For reference, we have ob-
served from historical data that the average preemption rate varies between 5%
and 15% per day per project, on a seven-day average, occasionally spiking higher
depending on time and zone. Keep in mind that this is an observation only: pre-
emptible instances have no guarantees or SLAs for preemption rates or preemption
distributions."

44

6.2 – Job analysis

At the end of the day, we do not know if this mechanism is based on specific
probability distributions, across different users or inside the same Google Cloud
Project. Because of the randomness introduced by the usage of preemptible VMs, it
is really important running the same tests a considerable number of times, in order
to get a significant statistical result. In order to find a compromise with spending
limitation, the same test will be executed 50 times, each one at the same time in
order to avoid inconsistency due to external factors.

6.2 Job analysis
Before diving into the testing phase, it is necessary to understand the workload
profile of the job we are dealing with. It is really important, in order to really
explain the obtained result and not to lead to wrong conclusions. All the following
tests will be performed with the most computationally intensive Spark job that we
could find in the ETL pipeline in the company. It is a job that should process
data from the biggest platform managed by the company, Lieferheld, and with the
minimal configuration takes more than 1 hour and 20 minutes. In the Figure 6.1
we can see the workload profile, obtained running the job in a cluster with only 2
worker nodes. It is clear that the job is characterized by distinct workload spikes: it
is not possible to show the source code in order not to expose sensitive information,
but this is not an unexpected result. Fundamentally the code is a for loop, where at
each iteration one table from the backend is analyzed. Except for a few ones, those
corresponding with high resource requests in the graph, the others are medium-size
(most of them processed at the beginning) and small-size (processed in the second
part of the job). In this specific case, each spike is characterized by a quite long tail
because of the base configuration: the cluster needs time to satisfy all the resource
requests with limited resources. At the moment we cannot conclude anything, but
we should expect that we will have worse performances in case we try to strictly
follow the workload signal because it is too much variable in time. We should not
forget that, during an up-scaling action, most of the time is spent for YARN Node
Managers start-up and the autoscaler is not totally proactive: it is possible that,
with a flexible configuration, the autoscaler will arrive always late in each up-scaling
action required.

At the moment this job is executed on a 20 nodes cluster, allocated only for
it. The nodes are all normal ones, it means that we do not have any preemption.
Approximately, it takes about 55 minutes and spending around 5.2$. A strict average
is not provided because the source code changes from time to time and, in addition,
it is quite influenced by the day of the week (for sake of simplicity, we are not
considering the day in our analysis).

The cost components are:

45

6 – Results

1. Google Dataproc license

2. Google Compute Engine cost for Normal Virtual Machine

3. Secondary memory cost

Specifically, the costs in our case are:

1. $0.040 per hour for Dataproc licence with VM n1-standard-4 (4 v-cores and
15GB of memory)

2. $0.2448 per hour for Compute Engine with VM n1-standard-4 (4 v-cores and
15GB of memory)

3. $0.048 per GB/month for standard persistent disk (500GB in our case)

In the context of autoscaling, where we add preemptible nodes rather than nor-
mal VM, we should consider the following cost:

1. $0.04920 for Compute Engine with preemptible VM n1-standard-4 (4 v-cores
and 15GB of memory)

All the costs are referred to Frankfurt (europe-west3) princing zone for Google,
in November 2018. For more info and updated costs it is possible to visit the pricing
documentation [44][45].

6.3 Test set I
We are going to test the autoscaler with three tests regarding the scaling factor: we
will see the behaviour when he tries to satisfy immediately all the resource requests
and in the case when it creates new resources more prudently. The base environment
is the following:

• Only 1 job in the cluster, as described in the previous section, with spare
workload spikes.

• Downscaling disabled

• Timeout is 60 seconds

The only variable in this settings is the scaling factor; specifically, we are going to
test with these three values:

1. 1.0, it satisfies immediately each resource request

2. 0.5, it satisfies immediately the half of resource requests

3. 0.2, it satisfies immediately one-fifth of resource requests

46

6.3 – Test set I

Figure 6.1: The number of YARN pending containers of the job executed in a cluster
with minimum configuration.

6.3.1 High scaling factor

In this test we are going to analyze the autoscaler behaviour with an aggressive
configuration, satisfying immediately all the resource requests. In the Figure 6.2
we can see the number of worker nodes during the execution: at the beginning, the
scaling-up action is not really steep because of the processing of medium-size tables.
After around 30 minutes we have the first two big tables to process and, for this
reason, we have a big step to 20 and then to 26 nodes. Without downscaling for sure
from this moment in advance we are going to be in an over-provisioned state. The
significant number of nodes allows the cluster to immediately schedule each task,
except at the end, when we have the biggest table to process: in this case we need
to add just a few nodes.

At this point, we could analyze the configuration performances looking at Pend-
ing Memory and Available Memory evolution, respectively in the Figure 6.3 and
Figure 6.4.

The graph about the Pending Memory is really easy to understand, being really
similar to the graph showing the Pending Containers evolution. We can see, again,
the different resource requests based on small, medium or big table processing. In
the graph about the Available Memory, we can clearly see that we have the over-
provisioning problem: almost always we have available memory, even when there
is no pending memory. Of course, this result is heavily biased from the absence of

47

6 – Results

Figure 6.2: The number of Node Managers during the execution of the production
job in an autoscaled cluster with high scaling factor.

Figure 6.3: The evolution of Pending Memory during the execution of the production
job in an autoscaled cluster with high scaling factor.

downscaling but, in any case, it happens what we have already discussed in the job
analysis section: being more or less "late", due to the heuristics-based design and

48

6.3 – Test set I

Figure 6.4: The evolution of Available Memory during the execution of the produc-
tion job in an autoscaled cluster with high scaling factor.

overhead introduced for Node Manager initialization, we allocate a lot of resources
that are no longer needed. We can observe this fact especially at the very beginning
of the job, dealing with medium-size tables: in theory we should have only a spike,
corresponding to new nodes allocated but still not used; practically, we continue
to add nodes to satisfy each incoming request and the available memory signal is
always greater than zero.

In the Figure 6.5 we can analyze costs: in about 50% of cases, we spend between
1.3$ and 1.9$, about 70% of saving in terms of money. In the worst case, we spend
about 2.35$ (55% savings) and in the luckiest case about 1$ (80% savings).

The results in terms of costs are quite promising but, in this case, we should
focus more on duration performances, in Figure 6.6. In the 50% of cases, we have
a duration between 4600 seconds (1 hour and 16 minutes) and 5000 (1 hour and 23
minutes). Of course, the new configuration can never beat the current production
result, unless this last one leads to a heavy under-provisioning. But, in general, we
could conclude that the performances are quite bad: in the worst case the job it
is even 60% slower. In the luckiest cases the job is only 10 minutes slower (18%
worse) but they are rare. A really high number of P-VM is a serious problem with
reliability.

49

6 – Results

Figure 6.5: The costs distribution after 50 executions of the production job in an
autoscaled cluster with high scaling factor.

Figure 6.6: The duration distribution after 50 executions of the production job in
an autoscaled cluster with high scaling factor.

50

6.3 – Test set I

6.3.2 Medium scaling factor
In this test we are going to analyze the autoscaler behaviour with a balanced con-
figuration, satisfying only half of the estimated resources. In the Figure 6.2 we can
see the number of worker nodes during the execution: immediately we can see the
difference with respect to the case before because no additional nodes are added to
process medium-size tables. After 30 minutes we have, again, a moderate scaling
up to 10 nodes. We could go for over-provisioned again in this case, but with much
fewer resources deployed; we can say more analyzing the memory graph in a while.
An interesting thing to notice here is the impact of preemption: at the beginning of
the second part (at around 12:00), we can see that the number of nodes decreases
for 1-2 minutes; it is actually the mechanism discussed in Paragraph 6.1, about the
managed group of preemptible VMs. As before, we have another scaling-up action
to handle the biggest table processing.

Figure 6.7: The number of Node Managers during the execution of the production
job in an autoscaled cluster with medium scaling factor.

Analyzing the memory-related metrics we can assess the goodness of a more
conservative approach. In the Pending Memory graph, in Figure 6.8, we can see
obviously the same pattern as before; from an absolute point of view, the quantity
of pending memory is so much higher for obvious reasons. In addition, at the end
of the job we can highlight two spikes instead of one: coming from a state where
we had only 10 nodes instead of 26, the cluster does not find enough resources for
the second biggest table (executed first) and the biggest one (executed almost at

51

6 – Results

the end). From the Available Memory graph, in Figure 6.9, we can assess that we
clearly improved the over-provisioning issue. Most of the times are equal to zero,
but we have to make clear two distinct cases:

1. At the very beginning of the job we have pending memory greater than zero,
so we are in a light under-provision situation; it is quite normal, knowing the
configuration of the autoscaler

2. In the middle and at the very end of the job, we have both pending and
available memory to zero, meaning that the cluster is perfectly sized (except
for small negligible spikes).

The only case when we still have over-provisioning is just after the 12:00 in the
graph: for about 10 minutes we have pending memory equal to 0, but at the same
time the available memory is not indifferent, reaching even 100.000 MB at some
point.

Figure 6.8: The evolution of Pending Memory during the execution of the production
job in an autoscaled cluster with medium scaling factor.

Analyzing the costs in the Figure 6.10, we can see that in about 50% of cases
we spend between 1.3$ and 1.4$, (about 75% of saving in terms of money), that is a
slight improvement with respect to the previous case. Where we can see a clear-cut
improvement is the worst case: we spend about 1.6$ (70% savings), practically the
most probable result in the previous case.

52

6.3 – Test set I

Figure 6.9: The evolution of Available Memory during the execution of the produc-
tion job in an autoscaled cluster with medium scaling factor.

Figure 6.10: The costs distribution after 50 executions of the production job in an
autoscaled cluster with medium scaling factor.

We have already verified substantial improvements with respect to before but,
in Figure 6.11, we can see that duration results are dramatically better: in the 50%

53

6 – Results

of cases we have a duration between 4100 seconds (1 hour and 8 minutes) and 4450s
(1 hour and 14 minutes). In the worst case, the job is executed in 4850s (1 hour and
20 minutes), meaning the 45% slower: it is not a really good result, but much better
with respect to the previous case. In the most favourable cases, on the contrary, the
job is only 3 minutes slower (5% worse), that is an excellent result.

Figure 6.11: The duration distribution after 50 executions of the production job in
an autoscaled cluster with medium scaling factor.

6.3.3 Low scaling factor
In this test we are going to analyze the autoscaler behaviour with a really conserva-
tive configuration, satisfying only one-fifth of estimated resources. In the Figure 6.2
we can see the number of worker nodes during the execution: it is really low, using
at maximum only 4 nodes for most of the time, scaling to 7 nodes at the end for the
two big tables as usual. Of course, this approach is really resource-saving but there
is the risk to have a cluster under-provisioned.

Taking a look at the Figure 6.13 and Figure 6.14 we can reason about the under-
provisioning aspect.

We have quite the opposite situation with respect to the first test, with scaling
factor equal to 1: the available memory is quite always equal to 0, except for the
minutes when a scaling-up action was triggered. About the pending memory evo-
lution, the graph is quite the same to the previous case but the under-provisioning
issue is slightly worse in this case:

54

6.3 – Test set I

Figure 6.12: The number of Node Managers during the execution of the production
job in an autoscaled cluster with low scaling factor.

Figure 6.13: The evolution of Pending Memory during the execution of the produc-
tion job in an autoscaled cluster with low scaling factor.

1. At the very beginning of the job we have pending memory greater than zero

55

6 – Results

Figure 6.14: The evolution of Available Memory during the execution of the pro-
duction job in an autoscaled cluster with low scaling factor.

but, with respect to the previous case, now we are in a not indifferent under-
provision situation, with pending memory quite always over 50.000 MB.

2. In the middle of the job, where the cluster was perfectly sized in the previous
case, we have a light under-provisioning situation but still acceptable, the
pending memory is constantly greater than zero but with low values.

As expected, the costs are really low in this case, as shown in Figure 6.15. In
the half of the cases they are included in a range from 0.85$ to 0.95$, that is a
really low cost: it is an 83% cut! In the worst case, where the expenditure is around
1.1, the costs are even better than 95% of the results obtained with the previous
configuration.

The duration performances are really good: in Figure 6.16 we can find the first
and the third quartile corresponding respectively to around 3800s (1 hour and 3
minutes) and 3900s (1 hour and 5 minutes), only 15% worse. Even under this point
of view, the worst case is better than 75% of all cases in the previous configuration:
4100s seconds (1 hour and 8 minutes). It is clear that the usage of a low quantity
of preemptible VMs is the key to improve performances.

56

6.3 – Test set I

Figure 6.15: The costs distribution after 50 executions of the production job in an
autoscaled cluster with low scaling factor.

Figure 6.16: The duration distribution after 50 executions of the production job in
an autoscaled cluster with low scaling factor.

57

6 – Results

6.3.4 Conclusions
As expected during the job analysis, in this case, an autoscaler that try to tightly
follow the workload signal is not worth it, and the downscaling disabled make every-
thing worse. Figure 6.17 shows us the comparison between the three configurations
in terms of costs. The result is quite expected: with fewer nodes we spend less
money. We cannot consider another evidence in the comparison: the length of the
box and whiskers in the graph. We can clearly see the effect of preemptible VMs
usage and how they impact the job performances. Using a considerable number of
P-VMs, we increase the probability of preemption: as a consequence of that, there is
so much randomness in the result. In the most unlucky case, the preemption could
heavily degrade performances, provoking the re-execution of some tasks, taking alive
the cluster for more time and definitely spend more money.

Figure 6.17: The cost comparison between the three different autoscaler configura-
tion, with downscaling disabled.

The preemption effect is still visible in the duration comparison in Figure 6.18,
where the box and whisker length gradually increases according to the scaling factor.
Paradoxically, the best result is obtained with the more conservative configuration,
where we have only a small quantity (or even not at all) of failed tasks.

At end of this test set, we have learned that:

1. A scaling factor equal to 1.0 make the autoscaler too flexible and it is not the
best configuration in this case when we have isolated spikes for a few minutes.

58

6.4 – Test set II

Figure 6.18: The duration comparison between the three different autoscaler con-
figuration, with downscaling disabled.

2. A scaling factor equal to 0.2 is good but leads to under-provisioning. Enabling
the downscaling with this scaling factor does not make sense.

From here, we are going to do a step further, enabling the downscaling with
scaling a factor equal to 0.5, in order to solve the over-provisioned state detected
during our last analysis.

6.4 Test set II
In this test set, we capitalize on what we have learned in the previous tests and
try to do better enabling the downscaling feature. Specifically, this is the base
environment:

• Only 1 job in the cluster, the same as before.

• Downscaling enabled

• Scaling factor equal to 0.5

• Timeout is 120 seconds

The only variable in this settings is the Graceful Decommissioning Timeout, as
explained in Paragraph 1.2.2; specifically, we are going to test with these two values:

59

6 – Results

1. 120s

2. 300s

In general, the behaviour of the autoscaler is the same for both configurations.
The most important thing here is to validate the reliability of these two configura-
tions. In order to have a general overview of the autoscaler behaviour, in Figure 6.19
we can see the size of the cluster during the job execution. For most of the time, the
cluster size is equal to 2, except for that moment when the processing of medium
and big-size tables.

Figure 6.19: The number of Node Managers during the execution of the production
job in an autoscaled cluster with low scaling factor and downscaling enabled.

Figure 6.20, about the evolution of the Pending and Available Memory metrics,
shows a really similar behaviour with respect to the autoscaler configuration with
a low scaling factor: indeed, we can notice a light under-provisioning state at the
beginning and in the middle of the job execution, as explained before.

6.4.1 Fast decommissioning
The first attempt is to understand if 2 minutes are sufficient in order that the
graceful decommission is effective. After 50 execution of the same test, the results
are summarized in Table 6.1

The results are not so good: in the 38% of the cases, the job failed. An-
alyzing the Spark driver logs, we could realize that the most common error is

60

6.4 – Test set II

(a) Pending memory (b) Available memory

Figure 6.20: The evolution of Pending Memory and Available Memory during the
execution of the production job in an autoscaled cluster with fast graceful decom-
missiong.

50 executions
Success Failure

31 19

Table 6.1

org.apache.spark.shuffle.FetchFailedException: other tasks tried to fetch data from
a node that no longer exists. It is possible to see this error at least one time in
every job log but, in the most unlucky cases, it was thrown multiple times and this
led to job failure. In few words, with this configuration, when a node is marked as
"decommissioning", it has only 2 minutes not only to complete all the running tasks
but even to accept all the fetch data requests in order to complete the shuffling.
From our results, we can conclude that 2 minutes is a too small timeout to have a
good reliability level.

Before passing directly to the next test, we analyze the time and cost perfor-
mances, especially making a comparison with the best configuration so far, with the
low scaling factor. The Figure 6.21 shows us that with the downscaling we improved
again under the costs point of view: in the 75% of the case we spend less than 0.85$
and, in the 25% case we even go under the 0.80$. It means an 85% cut with respect
to the production case!

In view of the above, the results showed in the Figure 6.22 are quite surprising:
in general, the duration distribution is higher, even if we have spent less money. This
is the clear sign of the effectiveness of downscaling in terms of resource savings and
over-provisioning avoidance, but at the time it introduces the possibility to degrade
time performances. The 62% of the jobs, even if they succeeded, they wasted a
considerable time interval (some more, some less) to recompute some tasks. We
cannot see the impact of this on the cost performances because the failure handling
process is executed with a limited number of nodes (because of downscaling, of
course) that, in the case of preemptible VMs usage, introduce derisory costs.

61

6 – Results

Figure 6.21: The cost comparison between the conservative configuration (no down-
scaling) and that one with 2 minutes as gracefully decommissioning.

Figure 6.22: The duration comparison between the conservative configuration (no
downscaling) and that one with 2 minutes as gracefully decommissioning.

62

6.4 – Test set II

6.4.2 Slow decommissioning
In this second attempt, we will try to improve the previous performances setting to
5 minutes the graceful decommission timeout. After 50 execution of the same test,
the results are summarized in Table 6.2.

50 executions
Success Failure

41 9

Table 6.2

We hugely improved the reliability performances: in this case, we have only 18%
of job failure. Of course, it is not a fantastic result but we should remember that
we have to accept this if we want to maximize cost savings using the preemptible
VMs. Then, It would be up to the user, based on his needs, to set a configuration
in order to balance reliability and expenditure.

In Figure 6.23 a comparison between the two autoscaler with graceful decommis-
sion and the conservative configuration without downscaling. Even if we take the
nodes alive for a longer time, we improved again the costs performances: in almost
100% of the cases, we are between the 0.70$ and 0.80%, with a saving up to 87%
with respect to the production case.

Figure 6.23: The cost comparison between the conservative configuration (no down-
scaling), 2 minutes and 5 minutes as gracefully decommissioning.

63

6 – Results

The result showed in Figure 6.24 is really interesting: we did not improve the
time performances so much but it is impossible not to notice the huge length of
the whiskers. They cover the whole time range merging the two configurations that
we took as reference so far: in the 25% of the cases we have similar performances
to the conservative approach, in 50% we have slightly better performances with
respect to the configuration with 2 minutes as graceful decommission timeout but
we could notice that in some cases (the end of the upper-whisker) we obtained
even worse result. A reasonable interpretation of this result could be the following:
with no doubts, as the previous table confirms, we have improved the reliability
performances. This fact could be visible in the fact that, in a considerable portion
of the results, we obtained really good results, similar to the configuration without
downscaling. But the real question to ask is: how could be possible that, in some
cases, we obtained worse performances with respect to the fast downscaling? The
answer could be tricky, but the reason is, again, because we improved reliability
performances. With a longer graceful decommission timeout we have decreased
the number of failures, but we did not solve the problem completely, as Table 6.2
remembers. Decreasing the number of job failures, we kept alive more jobs with
many task failures and, as a consequence of that, many of them drastically slowed
down due to failure handling procedures.

Figure 6.24: The duration comparison between the conservative configuration (no
downscaling), 2 minutes and 5 minutes as gracefully decommissioning.

64

6.5 – Google autoscaler comparison

6.4.3 Conclusions
Downscaling is very advantageous and brings real benefits from an economic point
of view. However, it can turn out to be a double-edged sword: by setting a graceful
decommission timeout too short, we can have serious reliability problems. Even
with more reasonable timeouts, we do not completely eliminate the problems that
can lead to job failures, but the administrator can find a good compression based
on the duration of the job and time constraints. In the case of the job analyzed
so far, because of its characteristics, it is more convenient to use a conservative
configuration without downscaling, since there are no long workloads that would
bring to a large cluster size from which it is no longer possible to go back. Indeed,
for this case, we could save around 0.10$ but with the risk to execute the job (at
least) twice, destroying cost optimization due to downscaling.

6.5 Google autoscaler comparison
In this section we are going to assess if our autoscaling design leads to an improve-
ment with respect to the Google version, our principal starting point and reference.
For this reason, we will do comparison tests to evaluate differences between the two
versions. Of course, we will setup the Google autoscaler treasuring what we have
learned about the previous tests and the job; we will go for a conservative configu-
ration, the best one for the kind of job we are dealing with. As we know from its
analysis in the state of the art, in Equation 3.1, even in the Google implementation
we have a scaling factor variable that we could tune. Specifically, we will set these
parameters in the configuration object:

• dataproc:alpha.autoscaling.cooldown_period to "10m", that is the minimum
value.

• dataproc:alpha.autoscaling.scale_up.factor to "0.2", as in conservative config-
uration.

• dataproc:alpha.autoscaling.graceful_decommission_timeout to "5m", as we dis-
cussed in the last section.

Then we set other not really important parameters just to force the autoscaler to
use only preemptible VMs.

At this point, we can immediately see the evolution of cluster size in Figure 6.25.
The behaviour seems really coherent with we have seen so far: comparing this result
with the cluster size in Figure 6.19, obtained with the low scaling factor, we could
realize that the scaling decisions are quite identical. For this reason we will expect
similar result both for costs and duration performances. One more important thing

65

6 – Results

to notice it that, even if in the Google configuration the downscaling is enabled, it
could not catch any moment when a downscaling is required. In general, this fact
could be caused by two factors, as already discussed during its study in the state of
the art analysis:

1. The low reactivity of the Google implementation due to large timeout con-
straints.

2. The logic based on a raw average of resources.

The combination of these two factors does not allow to isolate the time range when
the need of downscaling is clear and, in addition, the "signs" of downscaling required,
happening in the last metrics of the window for example, will be balanced out by
the strong resources requests contained in the past but in the same window.

Figure 6.25: The number of Node Managers during the execution of the production
job in a cluster controlled by Google autoscaling mechanism.

Figure 6.26 is a comparison between the two best OBI configurations (with and
without downscaling) and the Google version. There is no huge difference between
these three cases but, more specifically, we can confirm the strong similarity with the
conservative configuration. The larger variance, in the case of this last one, could
be attributed to adverse conditions about preemption: during the execution of this
test, in none of the 50 runnings clusters controlled by Google autoscaler we had a
preemption event. After all, it is an expected result considering that the cluster size
evolution are quite similar. The winner in this comparison is the configuration with

66

6.6 – Custom job

downscaling, feature not exploited by the Google logic for the reasons explained just
before.

Figure 6.26: The cost comparison between the two best configurations and the
autoscaler by Google (conservative configuration).

In the Figure 6.27 we can assess the quality of the OBI autoscaler against the
Google one. The performances of are quite similar: the duration distribution of the
Google implementation is more similar to the "medium with downscaling" configu-
ration, with a low variance in the distribution. The best one, in this case, is the
OBI autoscaler with conservative configuration that provides a better result in the
50% of the cases.

6.6 Custom job
In all the analysis we have done so far, we always considered a job with high and short
workload spikes. These characteristics were really favourable to the conservative
configuration. We have just seen that, even if we enable the downscaling, the costs
savings will be negligible. At this point, we are going to test a job with a different
profile. We are looking for a job with a long, continuous high workload in the first
part, and then a really low workload in the second half of the execution. Because of
the absence of jobs with this profile in the work context, we will examine a modified
version of the previous job. As in the original version, the code is essentially a for
loop. Remembering the Figure 6.1, we will populate the list with only two table:

67

6 – Results

Figure 6.27: The duration comparison between the two best configurations and the
autoscaler by Google (conservative configuration).

the first one is that one corresponding to the highest spike on the right (between
5:15 and 5:30 in the graph), that we will call it "big table"; the second one is any
table in the middle of the job execution, that we will call it "small table". The idea
is using more times these two tables to build a job with characteristics we want. At
the end of the day, the code will loop the following list of tables:

1. Big table

2. Big table

3. Small table x15

What we expect is that, even if it satisfies only 20% of the estimated needed
resources at each autoscaling action, the conservative autoscaler will satisfy com-
pletely the resource requests in many iterations due to the high workload for a long
period. Actually, it is what we can visualize in Figure 6.28a. In this workload case
the downscaling action is advantageous with no doubts: in the comparison in Fig-
ure 6.28 we can see that in the second part of the job a lot of useless nodes are kept
alive, impacting negatively the costs. Then we have to notice the completely wrong
behaviour of the Google autoscaler, as shown in Figure 6.28c: due to its problems
explained in the previous paragraph, the logic added more nodes when the requests
for resources was falling down. The result is that the cluster run with only 2 nodes

68

6.6 – Custom job

to handle the big tables and with 6 nodes for small tables. We could expect bad
performances, especially in the duration results.

(a) Conservative (b) Medium, downscaling (5 min.)

(c) Google

Figure 6.28: The Cluster size comparison during the execution of the custom job,
between the conservative configuration and the medium with downscaling one.

Finally, in the Figure 6.29 we can visualize the comparison between the three
configurations in terms of expenditure and execution time. The graph about the
latter one, in Figure 6.29b, is not really interesting: as we have seen before, the
downscaling introduces reliability problems, spreading the distribution in the box-
plot: in more than 25% of the case the OBI autoscaler with downscaling goes better
but in some other cases could be worse; in the most of cases, the time duration
is quite similar, overall. In this analysis the Google autoscaler is the worst, with
all the performances comparable to the worst cases of the OBI autoscaler with
medium scaling factor; this result is not surprising after we checked that all the
scaling decisions taken by the Google autoscaler were wrong and out of time. The
advantages of downscaling, for this kind of workloads, are visible in practice in the
Figure 6.29a: in the 75% of the cases, even if we have to run the job twice, we
will get a cost inside the conservative configuration distribution. Of course, there
are still improbable cases where we could spend more but they are both with low
probability to happen and in case the difference in terms of money is not too much.
Therefore, we can conclude that we have to deal with these job types, it is better to
go for a configuration with a medium/high scaling factor and downscaling enabled.
This time the Google autoscaler takes the second place, but probably by chance:
it simply scaled up only for the last minutes of the job, maintaining 6 nodes for a
shorter period with respect the others (and when they were no longer needed).

69

6 – Results

(a) The cost comparison. (b) The time execution comparison

Figure 6.29: The cost and duration comparison during the execution of the custom
job, between the conservative configuration, the medium with downscaling and the
google implementation.

70

Chapter 7

Conclusion

All the tests executed so far have been really useful to understand strengths and
weakness of the autoscaler and how to configure it in the future. In general terms,
we can conclude:

1. The scaling factor is the most important parameter when we think about
performances. Depending on the job profile, it is useless to satisfy immediately
all the estimated needed resources, therefore, an high value of this is not
synonymous with better performances.

2. Downscaling is easy in logic, really difficult in practice. Removing nodes during
job execution has a significant negative impact on performances. The key to
minimize this kind of issues is the Graceful Decommissioning feature.

3. There is no closed formula to determine the Graceful Decommissioning time-
out. Longer is better, of course. The administrator should find a reasonable
time to allow tasks completion and shuffling and limit costs at the same time.

4. Despite the graceful decommissioning, we cannot completely solve all the relia-
bility problems. For this reason, sometimes it is better a conservative approach
with downscaling disabled.

5. A thoughtful choice of the autoscaler timeout should not be neglected because
it influences how much overhead the autoscaling logic introduces in the cluster
lifetime. For example, a really short timeout for workload with high variability
in the short period leads to bad performances, because of the continuous resize
operations that make the cluster unstable.

71

7 – Conclusion

7.1 Issues
Software configuration is another important step during cluster creation. In the
OBI context, where the final user does not care about the cluster, this process is a
responsibility of the infrastructure administrator that will care about the OBI con-
figuration. In the Google Cloud Platform, there are two possible ways to accomplish
this task:

1. Initialization script

2. Custom images

In the case of the initialization script, we could specify the path of a bash script
that will be executed in each node of the cluster after the cluster is set up. We can
leverage this scripts to download, install and configure dependencies. The drawback
is that this process requires time, depending on the size and quantity of packages
we need. During the autoscaler testing we realized that, after a scaling up action,
the new nodes took about 6 minutes before being available in the YARN context,
ready to accept resource allocation requests. It is clear this huge overhead destroys
the autoscaler effort, making his job pointless. Therefore, we moved for the second
option, using the custom images. The Google Cloud Platform allows us to build,
starting from the original Dataproc image for Compute Engine, a custom version of
it, in order to have an image with pre-installed packages. This is an important tool,
because it allows us to have all the dependencies we need, like in the previous case,
without introducing additional overhead: in this case, the time required to have a
new available node in the YARN context is less than one minute, as usual with the
original Dataproc image. Everything would work perfectly, if Google Cloud allowed
YARN Graceful Decommissioning with the custom image. Indeed, at the moment
it is possible to use this feature only with the original Dataproc image. In view
of the results obtained in the previous chapter, it is easily understandable that we
would obtain really bad results without this feature, because it means killing all the
running tasks. Having said that, we have two options:

1. Custom images with downscaling disabled in the autoscaler configuration.

2. Minimal initialization script to allow the usage of downscaling with graceful
decommissioning.

Specifically, all the tests executed in Section 6.4 leverage the second option, be-
cause no significant delay was found with the initialization script. In that case, the
only external libraries to install are Metricbeat for monitoring, as explained in the
Introduction, and the Python module to interact with Google Cloud Storage.

72

7.2 – Improvements

7.2 Improvements

7.2.1 Node-oriented autoscaler
One of the biggest drawbacks for the current design is in the downscaling mechanism.
As we have already explained, at the moment we simply know how many nodes are
useless for the current workload but we do not have any information to switch off
a specific machine in the cluster. We have forced by the Google Dataproc API
just to specify the new number of nodes. A smarter downscaling mechanism could
be based on a node-oriented mechanism. We could extend the current mechanism
to estimate how many nodes we do not need any more and, among all the nodes,
switch off those ones with current lowest utilization. During the downscaling feature
testing, we notice that one of the biggest issues is the decommissioning of the nodes,
that introduces reliability problems. We could hugely improve this aspect accurately
choosing the nodes with a few tasks; in this way, we make smart decisions, turning
off that nodes, if available, where the graceful decommissioning timeout is enough
to complete tasks and shuffling data. As we said, at the moment this improvement
is not feasible in the Google Cloud environment for API limitations. Actually, it is
possible in the Amazon Web Services environment, where we can find the specific
call API to switch off a specific node of the cluster [46]. From the YARN point of
view, everything is implemented: the YARN API allows to retrieve metrics about the
NodeManagers, to get useful information about running containers, allocated and
available memory. The only task to do, in this case, is implementing a mechanism to
collect these metrics in a centralized pool and applying a logic to define a "utilization
ranking".

7.2.2 Weights in the window metrics
The key design aspect that allows to improve the autoscaler effectiveness, especially
compared to Google implementation, is the resource estimation based on how met-
rics evolve, rather than a simple average on single, isolated points. This difference
in design ensures a better estimate of the future status of the cluster. A future im-
provement could be continuing on this path, introducing the weights in the window,
in order to minimize the contribution of metrics at the beginning of it. This feature
could be really useful especially when the timeout for the autoscaler is quite long:
as we have already discussed about, when the workload signal is characterized by an
high degree of variation in the short-time window, it is useless to try to tightly follow
the signal because the cluster will end up to waste time to continuously modify the
size of the cluster. In order to make the logic more stable, we can set longer time-
out, such as 2 to 5 minutes. Proceeding in this way, we have to avoid the problems
that could occur in these cases, as we have already seen for the Google autoscaler,

73

7 – Conclusion

introducing a multiplication factor in oldest contributions to the rate computation.
Assuming, for example, that the most important metrics are in the last minute of the
window, we could introduce a reduction factor for each subsequent minute looking
backward and, modifying the Equation 4.4, obtain the new Equation 7.1.

∆N = α(1
Nw

NwØ
t=1

w(t)(Cr(t)−Cr(t−1))−max(0, 1
Nw

NwØ
t=1

w(t)(Cp(t)−Cp(t−1)−Ma(t)
Mc

)))

(7.1)

7.3 Final considerations
In this thesis, we have explored the recent techniques for cluster autoscaling in the
cloud environment. We analyzed them thoroughly, so as to take the strengths, the
points from which to start, and the weaknesses, which we have tried to improve.
The autoscaler offered by Google represented the most advanced version of heuristic-
based logics. We have tried to design a more intelligent window logic, which is able
to better capture the present state and especially the future one of the cluster. We
have succeeded, outperforming the Google autoscaler in different types of workload.
The implementation of design concepts is still not perfect, due to the limitations
coming from the Google Cloud environment that we used in the business context.
Our autoscaling module, therefore, has room for improvement, especially if it is
implemented for a more complete and mature cloud context like AWS. All this
is facilitated by design, which makes the logic completely transparent to the real
cloud environment, thanks to the strengths of the Go programming language, which
allowed us a flexible implementation.

74

References

[1] Thomas Davenport and DJ Patil. Harvard Business Review. 2012. https://hbr.
org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century

[2] Apache Hadoop. Apache Software Foundation. https://hadoop.apache.org
[3] HDFS. Hadoop Distributed File System. https://hadoop.apache.org/docs/

r1.2.1/hdfs_design.html#Introduction
[4] YARN. Yet Another Resource Negotiator. https://hadoop.apache.org/docs/

current/hadoop-yarn/hadoop-yarn-site/YARN.html
[5] Jim Scott. A tale of two clusters: Mesos and YARN. https://www.oreilly.

com/ideas/a-tale-of-two-clusters-mesos-and-yarn
[6] Graceful Decommission. Decommission mechanisms for YARN Nodes. https:

//hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/
GracefulDecommission.html

[7] Apache Spark. Apache Software Foundation, UC Berkeley AMPLab, Databricks.
https://spark.apache.org

[8] Dynamic Resource Allocation. Resouce allocation workload-based.
https://spark.apache.org/docs/latest/job-scheduling.html#
dynamic-resource-allocation

[9] Wikipedia. Cloud Computing. https://en.wikipedia.org/wiki/Cloud_
computing

[10] Amazon Web Services. Amazon.com, Inc. https://aws.amazon.com
[11] Windows Azure. Microsoft Corporation. https://azure.microsoft.com
[12] Google Cloud Platform. Google LLC. https://cloud.google.com
[13] Compute Engine. High-Performance, Scalable VMs. https://cloud.google.

com/compute/
[14] Google Cloud Storage. Unified object storage for developers and enterprises.

https://cloud.google.com/storage/
[15] Kubernetes. Production-Grade Container Orchestration. https:

//kubernetes.io
[16] Google Kubernetes Engine. Managed, production-ready environment for Kuber-

netes clusters. https://cloud.google.com/kubernetes-engine/

75

https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
https://hadoop.apache.org
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Introduction
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Introduction
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://www.oreilly.com/ideas/a-tale-of-two-clusters-mesos-and-yarn
https://www.oreilly.com/ideas/a-tale-of-two-clusters-mesos-and-yarn
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/GracefulDecommission.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/GracefulDecommission.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/GracefulDecommission.html
https://spark.apache.org
https://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
https://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Cloud_computing
https://aws.amazon.com
https://azure.microsoft.com
https://cloud.google.com
https://cloud.google.com/compute/
https://cloud.google.com/compute/
https://cloud.google.com/storage/
https://kubernetes.io
https://kubernetes.io
https://cloud.google.com/kubernetes-engine/

References

[17] Google Cloud Dataproc. Cloud-native Apache Hadoop and Apache Spark.
https://cloud.google.com/dataproc/

[18] Ephemeral model. From on-premises Hadoop to GCP.
https://cloud.google.com/solutions/migration/hadoop/
hadoop-gcp-migration-overview#moving_to_an_ephemeral_model

[19] Google Storage Connector. An Hadoop Compatible File System. https://
github.com/GoogleCloudPlatform/bigdata-interop/tree/master/gcs

[20] Google Stackdriver. Monitoring and management for GCP. https://cloud.
google.com/stackdriver/

[21] Apache Ambari. Monitoring and management for GCP for Apache Hadoop
clusters. https://ambari.apache.org

[22] The Elastic Stack. Elastic products. https://www.elastic.co/products
[23] Grafana. The open platform for beautiful analytics and monitoring. https://

grafana.com
[24] Kibana. Visualize Elasticsearch data. https://www.elastic.co/products/

kibana
[25] Metricbeat. Collect metrics from systems and push to ES. https://www.

elastic.co/products/beats/metricbeat
[26] Jolokia module for Metricbeat. Collect metrics from JMX servers. https://

www.elastic.co/products/beats/metricbeat
[27] Jolokia. HTTP/JSON bridge for remote JMX access. https://jolokia.org/

index.html
[28] Dataproc Initialization Actions. Custom setup upon Dataproc

cluster creation. https://github.com/GoogleCloudPlatform/
dataproc-initialization-actions

[29] gRPC. Google Remote Procedure Call framework. https://grpc.io
[30] Goole Protocol Buffers. Language-neutral, platform-neutral, extensible mech-

anism for serializing structured data. https://developers.google.com/
protocol-buffers/

[31] GIN. Web-framework written in Go. https://github.com/gin-gonic/gin
[32] Stolon. High-Availability for PostgreSQL. https://github.com/sorintlab/

stolon
[33] Kubernetes StatefulSet. Object to manage stateful applications. https://

kubernetes.io/docs/concepts/workloads/controllers/statefulset/
[34] Helm. The package manager for Kubernetes. https://helm.sh
[35] Dataflow. Simplified stream and batch data processing. https://cloud.

google.com/dataflow/
[36] Apache Beam. Apache Software Foundation. https://beam.apache.org
[37] Let’s start with Apache Beam. The programming guide. https://beam.

apache.org/documentation/programming-guide/

76

https://cloud.google.com/dataproc/
https://cloud.google.com/solutions/migration/hadoop/hadoop-gcp-migration-overview#moving_to_an_ephemeral_model
https://cloud.google.com/solutions/migration/hadoop/hadoop-gcp-migration-overview#moving_to_an_ephemeral_model
https://github.com/GoogleCloudPlatform/bigdata-interop/tree/master/gcs
https://github.com/GoogleCloudPlatform/bigdata-interop/tree/master/gcs
https://cloud.google.com/stackdriver/
https://cloud.google.com/stackdriver/
https://ambari.apache.org
https://www.elastic.co/products
https://grafana.com
https://grafana.com
https://www.elastic.co/products/kibana
https://www.elastic.co/products/kibana
https://www.elastic.co/products/beats/metricbeat
https://www.elastic.co/products/beats/metricbeat
https://www.elastic.co/products/beats/metricbeat
https://www.elastic.co/products/beats/metricbeat
https://jolokia.org/index.html
https://jolokia.org/index.html
https://github.com/GoogleCloudPlatform/dataproc-initialization-actions
https://github.com/GoogleCloudPlatform/dataproc-initialization-actions
https://grpc.io
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://github.com/gin-gonic/gin
https://github.com/sorintlab/stolon
https://github.com/sorintlab/stolon
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://helm.sh
https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/
https://beam.apache.org
https://beam.apache.org/documentation/programming-guide/
https://beam.apache.org/documentation/programming-guide/

References

[38] Shamash DoIT International. https://blog.doit-intl.com/
autoscaling-google-dataproc-clusters-21f34beaf8a3

[39] Spydra Spotify Technology S.A.. https://github.com/spotify/spydra
[40] Cloud Dataproc Documentation Cloud Dataproc Cluster Autoscaling. https:

//cloud.google.com/dataproc/docs/concepts/configuring-clusters/
autoscaling

[41] Auto Scaling for EMR Clusters Amazon Web Services. https://aws.amazon.
com/blogs/aws/new-auto-scaling-for-emr-clusters/

[42] Wikipedia Composition over inheritance. https://en.wikipedia.org/wiki/
Composition_over_inheritance

[43] Google Cloud Platform Preembtible Virtual Machines. https://cloud.
google.com/preemptible-vms/

[44] Google Cloud Platform Compute Engine Pricing documentation. https://
cloud.google.com/compute/pricing

[45] Google Cloud Platform Dataproc Pricing documentation. https://cloud.
google.com/dataproc/pricing

[46] Amazon Web Services Resizing an Elastic MapReduce cluster. https://docs.
aws.amazon.com/emr/latest/ManagementGuide/emr-manage-resize.html

77

https://blog.doit-intl.com/autoscaling-google-dataproc-clusters-21f34beaf8a3
https://blog.doit-intl.com/autoscaling-google-dataproc-clusters-21f34beaf8a3
https://github.com/spotify/spydra
https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling
https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling
https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/autoscaling
https://aws.amazon.com/blogs/aws/new-auto-scaling-for-emr-clusters/
https://aws.amazon.com/blogs/aws/new-auto-scaling-for-emr-clusters/
https://en.wikipedia.org/wiki/Composition_over_inheritance
https://en.wikipedia.org/wiki/Composition_over_inheritance
https://cloud.google.com/preemptible-vms/
https://cloud.google.com/preemptible-vms/
https://cloud.google.com/compute/pricing
https://cloud.google.com/compute/pricing
https://cloud.google.com/dataproc/pricing
https://cloud.google.com/dataproc/pricing
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-manage-resize.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-manage-resize.html

	Introduction
	The problem: Hadoop cluster autoscaling
	Apache Hadoop
	Hadoop HDFS
	Hadoop YARN

	Apache Spark
	Scheduling of stages and tasks
	Dynamic Resource Allocation

	Google Cloud Platform
	Cloud Storage Connector

	Elastic for YARN

	A piece in the puzzle: OBI
	Architecture
	Heartbeat
	Scheduler
	Predictive module
	API

	Authentication and authorization
	Fault tolerance
	Deployment example on Kubernetes

	State of the art
	Google Cloud Dataflow
	What we learned

	Shamash
	What we learned

	Spydra
	What we learned

	Cloud Dataproc Cluster Autoscaler
	What we learned

	Design
	The core points
	The window logic for scaling up
	Selection of YARN metrics
	Downscaling

	Implementation
	Go in a nutshell
	The autoscaler package

	Results
	About the preemptible VMs
	Job analysis
	Test set I
	High scaling factor
	Medium scaling factor
	Low scaling factor
	Conclusions

	Test set II
	Fast decommissioning
	Slow decommissioning
	Conclusions

	Google autoscaler comparison
	Custom job

	Conclusion
	Issues
	Improvements
	Node-oriented autoscaler
	Weights in the window metrics

	Final considerations

	References

