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Chapter 1

Introduction

The rapid urbanization of cities around the globe and the corresponding exponen-
tial growth in transportation infrastructure to support ever increasing population
densities, has led to the corresponding increase in road tunnels as a means of al-
leviating congestion, where and when possible. This necessitates development of
automated techniques for detection of cracks on the surfaces inside tunnels given
the high costs of manual visual inspection both monetarily and in terms of time.
In addition, the growth of the sub-urban sprawl to provide affordable housing has
accelerated the construction of tunnels, which became very useful for re-directing
traffic flows and reducing congestions. Structural integrity testing of the road tun-
nels imposes the first problem of managing the traffic flow during the inspections,
since it may not always be possible to block the traffic and examine the entire
tunnel to perform a human visual inspection or to prepare and mount a complex
robotic structure for the same purpose. Furthermore, the number of tunnels may
be large, leading to potentially expensive inspection systems in terms of money
and time that may not be affordable specially in the developing countries. In this
scenario, a low-cost automatic system can be a smart solution and can overcome
many of the previously described problems.
This thesis project is centered in the University Transportation Center, a collab-
oration between different American universities (California State University Los
Angeles, Colorado School of Mines and Leigh University) focused on solving chal-
lenging problems in the urban infrastructures, such as galleries, buildings or bridges
and financed by the Department of Transportation of United States.
In particular, this work introduces a low cost automated system for tunnel inspec-
tions, which is also translated in a very simple structure that does not require so
complex preliminary work and can be used also in urban tunnels with normal traffic
flow. This means that this approach is completely different from the ones present
in literature, specifically in terms of cost.
The system is composed by two main blocks: the acquisition block, for the collec-
tion of images in the galleries surfaces, and the decisional block, composed by a deep
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1 – Introduction

convolutional neural network which has to classify properly the images in two main
categories, Crack Detection and No Crack Detection. In the acquisition system, a
second generation prototype is based on a picture acquisition system completely
automatized and able to collect a huge amount of pictures autonomously without
any kind of post processing. In the software side, thanks to deep learning tech-
niques, it has been possible to exploit the power of Inception-v4, a deep network
built by Google which can be retrained to respond properly to the specific purpose
of the crack detection. Moreover, a second deep network has been built from the
scratch and trained on the same purpose, in order to make comparisons between the
two approaches and in order to choose the most suitable one. Both the networks
have been trained with a dataset obtained through the acquisition system and by
testing different parameters tuning, so that an optimal solution can be found. All
the results are then shown at the end of the dissertation.

Figure 1.1: University Transportation Center logo

The following thesis is organized with a first theoretical introduction on the main
aspects of Deep Learning and Convolutional Neural Network, in order to have a
strong background to understand properly the work behind the project. Than, the
crack detector is presented, with a first focus on the acquisition system and then on
the networks, by underlines also the main structural characteristics of Inception.
At the end, all the test results are shown and a final conclusion tries to estimate
the different approaches and tries to define the correct settings of the system, in
order to have a prototype ready to be used on real time inspections in whatever
urban tunnel.
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Chapter 2

Deep Learning

2.1 Introduction
Human brain is one of the most complex structure known and emulating its func-
tionalities could be very difficult or even impossible. The human brain contains
around 1011 electrical cells called neurons, each one acting as a simple information
processing unit. Although they are effectively slow in their progressing, the huge
parallel work between all these neurons brings to computational powers greater than
all the supercomputers of the current days. A neuron works in a very schematic
way. It fires an electrical impulse (potential action) that moves from the synapse to
the next neuron; the type of synapse can discriminate how much the next neuron
could be excited. In fact, each synapse has an associated strength which determine
the force of the input towards the successive unit. So, the next neuron receives this
kind of impulse from different neurons and, if at the end the summation of these
impulses overcomes a predefined treshold, it fires in turn.
Based on these notations, a lot of scientist tried to derive a mathematical model
for the neuron, called Artificial Neuron.

Figure 2.1: Biological neurons
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2 – Deep Learning

2.1.1 Artificial Neuron
The first simple mathematical model of the neurons was introduced by McCulloch
and Pits in 1943 [1], as represented in Figure 2.2.

Figure 2.2: Artificial Neuron of McCulloch and Pitts

It shows a unit that computes the sum of the inputs xi premultiplied by variables
wi(weights) and at the end adds a unique term typical of the neuron b (bias).

z =
n∑︂

i=1
wixi + b

Then, the unit ends with a logistic function g, which has to choose when a certain
treshold has been overcame or not (activation function). For example it can be
used a step function or a sigmoid and so on.
In summary, an artificial neuron acts as a non linear function producing a sort of
binary response (all-or-nothing)

z = g(a)

2.2 Perceptron
The first step towards the modern deep learning technique was made by Frank
Rosenblatt and its Perceptron in 1958 [2]. The perceptron is a neuron model not
so different in its structure from the one proposed by McCulluch and Pitts and
with a step as activation function, but here we have for the first time a proficient
work on the learning procedure of the system. The idea of the training starts from
the inspirational work of Donald Hebb, who underlined how the learning procedure
in the human brain depends strictly on the formation and change of the neurons
synapses and elaborated the famous Hebb’s rule: "When an axon of cell A is
near enough to excite cell B and persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such that A’s efficiency
is increasing" [3].

12



2.2 – Perceptron

Figure 2.3: Rosenblatt’s Percepton

The Perceptron does not follow this exact rule, but produces a very simple learn-
ing technique, explained in the following algorithm in which is supposed that the
Perceptron must classify a function in two class C1 and C2.

Calling the variables at the time N:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

wN = weigths vector = [w1, w2, ...., wn]T
xN = input vector = [x1, x2, ...., xn]T
bN = bias
yN = perceptron output
ydN

= desired output
η = learning rate

1. Initialization: At the beginning, start with w0 = 0 and b = 1

2. Computation: At time n, compute:

yN = step([wT
NxN ] + bN)

3. Learning: Update bias and weights through the following procedure:

wN+1 = wN + η[ydN
− yN ]xN

bN+1 = bN + η[ydN
− yN ]xN

where ydN
=

{︄
+1, if the output stays in class C1
−1, if the output stays in class C2

4. Iteration: Update the values at the time n+1 and repeat from point 2 until
the perceptron starts to obtain results very similar to the desired output.

The Perceptron is now able to learn simple functions with its characteristics
and effectively Rosenblatt himself built an hardware able to classify into 2 separate
categories input images of size 20x20 by using the perceptron rule. But, obviously,
this is not sufficient, because only one neuron can not be able to exploit good
performance when the task starts to become complex. So, the scientists started
thinking if it was possible to generate a perceptron with multiple outputs (figure
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2 – Deep Learning

2.4), but this new technique did not work very well. The main problem arose from
the discover of the impossibility of the Perceptron to learn functions not linearly
separable, such as the easy XOR logic function. It was in this moment of difficulties

Figure 2.4: Perceptron with multiple outputs

that the concept of the Neural Networks was born. A Neural Network is nothing
more than a series of perceptrons (or neurons in general) organized in layers. In
fact, from this moment, we will not have anymore only input and output layer, but
also the hidden layers (figure 2.5). The improvements obtained with the Networks
were immediately huge and for example the XOR function has been implemented
with a network with only one hidden layer. If the number of hidden layers is
(usually) greater than 2, we can talk of Deep Neural Networks and obviously
of Deep Learning, which is the collection of technique used for training properly a
Deep Neural Net.

Figure 2.5: Neural network

We can start this argument by analyzing the Feed Forward Neural Network,
which are one of the most used architecture in Machine Learning. From this analysis
we will understand a lot of concepts helpful in the successive section regarding the
Convolutional Neural Networks.

14



2.3 – Feedforward Neural Network

2.3 Feedforward Neural Network
A Feedforward Neural Network (FNN) is nothing more than a neural network with
multiple layers, each one containing an high number of neurons and connected only
in the flow direction (no loop connection). In our analysis we will consider only
deep architecture, so structure with a consistent number of hidden layers. This kind
of network is a very powerful machine learning tool, because during the years there
have been proposed several techniques able to increase the quality of the training
and so of the learning. We are going to present the most important ones, or better
the main strategies that will be helpful also in the analysis of Convolutional Neural
Networks. First of all, we need a notation which we will use during this theoretical
dissertation.

• wi
jk: weight connecting the kth element of the (i−1)th layer to the jth element

of the ith element

• bi
j: bias of the jth element in the ith layer

• xi: generic input

• yi: generic output

• yDi
: generic desired output

• ai
j: activation function of the jth element in the ith layer.

Moreover, it is possible to find all this variable collected in vectors in order to
compact complex notations. With N neurons in a layer:

• Wj
N : weights in the jth layer

• Bj
N : biases in the jth layer

• aj: vector of the activations in the jth layer

Usually, the 1st layer takes the name of Input Layer, while the last takes the name
of Output Layer.

15



2 – Deep Learning

Figure 2.6: Neural network with 3 layers with the variables labeled following the
previous notation

2.3.1 Activation functions
What we called element in the previous section, is actually an artificial neuron
unit. In the first architectures, the most used unit was the Perceptron, which
in a multilayer network could easily represent all the logic functions. One of the
main problem of the perceptron is the activation function (the step), that can
produce only binary response of the type Yes/No. So, in the modern Deep Learning
application, the neural unit uses different activation functions, each one with some
interesting properties that could be used in specific situations. In fact, a deep
neural network requires a non linear activation if we want to operate with weights
and biases that changes in a non linear fashion and so with a network able to learn
also complex patterns. Moreover, we will see how non linear activation functions
allow the use of the backpropagation algorithm.
In this chapter we will indicate the argument of the activations functions as:

z = wx + b

So, the generic output of a neuron unit will be:

a(z) = g(wx + b)

where g is a particular function here applicated on the neurons activity.
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2.3 – Feedforward Neural Network

Sigmoid Function

a(z) = 1
1 + e−z

The first advantage with respect to the step function is the continuity of this non

Figure 2.7: Sigmoid Function and its gradient

linear function, which permits to obtain non linear continuous response and not
only a binary 0/1 output. Another interesting feature is the high magnitude shape
of the gradient of the function (figure 2.7) in the ranges (−3,3) of z. This means
that in this range small changes of z bring large variations of g(z), so the output
will be pushed towards the extremes of the shape; and this could be a cool feature
in a double class classification problem. But there are also negative aspects: in
the region far from (−3,3) the gradient is very small (bad aspects for the learning
procedure, as we will see in the following sections) and the function is not symmetric
around 0, so it produces only positive outputs. In order to solve this last problem,
the tanh function is introduced.

Tanh Function

a(z) = 1 − e−2x

1 + e2x

The tanh function has basically the same shape and characteristic of the sigmoid,
but with some improvements. First of all, the function spans from (-1,+1), so it
catches also megative outputs; on the second, the gradient has the same aspect,
but with higher module on the (-3,3) range of z (this brings to higher response
in a classification problem). However, it still preserves the problem of the small
gradient in the range far from (-3,+3). In conclusion, tanh is an evolution of the
sigmoid and for this reason is always preferred to it.

17



2 – Deep Learning

Figure 2.8: Tanh function and its gradient

ReLU and Softplus Function

Rectified Linear Unit function (ReLU) is practically always used in the unit of the
hidden layers in modern deep neural networks.

a(z) = max(0, z)

Why ReLU is so much used? First of all it is non linear and we are starting to

Figure 2.9: ReLU function, its gradient and Softplus function

appreciate how important is having non linear activations. But, mostly important,
ReLU has the big feature to not activate always the neuron. In fact, if z is negative,
than the response is 0 and the neuron will not be activated; this is something that
we will appreciate as a good learning optimization technique for the network. But,
as the previous examples, the problem regards the gradient, that here completely
disappears in the negative range of z. An idea for solving the problem is to use the
Softplus function.

g(z) = ln(1 + ex)
As we can appreciate from figure 2.9, the Softplus as a shape practically equal to
the ReLU, but improves the gradient magnitude in the early negative range of z.

18
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But this is not such a big improvement and the expression of the function is very
complex involving log and exp. So, in an hypothetical use, the computational cost
will be higher than the effective improvement with respect to the simple ReLU
function.

Leaky ReLU Function

a(z) =
⎧⎨⎩az, x<0

z, x>0

This could be the best way to solve the problem of the gradient related to the

Figure 2.10: Leaky ReLU function and its gradient

ReLU function, by choosing a value of a similar to 0.001 or so. In fact, here the
gradient in the negative range is not null, but at the same moment we lose the good
feature of ReLU of non activating always all the neurons.

Softmax

This is probably one of the most important activation function we will see and in
fact we will use it a lot in our Convolutional Neural Networks.

a(z)j = ezj

k∑︂
i=1

ezk

19



2 – Deep Learning

where:
{︄

k = current layer
j = unit in the kth layer

In few words, this function assumes a probabilistic aspect, because it computes
the probability of an output to be part of a certain class. For this reason, it is used
as activation function in the last layer of a deep neural network used for classify an
input inside predefined classes.

2.3.2 Learning procedures
The architectural structure of a Deep Neural Network can be thought as a multilayer
perceptron with different activation functions. Now, it is the moment to explain
what is the process that brings a network to learn. With ’learning’ we indicate
the capacity of a network to update autonomously the values of weights and biases
in order to improve the final outputs and for example to be able to replicate the
behavior of a function or to classify correctly a certain input. There are two main
learning procedures in Machine Learning:

• Supervised Learning: With supervised is intended the procedure in which
is available a complete dataset containing couples of input and output. In this
way, the network can learn by training with this set and trying to replicate
the exact output corresponding to the proper input. So, the objective of our
network will be to make comparison between desired output and real output
and set weights and variables in order to obtain results as much as closer to
the desired one. This is the technique that we will use in our application.

• Unsupervised Learning: Here, the network does not have a prepared
dataset from which it can learn. So, it will try to update the variables in
order to extract as much information from the input as possible. It is clearly
a more difficult approach.

Whatever the learning methodology chosen, it is required a mathematical approach
for learning and in this case it necessary to introduce the cost function. A cost
function can be considered as the reference of a learning procedure, whose objective
will be to minimize it.

Cost Functions

There are several choices of cost functions presented in literature, but there are
some requirements that must be followed in order to be used in technique such
Gradient Descent which allows us to move on in the learning procedure.
First of all, the cost must be written in an average mode with respect to cost
computed for a single training example

C = 1
n

∑︂
x

Cx (2.1)
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2.3 – Feedforward Neural Network

On the second, the gradient of the function will be essentially in all the algorithm
we will use, so it must have a form which depends only on the activation function in
the last layer, so the output activation function. In literature, there are presented
a lot of cost functions that can be chosen, but in this thesis there are shown the
most popular ones, nevertheless the ones that can help us in out dissertation.

• Mean Square Error: MSE, or also called Maximum Likelihood, has this
form in a network with L layers and n inputs:

C(x, W L
N , BL

N , yD) = 1
2

n∑︂
j=1

(yj − yDj
)2 (2.2)

In a network with only 1 output, the gradient has this form:

∇C = (y − yD) (2.3)

• Cross Entropy: Cross Entropy cost function, also known as Bernoulli neg-
ative log-likelihood, has this form:

C(x, W L
N , BL

N , yD) = −
n∑︂

j=1
[yDj

lnyj + (1 − yDj
)ln(1 − yj)] (2.4)

Again, in an network with only 1 output:

∇C = (y − yD)
y(1 − y) (2.5)

Gradient Descent

The cost function gives us a clear path for the learning procedure: we need to
update progressively weights and biases in order to move towards outputs similar
as much as possible to the desired ones. If we consider equation 2.2 as our cost
function, it is easy to understand how we can catch this desired condition when
C(w, b, x, yD) = 0. So, the aim of our training is to minimize the cost function.
How we can do that? It is very hard to collect all the aspects of a neural network
inside an unique algorithm or procedure. So, firstly, we have to focus ourselves on
the mathematical aspects and so the better way is to find a procedure which allows
us to minimize a function, forgetting for a moment that this function is inside a
complex neural architecture. One of the best technique that we can use is the
Gradient Descent algorithm.
We start defining a cost function C(v) depending on variables v = v1, v2, ..., vn. For
simplicity in the derivations, we can use a function depending only on two variables
v1, v2, but at the end we are going to generalize the results for neural networks, in
which the number of variables is surely much greater than 2. If we apply a little
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Figure 2.11: Examples of a cost function C(v) depending from two variables v1 and
v2

change in v1 and v2, we can obtain also a change in C:

∆C = ∂C

∂v1
∆v1 + ∂C

∂v2
∆v2 (2.6)

If we impose:
{︄

∆v = (∆v1, ∆v2)T

∇C = ( ∂C
∂v1

, ∂C
∂v2

)

then:
∆C = ∇C∆v (2.7)

In this form, our objective becomes obtaining progressively a negative ∆C by mod-
ifying ∆v: in this way, C will move towards the minimum.
By choosing:

∆v = −η∇C

Then:
∆C = −η||∇C||2 (2.8)

So, due to the fact that ||∇C||2 is always a positive variable, we can be sure to
obtain a ∆C negative. At the end of the algorithm, we know how to choose the
next value v′ starting from v.

v′ = v − η∇C

In this approach we see for the first time η, known as Learning Rate, something
that will become one of the most important hyperparameter inside the training
procedure of a neural net. This parameter must be chosen properly: it must not be
too high otherwise the approximation in 2.7 does not work, but at the same time
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it must not be too low otherwise the change in ∆v is very small and the training
proceeds slowly.
With the obtained results, we can use the Gradient Descent also in the Neural
Networks contest, by remembering that our cost function will depend on the values
of weights and biases. The procedure has the intention to be iterative, so we need
to train the network with different inputs and updating the variables each time a
new output is produced. In the case of a network with K weights and L layers:

wk → w′
k = wk − η

∂C

∂wk

∀k = 1, ..., K

bl → b′
l = bl − η

∂C

∂wl

∀l = 1, ..., L (2.9)

Stochastic Gradient Descent (SGD)

The Gradient Descent algorithm could be very powerful, but it has a main draw-
back. The cost function C is always an averaging term between all the costs ob-
tained with the training inputs. But in neural networks the number of input is
usually very high, so its computation (that has to be performed for each iteration)
becomes hard time consuming. The easiest way to overcome this problem is to
introduce the Stochastic Gradient Descent.
The idea is to estimate ∇C by computing ∇Cx for a small set of input: working
with them can well approximate ∇C with a great gain in time performance.
We divide the set of input X in m smaller set X1, X2, ..., Xm chosen randomly: we
called them Mini Batches. The size of the mini batches will be one of the other
fundamental hyperparameters because, regardless the gradient optimizer we could
choose, this technique will be always used. So, we can expect something like this:

m∑︂
j=1

∇CXj

m
≈

∑︂
x

∇Cx

n
= ∇C (2.10)

And, rewriting 2.9

wk → w′
k = wk − η

m

∂CXj

∂wk

∀k = 1, ..., K ∀j = 1, ..., m

bl → b′
l = bl − η

m

∂CXj

∂wl

∀l = 1, ..., L ∀j = 1, ..., m (2.11)

2.3.3 Backpropagation
We have already seen two different methods for providing an algorithm to the
learning activity. Nevertheless, we still have to face the problem of the computation
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of the gradient of the cost functions. For this reason, in 1986 was proposed and
accepted the Backpropagation algorithm [4], which showed a lot of improvements
in the training procedure. Essentially, it provides an expression for the gradient
with respect to any weights or biases in the network, allowing us to overcome all
the difficulties in the computation. Moreover from this algorithm, we can have a
clear idea on how a change in the variables is reflected in the network behavior.
Before explaining Backpropagation, we need some clarifications.
From the nomenclature previously defined, we can exploit the detailed matrix form
of the activations in a generic layer i of the network, which will be used in the
demonstration

ai = ai
1, ai

2, ..., ai
n, with n : number of neurons in the layer

ai
j = g(

∑︂
k

wi
jkai−1

k + bi
j) (2.12)

ai = g(wiai−1 + bi) (2.13)

This expression shows us how each activation is strictly correlated to the previous
one. It is also better to recall:

zi = wiai−1 + bi

ai = g(zi)

If we want to understand properly the backpropagation, we have to define a new
quantity, the error δi

j of the jth neuron in the ith layer. When a neuron is excited
by an input, it has to react by producing ai

j = g(zi
j), but instead it produces an

output g(zi
j + ∆zi

j). This variation propagates through the next layers, causing
an overall variation in the cost equal to ∂C

∂zi
j
∆zi

j. In general, this variation can be
very useful for us, because it allows to produce a negative variations in the cost, by
simply choosing it with the opposite sign with respect to the derivative of the cost.
This is now clear how it is important this procedure and so the error is defined as:

δi
j = ∂C

∂zi
j

(2.14)

We can obviously recall the vector δi as the vector of the errors inside a layer i. So,
backpropagation permits to compute δi

j and after that ∂C
∂xi

jk
and ∂C

∂bi
j
, which is the

final aim of all the learning procedures previously defined.
We are now ready to introduce the algorithm, but firstly we need to derive the four
fundamental equations of backpropagation.
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1. The first equation provides us the expression of the error in the last layer of
the network L

δL
j = ∂C

∂zL
j

(2.15)

By applying the chain rule

δL
j =

∑︂
k

∂C

∂aL
k

∂aL
k

∂zL
j

where k : neurons in the layer (2.16)

Taking into account that ∂aL
k depends only on ∂zL

j when j = k, we can
rewrite:

δL
j = ∂C

∂aL
j

∂aL
j

∂zL
j

(2.17)

δL
j = ∂C

∂aL
j

g′(zL
j ) (2.18)

This is the first equation, which exploits the component of the error in the
last layer. It is an easy way to show how change the behavior of the network
and it is also very easily computable. ∂C

∂aL
j

says how much changes the cost
with respect to the activation of the jth neuron and it is nothing more than
a derivative of a function. g′(zL

j ) shows how the activation function changes
with respect to the weighted input.

2. The second equation gives us the expression of the error in a layer with respect
to the error in the successive one

δi
j = ∂C

∂zi
j

(2.19)

δi
j =

∑︂
k

∂C

∂zi+1
k

∂zi+1
k

∂zi
j

(2.20)

δi
j =

∑︂
k

∂zi+1
k

∂zi
j

δi+1
k (2.21)

By notice that:

zi+1
k =

∑︂
j

wi+1
kj ai

j + bi+1
k =

∑︂
j

wi+1
kj g(zi

j) + bi+1
k (2.22)

∂zi+1
k

∂zi
j

= wi+1
kj g′(zi

j) (2.23)

Substituting in 2.21:
δi

j =
∑︂

k

wi+1
kj δi+1

k g′(zi
j) (2.24)

This is the final equation that we can rewrite in a matrix form:

δi = ((wi+1)Tδi+1) ⊙ g′(zi) (2.25)
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With these first two equations combined we can compute all the errors in a
network backward, because we move from the last to the first layer.

3. The third equation relates the changes in the cost function with respect to
the biases with the erro

∂C

∂bi
j

= δi
j (2.26)

They are exactly equal.

4. The fourth equation relates the changes of the cost with respect to the weights
to the error

∂C

∂wi
jk

= ai−1
k δi

j (2.27)

The demonstration for 2.26 and 2.27 can be easily derived with the same
technique of the chain rule used in the first two equations.

Algorithm

We have now all the instruments for explaining the backpropagation algorithm.

• Input: Given an input x, derive the activation on the first layer a1

• Feedforward: Starting from a1 compute the activations for all the layers
antil the last aL = g(zL)

• Output error: Now, compute the error in the last layer δL

• Backpropagate the error: Using the second equation of the backpropaga-
tion, derive the errors in each layer

• Output: Using the last two equations, derive the changes of the cost with
respect to weights and biases

At the end, after backpropagation we are able to use easily the (stochastic) gradient
descent algorithm to update the variables in the network.

2.3.4 Other gradient optimizers
We already know how to use properly the Stochastic Gradient Descent algorithm
by taking advantage of the backpropagation. Actually, backpropagation can be
used in many other gradient optimizer technique, which could bring much better
results than the gradient descent, mostly in the speed of the learning procedure.
We are going to see three other gradient optimizers between the most used one,
but there are many other choices that can be exploited through the literature.
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Momentum

Momentum based gradient descent is an optimized version of the simple gradient
descent. Intuitively, it tries to conduct the descending motion of our cost function
towards its minimum to the motion of a ball inside a valley. In this approach, we

Figure 2.12: The point represents our cost function in a particular moment of
the procedure. The arrow suggests the direction to be taken in order to reach the
minimum

want to formulate an expression of the velocity of our changes in the variables (as
always weights and biases), in order to control how fast our cost is varying. If we
call w the variables and v the associated velocity:

v → v′ = µv − η∇C (2.28)
w → w′ = w + v = w + µv − η∇C (2.29)

µ is called Momentum Coefficient and can be considered another hyperparameter
if the Momentum optimizer is used. Basically, setting this value between 0 and 1
allows us to set the value of the speed of the gradient variation,: so, Momentum
is nothing else than a gradient descent much faster. However, this value must be
chosen properly, otherwise we can speed up too much the procedure and we risk to
overcome or completely miss the minimum of the cost.

Nesterov accelerated gradient

Nesterov accelerated gradient [5] is a slightly modification of the Momentum tech-
nique, which prevent the situation in which the optimizer is stacked in a local
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minimum and can not overcome it to reach the global one.

v → v′ = µv − η∇C (2.30)
v′ → v′′ = µv′ − η∇C (2.31)

w → w′ = w + µv′′ = w + µ2v − (1 + µ)η∇C (2.32)

Adam

Adam [6] introduces new variables in the construction of the algorithm for the
optimization of the gradient.

• Decaying average of the past squared gradients v

v → v′ = β2v + (1 − β2)∇C2

• Decaying average of the past gradients m

m → m′ = β1m + (1 − β1)∇C

These quantities take trace of the evolution of the gradient also through its squared
value. We are interested in the bias-corrected value, because we do not want to be
influenced by the value of β1 and β2 (usually very near to 1).

m̂′ = m′

1 − β1

v̂′ = v′

1 − β2

And finally:
w → w′ = w − η√

v̂′ + ϵ
m̂′ (2.33)

ϵ is another coefficient usually very low (≈ 10−8)

Weigth and biases initialization

As seen until now, all the gradient optimizers try to estimate the weights and
biases in an iterative way and so it is necessary to find a good initialization for
these variables.
The first approach could be initializing both of them as independent Gaussian
random variables, normalized to have mean 0 and standard deviation 1. This is a
very good solution, that in literature brought decent results. But there is another
strategy a little bit precise. In fact, the previous idea is not so effective when we
are in front of layers with a high number of neurons. In that case, the weighted
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Figure 2.13: Hypotetic shape of z with weights initializated with standard deviation
1

input z will have also a gaussian shape, but very broad (Figure 2.13). This is not
so good for us, because it is quite likely that |z| will be very large (z << 1 or
z >> 1). This will bring to an activation equal to 0 or 1 that in one of the first
layers is synonymous of neuron saturation. Neuron saturation is one of the greatest
problem in the training procedure: neurons producing very early results equal to
0 or 1 means that they are not learning at anymore, because they have already
reached a final result. So, it is likely having instruments, but not using them.
An interesting idea would be initialize the weights with standard deviation equal
to 1√

k
, with k=number of neurons. This could bring to a sharper shape of z, so

much more expectations for the learning procedure.

Figure 2.14: Hypotetic shape of z with weights initializated with standard deviation
modified

2.3.5 Obstacles in learning
With the instruments already presented, we are able to construct a basic deep neural
network, but there is already something that we need to explain. In particular,
during the training of a deep network, could occur some problems that slows down
the entire learning procedures. We will face two of them, the most known and
dangerous ones. There will be presented also some strategies to solve them, but it is
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important to explain here something crucial in the neural network world: in general,
there are not fixed rules to obtain surely perfect results from a neural network. It
is required a lot of experience and the ability to understand immediately where the
problem is. Usually, the good setting of hyperparameters is the main starting point
for a decent training procedure and a practical approach to this problem will be
presented also in this thesis.

Vanishing Gradient

When we train deep neural networks, it is easy to exploit immediately one thing:
as much as we proceed back to the input layer, as lower is the learning capability
of a layer. This means that earliest layer will surely learn slowly than successive
ones. This is the so called Vanishing Gradient problem, because the fall of the
learning capability is due to the gradient of the cost that progressively decreases
going deeper in the backpropagation. But the most interesting thing about this
problem is that we can not avoid it: in a deep neural network the gradient is
always unstable and it vanishes or exploit (gradient larger in the earlier layers).
What we can do is understanding the problem.
For simplicity, we can think to a neural network with 4 layers, each one with only
1 neuron with sigmoid activation function.

Figure 2.15: Example of a 4 layer neural network

We are interested in the expression of the gradient of the cost with respect to
the bias in the first layer b1:

∂C

∂b1
= g′(z1)w2g

′(z2)w3g
′(z3)w4g

′(z4)
∂C

∂a4
(2.34)

In this expression, we can see that, except for the final term in the last layer,
depends on a series of elements of the type wjg

′(zj). If we want to understand how
this term behaves, we have to recall the derivative of the sigmoid (g) The derivative
reaches the maximum at g′(0) = 1

4 . If we start from the common initialization of
weights as random variables with mean 0 and standard deviation 1, we can easily
think that |wj| < 1 and so |wjg

′(zj)| < 1
4 . Notice tha, we can formulate the equation

for the third layer:
∂C

∂b3
= w3g

′(z3)w4g
′(z4)

∂C

∂a4
(2.35)

The two expression are practically the same, but with the difference that 2.34 has
two more wjg

′(zj) block. And now, it is almost clear how the vanishing gradient
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Figure 2.16: Derivative of the sigmoid function

occurs, because the earliest layers will also have an expression with terms progres-
sively lower than the successive ones. And it is at the same time clear how this
problem can not be solved, because it is something proper of the network itself.

Data overfitting

The Overfitting problem is very easy to explain: it occurs in the moment in which
a network start to recognize specific features in the training input, without learn-
ing the general features that we want to highlight. So, it can not recognize these
features in other input, even if during the training the results are very good. These
characteristics of the overfitting makes it very easy to be recognized by simply
taking a look to the accuracy of the network during train and test. Usually, high
results in train not confirmed in test exploit the overfitting. The first ideas for
reducing this problem are very immediate: increasing the number of input or re-
ducing the depth of the network. At the same time is very clear how this technique
are not good at all, because they reduce the strength of the network, so we will not
gain anything in terms of performance. Fortunately, there is another technique for
facing this problem, the so called Regularization.

2.3.6 Regularization
In general, regularization is nothing more than a modification in the cost function,
which helps in avoiding the overfitting. The most used type of regularization is the
L2 type.

L2

L2 regularization consists in adding in the expression of the cost function another
term, called regularization term. For example, the form of the regularized cross
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entropy is:

C = − 1
n

∑︂
xj

[yjlnaL
j + (1 − yj)ln(1 − aL

j )] + λ

2n

∑︂
w

w2 (2.36)

where n is the size of the input set and λ is the se called regularization coefficient,
which in this case became an other hyperparameter.

Dropout

Probably the most successful regularization technique is the Dropout [7]. Actually,
this is not a standard regularization procedure, because it does not change the cost
function at all, but acts in a different way: during each cycle of the learning proce-
dure, the neurons in a dropout regularized layer are not activated simultaneously.
In this way, we can erase all the relation between close neurons and avoiding situa-
tion in which they learn only particular pattern between them, one of the principal
cause of overfitting. In summary, we force the neurons to learn more complex pat-
tern when they are not always linked to the same set of other neurons. So, when a
dropout regularization is inserted ina layer, the hyperparameter Dropout rate must
be specified.
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2.4 Convolutional Neural Network
In this thesis, the deep learning network which will be used is the Convolutional
Neural Network(CNN). CNNs were born (or better has been used for the first
time) in 1998 [8] and their structure were based on the learning approach of the
human brain, as we have already presented for the FNN. Nowadays, CNNs are
strictly related to computer vision and AI and are used to process images and
classify them autonomously or to detect specific pattern inside them.

2.4.1 CNNs elements
In order to understand properly this kind of network, we need to define some
characteristics and create layers based on it. In fact, we will see how a convolutional
neural network is composed by a cascade of layers pretty different one from each
other.

Input/Output volumes

Essentially, each input image is seen as a matrix of pixels and so, it is necessary
to define the size this inputs. An image size is commonly determined through its
height and width, with the so called resolution; for example, a 4 bit image collocates
16 pixels in the range [0,15] and can be represented as a 4x4 image. But usually
the images are colored and so it must be added another dimension, the depth or
also called the channel size. A generic colored image is represented through the
RGB convention, so it must be introduced a depth of dimension equal to 3. For
this reason we use the term volume when we talk about the dimension of an input
or an output. For example, a generic 4x4 colored image has a volume of 4x4x3.

Figure 2.17: Volume of a 4x4 colored image
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Feature

A feature is a particular element or combination of element we want to extract
from the input image. In computer vision, learning starts from the recognition
of patterns inside an image, for example the edges of an object or the eyes inside
a human face image. Usually, a CNN is structured in order to recognize simple
features in the earlier layer, while the successive ones try to locate something more
complex.

Filters (or Kernels)

The filter is the first element of the layered architecture of CNNs. It tries to
extract the features from an image. In particular, it is nothing more than a small
matrix which has to be compared with the input, in the operation called convolution
(equation 2.37) and this explains the name of the network.The size of the filters is
strictly related to another key concept in CNN, the Receptive Field. We can think
to the pixels of an image in a layer as neurons which must be connected to neurons
in the successive layer; it is practically impossible creating a full connection between
all of them, because the size of the images will surely lead to high computational
effort. So, in CNNs, it is a set of of neurons in the input (receptive field) that
communicates with the next layers and it is in this field where the filters operates.
Essentially, the operation of convolution consists in multiple elementwise the filter
matrix with the receptive field (the mathematical operation of cross convolution)
and in projecting the result in the so called activation map. The activation map
will become the input for the successive layer.

g(b +
K∑︂

l=0

K∑︂
m=0

wl,maj+l,k+m) (2.37)

The equation 2.37 shows how, in a KxK receptive field, we have KxK weights and
only 1 bias, so it is easy to deduct how a receptive field is considered as the unit of
a CNN layer.
Obviously, the filter has to slide all over the input image moving through the
different receptive fields. In fig 2.18 is shown an example of the filter operation.

2.4.2 CNNs Layers
With these notions, we can now introduce the different layers type used in a CNN
architecture

Convolutional layer

Convolutional Layer is the key element of a CNN. Essentially, it performs the
operations of the filters previously introduced. So, when a new Conv Layer is
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Figure 2.18: Working principle of a filter

introduced, it must be defined the size of the filters and the stride size, which
is the number of pixels on which the filter moves during the sliding movement
through another receptive field. It is important to underline an important features:
a convolutional has always more than one filter, because in a single layer we want
to extract more than feature from the input. So, a convolution will always produce
an output with depth equal to the size of the so called filter space.
Usually, a convolutional layer is always combined with the Zero Padding procedure.
If we think at the operation of convolution, effectively it produces an output with
the dimension reduced with respect to the input(in width and height). This is not
so good in an hypothetical deep network, because too many filters will surely bring
to a strong reduction in the image size. The zero padding technique consists in
virtually increasing the size of the input,by surrounding it with a series of pixels
with value equal to 0, in order to obtain an output with the same size of the original
input. This is a complete "safe" operation because the 0 pixels will not affect at all
the convolution.

Figure 2.19: Zero Padding example
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Pooling layer

In general, the reduction of the image size during the flow line of the network could
be very useful, because at the end we will probably need a size of the output smaller
than the input. The best way to do it in a controlled way is to insert in the network
some Pooling Layers.
The idea of Pooling layers is to reduce the dimension of the image by deleting the
pixels with "less" importance. So, the operation is practically the same of the filters:
it slides a certain receptive field through the input and transform a set of pixels
into a single one with a certain characteristic.
For example, the most used pooling layer is the Max Pooling. Here, a certain
receptive field is compact into a single pixel with value equal to the maximum inside
the field. So, also in the definition of a pooling layer must be declared the sizes of
the "filters" and the stride.

Figure 2.20: Max Polling example with stride equal to 2

Fully connected layer

In a CNN, it is common to find also fully connected layers, similar to the ones pre-
sented in the section dedicated to the FNN. These are fundamental in the moment
in which we want to obtain an output from the network that is not an image. In
that case, the output has a linear shape, totally different from the matrix approach
of the convolutional layer, which explains the reason behind the presence of fully
connected layers.
In our particular application, we will face a classification problem, so a configura-
tion in which the network has to insert an image inside predefined output classes
(two in our case). In the following image it is presented a generic structure of a
very simple CNN for classification purpose. In this example we can see a lot of
characteristics very common in all the CNN architecture present in literature: the
convolutional layers have neurons with ReLU activation function; pooling is always
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Figure 2.21: Example of a CNN for vehicle classification

interposed between two successive convolutions; there are 2 or 3 fully connected
layer, all of them with dropout regularization except for the last one with a soft-
max activation function, that is the best choice for classification purposes.

2.5 Batch Normalization
Basically, CNNs follows all the other characteristics of a common FNN, with the
differences of the convolutional layer previously defined. But we will continue to
present the classical hyperparameters and the training procedure remains practi-
cally the same. In general, a CNN training is much slower due to the presence of
images, but there is a technique (actually present in all the neural networks), which
helps a lot in accelerate the training and in obtaining better performances.
In general, it is a good practice to normalize the input data (in our case the pixel
value of a matrix) in a network. There are two main normalization technique.

• Normalization: It consists in shift all the input data in a range not so wide
and usually very low. The most common choice is to normalize the input
between [0,1]

• Standardization: This is a different type of normalization, which produces
a result like:

xnorm = x − E(x)
σ(x)

where E(x) and σ(x) are respectively the mean and the standard deviation of
the input. It is like normalize the data with 0 mean and 1 standard deviation.

The first normalizing procedure must be always done before the input layer of the
network, so it become a part of the preprocessing phase. This procedure is very
important because in a lot of case the input is in a wide range of values and the
output of the network should be in a total different range. In a situation like this,
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it is very probable that this strong change in the input values during the several
layers could generate an unstable gradient and so fall into the already explained
problem of vanishing or exploding gradient. Moreover, non normalized input data
cause a slowdown in the training procedure. So, it is a good practice to normalize
the input data in a not wide and small range.
But the problems can not be completely solved. In fact, even with normalized input,
there could happen that during the optimization gradient procedure, some weights
would be updated too much with respect to other ones. And having weights and
biases too much different in different layer can cause again the problem of unstable
gradient. So, it is here that we can introduce the Batch Normalization technique.
In practice, Batch Norm is quite like using another layer whatever we want, so we
can arbitrary choose which layer batch normalizes. It acts on the activation function
and, before applying it, it performs a standardization:

z′
BN = z − E(z)

σ(z) (2.38)

An then, it adds to coefficient:

zBN = βz′
BN + ξ (2.39)

In this way, by choosing properly β and ξ, we can produce in the different layers
weights and biases always normalized, with controlled means and variances. This
is a crucial technique, because in literature [9] it has been demonstrated how this
technique drastically increase the speed of the learning procedure, producing much
more stable results with respect to non batch normalized networks. This is the basic
theory about CNN, which can give the generic notions in order to be able to work
with them. In literature, a lot of novelties and variations on these architectures are
present and we will use in our application one of them, the Inception architecture.
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Chapter 3

Autonomous crack detector

As explained in the introduction of this thesis, autonomous crack detection system
is something really discussed in literature in recent years. So, we want to present
the current state of art, in order to motivate the decision made for the model used
in our project. In fact, state of art helped us in thinking the correct setup for
the images caption in terms of correct cameras, caption techniques, lights and so
on and in appreciating the good results obtained through deep learning technique
applied to similar problems.

3.1 State of art

Tunnel inspection is considered an interesting problem to be studied, because in
a lot of situations it is not only difficult, but also dangerous for a human beings.
So, creating a system that autonomously can detect problems inside a tunnel by
simply looking given pictures can bring extreme positive effects, also on the time
costs side.
The first proposed models in literature are based on computer vision technique, so
not on Deep Learning. For example, in 2007 Yu et al [10] built a robotic system
able to detect images inside a tunnel and then process them in order to find concrete
cracks. This mobile robot was remotely controlled in order to maintain constant
distance from the tunnels walls and it was equipped with CCD cameras, in order
to get images in best condition as possible. Moreover, the capture system was also
equipped with illuminators and encoders for computing speed and position of the
tunnel. From the software point of view, the images are processed with computer
vision technique in order to find images with concrete tunnels and measuring them:
even if the measurements of cracks were very good, the system was very deficient in
crack detection, with an error rate of around 80%. Lee et al [11] instead proposed
a new method (Image-mosaic technology) for reconstructing 3D tunnels surfaces
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from images taken by humans with cameras. Effectively, this is something com-
pletely different from our application, but the point in common is represented by
the necessity to have very good starting images of the tunnel surfaces. Here, the
authors used DLSR cameras easily recoverable in commerce with a 8MP resolution
and obtained excellent results. Another interesting work was proposed by Stent et
al [12] for automatic detection and classification of different changes on tunnel lin-
ings. Again, the authors proposed the usage of DLSR cameras for images capture,
in particular they built a circular array of 5 DLSR in order to catch all the internal
surface of the tunnel mounted on a rail and remotely controlled. Clearly, this is a
very expensive structure and requires also a huge amount of preparation for being
built.

The fist application of CNN in the problem of crack detection was due to Makan-
takis et al in 2015 [13], who proposed a vision based method using deep neural
architecture for classification of images with or without a cracks. The proposed
architecture was a 2 convolutional layers CNN, with a final softmax layer for the
classification in crack or no crack detection. Here, the authors took more than
100000 images and used 80% of them for the training set. The objective of this
project was to compare the Deep Learning approach with other computer vision
algorithm and, by looking to the results, the authors asserted that this technique
is widely better than all the most used image-processing approach. One of the best
results in this new branch was reached by Cha and Choi in 2017, who worked in
a project basically equal to the previous one. The images for the training of the
network had been taken with a DLSR camera inside a tunnel in Manitoba and more
than 40000 images were collected. In particular 80% of them are used as training
set, while 10% each for testing and validation. The architecture of the CNN used
is presented in figure 3.1, where C# stays for Convolutional layer, P# for pooling
and BN for Batch Normalization. The training was performed with learning rate
equal to 0.1 and logarithmic update during the epochs and with dropout rate equal
to 0.5. The results obtained by running the algorithm on two GPUs were excel-
lent, something around 97% accuracy in crack detection in the testing phase, but
the authors did not specify exactly how they captured the images and how they
built the model hardware. The most fascinating work present in literature regard-

Figure 3.1: Cha and Choi CNN architecture
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ing the tunnel inspection is the ROBO-SPECT European FP7 Project [14], whose
objective is building a complete autonomous robot able to collect images without
humans help and then process them inside a network to identify the presence of a
crack. The robot is very complex itself and it is composed by a standard mobile
vehicle with an extended crane with a robotic harm. On this robot is mounted the
computer vision system, composed by two CCD cameras and two DLSRs and a
powerful light system (not well specified). The robot has also a 3D laser scanner
able to detect also the depth of the crack: when the images are passed to the CNN
and a crack is detected, than a signal is passed to the robotic arm in order to be
moved near the crack and activate the 3D laser. The architecture of the CNN is not
described by the authors. This is surely a fascinating project, but there are several
doubts about it: first of all, the capture system is very slow and the power system
for the machine could be a problem. In general, with a system like this could be
difficult inspecting a long tunnel.

3.2 The model
By looking to results and infrastructures used literature, this thesis aims to create
a new system able to exploit the deep learning techniques for the crack detection,
but at the same time to use a low cost equipment. Moreover, the system should
find its main application in the urban tunnels near a city, so it is necessary to build
it in such a way that it do not obstacle the normal traffic flow inside the tunnel.
The proposed model is composed by two main component: the acquisition system
and the deep neural network. This last one will be discussed in the next chapter.

3.2.1 Acquisition System
The acquisition system of the model is the structure able to collect the images
which has to be classified by the deep neural net.
The idea behind this acquisition system is to use low cost equipment, but at the
same time it must be easy reusable and must not require a complex infrastructure
for being used. Next to these main aspects, should be remembered what is the first
aim of the system: creating a dataset for the network training. Hence, the pictures
must be as good as possible in terms of resolution and, overall, an high number of
images is required in order to obtain acceptable results. The first prototype of this
acquisition system was basically characterized by a very cheap video caption, from
which (thanks to a post-processing phase) a series of pictures have been extracted.
Now, the acquisition procedure has completely changed, and it is based on a direct
pictures caption through a DLSR camera. We chose it thanks to the good results
that this kind of cameras produced in several works present in literature. The other
problem is clearly the tunnel inspection method, because the expected result is a
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system which has to work inside urban tunnels without disturbing in any manner
the traffic flow. So that, the structure has been realized in order to be accommo-
dated easily on a truck; in this way we are completely able to control the system
inside the vehicle. The system is composed by four main components: DLSR cam-
era, lighting system, Radio-frequency remote control and Camera Control.

1. DLSR Camera: CANON EOS800D model, with a 55mm lens. This model
satisfies all the quality constraints required by our application. The 24MP
resolution guarantees extremely good pictures, which can be taken at very
high speed (till nominal 6fps) and in different mode. Moreover, the manual
mode of the camera allows the user to set all the parameters of the camera
manually, in order to adapt the camera to the difficult environmental condi-
tions of tunnels. Another important feature of the camera is the capability of
being controlled remotely, through its PC cable, by an external CPU, which
is crucial for the system in order to have a camera able to shoot without the
human interference.

Figure 3.2: Canon EOS800D

2. Lighting System: Inside a tunnel, we have always poor light conditions and
so the camera must be helped by external light source in order to reproduce
clear pictures. Two light sources have been selected, one fixed light source
and a camera-flash. The fixed source is a 500-LED Panel (Neewer 500LED
Photo Studio Lighting Panel), useful to create a strong and clear light also in
a dark environment. Synchronously, we used also the Neewer NW-561 LCD
Display Speedlite Flash to generate a strong light with the camera in order to
improve the contrast on the taken picture.
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Figure 3.3: Neewer Flash (left) and Neweer 500 Led Panel (right)

3. Remote Control: we setted the Radio frequent remote control in order
to create a wireless connection between the camera and the flash mentioned
above. In addition, it is essential to improve the scalability of the acquisition
process: in a hypothetical expansion of the system with more cameras and
flashes, they can be synchronized through this kind of control. In commerce, a
reasonable solution in terms of costs and quality is offered by PocketWizards,
which proposes an high number of instruments for the instruments synchro-
nization. A couple of PLUSIII have been chosen in our system. One of
them is connected to the camera through its own hotshoe, while the other is
connected to the flash through a provided cable.

Figure 3.4: PocketWizards PLUSIII

4. Camera Control: the Camera Control is the system which has to activate
the shooting functions of the camera. For this purpose, a Raspberry PI3 has
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been selected, basically for the reduced dimensions which allow us to easily fix
it on the overall system and to connect it to the camera through a PC cable.
The Raspberry is controlled through an external keyboard and a 7” LCD
display. However, the main reason behind the choice of a Raspberry, is the
capability to exploit through it the power of the Python library gphoto2. A
simple Python code has been developed in order to activate the shutter release
of the camera at its maximum speed: it is like having the shutter constantly
hold down (the code is shown in Appendix A). Thanks to this technique, the
camera produces pictures at the maximum speed allowed and the execution
of the program can be easily stopped when the truck rides out of the tunnel.

Figure 3.5: Raspberry PI3

The overall system in presented in figure 3.6 and it respects all the constraints
previously explained, whit a total cost below 2000$. Everything is assembled on
the truck through a home-made support, which is composed by an alluminium
based structure that can be turned in order to catch images from different angle.
The components have been attached to the structure through a wood panel.
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Figure 3.6: The system (up) mounted on the truck (down)
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Chapter 4

Inception

4.1 Introduction
Inception is the name of a neural network module introduced for the first time by
the Google team GoogLE Net in the ILSVRC 2014 competition for computer vision
[15]. Here, they proposed this new module in its first release (Inception-v1 ) inside a
huge neural network called GoogLE NET and, thanks to the extraordinary results,
they continued the working in the designing phase, producing 3 new versions in the
successive years (Inception-v2, Inception-v3, Inception-v4 ).
The structure of Inception-v1 and GoogLE NET is well explained in [15], where
the GoogleNet team members themselves describe deeply their ideas and their final
implementation. In particular, they created the models by starting from the work
of Lin et al. [16], which provides the idea of Network in Network, frequently used
inside Inception. So, before starting talking about it, it is necessary to explain the
concept of "Network in Network".

4.1.1 Network in Network
A generic CNN works practically as a Generalized Linear Model for the input Data
Set, because effectively it applies a linear product followed by a non linear activation
function, as well as a GLM does if we consider a non linear link function. One of
the most important thing on GLM is that the components of the latent variables
(what in CNN becomes the parameters of the network) are linearly separable; but
this is not always true, specially in the Neural Networks, where the parameters are
often correlated through non linear dependencies. So, Network In Network (NIN)
module try to substitute the GLM structure of a convolutional layer with a micro-
network structure able to approximate non linear functions. In particular, in the
architecture proposed by Lin et Al., the chosen structure is a multilayer perceptron,
that is universally recognized as a good non linear approximator and can be easily
trained through the backpropagation algorithm.
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This new module takes the name of MLPCONV layer.

Figure 4.1: Comparison between a standard convolutional layer (left) and a MLP-
CONV layer (right)

Moreover, they introduced another big novelty inside their network: instead of
using the classical fully connected layer with dropout regularization after the last
convolutional layer, they pass directly the information of the last MLPCONV to
the softmax layer using a global average pooling layer. So, these are the two main
structure introduced in this network.

• MLPCONV: As said before, the idea is to use the multilayer parceptron as
micro-network non linear approximator. The following equations show how
it works:

f 1
i,j,k1 = max{w1T

k1 xij + bk1 , 0}
...

fn
i,j,k1 = max{wnT

kn
xij + bkn , 0}

where: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
(i, j) = output pixel index
xij = input pixel square
k : feature map index
n : number of the layer in the perceptron

The activation function f is always the rectifier linear unit.

• Global Averare Pooling: This layer is introduced to reduce the overfitting
and to free the network from the dependency to the dropout regularization.
The idea is to use one feature map for each class in the last MLPCONV and
to feed the average of this feature directly inside the softmax layer.

The equations describing the MLPCONV layer are also very helpful in the view
of the Cross Channel Pooling Layer. A cross channel pooling layer is a particular
type of layer which operates in the filters space and modifies the structure of the
features maps coming out from a convolutional layer. In few words is like computing
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a convolution transversal with respect to the normal flow of the network. So, this
NIN structure works as a cascade of cross channel pooling layers, each one with a
rectifier linear unit at the end. This working principle is practically equal to the
one computed by a convolution with 1x1 filters: it does not modify the significant
pixels sides, but can modify the amount of features maps at the output of the layer.
And this is exactly what GoogLE NET uses in order to implement the Inception
modules.

Figure 4.2: Complete structure of a network with the NIN philosophy

4.2 Inception-v1
"How can be increased the quality of a neural network?" Everything starts from this
question. And the only admitted answer is to increase the size and the depth of
the network. But this solution brings two big problems:

1. Large and deep networks use a huge number of parameters, so it is necessary
a big Dataset, otherwise there will be surely the overfitting problem

2. Large and deep networks require a lot of computational effort.

Arora et Al. [17] demonstrate that the only way to solve both the problems is to
use sparse convolutional neural networks, networks in which not all the neurons are
used simultaneously. Even if they impose very strong mathematical conditions for
the applications of their results, the empirical Hebbian principle "Neurons that fire
together, die together" suggests that the sparse neural networks can be also used
in the convolutional field. In particular, GoogLE NET applies the sparsity to the
filter level: during the convolutional layers, not all the filters act with the same
characteristics and with the same behavior. Moreover, Arora et Al. suggests an
interesting way to construct properly an efficient network, in particular by building
it layer by layer. The idea is to look at the output of the last layer and try to
figure it out what are the outputs with high statistical correlations. The idea of the
successive layer is to collect this output in clusters of correlations: in this way, the
new output will be strongly dependent by the previous ones and will give to the
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successive layer a clear overview on how the output are correlated. In the computer
vision environment, this result can be translated in this way. In a convolutional
layer we need to create filters which has the objective to extract from the input
particular pixels with high statistical correlation, which means that can be seen as
a particular region inside the image. In practice, we can create convolutions with
the aim of finding simple patterns in the images, probably located in very strict
local region of the images; so, we can use 1x1 convolutions followed by rectifier
linear unit. This 1x1 convolutions become fundamental, because risize the filter
space and operate a normal convolutional layer thanks to the rectifer linear units.
Than, 3x3 and 5x5 convolutions can exploit patterns spread in a larger local region.
But all these structures can be found at any depth of the network, so this type of
filters must be present from the beginning to the end of the network. Probably, it is
better to use more 1x1 convolutions in the lower layer in order to find immediately
the easier features and then to increase the number of 3x3 and 5x5 filters by going
up with the depth of the network, in order to extract much more complex features.
(The idea of using filters with muximum size of 5x5 is not in Inception-v1 something
done for a particular mathematical reason, but only for comfort). So, this is how
Inception works: a convolutional layer is the agglomerate of different convolutions
with different filter size. Moreover, a max pooling is always inserted inside this
structure, because it helps to produce outputs that stand out the pixels with higher
priority.

Figure 4.3: Inception-v1 naive module
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But this model has some problems, first of all the high computational effort re-
quired by the big 5x5 convolutions when the number of filters start increasing. But
the solution can not be deleting them, because they are crucial in finding complex
pattern in the images. So, the most immediate solution is to use again the 1x1
convolutions, this time only for resizing the filters space and reducing the compu-
tational effort for the higher convolutions.

Figure 4.4: Inception-v1 final module
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In summary, an Inception based network is composed by a series of this layers
with some intermediate pooling layers that sporadically compact the size of the
input for the successive layers. With this kind of structure we have two main
advantages:

1. The computational effort is strongly reduced, thanks to the filter size reduc-
tion before high convolutions. In this way, we can perform deep analysis
without loosing too much computational time.

2. The structured layer with different filters permits to analyze an image in dif-
ferent scales and, aggregating all the results gives to the next layer a complete
view on how the image is composed.

As said before, the first network created with these modules is GoogLE NET

4.2.1 GoggLE NET
This is the schematic table of GoogLE NET

Figure 4.5: GoogLE NET compositition. "AxA reduce" stays for the number of
filters 1x1 used for the reduction size before the AxA convolutions

The network is 27 layers deep and there are more than 100 computational blocks.
Some notable characteristics:

• The layers near to the input image are normal convolutions, because the
experience suggested that they are better in the recognition of very simple
patterns in the preliminary stages.
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• The passage from convolutions to fully connected layers is mediated by an
average pooling layer, which we know are more efficient than a simple inter-
mediate fully connected layer.

• Fully connected layers are in the classical structures of a CNN for classification
purposes: a layer with dropout regularization (40%) followed by a softmax
layer. The final classification is on 1000 items because the net was firstly
used for recognition of 1000 leaf-node categories inside the Imagenet Datatset
hierarchy.

As we can see in the graph 4.6, there are 2 auxiliary networks which end up
with a classification in the middle of the net. Why are they present? As we know,
neural networks use the backpropagation algorithm for finding the value of the
gradient during the training phase, in order to modify properly the parameters
step by step and we also know how the depth of the structure can bring to the
vanishing gradient problem, which brings to malfunctioning and bed results. So,
Google Net team thinks to process classifications also in the middle, in order to not
lose any information if the vanishing gradient arises. The final classification will be
a linear combination oh the 3 performed, clearly giving higher priority to the final
one. The structure of these auxiliary layers is the following:

• 1 Average Pooling Layer with 5x5 filter size and #3 stride

• 128 filters 1x1 convolutions for filter space reduction and rectifier linear unit
activation

• Fully connected layer with 1024 units

• Dropout (40%) layer

• Softmax layer with 1000 classification units, the same as the main final clas-
sifier
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Figure 4.6: Complete graph of GoogLE NET
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4.3 Successive versions
As explained before, GoogLE NET is a very powerful neural network with a lot
of positive features with respect to networks previously built. But its complexity
makes difficult operating changes of whatever type in the structure. Moreover,
it seemed that the network was very efficient only in the particular case of the
competiotion for which it was built. For example, by double up the filters space
inside an Inception module, the complexity and the number of parameters incresed
of x4 factor. So, Szegedy et al. in 2015 tries to increase the performances of the
net by looking mostly on the improvement of the Inception modules and exploiting
techniques and strategies that could be extended to all the deep neural networks.
[18] As suggested already by [15], the filter size reduction is a fundamental key for
reducing the complexity and the computational costs of the network. For example,
a 5x5 convolution with n filters is 2.78 times more expensive than a 3x3 with the
same number of filters. But, as previously said, larger convolutions are required in
Inception-v1 for catching complex features in the images. An idea to overcome this
problem, is to use again the concept of resizing a large convolution with a cascade
of smaller convolution. So, a 5x5 can be seen as a sequence of two 3x3, with the
second one operating as a fully connected layer.

Figure 4.7: On the left, the new structure replacing a 5x5 convolution. On the right,
a type of Inception module with this new feature.

These results show how applying convolutions greater than 3x3 is not so effi-
cient. So, it is possible to reduce again the size (i.e. 2x2) in order to obtain better
results? What it can be demonstrated is that a 3x3 convolution can be better
replaced by a sequence of a 3x1 and a 1x3, reducing by 33% the complexity of the
system. Moreover, this technique seems to be efficient for any convolution size, even
if the better results have been achieved only in the middle range of depth of the
network, so when the dimension of the feature maps is already strongly reduced.
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Figure 4.8: Another Inception module with the 3x3 convolution factorization.

The last evolution of the Incepetion modules was born from the idea of promot-
ing high dimensional representation in order to exploit complicated features in the
higher layers. This idea brings to the last module in figure 4.9

Figure 4.9: Inception module for high dimensional representation.

Another interesting argument inside GoogLE NET regards the auxiliary net-
work. By looking the evolution of the train of a deep net with and without the
auxiliary classifiers, the differences arise only in the final phase of the procedure,
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when the net with auxiliary networks starts to obtain better accuracy. So, the
role of this external branches must be redefined: they can not be considered as
an help in the convergence of the gradients in the lower layers, but they must be
seen as regulizer. In fact, the improvements became notable when these layers are
batch-normalized or if they have dropout regularization inside.

At the end, another critical point is the feature map size reduction. In the
Inception-v1 modules it is achieved by using 1x1 convolutions followed by a pool-
ing layer, which produces very good results, but increases the complexity of the
system due to the 1x1 convolutions. A structure like 4.11, instead, has shown a
strongly reduction in computational costs, by producing the same results.

Figure 4.10: Another Inception module for resizing the feature map size while in-
creasing the filter space.
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4.3.1 Inception-v2 and Inception-v3
Inception-v2 is the evolution of GoogLE NET obtained by the connection of all
the deductions previously explained.

TYPE PATCH SIZE / STRIDE INPUT SIZE
conv 3x3/2 299x299x3
conv 3x3/1 149x149x32

conv padded 3x3/1 147x147x32
pool 3x3/2 147x147x64
conv 3x3/1 73x73x64
conv 3x3/2 71x71x80
conv 3x3/1 35x35x192

3x Inception Figure 4.7 35x35x288
5x Inception Figure 4.8 17x17x768
2x Inception Figure 4.9 8x8x1280

pool 8x8 8x8x2048
linear logits 1x1x2048

softmax classifier 1x1x1000

Table 4.1: Inception-v2 architecture

The traditional 7x7 convolutions have been factorized in 3 consecutive 3x3 con-
volutions. In the Inception part, everything start with 3 modules as the one in
figure 4.7. Than, with a module equal to figure 4.11, the grids are resized to 17x17
and then there is 5 modules like the one in figure 4.8. At the end, 2 other models like
figure 4.9 end the Inception part. The convolutions involved in grid size reduction
are marked with 0-padding and in all the Inception modules, while the other con-
volutions are not in 0-padding. In conclusion, all the layer uses batch-normalization.

Inception-v3 is a network totally equal to Inception-v2, with the only differ-
ence that the batch-normalization is also extended to the auxiliary networks

4.3.2 Inception-v4
Inception-v4 is the last version of the pure Inception modules proposed by Google
[19]. No such great modifications in the idea occurred during its design, but only
a straight decision to uniform all the Inception blocks and to re-elaborate a bit
the structure of the part of the networks before the Inception modules. The grid
reductions are still the same presented for Inception-v2 and so the location of the
layers with batch-normalization technique.
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TYPE PATCH SIZE / STRIDE OUTPUT SIZE
STEM Figure 4.11 35x35x384

4x InceptionA Figure 4.11a 35x35x384
Reduction Figure 4.11 17x17x1024

7x InceptionB Figure 4.12b 17x17x1024
Reduction Figure 4.11 8x8x1536

2x InceptionC Figure 4.12c 8x8x1536
Average Pool 8x8 1x1x1536

Dropout (40%) Fully connected 1x1x1536
Softmax Classifier 1x1x1000

Table 4.2: Inception-v4 architecture. The input of the Stem is a 299x299x3 image

Figure 4.11: Stem graph of Inception-v4
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(a) InceptionA

(b) InceptionB

(c) InceptionC

Figure 4.12: Inception-v4 modules

60



Chapter 5

Training: Transfer Learning

The idea is very simple: we want to use Inception-v4 as Deep Neural Network in
our Prototype. Inception is an image classificator, which is able to classify an input
image in a certain number of classes given by the user. In order to do that, we
have to exploit the Transfer Learning technique. Transfer Learning is one of the
most modern technique used in Machine Learning application, because it allows to
apply knowledge previously learned in order to solve new tasks and problems [20].
It is very common in an intelligent world to work in such way and there are lots of
examples which can easily explain how Transfer Learning works; for example, if we
want to learn how to play the organ, than starting from the knowledge of the piano
could accelerate the learning and make it much more powerful. With Deep NN the
concept is exactly the same: if there are strong network previously trained for some
applications, why do not use what they have already learned in our specific task?
With Inception this work can be effectively done. V4 has been built in order to
detect inside an image some general features (like for example shapes, colors , edges
etc) with increasing difficulty moving towards the convolutional layers. In this way,
we can use the results obtained by the training made by Google’s huge computers
and datasets and then adapt them to our specific task, by re-training only the last
layer which is considered the decisional one. Inception-v4 graph is open source and
can be found on the web and used by anyone through Transfer Learning. Obvi-
ously, we need to retrain the last network and in order to do that we need to create
our dateset made by tunnel images that represent surfaces with cracks or without
cracks and for this purpose the hardware explained in chapter 3 has been used.
At this point, the training methodology used is the Supervised Learning: we
provide a set of images already classified in two main categories, Crack Detection
and No Crack Detection and the network, by confronting its results with the actual
classification will modify its weights and biases through backpropagation.
In practice, the code first of all extracts the pretrained characteristics until the last
layers from the given images (Bottlenecks) and then uses these Bottlenecks as
input of the last layer. In this phase, we need to choose the ideal characteristics of
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the training procedure, which will be presented in the next sections. All the code
has been developed in Python 3.6.2, using the Tensorflow environment. This envi-
ronment is quite simple in the syntax and it is also integrated with a useful tool,
Tensorboard, which provides plots and graphs very useful for looking the progress
of the learning procedure. The graph file containing Inception-v4 structure has
been released by Google in late 2017 and it can be found on internet with a series
of useful advises on how to use it in the proper way inside a suitable Python code.

Figure 5.1: Tensorboard graph of the retraining phase of Inception-v4

5.1 Hyperparameters
As previously explained, the core of the retraining procedure is the choice of the
characteristics of the process, which we call Hyperparameters. In all the theoret-
ical part explained in the first chapter, we saw as some parameters could strongly
afflict the learning performances of a deep neural network. In particular, in this
work some of them have been taken as reference and several tests have been per-
formed in order to find the best setting between them which guarantees the optimal
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performance:

• Testing an Validation percentage

• Learning Rate

• Validation and Training Batches size

• Evaluation Batch

Regarding the sizes of Train, Validation and Test dataset, there is not a specific
theory about and so, by looking different approaches in literature, we decide to
use in all our tests the most common technique used, which is probably the one
that guarantees the best results: 80% of the dataset in Training, 10% in Validation
and 10% in Testing. This means that on the overall Dataset of 5120 images
obtained with our prototype there are 4095 in the Training batch and 511 each
in Validation and Test batches. Regarding this Dataset, an important feature
must be underlined. Through our prototype we were able to collect around 3500
images inside two tunnels in Downtown Los Angeles (2nd Street and 3rd Street
Tunnel) during a normal working day with a normal traffic flow, in order to test
the working capability of the prototype in common situation. The captures went
very good and no problems occurred with the traffic during our experiment. Given
that, we decided to increase the number of images in the Dataset by using the
Artifical Expansion of the data technique, which allowed us to increase the number
of images by rotating the one we had of 90 degrees. Thanks to this, we reached an
important number of images which performed good results during the retraining
phase of Inception.
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Figure 5.2: Examples of images inside our Dataset, obtained through the prototype.
On the left an examples with crack, on the right an exaple without crack

64



5.2 – Results and considerations

5.2 Results and considerations
The training of the network requires a huge computational effort and obviously
can be very time expensive. For this reason, the code should be executed on
a GPU which can speed up the procedure. For this reason, we introduced in our
prototype the NVIDIA Jetson TX2 Development Kit, a powerful GPU Linux-
based system specifically built for AI applications, such that Deep Convolutional
Neural Network. Preparing and flashing properly the Kit is quite complex and time
expensive, but the results are impressive.

Figure 5.3: NVIDIA Jetson TX2 Development Kit

In fact, the network has been trained and tested both on Jetson and on a CPU
and, even if the final results are less or more equal, the gain in terms of time was
quite large. In the best test, the CPU system spends around 4 hours to complete
the retraining, while Jetson (under the same conditions) spends only 2 hours. For
this reason, the table below shows the results obtained on Jetson TX2, evaluated
in terms of the value of the Cross Entropy function in the last training sample and,
overall, in terms of accuracy of the final test.

Test Steps Learning Rate Train batch Val Batch Eval interval Cross Accuracy
1 7000 0.01 200 100 100 0.0078 97.8%
2 7000 0.01 700 100 100 0.1252 95.1%
3 4000 0.01 500 100 100 0.1106 94.7%
4 1000 0.05 200 200 100 0.2313 90.0%
5 15000 0.001 200 200 100 0.0989 93.5%
6 1000 0.01 200 100 100 0.1263 93.7%
7 1500 0.02 200 200 100 0.1003 93.9%
8 10000 0.01 200 100 100 0.1111 94.9%

Table 5.1: Training results

The shape of the learning production can be seen thanks to Tensorboard, one of
the main plug in of the Tensorflow environment. Tensorboard allows us to obtain
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graphs showing the values of the main learning parameters at different steps and
to see the overall schematics of the trained network. These graphs can help us to
derive some considerations on the benefit of our training much more reliable than
the one we can observe from the numerical data.
First of all, we can start from the best result achieved, which is the Test 1

Figure 5.4: Accuracy and Cross entropy values during the learning in Test 1. In
orange the training batch, in blue the validation

Here, we can appreciate the good results obtained with this configuration. Both
in training and validation we have an increasing shape in the accuracy and a de-
creasing one in the cross entropy. This means that the overfitting is not so strong
(but still present) and the dataset is quite good for this kind of application. More-
over, the final test accuracy is equal to 97.8%, which means that on 511 images
only 11 have been misclassified. Moreover, on these 11 images, 10 corresponded to
"false positive" where the network recognized the presence of a crack when no crack
occurred. This means that only in one sample the network missed the recognition
of the crack, which is the real and important task of the project. A false positive
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is obviously a mistake in the recognition process, but it is less effective than a true
positive in terms of physical meaning.
By looking other results, we can appreciate how the tuning of the hyperparameters
strongly influences the learning procedure.

(a) Test 4

(b) Test 8

Figure 5.5: Accuracy and Cross Entropy values of training (orange) and validation
(blue) of two different tests

In Test 4 and Test 8 the main differences in the hyperparameters with respect
to the Test 1 are the Learning Rate and the number of steps respectively.
In Test 4, the worst one with only 90% in test accuracy, the Learning Rate has
been increased a lot, (5 times more). As suggested by the theory, a bigger learning
rate should accelerate the learning and in fact the final result has been reached
in just 1000 steps. Obviously, we can observe how fast the network saturates and
how clear is the presence of the overfitting.This justifies the theoretical discussion
previously faced: the value of the learning rate must be properly balanced and a
fast learning procedure is not always a good idea. At the same time, we can see
in Table 5.1 also the counter part: Test 5 shows a situation in which a too much
small learning rate does not produce a final good result 93.5%, even if it could reach
better approximation as suggested by theory.
In Test 8, the learning has been chosen equal to the best setting, but the number of
steps has been increased. This test helped us to exploit all the negative aspects of
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overfitting. In a situation with all the other hyperparameters with the same value,
an higher number of steps should guarantee a better learning. But the overfitting
occurs and, instead of increasing the performance, reduces the power of the net.
So, the network started learning "by heart" the images in the dataset and at the
end we reached only 94.9% in test accuracy. Test 6, on the other hand, presents the
same parameters of the best setting, but with a number of steps strongly decreased,
only 1000 instead of 7000. The results does not change so much, because the final
accuracy is much lower, only 93.7%. That demonstrates the fact that with a large
number of images of high qualities, it is necessary to run the training procedure a
lot of times but without going too far, otherwise the overfitting will cause the same
problems in terms of final accuracy.
In general, all the tests in the table shows the technique which has to be followed
during the tuning of the hyperparameters. There is not a clear theory about the
correct value of the parameters to be used and so we had to try different combina-
tions to find the right balance.
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Chapter 6

Custom CNN

The huge potentiality of the Inception network provided by Google can be really
understood when compared with an another network. For this reason, a quite
simple CNN has been created in the Tensorflow environment, in order to exploit
this consideration.

6.1 Architecture and hyperparameters
As said before, the CNN is basically very simple. It is a 5 layer deep convoutional
neural neural network with the following characteristics:

• Layer 1: Convolutional layer with 3 filters and max pooling technique for
the half time reduction of the pixels dimensions

• Layer 2: Convolutional layer with 32 filters and max pooling technique for
the half time reduction of the pixels dimensions

• Layer 3: Convolutional layer with 64 filters and max pooling technique for
the half time reduction of the pixels dimensions

• Layer 4: Fully connected layer with 1024 output neurons, ReLu activation
function and Dropout regularization at 0.5

• Layer 5: Final Softmax decisional layer with a two-class classification

Even if the network is quite short, the training procedure in quite long, also in
the Jetson TX2 environment: this is why the training has to be performed from
the scratch and not only in the last layers like the Transfer Learning technique. So,
some hyperparamters have been set and not changed along the different tests in
order to gain as much time as possible. These choices have been done looking the
results obtained with Inception and the results available in literature. For example:
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Figure 6.1: Custom CNN shown in the Tensorboard environment

• Validation dataset: 10% of the total dataset

• Test dataset: 10% of the total dataset

• Train Batch size: 200

• Validation Batch Size: 100

• Evaluation Interval: 100

In conclusion, several training tests have been performed by changing two main
hyperparameters, Learning Rate and Number of steps
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6.2 Results
The most relevant tests performed in the Jetson TX2 environment on the custom
CNN are here exposed.

Test Steps Learning Rate Accuracy
1 5000 0.00005 90.4%
2 5000 0.0001 92.8%
3 1000 0.0001 88.8%
4 5000 0.001 94.2%

Table 6.1: Training results

The following images show the accuracy results of the network obtained through
Tensorboard.

Figure 6.2: Test 4 accuracy values showed in Tensorboard environment

Test 4 in the custom CNN is the best one and reached 94.2% in terms of final
test accuracy. This result is obviously much more lower than the best performance
obtained with Inception and this graph shows us why it happened. Here, the
overfitting is very strong and it is easily notable. After just 2000 steps the training
accuracy has been reached 100% and the validation accuracy stops increasing. The
reason behind this is obviously due to the short deepness of the network, because
5 layers going through saturation very fast and does not have the time to learn
properly all the details of the presence of a crack in an image.
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6.3 Code
As already explained, the CNN is developed in Python 3.6, exploiting the Tensor-
Flow library. In the following section the code is presented, giving some explana-
tions about the specific functions and procedures used. The entire code has been
written in Object Oriented structure.

So, besides the declaration of the libraries used in the code, there is the definition
of the first class. This class allows to extract the Data set used in our applications,
also with the names and the classes in which they are classified.

Listing 6.1: Data extraction

import cv2
import os
import glob
from sklearn .utils import shuffle
import numpy as np
import tensorflow as tf
import time
from datetime import timedelta
import math
import random

class Data_loading ():
#Class in which the images are collected and prepared to be

used
def __init__ (self):

pass
def load_images (self ,user_path ,size , classes ):

"""
This method will load the images from the corresponding

path in the directory .
NB: The images must be correctly prepared , with the

folder for each class containing images belonging to
that particular class

"""
images =[]
labels =[] #This vector contains the corresponding label

or each image in the vector images
names =[]
cls =[] #This vector will contain all the classes in

which we can classify the image
print (’Loading images ..’)
for f in classes :

ind= classes .index(f) # looking for the labels in
which the images must be classified

path=os.path.join(user_path ,f,’*g’) # identifying tha
path given by the user
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files=glob.glob(path) # searching for the images in
the corresponding path

for i in files:
image=cv2. imread (i)
image=cv2. resize (image ,(size ,size) ,0,0,cv2.

INTER_LINEAR ) # Extracting the image and
resizing it depending on the value given by
the user

image=image. astype (np. float32 )
image=np. multiply (image ,1.0/255.0) # Coverting

each image in a number
images . append (image) #the images became an array
label=np.zeros(len( classes ))
label[ind ]=1.0
labels . append (label) #Also the labels became an

array
ibase=os.path. basename (i)
names. append (ibase)
cls. append (f)

images =np.array( images )
labels =np.array( labels )
names=np.array(names)
cls=np.array(cls) #All the vectors are transformed into

numpy vectors
return images ,labels ,names ,cls

The next class introduces the creation of a new batch for the learning procedures.
The same function for the validation set has been created.

Listing 6.2: Batches

class Batch_preparation ():
#Class for preparing the dataset of the new batch to be

considered
def __init__ (self):

# definition of the constant variables inside the class
self. epochs_completed_train =0
self. epochs_index_train =0
self. epochs_completed_val =0
self. epochs_index_val =0

def next_batch_train (self ,images ,labels ,names ,
train_batch_size ):
"""
This is a crucial method for the entire CNN.
It creates a batch ( starting from the size given by the

user) by randomly choosing some images from the data
set previously obtained

"""
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# In order to consider every input image , the starting
image in the last one we have previously consider .

# If the new batch is bigger than the total number pof
the images , it means that we have completed an epoch.

#So , the starting point is reset to 0 and the epoch
completed index is updated

s=self. epochs_index_train
total_images = images .shape [0]
self. epochs_index_train += batch_size

if self. epochs_index_train > total_images :
self. epochs_completed_train += 1
s=0
self. epochs_index_train = batch_size
assert batch_size <= total_images

end = self. epochs_index_train
epoch=self. epochs_completed_train

return images [s:end], labels [s:end],names[s:end],epoch#
The new batch is ready

def next_batch_val (self ,images ,labels ,names ,
validation_batch_size ):
"""
This is a crucial method for the entire CNN.
It creates a batch ( starting from the size given by the

user) by randomly choosing some images from the data
set previously obtained

"""
# In order to consider every input image , the starting

image in the last one we have previously consider .
# If the new batch is bigger than the total number pof

the images , it means that we have completed an epoch.
# So , the starting point is reset to 0 and the epoch

completed index is updated
s=self. epochs_index_val
total_images = images .shape [0]
self. epochs_index_val += batch_size

if self. epochs_index_val > total_images :
self. epochs_completed_val += 1
s=0
self. epochs_index_val = batch_size
assert batch_size <= total_images

end = self. epochs_index_val
epoch=self. epochs_completed_val

return images [s:end], labels [s:end],names[s:end],epoch#
The new batch is ready

After this, there is the class which divides the dataset in training, validation
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and test data. This group of data will be passed to the Batch_preparation class
for creating the batches used in the learning algorithm.

Listing 6.3: Data Preparation

class Data_set_preparation ():
# Subdivision of the set in Training , Validation and Test
def __init__ (self):

pass
def preparation (self ,path ,image_size ,classes ,val_size ,

test_size ):
"""
Classification of the images in Training , Validation and

Test
"""
L= Data_loading ()
images ,labels ,names ,cls=L. load_images (path ,image_size ,

classes ) # Extracting the images
images ,labels ,names ,cls= shuffle (images ,labels ,names ,cls)

#Every time the program is run , the images change
the position

validation_size =int( val_size * images .shape [0])
t_size =int( test_size * images .shape [0])

# Definition of the parameters to be passed to
Batch_preparation for creating data:

# Validation
validation_images = images [: validation_size ]
validation_labels = labels [: validation_size ]
validation_names =names [: validation_size ]
validation_cls =cls [: validation_size ]

#Test
test_images = images [ validation_size : validation_size +

t_size ]
test_labels = labels [ validation_size : validation_size +

t_size ]
test_names =names[ validation_size : validation_size + t_size ]
test_cls =cls[ validation_size : validation_size + t_size ]

#Train
train_images = images [ validation_size + t_size :]
train_labels = labels [ validation_size + t_size :]
train_names =names[ validation_size + t_size :]
train_cls =cls[ validation_size + t_size :]
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return train_images , train_labels , train_names ,train_cls ,
validation_images , validation_labels , validation_names ,
validation_cls , test_images , test_labels ,test_names ,
test_cls

The Functions class collects all the instruments required for creating the layers
in our CNN. So, it exploits the commands on the Tensorflow environment to gen-
erate all the convolutional layers required.

Listing 6.4: Network Functions

class Functions ():
"""
This class contains all the functions to build different

layers that can be used for creating a CNN

"""

def __init__ (self):
pass

# Initial condition for weights
def weights (self ,shape):

initial =tf. truncated_normal (shape=shape , stddev =0.1)
# We create a series of weights in a normal distribution

with standard deviation equal to 0.1.
#This is a common structure that brings good results
return tf. Variable ( initial )

# Initial condition for biases
def biases (self ,shape):

initial =tf. constant (0.1 , shape=shape) # For the biases
is not necessary a normal distribution , because a
bias is the same for the entire neurons in the layer

return tf. Variable ( initial )

# Convolutional Layer
def convolutional (self , x,w_shape , b_shape ):# Input and

shapes required
W = self. weights ( w_shape )
y = tf.nn. conv2d (x,W ,[1 ,1 ,1 ,1] , padding =’SAME ’)
# For the convolutional layer we choose a complete

convolution (the filter strides pixel by pixel)
# and the zero padding technique to obtain an output

with the same dimensions of the input
b=self. biases ( b_shape )

return tf.nn.relu(y+b) # In each convolutional operation
, we add also the bias
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# Max Pooling layer: crucial for reducing the dimension
after a convolutional layer

def max_pooling (self ,x):
return tf.nn. max_pool (x ,[1 ,2 ,2 ,1] ,[1 ,2 ,2 ,1] , padding =’

SAME ’) # This kind of pooling produces on the putput
emages with height and length half reduced .

# Fully connected layer
def fully_connected (self ,x,size):

size2=int(x. get_shape () [1])
W=self. weights ([ size2 ,size [0]])
b=self. biases (size)
return tf. matmul (x,W)+b # Classical fully connected

layer. The softmax unit will be added

Finally, we can introduce the main First of all, the basic declarations of the
variables required in the code development, such as the hyperparameters or the
size of each layer of the network.

Listing 6.5: Main

if __name__ ==’__main__ ’:
D= Data_set_preparation ()
B= Batch_preparation ()

log_path =’Logs/CNN_1 ’ # This is the path where I can save
the summaries for visualization in TensorBoard

# HYPERPARAMETERS
batch_size =150
classes =[’crack ’,’no_crack ’]
num_classes =len( classes )
val_size =0.1 #The sizes must be done in parts of 1. The

code will translate it into percentage and finite number
wrt the total number of images

test_size =0.1
img_size =64
num_channels =3 #RGB images , so 3 channels
filter1_size =[3 ,3 ,3]
num_filters1 =[32]
filter2_size =[3 ,3]+ num_filters1
num_filters2 =[32]
filter3_size =[3 ,3]+ num_filters2
num_filters3 =[64]
fully_size =[1024]
learning_rate = 0.00005
steps =5000
val_checking_step =100
main_path =’Dataset ’
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Then, the construction of the three-layer deep convolutional neural network,
preceded by the preparation of the different data set.

Listing 6.6: Main

train_i ,train_l ,train_n ,train_cls ,val_i ,val_l ,val_n ,val_cls ,
test_i ,test_l ,test_n , test_cls =D. preparation (main_path ,
img_size ,classes ,val_size , test_size )

# Preparation of the sets
#For confirmation , we can print the obtained values of the

preparation
t=len( train_l )
v=len(val_l)
tt=len( test_l )
print (’Number of images in the Training set: {}’

. format (t))
print (’Number of images in the Validation set: {}’

. format (v))
print (’Number of images in the Test set: {}’

. format (tt))
print (len( train_i ))
# Creation of the placeholders for tensorflow
input_shape =[ img_size ,img_size , num_channels ]
x=tf. placeholder (tf.float32 ,shape =[ None ]+ input_shape )
y=tf. placeholder (tf.float32 ,shape =[None , num_classes ])
neurons_dropout =tf. placeholder (tf. float32 )

# Now , we can define the various step of the layer
F= Functions ()
x_in=tf. reshape (x,[-1, img_size ,img_size ,3]) # Necessary

reshaping for having a number of pixels surely divisible
for 2

# 1) CONVOLUTIONAL LAYER WITH 3x3 32 FILTERS AND MAX POOLING
(Input Dimension : img_size x img_size x 1)

conv1=F. convolutional (x_in , filter1_size + num_filters1 ,
num_filters1 )

out1=F. max_pooling (conv1)

# 2) CONVOLUTIONAL LAYER WITH 3x3 32 FILTERS AND MAX POOLING
(Input Dimension : img_size /2 x img_size /2 x 32)

conv2=F. convolutional (out1 , filter2_size + num_filters2 ,
num_filters2 )

out2=F. max_pooling (conv2)

# 3) CONVOLUTIONAL LAYER WITH 64 3x3 FILTERS AND MAX POOLING
(Input Dimension : img_size /4 x img_size )

conv3=F. convolutional (out2 , filter3_size + num_filters3 ,
num_filters3 )

out3=F. max_pooling (conv3)
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# 4) DROPOUT FULLY CONNECTED LAYER
shape_size =int (( img_size /8) *( img_size /8)*int( num_filters3

[0]))
out3_flat =tf. reshape (out3 ,[-1, shape_size ]) # First , flat the

result of the convolutional layers
full1=tf.nn.relu(F. fully_connected (out3_flat , fully_size )) #

ReLu activation function
drop1=tf.nn. dropout (full1 , keep_prob = neurons_dropout )
# Dropout regularization requires a percentage of neurons to

be actived in each step.
# It is fournished by the user , so it can be stored inside a

placeholder

# 5) SOFTMAX FINAL FULLY CONNECTED LAYER
y_net=F. fully_connected (drop1 ,[ num_classes ])
cross_entropy =tf.nn. softmax_cross_entropy_with_logits ( labels

=y, logits =y_net)
# Taking into account that my cost function will take in

consideration the cross entropy ,
# I need to use the softmax command with the logits , in

order to reduce numerical problem and avoiding bugs
print (’Network ready ’)

At the end, it is time to use the Tensorflow functions for preparing the environ-
ment in which the learning procedure will be executed.

Listing 6.7: Main

sess=tf. InteractiveSession ()
# Evaluations and training functions
# It is convenient to collect all the operations inside a

scope section , in order to bge easily visible inside
TensorBoard

with tf. name_scope (’Cost_Function ’):
cost_function =tf. reduce_mean ( cross_entropy ) #Cost

function
with tf. name_scope (’Training ’):

train_step =tf.train. AdamOptimizer ( learning_rate ).
minimize ( cost_function )

with tf. name_scope (’Accuracy ’):
prediction =tf.equal(tf. argmax (y_net ,1) ,tf. argmax (y ,1))
accuracy =tf. reduce_mean (tf.cast(prediction ,tf. float32 ))

# I reduce the mean between my prediction and the
real value , by showing the accuracy of the model

print (’Scopes created ’)

# Now , I can define all the variables which I want to
monitore inside TensorBoard

tf. summary . scalar (’Cost ’,cost_function )
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tf. summary . scalar (’Accuracy ’,accuracy )
merged_variables =tf. summary . merge_all ()
# Merging operation collects inside a unique variable all

the summaries operation previously performed
# and this is important to launch the TensorBoard operations

only once
print (’Summaries created ’)

# Now , we can launch the Tensorflow environment

print (’Starting training ’)
sess.run(tf. global_variables_initializer ()) # Inizialization

of the variables previously defined ( weights and biases )
summary_writer =tf. summary . FileWriter (log_path ,graph=sess.

graph) # With this command we start writing the summaries
for tensorboard

for i in range(steps):
# Cration of the batch
x_input ,y_true , names_batch ,epoch=B. next_batch_train (

train_i ,train_l ,train_n , batch_size )
x_validation_batch , y_validation ,names_val , epoch_v =B.

next_batch_val (val_i ,val_l ,val_n ,100)
# Training procedure
_, summary = sess.run ([ train_step , merged_variables ],

feed_dict ={x:x_input ,y:y_true , neurons_dropout :0.5})
# I need to exploit the run session also for the

summaries previously defined , in order to see the
pregoresses on tensorBoard

# I evaluate the accuracies in training and validation
only every multiple of the validation checking step

if i % val_checking_step == 0:
acc_train , summary =sess.run ([ accuracy ,

merged_variables ], feed_dict ={x:x_input ,y:y_true ,
neurons_dropout :0.5})

acc_val , summary =sess.run ([ accuracy , merged_variables
], feed_dict ={x: x_validation_batch ,y: y_validation ,
neurons_dropout :1.0})

# No dropout in validation and test performances : I
want to use all the neurons to see how the
training is proceeding

print (’Epoch {}, Step {}: ’. format (epoch ,i))
print (’Training accuracy {} %’. format ( acc_train

*100))
print (’Validation Accuracy {} %’. format ( acc_val

*100))

summary_writer . add_summary (summary ,i) # Updating the
summaries each step
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# Final test check
x_test = test_i
y_test = test_l
acc_test =sess.run(accuracy , feed_dict ={x:x_test ,y:y_test ,

neurons_dropout :1.0})
print (’Final Test Accuracy : {} %’. format ( acc_test *100))

saver=tf.train.Saver ()
save_path =saver.save(sess , " Models /test1.ckpt")
print ("Model saved")

The proposed code will train the network using the Batch Normalization tech-
nique and plot a temporary result each certain number of steps. In practice, the
result regard the accuracy of the train procedure, seen as the percentage of correct
classification of the images. At the end of the training, a test is performed with im-
ages never seen by the network, in order to evaluate the final accuracy. The model
is saved in a .ckpt file, which can be reused so that no more training is required.
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Chapter 7

Conclusions

The aim of the entire training process made with the two different networks is to
show the differences and the benefit of the different approaches.
It is quite clear, by simply looking the accuracies in the different tests, how Transfer
Learning is much better than the custom CNN. As a matter of fact, we did not
expect something different, because the huge differences in the deepness of the
networks suggested better results even without testing them. But the point is
clearly not this one, because our custom CNN could have been done even bigger
than only 5 layer-deep and maybe could have reached accuracies more similar to
Inception. But all this effort could not be justified when a technique like Transfer
Learning is available. It is basically impossible to build a network even near to
Inception and at the end it have required too much effort not only in the building
phase, but moreover in the training process. This custom CNN took something like
8 hours to be trained from the scratch, while the retraining of Inception took just
a couple of hours. So, Transfer Learning is surely the right choice for the network
part of the prototype.
Some final considerations must be done also for the hardware. This prototype
showed only benefit with respect to previous prototypes already tested during past
years. In particular, the set of images are strongly improved in terms of stability
and resolution and all the automatized system with Raspberry makes the life even
more easier. Last year, an attempt with a video acquisition system has been made,
with the dataset obtained by reprocessing the black and white video and extracting
them in relation with the frame frequency. This technique did not produce a nice
dataset, but the final results were quite similar. The main difference was the huge
overfitting obtained with that dataset, because black and white pictures with low
accuracies brought the system to a fast saturation. This new kind of dataset is
much more reliable and, if more increased, could reach results even bigger than
97.8%. The benefit of this new dataset is also confirmed by the good results of the
custom CNN which, even small, reached a good 94.2% with the proper parameters
tuning.
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In conclusion, this new prototype collected very good responses and could be ready
to be introduced in the real time environment, as suggested by the following steps
which will be completed in the next years.

7.1 Next steps
At the end of this work, we obtained a trained Neural Network, Inception which,
thanks to the good dataset we built with our prototype is able to classify images
for our purpose. Now, the last step is the effective testing of the network in real
time.
Jetson TX2 can be used as the main element of the prototype and can be mounted
in the truck and substituting completely Raspberry in the remote control of the
prototype. At the same time it can run simple programs in order to exploit the
resources of Inception which be already prepared. This means that, in the final
phase of the project, the system can move inside a generic tunnel, collect images
and immediately process them inside Inception to know in real time the result.
Another interesting problem regards the localization. Effectively we are going to
collect images quite fast and the results can be shown after the inspected zone is
already passed. It could be useful to associate each image to the proper localization
inside the tunnel so that, at the end of the road, we can know exactly where the
crack is and we can go back to eventually fix it. But the localization procedure in
our environment can be quite difficult to implement. We are inside a tunnel and the
GPS in not available and this means that the most immediate and efficient technique
is not usable. During the development of this project, we tried to focus in parallel
on some localization technique. The first idea was to use some sensors like the Hall
Effect for detecting the number of rotations of the truck wheel during the motion
and connecting it to the shooting frequency of the camera. The problem arose with
the effective power of the sensor which was not able to detect the magnetic field of
a magnet, even if was one of the strongest in commerce. We identify as the unique
approach to use the bus of the truck for extract impulse on the gyroscope. This
will be the other main implementation required by the system to be considered
complete.
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Chapter 8

Appendix A

Python code for camera control

Listing 8.1: Main

from sh import gphoto2 as gp
import signal , os , subprocess

# Everytime the camera is attached to the PI , a gphoto process
starts automatically and does not allow any other actions on
the camera .

# We need to close it

def killGphoto2Process ():
p = subprocess .Popen ([’ps’, ’-A’], stdout = subprocess .PIPE)
out , err = p. communicate ()

# Search for the process we want to kill
for line in out. splitlines ():

if b’gvfsd - gphoto2 ’ in line:
# Kill that process !
pid = int(line.split(None ,1) [0])
os.kill(pid , signal . SIGKILL )

# Lines in the terminal which allow to control the shutter of
the camera

triggerCommand = ["--set - config = eosremoterelease =5"]

def captureImages ():
gp( triggerCommand ) # Hold down the shutter

def stopImages ():
gp( endCommand ) # Release the shutter

# Main
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8 – Appendix A

while (True):
killGphoto2Process ()
captureImages ()

The code is essentially very simple, because it has only to exploit the gphoto2
library and its trigger command on the shutter of the camera. This kind of code
allows to excite the shutter at its maximum speed and, when desired, the execution
can be stopped through the command line. It is very interesting the first part
of the code, the so called killGphoto2Process function. In the moment in which
the camera is connected to the Raspberry, the library automatically generates the
software connection for the opening of the internal memory of the camera and so
creates a OS process. So, if we want to have access to the camera again, it is
necessary to block this process: this function does that and in fact it is recalled
every time the code starts, so that whatever previous process is in act, it will be
blocked and our program can be executed without problem.
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Chapter 9

Appendix B

Matlab code for Artificial expansion of the data

clear
close all
clc

path=’source /’;
format =’.jpg ’;

tot_img =1744;

for ii =1189: tot_img
ext=’’;
if (ii <10)

ext=’000 ’;
elseif (ii >9 && ii <100)

ext=’00’;
elseif (ii >99 && ii <1000)

ext=’0’;
end

name =[ path ext num2str (ii) format ],

x = imread (name);

step =90;
tot_rot =3;
for rr =1: tot_rot

angle=step*rr;

y= imrotate (x,angle);

89



imwrite (y,[’dest ’ num2str (angle) ’/’ num2str (ii) ’-’
num2str (angle) format ]);

end

end

This is the simple Matlab code used for rotating images and enlarging the dataset.
Actually, this code is able to rotate the images of 90,180 and 270 degrees, but we
used only the 90 degrees rotation.
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