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Abstract

The cooperation and communication between different robotic agents is a very power-
ful tool useful for a lot of implementations, from the mapping of areas (SLAM) to the
exchange of data to achieve tasks in a shorter time or with better solutions that can
allow to save resources.
In particular, the possibility of having an Unmanned Ground Vehicle (UGV) commu-
nicating with an Unmanned Air Vehicle (UAV) is something that is in greater demand
than ever before.
For instance, in agriculture applications this cooperation is quite interesting since the
mapping of vineyards can be accomplished by a rover which then shares the data with
a drone that can use them to define the parameters needed for its mission planning.
The purpose of this thesis is to build a common data structure able to receive informa-
tion from an agent, regardless the nature of the robot (UGV or UAV), and make these
data available for other robots that need to work together to achieve a common task.
The first part is an introduction to the ROS environment and explains how to use this
tool in order to program the robots and organize the data structure that will be used
for the thesis.
The second part discusses about UGVs, in particular about the two TurtleBot3 rovers
which have been used for this project, the Waffle and the Burger models, and the
Jackal rover. In this section it is also explained how these rovers can be controlled
using the Pixhawk autopilot, which is usually used with drones and therefore needs to
be properly programmed in order to be utilized with UGVs.
Finally, the last part focuses on MAVROS and MAVLink protocol and explains how
these two tools work and how they can be used as interface to allow the communication
between the Pixhawk and the rover.
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Introduction

Overview and State of the art analysis
In the last years, our life and daily routine are increasingly more conditioned by the
network of information that, even if invisible, is all around us. We use these information
and share them between us every day for a lot of different reasons, and some tasks would
be simply impossible to achieve without this process of data sharing.
If we link this analysis to the fact that, nowadays, robots are always more present and
utilized in a lot of different scenarios in our lives, the direct consequence is that this
process of data sharing can be extended to robots aswell, in order to improve their
efficiency and be more valuable for their user.
One example of such benefit is the project ended in 2014 by RoboEarth [13] which
consisted in disposing four different robots in an experimental setup with two hospital
rooms [12]. Each of these four robots have their own structure and have been built
accordingly to their specific purpose: the first (Ari) is a mobile sensive platform that
takes care about the mapping of the area where the other robots have to work, the
second (Amigo) is an advanced humanoid with a rich set of sensors and two robot arms,
the third (Pico) is a much more simple humanoid robot with just a tray attached to it
and the last (Pera) is a fixed robotic manipulator mounted on a table.

Figure 1: RoboEarth robots
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During the demonstration the robots receive vocal instructions by the patients and
proceed to accomplish their tasks working all together and sharing data through a
cloud system. The humanoid robots can move around the rooms thanks to the map
elaborated by Ari, the mobile sensive platform, and they can grab or move objects with
the help of the robotic manipulator that can reach and reposition items.
This example can prove the importance of multi-agent cooperation and data sharing
in such a relevant domain as the medical field.

While working in a multi-agent application, one of the hardest obstacle to be over-
come is the different kind of approach to be used to instruct the robots about their
tasks. More precisely while programming the TurtleBot3 [15] UGVs tasks, the com-
munication exists directly between the user and the robot whithout any mediation
involved.
On the other hand, while programming a task for a drone using Pixhawk [8] autopilot,
the procedure is more complex and there are more steps involved to achieve the final
goal. The code written by the user is elaborated by the mission planner that generates
the right inputs and coordinates needed by the Ground Control Station (GCS) which
will produce the instructions that the drone will follow in order to complete the task.
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The MAVLink [3] communication protocol and MAVROS [5] package are useful
to translate the istructions from the human-readable representation to the machine-
readable format used by the drones.

Figure 2: MAVLINK and MAVROS system architecture

Objectives
The objective of the thesis is to build an efficient data structure able to work as central
node of communication for a network of different type of robots that can share and
store information regardless of the protocol they use.
This goal has been reached addressing the problem with a step-based approach:

• first, the algorithms are tested in a simple navigation application without using
any external autopilot as mission controller. In this phase, no interface is needed
between the data structure and the agents that use it. In particular, some navi-
gation algorithms have been tested with Turtlebot3 and Jackal rovers inside the
ROS framework.

• secondly, another set of tests have been made using a Pixhawk autopilot to control
and pilot a UGV giving the inputs with a Radio Controller (RC tests phase). In
this case, no ROS interface is utilized, instead, a Ground Control Station has been
used to initialize and manage all the parameters for the tests.

• lastly, the final procedure is performed using the same hardware set up of the
previous one, with the exception of the RC. As a matter of fact in order to
have the full availability of the data and the possibility to share them, the ROS
framework it has to be used, and so the input commands have been sent with the
MAVROS and MAVLink protocol system.
In this case a sort of interface comes into play and allows the correct exchange of
data.

3



Chapter 1

ROS software framework

Even if there are a lot of different kinds of robots and a large variety of tasks that
robots can accomplish, some common traits are often present while working in this
environment. For this reason, a group of programmers of the Stanford University in
the mid-2000s created a common platform where is possible to share codes and ideas
regarding the robotic field, the Robotic Operating System (ROS) [14] framework.
ROS consists in a set of libraries useful to control and program robots and provides
different services [9]:

• a set of drivers that allows you to read data from sensors and send commands
and instructions to motors and other actuators

• a large collection of robotics algorithms such as SLAM algorithms, autonomous
navigation algorithms, sensor data interpretation algorithms, and much more

• various computational infrastructures that allows you to move data around, to
connect the various components of a complex robot system, and to incorporate
your own algorithms

• a large set of tools that make it easy to visualize the state of the robot and the
algorithms, debug faulty behaviours, and record sensor data

The strength of this platform lies in his versatility since through ROS the user can
focus on the peculiarities of his project while the basics, for the majority, have already
been taken care of by the platform itself.
This is accomplished thanks to the variety of nodes and topics that are linked together
and which can store and exchange data. This is really important since when trying
to program a robot to achieve a task, even the simplest one, starting from zero, the
amount of work and steps required would be too large for a single person or a small
group of people to handle.
With ROS and its big community of users is possible to exploit the numerous reposi-
tories to lighten the load of work needed.
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1 – ROS software framework

1.1 ROS architecture

ROS systems are composed by a large number of independent programs that are con-
stantly communicating with each other by exchanging messages. The whole system
can be represented with a graph where the programs are the nodes and the messages
that link them are the edges.

Figure 1.1: ROS graph for a teleop task

The example shown in figure 1.1 is the graph related to a simple teleop task, in
which the robot is remotely-controlled with the keyboard and can be moved around.
The oval-shaped blocks are the nodes, corresponding to the processes that perform
computation. The rectangular-shaped ones, on the other hand, are the topics, that
consist in the "channels" or "buses" through which the messages (represented by the
edges in the graph) are exchanged.
The first important concept to understand while using ROS is the concept of node.

1.2 Nodes

A node is a process that performs computation. While dealing with robot applications,
every component of the robot is controlled by a node. For example, one node controls
the robot’s wheel motors, one node performs localization, and so on. A useful command
that allows to know all information about nodes is rosnode info followed by the name
of the node. With this command is possible to know which subscribers and publishers
are linked to that node. Each node uses messages to exchange information within the
ROS network.
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1 – ROS software framework

1.3 Messages
When a node needs to communicate with another node it publishes messages to topics.
A message is a simple data structure that has a type (integer, floating point, boolean,
etc.) and can be used once the related library is imported inside the code.
With the command rosmsg is possible to inspect a message and understand which
data structure it uses.

Figure 1.2: rosmsg command example

In figure 1.2 it is represented an example of this command launched on the Twist
message. In this case this message has a data structure divided in two parts, one
concerning the linear velocity of the robot and the other one concerning the angular
one. Both the structures use three float numbers (x,y,z) that correspond to the velocity
wanted for the robot along x,y and z axis.
All this exchange of data and information between nodes through messages is possible
thanks to the usage of topics.
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1 – ROS software framework

1.4 Topics
A topic is a stream of messages with a defined type that implements a publish/subscribe
communication process. Nodes that want to receive messages from a topic can subscribe
to that topic by making a request to roscore.
The following lines of code (extracted from the code reported in Appendix A) are an
example of a typical subscriber/publisher mechanism concerning a multi-agent system,
where the task for the "follower" robot is to copy the movements of the "driver" robot:

1 #! /usr/bin/env python

2

3 import rospy

4 from geometry_msgs.msg import Twist

5

6 rospy.init_node("follower_controller")

7 sub = rospy.Subscriber("driver/odom", Odometry , newOdom)

8 pub = rospy.Publisher("follower/cmd_vel", Twist, queue_size=1)

The first line is necessary to choose the right interpreter for the code that follows.
In this case the information needed is the speed of the "driver" robot that is obtained
by reading the Twist message type belonging to geometry_msgs messages, hence
the code in lines 3 and 4. After that, a new node for the application is created and
called follower_controller (line 6), this initialization is really important since allows
communication with the MASTER node of the system. This node will then subscribe
to the driver/odom topic and read messages of the type Odometry (line 7). These
messages contain all the information needed to move the TurtleBot. Finally, in line 8,
these information just read from the driver node are sent to the follower/cmd_vel
topic by publishing them on that topic through a Twist type message.
Even if all programs can freely communicate with each other, there is one process that
needs to be launched before all others and which has the task to sort all messages in
the ROS network, the roscore program.

1.5 roscore
Every time a new node is created the roscore service program provides it with all
the information needed in order to form peer-to-peer connection with the other nodes.
Since the roscore has such an important role his presence is mandatory in every ROS
system and that is why the roscore is always the first program that shall be ran.
When the roscore program is ran, the MASTER node is created.
In a multi-agent application the MASTER can be choosen freely between all robots
even if, usually, this role is covered by the user’s PC. Once the MASTER node is
created, all other nodes tell roscore which messages they provide and which they
would like to subscribe to, then roscore shares the addresses of the relevant message
producers and consumers.
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1 – ROS software framework

Figure 1.3: roscore connections with other nodes in the system

In the example shown in figure 1.3 the listener node is subscribed to the talker
node, meaning that it reads the messages produced by the talker, while both period-
ically make calls to the roscore node.
Another relevant problem that comes into play both when dealing with robots that
work alone and, especially, in multi-robots applications, is the management of coordi-
nate frames and, for this purpose, the tf package has been created.

1.6 tf
In ROS the coordinate frames and the transforms between them are handled with a
distributed approach. Any node can publish information about some transforms and
any node can subscribe to transform data and in this way a complete picture of the
robot is gathered by the various authorities.
This process is implemented by the tf (short for transform) topic, which uses messages
of type tf/tfMessage. Each tf/tfMessage message contains a list of transforms,
stating for each one the names of the frames involved, their relative position and ori-
entation, and the time at which that transform was measured or computed.
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1 – ROS software framework

Another important aspect regarding ROS systems , especially when the application
involves multiple robotic agents, is the definition of names and namespaces.

1.7 Names and Namespaces
Names are a crucial concept in ROS, since nodes, message streams ("topics") and pa-
rameters must have unique names. Nevertheless, namespace collision are really com-
mon in robotic environments, where is frequent to find similar or identical components
on the same robot, such as arms, wheels or cameras.
In order to address this issue, ROS provides the namespaces mechanism, with which
can launch identical nodes into separate namespaces. The procedure entails the copy
of a node that suffers of namespace collision into another namespace that will differ in
the path definition.
For instance, when there are two similar or identical robots (e.g. the TurtleBot3 Waffle
Pi and Burger models) that need to be controlled by the MASTER node, the same
instruction or code can be used for both the robots but ROS needs to know which
messages are sent to which node and so a namespace collision occurs.

Figure 1.4: Topic list for a single robot

As shown in figure 1.4 while working with one set of unique-named topics there is
no namespace collision and therefore the nodes can send and receive messages without
any ambiguity.
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1 – ROS software framework

Figure 1.5: Topic list for two robots using NAMESPACE feature

However, when more than one robot is involved, as shown in figure 1.5, since the
same set of topics exists for both robots, the NAMESPACE mechanism becomes nec-
essary. For instance, the topic /cmd_vel used to control the speed of the rover has
been renamed as /burger/cmd_vel for the burger model and as /waffle/cmd_vel
for the Waffle Pi model. In this way, it is possible to control both speeds subscribing
to the relative topic.

1.8 rosparam
Finally, a command that is really helpful and allows to save time when running scripts is
rosparam. When the application needs a script that receive parameters as arguments
for one or more functions this command can be used to set and change that parameter
even while the script is running and, maybe, it is in a ros.spin loop. The structure for
this command is :
1 rosparam set "parameter_name"

This is helpful because allows the user to change the intended parameter without
re-compiling the whole script with the new values and thus interrupting the ros loop.

10



Chapter 2

UGVs - TurtleBot3 and Jackal

As mentioned before, through ROS software framework it is possible to control and
program a large variety of robots, both UGVs and UAVs. With regards to UGVs, the
models used for this thesis project are the TurtleBot3 rovers (Waffle and Burger, figure
2.1(a) and figure 2.1(b) and the Jackal by Clearpath Robotics [1] (figure 2.2).
The TurtleBots3 rovers are fully customizable robots thanks to their modular structure.
As a matter of fact they support the installation of LIDAR scanners, cameras and
other sensors useful for applications involving Simultaneous Localization and Mapping
(SLAM) and autonomous navigation.
However, because of their structure and their specs, the TurtleBot3 robots are suitable
for indoor operations only.
The Jackal, on the other hand, is a robotic research platform able to accomplish tasks
in outdoor scenarios, thanks to its sturdy aluminum chassis made with a high torque
4×4 drivetrain that allows the robot to move around rugged terrains.

(a) Waffle model (b) Burger model

Figure 2.1: Turtlebot3 UGVs
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2 – UGVs - TurtleBot3 and Jackal

Figure 2.2: Jackal rover

(a) Jackal - top view

(b) Jackal - front view (c) Jackal - side view

Figure 2.3: Jackal rover views
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2 – UGVs - TurtleBot3 and Jackal

2.1 UGVs hardware specifications

In the following tables are shown the specifications of these UGVs:

Items Specifications
Maximum translational velocity 0.26 m/s
Maximum rotational velocity 1.82 rad/s (104.27 deg/s)

Maximum payload 30kg
Size (L x W x H) 281mm x 306mm x 141mm

Weight (+ SBC + Battery + Sensors) 1.8kg
Threshold of climbing 10 mm or lower

Expected operating time 2h
Expected charging time 2h 30m

SBC (Single Board Computers) Intel® Joule™ 570x
MCU 32-bit ARM Cortex®-M7 with FPU

(216 MHz, 462 DMIPS)
Actuator Dynamixel XM430-W210

LDS(Laser Distance Sensor) 360 Laser Distance Sensor LDS-01
Camera Intel® Realsense™ R200

3 Axis Accelerometer
IMU 3 Axis Gyroscope

3 Axis Magnetometer
3.3V / 800mA

Power connectors 5V / 4A
12V / 1A

Peripheral UART x3, CAN x1, SPI x1, I2C x1,
ADC x5, 5pin OLLO x4

Dynamixel ports RS485 x 3, TTL x 3
Programmable LEDs User LED x 4

Board status LED
Status LEDs Arduino LED

Power LED
Buttons and Switches Push buttons x 2, Reset button x 1,

Dip switch x 2
Battery Lithium polymer 11.1V

1800mAh/19.98Wh 5C
PC connection USB

Power adapter (SMPS) Input : 100-240V,
AC 50/60Hz, 1.5A @max
Output : 12V DC, 5A

Table 2.1: TurtleBot3 Waffle Hardware specifications
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2 – UGVs - TurtleBot3 and Jackal

Items Specifications
Maximum translational velocity 0.22 m/s
Maximum rotational velocity 2.84 rad/s (162.72 deg/s)

Maximum payload 15kg
Size (L x W x H) 138mm x 178mm x 192mm

Weight (+ SBC + Battery + Sensors) 1kg
Threshold of climbing 10 mm or lower

Expected operating time 2h 30m
Expected charging time 2h 30m

SBC (Single Board Computers) Raspberry Pi 3 Model B and B+
MCU 32-bit ARM Cortex®-M7 with FPU

(216 MHz, 462 DMIPS)
Actuator Dynamixel XM430-W210

LDS(Laser Distance Sensor) 360 Laser Distance Sensor LDS-01
3 Axis Accelerometer

IMU 3 Axis Gyroscope
3 Axis Magnetometer

3.3V / 800mA
Power connectors 5V / 4A

12V / 1A
Peripheral UART x3, CAN x1, SPI x1, I2C x1,

ADC x5, 5pin OLLO x4
Dynamixel ports RS485 x 3, TTL x 3

Programmable LEDs User LED x 4
Board status LED

Status LEDs Arduino LED
Power LED

Buttons and Switches Push buttons x 2, Reset button x 1,
Dip switch x 2

Battery Lithium polymer 11.1V
1800mAh/19.98Wh 5C

PC connection USB
Power adapter (SMPS) Input : 100-240V,

AC 50/60Hz, 1.5A @max
Output : 12V DC, 5A

Table 2.2: TurtleBot3 Burger Hardware specifications
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Items Specifications
External dimensions 508 x 430 x 250 mm (20 x 17 x 10 in)
Internal dimensions 250 x 100 x 85 mm (10 x 4 x 3 in)

Weight 17 kg
Maximum payload 20 kg

Max speed 2.0 m/s
Run time (basic usage) 4 hours

User power 5V at 5A, 12V at 10A, 24V at 20A
Drivers and APIs ROS, Mathworks

SBC (Single Board Computers) Raspberry Pi 3 Model B and B+

Table 2.3: Jackal Hardware specifications

2.2 Driver/follower application example
Thanks to ROS and the tools that comes with it, it is possible to make these differ-
ent kind of robots work together at the same time and on the same application. For
instance, thanks to the namespace tool the rovers can cooperate and move around
sharing the same input commands or using different data, whichever case is needed for
the application.
In the following code is presented a case of "driver/follower" application, where a robot
(doesn’t matter which one) is chosen to cover the role of driver and the others are the
followers. The procedure for this task is the following: the master sends the inputs
command to the driver which not only follows the master instructions, but also shares
these inputs with the followers. At this point the followers that are subscribed to the
driver node can use the same inputs and therefore execute the same function.

1 #! /usr/bin/env python

2

3 import rospy

4 from nav_msgs.msg import Odometry

5 from tf.transformations import euler_from_quaternion

6 from geometry_msgs.msg import Point, Twist

7

8 x = 0.0

9 y = 0.0

10 theta = 0.0

11

12 def newOdom (msg) :

13

14 global x

15 global y

16 global theta

15
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17 x = msg.pose.pose.position.x

18 y = msg.pose.pose.position.y

19 rot_q = msg.pose.pose.orientation

20 (roll, pitch, theta ) = euler_from_quaternion ([rot_q.x,rot_q.y,rot_q.z,rot_q.w])

21

22 rospy.init_node("driver_controller")

23 sub = rospy.Subscriber("driver/odom", Odometry , newOdom)

24 pub = rospy.Publisher("driver/cmd_vel", Twist, queue_size=1)

25

26 speed = Twist()

27 r = rospy.Rate(4)

28 while not rospy.is_shutdown() :

29 angle_to_goal = 0.4

30 while (x < 0.2 and y < 0.2) :

31 if abs (angle_to_goal− theta) > 0.1 :

32 speed.linear.x = 0.0

33 speed.angular.z = 0.2

34 else :

35 speed.linear.x = 0.1

36 speed.angular.z = 0.0

37 pub.publish(speed)

38 r.sleep()

39 speed.linear.x = 0.0

40 speed.angular.z = 0.0

41 pub.publish(speed)

42

This part of code regards the driver part of the application. The most important
part of this code is from line 26 to line 28. In these three lines the driver node is created
(line 26), the subscription to the Odometry node is made in order to get the odometry
data from the sensors (line 27) and finally the publisher on the driver/cmd_vel topic
is placed to send commands to the robot and make it move accordingly (line 28).
In the rest of the code, in particular after line 28, the parameter of the task are set
and both the linear and angular velocity for the robot are chosen.
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Concerning the followers,on the other hand, the following code is utilized:

1 #! /usr/bin/env python

2

3 import rospy

4 from geometry_msgs.msg import Twist

5

6 x = 0.0

7 y = 0.0

8 theta = 0.0

9

10 def newTwist(msg) :

11 global x

12 global y

13 global theta

14

15 x = msg.linear.x

16 y = msg.linear.y

17 theta = msg.angular.z

18

19 rospy.init_node("follower_controller")

20 sub = rospy.Subscriber("driver/cmd_vel", Twist, newTwist)

21 pub = rospy.Publisher("follower/cmd_vel", Twist, queue_size=1)

22

23 speed_waffle = Twist()

24 r = rospy.Rate(45)

25 while not rospy.is_shutdown() :

26 while (x != 0 or y != 0 or theta != 0) :

27 speed_waffle.linear.x = x

28 speed_waffle.linear.y = y

29 speed_waffle.angular.z = theta

30 pub.publish(speed_waffle)

31 r.sleep()

32

33 else:

34 speed_waffle.linear.x = 0

35 speed_waffle.linear.y = 0

36 speed_waffle.angular.z = 0

37 pub.publish(speed_waffle)

38 r.sleep()

39
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In this case, a follower node is created (line 21), the driver node is subscribed to
(line 22) and the publisher is placed with respect to the node follower/cmd_vel that
takes care of the velocity commands.
After that, a while loop is created (from line 34 to the end) that has the task of checking
whether the driver robot is moving or not, in the first case this loop will command the
follower to copy these movements, otherwise it shuts down the follower and stop any
kind of velocity inputs.
The following graph is the ROS graph related to this kind of application. In order to
avoid clarity issues, the graph is divided in two parts :

Figure 2.4: ROS graph for the driver/follower application (first half)
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Figure 2.5: ROS graph for the driver/follower application (second half)

As it is shown in figure 2.4 on the left and bottom part of the graph there are all
the nodes and topics concerning the follower robot. On the other hand, in figure ??
in the center at the top are placed the nodes and topics for the driver robot and all
these nodes are linked to the tf topic, that, as said before, manages the coordinate
transformations.
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Chapter 3

QGroundControl GCS

When dealing with drones mission planning and setting, the usage of a Ground Control
Station (GCS) is almost mandatory since these software allow to have the full control
of the robot and to customize the parameters according to the type of application that
is being implemented.
A GCS communicates with the UAV or UGV via wireless telemetry (for parameters
setting a USB connection is also suitable but in this case the arming of the motors
wont be possible since, for obvious reasons, a robot linked with a USB cable is not safe
to move freely without risks).
These software are able to display real-time data about the robot position and perfor-
mances and can be seen as a "virtual cockpit". On the most advanced and complex
missions, a GCS can also be used to control the robot during the flight (UAV applica-
tions) uploading new mission commands and modifying the mission parameters.
The choice when dealing with such software is wide, some examples of GCS platforms
are Mission Planner, QGroundControl,APM Planner 2.0, MAVProxy, UgCS etc.
As concerns this thesis project, QGroundControl [10] has been chosen since it is one
of the most stable and reliable GCS and it is available for every kind of platform, both
desktop and mobile.
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3 – QGroundControl GCS

3.1 QGroundControl GUI
In this part the various sections of QGroundControl are taken into consideration and
analysed.
The main section that is showed when the autopilot is connected is represented in
figure 3.1:

Figure 3.1: QGroundControl main section

This section serves as a sort of "recap" for the settings that are currently utilized
for the definition of the mission. In, particular:

• Radio panel gathers all the channels configured for the raw, pitch, roll and throt-
tle control.

• Flight modes panel shows which kind of mode is set for each possible flight
configuration. For a detailed explanation of each modes, refer to Chapter 5,
"MAVLink messages from GCS to autopilot" section.

• Sensors panel reports which sensor are currently operative on the autopilot.

• Power panel can be used to check, if needed, the status of the battery pf the
vehicle used.

• Safety panel shows all the settings chosen for the various safety control parame-
ters. Some of these safety blocks can be disables by changing the corresponding
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3 – QGroundControl GCS

parameter in the dedicated section of QGroundControl or by utilizing a safety
switch linked to the autopilot that enable or disable the outputs to motors and
servos.

• Camera panel gathers all the information about the kind of camera used, if any
is present.

The next section is the one that regards the firmware selection for the autopilot:

Figure 3.2: QGroundControl firmware section

As shown in figure 3.2 (on the right side), once the autopilot is connected via USB
port, it is possible to chose between ArduPilot Flight Stack or PX4 Flight Stack, and
each of these firmware has multiple sub-choices that change according to the kind of
robot that the user is going to utilize for his application.
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After this section, it comes the one that takes care of radio calibration and radio
parameters setting:

Figure 3.3: QGroundControl radio control section

This section is used during the calibration of the Radio Controller (RC) used to
control the robot during the mission.
For this thesis project, a DX8 Spektrum RC (shown in figure 3.4) has been used:

Figure 3.4: DX8 Spektrum radio controller
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The flight modes that the GCS provides to set the parameters of the mission are
displayed in the next section of the GUI:

Figure 3.5: QGroundControl flight modes section

As shown in figure 3.5 all the modes has been set to GUIDED in order to have
the full control of the vehicle without any of the restriction that other modes can be
affected with.
The next relevant section is the one that allows to change the parameters for the
mission and the robot. Some parameters can be changed from the GCS during the
mission, while others need the vehicle to be disarmed and have to be set before the
mission has started.
For this thesis application the most important parameters that have been changed are:

• ARMING_CHECK:allow to enable or disable various checks before the arming
of the vehicle. Has ben set to NONE in order to speed up the arming procedure.

• MODE 1-6:allow to chose the flight mode for the mission. Changed to GUIDED
for the reasons explained before.

• SERIAL1_BAUD:allow to set the right baud rate for serial port communica-
tion, the value has been set to 57600.

• In addition to that, several changes has been done with regards to the SERVO1
and SERVO3 parameters. More information about this topic will be provided
below.
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Figure 3.6: QGroundControl parameters section

Another important section is the map page where it is possible to control and check
the position of the robot at any time, thanks to the fact that (usually) the vehicle is
provided with a GPS system. This section of QGroundControl is showed in figure 3.7.

Figure 3.7: QGroundControl map section
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3.2 SERIAL_BAUD and SERVO_FUNCTION
parameters

Among the most important parameters to check and change according to the kind of
robot and applications there are SERIAL1_BAUD and SERVO_FUNCTION.
With SERIAL1_BAUD the user can set the correct baud rate for the serial port
where the autopilot is connected, both via USB or via radio telemetry.
Usually the standard value for this parameter is 57600 and can be changed taking into
consideration that the lower is the value chosen, the lower is the chance for errors to
occur, although it will also be slower the update of the GCS.
This important parameter can be changed in the apposite section as shown in figure
3.8

Figure 3.8: Baud rate parameters section

On the other hand, SERVO_FUNCTION allows to choose the function for the
servo output. This is crucial in order to obtain the desired behaviour when trying to
move the robot. For instance, if the application involves drones this parameter may be
set to 4 to obtain an Aileron function.
When dealing with rovers, however, the GroundSteering and Throttle functions are
required and so the correspondent values for SERVO_FUNCTION parameter have
been chosen (26 and 70 respectively), as shown in figure 3.9.
For the list of values to assign to this parameter, table 3.1 can be referred.
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Figure 3.9: SERVO parameters section

FUNCTION VALUE
FLAP 2

AILERON 4
ELEVATOR 19
RUDDER 21
STEERING 26
THROTTLE 70

THROTTLE_LEFT 73
THROTTLE_RIGHT 74

ELEVON_LEFT 77
ELEVON_RIGHT 78
VTAIL_LEFT 79
VTAIL_RIGHT 80

Table 3.1: List of values for SERVO_FUNCTION parameter
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Chapter 4

Pixhawk autopilot and RC testing
phase

Even if autopilots like Pixhawk or NAVIO2 [6] are usually used to manage applications
regarding drones, it is possible to use them also with UGVs.
In particular, the Pixhawk is an advanced open-hardware autopilot capable of powering
all kinds of vehicles from racing and cargo drones through to ground vehicles and
submersibles. This autopilot can be flashed with different type of firmware (e.g. PX4,
APM) and when used along with a Ground Control Station (GCS) can be utilized to
control a large variety of frames.
Another hardware component utilized for this application is the OpenCR1.0 [7] robot
controller that is embedded with a powerful MCU from the ARM Cortex-M7 line-up.
This board supports RS-485 and TTL to control the Dynamixels (the UGV wheels
motors), and offers UART, CAN and a variety of other communication environment.
Moreover, development tools such as Arduino IDE are available as well. This board
has been used in order to traduce the PWM signals produced by the Pixhawk and
control the motors actuators sending the inputs via TTL serial ports.
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4.1 Pixhawk and OpenCR hardware specifications
In the following pages are reported the specifics for the Pixhawk autopilot and the
OpenCR1.0 board:

Figure 4.1: Pixhawk connectors
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Figure 4.2: Pixhawk pinout

Items Specifications
32-bit ARM Cortex M4 core with FPU

Processor 168 Mhz/256 KB RAM/2 MB Flash
32-bit failsafe co-processor

MPU6000 as main accel and gyro
Sensors ST Micro 16-bit gyroscope

ST Micro 14-bit accelerometer/compass (magnetometer)
MEAS barometer

Ideal diode controller with automatic failover
Power Servo rail high-power (7 V) and high-current ready

All peripheral outputs over-current protected, all inputs ESD protected
5x UART serial ports, 1 high-power capable, 2 with HW flow control

Spektrum DSM/DSM2/DSM-X Satellite input
Futaba S.BUS input (output not yet implemented)

PPM sum signal
Interfaces RSSI (PWM or voltage) input

I2C, SPI, 2x CAN, USB
3.3V and 6.6V ADC inputs

Power module output: 4.9 5.5V
Dimensions USB Power Input: 4.75 5.25V

Servo Rail Input: 0 36V
Weight 38 g (1.3 oz)

Weight Width 50 mm (2.0”)
Height 15.5 mm (.6”)
Length 81.5 mm (3.2”)

Table 4.1: Pixhawk Hardware specifications
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Figure 4.3: OpenCR1.0 controller

Figure 4.4: OpenCR1.0 pin map
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Items Specifications
Microcontroller STM32F746ZGT6 / 32-bit ARM Cortex®-M7

with FPU (216MHz, 462DMIPS)
Gyroscope 3Axis

Accelerometer 3Axis
Sensors Magnetometer 3Axis

ARM Cortex 10pin JTAG/SWD connector
Programmer USB Device Firmware Upgrade (DFU)

Serial
32 pins (L 14, R 18) *Arduino connectivity

5Pin OLLO x 4
Digital I/O GPIO x 18 pins

PWM x 6
I2C x 1
SPI x 1

Analog INPUT ADC Channels (Max 12bit) x 6
USB x 1 (Micro-B USB connector/USB 2.0

/Host/Peripheral/OTG)
TTL x 3 (B3B-EH-A / Dynamixel)

Communication Ports RS485 x 3 (B4B-EH-A / Dynamixel)
UART x 2 (20010WS-04)
CAN x 1 (20010WS-04)

LD2 (red/green) : USB communication
User LED x 4 : LD3 (red), LD4 (green), LD5 (blue)

LEDs and buttons User button x 2
Power LED : LD1 (red, 3.3 V power on)

Reset button x 1 (for power reset of board)
Power on/off switch x 1

5 V (USB VBUS), 7-24 V (Battery or SMPS)
Default battery : LI-PO 11.1V 1,800mAh 19.98Wh

Input Power Sources Power LED : LD1 (red, 3.3 V power on)
Default SMPS : 12V 4.5A

External battery Port for RTC (Real Time Clock)
(Molex 53047-0210)

Output Power Sources 12V max 4.5A(SMW250-02)
5V max 4A(5267-02A), 3.3V@800mA(20010WS-02)

Dimensions 105(W) X 75(D) mm
Weight 60g

Table 4.2: OpenCR1.0 Hardware specifications
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4.2 QGroundControl GCS
In order to use the Pixhawk with rovers, the first step is to flash the correct firmware
using a Ground Control Station (GCS) software. For this thesis project, QGroundCon-
trol has been chosen.
As explained in Chapter 3, these kind of software allow the user to interface with the
autopilot, to change the parameters, to flash the desired firmware and to control the
flight or path of the robots. The procedure to set up the task environment is the
following:

• Open the GCS and connect the Pixhawk via USB or via wireless telemetry

• Select the desired firmware to upload on the autopilot. As concerns this appli-
cation, the choice was between PX4 and ArduPilot firmware, and the latter has
been used.

• Select the airframe that better represents the typology of the robot used for the
mission. As shown in figure 4.5 there are plenty of options for drones and each
robot frame has multiple sub-frames available to be chosen.
For the sake of this project, the rover frame has been selected.

Figure 4.5: Frames selection section of QGroundControl

• The next step is to complete the calibration procedure. With this process the GCS
collects all the data needed to initialize all the parameters for the mission. Some of
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these parameters regards the sensors (accelerometer and gyroscope) while others
are for the radio calibration. With regard to the sensors, the procedure requires to
rotate the autopilot around all its axis and then to keep it still in certain positions.
On the other end, for the radio calibration, the various switches of the RC have
to be placed in every possible position so that the GCS can register the values for
the min/max range.

• Finally,in the Parameters section of the GCS the user can modify the various
parameters for the mission in order to customize the environment accordingly
with his goals.

It is important to notice the difference between the high number of frames available
for drones against the single one present for rovers.
This, as reported before, is due to the fact that usually these hardware and software
are utilized for applications regarding drones and only a few times are taken into
consideration for the control of rovers.

4.3 Control signals procedure and circuit design
Once the rover firmware has been flashed in the Pixhawk, the autopilot knows that
wont have to deal with a drone airframe (meaning a structure with motors and helices)
but will have to manage a system with motors and wheels, which means dealing with
different types of inputs and different directions for the motion.
In order to proceed with the task as intended a further modification for the mission
parameters is needed. In particular the two parameters SERVO1_FUNCTION and
SERVO3_FUNCTION have to be set to values 20 and 76 respectively, meaning that
pin n.1 (see figure 4.2 for the autopilot pinout) of the Pixhawk will generate the PWM
that manages the STEERING and pin n. 3 the THROTTLE.
Once these preliminary steps are completed, the Pixhawk is connected to the controller
board of the rover. The autopilot now sends PWM signals that are collected by the
UART pins of the OpenCR1.0 (see figure 4.4) and translated by the Arduino that is
embedded inside the board. In the following picture (figure 4.6) it is shown the circuit
used to accomplish this task:
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Figure 4.6: Circuit used for signals exchange between the Pixhawk and the motors
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The components shown in figure 4.6 are:

• Turtlebot3 SBC (Single Board Computer) on the top

• OpenCR board embedded with MCU from the ARM Cortex-M7 line-up in the
center

• Pixhawk autopilot (connected with jumper cables to the OpenCR) on the bottom

These signals are then redirected via TTL serial port to the servo motors that con-
trol the actuators of the wheels.
The full code that manages this translation is available on the Turtlebot3 official
GitHub [16], here below there are the most significant lines that have been added
or modified for this application:

1

2 #include "turtlebot3_core_config.h"

3 int durationLeft ,durationRight;

4 int pinLeft=2;

5 int pinRight=3;

6

7 ...

8

9 void loop()

10

11 {

12

13 durationLeft = pulseIn(pinLeft, HIGH);

14 durationRight = pulseIn(pinRight, HIGH);

15

16 DEBUG_SERIAL.print("durationLeft:");

17 DEBUG_SERIAL.println(durationLeft);

18 DEBUG_SERIAL.print("durationRight:");

19 DEBUG_SERIAL.println(durationRight);

20

21 goal_velocity[ANGULAR]=durationRight;

22 goal_velocity[LINEAR]=durationLeft;

23

24 DEBUG_SERIAL.print("Linear:");

25

26 DEBUG_SERIAL.println( goal_velocity[LINEAR]);

27

28 DEBUG_SERIAL.print("Angular:");

29
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30 DEBUG_SERIAL.println(goal_velocity[ANGULAR]);

31

32

33 goal_velocity[ANGULAR]=map(goal_velocity[ANGULAR], −3484, 3484, −18, 18);
34

35 goal_velocity[LINEAR] =map(goal_velocity[LINEAR], 1500, 2000, −26, 26);
36

37

38 if( durationLeft==0 && durationRight==0 ) goal_velocity[LINEAR]=0;

39

40 goal_velocity[ANGULAR]=goal_velocity[ANGULAR]/10;

41

42 goal_velocity[LINEAR]=goal_velocity[LINEAR]/100;

43

44 ...

8

In lines 4 and 5 the input pins are selected (pins 2 and 3 in this case), those pins
are the one that will be connected to the Pixhawk and will receive the PWM signals.
In the loop starting at line 8, the values for the PWM signals are used to initialize the
variables "durationLeft" and "durationRight". These two variables are then mapped
(lines 38 and 40) in order to see the right range for the velocities, from -0.26 m/s to
0.26 m/s for the linear velocity and from -1.8 rad/s to 1.8 rad/s for the angular velocity
(which are the minimum and maximum values reachable by the motors).
For this application the PWM values go from 1500 ms to 2000 ms (for practical purposes
these two values have been rounded to 1600 and 1900, respectively).
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4.4 RC control testing phase
Once the circuit is prepared it is possible to test it with a Radio Controller in order to
understand if the signals sent and received are correct and to verify that the actuators
work like intended.
With the purpose of having a second feedback along with the oscilloscope, an Arduino
board has been used to monitor the signals passing through the serial port.
The results of this test are shown in the following figures:

(a) PWM signals when no speed input is
given

(b) PWM values and mapped values read
by Arduino board (no speed input)

Figure 4.7: PWM values and Arduino readings when no speed input is given

In figure 4.7 it is shown the case in which no input signal is sent and so the rover
is standing still. In this case on both pins is present a PWM of 1750 µs that is the
"zero" value for this example. Moreover, in the Arduino serial monitor it can be seen
that the linear and angular speed values are both to zero as expected.
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(a) PWM signals for maximum speed for-
ward RC input

(b) PWM values and mapped values read
by Arduino board (maximum speed for-
ward input)

Figure 4.8: PWM values and Arduino readings for pure linear forward speed

(a) PWM signals for maximum speed
backwards RC input

(b) PWM values and mapped values
read by Arduino board (maximum speed
backwards input)

Figure 4.9: PWM values and Arduino readings for pure linear backwards speed
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(a) PWM signals for right turn RC input (b) PWM values and mapped values read
by Arduino board (turn right input)

Figure 4.10: PWM values and Arduino readings for angular speed (turn right)

(a) PWM signals for left turn RC input (b) PWM values and mapped values read
by Arduino board (turn left input)

Figure 4.11: PWM values and Arduino readings for angular speed (turn left)
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In figure 4.8 and 4.9 are represented the two cases in which the rover moves at
maximum speed forward (4.8) and at maximum speed backwards (4.9). In the first
case the PWM value reaches 1900 µs (rounded value for 2000 µs) while in the second
case the value is 1600 µs (rounded for 1500 µs). In both cases the corresponding
mapped values can be seen in the Arduino serial monitor (0.26 m/s is the maximum
speed reachable by the rover used for the test).
Finally, in figure 4.10 and 4.11 are exhibited the two cases in which the rover performs
a turn right (4.10) or left (4.11). For this purpose it can be seen that the wheels are
spinning in different direction and thus the rotation is performed (one PWM is above
the "zero" threshold of 1750 µs while the other one is below it). Once again, the Arduino
serial monitor shows the remapped values for the linear and angular velocities.
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Chapter 5

MAVROS package andMAVLink pro-
tocol

The next step is to use the MAVLink protocol along with MAVROS libraries instead
of using the RC to control the rover. The goal is to be able to override the RC controls
and use only the computer to set the parameters and send the commands.
This procedure requires MAVROS package and MAVLink protocol, which are tools
that, when used together, allow to build a communication bridge between the com-
puter, the GCS and the autopilot.

5.1 MAVROS
The MAVROS package provides communication driver for different kinds of autopilots
that use MAVLink protocol. In particular, allows the user to program and customize
the parameters of the autopilot utilizing the ROS environment and replacing by all
means any kind of GCS software.
The first step after the installation of MAVROS package is to run the right command to
launch the main node, and this command changes depending on which kind of firmware
is present on the autopilot that is being used.
If a PX4 stack has been chosen, the corresponding launch command is:

1 roslaunch mavros px4.launch
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On the other hand, if an ArduPilot/APM stack has been chosen the command
becomes:

1 roslaunch mavros apm.launch

At this point, the ROS environment is set and all the topics and nodes are ready
to be used, as shown in the following figure:

Figure 5.1: MAVROS topics list

In figure 5.1 is is represented all the topics that are generated once the MAVROS
node is launched.
The most significant topics are:

• /mavlink/from and /mavlink/to that enables the Mavlink stream from and
to the autopilot

• /mavros/state that allow to check the state of some parameters of the autopilot
(connection, arming, mode)
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• /mavros/set_point_velocity/cmd_vel that is useful to track the values sent
to the autopilot for the velocity control of the robot

• /mavros/rc/override that enables the override for the RC control and allow to
send the input commands via MAVROS console.

5.2 MAVROS commands

In addition to these tools, another useful section of MAVROS package regards its com-
mands, in particular mavsafety and mavsys commands.
mavsafety allows to manipulate safety parameters on MAVLink devices. One signifi-
cant example is the command used to arm (or disarm) the drone or the rover:

1 rosrun mavros mavsafety arm

This command is essential and shall be used every time that the application requires
the robot to move or take any action.
On the other hand, mavsys command changes the mode and the rate on MAVLink
devices. This is useful when the user has to directly control the autopilot with cus-
tomized inputs that do not pass through a GCS, like in the case of MAVROS console
control.
This command can be used with different arguments depending on which type of
firmware has been flashed on the autopilot. For PX4 stack firmware the command
is:

1 rosrun mavros mavsys mode−c OFFBOARD

For APM stack firmware the command becomes:

1 rosrun mavros mavsys mode−c GUIDED

Another crucial aspect of MAVROS procedures is the order with which the com-
mands are invoked. As a matter of fact some commands have prerequisites without
which they wont work properly and, in some cases, will return an error and wont be
executed.
For instance, if the user needs to change the mode parameter with the mavsys com-
mand, this has to be done before arming the robot, and so before calling themavsafety
command.
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5.3 MAVLink protocol
MAVLink (Micro Aerial Vehicle Link) is a protocol for communication that uses as
messages a stream of bytes that has been encoded and is sent to the autopilot via USB
serial or telemetry. The encoding procedure puts the packet into a data structure and
sends it via the selected channel in bytes, adding some error correction alongside.
"MAVLink follows a modern hybrid publish-subscribe and point-to-point design pat-
tern: data streams are sent / published as topics while configuration sub-protocols
such as the mission protocol or parameter protocol are point-to-point with retransmis-
sion."[3].

5.4 Structure of the MAVLink message
Each MAVLink packet has a length of 17 bytes and the following structure:

The software is in charge of verifying that each message is valid by checking the
checksum and in case of negative response, the message is discarded.
For this reason another important parameter that has to be checked is the baud rate.
As a matter of fact, the baud rate value has to be the same for every component of the
system utilized for reading or sending messages or commands. Concerning this thesis
project, the baud rate utilized is 57600.
The most important elements among the ones showed in figure 5.2 are:

• System ID: it’s the source message sent from the GCS or the MAVROS console
to the autopilot via wireless telemetry or USB port. The presence of this message
is regularly checked by the software.

• Component ID: it’s the identification code of the component that is sending
that message within the system.

• Message ID: it contains the topic of the message sent.

• Payload: it’s the actual data sent through the message.

5.5 MAVLink function
The real purpose of MAVLink protocol is to exchange messages between the various
elements that work together in the architecture just explained, i.e. the ROS/MAVROS
and autopilot environment.
This messages are data bundles that contains a fixed number of bytes (i.e. 17). The
autopilot gets the streaming bytes forwards it to the hardware interface (e.g. via UART
serial OR Telemetry) and decodes the message in software. The goal of this procedure
is to extract the payload contained into the message.
In order to be sure that the messages are being sent to the correct component or system,
every time a message is sent the first things to be checked by the code are the System
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Figure 5.2: MAVLink message structure

Figure 5.3: MAVLink bytes composition
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ID and the Component ID. These two IDs are usually hardcoded to be the same.
The payload data is extracted from the message and put into a packet that is then
placed into an appropriate data structure. These data structures define the different
parameters of the robot, e.g. attitude (pitch, roll, yaw orientation), GPS, RC channels,
etc.
Another feature of MAVLink messages is that they are bi-directional. In particular,
they can be exchanged from the Ground Station Control to the APM/PX4 autopilot
or vice versa.

5.6 MAVLink messages from GCS to autopilot
The main messages exchanged between GCS and the autopilot have theMAVLINK_MSG_ID_
type and then, in addition, a sub-message type that changes according to the category
of the message taken into consideration. A list of the main messages is reported below:

• MAVLINK_MSG_ID_HEARTBEAT: it is the most important message.
The GCS keeps sending this message to the autopilot with a frequency of 1 Hz
to check whether it is connected to it or not. This is crucial to make sure the
GCS is synchronized with the PX4/APM stack firmware when the parameters are
updated. In the event that a certain number of heartbeats are missed, a failsafe
it is triggered and the current mission is aborted. The failsafe option is one of the
parameters that can be enabled or disabled using the GCS options section.

• MAVLINK_MSG_ID_REQUEST_DATA_STREAM: it is used to re-
quest data from sensors, RC channels, GPS position, etc.

• MAVLINK_MSG_ID_COMMAND_LONG: it manages loiter mode, RTL
(Return To Launch), landing procedure, mission start, arm and disarm.

• SET_MODE: used to change mode for the current application. Among the
most used modes there are:

– ACRO: holds attitude, no self-level
– AUTO: holds altitude and self-levels the roll and pitch
– GUIDED: navigates to precise coordinates in space taking the inputs from

GCS or companion computer
– LOITER: holds altitude and position, uses GPS for movements
– RTL: returns above take-off location, may also include landing

If a PX4 stack firmware is used, the OFFBOARD mode is also present and shall
be used whenever a MAVROS console control is implemented. An example of
code useful to enable this mode is reported in Appendix C.
The GUIDED mode is the equivalent of the OFFBOARD mode, but shall be used
along with a APM/ArduPilot stack on the autopilot.
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• MAVLINK_MSG_ID_MISSION_REQUEST_LIST: requests the over-
all list of mission items from the system/component.

• MAVLINK_MSG_ID_MISSION_REQUEST: requests the information
of the mission item with the sequence number indicated in the message.

• MAVLINK_MSG_ID_MISSION_ACK: acknowledge message during mis-
sion handling.

• MAVLINK_MSG_ID_MISSION_SET_CURRENT: this message is used
to change active command during a mission. This means that the robot will con-
tinue to this mission item on the shortest path.

• MAVLINK_MSG_ID_MISSION_ITEM: this message allows to take real-
time action like, for instance, setting waypoints and advanced features.

• MAVLINK_MSG_ID_PARAM_SET: sets a parameter value temporarily
to RAM memory. It will be reset to default on system reboot. The receiving com-
ponent should acknowledge the new parameter value by sending a param_value
message to all communication partners. This will also ensure that multiple GCS
all have an up-to-date list of all parameters. If the sending GCS did not re-
ceive a PARAM_VALUE message within its timeout time, it should re-send the
PARAM_SET message.

• MAVLINK_MSG_ID_RC_CHANNELS_OVERRIDE: overrides RC chan-
nel values in order to allow the GCS or the MAVROS console to have the full
control of the inputs commands needed to control the robot.
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5.7 MAVLink messages from autopilot to GCS
In this case the code is structured so that every function has its own running time
that wont change throughout the task. This predictability makes these protocol really
safe for Real-time systems. The following code is an example of communication from
autopilot (APM stack) to GCS :
1 ...

2 static void gcs_data_stream_send(void)

3 {

4 for (uint8_t i=0; i<num_gcs; i++) {

5 if (gcs[i].initialised) {

6 gcs[i].data_stream_send();

7 }

8 }

9 }

10 ...

This code sends data streams in the given rate range on both Telemetry and USB
links. This is just an extract of the GCS_Mavlink.pde [4] script that is used to configure
the MAVLink environment when an APM stack is used along with a GCS.
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Chapter 6

MAVROS velocity control procedure
and final results

Once all the test with the RC has been done, the final goal is to obtain the same results
in terms of PWM outputs from the autopilot, but without utilizing the RC.
As a matter of fact, in order to use the ROS environment as common ground for
robotics applications independently of the kind of UAV or UGV taken into considera-
tion, all the commands and inputs shall be exchanged outside the GCS systems. This
is the reason why instead of a RC that requires GCS in order to properly work, for
this thesis project a different approach that uses MAVROS has been chosen.
The first step before proceeding inside MAVROS environment, is to set the parameters
of the autopilot that regards inputs control to the right values. In particular, in some
cases (for instance, when a PX4 stack has been chosen) the RC override parameter
should be enabled so that the autopilot can recognize not only the inputs coming from
the RC (that in this part of the application is no longer being used) but also the com-
mands coming from the MAVROS console.
This procedure can be accomplished by changing the RC_OVERRIDE and the
SYS_COMPANION parameters. The first one allows to override the default RC priv-
ilege on other kind of inputs, while with the second one the user can set his computer
as source of inputs and commands taking effectively the place of the RC. In this case
like in the previous one regarding communication, it is mandatory to chose the right
baud rate for the companion computer. In particular the baud rate shall be the same
of the telemetry module utilized to communicate with the autopilot.
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6.1 Velocity control with MAVROS and MAVLink
After these preliminary steps have been completed, the real control procedure can be
started by connecting the Pixhawk to the OpenCR1.0 board of the rover and to the
radio transmitter that will be in communication with the companion computer.
At this point the autopilot is not armed and is set on HOLD mode that does not allow
the control with a MAVROS console. In order to prepare the Pixhawk and have the
full control of the inputs the following instructions shall be executed in the order in
which they are indicated:

• roscore: as explained in Chapter 1, when working in a ROS environment, this
command shall be always the first to be executed.

• roslaunch mavros apm.launch fcu_url:="/dev/ttyUSB0:57600": with
this command the MAVROS environment is initialized and the Pixhawk begins to
exchange heartbeats messages via MAVLink and waits for a mission. Moreover,
the desired baud rate for the communication is also spelt out and given to the
fcu_url parameter of the launch file.

• rosrun mavros mavsys mode -c GUIDED: with this instruction the MODE
parameter is changed to GUIDED, allowing to have full control of the PWM
outputs of the autopilot that means being able to control the motors of the rover
via MAVROS console.

• rosrun mavros mavsafety arm: this command is crucial since it arms the
vehicle, allowing the velocity control of its motors. If the vehicle is not armed a
lot of features will be forbidden to use and some parameters modification wont
be available for the changing.

At this point it is possible to write a script to manage the values sent to the
/mavros/setpoint_velocity/cmd_vel topic that is the topic utilized to write nu-
merical values in a range from -1 to 1 that will be remapped and traduced into PWM
values that will be then generated by the autopilot and found as outputs in the main
pins of the Pixhawk. For this purpose, the following script has been used:
1 #include <ros/ros.h>

2 #include <geometry_msgs/TwistStamped.h>

3

4 int main(int argc, char ∗argv[])
5 {

6 ros::init(argc, argv, "cmd_vel_fusion");

7 ros::NodeHandle nh;

8 ros::Publisher send_velocity_pub = nh.advertise <geometry_msgs::TwistStamped >("/mavros/

setpoint_velocity/cmd_vel", 1000);

9 ros::Rate loop_rate(100);

10
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11 geometry_msgs::TwistStamped send_velocity_msg;

12

13 double ros_roll=0.0;

14 double ros_pitch=0.0;

15 double ros_yaw=0.0;

16 double ros_throttle=0.0;

17 int count = 1;

18

19 while (ros::ok())

20 {

21 nh.param<double >("ros_roll", ros_roll , 0.0);

22 nh.param<double >("ros_pitch", ros_pitch , 0.0);

23 nh.param<double >("ros_yaw", ros_yaw, 0.0);

24 nh.param<double >("ros_throttle", ros_throttle ,0.0);

25

26 send_velocity_msg.header.stamp = ros::Time::now();

27 send_velocity_msg.header.seq = count ;

28 send_velocity_msg.header.frame_id = 1 ;

29

30 send_velocity_msg.twist.linear.x = ros_throttle;

31 send_velocity_msg.twist.linear.y = 0.0;

32 send_velocity_msg.twist.linear.z = 0.0;

33 send_velocity_msg.twist.angular.x = ros_pitch;

34 send_velocity_msg.twist.angular.y = ros_roll;

35 send_velocity_msg.twist.angular.z = ros_yaw;

36

37 send_velocity_pub.publish(send_velocity_msg);

38 ros::spinOnce();

39 count++;

40 loop_rate.sleep();

41 }

42 return 0;

43 }

From line 6 to 9 the node handler and the publisher are initialized. In particular,
this script publishes messages on /mavros/setpoint_velocity/cmd_vel topic with
a rate of 100 Hz (ros::Rate loop_rate(100)) .
From line 13 to line 17 the variables used in the code are initialized.
From line 21 to 24 the parameters are stored within the ROS parameter server using
the node handler created in line 7. This allows the usage of rosparam command with
which it is possible to change the values of these parameters from the terminal while
the script is running.
From line 26 to 28 there are some info to be printed on the terminal while this script
is running.
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From line 30 to 35 the velocity variables assume the values passed with the rosparam
command. In particular, the two variables that are used for this application are
ros_throttle that manages the linear.x speed, and ros_yaw that manages the an-
gular.z velocity.
Finally, from line 37 to 40 the publisher is set and the ros.spin loop is implemented in
order to be able to change the values for the inputs at any time.
While this whole procedure is being performed, there are two topics that shall be always
kept in check because of the information they provide. The first one is /mavros/s-
tate, a topic that allow to check if the autopilot is connected, armed and which kind
of mode is active for the current application.
The second one, on the other hand, is /mavros/setpoint_velocity/cmd_vel itself,
the topic used to write the values for the input commands. This control can be done
by invoking the rostopic echo command, followed by the name of the topic that the
user wants to check.
The two terminals used to check /mavros/state topic and /mavros/setpoint_velocity/
cmd_vel topic are reported below in figure 6.1 and in figure 6.2 , respectively:

Figure 6.1: mavros/state topic echo terminal
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Figure 6.2: mavros/setpoint_velocity/cmd_vel topic echo terminal

As it is shown in figure 6.2, initially the values for linear.x and angular.z velocities
are set to zero. In order to change these values, the rosparam command has been
used with the following syntax:

1 rosparam set ros_throttle 1

2 rosparam set ros_yaw 1

After these commands, the new values for the ros_throttle and ros_yaw param-
eters have been updated, as it is shown in the echo terminal of the /mavros/set-
point_velocity/cmd_vel topic reported below :

Figure 6.3: Updated throttle and yaw values after the usage of rosparam command
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6.2 Final results
The final goal for this application was to make the robot move and gather data fol-
lowing the commands provided through a MAVROS console through the MAVLink
communication protocol.
With the following pictures it is showed the achieving of this goal, by means of PWM
signals obtained from the autopilot after that the corresponding values were being cho-
sen and provided through the MAVROS console in a ROS environment.
These pictures show the PWM output of the main pins of the Pixhwak (pins 1 and 3
for steering and throttle functions) measured with an oscilloscope. These values are
the almost the same reported in Chapter 4 during the RC testing phase and, like in
that case, the PWM were eventually transmitted to the OpenCR1.0 board that used
them to pilot and control the motors of the rover.
The only difference in this case is the PWM regarding the linear backwards speed con-
trol (ros_throttle=-1). As a matter of fact, the Throttle parameter that controls the
linear speed of the rover did not drop under the trim value of 1500 µs. This may be
due to a glitch of the firmware code that has not been optimized for rovers application
yet or due to some parameter that does not allow negatives values to be imposed to
the Throttle function.
In order to fix this problem, a different mapping was performed for this parameter,
setting the negative values for the linear velocity in the PWM values range going from
1500 µs to 1750 µs.
As consequence of this mapping, the positive values for the linear forward velocity have
been taken from the remaining range, that means from 1750 µs to 2000 µs.
In order to get a stable PWM signal, an important modification to the standard param-
eters MOT_SLEWRATE needs to be performed. As a matter of fact, this parameter
that controls the throttle slew rate as a percentage of total range per second has to be
set to zero otherwise the PWM keeps going from the minimum value to the maximum
one and makes the speed of the robot not constant in time.
In addition to the oscilloscope readings, each picture comes along with the correspond-
ing Arduino serial monitor output, which reports the numerical values for the PWM
and for the traduced linear and angular velocities.

55



6 – MAVROS velocity control procedure and final results

(a) PWM signals for zero linear and
angular velocity (ros_throttle=0,
ros_yaw=0)

(b) Arduino serial readings for zero linear
and angular velocity

Figure 6.4: PWM and velocity values when no speed input is given

(a) PWM signals for maximum speed for-
ward input (ros_throttle=1)

(b) Arduino serial readings for maximum
linear forward velocity

Figure 6.5: PWM and velocity values for pure linear forward speed
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(a) PWM signals for maximum speed
backwards input (ros_throttle=-1)

(b) Arduino serial readings for maximum
linear backwards velocity

Figure 6.6: PWM and velocity values for pure linear backwards speed

(a) PWM signals for right turn input
(ros_yaw=1)

(b) Arduino serial readings for maximum
angular velocity (turn right)

Figure 6.7: PWM values and Arduino readings for angular speed (turn right)
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(a) PWM signals for left turn input
(ros_yaw=-1)

(b) Arduino serial readings for maximum
angular velocity (turn left)

Figure 6.8: PWM values and Arduino readings for angular speed (turn left)
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6.3 Conclusion and future work
After some preliminary study regarding the general ROS architecture and intermediary
tests with the GCS software, the challenge of this project was to obtain the same results
but in a different, more general environment, with a working procedure that would have
been easy to extend and reply with different robotic agents and in different scenarios.
The understanding and the usage of such powerful tools as MAVLink protocol and
MAVROS package have been the most important assets in this thesis, and in the near
future will be undoubtedly deepened.
The importance of this project is highlighted if it is placed inside the PIC4SeR context,
where a lot of different UGVs are designed and utilized for different applications. Hence,
the design and testing of a common database structure is crucial in order to simplify and
quicken the upcoming work of those who will have to deal with this kind of procedures
and applications.
Concerning the future, the step that would place this thesis project in an even more
interesting application scenario would be the design of a GUI that allows the user to
set all the mission parameters with simple clicks and without knowing anything about
the MAVROS and MAVLink environments.
With this GUI the user selects the type of robot (UAV or UGV), the type of firmware
utilized by the autopilot, the type of sensors available for the mission and choose the
desired mission parameters.
Furthermore, another interesting development for this project would be the design of
a cloud architecture that would be able to treat and redistribute raw data between the
various robotic agents that are working on the same application. Moreover, this kind of
data sharing procedure can be implemented quite easily inside a working environment
like ROS, due to its intrinsic predisposition to share information and data among the
components connected to the same network.
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follower_controller

1 #! /usr/bin/env python

2

3 import rospy

4 from geometry_msgs.msg import Twist

5

6 x = 0.0

7 y = 0.0

8 theta = 0.0

9

10 def newTwist(msg) :

11 global x

12 global y

13 global theta

14

15 x = msg.linear.x

16 y = msg.linear.y

17 theta = msg.angular.z

18

19 rospy.init_node("follower_controller")

20 sub = rospy.Subscriber("driver/cmd_vel", Twist, newTwist)

21 pub = rospy.Publisher("follower/cmd_vel", Twist, queue_size=1)

22

23 speed_waffle = Twist()

24 r = rospy.Rate(45)

25 while not rospy.is_shutdown() :

26 while (x != 0 or y != 0 or theta != 0) :

27 speed_waffle.linear.x = x

28 speed_waffle.linear.y = y

29 speed_waffle.angular.z = theta

30 pub.publish(speed_waffle)
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31 r.sleep()

32

33 else:

34 speed_waffle.linear.x = 0

35 speed_waffle.linear.y = 0

36 speed_waffle.angular.z = 0

37 pub.publish(speed_waffle)

38 r.sleep()
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driver_controller

1 #! /usr/bin/env python

2

3 import rospy

4 from nav_msgs.msg import Odometry

5 from tf.transformations import euler_from_quaternion

6 from geometry_msgs.msg import Point, Twist

7

8 x = 0.0

9 y = 0.0

10 theta = 0.0

11

12 def newOdom (msg) :

13

14 global x

15 global y

16 global theta

17 x = msg.pose.pose.position.x

18 y = msg.pose.pose.position.y

19 rot_q = msg.pose.pose.orientation

20 (roll, pitch, theta ) = euler_from_quaternion ([rot_q.x,rot_q.y,rot_q.z,rot_q.w])

21

22 rospy.init_node("driver_controller")

23 sub = rospy.Subscriber("driver/odom", Odometry , newOdom)

24 pub = rospy.Publisher("driver/cmd_vel", Twist, queue_size=1)

25

26 speed = Twist()

27 r = rospy.Rate(4)

28 while not rospy.is_shutdown() :

29 angle_to_goal = 0.4

30 while (x < 0.2 and y < 0.2) :
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31 if abs (angle_to_goal− theta) > 0.1 :

32 speed.linear.x = 0.0

33 speed.angular.z = 0.2

34 else :

35 speed.linear.x = 0.1

36 speed.angular.z = 0.0

37 pub.publish(speed)

38 r.sleep()

39 speed.linear.x = 0.0

40 speed.angular.z = 0.0

41 pub.publish(speed)

63



Appendix C

turtlebot3_core

1 #include <ros/ros.h>

2 #include <geometry_msgs/PoseStamped.h>

3 #include <mavros_msgs/CommandBool.h>

4 #include <mavros_msgs/SetMode.h>

5 #include <mavros_msgs/State.h>

6

7 mavros_msgs::State current_state;

8 void state_cb(const mavros_msgs::State::ConstPtr& msg){

9 current_state = ∗msg;
10 }

11

12 int main(int argc, char ∗∗argv)
13 {

14 ros::init(argc, argv, "offb_node");

15 ros::NodeHandle nh;

16

17 ros::Subscriber state_sub = nh.subscribe <mavros_msgs::State>

18 ("mavros/state", 10, state_cb);

19 ros::Publisher local_pos_pub = nh.advertise <geometry_msgs::PoseStamped >

20 ("mavros/setpoint_position/local", 10);

21 ros::ServiceClient arming_client = nh.serviceClient <mavros_msgs::CommandBool >

22 ("mavros/cmd/arming");

23 ros::ServiceClient set_mode_client = nh.serviceClient <mavros_msgs::SetMode>

24 ("mavros/set_mode");

25

26 //the setpoint publishing rate MUST be faster than 2Hz

27 ros::Rate rate(20.0);

28

29 // wait for FCU connection

30 while(ros::ok() && current_state.connected){
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31 ros::spinOnce();

32 rate.sleep();

33 }

34

35 geometry_msgs::PoseStamped pose;

36 pose.pose.position.x = 0;

37 pose.pose.position.y = 0;

38 pose.pose.position.z = 2;

39

40 //send a few setpoints before starting

41 for(int i = 100; ros::ok() && i > 0;−−i){
42 local_pos_pub.publish(pose);

43 ros::spinOnce();

44 rate.sleep();

45 }

46

47 mavros_msgs::SetMode offb_set_mode;

48 offb_set_mode.request.custom_mode = "OFFBOARD";

49

50 mavros_msgs::CommandBool arm_cmd;

51 arm_cmd.request.value = true;

52

53 ros::Time last_request = ros::Time::now();

54

55 while(ros::ok()){

56 if( current_state.mode != "OFFBOARD" &&

57 (ros::Time::now()− last_request > ros::Duration(5.0))){

58 if( set_mode_client.call(offb_set_mode) &&

59 offb_set_mode.response.mode_sent){

60 ROS_INFO("Offboard enabled");

61 }

62 last_request = ros::Time::now();

63 } else {

64 if( !current_state.armed &&

65 (ros::Time::now()− last_request > ros::Duration(5.0))){

66 if( arming_client.call(arm_cmd) &&

67 arm_cmd.response.success){

68 ROS_INFO("Vehicle armed");

69 }

70 last_request = ros::Time::now();

71 }

72 }

73

74 local_pos_pub.publish(pose);
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75

76 ros::spinOnce();

77 rate.sleep();

78 }

79

80 return 0;

81 }
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set_velocity

1 #include <ros/ros.h>

2 #include <geometry_msgs/TwistStamped.h>

3

4 int main(int argc, char ∗argv[])
5 {

6 ros::init(argc, argv, "cmd_vel_fusion");

7 ros::NodeHandle nh;

8 ros::Publisher send_velocity_pub = nh.advertise <geometry_msgs::TwistStamped >("/mavros/

setpoint_velocity/cmd_vel", 1000);

9 ros::Rate loop_rate(100);

10

11 geometry_msgs::TwistStamped send_velocity_msg;

12

13 double ros_roll=0.0;

14 double ros_pitch=0.0;

15 double ros_yaw=0.0;

16 double ros_throttle=0.0;

17 int count = 1;

18

19 while (ros::ok())

20 {

21 nh.param<double >("ros_roll", ros_roll , 0.0);

22 nh.param<double >("ros_pitch", ros_pitch , 0.0);

23 nh.param<double >("ros_yaw", ros_yaw, 0.0);

24 nh.param<double >("ros_throttle", ros_throttle ,0.0);

25

26 send_velocity_msg.header.stamp = ros::Time::now();

27 send_velocity_msg.header.seq = count ;

28 send_velocity_msg.header.frame_id = 1 ;

29
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30 send_velocity_msg.twist.linear.x = ros_throttle;

31 /∗send_velocity_msg.twist.linear.y = 0.0;
32 send_velocity_msg.twist.linear.z = 0.0;

33 send_velocity_msg.twist.angular.x = ros_pitch;

34 send_velocity_msg.twist.angular.y = ros_roll;∗/
35 send_velocity_msg.twist.angular.z = ros_yaw;

36

37 send_velocity_pub.publish(send_velocity_msg);

38 ros::spinOnce();

39 count++;

40 loop_rate.sleep();

41 }

42 return 0;

43 }
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