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Summary

Reachability is among the most common problems to address when working
on graphs since it is the base for many other algorithms, and scalable solu-
tions have become of paramount importance with the advent of distributed
systems that process large amounts of data. Specifically many applications
explore graphs with millions of nodes and vertices, which explains why the
development of fast and scalable algorithms entails complex challenges.

Modern GPUs are highly parallel systems based on many-core architec-
tures and have gained popularity in parallelizing algorithms that run on
large data sets. In this context the NVIDIA CUDA platform has been used
to provide a concrete implementation of the developed algorithms.

The main focus of this work is to analyze the GRAIL algorithm, which
creates a scalable index for answering reachability queries on large graphs,
in order to design an implementation that exhibits a greater amount of data
parallelism. The GRAIL index relies heavily on depth-first search, which is
among the hardest algorithms to develop on parallel systems, so an alterna-
tive approach based on breadth-first search will be explored and significant
effort will be devoted towards analyzing the difficulties encountered and the
solutions chosen to overcome them.

Finally this work will provide a concrete implementation on CUDA of the
proposed algorithms, a comparison between the indexing and search times
for the CPU and the GPU based versions and insight on how to conduct
further research in future.
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Chapter 1

Introduction

1.1 General context
Graphs have always had significant relevance in computer science research
given the versatility with which they represent data across distinct applica-
tion domains, which explains their value to many scientific areas. It is not
uncommon to see that, in several fields, graphs are used to model entities and
relationships that would not be usually thought of as a set of vertices con-
nected by edges. For instance, biological networks rely on graphs to represent
genes as vertices and their interactions as edges, whereas most enterprises use
software that represent domain specific products as nodes and commercial
transactions as edges. Furthermore knowledge representation systems, such
as ontologies, are able to derive new information by using vertices to sym-
bolize concepts and edges to describe relationships among these concepts.

However unrelated these fields may be, it is evident that graphs are of little
use if it is not possible to answer reachability queries on the data that they
represent: this problem is called reachability, which is defined in graph the-
ory as the ability of a vertex to reach its peers within the same graph. There
exist a variety of methods for addressing this problem, but most reachabil-
ity algorithms include a pre-processing phase that creates data structures,
usually referred to as indices, that speed up the query resolution time at
the expense of requiring more space to store these structures. Existing al-
gorithms differentiate themselves according to several factors, but in recent
times their biggest limitation lies in their capacity to process large graphs
efficiently, and so scalability has become one of the most significant metrics
for analyzing reachability methods.
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1 – Introduction

Interestingly, recent times have seen an emergent trend to develop applica-
tions that scale gracefully by exploiting the increasing number of processors
provided by parallel systems, and the advent of NVIDIA’s general purpose
GPU architecture, commonly known as CUDA, has transformed mainstream
computers into highly-parallel systems with significant computational power
and considerable memory bandwidth. Since the release of CUDA’s first ver-
sion in 2006 there has been a continued effort to redesign algorithms in order
for them to exhibit a large degree of data parallelism and benefit from the
ever-increasing number of processors and bandwidth on GPUs, which are
especially designed to concurrently and efficiently execute the same program
over different data.

Specifically, GPUs are well suited to solve graph related problems effi-
ciently since they have many processing units that can concurrently explore
and modify a large set of nodes, and so there has been a recent boost in pro-
ducing graph-processing software in CUDA. This effort has come both from
NVIDIA, with its NVIDIA Graph Analytic library, or nvGRAPH, which in-
cludes a set of tools and parallel algorithms to perform high performance
analysis on graphs, and from independent projects such as the recent GUN-
ROCK library, which delivers similar performance while providing an ab-
stract and data-centered API.

In this context, we propose an analysis of an indexing method called
GRAIL, which stands for Graph Reachability Indexing via RAndomized
Interval Labeling, and was proposed in article [1]. This algorithm was de-
signed with particular emphasis on scalability, has linear index creation time
and space and is able to execute reachability queries on graphs of millions
of nodes and edges in times that range from constant to linear in the graph
size. The core of this work is to study how to redesign this method such that
it exhibits a higher degree of data parallelism and can benefit from execution
on Single Instruction on Multiple Data, from now on SIMD systems, and we
provide an implementation of the proposed solution developed on CUDA.

GRAIL is based upon a single depth-first traversal, which is hard to par-
allelize on CUDA, or on most parallel systems, and a significant part of
this work regards how to exploit specific properties of Direct Acyclic Graphs
(DAGs) in order to replace one iteration of a DFS with several breadth-first
explorations, which by definition expose a higher degree of data parallelism.
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1.1 – General context

Moreover, given that the final algorithm will be performing more traversals
than its CPU based counterpart, it will be fundamental to rely on a work-
efficient BFS on CUDA, and we will devote a considerable effort on adapting
a state of the art BFS algorithm to suit our needs.
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Chapter 2

GRAIL

2.1 Preliminary observations
In order to provide a concise representation of the problem at hand we intro-
duce a series of definitions that will be used frequently. Let G = (V, E) be
a directed graph with V being the set of vertices and E the set of directed
edges. We shall refer to the cardinality of V and E, respectively, with n and
m. We will also write u →? v to indicate the reachability query of whether
there is a path that goes from node u to node v, and will write u→ v if such
a path exists or u !→ v if it does not.

Furthermore, it is well known that the problem of answering reachability
queries on directed graphs can be reduced to reachability on Directed Acyclic
Graphs (DAGs), since for every directed graph it is possible to construct a
condensation graph in which every node corresponds to a strongly connected
component of the original graph. In practice, the reachability query u →? v
on a directed graph can be answered by checking whether in the condensation
graph the strong components of u and v, namely u’ and v’, coincide or
whether u’ → v’. Henceforth it will be assumed that all the mentioned
graphs are directed and acyclic, unless explicitly stated.

2.2 Indexing approaches
As already mentioned, indices are frequently used to speed up graph explo-
ration, there are several algorithms for creating them and the most significant
metrics that set these methods apart are the index construction time, index
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2 – GRAIL

size and the resulting query time. In fact, the index design space has at the
extremes two opposing approaches: on one side reachability queries could
be answered in constant time through the Full Transitive Closure, which
consists in computing and storing a list of all reachable nodes from every
vertex, and it is unfeasible for very large graphs since it requires quadratic
space index. At the other extreme one could avoid relying on an index and
could answer reachability queries by depth-first or bread-first traversals. This
approach does not require neither construction time nor indexing space but
implies O(n+m) time for every query, which is equally unacceptable for large
graphs. In practice, most reachability algorithms lie somewhere in between
the index design space: they involve a pre processing phase which creates
the index and use it during the query resolution to achieve efficient times
for large graphs, so the trade off between indexing space and querying time
constitutes the base for analyzing all indexing methods.

Figure 2.1: Index trade-off: query time vs index size

Major approaches can be divided into two main categories, according to
whether they follow an interval labeling methodology or rely on a 2HOP
indexing approach. The 2HOP indexing technique was first proposed in [2],
and consists in computing for every node u two sets defined as predecessor
and successor, which are respectively defined as the set of nodes that reach
vertex u and that can be reached from vertex u. These sets are then used to
answer reachability queries between u and v by verifying that the intersection
between the predecessor set of v and the successor set of u is not empty.
While this technique has an index construction time in the order of O(n4)
several strategies have been proposed to improve the original algorithm such
as the divide and conquer approach presented in [3], in which 2HOP indices
are computed for k partitions of the original graph and then merged, which
results in an O(n3) construction time. Conversely, interval labeling consists
in assigning to each node a label representing an interval and, depending on
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2.2 – Indexing approaches

the methodology used to define these intervals, there must exist a relationship
between labels such that the following condition is always satisfied: given two
nodes u and v and their labels, respectively Lu and Lv, u → v ⇔ Lv ⊆ Lu.
GRAIL falls in the interval labeling category and relies on the min-post
labeling method, which assigns intervals based on the post-order traversal of
the graph, as will be explained afterwards.

A complete description of the main labeling approaches and their theoret-
ical differences with GRAIL, as well as an extensive set of tests for index
construction space and query times, can be found in [1], but there is one as-
pect worth noticing: when dealing with a DAG most of these methods create
indices that cover only a sub tree of the input graph and then rely on differ-
ent auxiliary indices or complementary search procedures, that cover the sub
trees, that were not included in the main index to guarantee completeness.
This is due to the fact that indices constructed on sub trees will obviously
not cover the whole reachable set of nodes for every vertex, but will most
likely include only the nodes that belong to the chosen sub tree upon which
the index was built, which is equivalent of saying that the aforementioned
subsumption relationship, namely u → v ⇔ Lv ⊆ Lu, will hold only for
a subset of vertices. An example of this methodology is the dual labeling,
presented in [4], which is based on defining labels for a spanning tree of the
original DAG and on computing the full transitive closure for all edges that
are not part of the spanning tree, or non-tree edges, which results in an index
construction time of O(n+m+ t3) and an index size of O(n+ t2), where t is
the number of non tree edges, but allows to answer queries in constant time.

This is significantly different to the GRAIL method for indexing, which
computes labels based on the post-order traversal of the entire DAG: this
enables to cover all reachable pairs of vertices, but generates positive answers
for some non-reachable pairs, which will be henceforth referred to as false
positives, or exceptions. Since false positive are possible, positive answers
from label comparison cannot be relied on and, even though there are other
alternatives, GRAIL will most likely perform either a DFS or a BFS traversal
to determine whether u reaches v or not. While working with an index that
generates false positives for reachability queries may seem counter intuitive,
covering the whole DAG ensures that if the interval label of v is not subsumed
by that of u, u does not reach v. Given that many real large graphs are
very sparse, it is more likely that two randomly chosen nodes do not reach
each other, and in this cases GRAIL is able to immediately return a negative
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2 – GRAIL

answer in constant time. Additionally, it is possible to speed up the complete
DFS/BFS traversal for positive answers by pruning the tree of nodes to visit
using the index.

In the following section a complete description of the GRAIL approach
will be presented, as well as the algorithms for creating the labels and for
querying node reachability, but there exist several optimization techniques for
improving performance on query resolution times and alternatives for dealing
with false positive, such as exception lists. However, most of these go beyond
the scope of this work and will be mentioned briefly. A detailed description
of these techniques can be found in [1], along with their comparisons and
implementation details.

2.3 Grail: algorithm and key ideas
Before delving into algorithms and implementation let us consider the core
ideas behind the GRAIL approach. The foundation for this method lies on
the observations that for direct trees (DTs) it is possible to build an index
that occupies linear space, takes linear construction time and is able to answer
reachability queries in constant time, and that a DT is a special case of a
DAG where every vertex has a single parent or, conversely, that a DAG can
be seen as a set of overlapping DTs.

In fact, for direct trees is possible to build an index using the min-post
labeling technique, which assigns to each node u an interval label Lu such
that Lu = [su, eu] where eu, or outer rank, is defined as the rank of node u
in a post order traversal and su, the inner rank, is the minimum eu among
the descendants of u.

∀u ∈ V, Lu = [su, eu] s.t. su = min {sx | sx ∈ descendants(u)} , eu =
postorder(u)

The fact that in direct trees every node has a single parent has strong
implications for reachability queries: it is possible to determine whether any
vertex reaches any other node in constant time by interval containment. This
is due to the fact that if node u has a bigger outer rank value than v’s, it will
be visited later in a post-order traversal, whereas having the same inner rank
implies that v is one of u’s descendants. In graph 2.2 we see that vertex 4
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2.3 – Grail: algorithm and key ideas

does not reach node 9 since [2,2] is not included in [5,5], whereas node 3 does
in fact reach 9, since [2,2] is included in [1,4], so a simple interval comparison
is all that it takes to determine that u→ v and, in general, that u→v⇔ Lv €
Lu. Furthermore, this index can be constructed through a simple DFS, which
guarantees that its construction time is linear in the number of vertices.
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Figure 2.2: Labeling intervals for DT (left) and DAG (right)

The GRAIL method builds upon these two concepts and proposes to gen-
eralize the min-post labeling to DAGs, which allows to capture all reachable
pairs while falsely marking as reachable pairs that do not, in fact, reach each
other. The resulting labels can be seen in graph 2.2. Let it be noticed that
this behavior is a direct consequence of nodes being able to have more than
one father. As can be seen in 2.2, node 8 has vertices 4, 6 and 7 as fathers
and the min-post labeling implies that node 8’s inner rank will propagate to
all of his parents and ancestors, such as 6, 5 and 2. This entails that two
nodes that do not reach each other but have a common descendant, such as
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2 – GRAIL

4 and 5, could be marked as positive. And in fact, this is the case for 5 and
4: [1,5] is contained in [1,8] and this would result in concluding that 5 does
reach 4, which is not true. As already stated false positives, or exceptions,
must be dealt with by creating exception lists, which consists in maintaining
a list of all the vertices that will result in a false positive for every node, a
convenient approach for small graphs, or by resorting to a DFS/BFS query
that uses interval comparison to prune the tree at every level. This method
highlights that the key idea behind GRAIL is to avoid visits, or any kind of
processing, for pairs of nodes for which non-reachability can be ascertained
through interval comparison.

Furthermore, we note one more time that in a DAG there is more than
one path from the root to the node and that there are many ways to choose
the next node to visit in a DFS/BFS traversal, which constitute the basis for
GRAIL’s approach to reduce the number of exceptions: randomized multiple
interval labeling. Instead of using a unique labeling, it is more convenient to
perform many traversals following random orders, creating multiple interval
for every vertex.

The basic intuition behind this is that creating more labels will minimize
the impact of exceptions on performance, and it will not have a significant
impact on index creation time or size. In fact, since GRAIL maintains d
intervals per node, its index size will be O(dn), which is still linear on the
number of vertices, and the same will hold for the index construction time,
which is O(d(n+m)), since d DFS/BFS traversals will be required to create
those indices. In other words, for reachability queries GRAIL will still take
constant time if the pair of nodes is immediately found as not reachable,
whereas it will perform a traversal which will be pruned recursively at every
level in case of positive interval containment.

In order to check for reachability we will redefine labels and rules for in-
terval containment as follows: for a given node u and for a given number
of intervals, or dimension d, the new label Lu is L1

u, L2
u, . . . Ld

u, where
1 ≤ i ≤ d and Li

u is the interval label obtained from the i-th traversal of
the DAG. Furthermore, given two nodes u and v we say that Lv ⊆ Lu ⇔
∨i ∈ [1, d]Li

v ⊆ Li
u. If ∃ i s.t. Li

v! ⊆ Li
u then Lv! ⊆ Lu, which implies that u

!→ v. In order to prove the validity of that implication we shall refer to the
original paper’s proof, which starts by assuming that Lv!⊆ Lv which means
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2.3 – Grail: algorithm and key ideas
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Figure 2.3: Multiple labels for DAG

that in some dimension i Li
v !⊆ Li

u. Let us assume that u → v, and let us
call x and y the two lowest ranked nodes that are respectively under u and v.
If u → v then the following relationship must hold for the ranks of v and u
in i: ru > rv in post order, and rx ≤ ry, otherwise rx would not be u’s inner
rank. The contradiction is evident, since Li

v = [ry, rv] ⊆ [rx, rv] = Li
u, which

leads to Lv !⊆ Lv. Let it be noticed that usually a small number of labels is
sufficient to reduce drastically the number of exceptions. By adding just one
label, one can notice that the number of exceptions from labels for DT to
labels for DAG in graph 2.2 decreased from 15 to just 3. Furthermore, since
the number of possible labelings is exponential and there is no easy way to
compute the minimum number of labels required to remove all exceptions, for
bigger graphs is better to avoid creating a huge number of labels and to stop
this process after a small number of dimensions has been created: usual val-
ues for d go from 2 to 5, regardless of the graph’s size. As already observed,
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2 – GRAIL

there is a variety of alternatives and modifications for optimizing the core
algorithm, some of which regard the approaches for computing the labels. In
[1] the authors propose some non-random methods for creating labels, and
most of these are based on the idea that for the ith+1 traversal it is desirable
to tackle nodes with the highest number of exceptions in the ith traversal
and they propose to perform a heuristic-based guided traversal, and suggest
several metrics that may be exploited by the heuristic. However, during
the rest of this work, we will adopt both the lexicographic-ordered and the
randomized approach for the CPU-based implementation of the algorithm,
and a lexicographic-ordered traversal for the GPU version in order to have a
comparison base for the two algorithms.

As can be seen in algorithm 1, which defines how to compute GRAIL labels
following the random approach, the labeling procedure consists in calling the
randomizedVisit function for every root of the graph and in using a global
variable defined as r, or rank, to keep track of the number of nodes visited
in the current DFS exploration. As showed in the algorithm the r variable is
used to compute a node’s label as follows: during the exploration of node u
randomizedVisit is called recursively for every child, and the minimum inner
rank among all of u’s children, here defined as r∗c , is used to determine u’s
label for the i-th iteration, or Li

x. Notice that r∗c is not defined for root nodes,
for which Li

x is defined as [r,r], which explains why the inner label of a node
is computed as the minimum between r and r∗c .

When the label comparison is inconclusive there are different search strate-
gies that we can use to answer reachability queries, such as BFS, DFS or
Bidirectional BFS (BBFS) which consists in starting a bottom-up and a top-
down BFS simultaneously. Depending on the analyzed graph’s topology and
on the system resources one may provide better results than the other, and
some optimizations may give better results with a particular methodology
rather than the others, but there is not a general-case best strategy. Figures
2 and 3 show the pseudo code for answering reachability queries through a
label-guided DFS and BFS exploration and, finally, the isReachable function
determines whether node v is reached by node u.

As can be seen, for both the GRAIL-pruned DFS and BFS versions the
first thing that is checked is whether Lv! ⊆ Lu. If that is the case, we can
immediately return that u !→v, whereas if that is not the case we have to
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2.3 – Grail: algorithm and key ideas

Function RandomizedLabeling(G, d):
foreach i ∈ [1, d] do

r = 1;
foreach x ∈ Roots(G) do

call randomizedVisit(x,i,G);
end

end
return

Function randomizedVisit(x, i, G):
if x already visited then

return
end
foreach y ∈ Children(x) in random order do

call randomizedVisit(x,i,G);
end
r∗c = min(si

c : c ∈ Children(x))
Li

x = [min(r, r∗c), r]
r = r+1;
return

Algorithm 1: GRAIL labels computation

Function isReachableDFS(u, v, G):
if Lv! ⊆ Lu then

return false; // u does not reach v
end
foreach c ∈ Children(u) s.t. Lv ⊆ Lu do

if isReachableDFS(c,v,G) then
return true; // u reaches v

end
end
return false; // u does not reach v

Algorithm 2: Label-guided DFS for answering reachability queries

verify that this is not a false positive by performing a full search and, in this
scenario, there is no significant difference between the label guided versions
of DFS and BFS: they both loop over node’s u list of children and decide
whether to add node c, where c belongs to children(u), to the stack/queue
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of nodes to visit depending on whether Lc ⊆ Lv, which ensures that no time
is wasted exploring nodes that cannot reach v.

We conclude the chapter by considering that there are several parameters
that determine whether it is preferable to use a DFS or a BFS, such as the
graph’s maximum depth, which is the number of levels, and the maximum
diameter, which is the number of nodes of a level. Additionally the dis-
tance, both in depth and breadth, between the nodes for which reachability
is queried plays an important role in determining the overall query resolution
time.

2.4 Grail CPU implementations
Finally we move on to propose two GRAIL implementations that will con-
stitute the basis for our comparison with the CUDA version. These versions
include the two phases of the algorithm, namely indexing and querying, rely
on the previously presented algorithms 1 and 2 and are based upon the same
graph representation and data structures. They are set apart by the fact
that the first version is sequential whether the other one is multithreaded,
and during this discussion we will refer to these versions as sequential and
query parallel. However, it is worth noticing that these two versions are de-
veloped entirely on the CPU and, as such, the query parallel application is
characterized by parallelization strategies that revolve entirely around task
parallelism, which assigns distinct tasks to different threads, or processes,
running on several processing units. Conversely, parallelizing applications on
NVIDIA GPUs requires them to be designed in order to exploit data paral-
lelism, as already mentioned, and this will result in remarkable differences
between the adopted parallelization strategies.

We will start our discussion by noticing that all of the developed GRAIL
implementations adopt the same format for representing the graph, which
is called Compressed Sparse Row, or CSR from now on. There are many
alternatives ways to model graphs but CSR is particularly well suited for
representing very large graphs since it is basically a matrix-based represen-
tation that stores only the nonzero elements of every row and, as such, is
able to offer fast row access while avoiding useless overhead for very sparse
matrices. Furthermore, for reasons that will be explained subsequently, this
representation will be fundamental when developing the CUDA version of
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GRAIL, so it makes sense to adopt it for all versions for coherence. Es-
sentially, in the CSR format edges are represented as a concatenation of all
the adjacency lists of every node and, as can be seen in figure 2.4, two ad-
ditional arrays are used to store information about the cardinality of each
node’s set of adjacent vertices and to index the aforementioned children ar-
ray. As an example, in order to iterate through node’s 3 children we would
have to access the 2 elements of array children edges starting at position 4,
since children cardinality(3) is 2 and children indices(3) is 4. We also point
out that, traditionally, the children cardinalities array is not necessary, since
cardinality of node i can be computed through two accesses to the children
indices array but, as explained in chapter 3, the CUDA architecture sets a
high price for sequential accesses on consecutive array elements by the same
thread, so it is preferable to retrieve cardinality using this array.

Figure 2.4: Compressed Sparse Row Format

Having explained the data structures used to model graphs we turn to-
wards explaining the few differences between the sequential and query paral-
lel versions, which provide a straightforward implementation of algorithm 1
for creating labels, and two different query resolution strategies can be cho-
sen, one based on the DFS approach of algorithm 2 and an alternative based
on BFS, which can be seen in algorithm 3. The only substantial difference
between the two versions lies in the fact that the query parallel application
computes d different labeling intervals by having d threads perform d con-
current DFS traversals of the graph, and then gather data about reachability
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by generating N random pairs of nodes and using several threads that inde-
pendently solve N/numThreads reachability queries each, whereas the other
version does these tasks sequentially.

Function isReachableBFS(u, v, G):
if Lv! ⊆ Lu then

return false; // u does not reach v
end
Queue Q;
Q.push(u);
while Q.NotEmpty() do

x = Q.pop();
if v ∈ Children(x) then

return true;
end
foreach c ∈ Children(x) do

if Lv ⊆ Lc then
Q.push(c);

end
end

end
return false; // u does not reach v

Algorithm 3: Label-guided BFS for answering reachability queries

2.4.1 Benchmark
In order to have a baseline for comparison with the GPU based implemen-
tation, which will explore the graph in a BFS fashion to solve reachability
queries, both the sequential and the query parallel version were tested on
the same benchmark used by the GRAIL authors in [1]. All tests regarding
both the CPU and the GPU implementations of the GRAIL algorithm were
performed using a machine with an x64 Intel Core i7-7770HQ, which has a
quad-core processor running at 2.8 GHz and 16 GB of RAM, with Ubuntu
16.04 as OS. Additionally the data set was obtained following the link in [1]
and can currently be found at https://code.google.com/archive/p/grail, so
all of our tests were executed on the same set of graphs that the original
GRAIL algorithm was tested on. Hence we refer to the original paper for
tests regarding comparisons between GRAIL and a variety of other indexing
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algorithms, as well as the effect of several of the aforementioned optimiza-
tion techniques that the authors propose for GRAIL, whereas we will focus
on explaining the main categories in which we can divide these graphs and
on the results obtained by these CPU in order to provide a useful baseline
for comparison against the GPU GRAIL implementation.

Finally we introduce the metrics against which we will evaluate all of our
implementations, which are total query resolution time, index construction
time and the number of positive answers, i.e. the nodes that reach each
other, that were found, which is often correlated to the query resolution time
since positive pairs require to explore the complete graph from the root to
the node. On the other hand it is worth noticing that these data sets were
slightly modified to impose that there is a single root node, which is necessary
for the GPU based implementation, as will be explained later, and this means
that, while they maintain the same topology than the original graphs, some
of them have a larger edges set. All the results are averages over twenty runs,
each of which consists in testing reachability for 100K randomly generated
query pairs.

Table 2.1: Small sparse data set

Data set Vertices Edges Avg Degree
Agrocyc 12685 13658 1.07
Amaze 3711 5505 1.48
Anthra 12500 13333 1.07
Ecoo 12621 13576 1.08

Human 38812 39817 1.03
Kegg 3618 5576 1.54
Mtbrv 9603 10439 1.08
Nasa 5606 6539 1.17

Vchocyc 9492 10346 1.09
Xmark 6081 7052 1.16

We conducted our experiments on three different data sets, all of which
are generated from real applications, which can be divided depending on the
cardinalities of the vertices and edges sets, as well as on their average degree
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which is an indicator of the graph’s sparsity and is here defined as the ratio
between the cardinality of the edges set against the cardinality of the vertices
set. These three data sets will be referred to as small sparse, small dense
and large. The small sparse data set, as can be seen in 2.1 is composed of
small graphs, all with |V |and|E| ≤ O(100k) and with a degree less than 1.5.
Among these graphs we point out that the Kegg and the Amaze data sets
share a different structure than the other graphs. In fact, they both have a
central node that has a very large in-degree and out-degree, which will cause
them to have a higher number of reachable pairs than the others graphs in
the same data set. In contrast the small dense data set in 2.2 contains small
and dense graphs, extracted mostly from citation graph data sets, such as
Citeceer and Pubmed, or ontologies like Go. Most of these graphs have more
than 4 as average degree, even though the cardinalities of the vertices and
edges sets remains under O(100k). At last, we will have the opportunity to
test GRAIL’s scalability through the large data set which contains very large
graphs, such as the Uniprot-150 which has 25M vertices and 46M of edges,
as reported on 2.3. The authors of the original paper reported that these
were among the largest DAGs ever considered for reachability testing, and
note that most of the other reachability algorithms were unable to even run
on some of these sets. As for any particularities of this data set we note that
the Unitprot subset has a distinct topology: these DAGs have a very large
set of roots that are all connected to a single sink through very short paths,
which will have significant implications for reachability testing.

Table 2.2: Small dense data set

Data set Vertices Edges Avg Degree
Citeseer 10721 48830 4.55

Go 6794 13425 1.98
Pubmed 9001 42637 4.74
Yago 6643 47568 7.16

We started our analysis by testing the 100k reachability queries with un-
guided, or pure, DFS in order to provide a baseline for comparison against
several configurations of the GRAIL algorithm. Subsequently, we tested the
sequential DFS, where queries were answered sequentially through pruned-
DFS, and sequential BFS, in which we tried the pruned BFS approach that

28



2.4 – Grail CPU implementations

we proposed in algorithm 3. Then we compared these results against those
obtained by the query parallel DFS and query parallel BFS version, which
was configured to run with 16 threads. In this context, we replied all of
these tests for labels with dimensions 2 and 5, in order to see if and how
the label dimension exerts some influence over querying times, and we can
conclude that, as the GRAIL authors explained, for most graphs there is no
need to use a label dimension greater than 2, since for nearly all graphs and
test configurations we found that querying times do not show any significant
variation, and in most case the difference is less than 1 ms. We can also
confirm that the index creation time grows linearly in the label dimension,
or more precisely O(d(n + m)), in all of our tests. In light of these results,
we will proceed to show only the results obtained for dimension 2.

Table 2.3: Large data set

Data set Vertices Edges Avg Degree
Citeseer 693948 925779 1.33

Cit-Patents 3774769 17034732 4.5
Uniprot 100 16087296 30686253 1.91
Uniprot 150 25037601 46687655 1.86
Uniprot 22 1595445 3151600 1.97

2.4.2 CPU GRAIL Tests
When testing querying times, which are reported on tables 2.4, 2.5 and 2.6,
all of the obtained results matched our expectations regarding the effect of
being able to discard in constant time the pairs of nodes for which inter-
val containment was not verified, as can be seen by comparison with the
pure-DFS querying times, as well as the index’s scalability for larger graphs.
Similarly, the query parallel DFS and BFS versions outperformed consis-
tently their sequential counterparts, being 2 to 6 times faster in most tests.
Likewise it can be noted that the sequential-BFS configuration was slightly
slower than its sequential DFS counterpart, even for the small-dense data
set for which the original paper expected a possible improvement, but all
querying times were within the same order of magnitude.

Additionally, we turn our attention to particular results, regarding tests
on the small sparse and large data sets, that deserve further analysis. It
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Table 2.4: Sparse tests (all times in ms)
Data set Positive Queries Pure DFS Index CT Sequential DFS Parallel DFS Sequential BFS Parallel BFS
Agrocyc 122 28.19 0.30 6.10 2.37 5.96 2.73
Amaze 17309 172.7 0.17 26.02 5.76 33.96 7.64
Anthra 98 23 0.30 6.26 2.29 6.30 2.80
Ecoo 115 31.1 0.28 6.37 2.38 6.51 2.63

Human 19 15.54 0.74 6.54 2.39 6.71 2.33
Kegg 20214 209.85 0.16 28.08 7.24 59.90 17.20
Mtbrv 163 34.17 0.22 5.99 2.43 6.13 2.50
Nasa 547 71.33 0.26 6.47 2.46 7.45 2.76

Vchocyc 162 35.33 0.22 5.97 2.29 6.02 2.41
Xmark 1478 163.87 0.25 10.21 3.49 33.13 12.02

Table 2.5: Small dense tests (all times in ms)
Data set Positive Queries Pure DFS Index CT Sequential DFS Parallel DFS Sequential BFS Parallel BFS
Citeseer 370 14290.22 1.22 20.1 4.27 28.72 11.94

Go 249 46.67 0.51 13.11 2.83 15.13 3.52
Pubmed 658 1222.1 0.87 11.2 3.53 13.60 4.46
Yago 175 30.23 0.77 7.51 2.49 8.96 2.96

was already mentioned that the Amaze and the Kegg graphs in the small
sparse data set have a particular topology that results in a higher level of
reachability among pairs of nodes than other nodes in the same set, and it
can be seen in 2.4 that for these graphs 17% and 20%, respectively, of all
analyzed query pairs are reachable. Consequently their aggregated querying
times are higher than the average for this set but, if we analyze the number
of positive queries of all the other small sparse graphs, it may be seen that,
while the ratio between positive queries and total queries goes from 0-1% to
17-20% the resulting querying times take only 3 to 4 times longer. Similarly
we observed that the Uniprot family of graphs in the large data set all have
a large number of roots which converge to a single sink via a very short path.
Since there is a single sink, we would expect all the nodes in the graph to
have the same inner rank which is a known cause for false positives, and so we
would expect a large amount of exceptions and, consequently, a significant
aggregated querying time. However we can see in table 2.6 that this is not
the case. Interestingly, the fact that the graph is has a very low depth, i.e.
6 levels, allows the queries to be answered rapidly even in a scenario that
would result problematic for the GRAIL index: in fact, querying times are
basically the equivalent to those of the pure DFS algorithm.

We conclude our analysis by noticing that the results obtained for our
GRAIL implementation share many similarities with those presented in the
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Table 2.6: Large tests (all times in ms)
Data set Positive Queries Pure DFS Index CT Sequential DFS Parallel DFS Sequential BFS Parallel BFS
Citeseer 0.40 18.64 42.3 13.24 3.50 12.96 3.64

Cit-Patents 42 220458.57 1417.2 1831.41 617.80 3423.0 1576.90
Uniprotenc 100 0 30.58 1055.1 24.57 4.72 23.74 4.98
Uniprotenc 150 0 31.1 1632.2 24.96 4.83 25.20 4.82
Uniprotenc 22 0 20.4 82.2 20.50 4.13 20.70 4.10

original GRAIL paper. Given the different architectures of the two machines
on which the tests were executed, our tests produced index construction and
search times of the guided DFS algorithm smaller by at least one order of
magnitude than those of the authors, but many similarities emerged in the
comparison. In particular, for all the data set the amount of queries that
resulted in a positive answer, or positive queries, were practically identi-
cal, and the graph instances that required larger processing times, both for
querying and indexing, were the same in most cases. The only significant
difference between the two studies regarded the times of the unguided DFS
search for testing reachability. In particular, their DFS proved to be more
competitive with respect to their guided DFS given that it provided similar
or slightly inferior times for most instances of the small sparse and large
real data sets, whereas our unguided DFS was consistently slower than our
guided DFS. Moreover, our unguided DFS performed better on the small
sparse data set, whereas for the most critical instances of the small dense
and large real data sets, such as Citeseer or cit-Patents, their unguided DFS
produced better times. Interestingly, both of the experimental results con-
firmed that the topography of the Uniprotenc family of graphs favors an
unguided DFS exploration, given that in both studies there were no signif-
icant differences between times required by guided or unguided DFS when
testing reachability in these instances.
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Chapter 3

Parallel Computing on
CUDA

Before proceeding towards an in depth analysis of the strategies that were
considered for parallelizing GRAIL it is useful to discuss the development
environment, so as to better understand the challenges faced and the guid-
ing principles upon which many design choices were based. Specifically this
chapter will be devoted towards providing an overview of the context in
which the CUDA architecture has found widespread popularity in the soft-
ware development market and towards presenting the CUDA architecture
and programming model, as well as the main factors that have to be taken
into consideration for optimizing applications on this platform. Finally, we
will conclude the chapter with a study of the main approaches to implement
graph traversal on CUDA, as well as with an in detail explanation of the
algorithm that we chose.

3.1 The case for GPU parallel computing
Historically speaking it can be affirmed that most of the development of
software applications has been influenced in great measure by the hardware
advancements, both in terms of memory capacity and processor speed, that
characterized the past decades. In fact, until the early 2000 the software
development market was lead by what is commonly known as Moore’s law,
which so accurately predicted the growth of the number of transistors per
chip for the recent past. Confident in the accuracy of this forecast, soft-
ware developers relied steadily on the hardware advances that accompanied
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each new generation of processors to speed up the performances of their pro-
grams, which were designed for sequential execution on CPU. Essentially it
has always been possible to develop software that will simply run faster on
the next-generation CPUs, without it being actively designed to benefit from
future hardware advancements. Nonetheless it is now equally accepted that
the number of transistors per chip is no longer growing at a rate that can
satisfy market demands, which has lead both vendors and software houses
towards exploring different ways to improve their applications and meet cur-
rent market’s demand.

Inevitably major chip vendors have moved towards offering micro-processors
with an ever increasing number of completely independent cores, with con-
stant focus on supporting hardware threads in order to speed up sequential
programs. On the other hand, this has not been the only approach for ob-
taining better performances that has taken root in the last decade. In fact,
from the first years of the 2000 there has been a constant effort towards ex-
ploiting GPU capacities for more than the usual graphic-related purposes, a
practice which is now called General Purpose GPU, or GPGPU in short. Es-
sentially during the same years in which Moore’s law hit a saturation point,
the video games industry continuously required GPU vendors to offer chips
that allowed a massive number of floating-point calculations per second, or
FLOPS, which are also a commonly used metric in this field for measuring
both graphic unit and software performances.

As a result of this constant drive towards increasing the number of FLOPS
on graphic units, which exceed by far those of a top of the line CPU, program-
mers started to turn towards developing software that could run on GPUs
long before the release of the first CUDA APIs by NVIDIA. Software de-
velopers originally resorted to forced implementation of algorithms through
APIs that were designed to paint pixels on screen, as reported on [7], so it is
safe to say that when NVIDIA released CUDA in 2007 the software market
was more than ready for an environment designed specifically for GPGPU.
Furthermore, CUDA’s rise to the most complete platform for GPGPU was
aided by the fact that NVIDIA graphic units were already present in most
desktop computers, which represented an amazing opportunity for software
vendors to develop applications that relied on a GPU architecture that was
already in most PCs in the world.

34



3.2 – CUDA Programming Model

However let us point out that CPUs and GPUs cannot be thought of in
terms of deciding to use one instead of the other, but rather on a complemen-
tary way: each of them is the result of a different architecture philosophy and
was specifically designed to address problems that are inherently different.
Historically CPUs have been designed with versatility in mind, which is the
ability to run diverse algorithms, and research in this field has focused on re-
ducing latency through sophisticated flow control and large memory caches,
both of which require significant on-chip space, whereas GPUs do not need
either and exploit most of the on-chip space to host a large number of ALUs.

As a matter of fact, one can argue that this is the main difference between
the two architectures: GPUs do not aim to reduce the execution time of a
single thread, but are rather designed to increase the throughput of a num-
ber of threads typically in the order of thousands, and do so by covering the
long latencies caused by memory operations with a large number of threads,
in order to always have threads ready for execution. Conversely the lack of
branch prediction and flow control causes GPUs to face problems such as
branch divergence, which will be discussed later, and are utterly unable to
compete with CPUs for algorithms, or parts of them, that are inherently se-
quential. Generally speaking, while considering how to improve applications
it is important to keep in mind that not all algorithms can be completely
ported to GPUs, and that to achieve great performances it is often necessary
to divide the program such that CPU and GPU each handle the parts that
they are most suited to deal with.

3.2 CUDA Programming Model
In this context, the CUDA programming model introduces an abstraction for
representing the computer as a single host, which represents the CPU, and
possibly many devices, which are distinct graphic units. CUDA is a platform
for writing code that will run on NVIDIA GPUs and is language independent:
there are CUDA APIs for all major languages such as C, C++, Fortran and
Python. However, CUDA code is always composed by regular code and
special functions which typically exhibit a great amount of data parallelism
and will run solely on the GPU when launched from the host. These functions
are called kernels in the CUDA nomenclature, they get typically executed by
a large number of threads on a device and are the primary source of parallel
execution on CUDA, though they are not the minimum scheduling unit. The
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source code is compiled by a CUDA-enabled compiler such as the NVIDIA
C Compiler, or NVCC, for C and C++, which divides and compiles source
code depending on where does it have to run. Since it is not possible for a
program to run completely on a device, all CUDA programs start execution
on the host, until a kernel is launched.

Host Device

Kernel 1

Block <0,1>Grid

Block

<0,0>

Block

<0,1>

Thread

<0,0>

Thread

<1,0>

Thread

<0,1>

Thread

<1,1>

Block

<1,1>

Block

<1,0>

Figure 3.1: CUDA programming model

When invoked, kernels are typically launched following a hierarchic struc-
ture that is the main source for both coarse-grained and fine-grained par-
allelism: in fact, a kernel is run by a grid, which is composed of blocks of
threads. Grids and blocks may have more than one dimension depending on
the type of data that has to be processed: they may have a one-dimensional,
two-dimensional or three-dimensional structure, in order to easily work with
vectors, matrices or volumes, and each thread has built-in registers that as-
sign a unique ID within its block and grid. This structure allows software
developers to divide the algorithm into sub-problems that can be solved in-
dependently and in parallel by blocks of threads, thus providing both task-
parallelism and coarse-grained parallelism, as noted on[9], while threads in a
block can cooperate to solve these sub-problems concurrently, which also en-
sures data-parallelism and fine-grained parallelism. Furthermore, this is the
reason for one of the hallmarks of the CUDA architecture, which is automatic
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scalability.

Basically, upon kernel execution a grid is created and divided into blocks,
which are scheduled for execution on Streaming Multiprocessors, or SMs, and
NVIDIA GPUs have a variable number of SMs. Since any block of threads
can be scheduled in any SM, either concurrently or sequentially, in any order,
a GPU with many multiprocessors will automatically execute the program
in less time since more blocks are going to be executed concurrently, without
the developer having to change the application. This desirable behaviour
is also the main reason for which the CUDA programming model makes no
guarantee on the order of execution of blocks and demands that, in order to
ensure correctness, developers do not rely on blocks being executed in any
order. In fact, threads within the same block can cooperate to solve the
same sub-problem, as mentioned before, thanks to a shared memory and a
barrier synchronization mechanism, whereas it is not expected that threads
on different blocks should wait on each other, and there are few ways of
achieving this without seriously compromising performances.

CUDA Program
GPU with 4 Streaming Multiprocessors

GPU with 2 Streaming Multiprocessors

Block

<0,0>

Block

<0,1>

BLOCK 0 BLOCK 1 BLOCK 2 BLOCK 3

BLOCK 0 BLOCK 1

BLOCK 2 BLOCK 3

Block

<1,1>

Block

<1,0>

Grid

Figure 3.2: CUDA’s automatic scalability

As already explained, GPUs have an array of SMs, and when a grid is
created its blocks are distributed to all multiprocessors that dispose of suf-
ficient execution resources. A Streaming Multiprocessor may execute one or
more blocks concurrently, but threads within a block must be executed in the
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same Streaming Multiprocessor. SMs are built around the Single Instruction,
Multiple Thread architecture, or SIMT, which manages a significant amount
of threads at the same time by having them all execute the same instruction
on different data. Interestingly when a block is scheduled for execution on a
Streaming Multiprocessor, the threads in a block are divided into groups of
32 threads, which are called warps and are the minimum scheduling unit.

All threads in the same warp will always execute concurrently, but each
of them has an individual instruction counter, which provides the ability to
take different paths on a branch instruction such as an if or a for-loop. In
other words, threads in a warp are expected to always execute simultane-
ously the same instruction, but they can take different paths depending on
branches, which apparently constitutes a contradiction. However, it is time
to note that, unlike CPUs, program instructions are issued in order and there
is no speculative execution: if threads of a warp have to follow different paths
depending on the result of a condition, the scheduler executes each branch
serially, disabling at each iteration all the threads that are not on that path,
and this behaviour is repeated on all possible paths, until all threads con-
verge on the same instruction. This is called branch divergence, or simply
divergence, which is a major factor in determining the overall execution time
of a kernel and, as we will show, in many cases our parallelization strategies
will focus on minimizing divergence.

Finally we conclude our discussion on the CUDA programming model by
addressing the memory hierarchy, another abstraction that is key towards
optimizing performances. Starting from the hardware point of view, it is
worth noting that, while most memory chips are indistinctly referred to as
SDRAM, NVIDIA GPUs actually dispose of a memory technology called
Graphics Double Data Rate, or GDDR SDRAM, which is better suited to
deal with transfers of massive amounts of data on a single clock than DDR
SDRAM, the usual memory unit for CPU motherboards. The CUDA model
keeps host side and device side memory as two separated memory spaces, and
provides the host with functions to handle allocation, transfer and release of
on device memory.

Additionally, the device memory is partitioned into several sub-memory
spaces with a structure that resembles the hierarchy of threads. During its
lifetime a CUDA thread has a set of private per-thread registers, and has
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access to a per-block shared memory, which is visible for threads on the
same block and has the same lifetime than the block. These two memories
can be used, respectively, for thread-private computation and for inter-block
communication, and have fast access times since they reside in the SM. Addi-
tionally there are three other types of memory, called global memory, texture
memory and constant memory, that can be accessed by all threads in a grid,
but are not on chip and require more clock cycles for I/O.

Regarding these three types of memories, we can say that they physically
reside on the same chip, even though they are optimized for different usages.
A complete discussion on the specific purposes of each can be found in [9],
but we will describe briefly the usages of shared and texture memories, since
they will be used steadily in our implementation.
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Registers Registers

Local Memory Local Memory

Thread <0,0> Thread <0,1>

Texture Memory

Shared Memory

Constant Memory

Global Memory

Block <0,0>

Registers Registers
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Thread <0,0> Thread <0,1>

Shared Memory

Figure 3.3: Memory Hierarchy
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Shared memory is a region of memory that resides in the same chip that the
Shared Multiprocessor, which implies that memory accesses to this region re-
quire lower latency and grant higher bandwidth that global memory, though
to achieve peak performances certain memory access patterns must be fol-
lowed. When the CUDA compiler encounters a variable labelled as shared, it
allocates a private copy for every block in the grid: all threads belonging to
the same block may see and modify that per-block variable, while access to
the other block’s variables is not allowed. As for the access patterns, shared
memory is designed as an array of equally sized memory modules called
banks, which are optimized to serve k simultaneous read/write requests to
addresses in k distinct banks. However, if more requests to the same bank
occur at the same time, they will be serialized and the operation will require
longer times.

Hence programmers are expected to design code carefully to avoid limit-
ing performances, and there are several factors that have to be taken into
consideration, but here we want to address the so called tiling pattern, which
will be used in several of our kernels, since it regards the common scenario in
which an array stored in global memory has to be accessed several times by a
block of threads. Usually the tiling pattern proposes to solve this by having
all threads in a block load a distinct element of the array on a shared memory
cache at the same time, wait on each other by synchronizing and only then
perform their task on the common array data, before repeating this process
if necessary. Furthermore threads with consecutive IDs are expected to load
array elements with consecutive indices, since the device tries to minimize
the number of transactions for consecutive store/loads by threads in the same
warp, which is called memory coalescence, in order to maximize bandwidth
usage.

Additionally, we will use the texture memory during graph exploration, so
it is interesting to discuss some of its main features and uses. Traditionally
designed for openGL and DirectX rendering pipelines and optimized for ac-
cess patterns whose addresses exhibit a great deal of spatial proximity, it has
recently gained traction in non graphic GPU computations since it possesses
some useful features which, if nothing else, do not impact on bandwidth
from global memory. Among its features, the first element worth noticing
is that it is a read-only cached-on-chip memory, so it costs an access from
global memory only upon a cache miss. Furthermore, it has a dedicated
unit for address computation, which would otherwise be carried out by the
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kernel’s assigned ALU unit, and it is especially well suited to broadcast data
to separate variables during a single operation, as reported on section 3.5 of
[9].

3.3 Graph Exploration on CUDA
We will conclude this chapter by making the argument for the use of BFS
instead of DFS when it comes to graph traversal algorithms on CUDA. Since
the next chapter is devoted to explaining how to port the GRAIL labeling
phase, which is entirely DFS dependent, we will summarize here the most
frequent techniques for CUDA based BFS, and we will explain the algorithm
that we selected as well as its core ideas and implementation choices.

3.3.1 Challenges of parallel Depth First Search
At first glance it may not be clear why should DFS be harder to parallelize
than BFS, since the core difference between them is the order in which they
visit the same nodes and edges. However, if one looks at these algorithms un-
der a different light, the underlying problem is clearer: BFS revolves around
exploring the current frontier, which is the set of all unvisited nodes among
the current vertex’s adjacent nodes, whereas the DFS commits towards ex-
ploring a path until all its leaves have been reached and explored before going
back. In other words, BFS tries to explore a set of nodes, and has no re-
strictions against these vertices being processed concurrently, whereas DFS
imposes to visit a precise node at any time and, as such, is inherently sequen-
tial. There is also no approach that would allow us to organize the graph
data in such a way that it exhibits data locality and so the main features that
are traditionally used to speed up performances in parallel implementations
are of no use.

Nonetheless note that this does not mean that there cannot exist a version
of the DFS algorithm that makes use of the multi-threading capacities of
a processor: usual approaches, however, tend to use more cores to perform
concurrently many DFS, but this strategy is not valid for our algorithm, since
during the labeling phase we have to assign to each node a ranking value that
is strictly dependent on the number and order of previously visited nodes.
Any strategy to parallelize the labeling DFS must take into consideration
that a global variable must be read and modified every time a node is visited
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Figure 3.4: BFS vs DFS node processing

and that these visits must occur in a precise order, which is a major limit for
parallelization, at least on the CUDA architecture.

3.3.2 Breadth First Search on CUDA
Most sequential BFS implementations have as a core data structure a queue
to which they add, at every iteration, the set of nodes that have to be explored
which is called frontier. Usually CPU based parallel versions rely on a unique
queue which is complemented by a synchronization mechanism such as a
lock or a semaphore. Nonetheless, this approach is of no use for porting
BFS on CUDA: a lock and a queue may work fine for threads in the order
of hundreds, but will never guarantee acceptable performances for fifty or
sixty thousand threads competing for access and, even if we simply did not
care about efficiency, CUDA does not provide lock or sophisticated atomic
operations that go beyond atomic add, exchanges and similar.

In the past decade several CUDA implementations of BFS have been pro-
posed, but they usually agree on replacing the queue with what is called a
status or a frontier array: an array which contains one element for every node
in V and represents whether vertex i will be part of the frontier on the next
iteration or not. Henceforth we will use the term queue to refer to a concep-
tual queue, which will be actually implemented through a status array and
several mechanisms built on top. Initial versions of the BFS on CUDA were
based on the work in [10], which basically went little further than parallel
exploration of the array: at every iteration one thread would be assigned
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to every node, the thread would process the vertex depending on its value
on the status array and would finally update the status array for all of the
vertex’s children. While this version was important, since several papers cite
it as the first BFS on CUDA, it has several performance shortcomings that
make it practically unusable. In fact, even a preliminary analysis helps us
understand why this algorithm fails to deliver reasonable performances: it
may happen that, depending on the topology of the graph, only a subset
of nodes belongs to the frontier, whereas this method requires a full array
scan at every iteration, which entails huge levels of divergence. Furthermore,
divergence is also caused by the different number of children that each node
has, or its out-degree, since some threads will process thousands of children
vertices while others none.

Several improvements have been put forward to address these shortcom-
ings and an in depth discussion of the major approaches for parallelizing
BFS on CUDA can be found in [8], along with their source code, but for
brevity we will focus here on the ideas that are of most interest to our work.
The principal methodologies exposed in the paper deal with postponing the
processing of nodes with a high out-degree until all other nodes have been
analyzed, which aims to reduce divergence by concurrently processing nodes
that have similar out-degrees and is usually done as follows: at every iteration
the number of children that the current node has is checked before proceed-
ing and, if that number is higher than a predefined threshold, that node is
added to a shared memory queue, private to each block, and its processing
is deferred until all other nodes have been visited. Other approaches target
the queue generation mechanism in order to avoid the full frontier array ex-
ploration at every turn: this is usually achieved through an in-block queue,
kept in shared memory, on which threads store the children that belong to
the frontier. Threads synchronize accesses to this queue through atomic adds
on an index counter, also kept in shared memory, since atomic operations on
shared memory do not add significant overhead, and at the end of the itera-
tion all of these queues are merged into a global array through a very limited
number of global atomic adds.

Ultimately all of these ideas suffer from limits imposed by the shared mem-
ory, in the order of kilobytes for each block on most architectures, and never
allows the expected scalability, but we insist upon noting that the major
approaches for improving CUDA BFS are based upon two strategies: opti-
mizing the queue generation mechanism and limiting the overhead caused
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by divergence when simultaneously analyzing nodes with very different out-
degree.

We conclude this section by analyzing an alternative approach for gener-
ating the queue that has gained significant approval in recent times and is
based on parallel prefix sums. We recall here that prefix sum of an array is
an algorithm that takes as input an array A, produces as output an array
B of equal dimension and that the two are bound by the following relation:
B[x] = ∑

i<xA[i] if x > 0 and B[x] = 0 if x = 0 . Prefix sum is currently
used by a great variety of algorithms in distributed or parallel environments:
usual scenarios involve a set of k globally distributed processes, each of which
has to write ik elements in a shared memory without synchronizing. This is
usually done by having a prefix sum performed on an array with the sizes of
the ik elements to be written, which produces the starting addresses of the
partitions in which each process can then write independently.

Status Array

Queue of nodes

Prefix Sums

1 1 0 0 1 0 0 1 0

0 1 4 7

0 1 2 2 2 3 3 3 4

Figure 3.5: Prefix sum queue generation

Similarly this concept has been used to generate the queues as follows:
given a status array of size n, where n is the number of vertices, we will use k
threads, with k ≤ n, to scan the status array and store the ids of the frontiers
nodes in private per thread arrays, from now on called bins. Then a prefix
sum on the lengths of these bins is done and each thread will use the result
to write its part of the frontier on a global array, as can be seen in 3.5. This
procedure will be used by the Enterprise BFS, and it is interesting to note
that this approach divides frontier exploration from its generation which will
be crucial in tackling divergence.
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3.4 Enterprise BFS
In this context we chose to base our BFS implementations on a recently de-
veloped algorithm specifically designed for CUDA which is called Enterprise
BFS, was proposed in [6] and is based upon many of the ideas previously ex-
posed. Enterprise is designed to reduce divergence by exploiting both coarse
and fine grained parallelism when each is required, and achieves this through
three fundamental optimization strategies: it divides the frontier into three
distinct queues which are generated through the previously explained prefix
sum mechanism, the criteria for dividing the frontier depends on the out-
degrees of each vertex and the BFS switches direction when certain nodes
are found. We will address all of these points, but we immediately want to
note that this algorithm has been used as a basis for our implementations,
since we had to develop several versions of BFS, and, as such, there are some
differences between the original implementation, whose code is available on-
line, and ours.

In fact, we did not use the direction switching technique that they suggest
since we use the BFS to create GRAIL indices and, as will be explained in
the following chapter, this requires four distinct BFS traversals that are to
be performed solely bottom up or top down. However it is worth explaining
the rationale behind this idea, since it is very efficient: Bidirectional BFS,
or BBFS, is widely used in certain scenarios to improve performance, and it
might be the subject of future work for the query search phase. Essentially,
Enterprise develops a heuristic approach for deciding if it is convenient to
switch direction when a node with a large out-degree is found, in order to
postpone or to avoid a visit to such a node.

Turning our attention to the ideas upon which we developed our BFS,
as already stated Enterprise proposes to use prefix sum to generate three
separate queues, which are set apart by the out-degree of their nodes. The
main concept here is to divide the nodes that have to be processed depending
on the number of children that each vertex has. In fact, nodes are inserted
in the small queue if they have less than 32 children, in the large queue if
they have more than 256 or in the medium queue for values in between.
Subsequently these nodes will be processed by a number of threads befitting
the amount of work that has to be performed: nodes belonging to the small
queue will be handled by a single thread, whereas a warp will be assigned to
each node in the medium queue and a block to each vertex of the large one.
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Obviously three different kernels will be launched, each optimized to handle
its queue, which will result in approximately the same amount of work for
each thread in each kernel, as well as in assigning resources proportionally
to each node’s processing requirements.

Figure 3.6: Enterprise queue generation

The Enterprise algorithm is divided in two phases: queue generation and
exploration. In particular, during the first phase the status array is scanned
by a kernel launched with 256 blocks of 256 threads each, for a total of 65536
threads. Prior to the kernel launch three arrays of 256× 256× 512 elements
each are allocated, which can be seen as each thread having three bins of 512
elements for the small, medium and large queue. These kernels iterate over
the frontier array with an access pattern that guarantees coalescence as can
be seen in figure 3.6, since consecutive threads will be assigned consecutive
array elements, and will store in their internal bins the ids of the nodes that
are to be visited, depending on the node’s out degree.

After the bin generation has ended, all threads write the actual number
of elements in each of its bins into three arrays in global memory, on which
distinct prefix sums are then performed. These three prefix sums are executed
in parallel by a different set of kernels and, given that in [6] there is no
reference to the parallel prefix sum algorithm used, we decided to implement
it following the Kogge Stone’s strategy, as described in Chapter 8 of[7], which
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basically applies the well known parallel reduction pattern, as can be seen in
algorithm 4. Afterwards a third set of kernels concludes the queue generation
process by using the values computed by the prefix sums to copy the nodes
ids stored in the internal bins into the respective global queue.

Function prefixSumKoggeStone(int *src, int *dest, int size):
_shared_ int T[blockDim.x]
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int stride;
if tid < size then

T[threadIdx.x] = source[tid];
else

T[threadIdx.x] = 0;
end
for stride = 1; stride < blockDim.x; stride *= 2 do

_syncthreads();
if threadIdx.x >= stride then

tmp = T[threadIdx.x-stride];
_syncthreads();
T[threadIdx.x] += tmp;

end
end
_syncthreads();
dest[tid] = T[threadIdx.x];

Algorithm 4: Kogge-Stone kernel for prefix sum

The queue exploration phase has to be executed by three different kernels,
one for each queue, since each thread has to compute the indices for accessing
queue elements depending on the queue: we require threads that handle the
small queue to take a node each and to process all of its children, which are
less than 32, sequentially. Threads that deal with the medium queue nodes
have to cooperate at warp level on the same node, and each thread in the
warp is assigned one of its children, which are between 32 and 255. Finally
the large queue requires cooperation at block level: each thread in a given
block has to process a children of the same node.

We recall here that each thread has a block index, called threadIdx, and a
grid index called blockIdx, which represent the thread’s number in the block

47



3 – Parallel Computing on CUDA

and the block’s position in the grid, respectively, and are used to determine
the element assigned to each thread. Specifically small queue threads com-
pute their initial index with the following formula vertex_id = blockIdx ∗
blockDim + threadIdx, then execute two nested loops. In the inner loop a
thread processes the current node’s children sequentially whereas in the outer
loop they select another small queue vertex by adding the number of nodes
that have been processed at the current iteration: vertex_id + = blockDim∗
gridDim. Similarly, large and medium queue kernels adopt the same nested
loop structure to iterate over their respective queues, but the formulas for
computing the indices and iterating over the children vary since many threads
have to cooperate on the same node by choosing a distinct children each. For
the large queue kernel this is easily achieved by having vertex_id = blockIdx
and children_id = children_indices[vertex_id]+threadIdx. We recall that
children_indices[x] contains the starting point of node x’s children in ar-
ray children_edges, so we see that this access pattern enhances coalesced
memory accesses to the children_edges array.

Figure 3.7: Enterprise medium queue exploration

Conversely the medium queue kernel has a less intuitive indexing approach
since there is no explicit warp id and, in general, warp level cooperation has to
be customized on the particular kernel’s task. In Enterprise they propose to
compute the node id with the following formulas tid = blockIdx∗blockDim+
threadIdx which is used in node_id = tid/32 to grant that every thread in
the warp chooses the same node. Obviously the next node on the queue, if
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any, will be chosen by taking into consideration that one node is processed
by 32 threads, so node_id + = blockDim ∗ gridDim/32. Furthermore all
threads in a warp have an additional id for choosing the children that they
have to process, which is given by lane = tid & 31 which produces thread
dependent values in range [0,31] and are used to ensure coalesced accesses to
children_edges through children_id = children_indices[vertex_id]+lane.
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Chapter 4

Labeling implementation
on CUDA

4.1 Introduction

This chapter aims to explain the approach followed to implement the GRAIL
labeling method on CUDA. We recall here that GRAIL has labels defined as
follows: ∀u ∈ V, Lu = [su, eu] s.t. su = min {sx | sx ∈ descendants(u)} , eu =
postorder(u), which underlines that GRAIL labels are strongly dependent on
the postorder rank computed by a DFS. As explained in the previous chap-
ter, it is not possible to implement a DFS on CUDA, and thus we will devote
this chapter to explaining that for DAGs a single DFS graph exploration
can be replaced by several BFS traversals, as reported on [5]. This strategy
was adopted given that BFS traversals expose a higher degree of data par-
allelism and, in order to develop it, we tailored the Enterprise BFS to meet
each of these BFS’s requirements, as we will show in this chapter. Moreover,
the authors of [1] suggest that the min-postorder labeling methodology that
they propose is not the only possible technique that can be used to build
the index and that there exist different labeling strategies. This work con-
ducted a study on the parallelization of the GRAIL algorithm based on the
original min-postorder labeling technique, but the algorithms that we devel-
oped could constitute the basis for future work regarding distinct indexing
approaches, such as labels based on the preorder rank which were already
proposed as future work in the original GRAIL study. In particular, we be-
lieve that it could be interesting to compare a CUDA implementation of the
preorder based labels with our implementation based on postorder labels,
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since computing the preorder ranks requires a smaller number of BFSs graph
traversals, as suggested in [5].

4.2 Replacing DFS with BFS for DAGs
If we analyze the objectives of performing a DFS traversal on a DAG we
find that the main reason to do so is to determine a node’s unique father,
preorder rank (which can be seen as a node’s discovery time), postorder rank
(a node’s finish time) or all of the above. Moreover, the key to substitute the
DFS traversal is to realize that "in a DT finding preorder and postorder of
a node is equivalent to computing an offset based on the number of nodes to
the left and below yourself", as reported on [5]. In other words we will focus
on algorithms that rely on the number of nodes that every vertex can reach
in order to compute the graph’s preorder and postorder sets.
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Figure 4.1: Sub graph sizes

We introduce here the following definitions, as they are presented in [5],
which are valid for any graph G = (V,E) where E is a set composed of
directed edges with no cycles. Let ςp and ζp denote the number of nodes
reachable under and including node p: if a certain sub graph is reachable
from k multiple parents then its nodes will be counted once in ςp and k
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times for ζp. It is easy to understand that, as a consequence, ςp = ζp for
any DT and ςp ≤ ζp for any DAG. It is also important to notice that the
following recursive relationship can be used to compute ζp for any node p:
ζp = 1 + ∑

i∈Cp
ζi, where Cp is the set of children of node p. In other words

ζp is the cardinality of the subgraph of nodes reachable from vertex p, and
from now on we will refer to ζp with the term sub graph size.

Additionally, given a node p, whose set of children Cp has an ordering
relationship defined, we define ζ̃l = ∑

i<l,i∈Cp
ζi ∀ l ∈ Cp and we notice right

away that ζ̃l is the cardinality of the set of vertices that are reached by, or
reachable from, all the preceding siblings of node l, excluding l itself since i
is less than l. In other words, if node p has a set of children Cp and there is
an ordering relationship among these children, ζ̃l indicates how many nodes
can be reached from all the children of parent p before l itself. It is also
important to notice that for any node p we can compute both ζp − 1 and ζ̃l

for all children l ∈ Cp by doing a prefix sum of ζp starting from 0, as can
be seen in figure 4.2. Generally speaking, these definitions were adopted as
they were proposed in [5] but we note that in a DAG nodes may have more
than one father, which implies that node l has a ζ̃l for each father, so using
˜ζl,p to indicate ζ̃l for father p would result in a more precise notation. In
fact, figure 4.2 contains two sub graphs of the graph introduced in figure4.1
and the reader may verify what do the sub graphs sizes represent and how
does the CSR format help in the computation of ζ̃l: the first sub graph has
its root in node 1 and as reported in figure4.1 node 3 has sub graph size 4
since from 3 we can reach 3,7,8 and 9, whereas node 4 has sub graph size of 2
since it reaches 4 and 8. The CSR format is particularly suited to allow the ζ̃l

calculation since the sub graphs sizes of a node’s children can be stored in the
same positions used by the children_edges array to store a node’s children,
and a simple prefix sum on the sub graphs would produce ζ̃l for every node,
as can be seen for node 1, which has children 3 and 4. Nodes 3 and 4 have
sub graph sizes of 4 and 2, respectively, and a 0-started prefix sum of these
values yields ζ̃3 = 0 since node 3 has no preceding siblings and ζ̃l is the sum
of the sub graphs sizes of the preceding siblings, ζ̃4 = 4 since node 3 has sub
graph size of 4, and ζ1 − 1 = 6, since ζp is the sum of all of P’s children sub
graph sizes plus one. Similarly, the second sub graph analyzed in figure 4.2
shows that if a node has more than one parent, it has more than one ζ̃l.

The pseudo-code for algorithm 5 was introduced in the original paper and
will be used to compute the sub graph sizes and their prefix sums for every
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Figure 4.2: Prefix sums

node of a DAG. It basically explores the set of nodes following a bottom up
traversal in which every time a node i is encountered the node’s sub graph
size is propagated to its parent p. At every iteration a node i is extracted
from the queue of nodes to visit, and the edge <p,i>, where p is i’s parent,
is marked as already visited. The algorithm then checks if parent p has been
visited by all of its children and, if so, it is inserted on a secondary queue of
nodes which will be visited during the next iteration, after a prefix sum on
the children sub graph sizes is performed. Notice that, since the algorithm
proceeds bottom up it is necessary to wait until a parent has been visited by
all of its children in order to compute the prefix sum, given that the children’s
sub graph sizes would not be available otherwise. As a result, the algorithm
produces the sub graph size for every node and the prefix sum of the sub
graph sizes for every pair <node i, parent p>.

After having introduced the sub graph sizes and their prefix sums and
having proposed an algorithm for computing them on any DAG, it will be
showed that for any DT the preorder and postorder can be built using the
sub graph sizes ζp. In fact, preorder and postorder are entirely dependent

56



4.2 – Replacing DFS with BFS for DAGs

Function compute Subgraph Sizes():
Initialize all subgraph sizes to 0
Insert all leaves into queue Q
while Q.NotEmpty() do

foreach node i ∈ Q in parallel do
Let Pi be a set of parents of i
Initialize queue C as empty
foreach parent p ∈ Pi in parallel do

Mark edge (p, i) as visited;
if all outgoing edges of p are visited then

C.push(p);
end

end
end
foreach node i ∈ C in parallel do

Let Cp be an ordered set of children of p
Compute prefix sum on Cp, obtaining ζp

end
Q = C;

end
Algorithm 5: Subgraph size computation with bottom up BFS

on the number of nodes that precede the vertex p throughout various depth
levels given any topological order. Particularly in a DT there is a unique
path that goes from root r to node p, Pr,p = {r,i1,. . .,ik−1,p}, where k is the
depth of node p, and if we define τp as the sum of all the ζ̃l in the path
from root r to node p, or τp = ∑

l∈Pr,p
ζ̃l we can compute the preorder and

postorder as follows:

preorder(p) = k + τp (4.1)
postorder(p) = (ζp − 1) + τp (4.2)

As a matter of fact, we can observe in figure 4.3 that τp represents the
cardinality of the set of nodes that precede node p at all levels of depth,
since it is the sum of all the ζ̃l in the path from root to p and ζ̃l represents
the number of nodes that are visited by l’s siblings before vertex l is visited.
In other words, it is the number of nodes that would be discovered before
p in a DFS traversal, which implies that the preorder of p is at least τp.
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Since ζ̃l does not include the node l in the count it is necessary to include all
the nodes in the path Pr,p, so we add the depth k of node p. Instead a DFS
traversal computing the postorder would not process the k nodes on the path
from root to p, but would process the sub graph of node p before analyzing
p, which explains the ζp − 1 factor for the post order formula.

ζp
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p
~

ζ       p-1
~

Figure 4.3: Weights based on sub graph size

Algorithm 6 was introduced in [5] and proposes a method for computing
preorder and postorder of a DT following a parallel top down BFS traversal of
the graph. Essentially, the algorithm has the same structure that algorithm
5 but explores the graph top down rather than bottom up, and so it iterates
from root to leaves and processes a vertex p by propagating its τp to all of
its children i and by marking the edges <p,i> as visited, until all of the
children’s incoming edges have been marked which causes the children to be
added to the next iteration queue. The algorithm is based on the inherent
recursive structure given by τp = τik−1 + ζ̃p, and updates node p’s preorder
and postorder by adding the depth and the sub graph size after that τp has
been propagated to all its children.

In summary, we have showed that pre and postorder can be computed
on any Direct Tree by performing two separate BFS traversals but, unfortu-
nately, algorithm 6 cannot be used as it is on any DAG because it is possible
to encounter nodes that have more than one parent, for which distinct ζ̃ are
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Function computePrePostOrder():
Initialize pre and post orders to 0 for every node
Insert all roots into queue Q
while Q.NotEmpty() do

foreach node p ∈ Q in parallel do
Let pre = pre-order(p)
Let post = post-order(p)
Let Cp be a set of children of p
Initialize queue P as empty
foreach node i ∈ Cp in parallel do

Set pre-order(i) = pre + ζ̃i;
Set post-order(i) = post + ζ̃i;
Mark edge (p, i) as visited;
if all incoming edges of i are visited then

P.push(i);
end

end
Set pre-order(p) = pre + depth(p);
Set post-order(p) = post + ζp;

end
Q = P;

end
Algorithm 6: Pre and post order computation with top down BFS

defined, so we cannot define a unique τ for the node since distinct paths are
possible. In order to extend our procedure to DAGs it will be necessary to
assign a unique parent to every node, which will result in a unique path and
unique τ for all vertices and we will continue our discussion by explaining
our approach to do so.

4.2.1 Single parent computation
Generally speaking there are many methods that can be followed to select a
parent for each vertex and transform a DAG into a DT, and the authors of [5]
presented two approaches, one based on path comparison and an alternative
based on weights comparison. We chose the weight comparison method, but
we refer to the aforementioned paper for a complete discussion on the path
comparison method’s implementation, as well as for an in depth comparison
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of their performances. Specifically the path based method follows an intuitive
approach: it chooses a unique path for every vertex mirroring the same
behaviour that a DFS traversal is expected to follow. In fact it iterates over
the graph’s nodes through a top down BFS and assigns to each children its
parent’s path, unless the children has already been provided with a path. In
that case a node-by-node comparison of the two paths takes place, until a
decision point is found and solved by selecting the path with the "smaller"
node according to the ordering relationship in the graph. It is also worth
noticing that this algorithm is presented within an in depth analysis of the
data structures that the authors suggest for representing the path, as well
as with several optimization techniques for avoiding full-path representation
when possible, which will not be covered here.

wPr,p =
∑

l∈Pr,p

ζl (4.3)

Regardless of the difference with which this is achieved, the weight based
method is also based on computing the same path that a DFS with a given
ordering relationship would follow. Specifically, what this approach proposes
is to constructs a DT from a DAG by performing a Single Source Shortest
Path algorithm, or SSSP from now on, in which every vertex has a positive
weight that is dependent on its sub graph size, or number of reachable nodes
from that vertex. In fact, weights are defined as ζl = ∑

i<l,i∈Cp
ζi = 1+ζ̃l, with

Cp set of children of node p and we immediately notice that these weights
can be obtained through the same algorithm proposed for computing the sub
graph sizes and its prefix sums: as a matter of fact, both ζl and ζp are the
result of the same prefix sum used to compute ζp with the difference that it
now starts at one instead of zero.

A complete proof of correctness of the SSSP based parent computation
can be found in the original paper, but it is useful to notice that, given an
ordering relationship, every node will have a greater weight than its preceding
siblings since the sub graph sizes of the siblings will contribute to its weight.
In fact wi > wi−1 since ζi = ζi−1 + ζi−1 and ζi−1 is at least one. Intuitively
this pattern can be applied at every level of the tree to realize that selecting
the path with the smaller weight is equivalent to selecting the path that the
DFS would follow under the same ordering of vertices. As can be seen in
algorithm 7 the SSSP algorithm follows the same structure that algorithm
6: it iterates over the graph in a top down BFS traversal updating a node’s
parent and current cost by comparing costs computed on the node’s different
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Figure 4.4: Weights for node 8

weights for the distinct parents. In figure 4.4 the reader may notice that node
8 has three different parents, which are 4, 6 and 7, and that each parent is
associated to a distinct path from the root. In fact, vertex 8 has three distinct
weights that depend on the sub graph sizes of the nodes of each distinct path:
in this scenario the SSSP algorithm would assign 7 as node 8’s parent since
path A has the minimum weight, given that most nodes on this path have no
preceding siblings and, as such, coincides with the path followed by a DFS
visit.

4.2.2 Final observations
In summary we have introduced a method that consists in performing sev-
eral BFS traversals for computing the pre and post order ranks that would
be produced by a single DFS, and this method is based on computing the
cardinality of the sub graphs that are reachable from all vertices. These pro-
cedures are valid for any DAG, but require that we transform the graph into
a DT by computing a single parent for every node, which is done through a
BFS based SSSP algorithm that has been presented in this chapter. In other
words, this procedure replaces a single DFS traversal with several BFS visits:
one to compute the sub graph sizes of the DAG, which are used to transform
the DAG in a DT via a BFS based SSSP. Then one BFS is required to com-
pute the sub graph sizes on the DT, which allows the last BFS to compute
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Function computeParentBySSSP():
Initialize cost to ∞ and parent to -1 for every node;
For all roots set cost to 0 and insert them into queue Q
while Q.NotEmpty() do

foreach node p ∈ Q in parallel do
Let Cp be a set of children of p
Initialize queue P as empty
foreach node i ∈ Cp in parallel do

Let cost(i) be the current cost for node i
Let new cost α = cost(p) + ζi

if α < cost(i) then
Set cost(i) = α
Set parent(i) = p

end
Mark incoming edge (p,i) as visited
if all incoming edges of i are visited then

P.push(i);
end

end
end
Q = P;

end
Algorithm 7: Compute DFS-Parent through SSSP

the post orders used by the GRAIL labels. The main steps are highlighted
in algorithm 8, and the implementations proposed for these algorithms will
be analyzed in the following sections.

Function computeLabels():
computeSubgraphSizes(DAG)
computeParentBySSSP()
computeSubgraphSizes(DT)
computePrePostOrder()
computeMinPostOrder()

Algorithm 8: GRAIL labels computation through BFSs
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4.3 Subgraph sizes computation
In order to compute the sub graph sizes we modified the Enterprise BFS as
follows: since we need to process the graph in a bottom up traversal the
parent_edges, parent_cardinalities and parent_indices will be used instead
of their children counterpart and the initialization phase will consist in set-
ting to one the status array elements of the leaves rather than the roots.
This function will also work on two additional global memory arrays, called
subgraph_sizes and prefix_sums. The subgraph_sizes array has the same
cardinality of the set of nodes, since every node has one unique sub graph
size whereas the prefix_sum has one element for every edge to convey that
one vertex has a ζ̃l for every parent. More importantly, in order to allow con-
current prefix sum and sub graph size computation, the prefix_sum array is
accessed through the children_index vector, similarly to the children_edges
array: to access ˜ζl,p , which is node l’s prefix sum for parent p, two accesses
have to be made: children_indices(p) = k and prefix_sum(k) = ˜ζl,p. This
mechanism ensures that during the bottom up exploration many of node p’s
children may concurrently write their sub graph sizes in the prefix sum array
at the starting point of p, which is indicated by children_indices(p). Sub-
sequently, during the processing phase, the sub graph sizes are accessed by
many threads that cooperate in computing the prefix sum of the sub graph
sizes of p’s children, which is then used to store the parent vertex’s sub graph
sum. In figure 4.5 the reader can observe that during the queue expansion
phase the graph is being traversed bottom up using the parent indices and
edges arrays. During this phase, threads processing nodes 8 and 9 will write
8 and 9’s sub graph sizes in 7’s starting address on the prefix sum array,
whereas during the queue processing phase a zero-started prefix sum of 8
and 9 sub graph sizes is performed and used to produce 7’s sub graph size
according to the algorithm that has been presented in the previous chapters.
In fact, ζ̃8 = 0, since 8 has no preceding siblings, ζ̃9 = 1 since 8’s sub graph
size is 1 and ζ7 − 1 = 2, which is the result of the prefix sum between 8 and
9’s sub graph sizes.

Notice that since this is a bottom up traversal all the queues will have to
be classified according to the number of fathers that each node has, rather
than their children, to limit divergence, as explained in the previous chapter.
However this function’s performances are also dependent on the number of
children that each node has, because it has to compute the prefix sums on
every vertex’s set of children. In fact, if we classified queues depending
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Figure 4.5: Prefix sum computation during bottom up navigation

on the number of parents and then proceeded to do a prefix sum on the
node’s children we could have high divergence for vertices with one parent
and ten thousand children, which would be handled by a single thread. To
this purpose we leverage on the separation between queue exploration and
expansion and add an intermediate step during which the queue will be
regenerated according to the children cardinality to perform both prefix sum
and sub graph size calculation. In other words, at every level of the bottom
up BFS the same set of nodes will be sorted on children cardinality to process
and then on parent cardinality to expand, as showed in 9.

Function computeLabels():
while Q.NotEmpty() do

sortQueueOnChildrenCard()
updateSubgraphSizes()
sortQueueOnParentCard()
expandQueue()

end
Algorithm 9: GRAIL labels computation through BFSs
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Algorithm 9 explains the basic steps of this function, where by sortQueueBy
we intend the entire process of generating the queues classified by children
or parent cardinality, which is constituted by bin generation, prefix sum on
bin sizes and queue generation. If algorithm 9 is observed closely, it can be
noted that its steps are mapped to the two phases presented on the pseudo
code of algorithm 5: during the queue expansion all of the node’s parent
are visited and the edges <node i, parent p> are marked, which is repre-
sented by sortQueueOnParentCard and expandQueue, then if a parent has
been visited by all of its children it is added to the queue of nodes that are
to be processed for prefix sum and sub graph size computation, as seen by
sortQueueOnChildrenCard and updateSubgraphSizes.

In particular, this algorithm requires to track whether a node has already
been visited by all of its children and uses a global array to count the number
of children that have visited their parents, and to use this array to check if
a node has been visited by its children and needs to be expanded during
the next iteration. This array is updated through atomic adds, which are
expensive operations executed concurrently by many threads, but we expect
them to regard different nodes and hence to be on distinct addresses which
partially limits the amounts of extra clock cycles required. Furthermore, the
sub graph size computation gets calculated by a distinct kernel for every
queue: small, medium and large queues are given thread, warp or block
granularity according to the out degree of their children. The small queue is
processed by a kernel that processes a vertex by iterating sequentially over
all of its children’s sub graph sizes, computing the prefix sum and storing
the final sub graph size before extracting the next node on the small queue,
as can be seen in algorithm 10.

Conversely, the medium and large queue are handled by two similar kernels
which differ only on the indices used to access the queue of nodes to explore,
given that threads collaborate at a warp level for the medium queue and at
block level for the large queue, so we will analyze the large queue kernel’s
process to compute the prefix sum without loss of generality. The large
kernel has a shared memory array on which all threads load concurrently a
children’s sub graph size, synchronize in order to be sure that all the sub
graph sizes have been loaded and then cooperate to compute the prefix sum
according to the Kogge Stone’s algorithm. During this process the kernel
computes the prefix sum of block size children’s sub graph sizes at a time,
and performs as many iterations as needed, should the node have more than
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block size children, and then uses the result of the prefix sum to compute
and store the node’s sub graph size in a global memory array and extracts
the next node in the large queue.

Function smallQueueProcessing():
const int queueSize = queueSmallDim;
const int granularity = gridDim.x * blockDim.x;
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int subgraphSize = 1;
int prefixSum = 0;
if tid < queueSize then

currVertex = queueSmall[tid];
currCard = childrenCards[currVertex];
currStartPos = childrenIndices[currVertex];

end
while tid < queueSize do

lane = currStartPos;
currCard += currStartPos;
currChildren = edges[lane];
currChildrenSubgraphSize = subgraphSizes[currChildren];
while (lane < currCard) do

prevLane = lane++;
subgraphSize += currChildrenSubgraphSize;
globalPrefixSums[prevLane] = prefixSum;
prefixSum += currChildrenSubgraphSize;
// load next children’s sub graph size

end
globalSubgraphSizes[currVertex] = subgraphSize;
// load next vertex

end
Algorithm 10: Simplified kernel for small queue processing

4.4 SSSP based parent assignment
Having explained the first algorithm necessary for computing GRAIL labels,
we move onto the implementation of the second BFS, which transforms a
DAG into a DT, as explained in the previous sections. The general structure
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of the algorithm mirrors closely algorithm 9, even though in this case the
graph is visited following a top down navigation which implies that the data
structures used for the exploration phase are once again the children_edges,
children_cardinalities and children_indices. Similarly, at every level of the
traversal the same frontier of nodes is generated twice: during the processing
phase three queues of nodes are created depending on the node’s parent car-
dinalities, since in this phase is necessary to perform the parent assignment,
which requires to find the path with the minimum weight among all of the
node’s parents. Conversely, during the expansion phase the same queues are
generated depending on the children cardinality to propagate a node’s weight
to all of its children during the top down exploration.

In order to assign a unique parent to each node, the costs, visited_counter
and candidate_parents global arrays are allocated and accessed as follows:
costs and candidate_parents have one element for every parent edge since
all vertices have one cost for every parent, whereas visited_counter has
the same cardinality that the set of vertices since it is used to count how
many of a children’s parent have already visited it, which is used to mark
edges <parent i, node i> as visited, similarly to what was done in algo-
rithm 7. Essentially, these arrays are used to compare path weights as
follows: during the expansion phase we take node i from the queue, load
its weight w and process a children c by performing an atomic add on
visited_counter[c], which returns the number of parents that has already
visited c, referred to as k, and is used as index for the costs and candi-
date_parents arrays. In other words, costs[parent_indices[c] + k] contains
the cost of parent i for node c, which is then updated by adding ζ̃c to it,
whereas candidate_parents[parent_indices[c]+k] = i and contains the par-
ent to whom that cost is associated. Obviously, if k is equal to the number
of parents that the vertex has, the node’s status array element is set to one
in order for it to be visited in the next iteration. Notice that this scheme
is based on the CSR format to store the partial path costs and that it al-
lows several threads that are simultaneously expanding parents p1, p2, ...pn

to concurrently write their cost for their common children c .

Let us address here the implementation details of the processing phase
that decides a node’s parent by comparing all of its parent’s costs. As for
the previous algorithm, there is an identical code structure between large
and medium queue processing, so for simplicity we will analyze only the
small and large queue with the understanding that these principles also apply
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Figure 4.6: Queue expansion during SSSP parent computation algorithm

for the medium queue. Once again the implementation of the small queue
kernel is straightforward, given that it simply iterates over a node’s parents
while keeping track of the path with lower cost and the parent to whom
it is associated. The large queue uses a pair of integers which are shared
among all threads in the block to compare the minimum costs and to keep
track of the parents to which they are associated. The weight comparison
is performed by having each thread perform an atomic minimum operation
with these shared integers, but is implemented in such a way that only a fixed
amount of atomic operations is performed, regardless of how many weights
have to be compared. Notice that if the blocksize is fixed at 256 threads
and a node with 10000 parents has to be processed, each thread processes
40 weights by keeping track of the minimum weight among these candidates
in a private per-thread register, without performing any atomic operations
on shared memory. Once each thread has determined the minimum weight,
and the parent to whom it is associated, all threads in the block synchronize,
determine the final parent through the atomic minimum operations and then
synchronize again to allow each thread to check whether its value was chosen
as min and, if so, to update the global array of parents and costs.

4.4.1 Labeling phase conclusion
We close this chapter by recalling that, having assigned a parent to every
node we require three additional BFS to finish the GRAIL labeling phase:
we need to produce the DT’s sub graph sizes, to compute the post orders
and to assign to each node the minimum of all of its children’s post order.
These BFSs are all simplified versions of the two BFSs that have already
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been explained into great detail, where by simplified we intend that they
follow the same ideas that have been exposed so far but do not generate
multiple times the queue at every level, but rather have a queue generation
mechanism similar to the enterprise’s, so it will suffice to remark here the
main differences.

The first BFS that has to be performed is to recompute sub graph sizes for
the DT, which could theoretically be executed by the same function already
developed. In practice, however, we implemented a more efficient function
that exploits the fact that nodes have a single parent to avoid generating
three distinct queues during the exploration phase, but the general data
structures and code organization remain the same. Notice also that there
is an additional reason that will result in this function running faster than
its DAG counterpart, as will be showed when analyzing the running times
of these procedures: while the two functions are equivalent they iterate over
different amounts of data since the DT requires a single parent to be processed
for every node. Furthermore notice that before calling this function it is
necessary to re-compute most of the data structures that characterize the
graph, and that this re-computation has to be performed on CPU, which
inevitably causes overhead in copying data back and forth.

As for the last BFS implementations we will not analyze in depth the
post order computation since it is a straightforward adaptation of the BFS
that we have used so far and follows algorithm 6, in which the graph is tra-
versed top down and the processing phase consists in loading the current
node post order rank and updating each of its children’s post order with
a sum of the parent’s rank and the children’s ζ̃l. In this context the only
difference reported between our implementation and the aforementioned al-
gorithm is that in our case the pre order is not actually needed, and thus its
calculation is avoided. Concluding our discussion we move to the last BFS,
which basically traverses the graph bottom up and propagates the minimum
post order rank among a node’s set of children through the use of atomic
min operations, adopting techniques to contain the overhead similar to those
analyzed when computing the minimum cost for every children in the SSSP
BFS implementation.
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Chapter 5

Search Implementation on
CUDA

5.1 Introduction
As the reader may recall, two CPU based implementations of the GRAIL
algorithm were proposed and analyzed in the previous chapters, which we
referred to as the sequential and the query parallel versions. These two im-
plementations shared the main algorithms and data structures, but differed
mostly in the number of threads that executed the two phases of the algo-
rithm: in fact, the query parallel version computed labels by using one thread
for each dimension and solved a large number of reachability queries by as-
signing them to many threads, whereas the sequential version performed all
of these tasks sequentially. However it is useful to notice that, despite the
different number of threads devoted to the research phase, both versions com-
pute the answers for N reachability queries by launching sequentially many
DFS traversals: as a matter of fact the sequential version’s search simply
launches N distinct DFS explorations, while the query parallel version uses
Q distinct threads, each of which performs N/Q visits sequentially.

Nonetheless one has to consider that this approach does not look as promis-
ing when porting the search phase on the GPU, since launching a distinct
graph traversal for every query requires to continuously switch between CPU
and GPU which entails significant overhead, especially when executing a
large number of queries. Moreover, considering the difficulties of implement-
ing an efficient DFS traversal on CUDA and given that the search phase can

71



5 – Search Implementation on CUDA

be based on either BFS or DFS, according to [1], with performances that
depend entirely on the graph’s topography, it is clear that our CUDA im-
plementation will be based on the Enterprise BFS. Since this algorithm is
explicitly designed to explore concurrently all the nodes of the current fron-
tier, it makes sense to avoid performing a traversal for every query and to
focus on developing a search phase that conducts several concurrent graph
explorations to maximize the number of queries that can be answered in
parallel.

However, while the structure of the Enterprise algorithm is particularly
suited to enhance concurrent explorations of many nodes during a visit the
reader has to notice that is was designed to compute the depth of every node
and that during this task a large number of threads visit several nodes at
the same time, but these nodes are all logically associated, or belong, to the
same traversal. Interestingly, this property remains valid for the Enterprise
version developed to compute the GRAIL indices whereas, on the contrary,
our query search strategy will solve several queries in parallel by performing
distinct traversals concurrently. In general, this implies that a significant
number of threads will visit a large number of nodes at the same time, but
that these nodes will be logically associated to distinct explorations and these
concurrent traversals may overlap at any time, since a node may belong to
more than one of the paths explored to solve a query, and it will be necessary
to develop a strategy for understanding to which query search is a node
exploration associated. In this context, this chapter aims to explain our
approach to associating nodes to queries, as well as to analyze how does this
impact on the performances of the suggested implementation.

5.2 Bitmask based search implementation
Let us analyze the proposed implementation for the search procedure by in-
troducing the general program’s organization, the main data structures and
the guiding principles on major design choices before delving into the modi-
fied Enterprise BFS and the kernels that implement the actual search phase.
The developed implementation completes the index creation procedure by
computing the labels on the CPU rather than the on the GPU given that,
as showed in the next chapter, the CPU version is several times faster and,
as a consequence, most of the data structures for the labeling phase has
been reused and coincide with the previously introduced data structures on
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the CPU side. As the reader will recall, the GRAIL authors suggest that
the optimal label dimension is between two and five and for some graphs
increasing the number of labels may result in faster search times. However,
for this implementation it has been chosen to rely on two-dimensional labels
given that every dimension imposes four accesses into global memory when
performing the label comparison, given that each comparison regards two
nodes and each node has two ranks, inner and outer, for every dimension.
It has already been explained why having thousands of threads concurrently
request data that does not allow a coalesced access pattern can severely limit
performances on the CUDA architecture, but this particular scenario will be
studied in greater depth detail when analyzing the queue exploration ker-
nels of the search algorithm. Furthermore, notice that while it makes sense
to store the entire set of indices on a multi-dimensional matrix in the CPU
side, which allows to access the i-th node’s label of dimension j through
labels[i][j], it has been separated into j distinct pairs of arrays for the GPU
side.

As for the program’s structure it follows a straightforward implementation
in which, after having read the graph and having computed its labels, a set
of random queries in the form of < source, destination > pairs of nodes is
generated. As soon as the query generation process is completed, the labels
are transformed in the aforementioned pairs of arrays, all the data regarding
labels and queries is transferred to the GPU, and the GPU starts processing
queries in groups of k queries at a time. In fact, k represents the number
of concurrent BFS searches, has a significant impact on the search phase’s
performances, and is currently set at 64 as showed in the following section.
Before explaining the rationale of answering for this choice, it is necessary to
address the previously mentioned issue of having overlapping sets of nodes
that are visited by many BFSs simultaneously and to explain how does this
affect performances.

When processing a query < s1, n1 > the algorithm starts a BFS on the
sub tree with root s1 and uses labels to prune the set of nodes that have to
be visited in order to discover whether n1 is reachable or not. In this context
each BFS exploration can be seen as a set of nodes such as [s1, a1, a2, ..., aq]
where aq may correspond to n1, which are visited concurrently according to
the various levels of depth on which every node resides. Let us recall, however,
that the Enterprise BFS tracks the set of nodes belonging to the current level
through a boolean status array which only determines whether each node has
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Function gpuConcurrentSearch():
batch = 0;
totBatch = (QueryNum / SearchDim);
// with SearchDim = 64
while batch /= totBatch do

cacheDestinationLabels();
initStatusArray();
while Q.NotEmpty() do

generateBins(statusArray);
prefixSums(bins);
generateQueue(bins);
queueExploration(Q);

end
prefixSum(results);
batch++;

end
Algorithm 11: Main loop of the GPU based search phase

to be explored during this iteration or not, and assume that another of the
k concurrent BFS searches also happens to visit node a2 at the same level of
depth that the first query. Since at every iteration a test of equality between
the searched node n1 and the currently explored node ai is performed, it is
clear that it is necessary to implement a mechanism to identify the possibly
many queries to which node ai is associated at every level and that the status
array mechanism, as it is, cannot provide this functionality.

In order to associate a node with more than one traversal we propose to use
the status array’s elements as bit masks rather than as boolean values, and
to rely on bitwise operators to both set and test to which searches is a node
associated to. In other words, the set of queries is divided in groups of sixty-
four queries which are processed one at a time, and within the group queries
are identified through an index comprised between 1 and 64. Therefore,
during the bin generation phase of the Enterprise BFS the status array is
scanned and a node is inserted into a bin if its value is different than zero,
whereas in the expansion phase the status array’s value is modified through
a bitwise atomic or operation. This function, exposed in the CUDA API as
atomicOr(address, value), allows to set the i-th bit of node n to represent that
node n has to be explored during the next iteration and that its exploration
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is associated with the i-th search. Similarly to the atomic operations in the
prefix sum computation of the CUDA labeling phase, the atomicity of the
operations will require additional clock cycles for these memory accesses,
but these overheads are expected to have a limited impact on the overall
performances given that most of them will not be executed on the same
addresses and therefore will not require serialization.

Before analyzing the updates to the Enterprise BFS it is useful to notice
that this solution cannot be implemented using only the status array: during
each iteration it is necessary to reset the values of the status array in order
to avoid visiting nodes that belong to the previous level and the Enterprise
BFS does this at the end of the bin generation phase. Therefore the status
array is paired with a similar array, namely the search_indices array, that
is used to transfer each node’s bit mask to the queue exploration phase in
order for that kernel to associate the node to the distinct queries to which
it belongs, which is done by extracting the positions of all the set bits and
using these positions as modulo-64 indices for the queries.
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Besides the additional data structures the primary modifications to the
Enterprise algorithm can be found in the main loop and in the exploration
kernels, as can be seen in algorithm 11. In the main loop an array with the
labels of the destination nodes of the sixty-four queries is created and passed
to the kernels in order to allow a coalesced access of these data structures.
Furthermore, given the high number of expected label comparisons, this array
will be accessed continuously and it is important to limit the number of global
accesses related to these requests, so at the beginning of the kernel execution
all threads cooperatively load the labels of the searched nodes from this global
memory array into a shared memory cache. As the reader may notice, at the
end of every sixty-four queries batch an additional prefix sum is executed
on the results array. This array resides in main memory and has sixty-four
elements which are used to store whether a given search resulted in a positive
outcome, so this final prefix sum provides the number of reachable queries in
the recently processed group.

As for the exploration kernels, this discussion will be conducted in broad
terms since the only significant difference between the functions that explore
the small, medium or large queue resides in the amount of threads assigned
to each node: as for the standard Enterprise algorithm, each node’s children
are processed by a thread, a warp or a block depending on the queue to which
the node belongs. As already explained, at the beginning of the execution a
per block cache that contains the labels of the sixty-four destination nodes
is created, referred to as label_dim in algorithm 12. Notice that this array
is loaded cooperatively even for the small queue exploration kernel, in which
children processing is implemented without inter-block thread cooperation,
given that these labels will be frequently accessed by every thread regardless
of whether they are collaborating on a query or not. As soon as the labels are
loaded, the kernel has to load node p, extract from p’s bit mask the indices
of the n queries to which it is associated, load the destination nodes of these
queries and test for equality between p’s children and the destination nodes
in order to determine whether the destination node was found or not. If the
destination node coincides with one of p’s children, the query index is used
to store this positive outcome on the global result array, otherwise a label
comparison between the destination node and children c is executed to decide
whether c has to be inserted into the next iteration queue. Notice that each
thread accesses a node’s status flag from the search_indices array which, as
already explained, is a copy of the status array’s values on that iteration.
The status flag contains the indices of the destination vertices to which a
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Function queueExplorationKernel():
SearchDim = 64
granularity = gridDim ∗ blockDim;
_shared_ label_dim_1[SearchDim];
_shared_ label_dim_2[SearchDim];
if (threadId < SearchDim) then

label_dim_1[threadId] = destination_labels_1[threadId];
label_dim_2[threadId] = destination_labels_2[threadId];

end
_syncthreads();
while (threadId < queueSize) do

vertex = queueSmall[threadId];
foreach (children c ∈ children[vertex]) do

load labels of children c;
statusFlag = research_indices[vertex];
while (statusFlag != 0) do

searchIndex = extractLSBit(statusFlag)-1;
searchedNode = destinationNodes[searchIndex +
(batch*SearchDim)];

if (searchedNode = c) then
results[searchIndex] = 1;

end
if (destinationLabels ∈ childrenLabels) then

atomicOr(statusArray + c, 1ULL « research_index);
end
statusFlag &= (1ULL « search_index);

end
end
threadId += granularity;

end
Algorithm 12: Small queue exploration kernel

node’s exploration is associated and is manipulated through CUDA bitwise
functions, such as the __ffsll() function that returns the position of a long’s
least significant bit, and has been reported in algorithm 12 extractLSBit() as
for comprehensibility.
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Finally it is important to address a noteworthy modification to the search
algorithm regarding the amount of queries that are assigned to the GPU for
resolution. As explained, the proposed search structure imposes to answer
reachability queries in groups of sixty-four queries, which entails significant
overhead when solving a high number of queries. Moreover, it is clear that
this overhead cannot be entirely eliminated given that each group of queries
requires, at the very least, a data structure initialization phase and a final
prefix-sum operation on the results array. Nonetheless, during the testing
phase of the CPU based algorithms, we noticed that the vast majority of the
queries that yielded a negative result had been immediately discarded at the
first label comparison, which can be used to obtain a consequential speedup
on the GPU based version of the search process. In fact, as subsequently
showed, the GRAIL algorithm discards between 75 and 90%, depending on
the graph’s density, of the queries during the first label comparison and,
given the small percentage of the queries that require further analysis, the
search algorithm was modified in order to avoid assigning GPU resources to
those for which an answer can be provided with a single label comparison.
In conclusion, the GPU search algorithm was modified in order to generate
a fixed number of queries, which are instantly tested for reachability in order
to decide whether to assign their resolution to the GPU and this strategy
resulted in a speedup of an order of magnitude compared to indistinctly
analyzing all queries on the GPU.
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Chapter 6

Results

In this chapter have been reported experimental results of the GPU based
labeling and search algorithms which are then followed by a comparison with
their CPU based counterparts. As the reader will recall, the adopted bench-
mark divides its graphs into three classes according to their size and density,
and our analysis will emphasize which topographic characteristics have a
greater impact on the algorithm’s performances. Additionally, this discus-
sion addresses several aspects of GRAIL that are inherently challenging to
parallelize following a data parallel approach, as well as the major drawbacks
of our implementation. We propose distinct parameters for tests regarding
the labeling and search phases, and our results have been computed as aver-
ages over twenty runs and are reported here as structured tables.

6.1 GPU Labeling
As the reader will recall, the labeling algorithm has been designed as a se-
quence of BFS explorations that generate the sub graph sizes for the DAG,
assign a unique parent to each node and compute the sub graph sizes on the
DT, which are then used to compute the labels via two additional traver-
sals. Considering that these sub algorithms have different weights on the
final running time our metrics for analyzing the labeling phase’s results in-
clude the times required for each sub procedure, and a significant part of this
analysis is dedicated towards studying how do these weights vary depend-
ing on the graph’s size and density. Furthermore, our GPU algorithms were
carefully designed to avoid constant calls to memory allocation and trans-
fer functions in order to maximize continuous GPU execution time, and we
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exploited the fact that each algorithm’s input is the output of the preced-
ing one to pre-allocate and keep most of the data structures in the GPU’s
global memory until no further use was required. However, given the lim-
ited size of the GPU’s global memory, which is 4 GB, and the dimension of
the larger graphs that we analyzed, it was not possible to pre allocate all
the data structures beforehand and several structures were freed, reallocated
and initialized only when needed. This factor, along with the time required
to transfer the data structures to and from the CPU in order to recompute
the DT edges added an overhead to the total time that was also measured
and analyzed. In the subsequent tables the reader may observe the times
of each sub procedure, which are referred to as follows: Subsizes DAG and
DT represent the time required to compute sub graph sizes for DAG and
DT respectively, ParentSSSP regards the time required by the unique par-
ent computation procedure, Edges RC stands for edges recomputation, and
measures the time taken to create the data structures regarding the DT rep-
resentation, Post-Order shows the time required to compute the post order
in the computePrePostOrders procedure, whereas the Min P.O. column refer
to the time taken by the computeMinPostOrder algorithm to compute the
minimum post order for every vertex, which defines a node’s actual labels.
Additionally, the overhead time was defined as the difference between the
total execution time and the sum of all the other procedure’s computation
times, and includes the time required to allocate intermediate data structures
and to transfer data between CPU and GPU, which has a significant impact
on the total labeling computation time. Moreover, we included the CPU
ICT column, which stands for CPU Index Construction Time and reports
the time required by the CPU to create a one-dimensional label, in order to
make an accurate comparison with the GPU labeling procedure, which also
creates a one-dimensional label.

Table 6.1: Small sparse labeling times (all times in ms)
Data set Subsizes DAG Parent SSSP Edges RC Subsizes DT Post-order Min P.O. Overhead Total CPU ICT
Agrocyc 59.2 64.9 0.2 50.9 38.5 30.0 41.5 285.5 0.14
Amaze 58.8 62.3 0.09 47.4 36.1 28.4 41.9 275 0.82
Anthra 61.6 67.4 0.2 53.3 39.5 31.9 41.9 295.8 0.18
Ecoo 80.5 84.8 0.2 54.0 41.1 39.5 41.2 341 0.21

Human 66.1 74.4 0.75 50.2 41.1 35.2 51.3 319.1 0.48
Kegg 94.0 97.2 0.1 63.8 45.3 48.6 45.5 394.5 0.09
Mtbrv 79.2 82.4 0.18 67.4 47.2 38.8 41.0 356.1 0.11
Nasa 103.1 111.8 0.2 72.6 48.5 50.3 40.0 426.7 0.16

Vchocyc 73.4 76.0 0.1 49.6 38.2 35.2 40.5 313.1 0.14
Xmark 112.0 119.0 0.1 81.9 53.6 56.2 40.4 463.4 0.14
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As reported in table 6.1 the labeling algorithm completes the indexing
process for most of the sparse graphs in times that range from 270 to 450
milliseconds, and spends almost half of that time in the first two phases,
which are the DAG sub graph sizes and the parent computation. Addition-
ally, given the graph’s size and low density degree, the edge recomputation
is always under one millisecond and amounts to less than the 1% of the total
execution time, which is also reflected on the ratio between the times for
computing the DT and DAG sub graph sizes, which is greater than 80-85%
and suggests that the two algorithms require similar times since few edges
have been discarded. Moreover, the reader can notice that for small graphs
the overhead constitutes up to 16% of the execution time for some graphs,
such as the Human, and in most cases is greater than the time required by
the CPU to complete the labeling procedure.

Table 6.2: Small dense labeling times (all times in ms)
Data set Subsizes DAG Parent SSSP Edges RC Subsizes DT Post-order Min P.O. Overhead Total CPU ICT
Citeseer 108.9 110.3 0.7 51.6 38.8 53.8 41.6 405.7 0.61

Go 65.4 70.1 0.4 60.8 44.1 31.3 41.8 313.8 0.24
Pubmed 68.8 72.8 0.5 38.7 32.2 32.9 42.2 288.2 0.47
Yago 54.9 59.7 0.4 50.9 37.8 26.9 42.6 273.4 0.39

Interestingly, the results for the small dense set outlined in table 6.2 show
that most of the observed parameters resemble closely times obtained for
the small sparse data set, which is consistent with the results obtained for
the CPU based implementation of the indexing algorithm. In fact, the size
of the graphs in the dense data set still determines that the total time is
within the 270-400 milliseconds range, that the edge recomputation times
never amount to more than 1% of the total time and that the overhead still
amounts to 16% of the total execution time for some instances. Similarly,
the algorithm spends from 40 to 50% of the time in the first two phases
and the BFS that computes the minimum post order, which is referred to as
Min P.O. in the table since it actually completes the label creation process,
falls in the same range, 10 to 13%, than in the small sparse data set. The
only significant difference regards the ratio between times for DT and DAG
sub graph sizes computation for the citeseer and pubmed instances, which
drops to 50%, signaling that a large number of edges has been discarded in
these cases. However, given that both of these graphs represent citation data
sets it is reasonable to assume that this contrast depends on the particular
topography rather than on either size or density.
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Table 6.3: Large real labeling times (all times in ms)
Data set Subsizes DAG Parent SSSP Edges RC Subsizes DT Post-order Min P.O. Overhead Total CPU ICT
Citeseer 61.5 66.8 23.3 45.8 34.0 28.8 58.3 318.5 21.92

cit-Patents 270.3 362.4 551.2 133.7 96.3 192.9 87.2 1694.1 698.42
uniprotenc_22 60.5 60.6 34.4 45.5 37.0 26.4 65.7 330.2 514.31
uniprotenc_100 479.9 525.9 490.4 270.1 234.9 229.3 147.4 2378.7 846.26
uniprotenc_150 730.5 836.9 726.9 421.9 361.9 356.2 176.6 3611.1 44.18

On the contrary, the analysis of the large real graphs yields contrasting
results on several parameters, reported in table 6.3, and requires a further
sub classification given that there are considerable differences in the data
set, both in topology and dimension, that have considerable impact on times
and behaviour of the algorithm. In fact, the data set includes the citeseer
graph, which is significantly smaller, the Uniprot family of graphs, which
range from relatively large to huge and have a distinct structure composed
by many roots converging to a single sink through a short path, and the
cit-Patents, which is a large dense graph with no similarities in this data set.
Generally speaking, the indexing times range from 300 milliseconds for the
smaller graphs in the data set, such as citeseer and Uniprotenc_22, to 3600
milliseconds for the Uniprotenc_150. As the reader may see in 6.1, which
contains the averages of the weights for every data set, the first observation
regards the weight of the edge recomputation procedure, which goes from be-
ing negligible in the small data sets to being even the most expensive phase
of the procedure for the cit-Patents, for which it constitutes over one third
of the total time. Furthermore, while the weights of the first two phases
decrease from almost 50% to only 36% of the time for uniprotenc_22 and
cit-Patents, the algorithm still spends considerable time on the DAG sub
sizes computation and on the SSSP. In fact, in the larger instances of the
large real data set these two phases and the edge recomputation procedure re-
quire two thirds of the total running time. Conversely, in these instances the
weights of all the subsequent procedures decrease and constitute one third of
the time when combined, whereas the weight of the overhead which amounts
to only 5% of the total execution time. This can be explained by consider-
ing the large amount of edges that are discarded in the first procedures, as
confirmed by a similar decrease in the DT to DAG sub sizes computation
ratio, which is around 50% whereas in the previous sets was over 85-90%.
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As a final note it is useful to reflect on two of the major disadvantages
of the suggested approach for designing a data parallel version of the index-
ing procedure, which are the interdependence among phases and the CPU
based redefinition of the data structures regarding the DT graph. As already
reported, the developed approach is inherently sequential in the sense that
each phase produces the data structures required by the following sub pro-
cedure, which inevitably prevents CPU and GPU from concurrently working
on different parts of the algorithm.

6.2 GPU Search
As previously explained, the search procedure performs an on CPU prelimi-
nary filtering of all queries, which consists in a single label comparison that
decides whether the query is negative or whether it is necessary to solve it
on the GPU, if the first comparison was inconclusive. Considering this ini-
tial CPU side screening, the metrics for measuring the search algorithm’s
performances include the time spent to perform the first label comparison
of every query on CPU, the time spent analyzing queries on GPU, which
are referred to as CPU filter and GPU Search, the number of queries for
which reachability was determined, also addressed as Positive Queries, and
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the number of queries that were assigned to the GPU for testing reachability,
defined as Queries on GPU, which represent the amount of queries that were
not answered by the CPU side screening. Additionally, the search times of
both the DFS and BFS versions of the sequential CPU algorithms, defined
as Seq DFS and Seq BFS, were conveniently reported in all tables.

Table 6.4: Small sparse search times (all times in ms)
Data set CPU Filter GPU Search Queries on GPU Positive Queries Sequential DFS Sequential BFS
Agrocyc 2.3 23.8 255.0 97.5 6.10 5.96
Amaze 2.5 773.0 22008.8 17235.0 26.02 33.96
Anthra 2.3 21.5 222.8 91.9 6.26 6.30
Ecoo 2.3 68.5 1157.0 121.0 6.37 6.51

Human 2.6 16.1 61.3 11.6 6.54 6.71
Kegg 2.7 1347.2 26178.9 20158.0 28.08 59.90
Mtbrv 2.5 42.3 498.7 154.7 5.99 6.13
Nasa 2.5 221.5 2343.8 543.1 6.47 7.45

Vchocyc 2.3 32.1 357.0 154.7 5.97 6.02
Xmark 2.3 684.8 7430.2 1460.9 10.21 33.13

As the reader may observe in table 6.4 answering 100k queries following
the dual CPU-GPU approach requires less than 100 milliseconds for most of
the instances with the exception of the Amaze and Kegg data sets, both of
which have a unique structure with a central node that has a high number
of incoming and outgoing edges and requires the GPU to handle almost 20%
of the queries, most of which are effectively reachable and have need of a full
exploration. However, the comparison between these results and the times
obtained by both CPU versions allows to conclude that the GPU implemen-
tation is significantly outperformed by both of its CPU counterparts, as can
be seen by noting that in the most favorable instances the GPU implemen-
tation is in the same order of magnitude than the pure DFS approach.

Table 6.5: Small dense search times (all times in ms)
Data set CPU Filter GPU Search Queries on GPU Positive Queries Sequential DFS Sequential BFS
Citeseer 2.3 1559.3 17765.9 372.3 20.10 28.72

Go 2.4 324.0 7334.1 244.6 13.11 15.13
Pubmed 2.6 757.6 13556.7 650.8 11.20 13.60
Yago 2.7 756.5 16919.7 166.6 7.51 8.96

Continuing with the results for the small dense set of graphs, the reader
may notice in table 6.5 that even though only a small fraction of the tested
queries actually resulted in reachable pairs, a considerable amount of queries

84



6.2 – GPU Search

had to be assigned to the GPU for a full exploration, which resulted in query
resolution times within the 300-700 milliseconds range for all the graphs in
this data set, with the exception of the Citeseer, for which the algorithm
required more than 1500 milliseconds. As for the small sparse data set,
the comparison with the CPU versions confirms that the GPU search is
consistently outperformed by the CPU GRAIL implementation, whereas it is
significantly faster than the pure DFS approach for the Pubmed and Citeseer
graphs, which require two to ten times more, respectively.

Table 6.6: Large real search times (all times in ms)
Data set CPU Filter GPU Search Queries on GPU Positive Queries Sequential DFS Sequential BFS
Citeseer 8.5 221.4 7324.0 0.2 13.24 12.96

cit-Patents 12.1 4376.0 19112.1 40.6 1831.41 3423
uniprotenc_22 14.9 5709.4 26511.7 0.0 24.57 23.74
uniprotenc_100 15.4 8806.8 25030.7 0.0 24.96 25.20
uniprotenc_150 12.4 1418.2 48582.5 0.2 20.50 20.70

For the large real set of graphs a significant amount of pairs have to be
explored by the GPU and only a negligible percentage of them regards nodes
that reach each other, as the reader may observe in table 6.6. As an example,
for the uniprotenc_150 graph almost 50% of the queries are analyzed by the
GPU, but in average none of them contains reachable pairs. In this context,
it can be noted that the CPU versions continue to outperform the GPU im-
plementation when running on the Uniprotenc family of graphs, presumably
because of their particular topography, which is characterized by short paths
that connect many roots to a single sink and allows an efficient DFS explo-
ration. However, it is important to observe that for the cit-Patents graph
the gap between the performances of the CPU sequential DFS implementa-
tion and its GPU counterpart has significantly reduced, and that the times
are within the same order of magnitude. Furthermore, the GPU implemen-
tation is slightly faster than the CPU sequential BFS implementation and
significantly outperforms the pure DFS exploration.
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Chapter 7

Conclusions and future
work

The main objective of this work was to design a data parallel version of
the GRAIL algorithm and to develop it on the CUDA architecture in order
to compare its performances with the sequential and task parallel versions
implemented on a traditional processor. Experimental results for both the
labeling and the search procedure show that the sequential and task parallel
implementations performed decisively better than our data parallel version
for almost all the graphs in our data set, independently of their size or density.
As previously discussed, the obtained results allows us to conclude that both
of the CPU implementations are to be preferred when answering reachability
queries on graphs with small sets of nodes and edges. Interestingly, while in
several tests on the largest graphs in our benchmark the data-parallel version
is outperformed by the task-parallel versions, there are several facts worth
discussing before concluding that these implementations are to be preferred
when indexing or testing for reachability in large graphs extracted from a
real data set.

In particular, results for the data parallel labeling procedure on the largest
graphs of our data set highlight that index creation times are within the same
order of magnitude than those of the task parallel implementations. In this
context, we believe that the main limitation of our work regarding the la-
beling procedure lies in the amount of large graphs tested and that it would
be useful to test the behaviour of the data parallel algorithm on a set of
larger and more variegated graphs, given that our large graph benchmark
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is composed by few graphs, most of which characterized by an unusual to-
pography that favors sequential DFS, and that our most promising results
were obtained for the cit-Patent graph, which is unique within the large set.
Furthermore, future work regarding the labeling algorithm could explore an
alternative approach for dividing a DFS into several BFS that was proposed
in [5], which could allow a limited amount of concurrent CPU and GPU ex-
ecution during the final phases. In fact, the authors prove that the order of
the nodes based on the weights used during the SSSP unique parent com-
putation coincide with the node’s pre order and suggest that one can also
compute the post order given the pre order and each node’s depth. In order
to exploit concurrently CPU and GPU, a future implementation may test
whether having the GPU perform a top down BFS to compute each node’s
depth while the CPU is sorting nodes based on their SSSP weights leads to
a significant improvement for the labeling procedure.

As for the search algorithm, our tests confirm that the data parallel version
is consistently outperformed by all the task parallel versions and results advo-
cate that the maximum number of parallel searches that can be concurrently
performed is the main cause for its limited performances when compared
to the CPU based implementations. In fact, we developed an alternative
search algorithm based on a 32-bit bit mask and we compared it with the
proposed implementation, which is based on a 64-bit bit mask, and results
suggest that there is a linear dependence between the required time and the
amount of queries executed in parallel. Given that the current CUDA API
does not support atomic operations on any data type defined over more than
64 bits, we believe that future work should be based on abandoning the bit
mask array to explore distinct methodologies for increasing the amount of
parallel queries answered at each run, and on testing these improvements on
larger and more heterogeneous graphs, given that the same considerations
regarding the large graph data set are valid for the search procedure.
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