
POLITECNICO DI TORINO

Department of Control and Computer Engineering
Master’s Degree in Computer Engeneering

Master’s Thesis

Smooth trajectory planning for
anthropomorphic industrial robots
employed in continuous processes

Supervisor:
Prof.ssa Marina Indri

Candidate:
Leonardo Anderlucci

Tutor:
Ing. Eliana Giovannitti

COMAU S.p.A. - RoboLAB

April 2019

At bottom, robotics is about us. It is the discipline of emulating our
lives, of wondering how we work.

— ROD GRUPEN, Discover Magazine

Abstract

The first robotic arm was employed in an automotive assembly line in 1961. Since
then, the industrial robots became progressively more widespread and now they
can be commonly found even in small manufacturing enterprises.

Trajectory planning is an essential aspect of the motion programming for a
robotic arm. In collaboration with COMAU, it was decided to focus on the study
of a particular type of process, namely continuous process.

Continuous processes are tasks that require a continuous motion of the tool in
terms of positions and velocity profile and are very common in industrial manu-
facturing. Some examples are arc welding, spray painting and adhesive sealing.
A smooth execution and a precise control of the Cartesian speed is essential to
guarantee a good quality of the final product.

The objective of the thesis is to propose a novel trajectory planner for this kind
of processes. After a brief overview of the techniques currently employed in the
trajectory planning for some common industrial processes, part of the efforts are
dedicated to the geometrical analysis of the trajectory itself. This is important to
find the critical parts of a path that may be difficult for the machine to follow with
high precision. In these parts a lower speed can be imposed in order to obtain
smoother results. This kind of work is generally done manually by trial and error,
but it requires a lot of work and it can not achieve high precisions. Instead a
method is proposed to simulate and automatize this process.

After that, the actual trajectory planner and its implementation is described. It
is based on the spline interpolation and different techniques are analysed in order
to study their performance in terms of quality of path obtained and velocity profile.
The planner is proposed in two versions, one that considers all the points of the
trajectory at once, and another that works only on a small subset at a time. The
second version is proposed having in mind a possible on-line implementation, which
limits the number of points that can be used to plan the trajectory.

The proposed methods are implemented in MatLab and have been tested on
real processes proposed by COMAU. The trajectories computed with the novel
planner have been properly simulated and then fed to a real robot bypassing the
on-board planner. The results obtained have been analysed and verified in order
to validate the approach.

The work done until now does not fully resolve the complex problem of trajectory
planning for continuous processes, but the results are encouraging and they can be
used as a basis for a future development and implementation.

Contents

1 Introduction 1
1.1 Problem overview . 1
1.2 Objective of the thesis . 2
1.3 Thesis outline . 3

2 Trajectory planning 4
2.1 Introduction . 4
2.2 Path and trajectory . 5
2.3 Planning constraints . 5
2.4 Joint space and task space planning 6
2.5 Point-to-point planning in joint space 8

2.5.1 Third-order polynomial trajectory 8
2.5.2 2-1-2 trajectory . 9
2.5.3 Multiple-joints generalization 11

2.6 Motion through a sequence of points 12
2.6.1 Polynomial interpolation . 13
2.6.2 Spline interpolation . 13
2.6.3 Interpolating linear polynomials with parabolic blends . . . 16

3 Examples of continuous processes in industrial manufacturing 19
3.1 Robotic arc welding . 20

3.1.1 Example of trajectory planning for robotic arc welding . . . 21
3.2 Spray painting . 23

3.2.1 Example of trajectory planning for spray painting 25
3.3 Additive manufacturing . 28

3.3.1 Applications and advantages 28
3.3.2 Additive manufacturing along curved path 29

4 Spline interpolation 31
4.1 Cubic Spline . 31
4.2 Piecewise Cubic Hermite Interpolating Polynomial 33
4.3 Smoothing Spline . 35

ii

5 Implemented methods 38
5.1 Moving along a curve with specified speed 38

5.1.1 Reparametrization for specified speed 39
5.1.2 Numerical solution . 39

5.2 Trajectory analysis and global planning 40
5.2.1 User-defined inputs . 41
5.2.2 Interpolation techniques and path generation 41
5.2.3 Smoothing narrow angles in PCHIP interpolation 42
5.2.4 Path re-sampling . 43
5.2.5 Path curvature . 45
5.2.6 Velocity profile and temporal law inclusion 46
5.2.7 Performance indices and MatLab simulations 49

5.3 Local trajectory planning . 52
5.3.1 Planning and joining consecutive splines 55
5.3.2 Performance indices and MatLab simulations 56
5.3.3 Trajectories tested on robot 60

5.4 Graphical user interface . 66
5.5 Cubic spline with optimized time intervals 66

5.5.1 Optimization problem setup 67
5.5.2 MatLab simulation and considerations 68

6 Experimental tests and results 70
6.1 Configuration of robot cell for testing 70
6.2 PDL2 program, MOVE REPLAY and moni.log 71

6.2.1 Building a custom moni SLJ file 73
6.3 Test trajectories . 76

6.3.1 Box trajectory . 76
6.3.2 Engine hood trajectory . 77
6.3.3 Greek fret trajectory . 82

7 Conclusions 91
7.1 Future works . 92

iii

Chapter 1

Introduction

This thesis has been developed in collaboration with COMAU S.p.A., an Italian
company based in Grugliasco (Turin) that works mainly in the industrial automa-
tion field. COMAU has a well established history of cooperation with Politecnico
di Torino. From this cooperation the RoboLAB was born in 2013, with the purpose
of housing many research and formative projects shared between the company and
the university.

This thesis was carried out thanks to the support of the COMAU engineers and
to the possibility of performing tests in RoboLAB.

1.1 Problem overview
Anthropomorphic robot arms are widely used in manufacturing industry. They are
employed for many different tasks such as: spot welding, continuous wire welding,
spray painting, materials handling, palletizing and adhesive sealing.

Each task has different requirements in terms of trajectory planning. In this the-
sis we will focus on the specific sub-set of continuous processes. We call continuous
processes the tasks that require a continuous motion of the robot end effector, which
needs the planning of a smooth Cartesian path and a constant velocity profile.

Among the examples mentioned above, continuous processes are wire welding,
spray painting and adhesive sealing. Another interesting continuous process is 3D
printing with robotic arms. It is a recent application that is having a growing
attention due to its potential in many different fields, spanning from the printing
of design objects to the printing of bridges or houses. Regardless of the area, the
quality of the results depends heavily on the planning of a trajectory that allows
the tools to have a constant velocity, as needed for a uniform material deposition.

Currently the COMAU on-board planner uses just 2 points at each step to plan
the programmed trajectory. It means that the motion is composed of a series of
simple movements with a trapezoidal speed profile. The only exception it the fly-by

1

1 – Introduction

command: it allows to join two consecutive motions in a unique continuous one with
a parabolic mash. In a fly-by motion these steps are followed: the first two points
are selected and a first trajectory is planned and executed; during the execution
the next point is fed to the planner and the next trajectory is planned; before the
first motion end, the second is started after the execution of a parabolic mash. This
kind of motion is used mainly to reposition the robot between different phases of
a production cycle, but it is not very suitable for a continuous process. The main
reasons are two: there is no guarantee of constant velocity, and the trajectory does
not pass through the second point, as by definition it is just a via-point.

Given this situation and the increasing demand from the industries of manufac-
turing processes with continuous properties, the COMAU researchers have decided
to explore different ways to improve their planner. This thesis takes place in this
context and is focused on the development of a novel planner to be integrated to
the existing one. The next section overviews the topics covered by this thesis.

1.2 Objective of the thesis
The objective of this thesis is firstly to analyse and describe some of the existing
planning strategies in order to outline the current state of the art, focusing on the
continuous processes.

Then a part of the thesis is devoted to the analysis of the geometrical charac-
teristics of the path defined by the user. Here we propose the possible results of
different interpolation techniques with a preliminary "feasibility" analysis, where
the radius of the curves and the accelerations involved are computed. This is useful
to find out critical points of the trajectory where we can expect to have speed drops,
or to tune the target constant velocity to balance the total execution time and the
maximum expected accelerations.

In the last part of the thesis, we focus on the building of a new primitive for
the on-board COMAU planner. We want to discover if by enlarging the planning
window by few points we could obtain a satisfying interpolation with respect to
the results of a global planning. We limit the planning at each step to five or six
points, because the on-board planner has to make all the computations in real time
and realistically it is not possible to do that for all the points of a user-specified
path.

The constraints imposed by the user are expressed in the Cartesian space and
are limited to the positions (specified with a series of points), the target velocity
and the maximum acceleration. For now, other constraints such as jerk limitation,
actuators’ limit or singularity points are not considered.

2

1 – Introduction

1.3 Thesis outline
The thesis is developed in seven chapters:

• Chapter 1: In the first chapter a brief introduction of the thesis and its research
topics are presented.

• Chapter 2: In the second chapter the theory behind trajectory planning is
reviewed with the description of some methods commonly found in literature.

• Chapter 3: In the third chapter three examples of relevant industrial continu-
ous processes are analysed. For each industrial process an example of existing
planning technique is described.

• Chapter 4: The fourth chapter is about a mathematical description of three
spline interpolation techniques that are extensively used in Chapter 5.

• Chapter 5: In this chapter a novel method for trajectory planning is described.
The chapter has two main parts. Firstly a global planning technique is pre-
sented, then its local implementation is described. Each approach is provided
with MatLab simulations on different datasets.

• Chapter 6: The experimental set-up and the results of the testing done on a
real COMAU robot are shown in this chapter.

• Chapter 7: The last chapter summarizes the achievements of this work and
presents possible future developments.

3

Chapter 2

Trajectory planning

2.1 Introduction
Industrial robots have very specific tasks inside the production line. It is generally
useful to describe in a clear and concise way the series of operations needed to
complete their tasks.

The planning can be defined by a series of actions organized in a hierarchical
way as follow [2]:

1. Objective: it is the highest level action. It usually refers to the main goal of
the production line and not to a single robot. For example an objective is the
assembly of an engine head.

2. Task: it defines a subset of actions needed to accomplish an objective. Con-
sidering the example of the engine, assembly of pistons and assembly of valves
are two different tasks.

3. Operation: a task is decomposed in a sequence of operations. For example the
assembly of a piston can be decomposed in the following operations: grasp a
piston from the stock, move it near the cylinder, insert it.

4. Move: it defines a single elementary motion. For example, we can decompose
the operation "grasp a piston" in: move the gripper toward the stock, open
the gripper, move close to the first available piston, close the gripper and grab
the piece, move the gripper in the right pose.

5. Path/Trajectory: each move is decomposed in one or more paths (only ge-
ometrical description without time law) or trajectories (considering also the
time law or kinematic constraints). We can decompose the move "move the
gripper toward the stock" in a linear path followed by an arc section and a
pose change of the gripper.

4

2 – Trajectory planning

6. Reference: it is the lowest level action. It usually consists in a sampling of the
trajectory. It is the data signal supplied to the controller of the actuators.

The objective of trajectory planning is to generate the reference input to the
motion control system. The desired trajectory is usually specified by the user with
a limited number of parameters that describe the geometry of the path and possibly
the time law to obtain. From this description the planner generates an interpolat-
ing function used to obtain the reference input. There are many techniques for
trajectory planning depending also on how the points are assigned [9]. Here we will
present some of them. In Figure 2.1 we see a block representation of the trajectory
planning activity.

Figure 2.1: Block representation of trajectory planning [7]

2.2 Path and trajectory
Path and trajectory are often used as synonyms, but in this context they have a
different meaning. With path we refer to a pure geometrical description of motion.
More precisely, it is the locus of points (in the joint or operational space) that
the manipulator has to follow in order to execute its task. On the other hand,
a trajectory is a path with a description of the temporal law, usually specified in
terms of velocity and acceleration. Figure 2.2 highlights the difference between the
two concepts.

2.3 Planning constraints
Neither a geometric path nor a time law can be specified by the user in their full
extent, i.e. for each point. Based on the joint or task space, the following constraints
are usually specified [9]:

5

2 – Trajectory planning

Figure 2.2: Example of differences between path and trajectory [7]

• The path is described with few parameters, like the starting and ending points,
eventually some intermediate ones and an interpolating function (linear, cir-
cular, ...).

• The temporal low is imposed with constraints on maximum velocities and
accelerations. The user can also assign a specific velocity or acceleration at
points of particular interest or describe a global property, like a constant speed
trajectory.

• Some constraints are machine-dependent and they refer to the maximum an-
gular velocity and acceleration that can be supplied by the actuators.

2.4 Joint space and task space planning
Planning a trajectory in the joint space is generally faster and less computationally
demanding, because the generated function q(t) can be fed directly to the controller.
It is also useful to avoid kinematic singularities and to exploit redundancies, if the
manipulator has one or more. The constraints on the actuators are also easily
checked computing the functions q̇(t) and q̈(t). The positions to generate the path
can be derived by recording manually the target positions of the manipulator or by
computing the inverse kinematics in simulation [9].

Joint space planning is not recommended when the TCP needs to follow a specific
path or there are obstacles to avoid in the work space. As we see in Figure 2.3 and
Figure 2.4, the conversion from one space to the other one is not linear due to
the kinematics. This makes difficult to understand how a path planned in joint
space translates in the task space. In these situations we plan the trajectory in the
space where the constraints are defined. Once we have the Cartesian trajectory
p(t) planned, we still need to translate each sampling in the joint space using the
inverse kinematics of the manipulator. This operation is done on-line and it sets a
limit to the maximum sampling rate obtainable [9].

6

2 – Trajectory planning

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

x coordinate

0.2

0.3

0.4

0.5

0.6

0.7

y
 c

o
o
rd

in
a
te

Task space

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

q1

0.8

1

1.2

1.4

1.6

1.8

q
2

Joint space

Figure 2.3: Conversion of a variable from joint space to task space

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

x coordinate

0.1

0.2

0.3

0.4

0.5

0.6

y
 c

o
o
rd

in
a
te

Task space

0 0.5 1 1.5 2

q1, up

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

q
2
,
u
p

Joint space, up

0 0.5 1 1.5 2

q1, down

-2

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

q
2
,
d
o
w

n

Joint space, down

Figure 2.4: Conversion of a variable from task space to joint space

7

2 – Trajectory planning

2.5 Point-to-point planning in joint space
Point-to-point trajectories (PTP) are the simplest ones and they correspond to a
movement from one point to another. Firstly just a single joint variable q(t) is
considered, then the results are generalized to the case of multiple joints (planning
of q(t)).

The starting configuration is q(t0) = q0 and the target configuration is q(tf) = qf .
The movement has to respect the constraints on velocity, acceleration and possibly
jerk.

2.5.1 Third-order polynomial trajectory
A third-order (cubic) polynomial function is generally a good solution that mini-
mizes the energy dissipation in the actuator [9].

The cubic joint motion to be determined is:

q(t) = a3t
3 + a2t

2 + a1t + a0 (2.1)

The velocity has a parabolic profile:

q̇(t) = 3a3t
2 + 2a2t + a1 (2.2)

The acceleration has a linear profile:

q̈(t) = 6a3t + 2a2 (2.3)

With four coefficients available, we can impose four conditions, that are: initial
and final positions and initial and final velocities (generally set to zero). The
trajectory is therefore given by the solution of the following system of equations:

a0 = qi

a1 = q̇i

a3t
3
f + a2t

2
f + a1tf + a0 = qf

3a3t
2
f + 2a2tf + a1 = q̇f

(2.4)

In Figure 2.5 there is an example of the application of this planning method.
Higher order polynomials can be considered to impose additional constraints on

the trajectory. For example a fifth order polynomial in the form:

q(t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t + a0 (2.5)

can be used to impose the previous conditions and initial and final acceleration. In
this case we give up the property of minimum energy dissipation.

8

2 – Trajectory planning

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

P
o
s
it
io

n
 [
m

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

V
e
lo

c
it
y
 [
m

/s
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time [s]

-20

-10

0

10

A
c
c
e
le

ra
ti
o
n
 [
m

/s
2
]

Figure 2.5: Time history of position, velocity and acceleration with a cubic poly-
nomial timing law

2.5.2 2-1-2 trajectory

A frequently adopted approach in industrial practice is the so called trapezoidal
velocity profile, or 2-1-2 position profile. This kind of trajectory is very common
because it allows a direct verification of the resulting velocities and accelerations.
It imposes a constant acceleration starting phase, a cruise velocity phase and a con-
stant deceleration ending phase, as in Figure 2.6. If the accelerations and the cruise
velocity are the maximum possible, then this trajectory minimizes the travel time.
The continuity can be guaranteed for position and velocity, not for acceleration.

This trajectory is described by the following equations[7]:

• Acceleration:

q̈(t) =

q̈+
max t ∈ I1

0 t ∈ I2

−q̈−
max t ∈ I3

(2.6)

9

2 – Trajectory planning

• Velocity:

q̇(t) =

q̈+
max(t− t0) + q̇0 t ∈ I1

q̇max t ∈ I2

q̇max − q̈−
max(t− t2) t ∈ I3

(2.7)

• Position:

q(t) =

1
2 q̈+
max(t− t0)2 + q̇0(t− t0) + q0 t ∈ I1

q̇max(t− t1) + q1 t ∈ I2

−1
2 q̈−
max(t− t2)2 + q̇max(t− t2) + q2 t ∈ I3

(2.8)

I1 = [t0, t1), I2 = [t1, t2) and I3 = [t2, tf] specify the duration of the three phases,
while t1 and t2 are the switching instants.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

P
o
s
it
io

n
 [
m

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.5

0

0.5

1

V
e
lo

c
it
y
 [
m

/s
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time [s]

-4

-2

0

2

4

A
c
c
e
le

ra
ti
o
n
 [
m

/s
2
]

Figure 2.6: Characterization of a timing law with trapezoidal velocity profile in
terms of position, velocity and acceleration

We also need to add other constraints on:
• Initial conditions:

q(t0) = 0
q̇(t0) = 0

(2.9)

10

2 – Trajectory planning

• Continuity on commutation time instants:

q(t1) = 1
2 q̈+

max(t1 − t0)2

q(t2) = ṡmax(t2 − t1) + q1

q̇(t1) = q̇(t2) = q̇max = q̈+
max(t1 − t0)

(2.10)

• Final conditions:

q(tf) = 1
2 q̈+

max(t1 − t0)2 + q̇max(tf − t1)− 1
2 q̈+

max(tf − t1)2 = 1

q̇(tf) = q̇max − q̈−
max(tf − t2) = 0

(2.11)

The constant speed interval exists only if:

t2 − t1 > 0→ 1
q̇max

>
1
2

A
q̇max
q̈−
max

q̇max
q̈+
max

B
(2.12)

If this condition is not satisfied, then the trajectory is composed only by a maximum
acceleration followed by a maximum deceleration interval. This trajectory has a
"bang-bang" acceleration profile and a triangular velocity profile, as we can see in
Figure 2.7.

2.5.3 Multiple-joints generalization
Generalizing the trajectory planning in presence of multiple joints, we need also to
take into consideration the synchronization of all the joints. We have a synchronized
motion when the the beginning and ending time instants coincide for every joint.

To achieve this, we can express the trajectory as a convex combination of q0 and
qf with a curvilinear abscissa s(t) of the path:

q(t) = (1− s(t))q0 + s(t)qf = q0 + s(t)(qf − q0) = q0 + s(t)∆q (2.13)

s(t) can be planned for example with one of the method exposed in the previous
subsections and then scaled to respect the following condition:

0 = s(t0) ≤ s(t) ≥ s(tf) = 1 (2.14)

In this way we obtain q(t0) = q0 and q(tf) = qf .
Since the motion is coordinated, we need to take into account the velocity and

acceleration constraints of each joint. The maximum velocities are scaled for the
relative distances covered and the lowest one is chosen. In this way each constraints
is guaranteed to be respected:

ṡi,max = q̇i,max
∆qi

→ ṡmax = min
i=1,...,n

{ṡi,max} (2.15)

11

2 – Trajectory planning

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

P
o

s
it
io

n
 [

m
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

V
e

lo
c
it
y
 [

m
/s

]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time [s]

-1

-0.5

0

0.5

1

A
c
c
e

le
ra

ti
o

n
 [

m
/s

2
]

Figure 2.7: Time history of position, velocity and acceleration with a triangular
velocity profile timing law

The same holds for the limits of maximum acceleration and deceleration:

s̈+
i,max =

q̈+
i,max

∆qi
→ s̈+

max = min
i=1,...,n

î
s̈+
i,max

ï
s̈−
i,max =

q̈−
i,max

∆qi
→ s̈−

max = min
i=1,...,n

î
s̈−
i,max

ï (2.16)

2.6 Motion through a sequence of points

In some application a path can be described with a number of points grater than
two. This can be useful in general to guarantee a better monitoring on the exe-
cuted trajectories: more points are specified in the presence of obstacles or when
a high curvature path is expected. Hence the problem is to generate a trajectory
interpolating N given points, called path points. If the exact reach is not required,
than the points specified are called via points and other techniques can be adopted.

12

2 – Trajectory planning

2.6.1 Polynomial interpolation
Given N constraints, we can use an (N-1)-order polynomial:

q(t) =
N−1Ø
k=0

akt
k (2.17)

This choice, however, has several drawbacks [9]:

• It is not possible to assign the initial and final velocities

• As the order of the polynomial increases, also its oscillatory behaviour increases
(Runge’s phenomenon, see Figure 2.8)

• The computational cost can be very heavy for high order polynomial

• The values of the coefficients depend on all the assigned points. If just one
point is changed, all of them must be recomputed.

In practice this technique is not used in favour of piecewise functions of lower order.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Runge Phenomenon

Runge function

5th-order interpolating

 polynomial

9th-order interpolating polynomial

Figure 2.8: Example of polynomial interpolation and Runge’s phenomenon

2.6.2 Spline interpolation
Instead of using one high order polynomial for the interpolation of N points, it is
possible to consider N-1 low-degree interpolating polynomials, one for each interval.

13

2 – Trajectory planning

Here the path points are called knots and, with the proper conditions, we can impose
continuity up to the desired derivative. The resulting piecewise function is called
spline.

Depending on the conditions and on the order of the basic functions, we have
different kinds of spline interpolation. The interpolating polynomials are usually
chosen of third order, since it allows to impose the continuity up to acceleration.
Quintic polynomials can be chosen to further increase the smoothness at the expense
of increased computational cost and higher oscillations. To simplify the problem it
is also possible to use polynomials of the first or second order, but in this case we
talk about linear or quadratic interpolation.

In the present subsection a brief introduction is proposed, while a deeper analysis
of the methods of interest is carried out in Chapter 4.

Interpolating polynomials with imposed velocities at path points

The objective is to find the coefficient of N-1 cubic polynomials Πk(t) (see equation
(2.1)) interpolating the points qk and qk+1 , for k = 1,..., N-1. If the user is able
to specify the desired velocity at each knot, we have the following N-1 systems of
equations to solve:

Πk(tk) =qk

Πk(tk+1) =qk+1

Π̇k(tk) =q̇k

Π̇k(tk+1) =q̇k+1

(2.18)

The initial and final velocities are usually set to zero. The continuity of velocity at
the knots is imposed by:

Π̇k(tk+1) = Π̇k+1(tk+1) (2.19)

The continuity of acceleration is not guaranteed.

Interpolating polynomials with computed velocities at path points

This case is similar to the previous one, but the knot velocities are not imposed.
Instead the following rule is used:

q̇1 = 0

q̇k =

0 sgn(vk) /= sgn(vk+1)
1
2(vk + vk+1) sgn(vk) /= sgn(vk+1)

q̇N = 0

(2.20)

vk = (qk − qk−1)/(tk − tk−1) is the slope of the segment between qk−1 qk in the time
interval [tk−1, tk].

14

2 – Trajectory planning

Once the velocities are computed, the system of equations to be solved is the
same of the previous case (2.18). In Figure 2.9 there is a comparison between this
method and the previous one.

Figure 2.9: Time history of position, velocity and acceleration with with a timing
law of interpolating polynomials with imposed velocities on the left and computed
velocities on the right [9]

15

2 – Trajectory planning

Interpolating polynomials with continuous accelerations at path points

As already stated, the previous methods do not guarantee the continuity of accel-
eration. If we want that, we need to impose the following conditions:

• Initial and final position:

Πk(tk) = qk, Πk(tk+1) = qk+1 k = 1, ..., N − 1 (2.21)

• Continuity of velocity on internal knots:

Π̇k(tk+1) = Π̇k+1(tk) k = 1, ..., N − 2 (2.22)

• Continuity of acceleration on internal knots:

Π̈k(tk+1) = Π̈k+1(tk) k = 1, ..., N − 2 (2.23)

There are a total of 4(N−1) unknown coefficients and we have 2(N−1)+2(N−2) =
4(N − 1) − 2 equations. To determine uniquely the spline we need two other
constraints. Typical choices are [8]:

1. Π̈1(t1) = 0, Π̈N−1(tN) = 0 (natural cubic spline)

2.
...
Π1(t2) =

...
Π2(t2),

...
ΠN−2(tN−1) =

...
ΠN−1(tN−1) ("not-a-knot" conditions)

3. Π̇1(t1) = q̇1, Π̇N−1(tN) = q̇N

For our purposes we will always use the choice 3 since it is very useful to freely
impose the initial and final velocities.

In Chapter 4 we will see how to find the solution of this problem in an efficient
way.

2.6.3 Interpolating linear polynomials with parabolic
blends

If the exact reaching of the path points is not required, than this technique can be
taken in consideration due to its simplicity. The N path points are interpolated with
linear segments at time instants t1, ..., tN . Around tk a parabolic blend is generated
to avoid discontinuity. The final trajectory is composed of a sequence of linear and
quadratic polynomials (discontinuity on acceleration is tolerated). Referencing to
Figure 2.10, we define:

• ∆tk = tk+1 − tk, time distance between qk and qk+1

• ∆tk,k+1, linear trajectory time interval

16

2 – Trajectory planning

• ∆tÍ
k quadratic trajectory time interval

Given the above data, the velocity of linear traits are computed as [9]:

q̇k−1,k = qk − qk−1

∆tk−1
(2.24)

and the accelerations as:
q̈k = q̇k,k+1 − q̇k−1,k

∆tÍ
k−1

(2.25)

The trajectory does not reach any of the intermediate points. For this reason here
they are called way points. To decrease the error, ∆tÍ

k can be chosen smaller, but
the relative acceleration will be higher.

Figure 2.10: Characterization of a trajectory with interpolating linear polynomi-
als with parabolic blends [9]

We now consider a particular case when there is only one intermediate point.
The trajectory can be planned with two separate 2-1-2 motions. The intermediate
points is reached, but the manipulator stops there. Instead, if we start the second
segment ahead of time and we use the sum of velocities as reference, we obtain
a continuous motion. The manipulator does not stop in the intermediate point,
but its crossing is not guaranteed, similarly to the previous case. We can see an
example in Figure 2.11

17

2 – Trajectory planning

Figure 2.11: Time history of position, velocity and acceleration with a timing law
of interpolating linear polynomials with parabolic blends obtained by anticipating
the generation of the second segment of trajectory [9]

18

Chapter 3

Examples of continuous
processes in industrial
manufacturing

Globally, it is estimated that 3.1 million industrial robots will arrive in factories
by 2020. The international market value for robotic systems is estimated around
42 billion Euro with the automotive and electrical/electronic industries being the
most important customers. The automotive sector bought the 33% of the total
industrial robots supply in 2017 and the electrical/electronic sector the 32% of the
total in the same year 1.

Advantages of robotic manufacturing

Even though industrial robots are employed in many different processes, there are
some common motivations and advantages that draw the attention to this technol-
ogy. Here we summarize some of them 2.

1. Quality / accuracy / precision. Due to its mechanical nature and comput-
erized control, an industrial robot can carry out a repetitive task with great
precision and accuracy, thus providing improved, consistent product quality.
This includes less material wasting and less post-working cleanup, which helps
in lowering the overall production costs.

1https://ifr.org/downloads/press2018/Executive_Summary_WR_2018_Industrial_
Robots.pdf

2https://www.brighthubengineering.com/robotics/76606-advantages-of-robotics-in-
engineering/

19

3 – Examples of continuous processes in industrial manufacturing

2. Efficiency / speed / production rate. The same features of industrial
robotics technology mentioned above, the mechanical nature of the equipment
and the computerized control, make industrial robotics technology more effi-
cient and fast, leading to higher production rates than with human labour.
Another aspect of efficiency is that robots can be mounted from the ceiling
and have no problem with working upside down. This can lead to a savings
in floor space.

3. Ability to work in environments that are inhospitable to humans.
This is an interesting set of advantages of robotics. There are a number of tasks
that are too dangerous or too exposed to toxins for humans to conveniently
do them. These are ideal robotic tasks. This includes tasks as simple as spray
painting, where the fumes can be cancerous or explosive. It also includes tasks
such as defusing bombs or cleaning sewers.

4. Freedom from human limitations like boredom. Human characteristics
like boredom from doing a repetitive task do not interfere with the functioning
of a robot. There is some overlap with the first two categories of advantages
of robotics, because the lack of interference from boredom leads to greater
accuracy, quality, and rate of production over time. There is more to this
set of advantages of robotics, however. A robotic arm can work 24/7, with
downtime limited only to the scheduled maintenance.

Later in this chapter we introduce three cases of continuous process with exam-
ples of existing planning algorithms.

3.1 Robotic arc welding
Robotic welding is one of the most popular industrial applications of robotics world-
wide. It is estimated that approximately 25% of all industrial robots are employed
for welding operations, with automotive manufacturing and electrical/electronic in-
dustry representing the most active sectors in terms of robotic welding adoption.
Apart from resistance spot welding, the two most common robotised welding pro-
cesses for production purposes are metal inert gas (MIG) welding and tungsten
inert gas (TIG) welding, respectively 3.

Definition

In the industrial sector welding is a process that is used to join materials, usually
metals or thermoplastics. Two parts are heated at high temperature and melt

3https://www.twi-global.com/technical-knowledge/job-knowledge/robotic-arc-welding-135

20

3 – Examples of continuous processes in industrial manufacturing

together, then cooled down to cause their fusion. Pressure may also be used in
conjunction with heat, or by itself, to produce a weld. In addition to the base
metal, a filler material is usually added to the joint to form a weld pool. This new
joint, when cooled down, can be stronger than the base material. Different energy
sources are used for welding. The most common are: gas flame, electric arc, laser,
electron beam, friction or ultrasound.

Arc welding is a welding technique where the intense heat needed to melt metal
is produced by an electric arc. The arc is formed between the metal part and an
electrode that is moved along the joint. This electrode can be inert, simply carrying
the current, or it may consumed to provide the filling metal to the joint. The metal
base and the electrode are connected to an AC or DC power source and an electric
arc is formed when the tip of the electrode is close to the work piece. The arc
produces temperatures above 3000° necessary to induce the melting of the base
and the electrode 4.

The typical components of an integrated robotic arc welding cell are 5:

• Arc welding robot

• Power source

• Welding torch

• Wire feeder

• Welding fixtures and workpiece positioners

• Torch cleaner

• TCP calibration unit

In Figure 3.1 we can see a typical robotised welding station with a welding robot
and a workpiece positioner.

3.1.1 Example of trajectory planning for robotic arc weld-
ing

As an example of trajectory planning for robotic arc welding, we refer to the work
«Cartesian path planning for arc welding robots: Evaluation of the descartes algo-
rithm» by De Maeyer, Moyaers, and Demeester [4].

4https://www.lincolnelectric.com/en-us/support/process-and-theory/pages/arc-welding-
detail.aspx

5http://www.robot-welding.com/robot_arc_welding.htm
6http://www.smerobotics.org/demonstrations/d4.html

21

3 – Examples of continuous processes in industrial manufacturing

Figure 3.1: Typical arc welding station 6.

The purpose of that article is to study and test the performance of a software
package for Cartesian path planning. The software name is Descartes and is re-
leased by the ROS-Industrial community specifically for applications such as robot
welding.

Planning constraints

In a typical welding process the rotation of the torch (z-axis) is not specified. There
also may be tolerance on the orientation of the other two angles (x and y axis).
When considering a typical 6 DOF robot, this means that there are redundancies
that can be exploited to find a feasible path. This path, in order to be acceptable,
should: be collision-free, respect the maximum velocities and accelerations of the
robot, avoid the singularity points.

Planning algorithm

The planning algorithm is divided in three phases.
Phase 1. A list of trajectory points is specified, which can be expressed as

Cartesian or joint positions. For each point, the parameters of the pose can be
assigned a tolerance range and than sampled inside that range. This leads to
multiple joint or Cartesian points. Every Cartesian point is then converted in joint
positions according to the inverse kinematics of the robot.

Phase 2. The computed joint positions are organised in a graph (Figure 3.2).
Multiple nodes can belong to the same trajectory point. A joint position is discarded
from the graph if the collision detection check is not passed. Then the edges between
nodes of two successive trajectory points are added and the cost is assigned:

edge cost = ||θn+1 − θn||1 (3.1)

22

3 – Examples of continuous processes in industrial manufacturing

where θn is a generic joint position. If the angle that a joint has to travel is
greater than the velocity limit, than that edge is discarded.

Figure 3.2: Schematic representation of the graph used in Descartes’ algorithm.

Phase 3. A standard search algorithm is applied on the resulting directed graph
to find the shortest path. In Descartes’ case, Dijkstra’s algorithm is used.

The final result is a sequence of joint positions that, when followed by the robot,
result in the desired Cartesian path within the given tolerances, if such a path
exists and is found by the inverse kinematic solver. The execution of these points
is left to the industrial robot controller. In some cases the path may not be found
or may be infeasible. The main reasons are that it may contain large accelerations
or collisions in the given points or in between them, where the algorithms do not
perform a check. In these cases re-planning or post processing is necessary.

3.2 Spray painting
Spray painting is a painting technique where a device sprays a coating (paint, ink,
varnish, etc.) through the air onto a surface.

It is an important process in the manufacturing of many products, such as
automobiles, furniture, airplanes and it was one of the first uses for industrial
robots. The volatile and hazardous nature of solvent based paint means that it
is better to minimise human contact, and painting robots have been developed to
safely work with flammable compounds or in explosive atmospheres. Explosion
proof painting robots are sealed units and the arms are pressurised with air to
prevent the ingress of explosive solvents. Pressure sensors are used to monitor the
integrity of the system.

A painting robot generally has quite thin arms, as access is very important and
the tools do not weight much. Their controllers usually have to be specifically
designed for the job, because the movements involved may be very different from

23

3 – Examples of continuous processes in industrial manufacturing

the other applications. Also teaching by moving the arm directly is a very common
practice 7.

A standard painting process can be divided in five steps 8:

• Part Presentation. Presenting parts to robots varies widely from application
to application. Flat conveyors, overhead conveyors or racks are commonly used
at this stage.

• Coating Process. The actual coating process generally requires the deposi-
tion of multiple layers of different materials, for example: water base, electro-
static spray, powder coat, wax spray, adhesives and sealants.

• Curing. After the coating is applied, it must be cured. This is normally done
over time by applying heat or using ultraviolet lamps.

• Part Handling. After the coating is cured, parts can be removed from the
rack or conveyor by a human operator or using handling robots.

• Vision Inspection. Before shipping, it is necessary to inspect the quality of
the coating to ensure that there are no defects.

In Figure 3.3 we can see a typical robotised painting station for automotive
production. Other robots may be involved to move the doors or the engine hood.

Figure 3.3: Typical painting station in automotive industry 9.

7http://www.robotsltd.co.uk/applications.aspx?app=8
8https://www.motoman.com/robotic-painting
9https://www.ecvv.com/product/4774992.html

24

3 – Examples of continuous processes in industrial manufacturing

3.2.1 Example of trajectory planning for spray painting
As an example of trajectory planning for robotic spray painting, we refer to the
work «Novel integrated offline trajectory generation approach for robot assisted
spray painting operation» by Andulkar, Chiddarwar, and Marathe [1]. The algo-
rithm proposed in the article generates the desired trajectory by dividing the surface
iteratively into different sections. For each generated section, a section point and
corresponding section normal is computed. By connecting the section points using
linear segments, different paint passes are generated, which eventually form the
spray gun trajectory. The methodology assumes to work in a structured environ-
ment where the necessary parameters are known. A schematic representation of
this algorithm is shown in Figure 3.4.

Figure 3.4: Methodology for trajectory generation.

Input models

Firstly the model of the surface is needed. The representation adopted here is the
triangular approximation of a free-surface (see Figure 3.5). Each triangle has three
nodes and is denoted by:

Tn|i,j,k = Tn(Ni, Nj, Nk) n = 1, ..., R i, j, k ∈ 1, ..., V (3.2)

where R is the total number of triangles and V the total number of vertices.
The model of the spray gun adopted is cone shaped and the deposition pattern

on a flat surface is circular. The radius of the spray circle is R at the surface. See
Figure 3.6 for reference.

25

3 – Examples of continuous processes in industrial manufacturing

The desired paint thickness is given by the user and it is used to compute the
optimal overlap distance dopt and the optimal velocity vopt, given a model of the
paint distribution.

Figure 3.5: Triangular approximation of car hood.

Figure 3.6: Spray gun model.

Planning algorithm

The planning algorithm is divided in three phases.
Phase 1. Based on the paint distribution model and input parameters, optimal

overlap distance dopt and optimal velocity vopt are computed. From the global pool
of triangles Tn|i,j,k we select a subset Ss|i,j,k in the range of 0 ≤ x, y ≤ 2R − dopt
where the origin is at a corner of the surface. Since the surface has an arbitrary
form, the selected triangles may not be all covered by the spray circle. Hence the

26

3 – Examples of continuous processes in industrial manufacturing

triangles are sorted again based on summation of their areas. The spray circle area
is taken as Π(R−dopt/2)2, assuming that the surface curvature does not vary highly
within the range considered. If it is not true, then a lower spray radius R should be
considered. Starting from the triangle with lowest y of the selected subset Ss|i,j,k,
we sort the closest triangle until their cumulative area (each triangle as an area of
As) is lower than the area of the spray circle:Ø

As ≤ Π(R− dopt/2)2 (3.3)

The other one are rejected. The remaining triangles S Í
s|i,j,k forms a section. In

Figure 3.7 the blue area denotes the triangles Ss|i,j,k, while the S Í
s|i,j,k triangles are

delimited by a thick border.
Phase 2. A section point is generated by taking average of x, y and z coordinates

of all the centres of the triangles S Í
s|i,j,k from the previously generated section:

xavg =
q

S Í
s|x

m
yavg =

q
S Í
s|y

m
zavg =

q
S Í
s|z

m
(3.4)

where S Í
s|x, S Í

s|y, S Í
s|z are the centres and m are the total number of triangles in a

section. Since the point (xavg, yavg, zavg) may not lie on the surface, as a section
point is selected the closest point to this average on the surface.

The generation of the section normal is similar, but since the meshing of the
surface may not be uniform, also the area of the triangles is considered:

þna =
qm
s=1 Asþns/

qm
s=1 As

||qm
s=1 Asþns/

qm
s=1 As| |

(3.5)

where þna is the section normal and þns is the normal of a generic triangle. In
Figure 3.7 the black arrow denotes a section point with its section normal. The
spray gun is oriented along the normal with opposite direction.

Phase 3. In the last phase the raster pattern is computed.
The first paint pass is generated along the x-axis. After the first, a new section

is generated by increasing the selection range for the x coordinates by a value xincr.
This value is selected based on the mesh size of surfaces, surface curvature and the
optimal velocity vopt (it is generally around a fifth of the spray radius R). Then
Phase 1 and Phase 2 are repeated until the boundary of the surface is reached.

The second paint pass proceeds along the y-axis by one step. A value yincr is
computed based on the local surface curvature. If the surface is flat, this value is
2R− dopt. Again the new section is computed based on the new range.

The third pass is computed in the same way as the first, but the xincr is sub-
tracted until the boundary of the surface is reached.

The next steps proceed in the same way as the previous one, alternating a pass
on the x-axis and an increment on the y-axis until all the surface is covered.

27

3 – Examples of continuous processes in industrial manufacturing

Figure 3.7: Average point and corresponding normal vector for a section.

3.3 Additive manufacturing
The term additive manufacturing references technologies that grow three-
dimensional objects one superfine layer at a time. Each successive layer bonds to
the preceding layer of melted or partially melted material. It is possible to use
different substances to layer material, including metal powder, thermoplastics,
ceramics, composites and glass.

Objects are digitally defined by computer-aided-design (CAD) software that is
used to create files that essentially "slice" the object into ultra-thin layers. This
information guides the path of a nozzle or print head as it precisely deposits material
upon the preceding layer. Alternatively, a laser or electron beam selectively melts
each layer in a bed of powdered material. Cooling down, the layers fuse together
to form a three-dimensional object 10.

3.3.1 Applications and advantages
Some of the applications where additive manufacturing is used are 11:

• Prototypes

• Small batch production runs

• Replacement parts

• Rebuilt surfaces

10https://www.ge.com/additive/additive-manufacturing
11https://www.robotics.org/content-detail.cfm/Industrial-Robotics-Industry-

Insights/Building-the-Future-with-Robotic-Additive-Manufacturing/content_id/6860

28

3 – Examples of continuous processes in industrial manufacturing

• Cladding

The primary elements of a system dedicated to metal additive manufacturing
include a high-precision industrial robot, the laser system, an integrated MIG wire
and laser head, and the controls system (see Figure 3.8).

The advantages obtainable with respect to a classical manufacturing system are:

• Rapid development of new parts

• Quick design changes without adding tooling costs

• Less base material wasting

• The ability of cladding a less expensive material with a more exotic one for
particular properties like high wear resistance

Figure 3.8: Example of metal additive manufacturing robot 12.

3.3.2 Additive manufacturing along curved path
As an example of trajectory planning for robotic additive manufacturing, we refer to
the work «Robotic additive manufacturing along curved surface — A step towards
free-form fabrication» by Zhang et al. [13].

12https://www.compositesworld.com/articles/automation-robots-taking-off-in-commercial-
aircraft

29

3 – Examples of continuous processes in industrial manufacturing

Path generation and verification. Starting from a 3D CAD model of the
piece, the Arevo Kepler Engine software generates an additive manufacturing (AM)
path based on the process parameters such as the diameter of the extruder and the
thickness of the building layer. The example of an hollow wing structure (shown in
Figure 3.9) demonstrates the “free-form” fabrication concept. A base layer is firstly
created; then a frame structure with curved surfaces is built on top of the base at
both ends of the wing-shaped object; then, material is built up to form a curvature
starting from one of the corners between the base and the frame. The surface is
then finished by weaving paths along the curved upper surface of the hollow wing.
In this kind of processes a proper cooling device is needed to solidarize the material
quickly to form the hollow structure;

Path conversion, simulation and optimization. The generated AM path
program is converted to robot path program using one of the existing software such
as RAPID. Along with the positions, the extrusion related specific is also converted
into robot commands. During the conversion, the robot reachability is checked. If
the positions on the path are not reachable, the building plate location needs to
be relocated with respect to the robot frame. After the conversion, the robotic
additive fabrication process can be simulated and optimized for TCP speed and
extrusion rate.

Execution. The generated AM programs have usually a rather large size and
they may not fit totally in the execution memory. A method to ensure continu-
ously execution of the program is using of background data loading. Position and
process data modules can be loaded by a parallel background task while the robot
is executing the building program module in “front” task. If designed properly, this
method can perform continuous building process without interruption.

Figure 3.9: A sample of building path for hollow wing structure.

30

Chapter 4

Spline interpolation

In literature there are many ways to interpolate a dataset with splines, namely
cubic spline, Hermite spline, NURBS, smoothing spline and many others. In this
chapter three methods are analysed:

• Section 4.1: Cubic Spline

• Section 4.2: Piecewise Cubic Hermite Interpolating Polynomial

• Section 4.3: Smoothing Spline

These methods are at the basis of the new planner that will be developed in Chap-
ter 5, therefore we dedicate this chapter to an in-depth mathematical description
of these.

4.1 Cubic Spline
A cubic spline is a spline constructed with third-order polynomials that pass
through a set of N control points as we can see in Figure 4.1.

As already seen in section 2.6.2, the spline function has the following form [8]:Π(t) = Πk(t) t ∈ [tk, tk+1], k = 1, ..., N − 1
Πk(τ) = ak3τ

3 + ak2τ
2 + ak1τ + ak0 τ ∈ [0, Tk], (τ = t− tk, Tk = tk+1 − tk)

(4.1)
with the following constraints:

Πk(0) = qk, Πk(Tk) = qk+1 k = 1, ..., N − 1
Π̇k(Tk) = Π̇k+1(0) = vk k = 1, ..., N − 2

Π̈k(Tk) = Π̈k+1(0) k = 1, ..., N − 2
(4.2)

31

4 – Spline interpolation

We suppose that qk, tk, v1 and vN are specified by the user, while vk, k = 2, ..., N−1
are unknown. We impose for each polynomial the boundary condition on position
and velocity :

Πk(0) = ak0 = qk

Π̇k(0) = ak1 = vk

Πk(Tk) = ak3τ
3 + ak2τ

2 + ak1τ + ak0 = qk+1

Π̇k(Tk) = 3ak3τ
2 + 2ak2τ + ak1 = vk+1

(4.3)

Solving for the coefficients we obtain:

ak0 = qk

ak1 = vk

ak2 = 1
Tk

C
3(qk+1 − qk)

Tk
− 2vk − vk+1

D

ak3 = 1
T 2
k

C
2(qk − qk+1)

Tk
+ vk + vk+1

D (4.4)

We use the condition on continuity of the accelerations:

Π̈k(Tk) = Π̈k+1(0)→ 2ak2 + 6ak3Tk = 2a(k+1)2 (4.5)

and substitute the values of the coefficient obtained in (4.4):

Tk+1vk + 2(Tk+1 + Tk)vk+1 + Tkvk+2 = 3
TkTk+1

è
T 2
k (qk+2 − qk+1) + T 2

k+1(qk+1 − qk)
é

(4.6)

Figure 4.1: Example of a cubic spline

32

4 – Spline interpolation

These equations can be expressed in matrix form as:

2(T1 + T2) T1
T3 2(T2 + T3) T2

...
TN−2 2(TN−3 + TN−2) TN−3

TN−1 2(TN−2 + TN−1)

v2
...

vN−1

 =

3
T1T2

[T 2
1 (q3 − q2) + T 2

2 (q2 − q1)]− T2v1
3

T2T3
[T 2

2 (q4 − q3) + T 2
3 (q3 − q2)]

...
3

TN−3TN−2

è
T 2
N−3(qN−1 − qN−2) + T 2

N−2(qN−2 − qN−3)
é

3
TN−2TN−1

è
T 2
N−2(qN − qN−1) + T 2

N−1(qN−1 − qN−2)
é
− TN−2vN

(4.7)

Since the equation is in the form

Av = c

the problem is solvable if A−1 exists. If Tk > 0 then A is diagonally dominant
(|akk| >

q
j /=k |akj|) and for the Levy-Desplanques theorem it is always non-singular.

Being A tridiagonal, we give here an efficient method to compute its inverse
(based on the Gauss-Jordan method)[3]:

vN = v̄N , vi = v̄i −Kivi+1, i = N − 1, ...,1 (4.8)

with

v̄1 = c1

a11
, v̄i = ci − v̄i−1ai,i−1

aii −Ki−1ai,i−1
, i = 2, ..., N (4.9)

K1 = a12

a11
, Ki = ai,i+1

aii −Ki−1ai,i−1
, i = 2, ..., N (4.10)

where aij are the elements of A and cij are the elements of c.
Once the velocities are computed, we can compute the coefficients (4.4) to find

the interpolating cubic spline.

4.2 Piecewise Cubic Hermite Interpolating Poly-
nomial

A cubic Hermite spline is a spline where each polynomial is specified in Hermite
form [12]:

Π(t) = h00(t)q0 + h10(t)d0 + h01(t)q1 + h11(t)d1 t ∈ [0,1] (4.11)

33

4 – Spline interpolation

where q0, q1 are the values of the spline at the end points, d0, d1 are the values of
the derivatives in the same points and hii are the Hermite basis functions.

In Figure 4.2 there is a visual representation of the basis functions, while their
analytical expressions are:

• h00(t) = (1 + 2t)(1− t)2

• h10(t) = t(1− t)2

• h01(t) = t2(3− 2t)

• h11(t) = t2(t− 1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.2

0

0.2

0.4

0.6

0.8

1

h00

h10

h01

h11

Figure 4.2: The four Hermite basis functions on the unitary interval.

Through an affine change of variables, we obtain the expression of the interpo-
lating polynomial on an arbitrary interval [tk, tk+1]:

Πk(t) = h00(T)qk + h10(T)(tk+1 − tk)dk + h01(T)qk+1 + h11(T)(tk+1 − tk)dk+1

t ∈ [tk, tk+1], T = t− tk
tk+1 − tk

(4.12)
To interpolate a set of path points, we need to properly choose the tangents

at every point and then apply the equation (4.12) to each interval. The choice of
tangents is not unique and there are several options available. Here we propose the
one implemented in MatLab [10]:

• Define δk = (qk+1 − qk)/Tk, Tk = tk+1 − tk as the slope of the segment
between the points k and k+1

34

4 – Spline interpolation

• If δk = 0 or δk−1 = 0, then dk = 0

• If sgn(δk) /= sgn(δk−1) then dk = 0

• In the other cases, use the weighted harmonic mean:

dk =
w1 + w2

w1

δk−1
+

w2

δk

(4.13)

with w1 = 2Tk + Tk+1, w2 = Tk + 2Tk−1

The resulting polynomial is called Piecewise cubic Hermite interpolating poly-
nomial (PCHIP), and it is shape preserving, maintaining the monotonicity of the
path if possible, and avoiding overshoots. In Figure 4.3, we can see the difference
between a cubic spline interpolation and a PCHIP interpolation. The appropriate
interpolator should be chosen accordingly to the necessity of the user.

-3 -2 -1 0 1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5

Sample Points

pchip

spline

0 2 4 6 8 10 12
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Sample Points

pchip

spline

Figure 4.3: Interpolation of two different dataset with cubic spline and PCHIP

4.3 Smoothing Spline
Smoothing splines are functions that perform a regularized regression over the nat-
ural spline basis. This means that the N path points (defined as (tj, yj), j = 1,...,N)
are not exactly interpolated, but a certain amount of error is tolerated in order to
obtain a smoother path.

First of all we define the set of basis functions. For the sake of simplicity, here
we choose the truncated power basis, but a more efficient set in computational term
is the B-spline basis. Considering a set of N points defined in t1, ..., tN and a kth
order spline interpolation (k = 3 for cubic splines), the truncated power basis are

35

4 – Spline interpolation

defined as:
g1(t) = 1, g2(t) = t, ..., gk+1(t) = tk,

gk+1+j(t) = (t− tj)k+ j = 1, ..., N
(4.14)

where t+ = max{t,0}, that is the positive part of t.
A cubic spline with n basis, is written as:

Π(t) =
nØ
j=1

βjgj(t) (4.15)

for n = N + 4; β is a vector of coefficients that is chosen to minimize the following
cost function[11]:

nØ
j=1

(yj − Π(tj))2 + λ
Ú

(ΠÍÍ(t))2dt (4.16)

This criterion trades off the least square error of Π over the path points with a
regularization term that penalizes the oscillations of the function. λ ≥ 0 is called
smoothing parameter and can be tuned to increase or decrease the weight of the
regularization term.

We can write (4.16) in matrix form as:

||y −Gβ||22 + λβTΩβ (4.17)

where

• G ∈ Rnxn is the basis matrix defined as:

Gij = gj(ti) i, j = 1, ..., n

• Ω ∈ Rnxn is the penalty matrix defined as:

Ωij =
Ú

gÍÍ
i (t)gÍÍ

j (t)dt i, j = 1, ..., n

Now we have to find the optimal β that minimizes (4.17):

β̂ = argmin
β

[||y −Gβ||22 + λβTΩβ] (4.18)

The solution is similar to the solution of a least square problem:

β̂ = (GTG + λΩ)−1GTy (4.19)

Substituting (4.19) in (4.15) we obtain the smoothing spline:

Π̂(t) =
nØ
j=1

β̂jgj(t) (4.20)

In Figure 4.4, we can see the comparison between a cubic spline interpolation
and smoothing spline interpolation of a "noisy" dataset.

36

4 – Spline interpolation

0 1 2 3 4 5 6 7 8
-1

0

1

2

3

4

5

6

7

8

Noisy data

New path points

Smoothing spline

Cubic spline

Figure 4.4: Interpolation of a "noisy" dataset with cubic spline and smoothing
spline

37

Chapter 5

Implemented methods

In this chapter the methods chosen for code implementation and testing are pre-
sented.

Section 5.1 briefly explains the theory behind curve reparametrization. Sec-
tion 5.2 is about global analysis and planning of the trajectory using different
interpolation techniques. Section 5.3 explains the local version of the same plan-
ners, intended for a possible real-time implementation. Finally, in Section 5.5 there
are some considerations about a different approach that was discarded after some
testing.

5.1 Moving along a curve with specified speed
The topics on this section refers to the work Moving along a curve with specified
speed by Eberly [5].

A parametric curve Y(u) can be seen as the path travelled by a particle whose
position is Y(u) at time u. The velocity of the particle is the rate of change of
position with respect to the variable u:

V(u) = dY
du

(5.1)

The velocity vector is tangent to the position vector for each u. The speed σ(u) of
the particle is given by the length of the velocity vector:

σ(u) = |V(u)| =
-----dYdu

----- (5.2)

In continuous processes it is required that the speed is constant at every time,
which means that σ(u) = c. We also need to take into account the acceleration/de-
celeration phases and occasional braking on critical path points. Therefore we will
consider σ(u) as a generic speed function.

38

5 – Implemented methods

5.1.1 Reparametrization for specified speed
Let Y(u), u ∈ [umin, umax] be a curve with a generic parametrization and X(t), t ∈
[tmin, tmax] be a time parametrization of the same curve, so that the speed is a
specified function σ(t).

The total arc-length of the curve is:

L =
Ú umax

umin

-----dYdu

----- du (5.3)

The speed σ(t) is imposed and it has to respect the following constraint coming
from calculus and physics: Ú tmax

tmin

σ(t)dt = L (5.4)

A simple way to meet constraint (5.4) is to plan a generic function ρ(t) with the
desired shape, and then apply a scaling factor. The actual speed used is:

σ(t) = Lρ(t)s tmax
tmin

ρ(t)dt
(5.5)

5.1.2 Numerical solution
Since Y(u) and X(t) are different parametrizations of the same curve, we have that
Y(u) = X(t). This implies a relationship between u and t. We can apply the chain
rule from calculus:

dX
dt

= dY
du

du

dt
(5.6)

and compute the speed:

σ(t) =
-----dXdt

----- =
-----dYdu

----- du

dt
(5.7)

Here we assume that u and t increase jointly, which means that we can skip the
absolute value on du/dt since it is always greater than or equal to zero.

Equation (5.7) can be rewritten as:Ú u

umin

-----dY(µ)
du

----- dµ =
Ú t

tmin

σ(τ)dτ = l (5.8)

where l is the length of the path travelled during the time interval (tmin, t).
Now we define F (u) =

s u
umin

---dY(µ)
du

--- dµ − l. Given the value of l, the problem is
to find the value of u so that F (u) = 0. This is a root find problem that can be
solved with any suitable method.

The procedure to obtain the reparametrization is here summarised:

1. Define the time sequence of the output samples T = ti, i = 1, .., n

39

5 – Implemented methods

2. For each ti, compute li =
s ti
tmin

σ(τ)dτ

3. For each li, obtain the corresponding ui solving F (ui) = 0

4. Set X(ti) = Y(ui) for each i.

Some pseudocode for computing u given t:

1 %% parameters definition:
2
3 umin, umax % curve parameter interval, [umin, umax]
4 Y(u) % gives the position for u in [umin, umax]
5 DY(u) % derivative of Y: dY/du
6 tmin, tmax % user−specified time interval, [tmin, tmax]
7 Sigma(t) % user−specified velocity profile
8
9 %% functions
10
11 function v = speed(u) % length of the speed vector in u
12 v = ||DY(u)||;
13 end
14
15 function L = ArcLength(u) % length of the path from umin to u
16 L = integral(umin, u, @(x) speed(x));
17 end
18
19 function u = GetCurveParameter(s) % finds the u that gives an arc

length equal to s
20 u = root_find([umin, umax], @(x) ArcLength(x) − s); %solves:

ArcLength(x) − s = 0
21 end
22
23 function u = GetU(t) % coputes the u given the time t
24 el = integral(tmin, t, @(x) Sigma(x));
25 u = GetCurveParameter(el);
26 end

5.2 Trajectory analysis and global planning
Firstly, a method to perform an off-line analysis of the input data is proposed.
The objective is to give to the user a preliminary simulation comparing the results
obtained with different interpolation techniques.

40

5 – Implemented methods

There are two methods to interpolate the user-given data: global interpolation
and local interpolation. The former considers all the available points, the latter just
a small subset at each time. In this stage the computation is done globally. Since
a global interpolation gives better results with respect to a local interpolation, we
developed this analysis also to have reference values for the testing of the local
trajectory planners.

In the following subsections a step-by-step explanation of how the trajectories are
computed is reported. The steps covered are: inputs definition, path generation,
path curvature computation, temporal law inclusion, generation of the velocity
profile, performance indices and MatLab simulation.

5.2.1 User-defined inputs
The input data requested for the trajectory analysis are the following ones:

• Path points set: it is the set of points used to generate the path. These points
are intended to be crossed with high precision.

• Target constant velocity: it is the Cartesian constant speed required in the
continuous process.

• Maximum acceleration: it is the maximum Cartesian acceleration allowed. It
is used to compute brakes in case of curvature with very small radius.

• Starting and ending velocities: they are generally set to zero, but they can be
specified differently if needed.

• Sampling time: it is the time distance requested for the output samples.

For the PCHIP interpolation there is an extra input to enable or disable the
critical points correction as detailed in Subsection 5.2.3. For the interpolation
with re-sampling is requested to specify the number of points of the re-sampled
trajectory, #samples, or the approximate distance between two samples, lstep (the
two quantities are related by the total path length: Lpath = #samples · lstep)

5.2.2 Interpolation techniques and path generation
The trajectory analysis is performed with four different interpolation techniques:

• Cubic splines (Section 4.1): a good compromise between smoothness and gig-
gling. Continuity is guaranteed up to acceleration. It works well with more
rounded path and no straight lines.

• PCHIP splines (Section 4.2): the interpolation has more sharp edges and
the acceleration is not continuous. This interpolator is shape preserving and

41

5 – Implemented methods

introduces no giggling, thus it is suitable to interpolate paths that have straight
lines.

• Smoothing splines (Section 4.3): its properties are similar to the cubic spline
interpolator. The path points are traversed with an error in favour of a
smoother interpolation.

• Cubic spline on re-sampled PCHIP path: it combines the continuity property
of the cubic spline planner with the shape preserving path of the PCHIP
planner. Due to the path points being re-sampled, the exact crossing of the
user-defined points is not guaranteed.

Independently from the computation technique, the path is described as a three-
dimensional parametric curve: Π(u) = (Πx(u), Πy(u), Πz(u)). This means that
three interpolations are required, one for each Cartesian axis. Firstly, we define the
common parameter u. Since here we are not interested in the time law, we can just
use the normalized cumulative distance between the path points (pi, i = 1, ..., N):

L =
NØ
i=2
||pi − pi−1||

u(1) = 0
u(i) = u(i− 1) + ||pi − pi−1||/L, i = 2, ..., N

(5.9)

After that we can compute the spline functions for each axis:

Πx(u) = spline(u, px)
Πy(u) = spline(u, py)
Πz(u) = spline(u, pz)

(5.10)

where px, py, pz are the x, y, z components of the path points and spline(u, p) is
a generic interpolating function.

Summarizing, cubic and smoothing spline paths are generated directly using the
in-built MatLab functions; PCHIP and cubic spline with re-sampling require an
additional step before applying the MatLab functions. In particular the PCHIP
path can be smoothed, on user request, with the algorithm described in Subsec-
tion 5.2.3, while the cubic spline with re-sampling, as the name suggests, requires
a re-sampling (see Subsection 5.2.4) of the path points before the standard cubic
interpolation.

5.2.3 Smoothing narrow angles in PCHIP interpolation
In many cases, the path given by a PCHIP interpolation tends to be better than
the other interpolations. The main reasons are that the straight lines are preserved

42

5 – Implemented methods

and no overshoots are introduced. However this benefit comes with some drawbacks
that the users should be aware of: right or acute angles introduce very small curve
radii, or even stationary points in the path that can not be traversed with constant
speed even if high accelerations are permitted. In particular, stationary points
require the manipulator to stop and restart the motion.

For the aforementioned reasons, an algorithm to correct and avoid those critical
issues is proposed.

Ideally we would like to substitute the sharp corners in the path with circumfer-
ence arcs to obtain smoother transitions between two segments. The idea is similar
to the trajectory planning technique called linear polynomials with parabolic blends
(see Subsection 2.6.3), where linear segments are blended with arcs of parabola to
obtain a continuous motion between path points. In our case we are not repro-
gramming the planner to execute parabolic blends in specific points, but we just
substitute the critical points with couples of points that the planner can connect
more easily with arcs.

A point is critical if it meets at least one of the two following conditions:

• It is a stationary point: the slope computed as described in (4.2), is equal to
zero

or

• The angle between the vectors that connect it to the previous and following
points is included between 75° and 180°. The convention used to compute that
angle is shown in Figure 5.1.

The case of a stationary point with an angle of 180° is not considered here.
This case occurs when a trajectory backtracks and can not be corrected with the
algorithm proposed. The user should consider to employ other interpolators or
programming the backtrack in a different way.

Once that the critical points are located, we compute the couples of points that
substitute each of them. Referring to Figure 5.1, the points t1, t2 are selected as
the tangent points of an inscribed circumference with radius R. d can be directly
specified by the user, or can be computed as: d = v2

target/amax · tan(θ/2), where
vtarget, amax are parameters imposed by the user (as described in Subsection 5.2.1).

In Figure 5.2 an application of the algorithm is shown.

5.2.4 Path re-sampling
When the distances between couples of consecutive path points are very different,
the cubic interpolation may not give acceptable results. In these cases a re-sampling
of the original points may be needed in order to have better final interpolations.

The algorithm here proposed performs a fixed step re-sampling of the path in-
terpolated with PCHIP spline. The information on the original path points is lost

43

5 – Implemented methods

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

p1 p2

p3

R

d

t1

t2

Figure 5.1: Conventions used for computing the new points.

0 0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

3

p1 p2

p3

t1

t2

Original path

Corrected path

Figure 5.2: Comparison between a PCHIP planned path with and without cor-
rection.

after the first interpolation, so there is no guarantee of exact crossing. The straight
lines are interpolated with precision and overshoots are present only in the intervals
near points with high curvature. The user can choose the length of the steps or the
total number of samples to decrease the crossing error and the amplitude of the
overshoots.

The relevant steps needed to obtain a re-sampling are explained in Subsec-
tion 5.1.2. In this specific case the fixed distance between two samples is obtained
imposing a constant speed profile.

In Figure 5.3 there is a comparison between two paths both interpolated with

44

5 – Implemented methods

cubic splines. One dataset has points with an unbalanced spacing, the other one
is more evenly spaced. In Figure 5.4 we can see an application of the re-sampling
algorithm.

1 1.5 2 2.5 3

-0.4

-0.2

0

0.2

0.4

0.6 Cubic

Resampling

Resampling new points

Dataset

Figure 5.3: Cubic interpolation of an even-spaced dataset vs. an uneven one.

116011801200122012401260128013001320

-260

-250

-240

-230

-220

-210

-200

-190

-180

-170

Cubic

Resampling

Resampling new points

Dataset

Figure 5.4: Application of the re-sampling algorithm.

5.2.5 Path curvature
The curvature is another important aspect for the geometry analysis of a path.
The correlation between velocity and centripetal acceleration is given indeed by
the curvature in each point of the path. For our purposes, we use the concepts of
osculating circle and radius of curvature, which is just the inverse of the curvature.

Firstly we introduce the Frenet Frame [6]. Given a 3D curve f(u), the Frenet

45

5 – Implemented methods

frame (or Frenet trihedron) at u is the triple (t,n,b) consisting of three orthogonal
unit vectors such that:

• t = ḟ(u)
||ḟ(u)|| is the unit tangent vector at u

• n = −(ḟ(u)·f̈(u))ḟ(u)+||ḟ(u)||2f̈(u)
||−(ḟ(u)·f̈(u))ḟ(u)+||ḟ(u)||2f̈(u)|| is the principal normal vector to t at u

• b = t× n is the binormal vector at u

Focusing on a small neighbourhood of u, the curvature can be seen as the rate
at which the normal n turns. The point around which the normal vector turns is
the centre of curvature C at u and the osculating circle is the circle centred in C,
and tangent to the curve at f(u).

The radius of curvature at u is defined as:

R(u) = ||ḟ(u)||3

||ḟ(u)× f̈(u)||
(5.11)

The curvature at u is:
k(u) = ||ḟ(u)× f̈(u)||

||ḟ(u)||3
(5.12)

Knowing R, we can compute the centripetal component of the acceleration at u
as:

ac(u) = v(u)2

R(u) (5.13)

Figure 5.5 shows two Frenet frames on consecutive points of a 3D elix path.

5.2.6 Velocity profile and temporal law inclusion
After the path generation, it is necessary to impose a proper temporal law in
order to obtain the desired trajectory. This step can be done with the technique
described in Section 5.1: the parameter used for the interpolation is changed with
a time parameter that follows the desired temporal law.

Now we have to determine a speed profile that meets the constraints imposed by
the user. As a starting point, the trapezoidal velocity profile (Subsection 2.5.2) is
chosen. Given the target constant velocity vt, the maximum acceleration Amax, the
starting and final velocities v0, vf and the total length of the path L, we compute
the commutation instants and the total execution time (tf):

t1 = vt − v0

Amax

t2 = t1 + L

vt
+ (vt − vf)2 − (vt − v0)2

2Amaxvt
− v0(vt − v0)

Amaxvt
− vt − vf

Amax

tf = t2 + vt − vf
Amax

(5.14)

46

5 – Implemented methods

0.8

1

1.2

1.4

1.6

1

1.8

2

2.2

2.4

0.5

b
1

n
1

n
2

t
2

u
2

b
2

u
1

t
1

-10

-0.5

-0.5 0

0.5

Figure 5.5: Example of Frenet frames at u1 and u2

Then the speed profile v(t) is just a piecewise function:

v(t) = Amaxt + v0 t < t1

v(t) = vt t1 ≤ t ≤ t2

v(t) = −Amax(t− t2) + vt t > t2

(5.15)

Now we can compute a first re-parametrization imposing the trapezoidal speed
profile. The re-parametrization is numerical and the sampling time used is h (the
same given by the user). After that, we have a constant speed trajectory, but the
accelerations may not be respected, since the centripetal accelerations introduced
by the path curvature have to be taken into account. Therefore the curve radii are
computed (Subsection 5.2.5) and the maximum velocity allowed at each point is
found:

vmax,i = min
3

v(ti),
ñ

AmaxR(ti)
4

i = 1, ..., n = tf/h (5.16)

The next step is to synchronize the decelerations with the path. This means
that the cumulative area at a time tk of the re-computed speed profile vmax needs
to be equal to the distance covered with speed v(t):

kØ
i=1

vmax,i + vmax,i+1

2 dti =
Ú tk

0
v(τ)dτ (5.17)

At each time instant we can compute the time variation dti to make sure that the

47

5 – Implemented methods

area of the interval is the same of the corresponding interval of the function v(t):

vmax,i + vmax,i+1

2 dti = v(ti) + v(ti + h)
2 h := S i = 1, ..., n− 1 (5.18)

The speed variation must also be programmed not to surpass the acceleration
constraint. We choose to recompute vmax,i+1 using the constraint on the accelera-
tion: 3

vmax,i+1 − vmax,i
dti

42
+
A

v2
max,i

R(ti)

B2

≤ A2
max (5.19)

where vmax,i+1−vmax,i

dti
is the tangential acceleration and v2

max,i

R(ti) is the centripetal ac-
celeration.

In (5.19) vmax,i+1 and dti are the unknown variables. Equation (5.18) is solved
by dti:

dti = 2S

vmax,i + vmax,i+1
i = 1, ..., n− 1 (5.20)

and substituted in (5.19), where the inequality sign is replaced by an equality sign,
since we want the velocity holes to be as shortest as possible:

((vmax,i+1)2 − (vmax,i)2)2 = 4S2(A2
max − (vmax,i)2/R(ti)) := ∆ i = 1, ..., n− 1

(5.21)
Now we have to consider two cases: vmax,i+1 > vmax,i and vmax,i+1 < vmax,i. Since
the minimum velocities must be respected in order to keep the centripetal ac-
celerations inside the upper bound, we can apply the algorithm twice: once for
i = 1, ..., n−1 considering only the case of vmax,i+1 > vmax,i and once for i = n, ...,2
for vmax,i−1 > vmax,i. In this second case we can use the same procedure substi-
tuting vmax,i+1 with vmax,i−1 in the formulas. With this trick both the minimum
velocities and acceleration constraints are respected and ∆, defined in (5.21), is
guaranteed to be always greater then or equal to zero.

Given that vmax,i+1 > vmax,i, we can take the square root of (5.21) and consider
only the positive solution:

(vmax,i+1)2 = (vmax,i)2 +
√

∆ i = 1, ..., n− 1 (5.22)

Once again we take the square root and choose the positive solution, because neg-
ative velocities (backtrack) are not allowed:

vmax,i+1 =
ñ

(vmax,i)2 +
√

∆ i = 1, ..., n− 1 (5.23)

Now that both vmax,i and vmax,i+1 are known, we can substitute them in (5.20)
to find dti. The new time instants are simply the sum of the time variations:
ti = qi

k=1 dtk. In Figure 5.6 we can see an application of this procedure. The
velocity are plotted with respect to their indices and not to time.

48

5 – Implemented methods

The continuous velocity profile vmax(t) is obtained with a linear interpolation of
the couples (vmax,i ; ti).

Applying again the re-parametrization procedure with sampling time h and ve-
locity profile vmax(t), we obtain a trajectory that meets all the constraints defined
by the user.

1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75

Index (i) 105

10

20

30

40

50

60

70

80

90

100

V
e

lo
c
it
y
 [

m
m

/s
]

before

after

Figure 5.6: vmax before and after the acceleration correction, plotted with respect
to the index i.

5.2.7 Performance indices and MatLab simulations
To compare the results obtained with different techniques, four metrics are pro-
posed:

• Maximum crossing error (Lcross [mm]): it measures the maximum error be-
tween the path points defined by the user and the interpolated path.

• Number of velocity holes (Nholes): it counts the number of decelerations pro-
grammed to meet the acceleration constraint.

• Average hole length (Thole [s]): it measures the average duration of a velocity
hole.

• Motion duration (Tmotion [s]): it measures the overall duration of the motion.

The global planning interpolation is tested on three different datasets. Two
datasets are from real processes used by COMAU clients, while the third one is
made ad hoc to test the performance of the interpolators. All the plots shown in

49

5 – Implemented methods

Figures 5.8, 5.9, 5.10, 5.11 and 5.12 are obtained with a target speed of 100 mm/s
and a maximum acceleration of 2000 mm/s2.

The first process requires to deposit a homogeneous amount of sealing on a
box containing electronic boards. On Figure 5.7 we can see a photo of a piece.
The constraints on this specific process are very strict because once closed, the
boxes need to be waterproof. Small errors on the path or non homogeneous sealing
deposit can compromise the functionality of a box. In figure Figure 5.8 the plots
of the path obtained with the four described techniques are shown. In Figure 5.11
and Figure 5.12 there are the velocity profile obtained with the cubic and PCHIP
interpolations and the relative accelerations. Table 5.1 summarizes the results of
this simulation.

Table 5.1: Box dataset, Vtarget = 100 mm/s, Amax = 2000 mm/s2

Indices Lcross [mm] Nholes Tholes [s] Tmotion [s]

Cubic 9.65 · 10−2 6 2.57 · 10−2 3.55

PCHIP 9.92 · 10−2 14 5.07 · 10−2 3.69

Smoothing 9.77 · 10−1 0 0 3.48

Re-sampling (50
samp.)

6.67 · 10−1 5 3.76 · 10−2 3.53

The second one is also a sealant deposit process applied on an engine hood. The
original path points are represented with a scale of 1:2.5 to fit on the operational
space of the robot used for the tests (details will be provided in Chapter 6). Fig-
ure 5.9 shows a plot of the path interpolated with cubic spline. The results are
summarized in Table 5.2.

Table 5.2: Engine hood dataset, Vtarget = 100 mm/s, Amax = 2000 mm/s2

Indices Lcross [mm] Nholes Tholes [s] Tmotion [s]

Cubic 9.91 · 10−2 3 1.07 · 10−1 20.1

PCHIP 9.97 · 10−2 5 8.88 · 10−2 20.1

Smoothing 1.22 2 8.10 · 10−1 20.0

Re-sampling (250
samp.)

4.70 2 7.20 · 10−2 19.9

The third dataset is called Greek fret. It contains many 90° turns and a circular
movement, and it is used by COMAU as a testing path. The PCHIP interpolation

50

5 – Implemented methods

of this path is shown in Figure 5.10, while in Table 5.3 the results of the simulations
are summarized.

Table 5.3: Greek fret dataset, Vtarget = 100 mm/s, Amax = 2000 mm/s2

Indices Lcross [mm] Nholes Tholes [s] Tmotion [s]

Cubic 9.64 · 10−2 7 6.40 · 10−2 21.3

PCHIP 9.73 · 10−2 13 1.27 · 10−1 21.4

Smoothing 4.76 1 9.00 · 10−2 20.5

Re-sampling (200
samp.)

3.10 8 6.88 · 10−2 20.3

Table 5.4 reports the result of the application of the correction algorithm ex-
plained in Subsection 5.2.3.

Table 5.4: Greek fret dataset, Vtarget = 100 mm/s, Amax = 2000 mm/s2

Indices Lcross [mm] Nholes Tholes [s] Tmotion [s]

PCHIP (no corr.) 9.73 · 10−2 13 1.27 · 10−1 21.4

PCHIP (auto corr.) 7.60 14 6.80 · 10−2 20.3

PCHIP (corr. d=2.5
mm)

2.17 13 1.24 · 10−1 20.9

In general we observe that, except for the cubic interpolation with re-sampling,
the smoothing spline interpolation has the lowest number of velocity holes and the
lowest total hole time length (Nholes ·Tholes). The PCHIP interpolation has, instead,
the highest number of velocity holes and the highest total hole time length. This
is coherent with the geometrical properties of the paths obtained, which is more
rounded with the smoothing spline with respect to the cubic spline and the PCHIP
spline. The interpolation with re-sampling gives different results depending on the
number of samples considered, but in general it places between the cubic and the
smoothing interpolations.

The maximum crossing errors of the cubic and PCHIP interpolations is less then
a tenth of a millimeter for each simulation, while for the other two techniques this
error ranges between 0.7 mm and 4.8 mm. If the narrow angle correction is applied,
the exact crossing with the PCHIP interpolation is lost and the crossing error is
increased up to 7.6 mm, depending on the values of the correction parameters.

51

5 – Implemented methods

Figure 5.7: A box with and application of sealant material on the edges.

The motion durations obtained are similar, with the smoothing and re-sampling
planners being slightly faster. The differences between the fastest and the lowest
trajectories are less then 5% of the total time length.

5.3 Local trajectory planning
The on-board planner must provide the results in real time, therefore it has strict
time requirement. In general it is not possible to implement an on-line global
planning strategy due to the high computational cost required. The COMAU
planner, for example, evaluates the trajectory on two points at a time, but for
continuous processes this is not enough to ensure a good speed profile.

The algorithm proposed in this chapter tries to find a compromise between the
opposite necessities of computing ahead the whole trajectory for a good speed profile
and of analysing as few points as possible to make the procedure fast enough to
run in real time. For this purpose it has been decided to compute the trajectory on
five points at a time, one more than the minimum number required for a PCHIP

52

5 – Implemented methods

-20020406080

x-position (mm)

-20

0

20

40

60

80

100

120

y
-p

o
s
it
io

n
 (

m
m

)

-20020406080

x-position (mm)

-20

0

20

40

60

80

100

120

y
-p

o
s
it
io

n
 (

m
m

)

-20020406080

x-position (mm)

-20

0

20

40

60

80

100

120

y
-p

o
s
it
io

n
 (

m
m

)

-20020406080

x-position (mm)

-20

0

20

40

60

80

100

120

y
-p

o
s
it
io

n
 (

m
m

)

Figure 5.8: Path interpolations for the box sealing task. Interpolations: top-
left cubic; top-right PCHIP; bottom-left smoothing; bottom-right cubic with re-
sampling.

1000

1100

2000

1200

z
-p

o
s
it
io

n
 (

m
m

)

1300

1500

x-position (mm)

-800
-600

1000
-400

-200

y-position (mm)

0
200

400
600500

800

Figure 5.9: Cubic path interpolation for engine hood sealing task.
53

5 – Implemented methods

880

900

-150

920

z
-p

o
s
it
io

n
 (

m
m

)

940

-200

-250

y-position (mm)

-300

-350
1450

1400
1350

x-position (mm)

1300-400
1250

1200
1150

-450 1100
1050

Figure 5.10: PCHIP path interpolation for testing dataset.

0 0.5 1 1.5 2 2.5 3 3.5 4

time (s)

0

10

20

30

40

50

60

70

80

90

100

v
e

lo
c
it
y
 n

o
rm

 (
m

m
/s

)

0 0.5 1 1.5 2 2.5 3 3.5 4

time (s)

0

10

20

30

40

50

60

70

80

90

100

v
e

lo
c
it
y
 n

o
rm

 (
m

m
/s

)

Figure 5.11: Velocity profile for the box sealing task. Interpolations: left cubic;
right PCHIP.

0 0.5 1 1.5 2 2.5 3 3.5

time (s)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

a
c
c
e

le
ra

ti
o

n
 n

o
rm

 (
m

m
/s

2
)

0 0.5 1 1.5 2 2.5 3 3.5

time (s)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

a
c
c
e

le
ra

ti
o

n
 n

o
rm

 (
m

m
/s

2
)

Figure 5.12: Acceleration profile for the box sealing task. Interpolations: left
cubic; right PCHIP.

54

5 – Implemented methods

interpolation.
For the most part, the planning algorithm works in the same way as the one

described in Section 5.2. This means that given the input data, the algorithm
computes the path and the speed profile as already seen. The main difference
is that multiple splines need to be computed to plan the whole trajectory and
particular care is needed in the junction of consecutive splines. The next subsection
is dedicated to this topic.

5.3.1 Planning and joining consecutive splines
The planner is fed with five points at a time. These points are called visibility win-
dow of the planner that does not have any knowledge of the rest of the path. After
the planning of a spline, the window slides by one point, receiving a new point and
discarding the oldest one. In this way two consecutive splines are always computed
with four points in common, and the transition between them is smoother. The
output of a single planning is a portion of the spline that corresponds to the interval
between the first and the second point plus the final velocity of that interval. By
joining every interval we cover the entire trajectory.

Another reason to use a sliding window is to have always some points of visibility
ahead (at least three points with a window of five). This is essential when an
emergency stop has to be planned. For safety reasons, the manipulator has to stop
within the last point of the current programmed motion. In our case, if the stop
signal comes at the end of the first interval and the machine is moving at target
velocity, then it can not arrest before the second point, but there are three other
points loaded that can be used to program a safe arrest.

At this level the interpolation can only be done with cubic splines or PCHIP
splines. The smoothing splines and re-sampling interpolations described in Sec-
tion 5.2 are applied globally and the re-computed points are fed to the planner as
a different path.

Since the planning using cubic or PCHIP splines are slightly different, we start
with the cubic interpolation and the adjustment for the PCHIP interpolation are
explained later.

Trajectory planning with cubic splines

Recalling the steps explained in Section 5.2 for the global analysis, firstly we need
to compute the path on the points selected by the current visibility window. While
for the global interpolation the initial and final velocities are generally set to zero,
here it is very important to impose the right ones to obtain smooth transitions.
In particular the initial velocity is given by the previous planning and the final
velocity can be computed as the unit tangent vector in the last point (see Fernet
frame, Subsection 5.2.5). The tangent vector should be computed on the globally
interpolated path.

55

5 – Implemented methods

The next step is the definition of the velocity profile. Also in this case the initial
velocity is given by the norm of the final velocity of the previous planning. The final
velocity is imposed equal to the target constant speed. After the corrections done
to respect the maximum acceleration constraint, the initial and final velocities may
be different from the imposed one. While a different final velocity is acceptable, to
have a global continuous speed profile is important to respect the initial velocity.
In this case, after having computed the corrected speed profile with the respective
timing, we set the speed on the first time instant to be equal to the correct one.
Then we have to check once again if the accelerations are respected and correct the
speed profile accordingly.

The last phase is the re-parametrization with step h of the first interval. As
output the velocity computed on the last point of the re-parametrization is also
provided. It is important to observe that this last point in general does not coincide
with the second point of the current window due to the discretization introduced
by the re-sampling. This is compensated by replacing the original point with this
one during the next planning.

Applying these tweaks, the final trajectory computed is continuous for position
and velocity.

Trajectory planning with PCHIP splines

The PCHIP spline interpolation does not require the initial and final slopes. To
guarantee at least the C1 continuity of the trajectory it is necessary to select the
second interval (between the second and third point of the window) of each spline:
the derivative in a point is computed using the current point, the previous one and
the next one (see Section 4.2). This means that the slope in the third point of the
current window is the same of the second point on the successive window, which
guarantees the continuity of the first derivative.

The speed profile is computed similarly to the cubic spline case, but the initial
velocity is imposed on the second point instead of the first.

5.3.2 Performance indices and MatLab simulations
For this approach we use the same four metrics used before in Subsection 5.2.7 plus
two others:

• Maximum acceleration (Aerr,max [mm/s2]): it measures the maximum accel-
eration actually reached. Due to numerical approximations, some junctions
between consecutive intervals may have acceleration spikes.

• Maximum reference error (Lref [mm]): it measures the maximum distance
between the computed path and the reference path (the global computed one).

56

5 – Implemented methods

The same testing procedure illustrated in Subsection 5.2.7 is followed: for each
dataset the target speed is set to 100 mm/s and the maximum acceleration to 2000
mm/s2. Tables 5.5, 5.6 and 5.7 show the results of the simulations for the box
dataset, the engine hood dataset and the greek fret dataset, respectively.

Table 5.5: Box dataset, Vtarget = 100 mm/s, Amax = 2000 mm/s2

Indices Lcross [mm] Nholes Tholes [s] Tmotion [s] Aerr,max Lref [mm]

[mm/s2]

Cubic 9.91 · 10−2 6 4.13 · 10−2 3.57 2.19 · 103 2.43 · 10−1

PCHIP 9.13 · 10−2 14 4.99 · 10−2 3.68 2.85 · 103 1.00 · 10−1

Smoothing 9.72 · 10−1 2 2.00 · 10−2 3.49 2.00 · 103 3.66 · 10−1

Re-
sampling
(50 samp.)

7.07 · 10−1 6 3.53 · 10−2 3.54 2.14 · 103 2.53 · 10−1

Table 5.6: Engine hood dataset, Vtarget = 100 mm/s, Amax = 2000 mm/s2

Indices Lcross [mm] Nholes Tholes [s] Tmotion [s] Aerr,max Lref [mm]

[mm/s2]

Cubic 9.48 · 10−2 3 1.29 · 10−1 20.2 2.11 · 103 3.44

PCHIP 9.97 · 10−2 5 8.68 · 10−2 20.1 2.64 · 103 9.78 · 10−2

Smoothing 1.21 2 1.12 · 10−1 20.0 2.12 · 103 3.03

Re-
sampling
(150
samp.)

4.68 2 8.60 · 10−2 1.99 2.03 · 103 1.87

Overall the performances of the local trajectory planners are not significantly
worse than the global counterpart. For example, the number of velocity holes are
in the worst case increased by 2, but for the majority of the simulations the number
has not increased.

About the differences between the global and local interpolated path, we can
observe that the PCHIP is the most accurate, with an error of about 0.1 mm in our
simulations. The cubic and smoothing trajectory planners are the least accurate,

57

5 – Implemented methods

Table 5.7: Greek fret dataset, Vtarget = 100 mm/s, Amax = 2000 mm/s2

Indices Lcross [mm] Nholes Tholes [s] Tmotion [s] Aerr,max Lref [mm]

[mm/s2]

Cubic 9.58 · 10−2 7 5.51 · 10−2 21.7 2.08 · 103 1.02 · 101

PCHIP (no
corr.)

9.19 · 10−2 13 1.18 · 10−1 21.3 4.22 · 103 1.09 · 10−1

PCHIP
(corr.
d=2.5 mm)

2.17 13 1.23 · 10−1 20.9 2.33 · 103 1.04 · 10−1

Smoothing 4.78 3 4.33 · 10−2 20.8 2.07 · 103 1.00 · 101

Re-
sampling
(200
samp.)

2.88 9 7.40 · 10−2 20.3 2.50 · 103 1.32

with a maximum error of 10 mm in the Greek fret path. Figure 5.13 shows the
differences between the global and local path interpolation for this simulation. We
also see that this error is very dependent on the geometry of the path, as it is
only 0.24 mm on the box path. Is is also significantly lower for the re-sampling
interpolator, which has a maximum error of 1.8 mm.

Analysing the norm of the accelerations in Figure 5.14, we observe that some
acceleration spikes are introduced. In each simulation the maximum spike is less
than 125% of the maximum acceleration imposed by the user except for the PCHIP
planner, which has a spike of 210% of the maximum acceleration on the Greek
fret simulation. In this case the algorithm for smoothing the acute angles gives
significantly better results, since it lowers that spike by 45%, which means that the
maximum acceleration reached in this case is 115% of the constraint.

58

5 – Implemented methods

800

-450

900

z
-p

o
s
it
io

n
 (

m
m

)

-400

1000

-350

y-position (mm)

-300

-250

1050-200 1100
1150

x-position (mm)

1200
1250

1300
1350-150 1400

1450

Path points

Local interpolation

Global interpolation

Figure 5.13: Comparison between global and local cubic spline interpolation on
the Greek fret path.

0 2 4 6 8 10 12 14 16 18 20

time (s)

0

500

1000

1500

2000

2500

3000

3500

4000

a
c
c
e
le

ra
ti
o
n
 n

o
rm

 (
m

m
/s

2
)

0 2 4 6 8 10 12 14 16 18 20

time (s)

0

500

1000

1500

2000

a
c
c
e
le

ra
ti
o
n
 n

o
rm

 (
m

m
/s

2
)

Figure 5.14: Accelerations profile for the Greek fret path. Interpolations: top
PCHIP with no path correction; bottom PCHIP with correction.

59

5 – Implemented methods

5.3.3 Trajectories tested on robot
In this section the trajectory tested on the robot arm are collected. Here only
the MatLab results are shown, while the complete testing set-up is presented in
Chapter 6. All the trajectories tested use the local planning technique described in
Section 5.3.

The trajectory tested for the box sealing task is programmed with PCHIP in-
terpolation, target constant speed of 36 mm/s and maximum acceleration of 600
mm/s2. The path points used are sampled from the target path of the trajectory
programmed with the standard COMAU planner. The path and the velocity profile
obtained are shown respectively in Figures 5.15 and 5.16.

For the engine hood sealing task, three trajectories are tested. The first one is
programmed with cubic interpolation, target constant speed of 400 mm/s and max-
imum acceleration of 3000 mm/s2. Its results are shown in Figures 5.17 and 5.18.
Another trajectory is planned with cubic interpolation, target constant speed of
100 mm/s and maximum acceleration of 2000 mm/s2. The last one is programmed
with PCHIP interpolation, target constant speed of 100 mm/s and maximum accel-
eration of 2000 mm/s2. The paths and the velocities of these last two trajectories
are shown in Figures 5.19 and 5.20.

The Greek fret trajectory used for the testing on robot is programmed with the
PCHIP interpolation, 400 mm/s target speed and 3000 mm/s2 maximum acceler-
ation. The narrow angles smoothing is also applied with d = 2.5 mm. Figure 5.21
and Figure 5.22 show the obtained results.

Table 5.8 summarizes the performance indices computed on the trajectories listed
above. The path points and the target velocity of the trajectory here exposed, ex-
cept for the hood trajectories with velocity target of 100 mm/s, are chosen in
accordance of processes that are already used and planned with the COMAU stan-
dard planner. Since the acceleration limits are not specified, we can freely choose
suitable values. For the Box trajectory, since the target velocity is low, we can
impose a low acceleration that should favour the tracking capabilities of the robot.
With 600 mm/s2, we obtain a good speed profile with few holes, as we can see in
Figure 5.16. The target velocities of the other two trajectories are, instead, higher.
For both cases, we choose an acceleration of 3000 mm/s2 that is high enough to
avoid too many speed drops, but still within the limits of the machine. An exact
measure of the maximum acceleration does not exist, because it depends on many
factor, for example on the joints involved on the specific motion, but values under
4000-5000 mm/s2 are generally considered acceptable for the robot that we use for
our testing.

60

5 – Implemented methods

Table 5.8: Summary of the trajectories tested on the robot arm.

Indices Lcross [mm] Nholes Tholes [s] Tmotion [s] Aerr,max Lref [mm]

[mm/s2]

Box (PCHIP,
36 mm/s, 600
mm/s2)

3.60 · 10−2 11 6.82 · 10−2 29.6 8.10 · 102 1.14 · 10−1

Hood (cubic,
400 mm/s,
3000 mm/s2)

3.89 · 10−1 7 1.88 · 10−1 5.90 4.40 · 103 3.45

Hood (cubic,
100 mm/s,
2000 mm/s2)

9.48 · 10−2 3 1.29 · 10−1 20.2 2.11 · 103 3.44

Hood
(PCHIP, 100
mm/s, 2000
mm/s2)

9.97 · 10−2 5 8.68 · 10−2 20.1 2.64 · 103 9.78 · 10−2

Greek
(PCHIP, 400
mm/s, 3000
mm/s2)

2.17 15 2.95 · 10−1 7.34 5.06 · 103 1.60

61

5 – Implemented methods

-40

-20

0

20

40

y
-p

o
s
it
io

n
 (

m
m

)

60

80

100

Box trajectory, PCHIP Planner

120

140

160

x-position (mm)

0

50 0 -100 -200-150-50

20

z
-p

o
s
it
io

n
 (

m
m

)

40

Path points

Path

Figure 5.15: PCHIP path interpolation for the box sealing task.

0 5 10 15 20 25 30

time (s)

0

5

10

15

20

25

30

35

40

v
e

lo
c
it
y
 n

o
rm

 (
m

m
/s

)

Box trajectory, PCHIP planner

Figure 5.16: Velocity profile for the box sealing task obtained with PCHIP inter-
polation with 400 mm/s target speed.

62

5 – Implemented methods

450

500

z
-p

o
s
it
io

n
 (

m
m

)

600

Hood trajectory, Cubic Planner

700

200

x-position (mm)

800 100

y-position (mm)

0
900

-100

-200
1000

-300

Path points

Path

Figure 5.17: Cubic path interpolation for the engine hood sealing task.

0 1 2 3 4 5 6

time (s)

0

50

100

150

200

250

300

350

400

v
e

lo
c
it
y
 n

o
rm

 (
m

m
/s

)

Hood trajectory, Cubic Planner

Figure 5.18: Velocity profile for the engine hood sealing task obtained with cubic
interpolation.

63

5 – Implemented methods

450

500

z
-p

o
s
it
io

n
 (

m
m

)

600

Hood trajectory, Cubic and PCHIP Planners

700

200

x-position (mm)

800 100

y-position (mm)

0
900 -100

-2001000
-300

Cubic

PCHIP

Figure 5.19: Cubic and PCHIP path interpolations for the hood sealing task.

0 2 4 6 8 10 12 14 16 18 20

time (s)

20

40

60

80

100

v
e
lo

c
it
y
 n

o
rm

 (
m

m
/s

)

Hood trajectory, Cubic Planner

0 2 4 6 8 10 12 14 16 18 20

time (s)

20

40

60

80

100

v
e
lo

c
it
y
 n

o
rm

 (
m

m
/s

)

Hood trajectory, PCHIP Planner

Figure 5.20: Velocity profiles for the hood sealing task obtained with cubic and
PCHIP interpolation with 100 mm/s target speed.

64

5 – Implemented methods

-200

Greek trajectory, PCHIP Planner

-250
880

y-position (mm)

-300

900

1100

z
-p

o
s
it
io

n
 (

m
m

)

920

1150

-3501200

x-position (mm)

1250

1300 -400
1350

1400

Path points

Path

Figure 5.21: PCHIP path interpolation for the Greek fret trajectory.

0 1 2 3 4 5 6 7

time (s)

0

50

100

150

200

250

300

350

400

v
e
lo

c
it
y
 n

o
rm

 (
m

m
/s

)

Greek trajectory, PCHIP Planner

Figure 5.22: Velocity profile for the Greek fret trajectory obtained with PCHIP
interpolation.

65

5 – Implemented methods

5.4 Graphical user interface
A MatLab application have been developed in order to simplify the input selection
for the trajectory planning. Referencing to Figure 5.23, the GUI is composed of
the following elements:

1. Input data: here the target velocity, the maximum acceleration and the sam-
pling time can be selected. If the correction check-box is selected, than the
velocity profile is programmed in order to respect the acceleration constraint,
otherwise a trapezoidal speed profile is planned.

2. Select dataset: the points that define the desired path can be chosen here.

3. Path preview: a preview of the selected path is shown.

4. Sharp angle correction: this feature is enabled only for the PCHIP planner.
Here different behaviours of the sharp angle correction algorithm can be se-
lected.

5. Resampling: here the number of samples or the approximative step distance
can be selected for the re-sampling planner.

6. Select planners: one or more planning techniques can be selected.

7. Preview: it shows only the path obtained with the selected interpolation tech-
nique on the desired dataset.

8. Analysis: it performs the global trajectory planning on the selected inputs
plus the analysis of the path radii.

9. Planning: it performs the local trajectory planing.

The output trajectory is saved in a different folder in MATLAB Data format.

5.5 Cubic spline with optimized time intervals
Before developing the approach illustrated in Section 5.3, another method has been
tested out.

Referring to Section 4.1, to interpolate a cubic spline we need a set of points qk
and their timing tk. Since in continuous processes applications the user is interested
in the velocity profile, we can use tk as a set of optimization variables. The idea is to
search if it is possible to obtain a sufficiently constant velocity profile by designing
a proper optimization problem.

Also this algorithm adopts the sliding window technique with the selection of
the first interval for the reasons explained in Section 5.3.

In the next section the details of the optimization problem are given.

66

5 – Implemented methods

Figure 5.23: Graphical user interface for trajectory planning.

5.5.1 Optimization problem setup
Our goal is to obtain a constant velocity profile. This means that we have to
minimize the deviations of the speed from a certain constant value. In a spline
we have to check the velocities at the end of each interval and in the intermediate
points. In particular for the intermediate points we are interested in the stationary
ones (maxima and minima). This is done by finding the zero of the derivative
of the speed function. First of all we compute the interpolation as explained in
Section 4.1. We obtain the values of the velocities vk,x(t), vk,y(t), vk,z(t) for each
interval (tk, tk+1), with k = 1, ..., N − 1 and N equal to the number of points
interpolated. The values T = [t1, ..., tN] are the optimization variables.

In a three-dimensional spline the speed is:

vk(t) =
ñ

vk,x(t)2 + vk,y(t)2 + vk,z(t)2 (5.24)
To obtain the stationary points more easily, we can derive the square of the speed
and find the zeroes of this function:

(vk(t)2)Í = 2vk,x(t) + 2vk,y(t) + 2vk,z(t) (5.25)

67

5 – Implemented methods

We denote the times in which the points are stationary as t∗
k. The zeroes outside

the interval (tk, tk+1) are discarded.
The cost function of the optimization problem is the mean square error of the

deviation of the velocities from the target speed vtarget:

f(T) = 1
2N − 1

öõõô NØ
k=1

(vk(tk)− vtarget)2 +
N−1Ø
k=1

(vk(t∗
k)− vtarget)2 (5.26)

The constraints are imposed on the maximum velocity and acceleration norms.
Since the acceleration of a spline function is linear, it reaches its maximum at the
beginning or at the end of each interval, so there is no need to check the intermediate
values:

vk(tk) < Vmax k = 1, ..., N

vk(t∗
k) < Vmax k = 1, ..., N − 1

ak(tk) < Amax k = 1, ..., N

(5.27)

The cost function and the constraints are non linear, therefore an appropriate
tool is needed to solve this optimization problem. In out case we used the MatLab
nonlinear optimization toolbox.

5.5.2 MatLab simulation and considerations
The algorithm is tested on the trajectory for the box cosmetic sealing process. A
first test is carried out without any pre-processing of the input data, while for a
second test the path has been re-sampled with constant step distance. The setup
for both tests is the same:

• Target speed: 50 mm/s

• Maximum speed: 55 mm/s

• Maximum acceleration: 2000 mm/s2

• Initial and final velocity: 50 mm/s

As we can see from the velocity profiles obtained in Figure 5.24, the results are
not satisfying enough to justify further developing. There are also many difficulties
intrinsic in a non linear optimization problem: first of all, the solvers can not
guarantee that the solution found is an absolute minimum, thus a slight change in
the inputs can give very different results; then a solution may not be even found if
the problem converges to an infeasible solution, and this is not acceptable for an
on-line application; finally the solution of a non linear optimization problem is very
computational demanding. For these reasons, it has been decided to discard this
approach in favour of the re-parametrization approach.

68

5 – Implemented methods

0 1 2 3 4 5 6 7

time (s)

42

44

46

48

50

52

54

v
e
lo

c
it
y
 n

o
rm

 (
m

m
/s

)

0 1 2 3 4 5 6 7

time (s)

49

49.5

50

50.5

51

51.5

52

52.5

53

53.5

54

v
e
lo

c
it
y
 n

o
rm

 (
m

m
/s

)

Figure 5.24: Velocity profile obtained with time interval optimization. Interpo-
lations: top cubic; bottom cubic with re-sampling.

69

Chapter 6

Experimental tests and
results

The testing activities were primarily carried out in the RoboLAB. Born as a joint
collaboration between Politecnico di Torino and COMAU S.p.A., this laboratory,
directly inside the Grugliasco plant, houses several robots that are used by students
and researchers of Politecnico or by COMAU’s R&D employees.

6.1 Configuration of robot cell for testing
For our tests we used the robot Racer7-1.4. It is a general purpose anthropomorphic
robot with 6 axis and 7 Kg of payload capability. Some typical applications in which
it can be used are: assembly, cosmetic sealing, handling and packaging, polishing
and deburring, measurement testing and machine tending.

The control unit of the robot is the C5 Compact. It uses the industrial PC
APC820 with a CPU Intel Core2 Duo @ 1.50 GHz. Each control unit can be
connected up to two robots. It also contains the drive modules that generate the
current for the motors of the robot. Figure 6.1 shows both the robot and the control
unit used for testing.

The control unit can be interfaced either using a teach pendant TP-5, shown
in Figure 6.2, or with a specific software installed on a computer called WinC5G,
shown in Figure 6.3. A teach pendant is a portable console used to program and
control the robot. It has a keyboard that allows to move the robot both in Cartesian
and joint space in an intuitive way, plus a touch screen used to move between the
offered functionalities. All the functionalities are also available using the WinC5G
for PC, which has a command-line interface. A virtual TP can also be installed
to have an exact replica of a real teach pendant. The main advantage of using
WinC5G is to use its editor for programming the motion of the robot in the COMAU
proprietary language PDL2. This can also be done with a TP, but it is not as

70

6 – Experimental tests and results

comfortable as using a PC.
An APC not connected to a robot has also been used during the testing phase.

This module (later referred as rack) contains only the planning and control logic,
without the drivers. It is interfaced with a PC and its status can be visualized with
Visual3D, that shows a 3D simulation of the robot. This set-up is very useful to
test a programmed motion in a safe and controlled environment before loading it
on the real robot.

Figure 6.1: The robot Racer7-1.4 and the control unit C5 Compact used for
testing.

6.2 PDL2 program, MOVE REPLAY and
moni.log

There are two ways to move the robot implemented in the COMAU architecture:
manually by using a teach pendant or by running a PDL2 program.

A PDL2 program contains a set of positions (Cartesian or joint) and motion
primitives that describes how to move between the input points. When a PDL2
program is started, the on board planner interprets the commands and plans the
desired trajectory, checking in real time the status of the robot to avoid dangerous
situations, like singularity points or actuators limits.

One motion primitive, called MOVE REPLY, works in a different way with

71

6 – Experimental tests and results

Figure 6.2: The COMAU teach pendant TP-5

Figure 6.3: The interface of WinC5G.

respect to the other ones. This function is used to read a moniSLJ.log file that
contains a sequence of points sampled at 2 milliseconds and reproduce it. During
the execution of this motion the internal planner is bypassed and no checks are
performed. This operation is generally safe because the moni SLJ file is produced
by recording a motion of interest of the robot. The MOVE REPLY is commonly
used to reproduce a manually programmed movement.

This specific feature was exploited to bypass the on board planner and test

72

6 – Experimental tests and results

Figure 6.4: Two robots simulated in Visual3D

our planner. In particular, instead of recording a moni SLJ file, we can create a
custom one inserting the points computed in MatLab and executing it with a
MOVE REPLY. The details on how to build a custom moni SLJ are explained in
Subsection 6.2.1.

A customized moni SLJ file can be executed with a standard MOVE REPLY.
Since the on board planner does not perform any error checking on the trajectory
in execution, it is very important to perform a preliminary simulation on the rack.
If the simulation goes well and no critical situation emerges from that, then the
trajectory can be tested on the real robot.

To verify the results, the measurements of the sensors can be extracted during
the execution of the motion. This is done by registering a file called moni.log. It
is different from a moni SLJ file, since the latter contains only the information on
position and velocity sampled at 2 millisecond, while the former contains also many
other measurements like accelerations, trajectory error and current drained by each
actuator. The moni.log file can be read end exported on MatLab to visualize the
results.

Figure 6.5 summarises the execution flow from the trajectory planning in Mat-
Lab to the recording of a moni.log file.

6.2.1 Building a custom moni SLJ file
A moni SLJ file is a binary file that contains a header and a sequence of points sam-
pled at 2 milliseconds. The velocity information is embedded inside the sequence
and can be extracted performing its discrete derivative.

The header of the file contains the information on the process at the time of
recording. Some relevant information are:

73

6 – Experimental tests and results

Trajectory
planning

moniSLJ.log

PDL file with
move REPLY

RACK
simulation

Robot
execution

moni_rack.log moni_robot.log

Read moni.log

Input dataset

MatLab

WinC5G

On board
controller

MatLab

Points
sequence at

2 ms

Figure 6.5: Block diagram of the operations needed to perform the simulation on
the robot.

74

6 – Experimental tests and results

• Model of the robot

• Positions of the frames of reference (user frame and tool frame)

• Initial and final positions

• Number of records

• Checksum computed on the recorded points

When executing a moni SLJ with a MOVE REPLY command, a coherence check
on the header is performed. If any part of the file is not consistent, then the MOVE
is not executed for safety reasons. For example, if the tool frame at the time of
execution is different than the one set at the time of recording, it is not safe to
execute the motion again, since the robot would move in an unexpected way.

In order to create a moni SLJ that can be run with a MOVE REPLY, a file
with a coherent header must be written. A MatLab script has been developed
by COMAU in order to do that. Given the points sequence and the values of the
reference frames, two files are given as outputs: a moni SLJ file with a coherent
header and a PDL2 file ready to execute the MOVE REPLY.

Figure 6.6 compares the steps needed to generate and execute a moni SLJ file
with the standard and the custom procedures.

Standard execution

Move the robot
Manually

PDL
program

Record a moni
SLG file

Execute the
motion with

MOVE REPLY

Custom execution

Generate a
trajectori at

2 ms

Create a
custom moni

SLG file

Execute the
motion with

MOVE REPLY

1. checksum
2. recerence frames
3. etc

Check coherence of:

Figure 6.6: Standard and custom generation and execution of a moni SLJ file.

75

6 – Experimental tests and results

6.3 Test trajectories
In this section the results of the tests performed with the set-up described in Sec-
tion 6.1 are shown. The trajectories used are the same used for the MatLab
simulation, which are described in Subsection 5.3.3. In particular the local trajec-
tory planner is used.

Each tested trajectory is compared with the results of the planning performed
with the standard COMAU planner.

6.3.1 Box trajectory
The box trajectory is required for a sealant deposit process. The requirements of
this task are very strict and the most important ones are:

• Order of magnitude of the path tracking error around a tenth of millimeter

• Constant Cartesian speed norm. The value of the target speed is not relevant,
since the extruder can be regulated.

The total execution time is not critical for this process, so the execution is carried
out at low speed, namely 36 mm/s.

The PDL program of the user contains a sequence of linear and circular motion
with the fly option enabled. This option prevents the planner from stopping at the
end of each instruction; instead, it tries to execute two consecutive commands with
constant speed. With this kind of motion, the instructed points are not exactly
reached, so they have to be chosen outside the desired trajectory by trial and error.
Figure 6.7 shows how the points were chosen to obtain the desired path.

In order to have comparable results, our planner has to work on the same path
imposed by the user in his process. To obtain this, the PCHIP interpolation is
chosen, then some samples on the user target path are selected. With the PCHIP
interpolation, just two or three points are needed to properly describe a straight
segment, while a curve may need three or more points depending on its radius.
In Figure 6.8 the user target path and the PCHIP interpolated target path are
shown. The approach and disengage motions are not exactly the same, but this
is not relevant for our purposes, since we are interested just on the portion that
correspond to the piece manufacturing.

After having defined the path points and the interpolation method, the planning
is performed with target constant speed of 36 mm/s and maximum acceleration of
600 mm/s2.

Once that the data about the motion of the robot are collected with a standard
moni.log file, we can plot in MatLab the results. Figures 6.9, 6.10 and 6.11 show,
respectively, the Cartesian positions, the velocity norm and the tracking error for
both the user planning and the PCHIP planning. The approach and disengage

76

6 – Experimental tests and results

intervals are excluded from the plots. The interval where the piece manufacturing
occurs is delimited by two vertical black lines.

In Figure 6.10 we can see that the velocity has a certain amount of noise. Com-
puting the standard deviation only on the interval of interest we obtain σuser =
3.390 mm/s for the PDL execution, and σpchip = 1.829 mm/s with our trajectory.
Estimating this index on other constant speed tasks, we found that it spans from
0.783 mm/s to 1.216 mm/s independently from the value of velocity reached, so we
can assume that the mechanical system introduce a random noise with a standard
deviation around 1 mm/s.

In the case of the PCHIP planner, some velocity holes are introduced by the
planner itself depending on the geometry of the path. This can be seen in Fig-
ure 6.13 and in Figure 6.14, where the colours represent the velocity at each point.
The robot arm operates also as a low-pass filter, so the speed profile planned is not
exactly followed.

Now we analyse the path tracking error. Referencing to Figure 6.11, no meaning-
ful differences are found between the two approaches, as a matter of fact the mean
values of the errors are: µuser = 1.369 mm and µpchip = 1.364 mm. This values are
just for reference, because the executed path has a slight delay with respect to the
reference path. This delay is introduced by the system during the computation of
the trajectory and during its actuation. If we look at a zoomed portion of the path
in Figure 6.12, we see that the actual error is less then 1 mm. The behaviour of
the two planners in this case is similar, with areas where the COMAU planner is
better, like in Section 1 of Figure 6.12, and other where the PCHIP planner is more
precise, like in Section 2 of Figure 6.12.

In conclusion with this test we can say that we obtained a reduction of almost
50% on the standard deviation of the velocity profile, while no improvement is
observed on the path tracking error. An important aspect to consider is the user-
friendliness of the two approaches: both have achieved comparable results, but
the PCHIP planner do not require any knowledge of the system, and the input
points are directly sampled on the target path. The COMAU approach instead has
required a lot of effort by the user to obtain the described results. In particular
many attempts were done to select the correct path points and a proper target
constant speed.

6.3.2 Engine hood trajectory
Also the engine hood trajectory is used for a sealant deposit process. In this
case the workpieces are larger than the boxes considered in Subsection 6.3.1, and
the requested velocity is 400 mm/s. Unfortunately the PDL program available is
intended to use on another robot with a larger reach with respect to the one used
for testing.

In order to execute the program on the robot Racer7-1.4, the path points have

77

6 – Experimental tests and results

Position in space

0.03

0.025

0.02

0.015

0.01

0.005

0

-0.005

Positions on X [m]
0.08 0.07 0.05 0.04 0.03 0.02 0.01 0 -0.010.06

P
o
s
it
io

n
s
 o

n
 Y

 [
m

]

target

path poins

Figure 6.7: Box trajectory. Path obtained with movefly motions through the
indicated points.

-0.02-0.0100.010.020.030.040.050.060.070.08

Position X [m]

0

0.01

0.02

0.03

0.04

0.05

0.06

P
o
s
it
io

n
 Y

 [
m

]

Position in space

user target path

PCHIP interpolated path

Figure 6.8: Box trajectory. Comparison between the user target path and the
PCHIP interpolated path. The black lines represent the approach and disengage
motions.

78

6 – Experimental tests and results

-0.0500.050.1

Positions on X [m]

0

0.02

0.04

0.06

0.08

0.1

0.12

P
o

s
it
io

n
s
 o

n
 Y

 [
m

]

Positions in space

target user

measure user

measure PCHIP

target PCHIP

Figure 6.9: Box trajectory. Comparison between the measured Cartesian posi-
tions.

10 12 14 16 18 20

time [sec]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

T
o

o
l
n

o
rm

 s
p

e
e

d
 [

m
/s

e
c
]

Speed norm

measure PCHIP

measure user

start

end

Figure 6.10: Box trajectory. Comparison between the measured velocities norm.

79

6 – Experimental tests and results

10 11 12 13 14 15 16 17 18 19 20

time [sec]

0

0.5

1

1.5

2

2.5

3

N
o

rm
 o

f
p

o
s
it
io

n
 e

rr
o

r
[m

]
10-3 Norm of position error

error PCHIP

error user

start

end

Figure 6.11: Box trajectory. Comparison between the measured tracking errors.

0.020.0250.030.0350.04

Positions on X [m]

0.1

0.102

0.104

0.106

0.108

0.11

0.112

0.114

0.116

0.118

P
o

s
it
io

n
s
 o

n
 Y

 [
m

]

Position in space

target PCHIP

measure PCHIP

measure user

target user

0.506

mm

Section 1

0.293

mm

Seciton 2

Figure 6.12: Box trajectory. Zoom of a portion of the path. Sections 1 and 2
indicate two zones where the tracking error is more relevant.

80

6 – Experimental tests and results

10 12 14 16 18 20

time [sec]

0

0.01

0.02

0.03

0.04

0.05

0.06

T
o

o
l
n

o
rm

 s
p

e
e

d
 [

m
/s

e
c
]

Speed norm PCHIP

target

measure

start

end

Figure 6.13: Box trajectory. Comparison between measured velocity and the
target velocity planned in MatLab.

Figure 6.14: Box trajectory. On the left: target position and velocity; on the
right: measured position and velocity. The colour scale is in m/s.

been scaled down with a factor 2.5. Also the orientation have been imposed con-
stant, since our planning algorithm works only for the Cartesian position. Due to
these changes, the final results may be different with respect to the original mo-
tion programmed by the user, nevertheless it is very useful to have a reference to
compare with.

The input parameters for our planner are: cubic interpolation, same path points
of the PDL program, target velocity of 400 mm/s, maximum acceleration of 3000
mm/s2. The resulting interpolated path and the user target path are not exactly the

81

6 – Experimental tests and results

same, but they are similar enough to be comparable, as we can see in Figure 6.15.

The results of the tests are shown in Figures 6.15, 6.16 and 6.17 that report,
respectively, the Cartesian positions, the velocity norm and the following error for
both the PDL planning and the cubic planning.

The process is composed of two sections, in which the constant speed is required,
connected by a reposition motion. This is highlighted in Figure 6.15. The measured
tracking errors in Figure 6.17 are similar for the two planners. In Figure 6.18 there
is a zoom of the reposition motion, where we expect to obtain the worst results
due to the curve having a small radius. The path obtained with the COMAU
planner has a maximum error of 2.89 mm, while the cubic planner, thanks to the
programmed decelerations, achieves an almost constant error lower than 0.66 mm.

In Figure 6.19 we see the achieved speed profile compared to the one programmed
in MatLab. The big gap in the velocity corresponds to the reposition motion. The
filtering effect introduced by the physical system is very clear in this section. In
this case it has a positive effect on the final results, since the resulting velocity is
smoother than the programmed one.

The comparison between the speed profiles obtained with the two planners is
shown in Figure 6.16. In this case the results obtained with the cubic planner
show a clear improvement over the traditional planner. In particular, with the
cubic planner, a constant speed is achieved during the whole first section, while
the second section presents just two major decelerations plus a smaller one. On
the other hand, the COMAU planner holds the constant speed only for small traits
while having big speed changes in the rest of the trajectory.

Another test is done using the engine hood trajectory. This time we compare
the planning using cubic and PCHIP interpolations. The target velocities are set
at 100 mm/s with a maximum acceleration of 2000 mm/s2. As expected from the
MatLab simulations, the results shown in Figures 6.20 and 6.21 are similar. We
can note a small giggling on the top right corner of the cubic Cartesian path in
Figure 6.20, and smaller decelerations in its speed profile in Figure 6.21. Both of
these behaviours meet our expectations, since the cubic interpolation produces a
more rounded path that requires lower decelerations. As we can see in Figure 6.22,
the target path is tracked with good precision with both planning techniques.

6.3.3 Greek fret trajectory
The last trajectory tested is the greek fret trajectory, which does not correspond
to any real process. The PDL program is a sequence of linear and circular motion
with fast direction changes useful to test the robot in different stress conditions.
This program is executed at the maximum speed allowed.

The PCHIP interpolation is chosen for our planner, because the other techniques
would distort the original path too much. The narrow angles smoothing is also

82

6 – Experimental tests and results

Figure 6.15: Engine hood trajectory. Comparison between the measured Carte-
sian positions.

9 10 11 12 13 14 15 16 17 18

time [sec]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T
o

o
l
n

o
rm

 s
p

e
e

d
 [

m
/s

e
c
]

Speed norm

measure cubic

measure user

X: 16.28

Y: 0.002172

2
nd

 section1
st

 section

Figure 6.16: Engine hood trajectory. Comparison between the measured veloci-
ties norm.

83

6 – Experimental tests and results

8 9 10 11 12 13 14 15 16 17

time [sec]

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

N
o
rm

 o
f
p
o
s
it
io

n
 e

rr
o
r

[m
]

Norm of position error

error user

error cubic

Figure 6.17: Engine hood trajectory. Comparison between the measured tracking
errors.

0.555
0.55

0.475

Position in space

0.48

0.485

0.275 0.545

0.49

P
o

s
it
io

n
s
 o

n
 Z

 [
m

]

0.495

0.27

0.5

Positions on X [m]

0.540.265

Positions on Y [m]

0.26 0.535
0.255

0.530.25
0.245 0.525

target user

measure user

target cubic

measure cubic

2.89 mm

0.66 mm

Figure 6.18: Engine hood trajectory. Zoom on the reposition motion between the
two section of the path. Two distances between the target and the measured path
are reported.

84

6 – Experimental tests and results

8 9 10 11 12 13 14 15

time [sec]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

T
o
o
l
n
o
rm

 s
p
e
e
d
 [
m

/s
e
c
]

Speed norm

target

measure

Figure 6.19: Engine hood trajectory. Comparison between measured velocity and
the target velocity planned in MatLab.

applied with d = 2.5 mm. The target velocity is set to 400 mm/s and the maximum
acceleration at 3000 mm/s2.

Figures 6.23, 6.24 and 6.25 show, respectively, the Cartesian positions, the ve-
locity norm and the tracking error for both the PDL planning and the PCHIP
planning. In Figure 6.27 and Figure 6.28 two zooms of the critical sections of the
path are shown to compare the tracking error. An interesting observation can be
done on the speed reached during the execution of the section shown in Figure 6.27:
both planners programmed its execution with similar speed, 60 mm/s for the PDL
planning and 70 mm/s for the PCHIP planning, as we can see in Figure 6.24.

In this case the PCHIP planner achieves the target constant velocity only for
small intervals, mainly due to the geometry of the path that imposes frequent
changes of direction.

85

6 – Experimental tests and results

0.4

0.5

0.42

0.44

0.6

0.46

P
o
s
it
io

n
s
 o

n
 Z

 [
m

]

0.7

0.48

0.3

Positions on X [m]

0.5

0.8

Position in space

0.2

0.52

0.1
0.9

Positions on Y [m]

0
-0.1

1 -0.2
-0.3

1.1 -0.4

measure cubic

measure PCHIP

Figure 6.20: Engine hood trajectory. Comparison between the cubic and PCHIP
measured Cartesian positions with velocity target at 100 mm/s.

Figure 6.21: Engine hood trajectory. Comparison between the cubic and PCHIP
measured velocities norm with velocity target at 100 mm/s.

86

6 – Experimental tests and results

0.47

0.475

0.48

0.485

0.49

0.495

0.5

0.505

0.51

0.515

P
o
s
it
io

n
s
 o

n
 Z

 [
m

]

0.6

Position in space

Positions on X [m]
0.7 0.290.280.27

Positions on Y [m]
0.260.250.240.23

target cubic

measure cubic

target PCHIP

measure PCHIP

Figure 6.22: Engine hood trajectory. Zoom on the reposition motion between
the two section of the path. Comparison between the cubic and PCHIP measured
Cartesian positions with velocity target at 100 mm/s.

87

6 – Experimental tests and results

-0.15

-0.2

-0.25

Positions on Y [m]

-0.3

0.8

-0.351.05

1.1

1.15

Positions on X [m]

1.2
-0.4

1.25

1.3

1.35

1.4 -0.45
1.45

Position in space

0.9

P
o
s
it
io

n
s
 o

n
 Z

 [
m

]

1

measure PCHIP

measure user

Figure 6.23: Greek fret trajectory. Comparison between the measured Cartesian
positions.

10 11 12 13 14 15 16 17 18

time [sec]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
o
o
l
n
o
rm

 s
p
e
e
d
 [
m

/s
e
c
]

Speed norm

measure PCHIP

measure user

Section in zoom 1

Figure 6.24: Greek fret trajectory. Comparison between the measured velocities
norm.

88

6 – Experimental tests and results

10 11 12 13 14 15 16 17

time [sec]

0

0.005

0.01

0.015

0.02

0.025

0.03

N
o
rm

 o
f
p
o
s
it
io

n
 e

rr
o
r

[m
]

Norm of position error

error PCHIP

data user

Figure 6.25: Greek fret trajectory. Comparison between the measured tracking
errors.

10 11 12 13 14 15 16 17 18

time [sec]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T
o
o
l
n
o
rm

 s
p
e
e
d
 [
m

/s
e
c
]

Speed norm

target

measure

Figure 6.26: Greek fret trajectory. Comparison between measured velocity and
the target velocity planned in MatLab.

89

6 – Experimental tests and results

1.215 1.22 1.225 1.23 1.235 1.24 1.245 1.25 1.255

Positions on X [m]

-0.425

-0.42

-0.415

-0.41

-0.405

-0.4

P
o
s
it
io

n
s
 o

n
 Y

 [
m

]

Position in space

measure user

target user

measure PCHIP

target PCHIP

0.55 mm0.45 mm

Figure 6.27: Greek fret trajectory. Zoom 1: zoom on the fast direction change
section of the path.

1.2 1.21 1.22 1.23 1.24 1.25

Positions on X [m]

-0.38

-0.375

-0.37

-0.365

-0.36

-0.355

-0.35

-0.345

-0.34

P
o
s
it
io

n
s
 o

n
 Y

 [
m

]

Position in space

target PCHIP

measure PCHIP

target user

measure user

1.71 mm

0.77 mm

Figure 6.28: Greek fret trajectory. Zoom 2: zoom on the circular motion of the
path.

90

Chapter 7

Conclusions

In this thesis the problem of the analysis and planning of continuous trajectories
has been examined. Firstly a review of the theory behind the trajectory planning
and of some common techniques is proposed. Then some examples of continuous
processes commonly found in the manufacturing industry are examined. At last a
novel trajectory planning technique is developed.

The trajectory planning is divided in two phases. In the first phase the in-
put path points are interpolated with a spline function. Different interpolating
techniques have been proposed in order to adapt to the necessity of the user. In
particular the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) seems
to be the most useful in many practical cases.

Once the path function is computed, the dynamical properties of the trajectory
are defined. Particular care is devoted to the analysis of the geometrical properties
of the path and on the definition of a speed profile that adapts to it.

The algorithm is implemented in MatLab in order to test its performance on
real cases. In particular a local trajectory planner is developed in order to simulate
the condition of a real control unit, where the computational resources are limited
and only a small subset of points can be computed at a time. A global version of
the same algorithm is also provided in order to have a useful comparison with the
proposed approach.

The planner is then validated with experimental tests run on a real COMAU
robot. The measurements obtained show that the local trajectory planner provides
a good solution for the continuous processes analysed. We can also observe a general
improvement with respect to the standard COMAU planner applied on the same
processes.

91

7 – Conclusions

7.1 Future works
The proposed algorithm is only on its early stages of development. Before imple-
menting it on a real controller, it is necessary to develop other features. The most
important ones are:

• Interpolation of the orientation component of the path. The planner provides
only the Cartesian positions of the trajectory, but in real cases it is also nec-
essary to plan the orientation of the tool.

• Integrate an inverse kinematic module. Having the information in the joint
space can be very useful to improve the quality of the planning. In particular
the acceleration constraint could be directly taken from the maximum accel-
eration of the actuators, and the velocity profile could be adapted accordingly.
It is also necessary to check violations of kinematic constraints and eventually
reprogram the motion if this situations occur.

• Convert the MatLab code in C and optimize the computation time for real-
time execution.

92

Bibliography

[1] Mayur V. Andulkar, Shital S. Chiddarwar, and Akshay S. Marathe. «Novel in-
tegrated offline trajectory generation approach for robot assisted spray paint-
ing operation». In: Journal of Manufacturing Systems. Elsevier, Oct. 2015,
pp. 201–216.

[2] Basilio Bona. Modellistica dei robot industriali. Torino: Celid, Mar. 2014.
[3] Alessandro De Luca, Leonardo Lanari, and Giuseppe Oriolo. «A Sensitivity

Approach to Optimal Spline Robot Trajectories». In: Automatica 27.3 (May
1991), pp. 535–539. Elsevier Ltd.

[4] J. De Maeyer, B. Moyaers, and E. Demeester. «Cartesian path planning for arc
welding robots: Evaluation of the descartes algorithm». In: 2017 22nd IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA). Sept. 2017, pp. 1–8.

[5] David Eberly. Moving along a curve with specified speed. Redmond WA 98052:
Geometric Tools, Apr. 2007. url: https://www.geometrictools.com/.

[6] Jean Gallier. «Basics of the Differential Geometry of Curves». In: Geometric
Methods and Applications. New York: Springer, May 2011. Chap. 19.

[7] Marina Indri. Slides from "Robotica" course. DAUIN - Politecnico di Torino,
A.Y. 2016-2017.

[8] Claudio Melchiorri. Slides from "Foundation of Industrial Robotics" course.
DEIS - University of Bologna, A.Y. 20010-2011.

[9] Bruno Siciliano et al. Robotics - Modelling, Planning and Control. Springer,
2009. Chap. 4.

[10] Marc Spiegelman. Slides from "Numerical Methods" course. Dept. of Applied
Physics and Applied Mathematics - Columbia University, A.Y. 2007-2008.

[11] Ryan Tibshirani. Slides from "Advanced Methods for Data Analysis" course.
CMU Statistics - Carneigie Mellon University, A.Y. 2013-2014.

[12] Adrien Treuille. Slides from "Computer Graphics" course. CMU Graphics -
Carneigie Mellon University, A.Y. 2010-2011.

93

https://www.geometrictools.com/

BIBLIOGRAPHY

[13] G. Q. Zhang et al. «Robotic additive manufacturing along curved surface — A
step towards free-form fabrication». In: 2015 IEEE International Conference
on Robotics and Biomimetics (ROBIO). Dec. 2015, pp. 721–726.

94

Acknowledgement

I would like to express my deep gratitude to Professor Marina Indri, my thesis
advisor, for her patient guidance and invaluable support during the development
of this research. She allowed this paper to be my own work, but steered me in the
right direction whenever it was needed.

I would also like to thank the COMAU R&D group, who hosted me and gave
me the opportunity to use their laboratory. I am particularly grateful for the
assistance given by Engineer Eliana Giovannitti throughout the entire course of the
thesis. Her patience and precious knowledge have been fundamental for carrying
out successfully the last testing phases.

Thank you to all my friends, with whom I shared these fantastic years and helped
me to make it this far. To my colleagues from Politecnico, for the good moments
we had both inside and outside the university. To my friends from "collegio", who
have become like a second family to me. And to my friends from hometown, for
making the little time I spent with them feel like I had never been away.

A special thanks goes to my granddad, that has always helped me in every way
he could.

Then, I must express my profound gratitude to family. You have always sup-
ported me, and encouraged me to pursue whatever I most desire. This accomplish-
ment would not have been possible without you.

Finally, thank you Francesca, for the love that you give me every day.

95

	Introduction
	Problem overview
	Objective of the thesis
	Thesis outline

	Trajectory planning
	Introduction
	Path and trajectory
	Planning constraints
	Joint space and task space planning
	Point-to-point planning in joint space
	Third-order polynomial trajectory
	2-1-2 trajectory
	Multiple-joints generalization

	Motion through a sequence of points
	Polynomial interpolation
	Spline interpolation
	Interpolating linear polynomials with parabolic blends

	Examples of continuous processes in industrial manufacturing
	Robotic arc welding
	Example of trajectory planning for robotic arc welding

	Spray painting
	Example of trajectory planning for spray painting

	Additive manufacturing
	Applications and advantages
	Additive manufacturing along curved path

	Spline interpolation
	Cubic Spline
	Piecewise Cubic Hermite Interpolating Polynomial
	Smoothing Spline

	Implemented methods
	Moving along a curve with specified speed
	Reparametrization for specified speed
	Numerical solution

	Trajectory analysis and global planning
	User-defined inputs
	Interpolation techniques and path generation
	Smoothing narrow angles in PCHIP interpolation
	Path re-sampling
	Path curvature
	Velocity profile and temporal law inclusion
	Performance indices and MatLab simulations

	Local trajectory planning
	Planning and joining consecutive splines
	Performance indices and MatLab simulations
	Trajectories tested on robot

	Graphical user interface
	Cubic spline with optimized time intervals
	Optimization problem setup
	MatLab simulation and considerations

	Experimental tests and results
	Configuration of robot cell for testing
	PDL2 program, MOVE REPLAY and moni.log
	Building a custom moni SLJ file

	Test trajectories
	Box trajectory
	Engine hood trajectory
	Greek fret trajectory

	Conclusions
	Future works

