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Abstract

In this document are developed considerations about the design and con-
trol of a particular system located in the field of mobile robotics called Ballbot.
A Ballbot has a particular structure that allows to present a new concept of
mobility, it is a dynamically stable mobile robot that must balance itself on a
sphere that guarantees the omnidirectionality movement. In particular, it was
analyzed a Ballbot with a ball drive-mechanism composed of three omnidirec-
tional wheels. Firstly, a 2D modeling of the system, considered as an inverted
pendulum, was studied on the two decoupled XZ, YX planes. Congruently, to
achieve the system stability, a control system was developed through the use of
Matlab and its Simulink tool. In particular was employed an optimal control
theory implemented by an LQR (Linear Quadratic Regulator). Using Simscape,
a Matlab tool that allows the modeling and the simulation of a multidomain
physical system, a simplification of the physical model of the thought ballbot
has been built. Various tests on balancing of the simplified Ballbot prototype
were performed by varying the initial state-target of the ballbot, giving an im-
pulsive stimuli and evaluating the balancing capacity of the system. At a later
time, the attention was dedicated on the Electronics that allows the control of
the sphere. An Arduino-MKR1000 has been chosen as microcontroller, there-
fore it follows a description of the affiliated sensors necessary for the ballbot
system. As a consequence, using appropriate support packages and libraries, it
was conceived a Simulink-Arduino interface on Simulink tool.
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1 Introduction

One of the main fields of mobile robotics application is the human environment. In
recent years, in fact, the mobile robotics sector has had a considerable expansion due
above all to the invention of an increasingly advanced and precise sensors, such as to
develop their ability to assist the human in carrying out various and, more or less,
complicated physical tasks. The current mobile robotics is increasingly enriched by
prototypes with the ability to move in limited spaces, to struggle between obstacles
and, indeed, also to interact with the human. In this context it is however important to
pay attention on the structure of the robots. A structure that is congruent to the work
environment is in fact necessary and, in the case of mobile robots that have to interface
with a human environment, it is certainly convenient that a structure is closer to the
human structure, therefore a tall and thin robot. On the other hand, a conventional
mobile robot that does not care about having a particular physical structure and
characterized by a large, heavy base would make it unfit for movement in a crowded
environment. A first attempt at a mobile robot that respects the attributes listed
above is the Segway, a two-wheeled mobile robot with a structure similar to an inverted
pendulum. The operating principle of the Segway is based on center of mass (CM)
position control of the system. To move forward or backward, the rider must bend
slightly forward or backward according to the desired movement; a manual mechanism
is used to control the bar in order to allow the vehicle to steer. However, Two-wheeld
mobile robot does not result an ideal solution because its restricted motion has still
unsolved.
More adequate to the aim is the Ballbot system with a new concept of mobility, its
structure is also similar to that of an inverse pendulum but it passes from the balance
on two points of support on the ground to only one.

1.1 Ballbot concept

A Ballbot is a new and recent type of mobile robot. Its points of strength, if compared
to other robots, are the omnidirectional motion and the rotation about its vertical
axis. It is a mobile robot that maintains balance on a ball and has a single contact
point on the ground and its main purpose is to maintain meta-stable equilibrium and
offer the possibility of movement based on user input. As much as it is an unstable
system, even when motionless, it belongs to the area of research of the nonholonomic
system. These are characterised by nonintegrable rate constraints arising out of rolling
contact or momentum conservation. So, one of the main issues of the Ballbot is
about the control. Modern Ballbot robots use fuzzy systems, genetic algorithms and
other artificial intelligent tools, but more extensively used are the PID (Proportional-
Integral-Derivative) and LQR (Linear Quadratic Regulation) control laws. In order
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1.1 Ballbot concept

to control the stabilization of the robot, there are different possible answers. The
classical implementation, consists of four motors, characterized by the generator force
perpendicular on the axis of each one. In this structure opposite motors would receive
equal value commands of opposite signs. Three-motors models have a more complex
computational aspect. The command force will be located at different angles from
the gyroscope axis. Moreover, it has more degrees of freedom than a simple inverted
pendulum as the sphere allows travel in any given direction.

13



2 State of the Art

Successfully tested Ballbot implementation are the CMU Ballbot, BallIP Ballbot,
REZERO Ballbot, that uses a three omni-directional wheels available to control the
sphere’s movement while keeps the robot in the meta-stable position, but also the
NXT LEGO Ballbot, which uses also it three common wheels and represent the sim-
plest ballbot model, with motors perpendicular to the OX and the OY plane and the
AIT Ballbot developed by the Asia institute of Technology that, unlike the previous
two mentioned above, uses four omni-directional wheels which make it certainly easier
to model than to compute resources.[1]

2.1 CMU Ballbot

Figure 1: CMU Ballbot: (a) statically stable, (b) dynamically stable

CMU Ballbot is the pioneer robot of this type of system. It is a person-sized mobile
robot developed at Carnegie Mellon University, USA, in 2005. Its structure is part of
a construction with one body and one sphere with a stabilization methods similar of
a simplified planar inverted pendulum[2]. It represents an evolved omni-directional
mobile robot able to balance both dynamically and statically on a single spherical
wheel. The design of the considered Ballbot is characterized by four principle drive

14



2.1 CMU Ballbot

system:
’control system’, ’leg drive’ that allows controlled transition from SSS (Static Sta-
ble State) to DSS (Dynamically State Space), ’yaw drive’ to allow rotation around
its vertical axis(yaw-motion) and ’four-motor inverse mouse-ball’ drive that enables
backward and forward motion.

Figure 2: (a) View showing main drive arrangement, (b) View showing yaw drive
mechanism

Figure 3: (a) View showing main drive arrangement, (b) View showing yaw drive
mechanism

To guarantee a statically stable state when powered off a triad system is used.

15



2.1 CMU Ballbot

2.1.1 CMU Ballbot Control

Figure 4: Planar simplified ballbot model.

• Balancing Controller:
the 3D CMU Ballbot balancing is reached using two independent Proportional
Integral Derivative (PID) controllers acting one in each of the vertical planes.
PID gains were tuned manually. These two controllers try to move the ball
directly below the center mass of the body and make Balancing controller good
at balancing about zero body angles.

• Station Keeping Controller:
Station Keeping allows balancing at a desired angle position Φd even when
disturbed. It is realized adding an outer loop to Balancing Controller and is
regulated by a Proportional-Derivative (PD) controller as shown in the following
block diagram:

Figure 5: Station Keeping block diagram with Balancing control block.

• Yaw Controller:
It is an independent controller composed by an inner Proportional Integral (PI)
control loop whose task is feed back the yaw angular velocity, and an PD con-
troller that create an outer loop working with yaw angle Ψ and yaw angular
velocity Ψ̇ :

16



2.2 BallIP-TGU Ballbot

Figure 6: Yaw controller block diagram

• Legs Controller:
Leg controller is composed by three decoupled controller, one for each leg, to
allow the rising up and the putting down of the legs. An inner Proportional-
Integrative (PI) control loop guarantees the legs-down controller instead, legs-up
controller is created through a PI speed controller that stops the legs speed is
lower than a set low threshold so, when the legs collide the body.

Figure 7: Legs-adjust controller block diagram

2.2 BallIP-TGU Ballbot

Figure 8: BallIP-TGU

17



2.2 BallIP-TGU Ballbot

BallIP-TGU Ballbot is developed at Tohoku Gakuin University, Japan, in 2008. This
project is expanded to test the capability of robots to carry loads in order to pro-
mote these modern systems also for cooperative transportation. Some load transport
examples are shown below:

Figure 9: BallIP-TG load transport examples

Actuator mechanism of BallIP is provided by three stepper motors, placed at an angle
of 120 degrees one each other, whose take off the staff needed for shaft encoders and
make the system more accurate.
Wheels and motor’s shaft are directly connected. Otherwise, there is not belt in the
mechanism transmission and, for this reason, in BallIP-TGU Ballbot there is much
less backlash with respect to CMU Ballbot [3].

2.2.1 BallIP-TGU Controller

The controller to balance the BallIP-TPU is developed starting from a simply Proportional-
Derivative(PD) controller.
In constrast to the CMU Ballbot that implement a torque control, BallIP uses a ve-
locity control strategy on their omniwheels for two principle reason: first one is due
to the use of stepper motors to actuate the omnidirectional wheels, and the other one
is because this type of control better handles the scenario where omniwheel and the
ball loses the contact [4].

18



2.3 Rezero Ballbot

2.3 Rezero Ballbot

Figure 10: Rezero Ballbot

Rezero Ballbot developed by a team of 10 students at ETH Zurich, Switzerland, in
2010. The project was born as a challenge: create a new product or prototype in not
over one year.
The development of Rezero is mainly inspired by the two previous CMU and BallIP-
TCU ballbot projects. Unlike the previous two, it is designed also for high accelera-
tion, fast movement, and with a particular attention on external structure and design
in order to make the most of all possible abilities of a Ballbot system.
One of successes envisaged and obtained by the Rezero is the capability to move
spontaneously, smoothly, in every direction.
Furthermore it demonstrates its potential, even in a restricted way, being able to in-
teract with a bounded group of people: it can even recover from the thrusts, reacting
on attraction and being able to follow a path, or a person at a constant distance.
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2.3 Rezero Ballbot

2.3.1 Rezero Technics

Figure 11: Rezero Technics

The project is thinking to create more propulsion possible with the lowest weight
possible. Rezero’s drive system, as BallIP-TGU Ballbot, is composed by three omni-
directional wheels able to rotational motion without restriction in the axial direction.
Omniwheels that allow the control of the sphere without paying attention to unwanted
friction.
Rezero Electronic system is composed by high-tech sensors: ’Distance and Sonic’
sensors, to capture the presence of an obstacle, with microphones to make Rezero able
to perceive and to react to its environment, gyroscope and accelerometer integrated
on the IMU (Inertial Measurements Unit) shield, to acquire angular position: Rezero
is programmed to measure the incline 160 times per second.

2.3.2 Rezero Control

In order to develop a controller robustness against the noise , the ETH team use a
linear control with a low pass filters joined to a Kalman controllers [3].
Kalman Filter Control - Concept:
Sensors give information about the system state but with uncertainty or inaccuracy,
and not directly. Kalman Filter goal is to squeeze as much possible information
from the measurements to obtain a better answer with respect to an estimate could
be give. Looking at the current state (at time (N-1)),with particular and adequate
assumptions, Kalman Filter predict the next state at time N. One of the advantage
is that it is light on memory, in fact it do not need to hold any history about the
previous state, and it very fast, making it well suited for real time problems and
embedded systems. It also called Linear Quadratic Estimation (LQE).
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2.4 NXT LEGO Ballbot

2.3.3 Rezero Design

The design of Rezero is thinking to communicate ballbot agility.
Its envelop is able to vary in height, it can be let down over the ball during park
scenario and it is able to remain stable.

Figure 12: Rezero with design casing

Table 1: Comparison of the characteristics of four Ballbot robots

University CMU BallIP-TGU ETH
Year 2006 2008 2010

Weight (Kg) 45 11 14.5
Height (cm) 150 50 80

Max deviation angle (deg) Less than 1 Less than 5 Less than 1
Rotation yes yes yes
Controller LQR/PID PD LQR/gain scheduling

2.4 NXT LEGO Ballbot

Figure 13: NXT Lego Ballbot
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2.4 NXT LEGO Ballbot

NXT LEGO Ballbot is a particular ballbot system developed at University of Ade-
laide, Australia, using LEGO pieces and blocks.
It has a better stability compared to CMU Ballbot and it is characterized by the
possibility to be controlled via remote control [3]. The project is tested using a plas-
tic ball as spherical wheel, its motion is regulated through three wheels connected to
the LEGO parts attached diagonally. The wheels are covered with two rubber tires
attached to DC motors and one freely-spinning wheel. NXT Ballbot movement is
allowed by rotating DC motors [5].

Figure 14: NXT-Lego Ballbot
Sensoring Figure 15: NXT-Lego Ballbot re-

mote control
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3 Model Based Design (MBD) - Overview

Intelligent systems are at the base of the technology used in everyday life. These sys-
tems use the built-in software to provide intelligent communications, transport and
automation: "Today there are more intelligent systems on our planet than human
beings".
As these systems add new features, the software they contain grows and incorporates
increasingly powerful algorithms..To develop such a complex code, it is increasingly
necessary to use system models throughout the design process. MathWorks, company
manufacturer of the MATLAB software, has perfected this "model-based approach"
by creating software tools to achieve faster design, better quality, greater flexibility
and reduced costs. Model-Based Design starts from a system model in which ideas
and requirements are collected. The model is a specific executable that allows you to
collaborate on different engineering roles and modeling domains: it provides graphical
modeling environments which contains block diagrams and state machines. You can
simulate the model or perform rapid prototyping on it to explore design alternatives
in a short time. At each iteration it is possible to refine the model of the system to op-
timize the project, create test benches for system verification and saving time. When
it is ready for implementation it is possible to automatically generate the code (code-
generation button, for the working of both microelectronic (Arduino, Raspberry PI)
and embedded devices, FPGA (Field Programmable Gate Array), thus eliminating
errors related to manual coding. So, Model-Based offers the opportunity to simplify
projects by avoiding problems of design, automation or different phases in advance,
as the generation of code and the acceleration of the entire development process that
actuate a significantly reduction of physical prototypes and experimental tests thanks
to the use of the simulation.

Figure 16: Model Based Design V-flow
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• MODEL IN THE LOOP (MIL):
It is a purely functional simulation. The plant and the controller running both
on your PC to be sure that the model works properly. In fact, in this develop-
ment process it is possible simulate and modify the design until you are satisfy.
The model exists entirely in the simulation tool: Simulink in this project.

• SOFTWARE IN THE LOOP (SIL):
Durign the SIL process the plant exists on the tool, while the controller is
translate into C-Code. So, code is plant depender but the simulation is still on
PC: this is a simulation in the simulation domain. Time is not real and logic
signals are exchanged between controller and plant. In order to avoid high time
of running, optimization is necessary.

• PROCESSOR IN THE LOOP (PIL):
PIL goal is to validate the control on the target hardware. In this development
process there is still the Simulink model of the plant. So, part on the model
running on PC (plant) and the other part, that is a C-code, runs on the target-
hardware or rapid prototyping hardware.

• HARDWARE IN THE LOOP (HIL):
This phase is simulated in real time (physical domain): physical signals are
exchanged between controller and plant. The firts one runs on the target-HW
and the plant on the emulation hardware. For these reasons, HIL is good for
testing interactions with hardware and real-time performance.

In this document is developed the first part of V-model on a preliminary ballbot
design.
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4 Preliminary design

4.1 2D Geometric parameters

Table 2: Geometric parameters of the 2D preliminary design

Parameter Symbol Value
Distance between CM and ball center L 0.6 [m]

Ball radius Rs 0.16 [m]
Ball mass Ms 2.5 [Kg]
Ball inertia Js 0.016 [Kg m2]

Inertia Pitch moment about CM Jα 12.48 [Kg m2]
Inertia Roll moment about CM Jβ 12.48 [Kg m2]

4.2 Drive mechanism

Starting from an analysis about the different types of arrangements which allows
spherical omnidirectional motion of the functional prototypes ballbot described in
the previous sections, it was conclued that ’three omniwheels over ball center’ results
the best drive mechanism considering a trade-off among construction, controllabilty,
encumbrance and friction .
In particular, Ballbot drive mechanism proposed in this section is based on the work
carried out by engineers at Faculty of Automatic Control and Computers University
Potitechnica of Bucharest, about precisely Three Omni-wheel Ballbot Optimum Im-
plementation; In Figure17 it is shown control functionality block diagram developed:

Figure 17: Three-ommniwheel Drive mechanism block diagram

A Bluetooth module communicate the robot’s operating parameters to a computer
in order to monitor the behavior of the robot. The Arduino microcontroller reads
orientation data detected by the gyroscope in order to compute adequate commands
must be executed by each of the three motors to maintain the robot stability. After the
motors performed the microcontroller commands, the econders send motor monitoring
data to the computer application through Bluetooh module to restart robot’s behavior
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4.2 Drive mechanism

control. In this project the microcontroller conceived is an Arduino MKR1000 so:

1. Its Wi-fi integrated module is considered, instead of a Bluetooth module, to
communicate the robot’s operating status;

2. The microcontroller reads the detected data from a Gyroscope sensor through
BNO0555 IMU (Inertia Measurement Unit).

The implementation of the "Three Omni-wheel Ballbot implementation" is shown in
the Figure17, the three motors are arranged in an equilateral triangle manner with
motor3(M3) placed on OY axis and the other two motors disposed at 120 degrees one
to the left side of it and the other one to the right side [1].
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5 2D Model Design

In this chapter is described the mathematical model of a Ballbot robot following the
modeling of NXT Ballbot: a Mindstorms NXT version of Ballbot[5]. The first Ballbot
modeling approach do not consider the omniwheels, the Ballbot model is a spherical
wheeled inverted pendulum so the structure looks like a multy-body system in which
involve two rigid bodies: the sphere and the body.[cit NXT LEGO]

Figure 18: Ballbot modeling: Inverted spherical pendulum

5.1 Planar system Model

According to this work [5] it is needed to actuate different assumptions and particular
simplifications.
3D modeling of an omnidirectional spherical robot interests research area of the non-
holonomic system so, to simplify the study of the motion equations of the system, it is
analyzed the motion on XZ plane an YZ plane: the two planes are considered decou-
pled and are characterized of the same motion equations. These assumptions reduce
the three dimensional problem in the study of two separate and identical spherical
wheeled inverted pendulum.

5.1.1 Assumptions and Simplifications:

1. The motion in the Pitch-XZ plane and in the Roll-YZ plane are decoupled;

2. Since the device present a revolution symmetry, the dynamic equations for the
two planes are identical.
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5.1 Planar system Model

Simplifying hypotheses:

1. No slip between sphere and the ground;

2. As a first approach rolling friction is considered negligible.

5.1.2 XZ Planar System:

Figure 19: XZ Planar System

α : body pitch angle; θ : spherical wheel angle; θs : spherical wheel angle driven by theDC motor;

Ballbot generalized coordinates and generalized velocities on XZ plane based on the
coordinate system of the Figure, assuming that at time t=0 −→ θ=0.

(xs, zs) = (Rθ,R);

(ẋs, żs) = (Rθ̇, 0);

(xb, zb) = (xs + Lsin(α), zs + Lcos(α)) = (Rθ + Lsin(α), R+ Lcos(α));

(ẋb, żb) = (Rθ̇ + Lα̇cos(α),−Lα̇sin(α));
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5.2 YZ Planar System

5.2 YZ Planar System

Figure 20: YZ Planar System

β : body roll angle; θ : spherical wheel angle; θs : spherical wheel angle driven by theDC motor;

Ballbot generalized coordinates and generalized velocities on YZ plane based on the
coordinate system of the Figure, assuming that at time t=0 −→ θ=0. (ys, zs) =

(Rψ,R);

(ẏs, żs) = (Rψ̇, 0);

(yb, zb) = (yS + Lsin(β), zS + Lcos(β)) = (Rψ + Lsin(β), R+ Lcos(β));

(ẏb, żb) = (Rψ̇ + Lβ̇cos(β),−Lβ̇sin(β));

5.3 Equations of Motion

Dynamic equations of motion of the 2D multy-body ballbot system can be derived
through the Lagrange method.
Defined the state variables of the system, considering as states the set of generalized
angular positions q(t) and the generalized angular velocities q̇(t), the state vector is
2n-dimensional vector (with n= number of generalized coordinates defined as:

[
θ α, θ̇, α̇

]
: XZ plane state vector; (1)
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5.3 Equations of Motion

[
θ β, θ̇, β̇

]
: Y Z plane state vector; (2)

Having hired only holonomic constraints, Lagrange approach generates n-differential
equations:

d

dt
(
δL

δq̇i
)− δL

δqi
= Fi; i = 1, . . . , n (3)

where:
L is the Lagrange state function defined as the difference between the kinetic co-energy
C∗ and its potential energy P :

L(q, q̇) = C∗(q, q̇)− P (q) (4)

and the term δL
δq̇i

is indicated as generalized momentum.

5.3.1 Lagrangian Modeling- XZ Planar system

Considering the 2D Ballbot modeling on XZ plane (Figure.19), the goal of this section
is to propose a relationship between the torque applied to the sphere and the response
of α and θ variables, using the Lagrange approach. The same procedure is developed
for YZ-plane on Appendix YZ-Plane Math. As said in subsection 5.1.1 Assumptions
and Simplifications, same results of XZ-plane are obtained. d

dt
δL
δθ̇
− δL

δθ = Fθ

d
dt
δL
δα̇ −

δL
δα = Fα

XZ-plane Lagrangian differential equations; (5)

L = T1 + T2 − U XZ-plane Lagrange state function (6)

where:

T1 = 1
2M ‖x‖

2
; Translational kinetic energy;

T2 = 1
2I ‖w‖

2
; Rotational kinetic energy;

U = Mgh; Potential energy;

T1 =
1

2
Ms(ẋ

2
s + ż2s) +

1

2
Mb(ẋ

2
b + ż2b ) (7)

T2 =
1

2
Jsθ̇

2 +
1

2
Jαα̇

2; (8)

30



5.3 Equations of Motion

U = Msgzs +Mbgzb; (9)

Substituting generalized coordinatees and velocities defined in 5.1.2 XZ Planar Sys-
tem section and doing the math,Appendix XZ Plane Math, the following T1, T2, U ,
are computed:

T1 =
1

2
MsR

2
s θ̇

2 +
1

2
MBR

2
s θ̇

2 +
1

2
MBL

2α̇2 +MBRsLθ̇α̇cos(α); (10)

T2 =
1

2
Jsθ̇

2 +
1

2
Jαα̇

2; (11)

U = MsgR+Mbg(R+ Lcos(α)); (12)

So, from equation (4):

L =
1

2
R2
s θ̇

2(Ms+Mb)+
1

2
MbL

2α̇2+MbRsLθ̇α̇cos(α)+
1

2
Jsθ̇

2+
1

2
Jαα̇

2−Msgzs−Mbgzb;

(13)

Deriving congruently from (3) (as shown in the Appendix section) the following XZ-
plane Lagrangian differential equations are obtained:

R2
s(Ms +Mb)θ̈ +MbRsLcos(α)α̈+ Jsθ̈ −MbRsLsin(α)α̇2 = Fθ

MbRsLcos(α)θ̈ +MbL
2α̈+ Jαα̈−MbRsLθ̇α̇sin(α)−MbgLsin(α) +MbRsLθ̇α̇sin(α) = Fα

(14)

5.3.2 2D Linearized System - State-Space formulation

In this subsection is proposed the study of the behavior of Lagrangian system in prox-
imity of an equilibrium configuration. For this purpose it will apply to the equations
of Lagrange a linearization procedure: the equilibrium point (α = 0) is chosen as
point of linearization, so:

• sin(α) −→ α;

• cos(α) −→ 1 ;

• Second order term α̇2 is neglected;
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5.3 Equations of Motion

With the above considerations, Lagrangian equations (5) became:[(Ms +Mb)R
2
s + Js]θ̈ + [MbRsL]α̈ = Fθ

[MbLRs]θ̈ + [MbL
2 + Jα]α̈−MbgLα = Fα

(15)

Once is obtained a linear formulation of the Lagrangian differential equations, it can
be expressed as a second order differential vector equation [7]:

Mq̈(t) + (D +G)q̇(t) + (K +H)q(t) = F (16)

Where:

• M = MT : mass or inertia matrix, positive definite symmetric;

• D = DT : viscous damping matrix, symmetric;

• G = −GT : gyroscopic matrix, skew matrix;

• K = KT : stiffness (elasticity) matrix, symmetric;

• H = −HT : circulatory matrix (constrained damping), skew matrix;

• F is the generalized force vector.

Not all the terms described above are always present in the dynamical equations of a
multibody system. In our case :

M

[
θ̈

α̈

]
+ (D +G)

[
θ̇

α̇

]
+ (K +H)

[
θ

α

]
=

[
Fθ

Fα

]
(17)

and comparing linear modeling of the system (15) the following matrices are obtained:

M =

[
(Mb +Ms)R

2
s + Js MbLRs

MbLRs MbL
2 + Jα

]
(18)

(D +G) =
[
0
]

(19)

(K +H) =

[
0 0

0 −MBgL

]
(20)

A system with this structure, with (D+G) term equal to 0 is called circulatory system.
H matrix contains non conservative terms that can cause instability [6]. Considering
the state variables defined in the state vector (1):

x = [θ, α, θ̇, α̇] (21)
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5.3 Equations of Motion

and the following state space description:ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(22)

• A ∈ Rnxn is the State matrix;

• B ∈ Rnxm is the Input matrix;

• C ∈ Rpxn is the Output matrix;

• u(t) ∈ Rm is the input vector, also called "control signals" or "commands" ;

• y(t) ∈ Rp is the output vector, it is composed by the signals generated by the
user as control actions;

it is possible to write the state equations:

x = [θ, α, θ̇, α̇] (23)

ẋ(t) =

[
0nxn Inxn

−M−1(K +H) −M−1(D +G)

]
x(t) +

[
0

M−1

]
u(t) (24)

A =


0 0 1 0

0 0 0 1

0 A(3,2) 0 0

0 A(4,2) 0 0

 State matrix; (25)

B =


0

0
M(2,2)+M(1,2)

detM
M(2,1)+M(1,1)

detM

 Input matrix; (26)

with:
A(3, 2) =

MBgLM(1,2)

detM
(27)

A(4, 2) =
MBgLM(1,1)

detM
(28)

x =


θ

α

θ̇

α̇

 state vector; u = [Fθ] control signal; (29)
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5.4 Modeling with non-zero floor slope

5.4 Modeling with non-zero floor slope

In this subsection is presented a 2D-ballbot modeling in an environment closer to
the real human one: the perfomance analysis is executed considering a floor slope.
Following the study [11] about a Ballbot on a non completely smooth surface and ex-
ploiting again a Lagrangian approach, the dynamic equations of the Ballbot behavior
are obtained. Unlike the 2D modeling of chapter5, in this case it is needed to add a
coordinate reference system X ′Z ′ with X ′ results coincident with the ground, θ and
ψ are used as system degrees of freedom, as shown in figure below.

Figure 21: XZ-plane with floor slope - 2D model

Analyzing the system the total translational/rotational kinetic energy and potential
energy of the system it is derived:

Ttrasl =
1

2
Ms(Rθ̇)

2 +
1

2
Mb((Rsθ̇ + Lψ̇ cos (γ − ψ))2 + (Lψ̇ sin (γ − ψ))2); (30)

Trot =
1

2
Jsθ̇

2 +
1

2
Jψψ̇

2 (31)

U = Msgz
′
s +MbgL cos (γ − ψ) (32)

Accordingly to relations (5) and (17) are obtained the following matrices:

M =

[
M1,1 M1,2

M2,1 M2,2

]
(33)

where:
M1,1 = Rs(Ms +MB) + IB
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5.4 Modeling with non-zero floor slope

M1,2 = RsLMB cos (γ − ψ)

M2,1 = E1,1 + E1,2

M2,2 = gRs(Ms +MB) + E1,2

(D +G) =

[
(D +G)1,1 (D +G)1,2

(D +G)2,1 (D +G)2,2

]
(34)

where:
(D +G)1,1 = 0

(D +G)1,2 = −RsLMB sin (γ − ψ)ψ̇

(D +G)2,1 = 0

(D +G)2,2 = −RsLMB sin (γ − ψ)ψ̇

(K +H) =

[
(K +H)1,1

(K +H)1,2

]
(35)

where:
(K +H)1,1 = −gRs(Ms +MB) sin γ

(K +H)1,2 = −gRs(Ms +MB) sin γ − gLMSsinφ

In this representation of the system, the equations of motion have been transformed
in order to obtain the second equation unforced, so non-potential force vector ~fn (17),
in this case became ~fn = [T 0]T Starting from the definition of the state-vector
(36), the state-space representation of the ballbot system in a canonic form can be
derived from the equations below:

x = θ ψ θ̇ ψ̇ (36)

θ̈ =
1

ac− b2 cos γ − ψ
(cT + bT cos γ − ψ) + cd sin γ− bgLMS sin(ψ) cos (γ − ψ); (37)

ψ̈ =
1

ac− b2 cos (γ − ψ)
(agLMs sinψ−bd sin γ cos (γ − ψ)−aT+b2 sin (γ − ψ) cos (γ − ψ)ψ̇2)

(38)
with:
a = Rs(Ms +MB) + IB

b = RsLMB

c = IB + L2MB

d = gRs(Ms +MB)
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6 3D Model design

This section contains the information needed to develop an appropriate control for a
3D Ballbot model. In particular it is used the 3D modeling developed in [15] where,
like 2D modeling of the chapter5, after analyzing the system, the Lagrangian method
is used to derive the equations of motion. In this case it is considered a full three-
dimensional geometry and all coupling effects. The proposed geometry for this 3D
model consists of five solid bodies:

• 1 sphere;

• 3 omniwheels;

• 1 body with 3 motors;

consequently:

• the sphere is always in contact with the ground in an arbitrary point;

• the three omniwheels link the upper part of the sphere in three point at any
time;

• The three torques T1, T2, T3 generated by the motors and transformed by the
gear are considered as the inputs of the system.

• It is supposed a tilt angles range from −20° to 20°, in order to operate in a
scenario in which singularities do not to be considered.
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Figure 22: 3D-Ballbot modeling

Figure 23: Omniwheel position on 3D-Ballbot modeling
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6.1 3D Geometric parameters

6.1 3D Geometric parameters

Table 3: Geometric parameters of the 3D preliminary design

Parameter Symbol Value
Mass of the ball mS 2.29 [Kg]
Radius of the ball rS 0.125 [m]

Mass of the virtual actuating wheel mW 3 [Kg]
Mass of the body mB 9.2 [Kg]

Radius of the body(cylinder) rB 0.1 [m]
Inertia of the sphere JS 0.0239[Kgm2]
Inertia of the body JB,x 2.026 [Kg m2]
Inertia of the body JB,y 2.025 [Kg m2]
Inertia of the body JB,z 0.092 [Kg m2]

Inertia of one motor and wheel JW 0.00315 [Kgm2]
Angle of the omniwheel contact point α 45°
Angles of the omniwheel direction β1, β2, β3, 0°,120°,240°

6.2 Equations of Motion

As in the subchapter5.3, it is defined a set of variables as minimal coordinates q to
describe the system through Lagrangian method and, for each body, it is analyzed its
translational, rotational and potential energy . In this procedure it is chosen that the
center of the ball is concurred with the plane zero potential energy.[

θx θy θz φx φy

]
minimal coordinates q (39)

• Sphere:
The sphere is only moving in the horizontal directions so, its potential energy
US is equal to zero. Instead the sphere kinetic energy TSis given by a contribute
due to the translation and another one due to the rotation.

TS =
1

2
mS ‖IvS‖2 +

1

2
JS ‖LwS‖2 (40)

US = 0 (41)

• Body:
The moment of inertia of the omniwheels and of the motors are included as
contribute on the moment of inertia of the body in order to consider their
rotation about the inertial reference frame. Therefore, body potential energy
contains motors and omniwheels. Body kinetic energy is calculated with respect
to the center of the sphere P and not to its center of mass so, it is needed to

38



6.3 3D Linearized System - State-Space formulation

add a coupling term.

TB =
1

2
·mB ·‖I~vB,P ‖2+

1

2
·JB ·‖A ~wB,A‖2+mB ·(RAI ·I~̇rB,P ) ·(A ~wB,A×A~rPSA)

(42)

UB = −mB ·G ·RIA · A~rPSA (43)

where RIA is a rotation matrix between Inertial reference frame I and the body
fixed reference system A, A~rPSA is the vector from the center of the sphere P to
the center of gravity in the body fixed reference system A and G is the gravity
vector defined as G=[0 0 -g]T.

• Omniwheels:
As a consequence of the simplification done above for the wheels, it is considered
only its additional Kinetic rotational energy around the respective motor axis.

TWi =
1

2
· AJWi · Aw2

Wi with i= 1,2,3 (44)

As the 2D-procedure, the equations of motion are derived applying Lagrange equation:

d

dt
(
δT

δ̇~q
)− δT

δ~q
+
δU

δ~q
− ~fNP = 0; (45)

where:

• T = TS + TB + TW1 + TW2 + TW3 ;

• U = UB ;

• fNP : represent the non-potential forces of the system that include both the
torques T1, T2, T3 and the counter torques TC1 , TC2 , TC3 acting on the body[15].

6.3 3D Linearized System - State-Space formulation

The equation of motion derived are a big set of non linear differential equations that
is not possible to obtain directly so, it is necessary to use an adequate software for
breaking down the calculations and applying simplification on each step. A huge size
reduction of the system it is done analyzing only a linear version of the system. In
this way, considering:~̇x = A~x+B~u

~y = C~x) +D~u
state space representation (46)
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6.3 3D Linearized System - State-Space formulation

with:
~x = [θx, θ̇x, θy, θ̇y, θz, θ̇z, ψx, ψ̇x, ψy, ψ̇y]T state vector (47)

~u = [u1, u2, u3]T = [T1, T2, T3]T control signal (48)

~y = ~x (49)

Below are shown the state space matrices derived in [15] from a system with a
linearization on zero equilibrium point and, subsequently, with a linearization on an
arbitrary operation point.

A0 =



0 1 0 0 0 0 0 0 0 0

37.69 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 37.73 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

−73.02 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 −73.09 0 0 0 0 0 0 0



State matrix (50)

B0 =



0 0 0

4.02 −2.01 −2.01

0 0 0

0 3.485 −3.485

0 0 0

−10.76 −10.76 −10.76

0 0 0

−13.48 6.738 6.738

0 0 0

0 −11.68 −11.68



Input matrix (51)

According with assumptions (40):

C0 =
[
I10

]
Output matrix (52)

D0 =
[
010x3

]
(53)
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6.3 3D Linearized System - State-Space formulation

The arbitrary linearization point chosen is:

~p =



θx

θ̇x

θy

θ̇y

θ̇Z

φ̇x

φ̇y


=



0.32rad

−0.5rad/s

0.1rad

0.35rad/s

−0.2rad/s

6.3rad/s

2.3rad/s


(54)

Ap =



0 1 0 0 0 0 0 0 0 0

12.85 −0.5234 64.1 1.164 0 2.361 0 0.09295 0 0.07759

0 0 0 1 0 0 0 0 0 0

−62.57 3.008 32.44 −5.953 0 −3.789 0 −0.1806 0 −0.04806

0 0 0 0 1 0 0 0 0 0

−38.94 −8.147 4.429 21.06 0 6.915 0 1.066 0 1.703

0 0 0 0 0 0 0 1 0 0

−13.2 −1.236 −28.15 1.551 0 −2.268 0 0.03377 0 0.1916

0 0 0 0 0 0 0 0 0 1

45.18 0.3581 −42.06 −3.098 0 3.54 0 −0.3492 0 −0.206



State matrix

(55)

Bp =



0 0 0

2.327 −2.863 −3.038

0 0 0

3.925 6.862 1.02

0 0 0

−10.17 −7.92 −11.51

0 0 0

−11.38 6.901 6.871

0 0 0

−2.231 −13.96 −8.24



Input matrix (56)

also in this case, according with assumption (40) :

Cp =
[
I10

]
Output matrix (57)

Dp =
[
010x3

]
(58)

Ap and Bp matrices evince strong coupling terms and point out how it is confining a
modeling based on a decoupled system. In the subchapter9.3 it is developed a 3D sys-
tem control, also in this case it is chosen an LQR controller to obtain a robust control,
with a plant implemented using A0,B0,C0,D0 matrices for reasons of simplification.
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7 LQR - Linear Quadratic Regulator Control

The LQR controller, as part of the optimal controls and, more in general, of the
automatic controls and LTI (Linear Time-Invariant) dynamic systems, is a dynamic
compensator obtained by following the minimization of a cost index J(x,u) which
depends on the state x(t) and on the control u(t) :

min
u(t),t∈[0,tf ]

J(u, x) = min
u(t),t∈[0,tf ]

xT (tf )Su(tf ) +

∫ t=tf

t=0

(xT (t)Qx(t) + uT (t)Ru(t)) dt

(59)
Where:

Q,S ∈ Rn : Q = QT ≥ 0, S = ST ≥ 0;∈ Rp : Q = QT > 0;

For each Q symmetric positive semi-definite matrix and for each R symmetric positive
definite matrix always exists an uott(t) solution of the optimum control LQR that
minimize the cost index J(x,u). If the LTI system is reachabilityand observability
minimizing the cost index J(x,u) , make it bounded, also the system will be stable.
A time-invariant controller can be realized when tf tends to infinity. As a consequence
of the infinite time horizon, the final cost:

xT (tf )Su(tf )

has been removed from finite time cost index, so:

min
u(t),t∈[0,∞]

J(u, x) =

∫ ∞
t=0

(xT (t)Qx(t) + uT (t)Ru(t)) dt (60)

Essentially, the obtained control uott(t) is a linear function of the state and of several
matrix including P(t) solution of DRE (Riccati Differential Equation) if the control is
a finite-time control, or of P (constant) solution of ARE (Ricatti Algebric Equation)
otherwise.

• Finite horizon time:

– Control:
uott(t) = −Kott(t)x(t)
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7.1 System Reachability:

– State Feedback Controller:

Kott(t) = R−1BTP (t)

– DRE whose solution provides P(t):

dP (t)

dt
= ATP (t) + P (t)A+Q− P (t)BR−1BTP (t)

• Infinite horizon time:

– Control:
uott(t) = −Kott(t)x(t)

– State Feedback Controller:

Kott(t) = R−1BTP

– ARE whose solution provides P:

[0] = ATP + PA+Q− PBR−1BTP

Figure 24: Static State feedback control architecture.

7.1 System Reachability:

Considering the matrix Mr as defined:

M r =
[
B AB · · · An−1B

]
If ρ(M r) is maximum, so if:

ρ(M r) = n;

the dynamic system:
ẋ(t) = Ax(t) +Bu(t)

is said reachable.
In other terms the couple (A,B) is reachable for short.
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7.2 System Observability

7.2 System Observability

Considering the matrix Mo as defined:

Mo =
[
C CA · · · CAn−1

]T
If ρ(Mo) is maximum:

ρ(Mo) = n;

the dynamic system:
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

is said Observable.
In other terms the couple (A,C) is observable for short.

7.3 Tuning LQR Control Laws

1. Derive a possible State-Space Description of the system to control:

ẋ(t) = Ax(t) +Bu(t)

With:

A ∈ Rnxn is the State matrix; B ∈ Rnxp is the Input matrix;

As said before, the design of the control system is transformed into a mini-
mization problem of the cost index J(u,x) so the goal is to minimize the energy
of the system by commands over time.

2. Tuning the LQ Regulators implies choosing the weight matrices Q and R.
Q and R are typically chosen as diagonal matrices so, for a system of n states
and p controls there will be (n+p) parameters to choose;

3. The diagonal value qij and rij of Q and R respectively , are chosen according to
the relative importance of each state control variable, bearing in mind that it
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7.3 Tuning LQR Control Laws

is needed to have qjj ≥ 0 rjj > 0;

(a) As first approach, it is possible to choose qij and rij so that all the state
and input components values appear in the cost function with almost the
same order of magnitude;

(b) After this first iteration , values are modified to impose the desired perfor-
mance;

(c) Anyhow, the important aspect is the relative value of a single weighting
coefficients with respect to the others.

In general:
Q matrix defines the weight on the states;
R matrix defines weights on the control input in the cost function.

• If R� Q , cost function is weighted by the control effort u(t) and an expansive
control solution is obtained.

• If Q � R , cost function is weighted by the state errors and the system’s
response becomes arbitrarily fast.

Since there is a trade-off between the two, you may want to keep Q as an identity
matrix and after choose R. It is possible to choose a large R, if there is a limit on the
control output signal (for instance, if large control signals introduce sensor noise or
cause actuator’s saturation) and choose a small R if having a large control signals is
not a problem for the analyzed system.
Once the weight matrices have been defined , KLQR matrix will be compute through
numerical techniques using an apposite MATLAB commands:

» [KLQR]=LQR(A,B,Q,R);

Where:
A is the State matrix of the state-space system representation;
B is the Input matrix of the state-space system representation;
Q,R are the previous defined weight matrices of the LQR Control.

or:
» [KLQR,P,E]=LQR(A,B,Q,R);
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7.3 Tuning LQR Control Laws

to obtain also the associated algebric Riccati equation solution P and the closed-loop
eigenvalues E=EIG(A-BKLQR).
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8 MATLAB implementation

In an apposite file.m are defined all the necessary parameters to calculate the numeric
value of the state space matrices A,B,C,D computed on chapter5 and, accordingly,
to evaluate the transfer function that describes the linearized 2D and 3D modeling
of the ballbot, in order to use it as plant t.o.f. on the Simulink feedback control for
simulating the behavior of the system. It is chosen to use an LQR control with an
integrative stage to track the error of the variable chosen to be measured, therefore
two other matrices Atot(square matrix), Btot, are defined coherently with the matrices
A, B and with a new state given by the integrative error on the selected measure. The
size of Atot, Btot obviously changes with respect to the number of variables chosen
to be measured. The KLQR gain will be compute using Atot(square matrix), Btot in
order to obtain also the relative integrative KLQR gain, Kei . The latter part of the
MATLAB code of each file.m is dedicated to the implementation of a System Observer

which, exploiting the Observability proper of the system and using a pole placement
method to develop a stable system,it is able to estimate a real state vector using as
input: the input of the plant and the plant output variables that make it observable,
so:

u = −Ktot · xtot = −
[
Ki KLQR

]
=

[
q

x

]
(61)

x̂(k + 1) = (Ad − L · Cd)x̂(k) +
[
Bd L

] [u
y

]
(62)

where x̂(k) is the estimated state vector from the observer system.
On the MATLAB code Appendix are shown several file.m respectively for each simu-
lation test. Inside it also contained how L matrix and observer system are defined.
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9 Simulink

In this chapter are presented Simulink schemes block of the 2D and 3D Ballbot mod-
eling based on consideration both about type of reference and variables chosen to be
measured.

9.1 2D- Position control

The figure below shown the Simulink feedback control with a step input reference,
amplitude=4[deg], on the sphere position theta and with a block structure following
the premises done on the MATLAB Implementation chapter.

Figure 25: Simulink system control block with reference on the sphere position theta.
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9.1 2D- Position control

9.1.1 Simulation

Figure 26: Measured theta and output alpha

Figure 27: Angular rate of the sphere theta-dot and of the body alpha-dot
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9.2 2D - reference on body position

Figure 28: Comparison between
plant-output and observer-output
of system position

Figure 29: Comparison between
plant-output and observer-output
of system angular rate

9.2 2D - reference on body position

The following Simulink feedback control shown a step input reference with ampli-
tude=4[deg], on the body positionalpha. Also in this case it is used a block structure
coherently with the assumptions of chapter8. Firstly, it is simulated with a pulse
input reference signal with a period of 7.5[sec] and an amplitude of 4[deg] and, in a
second moment, with a signal manually generated using a "signal builder" with 0[deg]
amplitude from 0[sec] to 2[sec], 4[deg] from 2[sec] to 5[sec] , and 0[deg] amplitude from
5[sec] to the end of the simulation.

Figure 30: Simulink system control block with reference on the body position alpha.
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9.2 2D - reference on body position

9.2.1 Simulation

Figure 31: Comparison between measured alpha and signal built reference on alpha

Figure 32: Measured alpha and output theta - signal built reference on alpha
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9.2 2D - reference on body position

Figure 33: Angular rate theta-dot and angular rate alpha-dot - signal built reference
on alpha

Figure 34: Comparison between
plant-output and observer-output
of system position - signal built
reference on alpha

Figure 35: Comparison between
plant-output and observer-output
of system angular rate - signal
built reference on alpha
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9.2 2D - reference on body position

Figure 36: Comparison between measured alpha and pulse reference on alpha

Figure 37: Measured alpha and output theta - pulse reference on alpha
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9.3 2D- Velocity control

Figure 38: Angular rate theta-dot and angular rate alpha-dot - pulse reference on
alpha

Figure 39: Comparison between
plant-output and observer-output
of system position -pulse reference
on alpha

Figure 40: Comparison between
plant-output and observer-output
of system angular rate - pulse ref-
erence on alpha

9.3 2D- Velocity control

The figure below shown the Simulink feedback control with a step input reference of
an amplitude=1.5 from 2[sec] to 5[sec] on the sphere velocity variable thetadot :
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9.3 2D- Velocity control

Figure 41: Simulink 2D-system control block with step reference from 2[sec] to 5[sec]
on sphere velocity thetadot

9.3.1 Simulation

Figure 42: Comparison between measured sphere velocity thetadot and velocity ref-
erence thetadot-ref
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9.3 2D- Velocity control

Figure 43: Angular rate alphadot - step sphere velocity reference

Figure 44: Sphere torque - sphere velocity step reference
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9.4 3D-Position control

Figure 45: Comparison between
plant-output and observer-output
of body position alpha - step ref-
erence on velocity

Figure 46: Comparison between
plant-output and observer-output
of system angular rate - step ref-
erence on velocity

Figure 47: Comparison between
thetadot-measured for different R
matrix weight values

Figure 48: Comparison between
thetadot-measured for different Q
matrix weight values

9.4 3D-Position control

Figure 49: Simulink 3D-system control block with step reference on position thetaZ
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9.4 3D-Position control

9.4.1 Simulation

Figure 50: Comparison between measured thetaZ and step reference on thetaZ

Figure 51: Output position of the sphere thetaX, thetaY,thetaZ with step reference
on thetaZ
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9.4 3D-Position control

Figure 52: Output angular rates with step reference on the sphere position thetaZ

Figure 53: Torque signal on the omniwheel1,2,3 respectively with a step reference on
the sphere position thetaZ
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9.4 3D-Position control

Figure 54: Comparison between
plant-output and observer-output
of system position thetaZ - step
reference on thetaZ

Figure 55: Comparison between
plant-output and observer-output
of system angular rate - step ref-
erence on thetaZ
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10 Simscape

Simscape is an extension of the Simulink software that allows the simulation of mul-
tidomain physical systems. In this section it is shown a Simscape block scheme of
the Ballbot system. Using the 3D geometric characteristic described on subchap-
ter6.1, each elementary body component of the Ballbot it is created in Solidworks
software and imported on Simscape tool where they were assembling as in Figure47.
The contact between sphere and each wheel it is performed through the Simscape
block "Sphere to Tube Force" while the contact plane-sphere with the Simscape block
"Sphere to Plane Force". These two contact-blocks belong to an external library that
must be downloaded called "Simscape Multibody Contact Forces Library" that con-
tains contact force models and force laws for multibody modeling in Simscape Multi-
body.
In Figure50 it is shown the 3D-Ballbot model obtained.

Figure 56: Simscape 3D-Ballbot model scheme
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Figure 57: Simscape 3D-Ballbot model view

Figure 58: Simscape 2D-Ballbot model view
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11 ARDUINO electronic platform

Arduino is an open-source hardware platform developed in 2003 at the Interaction
Design institute of Ivrea, a post-graduate school created by the collaboration between
Olivetti and Telecom Italia. The name of the platform derives from the name of a
bar of Ivrea frequented by the founding members.
Arduino is composed of a series of electronic boards equipped with a microcontroller,
supported by an integrated development environment, Aduino IDE (Integrated Devel-
opment Enviroment), that allows its programming. The programs developed in the
Arduino IDE are commonly called sketches and are developed in a simple program-
ming language, derived from C and C++, called Wiring. All The software is free and
this is exactly what has created the strength of Arduino: an online community of
developers that continuously discusses the development of projects with an Arduino
electronic, increasingly expanding the community and making it accessible even to
the less experienced. Arduino makes possible in fact to create a range of projects
and device, in a relatively simple and rapid way, both for personal and scientific use.
The basic structure of an Arduino microcontroller consists of pins connected to the
I/O ports (Analogue and Digital), a voltage regulator and, when necessary, a USB
interface that allows connection with the computer used to program it. Through
the input channels the card receives information, data collected by external sensors,
the developed program reworks the data and through the output channels provides
the instructions that allow interaction with the outside through suitable actuators.
To date, more than 17 versions of Arduino, more and more avant-garde, have been
marketed, to which almost every electronic object can be connected, from computers,
sensors, actuators and displays. This development has led Arduino to position itself
in a good place in the IoT(Internet of Things) market in which objects can acquire
an optimal position thanks to the connection to the networks.

11.1 Arduino MKR1000

In this project is considered an Arduino MKR1000 version, a board that combines the
features of Arduino Zero and WIfi-Shield, integrating directly into a Wifi module that
allows you to connect the Arduino board to the Internet wirelessly. It is based on a
microcontroller developed by Atmel, ATSAMSW25 Soc and it is equipped with a USB
port that can be used to supply power (5V) to the board and allow the connection of
the hardware platform to the computer. Unlike other versions, I/O pins operate at
3.3V : by applying a voltage greater than 3.3V to any I/O pins, the microcontroller
may be damaged. In addition, the Arduino MKR1000 is able to operate even without
the connected Li-Po battery and has a limited power consumption. Alternatively,
output to 5V digital devices is possible, but bidirectional communication with 5V

63



11.2 Technical specifications

devices requires an appropriate level shift in order to adequate the ArduinoMKR100
voltage dynamic to the input signal voltage.The Arduino-MKR1000 interaction with
the outside takes place through MKR MotorCarrier shield, a dedicated piloting board,
connected on it using apposite pins, that allows the driving of various actuators.

11.2 Technical specifications

Table 4: Arduino MKR1000 - Technical specifications

Microcontroller SAMD21 Cortex- M0 + 32bit low power ARM MCU
Board Power Supply

(USB/VIN) 5V
Circuit Operating Voltage 3.3V

Digital I/O pins 8
PWM pins 12(0,1,2,3,4,5,6,7,8,10,A3-or18,A4-or19)
UART 1
SPI 1
I2C 1

Analog Input Pins 7 (ADC 8/10/12bit)
Analog Output Pins 1 (DAC 10bit)
External Interrupts 8 (0,1,4,5,6,7,8,A1-or16,A2-or17)

DC current per I/O pin 7mA
Flash Memory 256KB

SRAM 32KB
EEPROM no
UART 1

Clock Speed 32.768KHz (RTC), 48MHz
LED-BUILTIN 6

Full-Speed USB Device and embedded host
Length 61.5[mm]
Width 25[mm]
Weight 32[gr]

11.3 Sensors

Sensors are devices or dedicated modules used to estimate the condition of the robot
and to give information about its surrounding environment. The data collected by
the sensors, are passed to a controller to enable appropriate behavior. All the sensors
on the market need an adequate electronic circuit that allows the interface to the
microcontroller it is chosen to use.
In this section are described some Arduino compatible sensors selected for the Sen-
soring stuff of the Ballbot model to develop.
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11.3 Sensors

11.3.1 Ultrasonic Sensor:

Figure 59: Ultrasonic sensor

The Ultrasonic sensor compatible with Arduino is a device able to capture the presence
of an object in front of it detecting its distance through two transducers: one send
out a high frequency sound burst (typically out of the auditory range for humans
or domestic animals) and the other one feels for whatever is bouncing back (Figure
23). The elapsed time between the emitted sound burst and the one received gives
indication to estimate the distance to the object in front of the sensor. In the Figure.22
is shown a typical low-cost ultrasonic sensor, the two transducer appears look like
small cylinders :the sensors are marked “T” for transmitter on the left and “R” for
receiver on the right. The sensor compute the distance from the object in front of it
using the following relation below:

distance =
(time of flight · speed of sound)

2
(63)

where:
time of flight is the elapsed time from the emitter sending the burst to the receiver
getting it back;
speed of sound is sound travels speed considered equal to 332 meters per second (1,087
ft/s) in normal environmental conditions;
1
2 considering that the signal goes and comes back.
So, to guarantee an adequate sensor collected data is needed to pay attention on the
environment conditions because variances in humidity or temperature could change
the accuracy of the sensor. Furthermore, if multiple ultrasonic sensors are used in
close proximity to each other, the accuracy of the sensor may be affected by the
interference between the different signals emitted by each ultrasonic sensor. In the
market there are also high-tech ultrasonic sensor with an only one transducer able to
switch from sound emitters to sound receivers and viceversa.
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11.3 Sensors

Figure 60: Ultrasonic sensor

The sensor presents four terminal pins: PWR, GND, Trig (trigger), and Ech (echo).
The measurement is performed through a change of PULSE signals among the MKR1000
and the sensor. The microcontroller send a pulse with a width of a couple of microsec-
onds to the sensor via the Trig pin. From that moment, the sensor activates the Ech
pin setting it to HIGHT, in this configuration-set sound burst is emitted, flying to-
wards an object, and bouncing back. The Ech pin is kept on activate mode until
the front of the sound burst is echoed back into the receiver transducer. The micro-
controller can obtain the time of flight by measuring the difference between the time
when the Echo pin receives a rising edge, so the time when the Echo pin is in active
state, and the time when Echo pin receives the first opposite activating edge.
In this preliminary ballbot project the ultrasonic sensor it thinking to be used as
obstacle avoidance systems.

11.3.2 Hall sensor module

Figure 61: Hall Sensor

A hall sensor is a linear transducer that works on the principle of the Hall effect
varying its output voltage depending on the magnetic field density surrounding the
device. Usually adopted to time speed of wheels or shaft, such as a tachometer, it
has many applications including electronic switch, and current sensing applications.
The module in Figure51 is the SL353HT Hall Sensor from Honeywell compatible with
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11.3 Sensors

Arduino MKR1000: this particular device is characterized by high switching speed
and low current consumption. Arduino micro controller is able to detect the output
voltage change of the Hall sensor through its interrupt pin and determine when the
magnet is near the sensor or not. Hall effect sensor has three terminal pins: Vcc,
GND , and Vout (voltage output signal)

11.3.3 Inertial Measurement Unit (IMU)

An IMU (Inertial Measurement Unit) is an electronic device that measures module
behaviour under changes in linear acceleration, angular rotation, and, in some cases,
the magnetic field around the module. IMU measurements are possible because it
is a self-contained system that includes a triad of different sensors, accelerometers,
gyroscopes, and magnetometers. In fact, the data not jet processed coming from the
sensors on the IMU, are then elaborate and combined into other information that is
easier to use in our projects. The measurements extract are indicated as pitch, roll,
and yaw and respectively correlates to X, Y, or Z axes.

• Acceletometer:
The accelerometer measures the linear velocity and the changes in the object
to which it is attached. The accelerometer measures the linear velocity and the
changes in the object to which it is attached. The sensor generate diefferent
amounts of voltage depending on stress scenario or intese vibration due to the
movement and it provides motion data as an x, y, and z value set.

Figure 62: Accelerometer linear velocity measurements

• Gyroscope:
The gyroscope catches orientation with respect to the gravity. It provides ro-
tation data using x, y, and z values used to measure rotation rate (angular
velocity).
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11.3 Sensors

Figure 63: Gyroscope angular velocity measurements

• Magnetometer:
Despite its serviceability, the magnetometer is not present in all IMU shield.
This sensor measures the magnetism so it is generally used from the IMU to
detect the relative change in a magnetic field at a particular direction. Magne-
tometers are used to provide a direction reference for our electronic device. It
gives a North Magnetic Pole reference point and improves the accuracy of the
measurements.

Figure 64: BNO055 IMU shield

In Figure54 is shown BNO055 IMU from Bosch, a 9-axis (accelerometer and gyroro-
scope and magnetometer) orientation sensor, compatible with Arduino MKR1000: it
is needed the manual calibration every time is powered on to calibrate magnometer
inner sensor. The communication of the MKR100 with the sensor happens through
the BNO055 IMU library: it is possible download and install it using the library

manager on the Arduino IDE (Integrated Development Environment) −→ Sketch

−→ Include Library −→ Manage Library.
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11.4 Aduino MKR1000 - Matlab Interface

Figure 65: Guidelines IMU BNO055-library download

In this preliminary study of Ballbot robot, IMU shield is used for tracking the orien-
tation of the ballbot.

11.4 Aduino MKR1000 - Matlab Interface

To program the Arduino MKR1000 through MATLAB and Simulink are needed two
support interface packagese: MATLAB Support Package for Arduino and SimulinkSupport
Package for Arduino . These packages make MATLAB able to communicate with
Arduino directly and extend Simulink library with characteristic blocks to configure
sensors, writing and reading data from them.

• MATLAB Support Package for Arduino :
This package allows MATLAB to acquire inputs and send outputs to Arduino
boards and connected devices.
It also installs Arduino IDE 1.8.1 (Arduino Integrated Development Environment)

and a few associated libraries.

• Simulink Support Package for Arduino :
Thanks this package is possible to run Simulink models on Arduino boards;

The two packages can be easily downloaded as Adds-Ons from the MATLAB Toolstrip

clicking on Get Add-Ons: it is also important to follow the instructions on the
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11.4 Aduino MKR1000 - Matlab Interface

Adds-Ons themselves.
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12 Arduino MKR100-Simulink interface

In this section a first modeling of the ballbot control system is developed paying
attention on the designed operating electronics. A basic interface between Arduino
MKR100 and Simulink tool is allowed by a system of sensors and actuators accessible
through the interface libraries discussed in the previous chapter.
This control system must be understood as a guideline on a first approach to the
development of a control that can be downloaded on the chosen Arduino shield so, it
is yet needed to test and modify it accordingly, adding also the safety conditions that
the test result highlights.

Figure 66: Simulink system control-block with Arduino inteface

12.1 IMU BNO055 block

In the figure below it is shown the enlarged IMU interface block.
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12.1 IMU BNO055 block

Figure 67: Arduino IMU block

BNO055 IMU Sensor block is located in Simulink Library Browser −→ Simulink Sup-
port for Arduino Sensors library. It is added in the Simulink project with the setting
of Figure59 in order to get the desired output signals : angular rate [degree per sec-
ond] and Euler angles [degree].
The output number 6, IMU status, gives information about the calibration status
respectively of IMU system, Gyroscope, Accelerometer and Magnetometer through a
vector shown on "Calibration Status" display. A basic requirement to obtain accurate
outputs is to initialize each sensor for locating the gravity vector and magnetic field
and offset the coordinates in an apposite way. The elements of the calibration status
vector consist of a values included between 0 and 3, evaluating the degree to which the
sensor is calibrated. In our case it is fundamental to have at least a fully calibrated
(3) gyroscope and magnetometer, a way to obtain this scenario is to leave the body
which support the IMU shield completely at rest, while the model runs in External
mode to calibrate the gyroscope, and to pick up the body and rotate it at least 90
degrees along each of the 3 spatial axes to obtain a calibration of the magnetometer:
repeat this procedure until the respective vector elements does not show a fully cal-
ibrate status. The calibration process must be done every time the BNO055 IMU is
powered on.
This model is configured to be executed in External mode (It is needed to set Simula-
tion mode to External in the Simulink toolbar) so, it will run directly on the Arduino
board but, thanks to the Display blocks "Angular Rate" and "Euler Angles", it is
still possible to send information back to Simulink and visualize it on the screen.
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12.2 Safety Block

Figure 68: Simulink IMU
block

Figure 69: Simulink IMU set-
ting

12.2 Safety Block

The safety block contains a basic logic function implemented with an AND logic
block for giving the possibility to manually set the torque control signals on 0, in the
event of anomalous system behavior during the hardware simulation. It is easily to
enable 0 AND-input value directly through the slider switch labeled "Set torque on
0" Figure61.

Figure 70: Simulink-Arduino safety-block

12.3 Actuator block

Actuator block it used to command torque values to the omnidirectional wheels mo-
tors. In this way it is needed normalized the torque commands generated by the
control block in terms of signed fractional duty cycle (-1 to 1).
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12.3 Actuator block

The interface with the conceived DCmotor is implemented through M3M4DCMotors
block Figure64. As indicated in its setting window, this block admit a value included
between -255 and 255, the block translate its input value both in voltage to be applied
across the motor and the direction in which it has to be applied so, consider that a
positive torque to the motor it is applied if the value is positive and a negative torque
viceversa. Since the torque commands are values normalized between -1 and 1 , a
gain value to 255 is added in order to generate a proper input format for the DC
Motor block.

Figure 71: Simulink DC-
Motor block

Figure 72: Simulink DC-
Motor setting

To detect the ball speed it is conceived to add another IMU shield on the center of
the sphere with an apposite support mechanism. The communication between this
second IMU and the Arduino could be happen through a WIfi communication thanks
the Wi-fi integrated chip on the Arduino MKR1000.
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12.3 Actuator block

Figure 73: Simulink-Arduino actuator block
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13 Conclusion

This thesis aim is to develop considerations on the design and control of a Ballbot
system: a modular and spherical based robot with a structure that makes it suitable
for interacting with the human environment.
During the design phase, the system’s mechanism of operation and its principle of
motion were carefully examined. A Ballbot with a ball drive-mechanism composed
of three omnidirectional wheels was chosen. To understand the Ballbot dynamic, the
physical model was analysed starting with simplified two-dimensional model of the
structure under suitable assumptions. The structure has been considered as a reverse
pendulum and a modeling has been carried out on the two XZ YZ planes.The mathe-
matical modelling is completed by introducing a linearized three-dimensional model.
Analysing the 2D control results, the project has generated very satisfying results.
As it can be perceived in the chapter7, the plots obtained from the simulations of the
LQR control show how effectively the model is implemented. In fact, although an
Observer was used as a system for estimating the states, there are no significant dif-
ferences with respect to the direct measurements coming out from the plant. Working
on the respective weights of the matrices Q and R, the system control implemented
results are robust and stable: both on the position control and on the speed control,
the output measurement can track the chosen reference and give a stable system state
variable according to the dynamics of the system.
In the three-dimensional case, instead, the system must work with a plant state vector
of ten elements. Therefore, finding the compromise and the appropriate weight for
each variable results in a more complicated scenario than the two-dimensional case.
In any case, the 3D controller developed as a control system on the position is able to
generate a measured output able to track the assigned reference but needs to continue
to work carefully on the weights of the Q and R matrices in order to obtain a three-
dimensional control system that also reflects the dynamics of the analysed system.
The future goal, that will succeed the one carried out by this research, will be to
obtain a physical-stable 3D controller in order to be able to interface it with the
Simscape Ballbot scheme developed, to simulate then the physical behaviour of the
Ballbot modeling.
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14 Appendix

14.1 XZ Plane Math

T1 =
1

2
Ms(ẋ

2
s + ż2s) +

1

2
Mb(ẋ

2
b + ż2b ) =

=
1

2
Ms(Rsθ̇)

2 +
1

2
Ms((Rsθ̇ + Lα̇cosα)2 + (−Lα̇senα)2)

=
1

2
MsR

2
s θ̇

2 +
1

2
MBR

2
s θ̇

2 +
1

2
MBL

2α̇2 +MBRsLθ̇α̇cos(α)

=
1

2
MsR

2
s θ̇

2 +
1

2
MBR

2
s θ̇

2 +
1

2
MBL

2α̇2cos(α)2 +MBRsLθ̇α̇cα +
1

2
MBL

2α̇2sin(α)2 =

=
1

2
MsR

2
s θ̇

2 +
1

2
MbR

2
s θ̇

2 +
1

2
MbL

2α̇2 +MbRsLθ̇α̇cos(α);

T1 =
1

2
Ms(ẋ

2
s + ż2s) +

1

2
Mb(ẋ

2
b + ż2b ) =

=
1

2
Ms(Rsθ̇)

2 +
1

2
Ms((Rsθ̇ + Lα̇cosα)2 + (−Lα̇senα)2) =

=
1

2
MsR

2
s θ̇

2 +
1

2
MBR

2
s θ̇

2 +
1

2
MBL

2α̇2 +MBRsLθ̇α̇cos(α) =

=
1

2
MsR

2
s θ̇

2 +
1

2
MBR

2
s θ̇

2 +
1

2
MBL

2α̇2cos(α)2 +MBRsLθ̇α̇cα +
1

2
MBL

2α̇2sin(α)2 =

=
1

2
MsR

2
s θ̇

2 +
1

2
MbR

2
s θ̇

2 +
1

2
MbL

2α̇2 +MbRsLθ̇α̇cos(α);

T2 =
1

2
Jsθ̇

2 +
1

2
Jαα̇

2;

U = Msgzs +MBgzB ;U = MsgR+MBg(R+ Lcos(α));

L =
1

2
R2
s θ̇

2(Ms+MB)+
1

2
MbL

2α̇2+MbRsLθ̇α̇cos(α)++
1

2
Jsθ̇

2+
1

2
Jαα̇

2−MsgR−MBg(R+Lcos(α));
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14.1 XZ Plane Math

 d
dt
δL
δθ̇
− δL

δθ = Fθ

d
dt
δL
δα̇ −

δL
δα = Fα

(64)

δL

δθ̇
= R2

s θ̇(Ms +Mb) +MbRsLα̇cos(α) + Jsθ̇; (65)

d

dt

δL

δθ̇
= R2

s(Ms +Mb)θ̈ +MbRsLα̈cos(α)−MBRsLα̇
2sin(α) + Jsθ̈; (66)

δL

δθ
= 0; (67)

δL

δα̇
= MbL

2α̇+MbRsLθ̇cos(α) + Jαα̇; (68)

d

dt

δL

δα̇
= MbL

2α̈+MbRsLθ̈cos(α)−MbRsLθ̇α̇sin(α) + Jαα̈; (69)

δL

δα̇
= MbgLsin(α)−MbRsLθ̇α̇sin(α); (70)

R2
s(Ms +Mb)θ̈ +MbRsLcos(α)α̈+ Jsθ̈ −MbRsLsin(α)α̇2 = Fθ

MbRsLcos(α)θ̈ +MbL
2α̈+ Jαα̈−MbRsLθ̇α̇sin(α)−MbgLsin(α) +MbRsLθ̇α̇sin(α) = Fα

(71)(R2
s(Ms +Mb) + Js)θ̈ +MbRsLcos(α)α̈−MbRsLsin(α)α̇2 = Fθ

MbRsLcos(α)θ̈ + (MbL
2 + Jα)α̈−MbRsLθ̇α̇sin(α)−MbgLsin(α) +MbRsLθ̇α̇sin(α) = Fα

(72)[(R2
s(Ms +Mb) + Js)]θ̈ + [MBRsLcos(α)]α̈−MbRsLsin(α)α̇2 = Fθ

[MBRsLcos(α)]θ̈ + [MbL
2 + Jα]α̈−MbgLsin(α) = Fα

(73)

Linearized state equations of 2D-spherical wheeled inverted pendulum on YZ plane:[(Ms +Mb)R
2
s + Js]θ̈ + [MbRsL]α̈ = Fθ

[MbLRs]θ̈ + [MbL
2 + Jα]α̈−MbgLα = Fα

(74)

Inverse Inertia matrix:

M−1 =
1

detM

[
M(2,2) M(1,2)

M(2,1) M(1,1)

]
(75)
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14.2 YZ-Plane Math

T1 =
1

2
Ms(ẏ

2
s + ż2s) +

1

2
Mb(ẏ

2
b + ż2b ) = (76)

=
1

2
MsR

2
sψ̇

2 +
1

2
MbR

2
sψ̇

2 +
bL2β̇2

2
+MbRsLψ̇β̇cos(β); (77)

T2 =
1

2
Jsψ̇

2 +
1

2
Jββ

2; (78)

U = Msgzs +MBgzb = MsgR+Mbg(R+ Lcos(β)); (79)

d

dt

δL

δθ̇
− δL

δθ
= Fθ; (80)

d

dt

δL

δα̇
− δL

δα
= Fα; (81)

L =
1

2
R2
sψ̇

2(Ms+MB)+
1

2
MbL

2β̇2+MbRsLψ̇β̇cos(β)++
1

2
Jsψ̇

2+
1

2
Jβ β̇

2−MsgR−Mbg(R+Lcos(β));

(82)
d
dt
δL
δψ̇
− ψL

δψ = Fψ

d
dt
δL
δβ̇
− δL

δβ = Fβ
(83)

R2
s(Ms +Mb)ψ̈ +MbRsLcos(β)β̈ + Jsβ̈ −MbRsLsin(β)β̇2 = Fψ

MbRsLcos(β)ψ̈ +MbL
2β̈ + Jβ β̈ −MbRsLψ̇β̇sin(β)−MbgLsin(β) +MbRsLψ̇β̇sin(β) = Fβ

(84)

(R2
s(Ms +Mb) + Js)ψ̈ +MbRsLcos(α)β̈ −MbRsLsin(β)β̇2 = Fψ

MbRsLcos(β)ψ̈ + (MbL
2 + Jβ)β̈ −MbRsLψ̇β̇sin(β)−MbgLsin(β) +MbRsLψ̇β̇sin(β) = Fβ

(85)

[(R2
s(Ms +Mb) + Js)]ψ̈ + [MBRsLcos(β)]β̈ −MbRsLsin(β)β̇2 = Fψ

[MBRsLcos(β)]ψ̈ + [MbL
2 + Jβ ]β̈ −MbgLsin(β) = Fβ

(86)

Linearized state equations of 2D-spherical wheeled inverted pendulum on XZ-plane:[(Ms +Mb)R
2
s + Js]ψ̈ + [MbRsL]β̈ = Fψ

[MbLRs]ψ̈ + [MbL
2 + Jβ β̈ −MbgLβ = Fβ

(87)
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14.3 Matlab code

controller2D-Theta.m

1 %Geometric Parameters

L=0.6; %[m]

3 Rs =0.16; %[m]

Ms=2.5; %[Kg]

5 Js =0.016; %[kg*m^2]

Ja =12.48; %[kg*m^2]

7 Mb=50; %[kg]

g=9.81; %[m/s^2]

9

M_11 =[(Mb+Ms)*Rs^2]+Js;

11 M_12=Mb*L*Rs;

M_21=M_12;

13 M_22=(Mb*L^2)+Ja;

15 detM=(M_11*M_22)-(M_21*M_12);

17 %State Matrix coefficients S1 S2

A_32=(Mb*g*L*M_12)/detM;

19 A_42=(Mb*g*L*M_11)/detM;

21 A=[0,0,1,0; 0,0,0,1; 0,A_32 ,0,0; 0,A_42 ,0,0];

B=[0;0;( M_22+M_12)/detM;(M_21+M_11)/detM];

23 C=eye (4);

D=zeros (4,1);

25

%System Reachability

27 Mr=ctrb(A,B); %create Reachability Matrix;

rho_Mr=rank(Mr); %compute Mr rank;

29

%System Observability

31 Mo=obsv(A,C); %create Observability Matrix;

rho_Mo=rank(Mo); %compute Mo rank;

33

sys_c=ss(A,B,C,D);

35

[NUM ,DEN]=ss2tf(A,B,C,D);

37 tf_sys1=tf(NUM(1,1:5),DEN);

tf_sys2=tf(NUM(2,1:5),DEN);

39 tf_sys3=tf(NUM(3,1:4),DEN);

tf_sys4=tf(NUM(4,1:4),DEN);

41

Ts =0.001;
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14.3 Matlab code

43 sys_d=c2d(sys_c ,Ts,’zoh’);

45 A_d= sys_d.A;

B_d=sys_d.B;

47

C_d =[1 0 0 0];

49 Cd_alpha =[0 0 1 0];

51 D_d =0;

53 A_tot =[1 -Ts*C_d ;zeros (4,1) A_d];

B_tot =[0; B_d];

55

%LQR Design Parameters: weight matrices Q and R

57 R=0.1

Q=diag ([1000 10 100 100 100]);

59 [K_dlqr ]=dlqr(A_tot ,B_tot ,Q,R)

61 lambda_c = [0.995 0.995 0.995 0.995 0.995];

[K_dlqr1 ]=acker(A_tot ,B_tot ,lambda_c)

63 lambda_obsv_des =[0.5 0.5 0.5 0.5];

L=acker(A_d ’,C_d ’,lambda_obsv_des )’;

65

sys_obs=ss(A_d -L*C_d , [B_d L], eye(4),0,Ts);

controller2D-ThetaAlpha.m

%Geometric Parameters

2 L=0.6; %[m]

Rs =0.16; %[m]

4 Ms=2.5; %[Kg]

Js =0.016; %[kg*m^2]

6 Ja =12.48; %[kg*m^2]

Mb=50; %[kg]

8 g=9.81; %[m/s^2]

10 M_11 =[(Mb+Ms)*Rs^2]+Js;

M_12=Mb*L*Rs;

12 M_21=M_12;

M_22=(Mb*L^2)+Ja;

14

detM=(M_11*M_22)-(M_21*M_12);

16

%State Matrix coefficients S1 S2

18 A_32=(Mb*g*L*M_12)/detM;

A_42=(Mb*g*L*M_11)/detM;
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14.3 Matlab code

20

A=[0,0,1,0;

22 0,0,0,1;

0,A_32 ,0,0;

24 0,A_42 ,0,0];

B=[0;0;( M_22+M_12)/detM;(M_21+M_11)/detM];

26 C=eye (4);

D=zeros (4,1);

28

%System Reachability

30 Mr=ctrb(A,B); %create Reachability Matrix;

rho_Mr=rank(Mr); %compute Mr rank;

32

%System Observability

34 Mo=obsv(A,C); %create Observability Matrix;

rho_Mo=rank(Mo); %compute Mo rank;

36

sys_c=ss(A,B,C,D);

38

40 [NUM ,DEN]= ss2tf(A,B,C,D);

tf_sys1=tf(NUM(1,1:5),DEN);

42 tf_sys2=tf(NUM(2,1:5),DEN);

tf_sys3=tf(NUM(3,1:4),DEN);

44 tf_sys4=tf(NUM(4,1:4),DEN);

46 x0=[pi;pi ;0;0];

48 Ts =0.001;

sys_d=c2d(sys_c ,Ts,’zoh’);

50

A_d= sys_d.A;

52 B_d=sys_d.B;

C_d =[1 0 0 0; 0 1 0 0];

54 D_d =0;

56 A_tot=[eye (2) -Ts*C_d ; zeros (4,2) A_d];

B_tot =[0;0; B_d];

58 C_tot=[ zeros (2,2) C_d];

D_tot =0;

60

%LQR Design Parameters: weight matrices Q and R

62 R=0.1;

Q1=diag ([1000 1000 10 100 100 100]);

64 [K_dlqr ]=dlqr(A_tot ,B_tot ,Q1 ,R)

66 %Observer system:
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14.3 Matlab code

lambda_obsv_des =[0.5 0.45 0.55 0.5];

68 L=place(A_d ’,C_d ’,lambda_obsv_des )’;

70 sys_obs=ss(A_d -L*C_d , [B_d L], eye (4) ,0,Ts);

controller3D.m

%Linearized model on zero equilibrium point

2 A=zeros (10 ,10);

A(1,:)=[0,1, zeros (1 ,8)];

4 A(2 ,:)=[37.69 , zeros (1 ,9)];

A(3 ,:)=[ zeros (1,3) 1 zeros (1 ,6)];

6 A(4 ,:)=[0 0 37.73 zeros (1 ,7)];

A(5 ,:)=[ zeros (1,5) 1 zeros (1 ,4)];

8 A(6 ,:)=[ zeros (1 ,10)];

A(7 ,:)=[ zeros (1,7) 1 zeros (1 ,2)];

10 A(8 ,:)=[ -73.02 zeros (1 ,9)];

A(9 ,:)=[ zeros (1,9) 1];

12 A(10 ,:)=[0 0 -73.09 zeros (1 ,7)];

14 B=zeros (10 ,3);

B(1 ,:)=[0 0 0];

16 B(2 ,:)=[4.02 -2.01 -2.01];

B(3 ,:)=[0 0 0];

18 B(4 ,:)=[0 3.485 -3.485];

B(5 ,:)=[0 0 0];

20 B(6 ,:)=[ -10.76 -10.76 -10.76];

B(7 ,:)=[0 0 0];

22 B(8 ,:)=[ -13.48 6.738 6.738];

B(9 ,:)=[0 0 0];

24 B(10 ,:)=[0 -11.68 -11.68];

26

C=eye (10);

28 D=zeros (10 ,3);

30 %System Reachability

Mr=ctrb(A,B); %create Reachability Matrix;

32 rho_Mr=rank(Mr); %compute Mr rank;

34 %System Observability

Mo=obsv(A,C); %create Observability Matrix;

36 rho_Mo=rank(Mo); %compute Mo rank;

38 %Continuous -time system

sys_c=ss(A,B,C,D);
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40

%Transfer functions 3D system:

42 [NUM ,DEN]= ss2tf(A,B,C,D,:);

tf_sys1=tf(NUM(1,:),DEN);

44 tf_sys2=tf(NUM(2,:),DEN);

tf_sys3=tf(NUM(3,:),DEN);

46 tf_sys4=tf(NUM(4,:),DEN);

tf_sys5=tf(NUM(5,:),DEN);

48 tf_sys6=tf(NUM(6,:),DEN);

tf_sys7=tf(NUM(7,:),DEN);

50 tf_sys8=tf(NUM(8,:),DEN);

tf_sys9=tf(NUM(9,:),DEN);

52 tf_sys10=tf(NUM(10,:),DEN);

54 %Sampling time

Ts =0.001;

56

%Discrete -time system

58 sys_d=c2d(sys_c ,Ts,’zoh’);

%

60 A_d= sys_d.A;

62 B_d=sys_d.B;

64 C_thetaX =[1 zeros (1 ,9)];

C_thetaXdot =[0 1 zeros (1 ,8)];

66 C_thetaZ =[0 0 0 0 1 zeros (1 ,5)];

C_d =[1 zeros (1,9); 0 0 1 zeros (1 ,7);0 0 0 0 1 zeros (1 ,5);

68 zeros (1,6) 1 zeros (1,3); zeros (1,8) 1 0]; %Measures on system position.

C_obsv =[0 1 zeros (1 ,8); zeros (1,4) 1 zeros (1,5); zeros (1,6) 1 0 0 0;zeros (1,7) 1 0 0; zeros (1,8) 1 0;zeros (1,9) 1];

70

D_d =0;

72

A_tot =[1 0 -Ts*C_thetaZ ;1 1 zeros (1,10) ; zeros (10,2) A_d];

74 B_tot=[ zeros (2 ,3); B_d];

76 %LQR Design Parameters: weight matrices Q and R:

78 % Q,R weighted for C_d:

% R=diag ([0.1 0.1 0.1]);

80 % Q=diag ([100 100 100 100 100 1 0.01 0 1 0.001 1 0.001 0.1 0.01 0.1]);

82 % Q,R weighted for C_thetaX:

% R=10* diag ([0.1 0.1 0.1]);

84 % Q=diag ([10 .02 0.1* ones (1 ,10)]);

86 % Q,R weighted for C_thetaZ:
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R=10* diag ([0.1 0.1 0.1]);

88 Q=diag ([10 .02 1*ones (1 ,10)]);

90 % Q,R weighted for C_thetaZ -Simscape. It is needed to work with weigth of

% Q and R

92 % R=1e16*diag ([0.1 0.1 0.1]);

% Q=diag ([1000 1e6, 1e4 1e10 1e4 1e10 1000 1e10 1e6 1000 1e4 1e20])

94

[K_dlqr ]=dlqr(A_tot ,B_tot ,Q,R)

96

%Observer:

98 lambda_obsv_des =[0.5 0.5 0.5 0.5 0.55 0.55 0.55 0.45 0.45 0.5];

L=place(A_d ’,C_obsv ’,lambda_obsv_des )’;

100

sys_obs=ss(A_d -L*C_obsv ,[B_d L], eye(10),0,Ts);
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