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Chapter 1

Introduction

1.1 Preliminary Considerations and Thesis Goal

Multiphase electric drives, termed multiphase when the stator number of phases
(n) is higher than 3 (n>3), have also remarkably increased as a potential solution for
various industrial applications: safety critical system where fault tolerance is a main
concern e.g., aircraft [1] applications where the continous operation means economic
bene�t, e.g. o�shore wind and energy systems [2]. The increased complexity of
multiphase machine with respect to their three-phase counterparts, is drowned by
the phase redundancy. Some advantages in multiphase machines are: fault tolerance,
lower torque ripple, lower phase stator current for the same voltage and power
rating, capability to bene�t from exclusive modes of operation and many others [3].
Despite these advantages, three-phase machines are today the most commonly used
for industrial applications.

The multiphase permanent magnet synchronous machines have the advantages
of high e�ciency, high power density and excellent control performance [4]. The
development of permanent magnet materials and power electronic devices have con-
tributed signi�cantly to multiphase PMSM. The essential requirement in multiphase
PMSM control is to achive the high-performance of electric drive. The accurate
knowledge of rotor position and/or speed informations is traditionally measured
with mechanical sensors, mounted on the motor shaft. These sensors are not desir-
able in the control system for many reasons. The position sensors not only increase
the mounting and maintenance cost, but also reduce the reliability of the whole
system, as they are prone to environment disturbances. Consequently, in certain
applications the position sensors cannot be used because the mentioned drawbacks
are not acceptable. Hence, sensorless control techniques have been widely researched
and applied in industry. The sensorless techniques can be categorized in two main
groups: back-EMF methods and saliency-based methods.

1



1 � Introduction

The aim of this work is to remove the mechanical sensors under �eld-oriented
control for multiphase PMSM. Compared to the three-phase counterparts, the har-
monic model and sensorless control for multiphase machine are not very well-know
and o�-the-shelf solutions are not availabe.

Sensorless FOC is implemented in rotor reference frame. When the machine
model is de�ned in VSD variables, it is decoupled into several subplanes [7]: the
foundamental subplane, called (α,β), and other subplanes, called (x,y). Electro-
mechanical energy conversion does not take place only in �rst subplane (α,β) in
case of non-sinusoidal back-EMF harmonic and winding distribution. The har-
monic current in (x,y) subplanes can be eliminated with current control. The res-
onant controller, presented in [8], [9], [10] can be used of the current control for
harmonic components [11]. An important advantage of the VSD approach is an
unique harmonic mapping.

On the basis of harmonic model in VSD variables, the back-EMF harmonics
can be reaserched for sensorless �eld-oriented control. The resonant controllers in
stationary reference frame are employed to eliminate the induced current harmon-
ics. The consequence is evident: if the current harmonics are eliminated, the VSD
references phase voltages in output to the control are almost equal to harmonic back-
EMF. It is well known that the instantaneous magnitude of the back-EMF, induced
by the rotor movement in the armature windings, depends on the position of perma-
nent magnets with respect to the windings positions. However, the rotor position is
extracted from the reference phase voltages when the machine is operating.

2



1.2 � Organisation of the Thesis

1.2 Organisation of the Thesis

This thesis is divided into 7 chapters as follows:

� Chapter 1 provides a general introduction about the multiphase electric drives
and sensorless control. A brief discussion about advantages of multiphase
drives and sensorless control is presented together with a brief literature sur-
vey concerning the current state-of-the-art. This chapter is completed with
organisation of the thesis.

� Chapter 2 deals with model of sinusoidal PM multiphase machines in phase
variable domain, in stationary and in synchronous reference frames. The chap-
ter is completed with the model of nine-phase surface PMSM with sinusoidal
back-electromotive force.

� Chapter 3 deals the �eld-oriented control theory of sinusoidal nine-phase sur-
face PMSM. The control is composed by cascaded PI controllers and the anti-
windup technique is added. The analysis and design of PI gains in speed and
current loops regulation is given. This chapter is completed with simulation
results in Matlab/Simulink environment to evaluate the control performance.

� Chapter 4 deals the machine prototype. The back-EMF and PM harmonic
distribution are the starting point to obtain the harmonic model in VSD vari-
ables and in phase variable domain. The chapter is completed with vector
proportional integral and resontant controller theories for the analysis and
design of current loop regulation.

� Chapter 5 deals the sensorless �eld-oriented control. A brief literature survey
of current state-of-the-art in sensorless control is provided: estimation methods
are presented. Most importantly, this chapter provides how the novelty of the
conducted work comes from the use of back-EMF harmonic to estimate the
rotor position and/or speed informations. The angle estimation is based on
back-EMF. Through the use of third harmonic of back-EMF and the employed
resonant controller, the rotor position is obtained. This method fails at low
speed and for this reason the starting method I-Hz is necessary. This chapter
is completed with simulation results in Matlab/Simulink environment under
hybrid control.

� Chapter 6 deals the experimental validation. The employed test rig and digital
controller is given. To follow, the machine tests to obtain the electrical and
mechanical parameters are presented. In particular, the following tests have
been conducted: zero sequence test, single phase test, short circuit test and
test rig characterization. Most importantly, this chapter is completed with

3
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experimental validation of the proposed hybrid control on machine highly non-
sinusoidal back-EMF. The mechanical rotor position has been measured with
an encoder in order to compare the measured value with its estimate. The
experimental results are obtained under sensorless control.

� Chapter 7 provides conclusions. In addition, possibilities for future work are
discussed in this chapter as well.
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Chapter 2

Model of Sinusoidal Multiphase

Surface Permanent Magnet

Synchronous Machine

In this chapter the preliminary remarks and multiphase machine modelling are
described to obtain a mathematical model of Surface Permanent Machine Magnet
Synchronous.

Chapter is organised as follows:

� In Section 2.1 general considerations about multiphase machine, di�erent types
of synchronous machine and the assumptions used in the sections to follow are
presented.

� In Section 2.2 the mathematical model of surface PMSM is developed, i.e., the
general model with arbitrary phase number on the stator is analysed. Machine
model in phase variable domain, vector space decomposition variables and,
�nally, synchronous reference frame are reported.

� In Section 2.3 model of nine-phase surface PMSM is developed using phase
variables modelling equations and synchronous reference frame derived in the
previous section.
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2 � Model of Sinusoidal Multiphase Surface Permanent Magnet Synchronous Machine

2.1 Introduction

An electric machine is called multiphase machine when the stator phase number
is higher than three (n>3). This machine is supplied from multiphase converter
in order to perform the electromechanical energy conversion. The conversion is
reversible: from electrical power to mechanical power (motorM ) or from mechanical
power to electrical power (generator G). The main elements of a multiphase electric
drive are shown in Fig. 2.1.

The principle of rotating �eld is the same as in three-phase machine: a symmet-
ric rotating magnetic �eld can be produced with as few as two polar wound coils
driven at 90◦ phasing. However, three sets of coils are nearly always used because
it is compatible with a symmetric three-phase alternating current system (power
supply). All rotating �elds in multiphase synchronous machines, caused by the
fundamental harmonic of the supply, rotate at synchronous speed, governed with
the stator winding frequency. In the case of synchronous machine, the rotor speed
rotates at the same speed as does stator �eld.

The advantages of multiphase machines over three-phase machines are sum-
marised in the following [12]:

� Fault tolerance against machine and converter faults that allows a smooth
postfault operation with no additional hardware than their three-phase coun-
terparts. If one phase of a three-phase machine becomes open-circuited the
machine becomes single-phase. It may continue to run but requires some ex-
ternal means for starting, and must be massively de-rated. If one phase of
a n-phase machine becomes open circuited, it will still self-start and will run
with only minimal de-rating [13].

� Power density improvement with current harmonic injection: torque produc-
tion can be enhanced by injection of higher stator current harmonics [14].

Figure 2.1: Schematic of main elements of a multiphase electric drive.
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2.1 � Introduction

Torque enhancement in this manner is possible only if the stator winding mag-
netomotive force distribution contains corresponding time-spatial harmonics,
so that the machine is in this case designed with concentrated rather than
distributed stator winding (only for synchronous machines) [15].

� Multiphase machines are less susceptible than their three-phase counterparts
to time-harmonic components in the excitation waveform. Such excitation
components produce pulsating torques at even multiples of the fundamental
excitation frequency.

� Lower current per phase without increase the phase voltage. This advantages
feature may be useful for electric vehicles and similar applications where lower,
upper limit of voltage and current is desirable.

Most of synchronous machines have excitation on rotor, which can be provided
either by permanent magnets or direct current supplied excitation (or �eld) winding.
If the rotor is not equipped with magnets or the excitation winding, the machine is
called synchronous reluctance type.

Two principal geometries of the rotor are illustrated in Fig. 2.2. Only one phase
(1s) of the stator multiphase winding is shown and it is illustrated schematically
with its magnetic axis. The rotor is shown as having an excitation winding, which
is supplied from a dc source and which produces rotor �eld. This �eld is stationary
with respect to rotor and acts along the d -axis (N -pole of the magnets). But, since
rotor rotates at synchronous speed, the rotor �eld rotates at synchronous speed in
the air-gap as well.

Figure 2.2: Synchronous machine structures.
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2 � Model of Sinusoidal Multiphase Surface Permanent Magnet Synchronous Machine

Permanent magnets are installed when machine rotor is without excitation wind-
ings. The permanent magnet electric machines can be classi�ed as shown in Fig.
2.3. In red is highlighted the electric machine of interest in this thesis. A brief
classi�cation of permanent magnet machines is presented [4].

In PM electric machines the �eld is generated by permanent magnets, eliminat-
ing the requirement of �eld windings and external electrical source for it. In contrast
to the conventional doubly excited electric machines, which have two sources of ex-
citation (armature and �eld), the copper loss due to �eld windings does not exist,
increasing the e�ciency of the machine. The synchronous machine with permanent
magnet allows reducing the size and the weight than the conventional doubly excited
electric machines. The �rst classi�cation of permanent magnet machines is based on
the excitation: permanent magnet dc and permanent magnet ac. The PMDC is very
similar to separately excitated dc machine because PM in the place of �eld windings
are used. The PMAC are synchronous machines: the �eld is created by permanent
magnets on the rotor. The PMAC machines can be classi�ed into trapezoidal and
sinusoidal types. The distintion is based on waveform of back-electromotive force:
in trapezoidal machines the induced back-EMF is trapezoidal instead it is sinusoidal
in sinusoidal machines. The sinusoidal machines are favorite in application where
the high control performance is required. The sinusoidal PMAC are also called per-
manent magnet synchronous machines. Di�erent rotor con�gurations of PMSM s
exist based on how the magnets are placed in the rotor. The two common types are
shown in Fig. 2.4: the permanent magnets may be either �xed along the circumfer-
ence of a cylindrical rotor (Surface Permanent Magnets) or they are inside the rotor
(Interior Permanent Magnets). The structure of SPM and IPM machine is shown
in the left and in the right of Fig. 2.4, respectively.

Figure 2.3: Classi�cation of permanent magnet electric machines.
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2.1 � Introduction

Figure 2.4: Cross-section of surface and interior permanent magnet rotor.

The SPM machine is a sinusoidal isotropic brushless, without reluctance torque
contribution. The torque is product by the interaction between permanent magnets
on rotor and stator currents. Therefore the torque control is directly proportional
to the current along q-axis (Tem ∝ iq). It is recalled that, this motor type is analised
in this work.

Reluctance torque contribution in IPM machine is obtained with the combina-
tion of the currents in (d, q) axes due to the anisotropic (motor structure property)
torque contribution.
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2 � Model of Sinusoidal Multiphase Surface Permanent Magnet Synchronous Machine

2.2 Multiphase Sinusoidal Surface Permanent Syn-

chronous Machine Modelling

In this thesis a symmetrical surface PMSM is considered. The stator winding
is formed by n windings. The stator frame is redesigning: n independent windings
and 2n terminals are obtained. Modeling of multiphase ac machines usually takes
into account number of simplifying assumption. They are:

� Every phase is identical to other phases in the machine.

� Stator resistance of windings are assumed to be constant because the variation
due to the temperature and skin-e�ect are neglected.

� The winding is distributed across the circumference of the stator and is de-
signed in such a way that the magnetomotive force is sinusoidal. The �ux
distribution around the air-gap has the same trend and the air-gap is consid-
ered uniform (isotropic machine).

� Machine with one pole-pair and a typical rotor of a generic three-phase SPM
machine is considered. d -axis is coincident with the N -pole of the magnets.

� The ferromagnetic material is considered ideal: the nonlinearity is neglected
and the losses due to ferromagnetic material (hysteresis and eddy currents)
are neglected.

� The impact of the stator slots is neglected.

� Full decoupling between the leakage �uxes.

From the operational point of view, the most relevant feature of the winding
arrangement is the existence or absence of higher order spatial harmonics in the air
gap magnetomotive force. With an appropriate stator winding design, these higher
order harmonics can be mostly neglected in distributed winding machines and the
MMF can be regarded as sinusoidal.

2.2.1 Mathematical Model of a Multiphase Synchronous

Machine in Phase Variable Domain

Based on the initial assumptions, the mathematical model in phase variable
domain of a multiphase machine is formulated. The mathematical model can be de-
scribed in phase domain using the general theory of electric machines with standard
assumption [5].
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2.2 � Multiphase Sinusoidal Surface Permanent Synchronous Machine Modelling

Any n-phase machines is described by the n-electric and n-magnetic equations.
The electric equations put in relation the voltages and �ux linkages of the electric
machine, while the magnetic equations put in relation the currents and �ux linkages.
Both equations are combined to obtain the input voltages and output currents of the
machine. The phase variable domain is preferable to analyse the developed dynamic
behaviours in the machine. Instead other reference frames are most appropriate to
implement the control algorithm, as shown below.

The number of phases on stator n can be represented as:

n = kws · a (2.1)

where:
-kws is number of winding sets and it is any integer higher or equal to 1 and
-a is the number of the phases per each winding set and it is a prime number

which is equal or larger than 3 (a=3, 5, 7, ...).
Another di�erence for multiphase machines is based on the distribution of the

phases around stator's circumference, as shown in Fig. 2.5: (i) the machine is sym-
metrical if the spatial displacement between magnetic axes of any two consecutive
phases is equal to α = 2π/n electrical degrees, (ii) if the spatial shift leads to asym-
metrical positioning of the stator phase magnetic axes in the cross section of the
machine, the machine is termed asymmetrical machine and spatial shift between the
�rst phases belonging to two consecutive winding sets is governed by α = π/n. The
distintion between symmetrical and asymmetrical machine is synthesized as:

Figure 2.5: Multiphase machine winding distribution around stator circumference.
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2 � Model of Sinusoidal Multiphase Surface Permanent Magnet Synchronous Machine

α =


2π

n
, symmetrical

π

n
, asymmetrical

(2.2)

In Fig. 2.6 the equivalent circuit of n-phase surface PMSM machine is presented
with the following characteristics:

� The phases of stator are denoted with subscripts a1 to n, according to the
spatial distribution of the windings, as shown in Fig. 2.5.

� Single isolated neutral point is assumed.

The Kirchho�'s law is possible applicable at any stator winding. The nature
of winding is resistive-inductive and therefore voltage equilibrium equation of any
phase of stator presents the same principal form de�ned as:

v = R · i+
dλ

dt
(2.3)

where:
-v stands for instantaneous voltage,
-i stands for instantaneous current,
-λ stands for instantaneous �ux and
-R stands for stator resistance.
On the basis of Kirchho�'s law and consider the equivalent circuit, shown in Fig.

2.6, the knowledge of both magnetic and electrical equations are necessary.

Figure 2.6: Multiphase machine equivalent circuit in phase variable domain.
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2.2 � Multiphase Sinusoidal Surface Permanent Synchronous Machine Modelling

The electric and magnetic equations for the machine, using passive sign conven-
tion, is written as:[vabcn] = [Rs] · [iabcn] +

d[λabcn]

dt

[λabcn] = [λPM,abcn] + [Lls] · [iabcn] + [Mss] · [iabcn]

(2.4)

where:
-[vabcn] stands for vector of the stator voltages,
-[iabcn] stands for vector of the stator currents,
-[λabcn] stands for vector of the total stator �ux linkages in phase sets,
-[λPM,abcn] stands for vector of the �ux produced by permanent magnets,
-[Rs] stands for matrix of stator phase winding resistance,
-[Lls] stands for matrix of the leakage inductance and
-[Mss] stands for matrix of the mutual magnetizing inductance.
The phase voltage, current, total �ux and permanent magnets culumn vector are

de�ned in Eqs. (2.5) - (2.8).

[vabcn] = [v,a1 va2 va3 . . . vn]T (2.5)

[iabcn] = [ia1 ia2 ia3 . . . in]T (2.6)

[λabcn] = [λa1 λa2 λa3 . . . λn]T (2.7)

[λPM,abcn] = [λPM,a1 λPM,a2 λPM,a3 . . . λPM,n]T (2.8)

About the magnetic equantion, the mutual magnetizing inductance computation
between two generic phase-windings of the machine and the computation of the
phase �ux linkage caused by the PM are inputs necessary. In electrical equation the
focus is the stator resistance.

Starting with the magnetic model, consider Fig. 2.7 where:
- θd stands for arbitrary position of the rotor in space (N -pole) and
-θi and θj are angle positions for two arbitrary chosen stator phases.
Usually it is taken that phase angle θa1 = 0◦ and the mutual magnetizing induc-

tances are calculated for every single phase in relation to this angle datum value.
The mutual magnetizing inductance between all phases in machine is represented
by the [Mss] matrix. The matrix element between two generic phase winding i and
j is computed as:

Mij =
λij

ij

∣∣∣∣
ii=0

(2.9)

Mji =
λji

ii

∣∣∣∣
ij=0

(2.10)
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2 � Model of Sinusoidal Multiphase Surface Permanent Magnet Synchronous Machine

Figure 2.7: Angle distribution for mutual inductance de�nition.

The presented equations mean that the mutual inductance Mij is related to the
�ux linkage of the winding i λij, produced by the current in the winding j while the
current in the winding i is equal to zero. The same consideration can be extended
to the mutual inductance Mji (the �ux λji is caused by the current in the winding
i). Finally, from the electromagnetic theory:

Mij = Mji (2.11)

The current injection in the winding j causes the magnetomotive force vector,
which is alligned with the magnetic j -axis, as shown in Fig. 2.8. The amplitude
of the magnetomorive force is computed as product between the turns number of
the winding j and the current in the same winding. With the assumption that all
windings are composed by the Ns turns, the magnetomotive force vector is modelled
as:

Fj = Ns · ij (2.12)

Figure 2.8: Scheme for the computation of the magnetomotive force.
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2.2 � Multiphase Sinusoidal Surface Permanent Synchronous Machine Modelling

The projections of the magnetomotive force vector are:Fjd = Fj · cos(θd − θj)

Fjq = −Fj · sin(θd − θj)
(2.13)

By replacing Eq. (2.12) in Eq. (2.13), the projections are computed as:Fjd = Ns · ij · cos(θd − θj)

Fjq = −Ns · ij · sin(θd − θj)
(2.14)

On the basis of the magnetomotive force projections, the �uxes along the mag-
netic (d,q) are computed as:

φjd =
Fj,d

<d

=
Ns · ij
<d

· cos(θd − θj)

φjq =
Fj,q

<q

= −Ns · ij
<q

· cos(θd − θj)
(2.15)

where <d and <d are the equivalent magnetic reluctances along d -axis and q-
axis, respectively. Howewer, the �ux caused by the current in the winding j produces
the e�ect on the i winding, through the magnetomotive force projections. In Fig.
2.9 the projections of the �ux φj in the magnetic i -axis are shown and they are
computed as: φij,d = φj,d · cos(θi − θd)

φij,q = φj,q · cos(θi − θd)
(2.16)

Figure 2.9: Scheme for the computation of the magnetic �ux in the magnetic i -axis
due to the current in j -axis.
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By replacing Eq. (2.15) in Eq. (2.16) the projections in the magnetic i -axis are
expressed as: 

φij,d =
Ns · ij
<d

· cos(θd − θj) · cos(θi − θd)

φij,q = −Ns · ij
<q

· cos(θd − θj) · cos(θi − θd)
(2.17)

In conclusion, the magnetic �ux axis are computed as:

φij =
Ns · ij

2
·
(

1

<d

+
1

<q

)
·cos(θi−θj)+

Ns · ij
2
·
(

1

<d

+
1

<q

)
·cos(2·θd−θi−θj) (2.18)

The �ux linkage of the winding i caused by the current in winding j is:

λij = Ni · φij = Ns · φij (2.19)

By replacing Eq. (2.18) in Eq. (2.19), the linkage �ux is:

λij =
N2

s · ij
2
·
(

1

<d

+
1

<q

)
· (θi−θj) +

N2
s · ij
2
·
(

1

<d

+
1

<q

)
· (2 ·θd−θi−θj) (2.20)

Referring to the Eqs. (2.9) and (2.10), the following equation is obtained:

Mij =
λij

ij

∣∣∣∣
ii=0

=
N2

s

2
·
(

1

<d

+
1

<q

)
·cos(θi−θj)+

N2
s

2
·
(

1

<d

+
1

<q

)
·cos(2·θd−θi−θj)

(2.21)
In order to write the Eq. (2.21) in a compact form, the new inductances are

de�ned as:

Lm,d =
N2

s

<d

, Lm,q =
N2

s

<q

(2.22)

A new �ctitious isotropic mutual inductance factor MI and anisotropic mutual
inductance factor MA are introduced:

MI =
Lm,d + Lm,q

2
, MA =

Lm,d − Lm,q

2
, (2.23)

By replacing Eqs. (2.22) and (2.23) in Eq. (2.21), the mutual inductance Mij

(ii =0) is:

Mij =

(
Lm,d + Lm,q

2

)
· cos(θi − θj) +

(
Lm,d − Lm,q

2

)
· cos(2 · θd − θi − θj) =

=MI · cos(θi − θj) +MA · cos(2 · θd − θi − θj) =

=MI · cos(θj − θi) +MA · cos(2 · θd − θj − θi) = Mji

(2.24)
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2.2 � Multiphase Sinusoidal Surface Permanent Synchronous Machine Modelling

The employed machine in this thesis is isotropic and for this reason the anisotropic
inductance is zero:

MA = 0⇒ Lm,d = Lm,q = Lm ⇒MI = Lm (2.25)

In conclusion, the mutual inductance is computed as:

Mij = MI · cos(θi − θj) (2.26)

The �nal matrix for n windings is de�ned as:

[Mss] =


Ma1,a1 Ma1,a2 Ma1,a3 Ma1,b1 . . . Ma1,n

Ma2,a1 Ma2,a2 Ma2,a3 Ma2,b1 . . . Ma2,n

Ma3,a1 Ma3,a2 Ma3,a3 Ma3,b1 . . . Ma3,n

Mb1,a1 Mb1,a2 Mb1,a3 Mb1,b1 . . . Mb1,n

. . . . . . . . . . . . . . . . . .
Mn,a1 Mn,a2 Mn,a3 Mn,b1 . . . Mn,n

 (2.27)

The leakage inductances matrix is expressed as:

[Lls] =


Lls,a1 0 0 0 . . . 0

0 Lls,a2 0 0 . . . 0
0 0 Lls,a3 0 . . . 0
0 0 0 Lls,b1 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . Lls,n

 (2.28)

As it is assumed that all individual phase winding are identical from each other,
then:

Lls,a1 = Lls,n = Lls (2.29)

As shown in system Eq. (2.4), the magnetic model takes into account the �ux
linkage of the windings caused by the permanent magnet with assumption of the
magnetic linearity. The PM is modeled as an ideal magnetomotive force generator
FPM . The e�ect of the �ux produced by PM is represented by a vector, alligned
with the physical d -axis (N -pole) and its amplitude is equal to φPM , as shown in
Fig. 2.10. This is computed as:

φPM =
FPM

<d

(2.30)

The e�ect of the magnetic �ux vector on the generic winding j is computed as:

φPM,j =
FPM

<d

· cos(θd − θj) (2.31)
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Figure 2.10: Single-phase PM �ux linkage computation scheme.

The �ux linkage for the considered winding j is:

λPM,j =Ns · φPM,j =
Ns · FPM

<d

· cos(θd − θj) =

=λPM · cos(θd − θj) = λPM · cos(θ− θj)
(2.32)

where the amplitude of the PM �ux is de�ned as:

λPM =
Ns · FPM

<d

(2.33)

while from now on the d -axis position θd will be replaced with θ.
For a generic winding n, Eq. (2.32) in phase variable domain is written consid-

ering a generic angle Tn, which depends on spatial phase distribution around the
circumference:

λPM,n = λPM · cos(θ− θn), θn ∈ [0, ..., (n− 1) · α]nX1 (2.34)

The Eq. (2.34) is valid in machine modelling only if sinusoidal back-electromotive
force is assumed. In multiphase machines, this equation can be extended in its
complete vector form as:

[λPM,abcn] = λPM ·


cos(θ− 0 · α)
cos(θ− 1 · α)
cos(θ− 2 · α)
cos(θ− 3 · α)

. . .
cos(−(n− 1) · α)

 (2.35)

The total back-electromotive force (EMFtotal) and the back-electromotive force
produced by the permanent magnets (EMFPM) are obtained by the time derivative
of produced �ux, as it is shown in Eq. (2.36) and (2.37), respectively.

[back − EMFtotal] =
d[λabcn]

dt
(2.36)
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[back − EMFPM ] =
d[λPM,abcn]

dt
(2.37)

Now, it is necessary to de�ne the machine electric model. The stator resistance
matrix is expressed as:

[Rs] =


Rs,a1 0 0 0 . . . 0

0 Rs,a2 0 0 . . . 0
0 0 Rs,a3 0 . . . 0
0 0 0 Rs,b1 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . Rs,n

 (2.38)

As it is assumed that all individual phase winding are identical from each other,
then:

Rs,a1 = Rs,n = Rs (2.39)

Finally, consider an arbitrary number of stator phases n, on the basis of the Eq.
(2.4), the presented matrices, the �ux linkage caused by the PM, the dynamic model
of the machine is written as:



va1

va2

va3

vb1

. . .

vn


=



Rs 0 0 0 . . . 0

0 Rs 0 0 . . . 0

0 0 Rs 0 . . . 0

0 0 0 Rs . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . Rs


·



ia1

ia2

ia3

ib1

. . .

is,n


+
d

dt



λa1

λa2

λa3

λb1

. . .

λn




λa1

λa2

λa3

λb1

. . .

λs,n


=



λPM,a1

λPM,a2

λPM,a3

λPM,b1

. . .

λPM,n


+



Lls 0 0 0 . . . 0

0 Lls 0 0 . . . 0

0 0 Lls 0 . . . 0

0 0 0 Lls . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . Lls


·



ia1

ia2

ia3

ib1

. . .

in


+

+



Ma1,a1 Ma1,a2 Ma1,a3 Ma1,b1 . . . Ma1,n

Ma2,a1 Ma2,a2 Ma2,a3 Ma2,b1 . . . Ma2,n

Ma3,a1 Ma3,a2 Ma3,a3 Ma3,b1 . . . Ma3,n

Mb1,a1 Mb1,a2 Mb1,a3 Mb1,b1 . . . Mb1,n

. . . . . . . . . . . . . . . . . .

Mn,a1 Mn,a2 Mn,a3 Mn,b1 . . . Mn,n


·



ia1

ia2

ia3

ib1

. . .

in



(2.40)
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2 � Model of Sinusoidal Multiphase Surface Permanent Magnet Synchronous Machine

The magnetic equation can be written as:
λa1
λa2
λa3
λb1
. . .
λn

 =


λPM,a1

λPM,a2

λPM,a3

λPM,b1

. . .
λPM,n

+


La1,a1 L,a1,a2 La1,a3 La1,b1 . . . 0
La2,a1 La2,a2 La2,a3 La2,b1 . . . 0
La3,a1 La3,a2 La3,a3 La3,b1 . . . 0
Lb1,a1 Lb1,a2 Lb1,a3 Lb1,b1 . . . 0
. . . . . . . . . . . . . . .
Ln,a1 Ln,a2 Ln,a3 Ln,b1 . . . Ln,n

 ·

ia1
ia2
ia3
ib1
. . .
in

 (2.41)

where the overall inductance matrix is indicated as:

[Lss] = [Lls] + [Mss] (2.42)

The �nal equation in phase variable domain, obtained with the combination of
electrical and magnetic equation in compact matrix form, is:

[iabcn] = [Lss]
−1
(∫ (

[vabcn]− [Rs] · [iabcn]

)
dt− [λPM,abcn]

)
(2.43)

In Fig. 2.11 the schematic representation of mentioned equation is shown, where
peach and blue blocks represent the magnetic and electrical equations, respectively.

Figure 2.11: Dynamic electromagnetic model of the machine.
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2.2 � Multiphase Sinusoidal Surface Permanent Synchronous Machine Modelling

2.2.2 Decoupling Transformation

The machine model in stationary reference frame can be obtained with two
methods. The �rst one consists to apply the reference transformations set by set,
following the standard procedure of the MS -approach [16]. The second one consists
into de�ning a single reference transformation, which is applied to the complete set
of machine's equations, called VSD approach [17]. However, when a multiphase ma-
chine has multiple winding sets, it is advantageous to have independent control over
each individual winding set. For example, in generation systems this can be used to
switch o� any winding set in the case of fault. By doing so, the machine is divided
into multiple �ux/torque producing subplanes and well-known control techniques
developed for three-phase machines can be implemented in each subplane. The ad-
vantage of this modelling approach is the possibility for individual and independent
control of all winding sets. However, multiple pairs of PI controllers are required
for simple �ux/torque control. With VSD modelling approach independent control
over each individual winding set is no possible, but a clear harmonic mapping is
obtained. For this reason, in this thesis the VSD approch is used.

The machine model in the phase variable domain is transformed using decoupling
transformation matrix (VSD matrix). The reason of this transformation are (i) the
description of electric machine behaviour in phase variable domain with time-varying
coe�cients does not provide a good insight into the physical phenomena and (ii) the
model in phase variable domain is not suitable for control purposes. The consequence
is to describe the machine using the VSD approach. Applying the VSD, the model is
decomposed into orthogonal subplanes by applying Clarke's transformation [18]. Its
aim is to replace the original sets of n variables with the new sets of n variables. After
this transformation, the machine is represented with n/2 two-dimensional subplanes
if the phase number n is even. If the number of phase n is odd, the original plane is
transformed in (n-1)/2 planes plus one single-dimensional quantity. The new planes
after the Clarke's transformation are orthogonal from each other. The consequence
is no coupling between them. Further, in each two-dimensional subplane, there is a
pair of quantities, positioned along two mutually perpendicular axes. This leads to
signi�cant simpli�cation of the model, compared to original phase variable domain.

A generic relationship between original phase variable domain and new set of
variables is de�ned in Eq. (2.44). In what follows, the variables in stationary
reference frame, obtained after decoupling matrix application, are denoted with vsd
subscript.

[fvsd] = [V SD] · [fabcn] (2.44)

where:

-[fvsd] stands for voltage, current, �ux linkage of the stator windings or for the
vector of the PM stator �uxes linkages after the transformation,
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2 � Model of Sinusoidal Multiphase Surface Permanent Magnet Synchronous Machine

-[VSD ] stands for Clarke matrix i.e. for the decoupling transformation matrix
and

-[fabcn] stands for the corresponding vector listed above in terms of the phase
variable domain.

For an arbitrary phase number n, the VSD matrix is shown in Eq. (2.47).
The coe�cient in front of the matrix is associated with the power per phase of

the original and new machine. If the power is kept invariant, the transformation
is usually termed power invariant transformation and the coe�cient in front of the
matrix is equal to

√
(2/n); if the coe�cient in front of VSD matrix is equal to n/2,

the power is not kept invariant, but the amplitude is invariant. In this work the
amplitude invariant transformation is used, hence in front of the matrix there is 2/n.
The relationship between the inverse VSD and its transponse is de�ned as:

[V SD]−1 =
n

2
· [V SD]T (2.45)

By replacing Eq. (2.45) in Eq. (2.44), the relation between vsd variables and
phase variable domain is written as:

[fabcn] =[V SD]−1 · [fvsd] =

=
n

2
· [V SD]T · [fvsd]

(2.46)

The �rst two rows in Eq. (2.47) de�ne variables that will lead to fundamen-
tal �ux and torque production: the �rst subplane is a �ux/torque producing one,
meaning that all electromechanical energy conversion is happening here, assuming
the sinusoidal winding distribution. Other subplane variables can be used as addi-
tional degrees of freedom for some multiphase machine speci�c purpose, i.e. fault
tolerance: these subplanes are not �ux/torque production [19]. To conclude, the
structure of VSD matrix depends on the number of considered n phases.

� If n is even, the last two rows de�ne the zero-sequence components and in
between there are (n-4)/2 pairs of rows that de�ne pairs of variables, termed
further on xy components. The xy components don't partecipate in electrome-
chanical energy conversion and in fact the torque is produced only by the αβ
components (sinusoidal winding). The (α,β), (x, y)1, (x, y)2,..., (x, y)(n−4)/2
planes are orthogonal from each other.

� If n is odd, the last row of the transformation matrix is omitted and in between
there are (n-3)/2 pairs of rows that de�ne pairs of variables, termed further
on xy components.
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2 � Model of Sinusoidal Multiphase Surface Permanent Magnet Synchronous Machine

The new perpendicular planes can be consider as a complex and de�ne one axis
component as a real part and the other axis component as an imaginary part of a
complex number, as shown in Eq. (2.48). The complex numbers are known as space
vectors. In what follows, space vectors are denoted with underline symbols.

a = a+ jb = ejα = cos(α) + jsin(α) (2.48)

where α =2π/n (symmetrical machine). It is natural to introduce the complex
number because each pair of rows contains sine and cosine functions of the same
angles. However, each pair of rows in Eq. (2.47) then de�nes one space vector,
with odd rows determining the real parts and the even rows imaginary parts of
the corresponding complex numbers. Let f stand once more for voltage, current,
or �ux linkage of the stator. Space vectors are then governed by Eqs. (2.49) -
(2.52). In these equations is assumed that the phase number is odd and there is a
single isolated neutral point (the zero-sequence can not be excited). The number in
front the equations is in agreement with the power-variant convention (amplitude
invariant) assumed in VSD matrix.

f
αβ

= fα + jfβ =
2

n
(f1 + a · f2 + a2 · f3 + ...an−1 · fn) (2.49)

f
xy1

= fx1 + jfy1 =
2

n
(f1 + a2 · f2 + a4 · f3 + ...a2(n−1) · fn) (2.50)

f
xy2

= fx2 + jfy2 =
2

n

(
f1 + a3 · f2 + a6 · f3 + ...a3(n−1) · fn

)
(2.51)

f
xy(n−3)/2

= fx(n−3)/2
+ jfy(n−3)/2

=
2

n
(f1 +a(n−1)/2 ·f2 +a2[(n−1)/2] ·f3 + ...a(n−1)

2/2 ·fn)

(2.52)
To conclude the presented theory in VSD variables is a complex form because

each variables can be expressed as a complex vector, as explain above. In the
following, the matrix form in the same reference frame is introduced for a multiphase
surface PMSM with n stator windings.

The magnetic and electrical machine equations in phase variable domain are
considered. For convenience, both are below reported:[vabcn] = [Rs] · [iabcn] +

d[λabcn]

dt

[λabcn] = [λPM,abcn] + [Lls] · [iabcn] + [Mss] · [iabcn]

(2.53)
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2.2 � Multiphase Sinusoidal Surface Permanent Synchronous Machine Modelling

By applying the VSD matrix to the electrical and magnetic equations, the model
in stationary reference frame is:

[V SD] · [vabcn] = [V SD] · [Rs] · [V SD]−1 · [ivsd] + [V SD] · d
dt

(
[V SD]−1 · [λvsd]

)
[V SD] · [λabcn] =[V SD] · [Lls] · [V SD]−1 · [ivsd] + [V SD] · [Mss] · [V SD]−1 · [ivsd]+

+[V SD] · [λPM,abcn]
(2.54)

By replacing the relationship shown in Eq. (2.44), the machine model is written
as: [vvsd] = [Rs] · [ivsd] +

d[λvsd]

dt

[λvsd] = [Lls] · [ivsd] + [Mss,vsd] · [ivsd] + [λPM,vsd]

(2.55)

where:
-[vvsd] stands for the vector of the stator voltages for n phase windings,
-[ivsd] stands for the vector of the stator currents for n phase windings,
-[λvsd] stands for the vector of the stator �uxes linkage for n phase windings,
-[λPM,vsd] stands for the vector of the PM stator �uxes linkage,
-[Lls] stands for the matrix related to the stator leakage inductances. This matrix

is immune to the transformation VSD,
-[Rs] stands for the matrix related to the stator resistances. This matrix is

immune to the transformation VSD and
-[Mss,vsd] stands for the matrix related to the mutual magnetizing inductance.
The mutual inductance matrix in stationary RF is computed as:

Mss,vsd =[V SD] · [Mss] · [V SD]−1 =

=
n

2
·


MI 0 0 0 . . . 0
0 MI 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0


(2.56)

The stator leakage inductance matrix and stator matrix in stationary RF are
computed as:

[V SD] · [Lls] · [V SD]−1 = [Lls] = Lls · [Id] (2.57)

[V SD] · [Rs] · [V SD]−1 = [Rs] = Rs · [Id] (2.58)

where [Id ] stands for identity matrix, which dimension depend on the phase
number n.
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2 � Model of Sinusoidal Multiphase Surface Permanent Magnet Synchronous Machine

About the PM stator �ux linkage vector:

[λPM,vsd] = λPM ·


cos(θ)
sin(θ)

0
0
. . .
0

 (2.59)

Because the sinusoidal machine is analysed, the vector of the PM stator �uxes
linkage is composed only by the foundamental components.

About the zero-sequence component, the electrical and magnetic equations are:v0 = Rs · i0 +
dλ0
dt

λ0 = Lls · i0
(2.60)

where:
- v0 is the zero-sequence stator voltage,
- i0 is the zero-sequence stator current,
- λ0 is the zero-sequence stator �ux,
This transformation allows at drawing a new equivalent circuit in (α,β), (x, y)

subplanes and zero-sequence component, as shown in Fig. 2.12. In mentioned �gure
(c), the zero-sequence current cannot �ow due to the neutral point connection, this
modelled with an open switch.

2.2.3 Synchronous Reference FrameMultiphase surface PMSM

modelling

After the application of VSD matrix, by applying the rotational transformation
the model in a synchronous reference frame is obtained. However, the choice of
the rotating frame depends by the machine control type: Rotor Control Schemes
or Stator Control Schemes. In the �rst category it is included the well-known �eld
oriented control. At the second one belongs the Direct Torque Control (DTC ) or
the more recent Direct Flux Vector Control (DFVC ) [20]. In terms of machine
modelling the only di�erence between them is the choice of the rotating frame. In
the Rotor Control Schemes for surface PMSM s the equations are referred to the
physical (d,q) reference frame. In this thesis this approch is used.

The �ctious vsd components, obtained in the previous section, are still �rmly at-
tached to the stationary axes. Now another transformation is performed: rotational
transformation. The �ctious components are transformed once more to obtain an-
other �ctious windings and components. The aim of this transformation is to obtain
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2.2 � Multiphase Sinusoidal Surface Permanent Synchronous Machine Modelling

Figure 2.12: Equivalent circuit of sinusoidal machine: (a) - (α,β); (b) - (x, y)i (i =
1, 2, 3) subplanes; (c) - zero-sequence component.

a new sets of stator variables with the same speed of the rotor, where the input an-
gle in rotational matrix is equal to the electrical rotor position θ. The relationship
between vsd and dq components is:

[fdq] = [D] · [fvsd] (2.61)

The number of phase is equal to n, but the rotational transformation is applied
only to the �rst two rows of the VSD matrix:[

fd
fq

]
=

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

]
·
[
fα
fβ

]
(2.62)

The inverse rotational matrix is computed as:[
fα
fβ

]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
·
[
fd
fq

]
(2.63)

Because xy component equations do not need to be transformed, rotational ma-
trix form for an n-phase machine is identical as for the three-phase counterparty.
The transformation is de�ned in such a way that the resulting new sets of stator
windings, which will replace αβ windings, rotate at the same rotor angular speed,
so-called speed of the synchronous reference frame. For multiphase machine the
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2 � Model of Sinusoidal Multiphase Surface Permanent Magnet Synchronous Machine

Figure 2.13: A schematic representation of complete [T ] = [D] · [C] transformation.

transformation from vsd to dq is obtained with [D ] matrix, de�ned as:

[D] =


cos(θ) sin(θ) 0 0 . . . 0
−sin(θ) cos(θ) 0 0 . . . 0

0 0 1 0 . . . 0
0 0 0 1 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 1

 (2.64)

The �rst two rows in Eq. (2.64) are again responsible for the �ux and torque
production, while the other subplanes don't partecipate in electromechanical energy
conversion (assuming the sinusoidal winding distribution).

Finally, a single matrix, called Park's matrix, to obtain the machine modelling
in synchronous RF from phase variable domain is de�ned as:

[fdq] =[D] · [C] · [fabcn] =

=[T ] · [fabcn]
(2.65)

In Fig. 2.13 and 2.14 the complete transformation and waveforms of variable
transformation between di�erent references frame can be seen, respectively. It is
possible to observe in Fig. 2.14 the di�erence in frequency due to the transforma-
tions.
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Figure 2.14: Generic waveforms in di�erent references frame.

The machine model in synchronous reference frame for a generic multiphase
surface PMSM with the same hypothesis is now computed. In this case the magnetic
and electrical equations in vsd variables are considered. By applying the matrix
presented in Eq. (2.64) the machine model in rotor reference frame (d,q) is obtained:

[D] · [vvsd] = [D] · [Rs] · [D]−1 · [idq] + [D] · d
dt

(
[D]−1 · [λdq]

)
[D] · [λvsd] =[D] · [Lls] · [D]−1 · [idq] + [D] · [Ms,vsd] · [D]−1 · [idq]+

+[D] · [λPM,vsd]

⇒ (2.66)

⇒


[vdq] = [Rs] · [idq] +

d[λdq]

dt
+ j ·ω · [λdq]

[λvsd] =[Lls] · [idq] + [Mss,dq] · [idq] + [λPM,dq] =

=[Ls,dq] · [idq] + [λPM,dq]

where:

-[vdq] is the stator voltage vector in rotor RF,

-[idq] is the stator current vector,

-[λdq] stands for the vector of the stator �uxes linkage for n phase windings,

-[λPM,dq] stands for the vector of the PM stator �uxes linkage. This vector is
immune to the rotational transformation than vector in VSD variables,

-[Mss,dq] stands for mutual magnetizing inductances matrix. It is immune to the
rotational transformation,

-[Lls] stands for stator leakage inductances matix. It is immune to the rotational
transformation,

-[Rs] stands for stator resistances matrix. This matrix is immune to the rotational
transformation and

-ω stands for the electrical rotor position.
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The matrices in rotor reference frame related to the stator leakage inductances
and the mutual inductances is:

[Ls,dq] = [Lls] + [Mss,dq] (2.67)

where the mutual magnetizing induxtance matrix is de�ned as:

[Mss,dq] =


Mss,d 0 0 0 . . . 0

0 Mss,q 0 0 . . . 0
0 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0

 (2.68)

where:
Mss,d = Mss,q =

n

2
·MI ⇒ Ls,d = Ls,q = Ls (2.69)

Since the rotational transformation is applied to the two components αβ, ex-
plained the system Eq. (2.66), the electrical and magnetic equations become:

vd = Rs · id + Ls ·
did
dt
−ω · λq

vq = Rs · iq + Ls ·
diq
dt

+ω · λd
λd = Ls · id + λPM,dq = Ls · id + λPM

λq = Ls · iq

(2.70)

In Fig. 2.15 the equivalent circuit for dq component of surface PMSM in syn-
chronous RF is shown.
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Figure 2.15: Equivalent circuit of machine in synchronous reference frame.

After the rotational transformation, the equations and the parameters values in
(x, y) subplanes do not change. The reason is evident: the submatrix related to xy
components in rotational matrix is diagonal. The electrical and magnetic equations
in mentioned subplanes for a multiphase machine (n odd) are shown below:

vxi = Rs · ixi +
dλxi
dt

, i = (n− 3)/2

vyi = Rs · iyi +
dλyi
dt

, i = (n− 3)/2

λxi = Lls · ixi, i = (n− 3)/2

λyi = Lls · iyi , i = (n− 3)/2

(2.71)

About the zero-sequence component, the electrical and magnetic equations are
not changed. For convenience, both are reported below:v0 = Rs · i0 +

dλ0
dt

λ0 = Lls · i0
(2.72)

To complete the machine modelling, mechanical equation must also be taken into
account. The electromagnetic torque can be carried out by performing the electrical
power balance of the machine [21]. The electromagnetic torque equation depend on
the transformations that are applyed to the machine model. Until now, the VSD
and rotational transformation are applied with the power variant property. The
electrical power in multiphase machine is computed as:

Pabcn = [iabcn]T · [vabcn] (2.73)

By applying the VSD matrix to the electrical powers in stationary reference
frame, the power balance becomes:Pabcn =

[
[V SD]−1 · [ivsd]

]T · [V SD]−1 · [vvsd] =

= [ivsd]
T ·
[
[V SD]−1

]T · [V SD]−1 · [vvsd]
(2.74)
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2 � Model of Sinusoidal Multiphase Surface Permanent Magnet Synchronous Machine

The product between the inverse decoupling matrix and its transponse in power
equations carried out the following result:

[
[V SD]−1

]T · [V SD]−1 =


n/2 0 0 0 . . . 0
0 n/2 0 0 . . . 0
0 0 n/2 0 . . . 0
0 0 0 n/2 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . n/2

 (2.75)

The zero-sequence component are not relevant because they do not contribute
to the electromechanical conversion. Therefore, the electrical power in stationary
reference frame is:

Pvsd =
n

2
· [ivsd]T · [vvsd] (2.76)

Applying the rotational transformation, presented in Eq. (2.64), the following
equation is obtained:Pvsd =

[
[D]−1 · [idqd]

]T · [D]−1 · [vdq] =

= [idq]
T ·
[
[D]−1

]T · [D]−1 · [vdq]
(2.77)

In this case the product between the inverse rotational matrix and its transponse
in power equations carried out the following result:[

[D]−1
]T · [D]−1 = [Id]nXn (2.78)

Therefore, the electrical power for the multiphase machine in the physical (d,q)
reference frame is computed as:

Pdq =
n

2
· [idq]T · [vdq] = PJ + PM + Pm (2.79)

From now on, only the power in the main subplane is considered. The Joule
power dissipated by the stator resistance is:

PJ =
n

2
·Rs · (i2d + i2q) (2.80)

The magnetizing power, which is zero in steady-state condition because it ap-
pears only in dynamic conditions to generate the machine magnetic �eld, is:

PM =
n

2
·
(
dλd
dt
· id +

dλq
dt
· iq
)

(2.81)
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2.2 � Multiphase Sinusoidal Surface Permanent Synchronous Machine Modelling

Introducing the inner product between the stator �ux and the currents, the
produced mechanical powew is:

Pm =
n

2
·ω · 〈[λdq] · [idq]〉 (2.82)

The Eq. (2.82) can be related with mechanical speed ωm, introducing pole pairs
number P, using the following relationship:

ω = P ·ωm (2.83)

By applying the Eq. (2.83) to Eq. (2.82):

Pm =
n

2
· P ·ωm · 〈[λdq] · [idq]〉 (2.84)

On the basis of the Eq. (2.84), the electromagnetic torque is computed as:

Tem =
n

2
· P · 〈[λdq] · [idq]〉 (2.85)

By extending Eq. (2.85), in synchronous reference frame modeling the formula-
tion of the torque with amplitude invariant transformation is expressed as:

Tem =
n

2
· P · [λPM · iq + (Ls,d − Ls,q) · id · iq] (2.86)

Because analysis concerns surface PMSM, the second part of the Eq. (2.86) is
zero. The torque equation (green blocks in Fig. 2.16) is written as:

Tem =
n

2
· P · λPM · iq (2.87)

Indices d and q in any variable stand for the component along permanent magnet
�ux axis (d) and the torque current axis (q). The index s is omitted because only
the stator winding is present in surface PMSM and all variables are related to it.
In front of the Eq. (2.87) it is possible to note the constant n/2 in accordance with
the power-variant transformation and it is possible to observe that the torque is
produced only by current along q-axis. In fact q-axis is responsible of the torque
production, while d is the axis characterized by the presence of permanent magnets.

Taking into consideration the load torque, the mechanical equilibrium on rotor
shaft (Fig. 2.16) is:

Tem − TL = J · dωm

dt
+ TB =

=
J

P
· dω
dt

+ TB

(2.88)
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2 � Model of Sinusoidal Multiphase Surface Permanent Magnet Synchronous Machine

Figure 2.16: Electromagnetic torque (green blocks), mechanical equilibrium on rotor
shaft (peach blocks) and electrical speed and position (blue blocks).

where:
-TL is load torque,
-J is inertia of rotating masses,
-TB is the friction torque, shown in Eq. (2.89), which depends on the rotor speed

(i.e. static, linear and parabolic contributions can be considered).

TB = TB0 + TB1 + TB2 + ... = TB0 + kB1 ·ωm + kB2 ·ω2
m + ... (2.89)

The electromagnetic torque computation is shown through the green blocks in
Fig. 2.16, while the mechanical equilibrium on the rotor shaft is highlighted with
peach blocks and, �nally, in blue blocks the relationship between the mechanical
and electrical speed and its time integration (θ =

∫
ω dt) are shown.

The Eq. (2.88) links the electromagnetic subsystem with the mechanical subsys-
tem and it is responsible for the electromechanical energy conversion.

Another approch to compute the electromagnetic torque is now shown. In gen-
eral, from the concept of co-energy Wco

Tem =
∂Wco

∂θ
(2.90)

By applying Eq. (2.90) at machine model, the torque equation for surface sinu-
soidal PMSM machine is computed as:

Tem = P ·
(

[iabcn]T · d[Lss]

dθ
· [iabcn] + [iabcn]T · d[λPM,abcn]

dθ

)
(2.91)

where the PM presence is considered and modeled as an ideal magnetomotive
force generator, as explain above.

By observing the [Lss] de�ned in Eq. (2.42), it is possible to conclude that matrix
doesn't depend on the electrical position θ and for this reason the �rst part of the
Eq. (2.91) can be neglected. The Eq. (2.91) is overwritten as:

Tem = P · [iabcn]T · d[λPM,abcn]

dθ
(2.92)
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2.2 � Multiphase Sinusoidal Surface Permanent Synchronous Machine Modelling

By considering the PM model:

[λPM,abcn] = λPM · [cos(θ− x · α)] (2.93)

the Eq. (2.92) becomes:

Tem = −P · λPM · [iabcn]T · [sin(θ− x · α)] (2.94)

where x ∈ [0, ..., (n− 1)].
By observing the torque equation (green block in Fig. 2.16), it can be seen

that the electromagnetic torque is entirely produced by the interaction of the stator
winding and permanent magnets on rotor surface.

In conclusion, the energy conversion model of n-phase machine is composed by
a total 2n+2 equations:

-n-electrical voltage equilibrium equations (v = R · i+ dλ/dt),
-n-magnetic equation (λ = λPM +Mss · i) and
-2 mechanichal equilibrium equations: mechanical equilibrium on rotor shaft and

the time integral on rotor speed to compute the angular position.
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2.3 Nine-phase Surface PMSM Modeling

The previous model can be easily adapted to nine-phase machine. The nine-
phase machine is characterized by 3 winding sets (kws =3) and number of phases is
equal to 3 per each winding set (a=3). The stator windings are arranged as three-
phase sets and labelled as a1, b1, c1, - Set1, a2, b2, c3, - Set2, and a3, b3, c3, -
Set3. The angles of the symmetrical and asymmetrical con�guration for nine-phase
machine, shown in Fig. 2.17, are:

α =
2π

9
= 40◦, α =

π

9
= 20◦ (2.95)

From now on, the symmetrical con�guration will be considered. The symmetrical
winding distribution of nine-phase machine with kws =3 and a=3 is represented in
the left of Fig. 2.17. The stator active sides of nine-phase symmetrical surface
PMSM is shown in Fig. 2.18 and the conventional sign is assigned to it. The
conventional sign is opposite between two active sides of the same phase located one
polar step far. In particular, in those conductors the same value of current �ows,
but with opposite sign. There are 120◦ electrical between a1 and b1 phase. The
number of slot per pole per phase q and polar step τ are calculated in Eqs. (2.96)
and (2.97). Regular winding is designed and mounted on stator and the rotor is
formed by two magnet poles (one north and one south).

q =
Nslots

2 · P · n
=

36

18
= 2 (2.96)

Figure 2.17: Nine-phase PMSM winding distribution around stator circumference.
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2.3 � Nine-phase Surface PMSM Modeling

Figure 2.18: Winding arrangement of slots in nine-phase surface PMSM.

τ =
Nslots

2 · P
=

36

2
= 18slots (2.97)

The vectors and matrices presented in previous section for a multiphase machine
with arbitrary stator phase number can be now written as shown in Eqs. (2.98) -
(2.103):

[vabc9] = [va1 va2 va3 vb1 vb2 vb3 vc1 vc2 vc3]
T (2.98)

[iabc9] = [ia1 ia2 ia3 ib1 ib2 ib3 ic1 ic2 ic3]
T (2.99)

[λabc9] = [λa1 λa2 λa3 λb1 λb2 λb3 λc1 λc2 λc3]
T (2.100)

[λPM,abc9] = [λPM,a1 λPM,a2 λPM,a3 λPM,b1 λPM,b2 . . .

. . . λPM,b3 λPM,c1 λPM,c2 λPM,c3]
T

(2.101)

About the stator resistance matrix and stator leakage inductances for nine-phase
machine, the matrices are:

[Rs] =



Rs 0 0 0 0 0 0 0 0
0 Rs 0 0 0 0 0 0 0
0 0 Rs 0 0 0 0 0 0
0 0 0 Rs 0 0 0 0 0
0 0 0 0 Rs 0 0 0 0
0 0 0 0 0 Rs 0 0 0
0 0 0 0 0 0 Rs 0 0
0 0 0 0 0 0 0 Rs 0
0 0 0 0 0 0 0 0 Rs


(2.102)
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[Lls] =



Lls 0 0 0 0 0 0 0 0
0 Lls 0 0 0 0 0 0 0
0 0 Lls 0 0 0 0 0 0
0 0 0 Lls 0 0 0 0 0
0 0 0 0 Lls 0 0 0 0
0 0 0 0 0 Lls 0 0 0
0 0 0 0 0 0 Lls 0 0
0 0 0 0 0 0 0 Lls 0
0 0 0 0 0 0 0 0 Lls


(2.103)

The matrix [Lss] presented in Eq. (2.42), can be now written as:

[Lss] =



Ma1,a1 + Lls Ma1,a2 Ma1,a3 Ma1,b1 . . . Ma1,c3

Ma2,a1 Ma2,a2 + Lls Ma2,a3 Ma2,b1 . . . Ma2,c3

Ma3,a1 Ma3,a2 Ma3,a3 + Lls Ma3,b1 . . . Ma3,c3

Mb1,a1 Mb1,a2 Mb1,a3 Mb1,b1 + Lls . . . Mb1,c3

. . . . . . . . . . . . . . . . . .

Mc3,a1 Mc3,a2 Mc3,a3 Mc3,b1 . . . Mc3,c3 + Lls


(2.104)

If the winding distribution is sinusoidal, the �ux linkage vector caused by only
the PM presence is modelled as:

[λPM,abc9] = λPM · cos(θ− [x] · α), [x] ∈ [0, ..., 8] (2.105)

The Eq.(2.105) is extended as:

[λPM,abc9] = λPM ·



cos(θ− 0 · 2π/9)
cos(θ− 1 · 2π/9)
cos(θ− 2 · 2π/9)
cos(θ− 3 · 2π/9)
cos(θ− 4 · 2π/9)
cos(θ− 5 · 2π/9)
cos(θ− 6 · 2π/9)
cos(θ− 7 · 2π/9)
cos(θ− 8 · 2π/9)


(2.106)
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The dynamic mathematical model for nine-phase in phase variable domain can
now be written as shown in Eq. (2.107) and its equivalent circuit is given in Fig.
2.19.[vabc9] = [Rs] · [iabc9] +

d[λabc9]

dt

[λabc9] = [λPM,abc9] + [Lls] · [iabc9] + [Mss] · [iabc9] = [λPM,abc9] + [Lss] · [iabc9]
(2.107)

The machine model in the nine phase variable domain can be transformed using
decoupling transformation matrix because the mathematical model in phase variable
domain is complex, as explained above. After this transformation, the machine is
represented in four two-dimensional subplanes plus one single-dimensional quantity
(zero-sequence). The VSD matrix for nine-phase symmetrical machine is shown in
Eq. (2.108).

[V SD] =
2

9



cos
(
1 · [θsym]

)
sin
(
1 · [θsym]

)
cos
(
2 · [θsym]

)
sin
(
2 · [θsym]

)
cos
(
4 · [θsym]

)
sin
(
4 · [θsym]

)
cos
(
3 · [θsym]

)
cos
(
3 · [θsym]

)
1/
√

2 · cos
(
9 · [θsym]

)



α

β

x1

y1

x2

y2

y3

x3

0

(2.108)

Figure 2.19: Equivalent circuit of nine-phase surface PMSM in phase variables.
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where the row vector is de�ned as:

[θsym] =
2π

9
· [0 1 2 3 4 5 6 7 8] (2.109)

The relation between phase variable and stationary RF is de�ned in Eq. (2.110):

[fvsd] = [V SD]9X9 · [fabc9] (2.110)

In decoupled vsdmodel, stator winding are stationary (rotor windings don't exist
in surface PMSM machine). From the electromechanical energy conversion point
of view, it is important to note that the �rst two rows of the Eq. (2.108) de�ne
variables that will lead the fundamental �ux and torque productions. The last row
is zero-sequence (only 1 zero sequence in this case with n=9 and single neutral
point). In between there are three xy pairs of variables which don't partecipate in
electromechanical energy conversion (sinusoidal winding distribution).

The �ctious αβxy stator windings can be transformed in dq windings. This
means that the �ctitious machine's windings, obtained after application of the de-
coupling transformation, are now transformed once again into another set of �cti-
tious windings. In order to obtain the dq components, it is possible to apply the
matrix [D ]. This matrix for nine-phase surface PMSM machine is direct consequence
of Eq. (2.64) because the rotational transformation is applied only to the �rst two
components. The [D ] for nine-phase machine (n=9) is:

[D] =



cos(θ) sin(θ) 0 0 0 0 0 0 0
−sin(θ) cos(θ) 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


(2.111)

By applying VSD presented in Subsection 2.2.2 and the rotational trasformation
to the phase variable reference frame for nine-phase surface PMSM, the obtained

40



2.3 � Nine-phase Surface PMSM Modeling

model is given. The electrical equations in synchronous reference frame for nine-
phase surface PMSM is de�ned as:

vd = Rs · id + Ls ·
did
dt
−ω · λq

vq = Rs · iq + Ls ·
diq
dt

+ω · λd

vxi = Rs · ixi
+
dλxi

dt
, i = 1, 2, 3

vyi = Rs · iyi +
dλyi
dt

, i = 1, 2, 3

v0 = Rs · i0 +
dλ0
dt

(2.112)

About the magnetic equations in synchronous reference frame for nine-phase surface
PMSM machine, it is de�ned as:

λd = Ls · id + λPM

λq = Ls · id

λxi
= Lls · ixi

, i = 1, 2, 3

λyi = Lls · iyi , i = 1, 2, 3

λ0 = Lls · i0

(2.113)

To conclude, the torque equation for nine-phase surface permanent magnet syn-
chronous machine is:

Tem =
9

2
· P · λPM · iq (2.114)
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Chapter 3

Field-Oriented Control and Model

Testing Results for Sinusoidal

PMSM

In this chapter Field-Oriented Control method and system performance evalu-
tation of nine-phase synchronous machine are presented. The system performance
is evaluated using proposed simulation sequence.

Chapter is organised as follows:

� In Section 3.1 theory behind FOC and corresponding advantages are given.

� In Section 3.2 �eld-oriented control of nine-phase surface PMSM is analysed.
The control is composed by cascaded PI controllers. The anti-windup tech-
nique is added, otherwise wind-up problems can emerge using integrator with
step/speed/current change.

� In Section 3.3 the analysis and design of current and speed loops are shown in
Laplace domain.

� In Section 3.4 the simulation results are presented. The results are obtained in
Matlab/Simulink environment. They are related to speed, torque and currents
in phase variable domain and in synchronous reference frame.
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3.1 Introduction

Variable speed electric drives are nowdays utilized in almost every aspect of life,
from most basic devices on one side to the highly sophisticated on the other. In
variable speed drives control method usually plays big role. In most cases, the cost
of control algorithms is negligible with respect to the one of electrical machine.

The following discussion concerns surface permanent magnet synchronous ma-
chine, which has higher power density, higher e�ciency and better dynamic per-
formance than induction machine of the same rating. The accurate control of this
machine requires rotor position to know the coordinate transformation of the vec-
tor control and to obtain speed and position feedback control signals. Signi�cant
research e�orts have been also conducted to achieve vector control of the surface
PMSM without encoders or resolvers (sensorless control). These techniques can be
divided into model based techniques, where the back-EMF of the machine is used
for rotor magnet �ux detection, and injection techniques, where a test signal, ei-
ther high-frequency ac voltage or voltage pulse, is used to detect the rotor saliency
position [22], [23]. More about this is going to be investigated in following chapters.

From a generic point of view, the implemented control scheme must be able
to control machine's electromagnetic torque, rotor speed and position. This means
that the machine must be able to achieve desired dynamic response of the controlled
variable in a minimum time interval. The high-performance drives are obtained with
closed-loop control. The machine is supplied from a power electronic converter and
current/speed/position measure is necessary in this case.

A generic schematic of the position closed-loop is shown in Fig. 3.1. The control
is composed of three cascaded controllers. Typically, the controller is composed of
the proportional P plus integral I components. Three controllers (torque, speed
and position) are represented in Fig. 3.1. In this, PEC stands for power electronic
converter and DCA stands for Drive control algorithm.

Figure 3.1: Schematic of current, speed and position loops.
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The electromagnetic torque of an electrical machine can be expressed as a prod-
uct between current and �ux. The reference electromagnetic torque value T ∗em rep-
resents the input in current loop. The reference torque is obtained from the speed
loop. Finally, the input of speed loop is received from the position loop. This means
that the output of the position controller can be made to be directly the speed pro-
ducing torque reference and the output of the speed controller can be made to be
directly the torque producing current reference. The inputs of controllers are refer-
ence quantities and are represented with asterisk, while the same quantities without
asterisk represents their real instantaneous value (measured/estimated).

High-performance drives typically involve measurement of the rotor position
(speed) and motor supply currents, as indicated in Fig. 3.1. Since the machine's
torque is governed by currents rather than voltages, measured currents are used in
the block DCA to incorporate the close-loop current control algorithm. What this
means is that the power electronic converter is current-controlled, so that applied
voltages are such as to minimize the errors in the current tracking.

It is important to note that the control principles are valid in the same manner
regardless of the number of the phases.
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3.2 FOC of Multiphase Surface PMSM

Assuming that the machine is operated as a speed-controlled drive, a generic
representation of vector control of nine-phase surface PMSM is presented in Fig. 3.2.
The scheme is a mathematical model obtained using the reference transformation of
the general theory of electrical machines, presented in Chapter 6.24. The machine
control consists of a Current vector control implemented in the rotating physical
(d,q) reference frame, leading to a �eld-oriented control scheme. Since the 1980s of
the last century, FOC has been extensively researched and it has been treated in a
number of textbooks at varying levels of the complexity and detail [24]- [25]. In this
control the reference current along d -axis is equal to zero (i∗d=0), as shown in Fig.
3.2. This assumption results in torque equation which is written as:

Tem =
9

2
· P · λPM · is,q (3.1)

As already noted, in surface permanent magnet synchronous machine, the current
along q-axis is related to the electromagnetic torque (Tem ∝ iq). From Eq. (3.1) the
value of reference current along q-axis can be extracted. A linear function between
i∗q and produced torque is de�ned as:

i∗q = T ∗em ·
2

9
· 1

P · λPM

(3.2)

The Eq. (3.2) shows the relationship between the control current along q-axis
and control torque: it consists of a constant coe�cient and it is called k1, de�ned
as:

k1 =
2

9
· 1

P · λPM

(3.3)

The just presented vector control is applicable in the base speed region. If it is
required that the machine operates at speeds higher then rated one, it is necessary

Figure 3.2: Vector control of a nine-phase surface PMSM : drive control (orange
blocks); machine control (blue blocks); RF s transformation (green blocks).
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to weaken the �ux so that the voltage applied to the machine doesn't exceed the
rated value. In surface PMSM when the speed is higher than rated value, the value
of the current along d - axis must be reduce. The principle control of surface PMSM
machine in base speed region and above rated speed value ωn is:{

i∗d = 0, ωm < ωn

i∗d < 0, ωm > ωn

(3.4)

In Fig. 3.3 is presented the schematic representation of �eld-oriented control of
surface PMSM machine in base region speed. The FOC is a detailed schematic of
Fig. 3.2. The FOC technique, presented in Fig. 3.3, is able to control the �eld
and torque of the motor separately. The algorithm is executed in two control loops:
current loop and speed loop. The speed loop (orange blocks in Fig. 3.3) is external
to current loop (blue blocks). The aim of the speed loop is to regulate motor speed.
The current command value along q-axis is set by the external speed loop. To
achieve the goal of the surface PMSM control, the algorithm uses feedback signals.
The essential feedback signals are the nine-phase stator currents and the electrical
rotor position/speed.

The internal control loop executes two independent current control loops:

� The PI regulator of the direct axis current (id) is used to control the rotor
magnetizing �ux.

� The PI regulator of the quadrature axis current (iq) is used to control the
motor torque.

To operate properly, the proposed control structure requires speed of the motor
shaft. The external control loop executes the speed controller and lower-priority
control tasks. The PI speed controller sets a reference for the torque producing

Figure 3.3: FOC of sinusoidal nine-phase surface PMSM.

47



3 � Field-Oriented Control and Model Testing Results for Sinusoidal PMSM

current component (iq). After the reference currents are obtained, the output of dq
current PI regulators are: 

v′d = Rs · id + Ls ·
did
dt

v′q = Rs · iq + Ls ·
diq
dt

(3.5)

The total stator voltage dq references are created by summing the outputs of the
PI current controllers with decoupling voltages:{

v∗d = v′d + ed

v∗q = v′q + eq
(3.6)

By reintroducing the Eq. (2.70) presented in Chapter 6.24, the voltage equations
take the following form:

vd = Rs · id + Ls ·
did
dt
−ω · λq

vq = Rs · iq + Ls ·
diq
dt

+ω · λd

(3.7)

Comparison of Eqs. (3.5) - (3.6) with Eq. (3.7), shows that the decoupling
voltages e are in the general case given as:{

ed = −ω · Ls · iq
eq = ω · (Ls · id + λPM)

(3.8)

In region where the speed is higher than rated value, permanent magnet �ux
cannot be changed, as mentioned above. The only way to achieve operation at
speeds higher than rated value is to keep the term eq (Eq. (3.8)) constant and equal
to its value at rated speed. This can be achieved using control low for the machine
with low resistance, de�ned as:

i∗d = −(ωm −ωn)

ωm

· λPM

Ls

, ωm > ωn (3.9)

The implementation of proportional-integrator PI, presented in Fig. 3.3, can
be explored in Fig. 3.4. An anti-windup algorithm is usually implemented together
with the PI controller. Since the PI speed controller is designed in linear conditions,
step speed commands can disturb the performance. The anti-windup algorithm is
implemented in order to avoid this disturbtion. The output of controller is compared
with maximum (saturation limit high, LH ) and minimum (saturation limit low, LL)
values. If the output value of PI is not compatible with one of the allowed limits
(the logical OR operator represented in Fig. 3.5), integral component integrator is
restarted by sending zero to its input, as shown in Fig. 3.5.
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Figure 3.4: Proportional-integral control with Anti-windup algorithm.

Figure 3.5: Anti-windup algorithm.
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3.3 Speed and Current Control

As mentioned above, the speed and currents in the machine are controlled with
PI controllers. The speed controller implements the speed regulation in closed-
loop to obtained the reference electromagnetic torque. The closed-loop regulation
is based on the feedback of measurement/estimated speed. The internal loop imple-
ments the current regulation in closed-loop to obtain the references voltages and it
is based on measurement currents. The analysis and design of both regulation loops
are necessary. The following analysis and design are focused on the current regula-
tion �rst and �nally about speed regulation. The mentioned study is performed in
Laplace domain, denoted with s symbol.

Current Loop Regulation

In Fig. 3.6 a simpli�ed schematic of the current proportional-integral controller
plus a feed-forward compensation, voltage source inverter and motor are shown.
The input to the PI regulator (green block) is the current error, computed as di�er-
ence between reference value, obtained by the torque scaling, and its measurement
feedback. However, the current measurement process is considered ideal and, for
this reason, the sensors function transfer can be approximated with unitary gain.
This error is corrected using the mentioned controller. The voltage supply inverter
is modelled as a low pass-�lter. This means that the VSI is modelled as a delay
component and its transfer function is:

HV SI(s) =
1

1 + s · τd
(3.10)

where the voltage source inverter time constant τd is due to the application
of the power converter commands, which are subjected to the digital controller

Figure 3.6: Schematic block of the current regulation loop.
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3.3 � Speed and Current Control

execution delay (equal to sampling period Ts) and average delay related to the
implementation in the switching period following (equal to half sampling period
Ts/2). The voltage source inverter and the electrical machine represent the plant
(yellow and blue blocks) and its transfer function is known while the PI (green
block) must be tuned.

Consider Fig. 3.6, the design of the PI gains is based on the open-loop transfer
function, which is written as:

Hi,OL(s) =

(
kP,i +

kI,i
s

)
· 1

1 + s · τd
· 1

s · Ls +Rs

(3.11)

The design of the current PI gains can be performed in various ways. In this
work, the pole-zero cancellation method is proposed. In other words, the motor
pole is compensated by PI zero. The reason is evident: the high control dynamic is
required and this requires to eliminate the poles positioned very close to the complex
plane origin or should be taken away from the mentioned point. In mathematical
formulation this is represented by the Eq. (3.12) and, following from stated, one of
the degrees of freedom is lost.

kI,i
kP,i

=
Rs

Ls

(3.12)

By replacing the Eq. (3.12) into Eq. (3.11), the open-loop transfer function is
written as:

Hi,OL(s) =
kP,i
s
·
(
s+

Rs

Ls

)
· 1

1 + s · τd
·

1

Ls

s+
Rs

Ls

=

=
kP,i
Ls

· 1

1 + s · τd
· 1

s

(3.13)

Now, the magnitude and phase of the open-loop transfer function is computed
as: 

|Hi,OL(ω)| = kP,i
Ls

· 1

ω
·
√

1

1 + (ω · τd)2

∠Hi,OL(ω) = −π
2
− arctan(ω · τd)

(3.14)

In Fig. 3.7 the asymptotic Bode magnitude plot of the current regulator is shown,
where the Bode frequency (rad/s) is denoted with the symbol ω.

By computing the Eq. (3.14) at the crossover frequency, denoted with the symbol
ωcr, where the magnitude of the open-loop transfer function is unitary (0dB), it can
be now written as:
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Figure 3.7: Asymptotic Bode plot of the open-loop transfer function magnitude for
current regulation loop.


kP,i
Ls

· 1

ωcr,i

·
√

1

1 + (ωcr,i · τd)2
= 1

φpm,i =

(
−π

2
− arctan(ωcr,i · τd)

)
+ π

(3.15)

where φpm,i stands for phase-margin of the current regulation loop. It is an
equivalent measure of proximity to stability and is the distance of the phase at
crossover frequency in degrees above -180◦.

With simple mathematical manipulations and several reasonable approxima-
tions, the �rst relation in Eq. (3.15), computed at crossover frequency, can be
overwritten as: 

kP,i ' ωcr,i · Ls

φpm,i =
π

2
− arctan(ωcr,i · τd)

(3.16)

As mentioned above, the consequence of pole-zero cancellation method is reduc-
tion of degrees of freedom and, for this reason, just one variable of the crossover
frequency and phase-margin can be set at the desidered value. If the phase-margin
is imposed in Eq. (3.16), the crossover frequency is:

ωcr,i =

tan

(
−φpm,i +

π

2

)
τd

=
1

τd · tan(φpm,i)
(3.17)

52



3.3 � Speed and Current Control

By replacing the Eq. (3.17) in Eq. (3.16), the PI gains can be written as:
kP,i '

Ls

τd · tan(φpm,i)

kI,i '
Rs

τd · tan(φpm,i)

(3.18)

If the crossover frequency is chosen as a main variable, the proportional and
integral gains are tuned as: {

kP,i ' ωcr,i · Ls

kI,i ' ωcr,i ·Rs

(3.19)

Note that the crossover frequency represents the dynamic response and the sys-
tem stability is related to it. The crossover frequency is very close to the bandwidth
frequency. The theoretical limit of the crossover frequency is the reciprocal of the
voltage source inverter time constant. In mathematical terms this can be written
as:

ωcr,i ≤
1

τd
⇒ ωcr,i ≤

fsw
1.5

(3.20)

where fsw is a switching frequency equal to the reciprocal of the switching period.
By replacing the Eq. (3.20) in Eq. (3.15), the phase-margin of the current regulation
loop must verify the following equations:

π

4
≤ φPM,i <

π

2
(3.21)

Finally, the design of the current PI controller can be written as:
kP,i ' ωcr,i · Ls

kI,i ' ωcr,i ·Rs
π

4
≤ φPM,i <

π

2

(3.22)

It can be concluded that the bandwidth of current loop is su�ciently high and
it is limitated by voltage source inverter dynamic. Usually, the current bandwidth
is one decade lower than switching frequency. Indeed, the current loop regulation
limits the speed bandwidth. If the current loop bandwidth is at least one decade
higher than speed looop bandwidth, the current loop can be approximated as a
unitary gain in analysis and design of the speed PI controller. However, in design of
the speed PI controller, the current loop is modelled as a delay in order to increase
the accuracy.
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Speed Loop Regulation

According with �eld-oriented control theory and the theory of the current regu-
lation loop, the shematic of the speed loop is shown in Fig. 3.8. The input to the
PI speed (green block) is the speed error, computed as di�erence between reference
value and its measurement/estimated feedback. However, the transfer function of
speed sensors can be approximated with unitary gain. The speed error is corrected
using the PI speed controller. The output of the speed PI regulator is scaled to
obtain the reference quadrature axis current (the electromagnetic torque is propor-
tional to quadrature axis current). This latest reference represents the input of the
current regulation loop, which is modelled as a delay element (orange block), whose
time constant is de�ned as follow:

τi =
1

ωcr,i

(3.23)

where ωcr,i represents the the crossover frequency of the current loop regulation.
The current loop delay take in account the current PI control and the plant (VSI
and motor), shown in Fig. 3.6. The output of the current regulation loop is rescaled.
Finally, the combination of the previous block and additive disturbance, related to
the load torque, allows to obtain the speed value, considering the equivalent inertia.

To design of the PI gains is based on the open-loop transfer function of speed
loop regulation, computed as:

Hw,OL(s) =

(
kP,w +

kI,w
s

)
· 1

1 + s · τi
· 1

s · Jeq
(3.24)

By performing the computation of both magnitude and phase belonging to the
open-loop transfer function, the following results are obtained:

Figure 3.8: Schematic block of the speed regulation loop.
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3.3 � Speed and Current Control


|Hw,OL(ω)| = kP,ω

Jeq ·ω
·

√√√√√1 +

(
kI,ω

kP,ω ·ω

)2

1 + (ω · τi)2

∠Hω,OL(ω) = −π
2
− arctan(ω · τi) + arctan

(
ω · kP,ω
kI,ω

)
− π

2

(3.25)

In Fig. 3.9 the asymptotic Bode magnitude plot of the speed regulator is shown.
By computing Eq. (3.25) at the crossover frequency, which corresponds to uni-

tary magnitude of the opeen-loop transfer function, the mentioned equation can be
written as:

kP,ω
Jeq ·ωcr,ω

·

√√√√√1 +

(
kI,ω

kP,ω ·ωcr,ω

)2

1 + (ωcr,ω · τi)2
= 1

φpm,ω =

(
−π

2
− arctan(ωcr,ω · τi) + arctan

(
ωcr,ω · kP,ω

kI,ω

)
− π

2

)
+ π

(3.26)

where φpm,w stands for the phase-margin of speed loop regulation. In conclution,
with mathematical manipulations and several reasonable approximations, the Eq.
(3.26) is simpli�ed as fallows:

Figure 3.9: Asymptotic Bode plot of the open-loop transfer function magnitude for
speed regulation loop.
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

kP,ω ' ωcr,ω · kP,ω

kI,ω '
ω2

cr,ω

tan
(
φpm,ω + arctan(ωcr,ω · τi)

)
φpm,ω <

π

2
− arctan(ωcr,ω · τi)

(3.27)

Note that the theoretical limit of the speed bandwidth is equal to the crossover
frequency of the current loop, which in mathematical terms can be written as:

ωcr,ω ≤ τ−1i (3.28)

Finally, the design of PI gains is:

kP,ω ' ωcr,ω · kP,ω

kI,ω '
ω2

cr,ω

tan
(
φpm,ω + arctan(ωcr,ω · τi)

)
φpm,ω <

π

2
− arctan(ωcr,ω · τi)

ωcr,ω ≤ τ−1i

(3.29)

Note that, in speed loop regulation the degree of freddom are both crossover
frequency (rad/s) and phase-margin, conversely to current loop regulation. Follow-
ing from stated, the design of the speed PI controller is performed on the basis of
selected crossover frequency and phase-margin.

It is important to note that the real crossover frequency of the speed loop reg-
ulation is much lower than theoretical limit. However, the initial assumption that
sensor transfer function can be modelled as unitary gain is not exactly veri�ed due
to encoder accuracy. In particular, the bandwidth of speed loop regulation is limited
by the discretization performed by this instrument.
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3.4 Simulation Results

The performance of surface permanent magnet synchronous machine model with
�eld-oriented control, presented in Section 3.2, has been evaluated. The imple-
mented machine model in simulation is in phase variable reference frame (abcn) and
it is controlled under FOC method. The results are obtained in Matlab/Simulink
environment.

The input in Simulink model is mechanical speed reference ω∗m and the load
torque TL. The electrical and mechanical parameters used in simulation are given in
Table 3.1, while in Table 3.2 the control parameters of external and internal loops
are given.

Table 3.1: Electrical and mechanical parameters of surface PMSM machine

.

Electrical parameters
Parameter Value [Units]
Number of phases, n 9 [-]
Number of pole-pairs, P 1 [-]
Winding con�guration Symmetrical [-]
Nominal output power, Pn 1 [kW ]
Nominal torque, Tn 3 [Nm]
Overload capability 150 %
Nominal frequency, fn 50 [Hz ]
Nominal speed, nrpm 3000 [rpm]
Stator resistance, Rs 31.8 [Ω]
Stator leakage inductance, Lls 84.7 [mH ]
Isotropic coe�cient, MI 75.9 [mH ]
Anisotropic coe�cient, MA 0 [mH ]
(dq) stator inductance Ls 426.4 [mH ]
Permanent magnets �ux, λPM 385.8 [mWb]

Mechanical parameters
Rotor inertia , Jeq 0.0094 [kgm2]
Static torque, TB0 0.4500 [Nm]
Linear torque, TB1 0.0042 [Nm/(rad/s)]
Parabolic torque, TB21 0.0000 [Nm/(rad/s)2]
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Table 3.2: Control parameters of current and speed loop.

Control parameters
Parameter Value [Units]

Drive Control - Speed PI controllers
Proportional gain kP,ω 0.7 [Nm/(rad/s)]
Integral gain kI,ω 10 [Nm/rad ]
Machine Control - Current PI controller
Proportional gain kP,i 650 [V/A]
Integral gain kI,i 50000 [V/(As)]

The testing sequence of the nine-phase surface PMSM machine is presented in
Figs. 3.10 and 3.11. In Figs. 3.10 and 3.11 the speed and torque sequences are
shown, respectively.

� Initially, the speed reference is zero. At 0.1 s the speed reference is increased
up to 750 rpm (1/4 of nominal speed) with step function. The step function is
used in order to evaluate the performances of control. At 2 s a further speed
increase to 1500 rpm is implemented.

� Initially the machine is not loaded, i.e. the load torque is zero. After reaching
steady-state, at 1 s a step load torque of 1.5 Nm is added until 4 s. The
simulation ends without load torque (0 Nm).

In Fig. 3.10, when a step speed is applied the fast response of electrical machine
in terms of mechanical speed is shown. At 1 s the small temporary speed drop due
to additional load torque (1.5 Nm) is shown. The small speed drop is about 15 rpm.
When the load torque is removed (at 4 s) the speed is increased of the same value.

The entire sequence takes 5 s.

In Fig. 3.11 is shown the electromagnetic torque: the produced torque depend
on the speed transients, friction contributions and load torque (1.5 Nm at 1 s until
4 s). The electromagnetic torque is increased when the control algorithm requires
time to adapt and when the machine is loaded. When steady-state is reached,
the electromagnetic torque follows the load torque and the friction contribution
precisely. It should be noted that the maximum value of the electromagnetic torque
is governed by the overload torque limit. The electromagnetic torque reaches the
maximum allowed value. The set value in simulation is equal to overload torque
(Tn = 4.5Nm). The maximum value of electromagnetic torque is about this value.
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Figure 3.10: Speed reference and measured response under FOC.

Figure 3.11: Torque reference and measured response under FOC.
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In Fig. 3.12 the time trends of permanent magnets �ux is shown. It is constant
and the value is in accordance with Table 3.1. The back-electromotive force obtain
after permanent magnets �ux derivation is presented in Fig. 3.13. The variation of
back-EMF is related to variation of voltage and current values in the machine while
its amplitude depends by the speed.

Figure 3.12: Flux linkage vector caused by only the PM presence.

Figure 3.13: Back-electromotive forces for sinusoidal nine-phase PMSM.
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In Figs. 3.14 and 3.15 the phase voltage and phase current are shown. During
speed increase to 750 rpm, voltage and current increase transients can be seen. When
the steady-state is reached, the current value is no zero because there is torque re-
quired to spin the machine. The value of phase voltage during steady-state is related
to back-electromotive force and voltage drop due to the stator resistance. The value
of voltage is increased for set speed and in this way the value of back-electromotive
force does not change. Indeed, if the simulation ends without load torque and with-
out friction contribution the consequence would be: the phase currents vanish (the
electromagnetic torque would be null) and the phase voltage value wold be the same
of back-EMF (the speed doesn't change).

Following from decoupling VSD transformation, presented in Chapter 6.24, Sub-
section 2.2.2, in Figs. 3.16 and 3.17 the current mapping is shown. The current
in (α,β) subplane is shown in Fig. 3.16 and the current in another subplanes
(x, y)1, (x, y)2, (x, y)3 and zero-sequence component are shown in Fig. 3.17. The
current values in (x, y) subplanes are equal to zero and these current components
do not participate to electromechanical conversion (because the back-EMF is sinu-
soidal). The electromechanical conversion is therefore performed using αβ compo-
nents.

After VSD transformation, the rotational transformation is applied on αβ com-
ponents. The �ux and torque producing currents are shown in Figs. 3.18 and 3.19,
respectively. In these �gures the �ux producing (id) is equal to zero, while the torque
producing (iq) follows the electromagnetic torque.

To conclude, the implemented control of the machine in Matlab/Simulink envi-
ronment achieves desired dynamic response.
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Figure 3.14: Phase voltages for sinusoidal nine-phase PMSM.

Figure 3.15: Phase currents for sinusoidal nine-phase PMSM.
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Figure 3.16: Current in (α,β) subplane after VSD transformation.

Figure 3.17: Current in (x, y) subplanes after VSD transformation.
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Figure 3.18: Flux producing current after the rotational transformation.

Figure 3.19: Torque producing current after the rotational transformation.
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Chapter 4

Modelling and Control of the Surface

PMSM with Non-Sinusoidal

Back-EMF

In this chapter the symmetrical nine-phase surface PMSM with single-layer wind-
ing distribution and single isolated neutral point is analysed. The rotor is designed
with two poles. Unlike the previous chapters, where the magnet length was 180◦,
magnet span on rotor are shortened. As it will be shown in this chapter, this causes
production of highly non-sinusoidal back-electromotive force [26].

Chapter is organised as follows:

� In Section 4.1 the prototype machine under test is presented. The speci�c non-
sinusoidal back-electromotive force was obtained in experimental test. The
back-EMF distribution is the result of the removal of the four poles from the
original six poles.

� In Section 4.2 the non-sinusoidal back-EMF machine modelling is developed:
machine model in phase variable domain and in vector space decomposition
variables.

� In Section 4.3 the Vector Proportional Integral and Proportional Resonant
Controller are studied and implemented to eliminate the current harmonics.
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4.1 Introduction

The machine prototype is characterized by highly non-sinusoidal back- electro-
motive force. The back-EMF distribution is the consequence of the poles removal.
Indeed, to reduce the cost and design time, the machine has been obtained by
rewinding a three-phase machine prototype having 6 poles and 36 slots. Neverthe-
less, to obtain a symmetrical con�guration of the winding, only two poles are present
from the original six ones. These are spanning 45◦ each, as shown in the right of
Fig. 4.1. The previous analysed structure in Chapters 6.24 and 6.25 is recalled
in the left of Fig. 4.1. For this reason, the machine model presented in Chapter
6.24 is modi�ed: the back-EMF is modelled using the real harmonic spectrum from
experimental test.

If winding distribution is suitable, non-sinusoidal back-EMF means a speci�c
harmonic content: low order harmonics are present in FFT spectrum. If not elim-
inated, these harmonics can induce the current harmonics in stator windings, pro-
ducing losses and torque ripple. A speci�c current harmonic is generated only if its
order is present in both PM distribution and winding distribution (the harmonic
distribution factor (khd ) is not zero).

However, the current harmonics can be used for additional purposes (f.e. har-
monic injection in order to increase the electromagnetic torque) or eliminated. In
this thesis, the current harmonics will be eliminated with adequate controllers, as
shown below. This means that the �eld-oriented control, presented in Chapter 6.25,
is modi�ed to reach this goal.

The back-EMF harmonics will be used to estimate the rotor angular position.
Techniques based on back-EMF estimation are consolidated in the area of sensorless
control of permanent magnet synchronous machine as methods ensuring good per-
formance at medium/high speed, with a little computational surplus and the same

Figure 4.1: Magnet span of surface PMSM : 180◦ magnet span on rotor (left) and
45◦ magnet span on rotor (right).
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hardware requirement of standard �eld-oriented control drives [27]. In �eld-oriented
control the knowledge of the rotor angular position is needed. The exact knowlwdge
of the position can be obtained with sensor (encoder or resolver) in real time or can
be estimated. In this thesis the back-EMF in VSD variables is the starting point to
estimate the rotor position, as shown below.

The back-EMF distribution highly non-sinusoidal is con�rmed by experimental
test and FFT analysis. The recorded data are shown in Figs. 4.2 and 4.3. The
values are recorded at 1465 rpm which corresponds to the frequency of 24.42 Hz
(P=1). The recorded back-electromotive force of real machine is obtained in no-load
condition and open-winding con�guration and then, the FFT analysis is performed
in Matlab environment. The presented analysis is developed in steady-state because
it depends on the angular speed. As is known from the theory, the back-EMF
distribution is related only to one speci�c rotor speed of the machine. In Fig. 4.4
the magnitudes and angles of the recorded back-EMF in winding a1 are shown.
In magnitude spectrum the signi�cant values can be noted from the fundamental
component to thirteenth harmonic. For this reason in real machine model only
the �rst 13 harmonics will be modelled. From FFT analysis the third harmonic
magnitude is relevant and it plays a key role in rotor angular position estimation.

Figure 4.2: Back-EMF waveforms of real machine: experimental results at 1465
rpm.
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Figure 4.3: Back-EMF (ea1, ea2, ea3) in steady-state at 1465 rpm: CH.1 - CH.3:
40V/div.

Figure 4.4: Fourier analysis of non-sinusoidal back-EMF on recorded data at 1465
rpm.
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4.2 Non-Sinusoidal Machine Model

4.2.1 Back-EMF and PM harmonic distribution

The model of nine-phase surface PMSM in phase variable reference frame was
presented in Chapter 6.24, Subsection 2.2.1. One of the assumptions was related to
magnetomotive force and back-electromotive force distributions. They were assumed
to be sinusoidal, i.e. the �ux linkage vector caused by only the PM presence was
modelled as:

[λPM,abc9] = λPM · cos(θ− [θn]), [θn] ∈ [0, ..., 8α], α =
2π

9
(4.1)

The electrical machine in laboratory and analysed in this work is characterised by
higly non-sinusoidal back-EMF. Therefore, the Eq. (4.1) is not correct, hence must
be opportunely modi�ed. The modelling of real machine in phase variable domain
presents the same form of the machine with sinusoidal back-electromotive force, but
the �ux produced by permanent magnet must be modi�ed. For convenience, both
electrical and magnetic equations in phase variable domain for nine-phase surface
PMSM are below reported:[vabc9] = [Rs] · [iabc9] +

d[λabc9]

dt
[λabc9] = [λPM,abc9] + [Lss] · [iabc9]

(4.2)

where all symbols are consistent with the ones de�ned in previous chapters.
Nevertheless, both [λPM,abc9] and [Lss] are composed of all harmonic contributions
[28].

The �ux linkage vector caused by only the PM presence is modelled as:

[λPM,abc9] = λPM1 · cos(1 · (θ− [θn]) + θsh1) + λPM3 · cos(3 · (θ− [θn]) + θsh3)+

+ λPM5 · cos(5 · (θ− [θn]) + θsh5) + ...+ λPMh · cos(h · (θ− [θn]) + θshh)

(4.3)

where:
-λPM1, λPM3, ..., λPMh stand for harmonic magnitudes related to the h

th harmonic
and

-θsh1, θsh3, ..., θshh stand for harmonic phase shifts.
The form of current equation in phase variable domain, obtained with the com-

bination of electrical and magnetic equations, is the same as in sinusoidal machine,
but the �ux linkage and the mutual magnetizing matrix must be replaced. The new
machine model is used to obtained the future simulation results. For convenience,
the �nal machine model for real machine is below reported:

[iabc9] = [Lss]
−1
(∫ (

[vabc9]− [Rs] · [iabc9]
)
dt− [λPM,abc9]

)
(4.4)
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4 � Modelling and Control of the Surface PMSM with Non-Sinusoidal Back-EMF

It is also important to observe that the non-sinusoidal back-EMF is modelled
using the Eq. (4.3) which is related to permanent magnets �ux. The reason is: the
magnitude of back-EMF is related to the speci�c speed, used in experimental test
to recorde the data. The problem is solved using in machine model the Eq. (4.3)
because the magnitudes of �ux linkage are constant and these values are correctly
non-sensitive to speed. The �ux linkage magnitude of the generic harmonic hth is
related to back-EMF magnitude of hth harmonic as shown below:

λPM,h =
back − EMFh

h ·ω
(4.5)

The back-EMF magnitude and phase shift values are obtained experimentally
and shown in Table 4.1. Usually the fundamental angle θsh1= 0◦ is taken as reference
and the phases shift are calculated for every harmonics in relation to this angle
datum value.

Table 4.1: Harmonics of the permanent magnets �ux surface PMSM machine.

Harmonics �ux linkage
hth back-EMF [V] λPM [mWb] Angle
1st 59.13 385.8 0◦

3rd 54.81 119.2 -179◦

5th 29.37 38.33 3.1◦

7th 7.54 7.03 164.5◦

9th 3.72 2.70 148◦

11th 6.09 3.62 -12.9◦

13th 3.42 1.72 168.9◦
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4.2 � Non-Sinusoidal Machine Model

4.2.2 Harmonic Model in VSD Variables

Since the rotor position is estimated using the non-sinusoidal back-EMF in vector
space decomposition variables, VSD modelling is studied in detail.

In Chapter 6.24, Subsection 2.2.2, VSD matrix for nine-phase symmetrical ma-
chine with sinusoidal winding was introduced. The machine model in VSD variables
is obtained when the VSD matrix is applied to each winding of the nine-phase sur-
face as:

[fvsd] =
[
fα, fβ, fx1, fy1, fx2, fy2, fx3, fy3, f0

]T
=

= [V SD] ·
[
fa1, fa2, fa3, fb2, fb3, fc1, fc2, fc3

]T (4.6)

For convenience, the equations in VSD variables are below shown, where the
obtained matrices in this domain for the machine with non-sinusoidal winding are
di�erent then the matrices presented in Chapter 6.24.

[vvsd] = [Rs] · [ivsd] +
d[λvsd]

dt

[λvsd] = [Lls] · [ivsd] + ·[Mss,vsd] · [ivsd] + [λPM,vsd]

(4.7)

The index vsd denotes VSD variables. All other symbols are consistent with the
ones de�ned in previous chapters.

In matrix form, with the same approch presented in Chapter 6.24, the inductance
matrix is de�ned as:

[Lss,vsd] =



Lαβ 0 0 0 0 0 0 0 0
0 Lαβ 0 0 0 0 0 0 0
0 0 L1 + L1′ 0 0 0 0 0 0
0 0 0 L1 − L1′ 0 0 0 0 0
0 0 0 0 L2 + L2′ 0 0 0 0
0 0 0 0 0 L2 − L2′ 0 0 0
0 0 0 0 0 0 L3 0 0
0 0 0 0 0 0 0 L3 0
0 0 0 0 0 0 0 0 L9



α

β

x1
y1
x2
y2
x3
y3
0

(4.8)
where in each subplane a �ctitious inductance is de�ned as:

αβ : Lαβ = Lls + L
〈1〉
m

xy1 : L1 = Lls + L
〈11〉
m ; L1′ = L

〈7〉
m

xy2 : L2 = Lls + L
〈13〉
m ; L2′ = L

〈5〉
m

xy3 : L3 = Lls + L
〈3〉
m

0 : L9 = Lls + L
〈9〉
m

(4.9)
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4 � Modelling and Control of the Surface PMSM with Non-Sinusoidal Back-EMF

where Lls stands for stator leakage inductance and L
〈h〉
m stands for mutual induc-

tance due to h-th spatial harmonic.
About the back-EMF in the machine with non-sinusoidal winding, which is the

time derivative of the �ux produced by permanent magnets, is de�ned as:

[ePM,vsd] =



−λPM1 ·ω · sin(θ)
λPM1 ·ω · cos(θ)

ω ·
(
7 · λPM7 · sin(7 · θ)− 11 · λPM11 · sin(11 · θ)

)
ω ·
(
7 · λPM7 · cos(7 · θ) + 11 · λPM11 · cos(11 · θ)

)
ω ·
(
−5 · λPM5 · sin(5 · θ) + 13 · λPM13 · sin(13 · θ)

)
ω ·
(
−5 · λPM5 · cos(5 · θ)− 13 · λPM13 · cos(13 · θ)

)
3 ·ω · λPM3 · sin(3 · θ)
−3 ·ω · λPM3 · cos(3 · θ)
9 ·ω · λPM9 · sin(9 · θ)



α

β

x1
y1
x2
y2
x3
y3
0

(4.10)

The waveforms of modelled back-electromotive force in vector space decompo-
sition are shown in Figs. 4.5 - 4.8 obtained in Simulink environment at 1500 rpm.
The simulation results con�rm the model presented in Eq. (4.10): in Fig. 4.5 only
the fundamental harmonic is present; in Fig. 4.6 the 7th and 11th harmonics are
present; in Fig. 4.7 the 5th and 13th harmonics are present; �nally Fig. 4.8 only the
3th harmonic is present.

Figure 4.5: The back-EMF in (α,β) subplane and zero-sequence component.
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4.2 � Non-Sinusoidal Machine Model

Figure 4.6: The back-EMF in (x, y)1 subplane.

Figure 4.7: The back-EMF in (x, y)2 subplane.
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4 � Modelling and Control of the Surface PMSM with Non-Sinusoidal Back-EMF

Figure 4.8: The back-EMF in (x, y)3 subplane.

Finally, the machine model in matrix form can be written as:

[vαβ] = Rs · [iαβ] + Lαβ ·
d[iαβ]

dt
+ [ePM,αβ]

[vxy1 ] = Rs · [ixy1 ] + [L11′ ] ·
d[ixy1 ]

dt
+ [ePM,xy1 ]

[vxy2 ] = Rs · [ixy2 ] + [L22′ ] ·
d[ixy2 ]

dt
+ [ePM,xy2 ]

[vxy3 ] = Rs · [ixy3 ] + L3 ·
d[ixy3 ]

dt
+ [ePM,xy3 ]

v0 = Rs · i0 + L9 ·
di0
dt

+ ePM,0

(4.11)

where the matrix inductance L11′ and L22′ are de�ned as:

L11′ =

[
L1 + L1′ 0

0 L1 − L1′

]
(4.12)

L22′ =

[
L2 + L2′ 0

0 L2 − L2′

]
(4.13)
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4.2 � Non-Sinusoidal Machine Model

Since VSD transformation produces multiple complex subplanes, instead of rep-
resentation in matrix form, it is possible to express model in complex form. The
relationship between the matrix form and complex form is:

f
αβ

= [1 j] ·

[
fα

fβ

]

f
xyi

= [1 j] ·

[
fxi

fyi

]
, i = 1, 2, 3

(4.14)

where f stands for a generic variable vector.
By replacing Eq. (4.14) in Eq. (4.11) the following model is carried out:

vαβ = Rs · iαβ + Lαβ ·
diαβ
dt

+ j ·ω · λPM1 · ej·θ

vxy1 =Rs · ixy1 + L1 ·
dixy1
dt

+ L1′ ·
dixy1
dt

+ j · 7 ·ω · λPM7 · e−j·7·θ+

+j · 11 ·ω · λPM11 · ej·11·θ

vxy2 =Rs · ixy2 + L2 ·
dixy2
dt

+ L2′ ·
dixy2
dt
− j · 5ω · λPM5 · e−j·5·θ+

−j · 13 ·ω · λPM13 · ej·13·θ

vxy3 = Rs · ixy3 + L3 ·
dixy3
dt
− j · 3 ·ω · λPM3 · ej·3·θ

v0 = Rs · i0 + Lls ·
di0
dt

+ 9 ·ω · λPM9 · sin(9 · θ)

(4.15)

Equivalent circuit for (α,β), (x,y)i subplanes and zero-sequence are shown in
Fig. 4.9. If the subplane i (i=1, 2, 3), shown in Fig. 4.9 (b), is containing more

than one harmonic, the equivalent mutual inductance L
〈h〉
eq stands for the sum of

individual magnetizing harmonic. About the voltage generator (representative of
back-EMF ) stands for the sum of individual back-EMF contribution. Finally, in
Fig. 4.9 (c) the zero-sequence circuit is shown, where the open circuit stands to
highlight that the zero-sequence current cannot to �ow in stator windings due to
the neutral connection.

By analysing the �nal equations and produced equivalent circuits, it is noted
that electromechanical energy conversion is not taking place only in the (α,β) sub-
plane due to the speci�c back-EMF distribution. Following from stated, the (x,y)
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4 � Modelling and Control of the Surface PMSM with Non-Sinusoidal Back-EMF

Figure 4.9: Equivalent circuit of non-sinusoidal machine: (a) - (α,β); (b) - (x, y)i
(i = 1, 2, 3) subplanes; (c) - zero-sequence component.

subplanes can be used to achieve the torque enhancement or for additional pur-
poses. However, additional controllers in (x,y) subplane can be employed to utilise
additional degree of freedom for multiphase machine speci�c applications, such as
fault tolerance, power sharing or low order harmonic elimination. In foundamental
subplane the machine can be controlled in the same well-know way as the 3-phase
machine. Instead each (x,y) subplane can be independently controlled without dis-
turbing the other subplanes.

To complete the machine model, the electromagnetic torque equation in VSD
variables must be computed. Starting from the equation in phase variable domain
and for convenience below is reported:

Tem = P · [iabc9]T ·
d[λPM,abc9]

dθ
(4.16)

By expressing the phase domain variables as function of VSD ones, the following
is obtained:

Tem =P ·
[
[V SD]−1 · [ivsd]

]T
· d
dθ

(
[V SD]−1[λPM,vsd]

)
=

=P · [ivsd]T ·
(

[V SD]−1
)T

· [V SD]−1 · d[λPM,vsd]

dθ

(4.17)
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4.2 � Non-Sinusoidal Machine Model

where: (
[V SD]−1

)T

· [V SD]−1 =
9

2
· [Id] (4.18)

By replacing the Eq. (4.18) into Eq. (4.17) the carried out equation is:

Tem =
9

2
· P · [ivsd]T ·

d[λPM,vsd]

dθ
=

=
9

2
· P ·

(
t〈1〉 + t〈3〉 + t〈5〉 + t〈7〉 + t〈9〉 + t〈11〉 + t〈13〉

) (4.19)

where the single harmonic contributions are computed as follows:

t〈1〉 = λPM1 ·
(
−iα · sin(θ) + iβ · cos(θ)

)
(4.20)

t〈3〉 = 3 · λPM3 ·
(
ix3 · sin(3 · θ)− iy3 · cos(3 · θ)

)
(4.21)

t〈5〉 = −5 · λPM5 ·
(
ix2 · sin(5 · θ) + iy2 · cos(5 · θ)

)
(4.22)

t〈7〉 = 7 · λPM7 ·
(
ix1 · sin(7 · θ) + iy1 · cos(7 · θ)

)
(4.23)

t〈9〉 = 9 · λPM9 · i0 · sin(9 · θ) (4.24)

t〈11〉 = 11 · λPM11 ·
(
−ix1 · sin(11 · θ) + iy1 · cos(11 · θ)

)
(4.25)

t〈13〉 = 13 · λPM13 ·
(
ix2 · sin(13 · θ)− iy2 · cos(13 · θ)

)
(4.26)

4.2.3 Harmonic Model in Phase Variable Domain

The �ctitious harmonic model in VSD variables can be evaluated in phase vari-
able domain. Compared to the model presented in Chapter 6.24, the inductance
matrix in phase variable domain is computed starting from the one de�ned in Eq.
(4.8). The inductance matrix can be written as the sum of all harmonic contribu-
tions. To explain the idea, consider Eq. (4.27):

[Lss,vsd] = [Lls] + [L〈1〉m ] + [L〈3〉m ] + [L〈5〉m ] + [L〈7〉m ] + [L〈9〉m ] + [L〈11〉m ] + [L〈13〉m ] (4.27)

where matrix for each harmonic is de�ned as (Eqs. (4.28) - (4.35)):

[Lls] =



Lls 0 0 0 0 0 0 0 0
0 Lls 0 0 0 0 0 0 0
0 0 Lls 0 0 0 0 0 0
0 0 0 Lls 0 0 0 0 0
0 0 0 0 Lls 0 0 0 0
0 0 0 0 0 Lls 0 0 0
0 0 0 0 0 0 Lls 0 0
0 0 0 0 0 0 0 Lls 0
0 0 0 0 0 0 0 0 Lls


(4.28)
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[L〈1〉m ] =



L
〈1〉
m 0 0 0 0 0 0 0 0

0 L
〈1〉
m 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(4.29)

[L〈3〉m ] =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 L
〈3〉
m 0 0

0 0 0 0 0 0 0 L
〈3〉
m 0

0 0 0 0 0 0 0 0 0


(4.30)

[L〈5〉m ] =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 L
〈5〉
m 0 0 0 0

0 0 0 0 0 −L〈5〉m 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(4.31)

[L〈7〉m ] =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 L
〈7〉
m 0 0 0 0 0 0

0 0 0 −L〈7〉m 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(4.32)
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[L〈9〉m ] =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 L
〈9〉
m


(4.33)

[L〈11〉m ] =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 L
〈11〉
m 0 0 0 0 0 0

0 0 0 L
〈11〉
m 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(4.34)

[L〈13〉m ] =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 L
〈13〉
m 0 0 0 0

0 0 0 0 0 L
〈13〉
m 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


(4.35)

Now, the matrix in phase variable domain related to stator leakage inductance
is computed as:

[Lls] =[V SD]−1 · [Lls] · [V SD] =

=Lls · [V SD]−1 · [V SD] = Lls · [Id]9X9

(4.36)

About the matrix in phase variable domain related to hth spatial harmonic, this
is computed as:

[L
〈h〉
abs9] = [V SD]−1 · [L〈h〉m ] · [V SD], h = 1, ..., 13, h /= 2i, i ∈ N (4.37)

The application of VSD matrix and its inverse leads to the following rows of the
matrices, where the operators c and s stand for cosine and sine, respectively.
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About the magnetizing inductance related to 1st harmonic:

[L
〈1〉
m ] =

2

9
L
〈1〉
m . . .

. . . 1 :



1

c(α)

s

(
α

4

)

−
1

2

−c
(α
2

)
−c
(
α

2

)

−
1

2

s

(
α

4

)
c(α)



T

, 2 :



c(α)

1

c(α)

−
1

2

(
−c(α) +

√
3s(α)

)
−
1

2

−c
(
α

2

)

−
1

2

(
c(α) +

√
3s(α)

)
−
1

2

s

(
α

4

)



T

, 3 :



s
(α
4

)
c(α)

1

1

2

(√
3c

(
α

4

)
− s

(
α

4

))

s

(
α

4

)

−
1

2

−
1

2

(√
3c

(
α

4

)
+ s

(
α

4

))

c

(
α

2

)

−
1

2



T

(4.38)

4 :



−
1

2

−
1

2

(
−c(α) +

√
3s(α)

)
−
1

2

(√
3c

(
α

4

)
− s

(
α

4

))
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About the magnetizing inductance related to 3th harmonic:
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About the magnetizing inductance related to 5th harmonic:
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About the magnetizing inductance related to 7th harmonic:
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4.2 � Non-Sinusoidal Machine Model

About the magnetizing inductance related to 9th harmonic:
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About the magnetizing inductance related to 11th harmonic:
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4.2 � Non-Sinusoidal Machine Model

About the magnetizing inductance related to 13th harmonic:
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The computed model, related to spatial harmonics in VSD variables and phase
variable domain has been validated on real machine as shown in Chapter 6.32,
Section 6.2, Subsection 6.2.3. The magnetizing inductance related to hth harmonic
in stator short-circuit and design approach con�guration is evaluated, as explained
below.
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4.3 � Current Harmonic Mapping

4.3 Current Harmonic Mapping

In this thesis the current harmonics are eliminated because the current compo-
nents are losses producers losses. In Fig. 4.10, the procedure of harmonic mapping in
(α,β), (x, y) subplanes and zero-sequence is shown. Each harmonic is mapped only
into a single subplane or zero-sequence and in the same subplane or zero-sequence
than back-EMF harmonic. Following from stated, the current elimination is simpli-
�ed by the use of vector proportional integral or proportional resonant controller.

The modelled current harmonics in the real machine are only the �rst 13 harmon-
ics as the consequence of back-EMF harmonic spectrum. The current fundamental
is mapped only in (α,β) subplane and it is responsible of torque production due to
the low order harmonic elimination in other subplanes.

4.3.1 Low Order Harmonics Elimination

Vector Proportional Integral

The method with harmonic elimination need to be designed to minimize the
harmonic content in the stator currents. By adding the vector proportional integral,
the unwanted current harmonics are suppressed, as shown below.

The employed VPI, shown in Fig. 4.11 [11], allows to eliminate the induced
current harmonics in a generic subplane i (i=1, 2, 3). It is implemented in (x, y)
subplanes. The transfer function of the employed controller is de�ned as:

HV PI(s) =
s2 · kI,V PIh + s · kP,V PIh

s2 + h2 ·ω2
1

(4.55)

where:
-kP,V PIh is the proportional value related to hth harmonic,
-kI,V PIh is integral value related to hth harmonic,
-ω1 is the foundamental component frequency (rad/s), which in steady-state

condition is equal to the machine electrical speed and
-h is the number of unwanted harmonic.
In Fig. 4.12 a simpli�ed schematic of the VPI controller, voltage supply inverter

and electrical machine are shown. The following analysis and design are performed
in Laplace domain. The input to the VPI (green block) is the current error in

Figure 4.10: Schematic of harmonic mapping analysis.

89



4 � Modelling and Control of the Surface PMSM with Non-Sinusoidal Back-EMF

Figure 4.11: Schematic of the VPI transfer function.

Figure 4.12: Schematic block of the harmonic current regulation loop.

a generic subplane (x,y), computed as di�erence between zero reference value and
its measurement feedback in VSD variables. However, the current measurement
process is considered ideal, and, for this reason, the sensor function transfer can be
approximated with unitary gain. As in analysis and design of current loop regulation
in foundamental subplane, the VSI is modelled as a low pass-�lter and its transfer
function is reported for convenience:

HV SI(s) =
1

1 + s · τd
, τd =

3

2
· 1

fsw
(4.56)

where τd stands for voltage supply inverter time constant and fsw stands for
switching frequency.

Consider Fig. 4.12, the design of the VPI gains is based on the open-loop transfer
function, which is computed as:

HV PIh,OL(s) =
s2 · kI,V PIh + s · kP,V PIh

s2 + h2 ·ω2
1

· 1

1 + s · τd
· 1

s · L〈h〉eq +Rs

(4.57)

As mentioned above, the VPI design is performed with pole-zero cancellation
method. In mathematical formulation this is expressed as:

kI,V PIh

kP,V PIh

=
Rs

L
〈h〉
eq

(4.58)
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4.3 � Current Harmonic Mapping

By replacing the Eq. (4.58) in Eq. (4.57), the open-loop transfer function is
computed as:

HV PIh,OL(s) =
s · kP,V PIh

s2 + (h ·ω1)2
·
(
s+

Rs

L
〈h〉
eq

)
· 1

1 + s · τd
·

1

L
〈h〉
eq

s+
Rs

L
〈h〉
eq

=

=
kP,V PIh

L
〈h〉
eq

· s

s2 + (h ·ω1)2
· 1

1 + s · τd

(4.59)

The magnitude and phase of the open-loop transfer function is computed as:
|HV PIh,OL(ω)| = kP,V PIh

L
〈h〉
eq

· ω

| −ω2 + (h ·ω1)2|
·
√

1

1 + (ω · τd)2

∠HV PIh,OL =
π

2
− arctan(ω · τd)− k · π

(4.60)

where k is de�ned as follows:

k =

{
0, ω < h ·ω1

1, ω > h ·ω1

(4.61)

In detail, the magnitude of VPI controller is approximated as follows:

|HV PIh,OL(ω)| =



kP,V PIh

L
〈h〉
eq

· ω

(h ·ω1)2
, ω << h ·ω1

kP,V PIh

L
〈h〉
eq

· 1

ω
,

(
ω >> h ·ω1 & ω << τ−1d

)
kP,V PIh

L
〈h〉
eq

· 1

τd
· 1

ω2
, ω >> τ−1d

(4.62)

In Fig. 4.13 the asymptotic Bode magnitude plot of open-loop transfer function is
shown. Following from the theory and Bode plot, the crossover frequency must be set
close to the system bandwidth. However, to ensure acceptable system performance,
the crossover frequency must be chosen in the second frequency range listed in
system Eq. (4.62). In conclusion, the magnitude and phase are computed as:

|HV PIh,OL(ω)| = kP,V PIh

L
〈h〉
eq

· 1

ω

∠HV PIh,OL = −π
2
− arctan(ω · τd)

(4.63)
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Figure 4.13: Asymptotic Bode plot of the open-loop transfer function magnitude for
harmonic current regulation loop with VPI.

By computing The Eq. (4.63) at the crossover frequency ωcr,V PI , where the
magnitude of the open-loop function is unitary, the following is obtained:

kP,V PIh

L
〈h〉
eq

· 1

ωcr,V PIh

= 1

φpm,V PIh =

(
−π

2
− arctan(ωcr,V PIh · τd)

)
+ π

(4.64)

where φpm,V PIh stand for the phase-margin of the current control, which is always
within the range [0,π/2].

As mentioned above, the consequence of pole-zero cancellation method is reduc-
tion of degrees of freedom and, for this reason, just one variable among the crossover
frequency and phase-margin can assume the desidered value. If the crossover fre-
quency is imposed in Eq. (4.64), the proprortional and integral gains are tuned
as: {

kP,V PIh ' ωcr,V PIh · L〈h〉eq

kI,V PIh ' ωcr,V PIh ·Rs

(4.65)

The tuned VPI block scheme is shown in Fig. 4.14, where kBw,h stands for band-
width related to hth harmonic. In VPI block scheme ω1 stands for electrical rotor
speed and the proportional and integral gains are replaced with Eq. (4.65). The
bandwidth of the harmonic current regulation is introduced and it is approximated
with the crossover frequency.
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4.3 � Current Harmonic Mapping

Figure 4.14: Block diagram of VPI resonant controller.

More VPI current regulators in parallel can be employed when the subplane
contains more than one unwanted harmonics. In Fig. 4.15 the block scheme with
two VPI is given which allows to obtain the reference voltage in (x, y) subplane from
current error. To explain the idea, consider a (x, y) subplane, in which the hp and
hk harmonics are present. Each employed VPI is characterised by the bandwidth
kBw,h and inductance L

〈h〉
eq related to hth harmonic.

Figure 4.15: VPI s resonant controllers: parallel connection.
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To conclude the analysis and desisgn of VPI, closed-loop transfer funtion is stud-
ied as follows:

HV PIh,CL(ω) =
HV PIh,OL(ω)

1 +HV PIh,OL(ω)
=

{
' HV PIh,OL(ω), |HV PIh,OL(ω)| << 0dB

' 1, |HV PIh,OL(ω)| >> 0dB

(4.66)
By considering the �rst cases listed in system Eq. (4.62),the lower crossover

frequency ωcrl,V PI is obtained as:

kP,V PIh

L
〈h〉
eq

· ωcrl,V PIh

(h ·ω1)2
= 1⇒ ωcrl,V PIh =

L
〈h〉
eq

kP,V PIh

· (h ·ω1)
2 (4.67)

In Fig. 4.16, the asymptotic Bode magnitude plot of closed-loop transfer function
is shown.

The e�ectiveness of the employed VPI is shown in Figs. 4.17 and 4.18. These
are obtained in simulation performed at 1500 rpm under FOC. In �gure the phase
stator currents in a1, a2 and a3 winding are shown. In detail, in Figs. 4.17 and
4.18 the phase current waveforms without and with VPI s are shown, respectively.

Finally, spectrum harmonic of the phase stator current in a1 winding is per-
formed. In Fig. 4.19 the harmonic spectrum contains all current harmonics, induced
by the back-EMF harmonics. Conversely, in Fig. 4.20 the harmonic spectrum con-
tains only the fundamental component i.e. the low order harmonics are eliminated
from harmonic spectrum with activated harmonic control.

Figure 4.16: Asymptotic Bode plot of the closed-loop transfer function magnitude
for harmonic current regulation loop with VPI.
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4.3 � Current Harmonic Mapping

Figure 4.17: Phase currents without VPI controllers for non-sinusoidal machine.

Figure 4.18: Phase currents with VPI controllers for non-sinusoidal machine.
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Figure 4.19: Phase current spectrum harmonic without VPI controllers.

Figure 4.20: Phase current spectrum harmonic with VPI controllers.

The modi�cated FOC scheme is shown in Fig. 4.21. The VPI resonant con-
trollers are implemented in Low order harmonic elimination block (pink block). In
addition, to simplify the schematic the inductance Lαβ has been replaced with the
Ls symbol.
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4.3 � Current Harmonic Mapping

Figure 4.21: FOC with low order harmonic elimination for non-sinusoidal nine-phase
surface PMSM.

Proportional Resonant Controller

An alternative current regulator, called proportional resonant controller [8], to
eliminate the harmonics can be employed. In the continous-time domain, the trans-
fer funcion of PRES is written as:

HPRES(s) =
s2 · kP,PRESh + kI,PRESh · s+ kP,PRESh ·ω2

0

s2 +ω2
0

, ω0 = h ·ω1 (4.68)

where kP,PRESh and kI,PRESh are the proportional snd integral gains, respectively.
These gains can be assumed equal to ones of VPI and in Fig. 4.22 its block diagram
is shown, where the crossover frequency is approximated with the bandwidth and it
is tuned in according with VPI bandwidth. The schematic block of the harmonic
current regulation loop is shown in in Fig. 4.12, less than transfer function controller
(green block), which must be replaced with the schematic shown in Fig. 4.22.

Figure 4.22: Block diagram of PRES.
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On the basis of the mentioned schematic block, the open-loop transfer function
is computed as:

HPRESh,OL(s) =
s2 · kP,V PIh + s · kI,V PIh + kP,V PIh ·ω0

s2 +ω2
0

· 1

1 + s · τd
· 1

s · L〈h〉eq +Rs

(4.69)
The magnitude of PRES controller is computed as:

|HPRESh,OL(ω)| =kP,V PIh

Rs

·

√
1 +

(
kI,V PIh ·ω

kP,V PIh · (ω2
0 −ω2)

)2

·

· 1√
1 + (ω · τd)2

· 1√
1 +

(
L
〈h〉
eq

Rs

)2

·ω2

(4.70)

In Fig. 4.23 the asymptotic Bode magnitude plot of open-loop (red line) and
closed-loop (blue line) are shown. In mentioned �gure the lower crossover frequency
does not exist, while the crossover frequency is equal to the one de�ned for VPI.

In experimental validation to eliminate the current harmonics the proportional
resonant controllers are employed.

Figure 4.23: Asymptotic Bode plot of the open-loop and closed-loop transfer func-
tion magnitude for harmonic current regulation loop with PRES.

98



Chapter 5

Sensorless Control of a Nine-Phase

Surface PMSM with Non-Sinusoidal

Back-EMF

In this chapter an I-Hz starting method for smooth and fast transition from open-
loop frequency to sensorless �eld-oriented control of a nine-phase surface PMSM
with non-sinusoidal back-EMF is reported.

Chapter is organised as follows:

� In Section 5.1 a literature survey related to the position estimation methods
is presented. It is followed by the description of the adopted method in this
thesis.

� In Section 5.2 the back-EMF method is brie�y presented in order to highlight
the code-saving through the use of back-EMF harmonic. In Subsection 5.2.1
the phase-locked loop theory is shown: the rotor position estimation is based
on PLL. Finally, a harmonc PLL is presented.

� In Section 5.3 the starting method to accelerate the motor is presented: the
speed is imposed in open loop while the stator currents are controlled in an
arbitrary reference frame.

� In Section 5.4 the transition strategy is performed: at switch instant the cur-
rent references in rotor reference frame are set equal to measured values eval-
uated in the estimated rotor reference frame.

� In Section 5.5 simulation results obtained inMatlab/Simulink environment are
presented. The hybrid control is validated: the machine starting is performed
in open-loop frequency control, while at medium-high speed the sensorless
FOC based on estimated back-EMF is employed.
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5.1 Introduction

The motor position and speed control are highly important control loops in motor
control applications. The control loops need actual rotor position and/or speed
signals. There are several means for sensing these variables for motor control system,
known as mechanical sensors. When the position is measured the control is called
sensored. Hawover, various disadvantages may arise, as for example the increase of
the drive cost and electromagnetic interference due to the power conductors that
disturbs the trasmission between sensor and control system. In many applications,
these additional sensors not only increase the mounting and maintenance cost, but
also reduce the reliability of the whole system, as they are prone to environmental
disturbances.

Sensorless motor control is a cost-saving practical alternative to the sensored
control scheme. Currently, most commercial motor drives have a sensorless option
embedded in the control system. Using this option improves the motor system
reliability, thus reducing maintenance. There are many sensorless control methods
used in commercial products or presented in literature.

It is common to categorize the position estimation of permanent magnet syn-
chronous machine in two main groups: back-electromotive force methods and saliency-
based methods. The reason of the distinction is evident: the back-EMF depends
on the rotor motion, while the saliency is a motor structure property. However,
observer-based estimation is capable to use both back-EMF and saliency methods,
making di�cult to con�ne the methods to two di�erent groups. In addition, new
methods have been developed, e.g. the hypothetical position estimation. According
to the techical literature, the rotor position and rotor speed estimation methods can
be divided in �ve groups, as shown in Fig. 5.1.

The back-EMF -based method, as the most traditional, is still attractive for both
salient and non-salient PMSM because it considers the interaction of permanent
magnet with the stator windings directly. The back-EMF is position dependent;
thus, it can be manipulated by di�erent schemes to compute the rotor position.
Two di�erent schemes belong to this category, as shown in Fig. 5.1 [29].

The second method is based on the estimation of the stator �ux linkage vector in
terms of the position and speed. The �ux linkage contributions provided by both the
permanent magnets and winding currents are considered [30], making this method
applicable to both salient and non-salient PMSM. Four di�erent schemes based on
this method can be derived, as shown in Fig. 5.1.

The third method is based on the machine saliency. The inductances of the
salient machines depend on the rotor position, allowing their use to estimate the
rotor position over the entire speed range. Three schemes can be derived by this
method (Fig. 5.1).
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5.1 � Introduction

Figure 5.1: A classi�cation of position and speed estimation methods (blue blocks)
and schemes (white blocks).

The fourth method is based on the hypothetical rotor position. The machine
model is considered in a reference frame oriented along a hypothetical rotor position.
Using the measured motor signals, the error beetween the hypothetical and real rotor
position is estimated. This method is applicable to both salient and non-salient
PMSM. Three di�erent schemes are available in literature [31], as shown in Fig. 5.1.

The last method for rotor position estimation is based on the use of closed-loop
observers. Many schemes are available under this category. A simple observer-
based rotor position scheme is reported in [32]. By using the state-space model
of the PMSM, model-based estimator is designed. The estimator is subjected to
parameter detuning and noise. Therefore, extended Kalman �lter [33] is used as
the basis of the most common observer-based scheme for rotor speed and position
estimation over the entire speed range. In addition, it is applicable to both salient
and non-salient PMSM.

The back-EMF method is preferred in applications where production cost is very
important and low speed operation is not required. The back-EMF is induced if
there is the relative motion between permanent magnets and the windings, making
this method not applicable under zero and low speed conditions. Consequently, a
starting method is required to accelerate the motor. Several methods for PMSM
starting can be found in literature. Methods based on V-f control are presented
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in [34] - [35]; methods based on high-frequency signal injection [36] - [37]. Finally, I-
Hz starting methods with transition to sensorless �eld-oriented control are proposed
in [38]. In the latter mentioned methods, the current vector is controlled with a
constant value toghether with the imposed a frequency pro�le.

In this thesis the back-electromotive force method is used to estimate the rotor
position and speed. The idea was to get these informations using a State Observer
scheme, but as it will be explained later, no current observer is implemented as the
thesis goal is achieved using the third back-EMF harmonic estimator. However,
according with the previous considerations, this method fails with the motor at
standstill and at low speed. The consequence is the implementation of a hybrid
sensorless control. This consists of an I-Hz starting method for smooth and fast
transition to sensorless �eld-oriented control. Using the PLL, the rotor position for
the sensorless FOC scheme is computed. The speci�c distribution of back-EMF
and proportional resonant controllers employed in (x, y) subplanes are code-saving
solution for many possible scheme presented in Fig. 5.1.
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5.2 � Back-EMF-Based Method

5.2 Back-EMF -Based Method

In this thesis the rotor position is obtained using back-EMF method. According
to the Faraday's law (e = dλ/dt), the rotor movement of rotor magnets induces
an alternating back-EMF in the armature windings. The istantaneous magnitude
of back-EMF depends on the d -axis position. Concerning the back-EMF, they are
extracted from the phase voltages when the machine is operating.

Closed loop observers predict the variables and/or parameters of a system by
utilizing the system model, and employ the general feedback theory to the esti-
mated variables by reducing the error between the actual measured output and the
estimated output. An observer in VSD variables is considered. The typical sen-
sorless control scheme of multiphase PMSM is shown in Fig. 5.2, where ˆ means
obsererved value.

To highlight how the algorithm complexity is reduced, the PMSM observer the-
ory is brie�y shown below. It should be noted that the consequence of a speci�c
back-EMF distribution and employed proportional resonant controller in third sub-
plane consists of the possibility to estimate the rotor position and speed without
observer.

In Fig. 5.3 a schematic view of observer is shown [39]: the input of the system and
the output error are used to compute the estimated states. The observer includes a
dynamic model of the system and a state adjustment scheme. The parameters are
selected and they are observed and, �nally, a e�ective state adjustment scheme is
shown. A major criterion for the evaluation of observer performance is the dynamic
convergence of the estimated states to the actual states.

In this work, the system (also known as model reference) represents the sur-
face PMSM in order to estimate the back-EMF. The system model, also known as

Figure 5.2: Sensorless control system of surface PMSM.
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Figure 5.3: A schematic view of a closed-loop observer.

adaptive system, is composed by the PMSM model in VSD variables to estimate
the stator currents. These are compered with their measurement values, gener-
ating a regulation errors. Finally, the adjustment component is composed by the
controller/s. Usually, proportional integral controllers are used to modi�y observer
operation and this block is also known as corrective regulator. The observer gains
are de�ned by making the dynamics of the observer much faster than the frequency
of the disturbance.

The model of surface PMSM is non-linear and the system is assumed to satisfy:
d[x(t)]

dt
= [A[x(t)]] + [B[u(t)]]

[y(t)] = [C[x(t)]] + [D[u(t)]]

(5.1)

where:
-[x(t)] is the vector of plant's state,
-[u(t)] are the input vector,
-[y(t)] is the measured output vector of the system and
-[A], [B], [C] and [D] are the matrices.
Note that the vectors of a state observer are commonly denoted by ˆ to distin-

guish them from the variables of the equations satis�ed by the physical system. For
this reason, the Eq. (5.1) for estimated variables can be written as:

d[x̂(t)]

dt
= [A[x̂(t)]] + [B[u(t)]

[ŷ(t)] = [C[x̂(t)]] + [D[u(t)]]

(5.2)

If this system is observable then the output of the system, [y(t)], can be used to
steer the state of the state observer. The observer model of the physical system is
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derived from the above equations. Additional terms are included to ensure that, on
receiving successive measured values of the plant's inputs and outputs, the model's
state converges to that of the plant. In particular, the output of the observer may be
subtracted from the output of the plant and then multiplied by a matrix Kobs; this
is then added to the equations for the state of the observer to produce a so-called
Luenberger observer, de�ned by the Eq. (5.3).

d[x̂(t)]

dt
= [A[x̂(t)]] + [B[u(t)]] +Kobs([y(t)]− [ŷ(t)]) (5.3)

In surface PMSM the plant's state, input and mesured output vectors are:

[x(t)] = [ix3(t), iy3(t), ex3(t), ey3(t)] (5.4)

[y(t)] = [ix3(t), iy3(t)] (5.5)

[u(t)] = [vx3(t), vy3(t)] (5.6)

Using the machine stator voltage equation in the third subplane:

vxy3 = R̃s · ixy3 + L̃ls ·
ixy3
dt

+ ePM,xy3 (5.7)

and assuming that derivative of disturbances is equal zero, the observer equations
can be written as:

d̂ix3
dt

=
vx3

L̃ls

− R̃s

L̃ls

· îx3 −
1

L̃ls

· êx3 +Kobs · (ix3 − îx3)

d̂iy3
dt

=
vy3

L̃ls

− R̃s

L̃ls

· îy3 −
1

L̃ls

· êy3 +Kobs · (iy3 − îy3)

dêx3
dt

= Kobs · (ix3 − îx3)

dêy3
dt

= Kobs · (iy3 − îy3)

(5.8)

where:
-Kobs is the observer gains. In case of the observer gain correspnds to PI regu-

lator, the current observer shown in Fig. 5.4 is obtained,
-[ixy3, îxy3]

T are the measured and estimated current in third subplane and
-[exy3, êxy3]

T are the measured and estimated back-EMF in third subplane.
Since in the third subplane a PRES is employed, the third harmonic of the

currentis eliminated. Therefore, the integral output in the system model (adaptive
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Figure 5.4: Observer current in third subplane.

system, blue block) is a constant value. In other words, the integral input is zero
because the estimated back-EMF is equal to the voltage reference. This means that,
in steady state the PI input error is constant (the measurement current is equal to
zero) and just integral component is actived. The output of integral component in
corrective regulator (pink block) is �ltered by high-frequency disruption. As the
reference voltage in the control is equal to the back-EMF, the corrective regulator
is not employed in this work.

Following from stated, the electrical rotor position is obtained by the reconstruc-
tion of command phase voltages, corresponding to a value three times higher than
d -axis position. The obtained angle is computed as:

3 · θ̂ = arctan

(
sin(3 · θ̂)

cos(3 · θ̂)

)
= arctan

(
− êx3
êy3

)
(5.9)

About the trigonometric functions related to estimated angle:

sin(3 · θ̂) =
êx3√

ê2x3 + ê2y3

(5.10)

cos(3 · θ̂) =
−êy3√
ê2x3 + ê2y3

(5.11)

The use of the command voltages instead of the measured ones is a straightfor-
ward approach that improves the robustness of the system. However, it introduces
an error due to the inverter nonlinear drops, which should be properly compen-
sated, especially at low speed. In detail, the command phase valtages in vector
space variables can be written as:

v∗xy3 ' ePM,xy3 + ∆V xy3 (5.12)

The inverter non linear drops in VSD variables are modelled as:

∆V xy3 = vdt,xy3 + von,xy3 (5.13)
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where:

vdt,xy3 =
4

9
· Vdc ·

tdt
Tsw
· sgn(ixy3) (5.14)

von,xy3 = Vth · sgn(ixy3) +RON · ixy3 (5.15)

where:
-vdt,xy3 is the voltage error given by inverter dead time,
-von,xy3 is the voltage error given by ON-state voltage drop of the power switches,
-Vth is threshold voltage,
-Vdc is the dc-link voltage,
-Ron is ON-state resistance of the model for the insulated-gate bipolar transistor

(IGBT )/diode,
-ixy3 is the current in third subplane,
-tdt is the IGBT turn-on dead time and
-Tsw is the PWM switching period.
In this work, the inverter compensation in third subplane is not employed because

the inverter nonlinear drops depend on the current ixy3, which is controlled to zero
using PRES controller.

The arc-tangent algorithm, presented in Eq. (5.9), is di�cult to implement in
digital controllers because the reference phase voltages are characterised by distur-
bances. For this reason, the rotor position and speed information are computed by
the means of PLL and angle demodulation block or harmonic PLL.

5.2.1 Position Estimation using Phase-Locked Loop

The phase-locked loop [40] is a computational method that avoids derivative
operation. The input of it is the mechanical angle, which can be estimated or
measured, as shown in Fig. 5.5. The alternative to PLL is derivative method.

The derivative operation produces many disturbances and the consequence is the
low-pass �lter implementation, which introduces a delay. The delay is incompatible
with high driver dynamic. For this reason, the speed is estimated with PLL. This
generates an output signal whose phase is related to the one of the input signal.
The PLL is composed by a proportional-integrator controller, whose input is the
sine function of the error (green block in Fig. 5.5), which is a continuous function.
Instead, the discontinuous functions, such as the normalised angle, may introduce
unjusti�ed control errors. The output of the PI regulator corresponds to a speed
variable. Therefore, a further integration (blue blok in Fig. 5.5) is performed to
get the feedback angle. Note that the feedback is based on the estimated value,
indeed on measurement value. On the basis of PLL theory [41], the block diagram
of rotor position estimation can be drawn, as shown in Fig. 5.5. The speed should be
observed at the output of PI controller (pink blocks). Since the integral component
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Figure 5.5: Block diagram of rotor position and speed estimations based on PLL.

is already �ltered, this value is usually employed as feedback of the speed loop
regulation. Note that, the PLL input and output are related to (3·θ) because they
are obtained on the basis of third back-EMF harmonic.

The PLL input error, with assumption that it is small enough, can be approxi-
mated as follows:

εθ = sin(3θ̂− θPLL) ' sin(3θ̂) · cos(θPLL)− cos(3θ̂) · sin(θPLL) (5.16)

The modi�cated PLL schematic is shown in Fig. 5.6, where Angle Demodulation
(grey block) is shown. In Fig.5.7 the corresponding zoom of this block is shown.
Following from stated, the PLL output angle θPLL is denormalizated to obtain a
continuous function and so divided by three to obtain the electrical rotor position.

Figure 5.6: Block diagram of PLL using trigonometric functions.

Figure 5.7: Block diagram of angle demodulation.
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According to Fig. 5.5, the design of the PI gains is based on the open-loop
transfer function, which is written as:

HPLL,OL(s) =

(
kP,PLL +

kI,PLL

s

)
· 1

s
(5.17)

In Fig. 5.8 the asymptotic Bode magnitude plot of the open-loop transfer func-
tion PLL is shown. By performing the computation of both magnitude and phase
belonging to the open-loop transfer function, the following results are obtained:

|HPLL,OL(ω)| = kI,PLL

ω2
·

√
1 +

(
ω · kP,PLL

kI,PLL

)2

∠HPLL,OL(ω) = arctan

(
ω · kP,PLL

kI,PLL

)
− π

2
− π

2

(5.18)

By computing Eq. (5.18) at the crossover frequency, corresponding to unitary
magnitude (0 dB) of the open-loop transfer function, the following equation system
is obtained: 

kI,PLL

ω2
cr,PLL

·

√
1 +

(
ωcr,PLL · kP,PLL

kI,PLL

)2

= 1

φpm,PLL =

(
arctan

(
ωcr,PLL · kP,PLL

kI,PLL

)
− π

)
+ π

(5.19)

where φpm,PLL is the PLL phase-margin. This parameter in�uences the PLL
dynamics and depends on the input signal accuracy. If the input angle is not accu-
rately discretized, the PLL phase-margin must take higher values, but this means

Figure 5.8: Asymptotic Bode plot of the PLL open-loop transfer function magnitude.
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slow dynamics. Once the phase-margin is imposed, it is possible to write as follows:

ωcr,PLL ·
kP,PLL

kI,PLL

= tan(φpm,PLL) (5.20)

By replacing the Eq. (5.20) in Eq. (5.19), the PI gains are computed as:
kP,PLL =

ω2
cr,PLL · tan(φpm,PLL)√

1 + tan2(φpm,PLL)

kI,PLL =
ω2

cr,PLL√
1 + tan2(φpm,PLL)

(5.21)

Note that the degree of freddom are both crossover frequency and phase-margin.
The design of PI gains is performed on the basis of selected crossover frequency and
phase-margin and Eq. (5.20) must be veri�ed. The crossover frequency is positioned
near the bandwidth of the PLL. The bandwidth is approximately equal to PLL
proportional parameter. To ensure control loop stability, the following equations
must be veri�ed:

kI,PLL

kP,PLL

<
kP,PLL

4
⇐⇒ φpm,PLL >

π

4
(5.22)

Finally, the design of PI gains is:

kP,PLL =
ω2

cr,PLL · tan(φpm,PLL)√
1 + tan2(φpm,PLL)

kI,PLL =
ω2

cr,PLL√
1 + tan2(φpm,PLL)

φpm,PLL >
π

4

(5.23)

The PLL setting parameters are presented in Table 5.1. These values allow
su�cient margin of error and robustness.
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Table 5.1: Phase-Locked Loop parameters.

PLL tuning
Parameter Value [Units]
φpm,PLL 60 [deg]
ωcr,PLL 188.5 [rad/s]
kP,PLL 163.3[1/s]
kI,PLL 17765 [1/s2]

The e�ctiveness of the employed PLL and corresponding angle demodulation is
shown in Figs. 5.9 - 5.14. The simulation are performed in Simulink environment
under FOC without load torque. The real machine data are considered and the
parameters are consistent with the ones de�ned in previous chapters.

In Fig. 5.9 the speed sequence is shown. Initially, the speed reference is zero. At
0.1 s the speed reference is increased up to 1500 rpm with ramp function. The ramp
function is used to design the PI gains and to evaluate the e�ectiviness of the PLL.
The entire sequence takes 3.5 s. In this �gure, when a ramp speed is applied the fast
response of the machine in terms of mechanical speed is shown. Therefore, focusing
the attention on PLL output, note that it follows the measured value demostrating
the e�ectiveness of the employed PLL. This consideration is veri�ed when the motor
is accelerated. In other words, the employed PLL is su�ciently accurate when the
estimated back-EMF are accurately evaluated. On the other side, the PLL output
does not follow the measured value at low speed. If the speed estimation is obtained
as output of PLL integral, without considering the PLL proportional contribution,
an already �ltered value is obtained. The time trend of No Filtered speed is obtained
as sum of PLL proportional and integral contributes. This consideration highlight
one of PLL advantages than derivative method, as shown in Fig. 5.10.
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Figure 5.9: PLL e�ectiveness: speed response.

Figure 5.10: PLL e�ectiveness: speed �ltered and no �ltered responses.
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In Figs. 5.11 and 5.12 a zoom areas of the trigonometric functions at low and
high speed, respectively, are shown. The computed functions, calculated using the
measured values, are compared with the ones estimated and PLL output. However,
the employed PLL is su�ciently accurate when the back-EMF can be accurately
estimated. The e�ectiveness of PLL fails with the motor at standstill and for low
speed because its input is not accurate. Conversely, as shown in Fig. 5.12, at high
speed estimated trigonometric functions follow the computed values.

Figure 5.11: PLL e�ectiveness: trigonometric funcions at low speed. From top to
bottom: sine; cosine.
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Figure 5.12: PLL e�ectiveness: trigonometric funcions at high speed. From top to
bottom: sine; cosine.
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In Figs. 5.13 and 5.14 zoom areas of measured, demodulated angle and PLL
output at low and high speed, respectively, are shown. The time trends of PLL
output is three times faster than the measured value, as it is clearly visible in the
mentioned �gures (top), related to PLL input. In bottom of Figs. 5.13 and 5.14 the
demodulated angle at low and high speed are shown. The demodulated angle follows
the measured value at medium-high speed. This con�rms the good performance of
PLL and employed demodulation method at medium-high speed.

Figure 5.13: PLL e�ectiveness: rotor position at low speed. From top to bottom:
PLL output; demodulation output.
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Figure 5.14: PLL e�ectiveness: rotor position at high speed. From top to bottom:
PLL output; demodulation output.
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5.2.2 Position Estimation using Harmonic Phase-Locked Loop

To avoid the block diagram of the angle demodulation, shown in Fig. 5.7, the har-
monic phase-locked loop can be employed. The output of harmonic PLL corresponds
to the estimated rotor position due to the gain h added in feedback, as shown in
Fig. 5.15. Concerning the design of the proportional and integral gains, by using
the same approch described in previous section, it possible to conclude that a new
values are computed as: 

kP,PLLh =
kP,PLL

h

kI,PLLh =
kI,PLL

h

(5.24)

Regardless the harmonic angle, the presented block diagram is able to obtain
the estimated rotor position. This means that the rotor position can be estimated
for each harmonic order in straighforward way. It is just necessary to set harmonic
PLL inputs properly.

The e�ectiveness of harmonic PLL is shown in Figs. 5.16 and 5.17. By using
the estimated back-EMF in (x,y)2 subplane, the trigonometric functions in input to
harmonic PLL are obtined. This input is related to the �fth and thirteenth back-
EMF harmonic. Consider just PRES output to eliminate the �fth harmonic, in Fig.
5.16 a zoom areas of the trigonometric functions are cleary faster than the measured
rotor position due to the harmonic PLL inputs related to the mentioned harmonic.

Figure 5.15: Block diagram of harmonic PLL.
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Figure 5.16: Harmonic PLL e�ectiveness: trigonometric funtions at high speed.
From top to bottom: sine; cosine.
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Figure 5.17: Harmonic PLL e�ectiveness: estimated rotor position.
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5.3 An I-Hz Starting Method

The sensorless control based on back-EMF estimation method fails with the
motor at standstill and at low speed. The well-known disadvantage is the lack of
information at low speed and standstill, which requires the use of speci�c starting
procedures and usually restricts the application to medium-high speed operations.
At low speed the back-EMF amplitude is not su�cently high. Therefore it can not
be used to estimate the rotor position and speed informations, as con�rmed in Figs.
5.9 - 5.14. For this reason, a starting method is necessary to accelerate the motor
to a target speed that allows the back-EMF to be estimated accurately.

In this thesis, an I-Hz starting method for smooth and fast transition to sen-
sorless �eld-oriented control is implemented. This control have a good performance
and robustness and it is highly recommended for PM machines. Compered to the
V/f starting method, it prevents the PM demagnetization because the stator cur-
rents are controlled. In I-Hz control the current is controlled in arbitrary reference
frame: the current vector is controlled with a constant value and a frequency pro�le
is imposed. It is important to note that the arbitrary reference frame is di�erent
from the rotor one. To explain the idea, consider Fig. 5.18. The rotor reference
frame (d,q) (physical RF ) is used in the �eld-oriented control: the speed of reference
frame is equal to rotor electrical speed and the angle between this reference frame
and stationary reference frame (α,β) is equal to the rotor electrical position. Unlike,
the arbitrary reference frame (d*,q* ) is not in phase with rotor reference frame and
it is rotating at arbitrary speed ω∗.

In I-Hz control the speed is not controlled in closed-loop, as shown in Fig. 5.19.
The angular reference frame of rotating magnetic �eld is imposed with smooth ramp

Figure 5.18: Relationship among stationary, rotor and arbitrary RF s.
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Figure 5.19: Block diagram of I-Hz starting method.

to a desired speed (yellow block). The desired speed is the value to which the back-
EMF can be evaluated accurately. In Section 5.2.1 it is also possible to see how
at speed exceding 300 rpm the rotor position and speed estimations are acceptable.
This value represents the desired speed which will be achieved under I-Hz control.

With refernce to Fig. 5.19, the current is controlled in closed-loop with two
proportional-integral controllers (blue blocks), presented in Chapter 6.25, Section
3.2 and Subsection 3.3.The result is a rotating vector with imposed frequency. The
PI regulators are employed to control the current in (d*,q* ) reference frame. The
current references are used to produce a rotating vector which amplitude depends
on rated motor current, as shown in Eq. (5.25) where Is,RMS stands for the rated
stator current: {

i∗d∗ =
√

2 · Is,RMS = Is,pk

i∗q∗ = 0
(5.25)

Furthermore, the vector proportional-integral or proportional resonant regulators
are employed to eliminate the low-order harmonics in (x,y) subplanes, as described
in Chapter 6.26, Section 4.3.

The performance of nine-phase surface PMSM with non-sinusoidal back-EMF
under I-Hz control has been evaluated in Matlab/Simulink environment. The pa-
rameters of machine model used in simulation are given in Chapter 6.25, Section
6.22, Table 3.1 and in Chapter 6.26, Section 4.2.1, Table 4.1. A friction contribution
is included in machine model to consider the dissipation in real system. All mechani-
cal and electrical parameters used in simulation have been experimentally evaluated,
as explain in Chapter 6.32. The inputs in Simulink model are the mechanical speed
reference, the stator current in arbitrary reference frame and the load torque.
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The testing sequence of the real machine is presented:

� Initially, the stator current is zero. At 0.05 s the step current change from 0 up
to 1.5 A (Fig. 5.22). The amplitude of current references is set in accordance
with Eq. (5.25).

� Initially, the speed is zero. At 0.2 s the speed ramp is applied and it is
saturated to 300 rpm and for speed exceding this value the sensorless FOC
will be started.

� The simulation is performed without additional load torque and the entire
sequence takes 2 s.

In Fig. 5.20 when a ramp speed is applied the response of electrical machine
in terms of mechanical speed is shown. The measured speed is characterised by
oscillations. The reason of the these is evident: the speed is not controlled in
closed-loop and just the reference speed in open-loop is present under I-Hz control.
Furthermore, the PLL output (integral component) does not follow the measured
value at low speed. The simulation ends with damped oscillations. At 300 rpm, when
these oscillations are enough damped, the rotor reference frame is synchronous to
arbitrary one. This does not mean that the two reference frame are in phase.

In Fig. 5.21 the electromagnetic torque is shown: the produced torque is not
null. The torque depends on the control algorithm for speed transients and friction
contribution when the machine is spinning. The double contributions in friction

Figure 5.20: Open-loop I-Hz : speed response.
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Figure 5.21: Open-loop I-Hz : torque response.

torque is evident: a static torque, which depends on the speed sign (o�set), and a
linear torque, which depends on the rotor speed, presents the oscillations related to
the speed. The computed electromagnetic torque is obtained by the product between
the q-axis current in synchronous reference frame and the constant coe�cient k1,
given in Chapter 6.25.

In Figs. 5.22 and 5.23 the stator currents are shown in arbitrary (d∗, q∗) and
rotor (d, q) reference frames. Thanks to the proportional-integral regulators the
currents converge to the reference signals during the I-Hz control. Comparison of
Fig. 5.21 and Fig. 5.23 shows that quadrature axis current iq has the same waveform
of electromagnetic torque, as well know by the theory presented in Chapter 6.24.
Note that the current in (d,q) rotor reference frame are evaluated on the basis of
the estimated rotor position as shown below, despite the PLL is not accurate.

In Figs. 5.25 and 5.24 the zoom areas of angle are shown. In the top of mentioned
�gures the obtained angle with PLL at low speed and at 300 rpm, respectively, are
shown. In bottom of these is shown the angle under the same speed conditions,
but the angle is demodulated: by applying some mathematical manipulations on
the PLL angle, the rotor position of the machine is obtained. The PLL output
and, consequentely, the demodulated angle in not accurate at low speed, making
this plots not relevant. This is just the con�rmation that at medium speed the PLL
output follows the measured rotor position. However, the shift between the arbitrary
reference frame, which rotates at reference speed, and rotor reference frame, which
rotates at estimated speed, can be noted in these �gures. The angle between rotor
reference frame and arbitrary reference frame is not constant during the simulation:
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the two reference frames initially are not synchronous and not in phase, unlike when
the speed oscillations are damped the reference frames are synchronous.

Figure 5.22: Measured current along d -axis in estimated rotor and arbitrary RF s.

Figure 5.23: Measured current along q-axis in estimated rotor and arbitrary RF s.
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5.3 � An I-Hz Starting Method

Figure 5.24: Reference, measured and estimated angle in I-Hz control at low speed.
From top to bottom: PLL output; demodulated.

125



5 � Sensorless Control of a Nine-Phase Surface PMSM with Non-Sinusoidal Back-EMF

Figure 5.25: Reference, measured and estimated angle in I-Hz control at high speed.
From top to bottom: PLL output; demodulated.

To conclude, during I-Hz starting method the estimated speed and angle are
not accurately evaluated: the estimated angle is not used in control algorithm,
but the PLL is operating. The input angle to rotational transformation during
starting method is the reference angle obtained from speed reference integration.
The estimated angle is used in sensorless FOC after the switch from I-Hz control
to sensorless FOC, as shown in following sections.
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5.4 Smooth and Fast Transition to Sensorless FOC

A concern about back-EMF method is the transition between open-loop fre-
quency control at low speed and sensorless control at medium-high speed. Several
method can be found in the literature: in [42] a �rst-order lag compensator is em-
ployed to ensure a transition to FOC ; in [43] a transient control is employed with
electromagnetic torque approximately constant; in [38] the reduction of quadrature
reference current in ramp to minimize the orientation error during the transition is
employed; in [44] a frequency-dependent gain is used to provide a smooth transition
and the convergence depend on the compensator design.

In this thesis, the I-Hz starting method for smooth and fast transition to sen-
sorless FOC is proposed. By initialzing the sensorless FOC references to measured
values evaluated in estimated reference frame, the transition between open-loop fre-
quency and sensorless control is performed. In other words, supposing that the rotor
position is correctly estimated during the starting method and in particular when
the speed reaches the desired value (300 rpm), the measured stator currents can be
evaluated in both arbitrary and estimated reference frames. The measured stator
currents are evaluated in estimated rotor reference frame because these values rep-
resent the initializing of reference currents in sensorless FOC. At switch instant the
reference current values in rotor reference frame are set equal to measured current
components evaluented in arbitrary reference frame. After that, the reference cur-
rents in sensorless FOC reach the desired references according to a current ramp.
As already noted, in surface PMSM the reference current under FOC along d -axis is
equal to zero and the reference current along q-axis is related to speed loop output,
as shown in Chapter 6.25, Section 3.2.

The switch takes some conditions, as shown in Fig. 5.26:

� The estimated electrical speed reaches the desired value under I-Hz control.

Figure 5.26: Switch conditions from I-Hz control to sensorless FOC.
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� The oscillations between the estimated speed and its reference value are su�-
ciently damped. This condition is veri�ed when the mean ω̄ is higher than an
imposed thershold ωth. The mean is computed on the absolute value of the
di�erence between the estimated electrical speed and its reference value.

The performance of the transition has been evaluated in Matlab/Simulink en-
vironment. The electrical parameters of surface PMSM are consistent with the
ones de�ned in previous chapter. In addition, the control scheme has been fully
discretized using both Eulero and Tustin integration method. However, to use the
PLL output in speed loop regulation, it has been necessary to introduce a low-pass
�lter for estimated speed.

The simulation results presented below will include the switch instant and the
transition stage. The time transition is the necessary interval so that the reference
currents and speed reach the desired values under sensorless FOC. The switch and
transition are detailed in Fig. 5.27 - 5.30.

In Figs. 5.27 and 5.28 it is possible to note that at switch instant initial conditions
and target values under FOC along d -axis and q-axis are di�erent. The consequence
is evident: the time necessary to achive the desired reference values in sensorless
FOC, called Transition (Trans.), is not the same. This interval depends on the
slope ramp of the current and its measured value at switch instant. The current
ramp must ensure a smooth transition between I-Hz and sensorless control. Finally,
in Fig. 5.30 the transition interval is the time necessary to achive the reference value
(300 rpm) under sensorless FOC.

In top of Figs. 5.27 and 5.28 the reference and measured response of the current
along d -axis and q-axis, respectively, are shown. The measured currents are evalu-
ated in both reference frame, as mentioned above. In Figs. 5.27 (bottom) and 5.28
(bottom) the PI initializations of current loop regulations under sensorless FOC are
highlighted. At switch instant the reference currents take instantly the measured
values evaluated in estimated rotor reference frame (d,q). After that, in accordance
with current ramp, the target value along d -axis (i∗d =0) is reached. Conversely,
the reference current along q-axis under second control depend on reference torque,
which represents the speed control output, as shown in Eq. (5.26). All symbols are
consistent with the ones de�ned in previous chapters.

i∗q = T ∗em · k̃1, k̃1 =
2

9
· 1

P · λ̃PM

(5.26)

128



5.4 � Smooth and Fast Transition to Sensorless FOC

Figure 5.27: Measured current along estimated d -axis in transition to sensorless
FOC. From top to bottom: the time trend; corresponding zoom.
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Figure 5.28: Measured current along estimated q-axis in transition to sensorless
FOC. From top to bottom: the time trend; corresponding zoom.
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In Fig. 5.29 the phase currents in a1, a2 and a3 windings, which are shifted for
2α/9, are shown. It is possible to note the e�ectiveness of the vector proportional
integral or proportional resonant controllers employed in (x,y) subplanes to eliminate
the other harmonics contributions. The current waveforms are perfectly sinusoidal
and under I-Hz control their amplitude is equal to the reference current along d∗-
axis (i.e. 1.5 A), while after the switch instant the amplitude of the phase currents
depend on the speed loop output.

In Fig. 5.30 the reference, measured speed response and PLL output are shown.
Note that the PLL output follows the actual value at speed exceding 200 rpm, thus
demostrating the e�ectiveness of the PLL for medium-high speed. In particular, the
small temporary speed drop (about 100 rpm) due to the switch operation can be
also seen.

To conclude, the employed switch strategy allows at avoiding undesired transients
during the transition, as con�rmed in Figs. 5.27 - 5.30.

Figure 5.29: Transition to sensorless FOC : phase currents.
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Figure 5.30: Transition to sensorless FOC : speed response.
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5.5 The Hybrid Sensorless Control: Simulation Re-

sults

The hybrid sensorless speed control block diagram for nine-phase surface PMSM
with non-sinusoidal back-EMF is shown in Fig. 5.31, where the˜andˆsymbosl stand
for estimated parameters and variables, respectively. In mentioned �gure just control
algorithm is shown. It consists of two sequence steps: the �rst step is I-Hz starting
method and the second step is sensorless FOC. The latter control is based on third
back-EMF harmonic in order to obtain the rotor position and speed informations
with PLL, as shown in Section 5.2.1. The switches between the �rst and the second
control are automatically activated when the switch conditions, shown in Section
5.4, are veri�ed. During the starting method all switches are connected to terminal
1, while at time exceeding switch instant all switches are connected to terminal 2.

Simulation results under hybrid control, evaluated in Matlab/Simulink environ-
ment, are shown. The simulations are implemented to evaluate the robustness of the
employed hybrid control under no-load and load conditions. In simulations is not
necessary to measure rotor speed and rotor position, but to verify the correctness
of the estimated electrical speed and angle these signals are also measured. The
estimeted speed is used to close the external speed loop and the estimated angle is
rotational transformation input.

The testing sequence in simulation under no-load conditions of real machine is
presented in Fig. 5.32 - 5.37. The entire sequence takes 10 s.

� Initially, the speed reference is zero. At 0.2 s the speed reference is increased

Figure 5.31: Block diagram of hybrid sensorless FOC for nine-phase surface PMSM.
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up to 300 rpm with ramp function. The speed is not controlled in closed-loop
under I-Hz control and all switches are connected to terminal 1. At switch
instant all switches are connected to terminal 2: the speed is controlled in
closed-loop because the speed loop is activated. At time exceeding the auto-
matically switch and the transition interval, the speed is increased. Therefore,
when the system is operated in sensorless �eled-oriented control the ramp
command is employed: at 4.5 s the speed value varies from 300 rpm to 1500
rpm.

� Initially, the rotationl transformation input is the reference angle under I-
Hz control, obtained as result of speed reference integral. The opeen-loop
frequency control is �led at switch instant. In the second control the PLL
output represents rotational transformation input.

� Initially, the stator current is zero. At 0.05 s its value is increased up to 1.5 A
(yellow block in Fig. 5.31). The current components in (d∗, q∗) reference frame
are controlled with PI regulators. At switch instant all switches are connected
to terminal 2 and the new references (orange blocks) are shown in Fig. 5.31.
The reference currents change in accordance to the current ramp and the
desidered quantities under sensorless FOC are achived: the references along
d -axis and q-axis depend on the principle control and reference electromagnetic
torque in surface PMSM, respectively.

� The simulation is performed without load torque. The friction and inertia
contributions are added to consider the dissipation in real system, obtained
according to the Test rig Characterization, presented in Chapter 6.32, Section
6.2.4.

In Fig. 5.32 (top), when a ramp speed is applied under I-Hz control, at low
speed the PLL output is not alligned with measured value. For this reason, this
quantity is not an input of the speed loop, but the speed is imposed in open-loop,
as shown in Section 5.3. At about 3 s, when the switch conditions are veri�ed,
the speed loop regulation is activated and in transition interval the small temporary
speed drop is shown. Therefore, in sensorless FOC the PLL output follows measured
value precisely. The measured and estimated value in sensorless FOC do not follow
perfectly the reference for speed transients.

In Fig. 5.32 (bottom) the electromagnetic torque is shown. In the �rst control
the reference electromagnetic torque is zero because the speed loop is not actived. It
should be noted once again that the reference electromagnetic torque is speed loop
output. The other way around, its measured value is characterised by oscillations
due to the speed open-loop, as con�rmed by speed oscillations. The electromagnetic
torque, when the motor is spinning, is related to the load torque, friction contribution
and inertia in speed transients.
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Figure 5.32: Hybrid control under no-load conditions. From top to bottom: speed
response; torque response.
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In Fig. 5.33 (top) the angle error in hybrid control is shown. The error is
computed as di�erence between the measured angle and its estimated value. It shall
be possible to observe that the angle error under I-Hz control is about 7 - 8 ◦ , which
becomes about 1.5 ◦ under sensorless control at medium-high speed. This value is
in line with the typical error in sensorless control.

In Fig. 5.33 (bottom) the zoom area of the rotor position is shown during
the transition interval. The PLL output is three times faster than measured rotor
position relatad to the PLL input. Using the demodulation block diagram (Fig. 5.7),
demodulated angle follows the measured signals, demonstrating the e�ectiveness of
PLL and the demodulation algorithm.

As mentioned above, the PLL input is the estimated back-EMF in third sub-
plane, which corresponds to the reference command voltage, using the relation
v∗xy3 ' êxy3 (Section 5.2). The vectors amplitude êxy3 and exy3 are shown in top
of Fig. 5.34. The amplitude of the computed vector in third subplane exy3 is ob-
tained on the basis of the measured rotor speed and position, using the model shown
in Chapter 6.26, Section 4.2.2. The other way around, the PLL input êxy3 represents
the amplitude of the command control vector in third subplane. It is noted that
the time trend of the amplitude is proportional to the machine speed (Fig. 5.32
(top)). The reason is evident: the back-EMF force depends on the rotor motion, as
mentioned above.

In Fig. 5.34 (bottom) the phase error is computed as di�erence between the phase
of both vectors êxy3 and exy3. It is noted that except for the starting operation, in
which the phase angle error is not relevant, after the switch instant (about 3 s) the
phase error is acceptable being lower than 5 electrical degrees (typical acceptable
threshold in sensorless control).
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Figure 5.33: Hybrid control under no-load conditions. From top to bottom: angle
error; zoom area of the angle.
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Figure 5.34: Hybrid control under no-load conditions. From top to bottom: vector
exy3 magnitude; phase error.
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5.5 � The Hybrid Sensorless Control: Simulation Results

In Fig. 5.35 the �ux and torque producing currents are shown. During the I-Hz
control the waveforms are the time trends of the measured currents evaluated in
estimated rotor reference frame (d, q). As well-know, in sensorless FOC the �ux
producing id is equal to zero, while the torque producing iq follows the electromag-
netic torque. The latter consideration is con�rmed by comparison between Fig. 5.32
(bottom) and Fig. 5.35 (bottom).

Finally, to demonstrate the e�ectiveness of the VPI during the hybrid control
at any speed and control type, in Fig. 5.36, the phase current in phase variable
domain are also shown. The sinusoidal waveform of the phase current is highlighted
in Fig. 5.36 (bottom). With reference to Fig. 5.37 (bottom), it is noted how the
phase voltage references are characterized by strong distortion. Indeed, these must
compensate the harmonic distribution of the back-EMF and the phase voltage error
introduced by the voltage supply inverter.
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5 � Sensorless Control of a Nine-Phase Surface PMSM with Non-Sinusoidal Back-EMF

Figure 5.35: Measured currents in estimated rotor RF. From top to bottom: d -axis;
q-axis.
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5.5 � The Hybrid Sensorless Control: Simulation Results

Figure 5.36: Hybrid control under no-load conditions. From top to bottom: phase
current responses; corresponding zoom area.
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Figure 5.37: Hybrid control under no-load conditions. From top to bottom: phase
voltage refrences; corresponding zoom area.
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5.5 � The Hybrid Sensorless Control: Simulation Results

In addition to already explained simulation another test with load torque is
performed. The load torque can be set, as shown in testing sequence in Fig. 5.38
(bottom). All the others inputs are consistent with the ones de�ned in previous
simulation. In this test at 7.5 s a step load torque (about nominal torque) is added,
corresponding to the temporary speed drop (about 150 rpm). It can be noted how
the speed control is perfectly able to recover the speed drop according with the
design of the PI speed loop regulation gains.

To conclude, the implemented hybrid control of the machine in Matlab/Simulink
environment achives desidered dynamic response. This meas that the rotor speed
and position are correctly estimated with employed PLL for medium-high speed.
Indeed, the estimated quantities are perfectly alligned with the measured quantities,
therefore the sensorless control works properly at medium-high speed. At speed
exceeding 300 rpm the control, completely sensorless, is characterised by satisfactory
dynamic. As can be seen from the �gures, the fast response and absence of overshoot
con�rms the e�ectiveness of employed control.
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Figure 5.38: Hybrid control under load conditions. From top to bottom: speed
response; torque response.
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5.5 � The Hybrid Sensorless Control: Simulation Results

Figure 5.39: Measured currents in estimated rotor RF. From top to bottom: d -axis;
q-axis.
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Chapter 6

Experimental Validation

In this chapter the experimental characterization of the machine, test rig param-
eters and the experimental validation of the hybrid control scheme for symmetrical
nine-phase surface PMSM with non-sinusoidal back-EMF is dealt.

Chapter is organised as follows:

� In Section 6.1 the main elements of the test rig are presented.

� In Section 6.2 the tests to obtain the mechanical and electrical data of the
machine are shown.

� In Section 6.3 the experimental validation of the hybrid control scheme is dealt.
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6.1 Test rig

The hybrid control is validated on real nine-phase surface PMSM with highly
non-sinusoidal back-EMF. The experimental validation is obtained using a test rig
composed of the following elements:

� Nine-phase surface PMSM.

� Two voltage supply inverter.

� Digital controller.

To validate the hybrid control, the rotor shaft of the machine under test has
been coupled to a permanent magnet dc machine acting as mechanical active load,
as shown in Figs. 6.1 and 6.2. The mechanical and electrical data of the machine
correspond to the ones provided in Chapter 6.25, Section 6.22, Table. 3.1 obtained
with the tests presented below.

Namely, the machine is supplied by two 2-level six-phase VSI in the same manner
as shown in Fig. 6.1. VSIs are supplied by single voltage dc link created by Sorensen
SGI 600/25, which provides a supply equal to 450 V. The power converter consists
of two custom-made inverters, based on In�neon FS50R12KE3 IGBT modules fed
by the power source. The inverters have hardware-implemented dead time equal to
6 µs. The dc power source, which consists of a programmable voltage source, and
VSIs are shown in Fig. 6.3 and 6.4, respectively.

Figure 6.1: Block diagram of experimental setup.
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6.1 � Test rig

Figure 6.2: The machine under test (left) and the driving machine (right).

Figure 6.3: dc voltage source Sorensen SGI 600/25.

Figure 6.4: Modular power converter.
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Figure 6.5: Tektronix oscilloscope.

Control and measurement are performed by a dSPACE rapid prototyping sys-
tem, while additional measurements are available through Tektronix oscilloscopes
MSO2014 (Fig. 6.5) and isolated current and high voltage di�erential voltage
probes. dSPACE consists of main processor board DS1006 and multiple periph-
eral boards:

� DS5101, digital waveform output board, used for gating signal generation.

� DS2004, analogue to digital converter board, used for current/voltage mea-
surements.

� DS3002, encoder board, used for capturing encoder pulses and �nding position
and speed.

� DS101, digital to analogue converter board, used to provide synchronisation
with oscilloscopes.

All experiments conducted in the thesis are initially tested by simulation in
Simulink environment. Since dSPACE work�ow is capable of using Simulink �les
by means of Simulink Coder, initial Simulink �le is adapted by removing blocks
that simulate hardware physically available in the laboratory and adding dSPACE
speci�c blocks to create an interface to the dSPACE peripheral boards. This enables
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6.1 � Test rig

execution of the developed control on dSPACE processor board DS1006, while all
user inputs are provided by graphic user interphase developed in Control Desk.
The machine model, VSI model, and PWM modulator are removed. Generated
interrupt triggers, the timer task and whole control code is executed. Furthermore,
interrupt is synchronised with PWM signals so that control code is executed exactly
at the beginning and in the middle of the switching period . By doing so, dSPACE
sampling/execution frequency (10 kHz ) is double the switching frequency (5 kHz ).

Last but not least, graphic user interface to the dSPACE platform is created by
Control Desk. This software allows for real time access to the control variables. An
example of the developed graphic user interface is shown in the Fig.6.6. All basic
drive controls can be seen, such as: turn the drive on/o�, set a speed reference, set
a inverter nonlinear compensation, set a slope ramp.

Figure 6.6: Example of the graphic user interface developed in Control Desk.
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6.2 Characterization of the Machine Parameters

The accurate simulation and control of PMSM requires accurate knowledge of the
electrical machine parameters. The machine parameters are obtained with several
experimental tests. The tests carried out are as follows:

� Zero-Sequence Test,

� Single Phase Test,

� Short Circuit Test and Design approach and

� Test rig characterization.

The parameters measurement for multiphase PMSM is performed by means of
mentioned o�ine tests.

Finally, it is recalled that the back-EMF is presented in Chapter 6.25 on the basis
of the recorded data, obtained in no-load condition and open-winding con�guration.

6.2.1 Zero-Sequence Test

The aim of zero-sequence test is to obtain the leakage inductance value, useful
in machine modelling and in machine control. In this test, the machine rotor is
locked while the single set i (i= 1, 2, 3) is supplied with an alternate voltage source:
Spitzenberger Spies PAS2500 linear power ampli�er. The voltage and currents
measurements are performed by Tektronix oscilloscopes.

In zero-sequence equivalent circuit the following considerations shall in particular
be taken into account. Consider that the total �ux is due to the permanen magnet
�ux and the stator currents in the windings, it can be modelled as:

[λabc9] =[[Lss] · [iabc9] + λPM,abc9] =

=[Lls] · [iabc9] + [Mss] · [iabc9] + [λPM,abc9]
(6.1)

where all symbols are consistent with the ones de�ned in previous chapters.
The single set i is supplied and the consequence is evident: the mutual inductance

contribution present in Eq. (6.1) is related to the windings belonging to the same
supplied set i and the time derivative permanent magnet contribution is zero because
it is related to the rotor motion. Consider the �rst set (set 1: a1, b1, c1), the
mentioned equation can be written now as:

[λa1b1c1] = [Lls] · [ia1b1c1] + [Mss,a1b1c1] · [ia1b1c1] + [λPM,a1b1c1] (6.2)
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6.2 � Characterization of the Machine Parameters

Delivering the matrix form in Eq. (6.2), the following equation system is ob-
tained:

λa1 =Lls · ia1 +MI ·
(
ia1 · cos(θa1 − θa1) + ib1 · cos(θa1 − θb1)+

+ ic1 · cos(θa1 − θc1)
)

+ λPM1 · cos(1 · (θ− 0 · α) + θsh1) + ...+

+ λPM13 · cos(13 · (θ− 0 · α) + θsh13)
λb1 =Lls · ib1 +MI ·

(
ia1 · cos(θb1 − θa1) + ib1 · cos(θb1 − θb1)+

+ ic1 · cos(θb1 − θc1)
)

+ λPM1 · cos(1 · (θ− 3 · α) + θsh1) + ...+

+ λPM13 · cos(13 · (θ− 3 · α) + θsh13)
λc1 =Lls · ic1 +MI ·

(
ia1 · cos(θc1 − θa1) + ib1 · cos(θc1 − θb1)+

+ ic1 · cos(θc1 − θc1)
)

+ λPM1 · cos(1 · (θ− 6 · α) + θsh1) + ...+

+ λPM13 · cos(13 · (θ− 6 · α) + θsh13)

(6.3)

By introducing the Clarke transformation related to threee phases, which is
written as:

[C]3x3 =
2

3
·



1 −1

2
−1

2

0

√
3

2
−
√

3

2

1

2

1

2

1

2


(6.4)

To compute the zero-sequence component, the presented matrix is applied to the
�ux in phase variable domain as follows:

[λαβ0] = [C]3x3 · [λa1b1c1] (6.5)

With simple mathematical manipulations, it is possible to note that the zero-
sequence component does not depend on the mutual inductance contributions. Fol-
lowing from stated, consider the zero-sequence component (subscript 0) in �rst set
(subscript 1), the following equation is obtained:

λ01 =
Lls

3
· (ia1 + ib1 + ic1) + λPM3 · cos(3 · θ+ θsh3) + λPM9 · cos(9 · θ+ θsh9) (6.6)

By introducing the electrical equation for zero-sequence component, by replac-
ing the magnetic equation and consider the locked rotor, the following equation is
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6 � Experimental Validation

obtained:

v01 =Rs · i01 +
dλ01
dt

=

=Rs · i01 + Lls ·
di01
dt

(6.7)

In steady-state operations, the �nal zero-sequence equation in stationary arbitary
reference frame is:

V 01 = Rs · I01 + jω · Lls · I01 (6.8)

where the overline symbols stand for phasor.
The Eq. (6.8) con�rms the alternate voltage supply and on the basis of the

mentioned equation, the equivalent circuit under zero-sequence test is given in Fig.
6.7.
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6.2 � Characterization of the Machine Parameters

Figure 6.7: Equivalent circuit of the zero-sequence test.

Consider this equivalent circuit, the zero-sequence voltages and zero-sequence
currents for a generic set i are as follows:

v0i(t) =
vai(t) + vbi(t) + vci(t)

3
= vac(t), i = 1, 2, 3

is0,i(t) =
iai(t) + ibi(t) + ici(t)

3
, i = 1, 2, 3

(6.9)

On the basis of the measured signals, it is considered the single electrical period
Tac. According with the sample frequency of the oscilloscope Fos, this time window
corresponds to N digital consecutive samples computed as follow:

N = Tac · Fos (6.10)
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De�ned digital samples and measured signals, the voltage root mean square VRMS

and current root mean square IRMS are computed as:

V0,RMS =

√√√√ 1

N
·

N∑
k=1

v20(k) (6.11)

I0i,RMS =

√√√√ 1

N
·

N∑
k=1

i20i(k), i = 1, 2, 3 (6.12)

where k stands for a generic sample.

In addition, the active power in one electrical period is computed as:

P0i =
1

N
·

N∑
k=1

(
v0(k) · i0i(k)

)
, i = 1, 2, 3 (6.13)

Therefore, in equivalent circuit of every set i, the apparent power and reactive
power are computed as:

S0i = V0,RMS · I0i,RMS, i = 1, 2, 3 (6.14)

Q0i =
√
S2
0i − P 2

0i, i = 1, 2, 3 (6.15)

Consider the reactive power, the leakage inductance is computed as:

Lls,0i =
Q0i

I20i,RMS

· 1

2 · π · f
, i = 1, 2, 3 (6.16)

where f is the supply frequency corresponding to the reciprocal of the single
electrical period Tac.

According with machine modelling, all individual phase windings are identical
than each other. For this reason, unique value of the leakage inductance is consid-
ered, which is computed as the avarage value between all sets:

Lls =
Lls,01 + Lls,02 + Lls,03

3
(6.17)

The zero-sequence test has been carried out at three di�erent frequencies, as
shown in Table 6.1.
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Table 6.1: Zero-sequence test: leakage inductance.

Leakage inductance values [mH]
f [Hz] Lls,01 Lls,02 Lls,03

25 87.1 88.5 87.6
50 85.5 84.8 82.9
100 83.5 82.4 80.3

Lls,0i 85.4 85.3 83.67
Lls 84.7

6.2.2 Single Phase Test

The aim of single phase test is to obtain the isotropic inductance MI , useful in
machine modelling. In this test, the rotor is locked while the single fase n (n=a1, a2,
..., c3) is supplied with an alternate voltage source: Spitzenberger Spies PAS2500
linear power ampli�er. The voltage and current measurements are performed with
the Tektronix oscilloscopes.

In single phase test the electrical equation taken into account is:

vn =Rs · in + Lls ·
din
dt

+MI · cos(θn − θn) · din
dt

=

=Rs · in + Lls ·
din
dt

+MI ·
din
dt

(6.18)

In steady-state operations., the electrical equation in phase variable domain for
a generic winding is:

V n = Rs · In + jωLls · In + jωMI · In (6.19)

The Eq. (6.19) con�rms the alternate voltage supply and on the basis of this
equation, the equivalent circuit for single phase test is given in Fig. 6.8.

On the basis of the digital consecutive samples N, the voltage and current root
mean square VRMS and IRMS, de�ned in Section 6.2.1, the active power, apparent
power and reactive power are computed as:

Psf,n =
1

N
·

N∑
k=1

(
vsf,n(k) · isf,n(k)

)
, n = a1, b1, ..., c3 (6.20)

Ssf,n = Vsf,n,RMS · Isf,n,RMS, n = a1, b1, ..., c3 (6.21)

Qsf,n =
√
S2
sf,n − P 2

sf,n, n = a1, b1, ..., c3 (6.22)

157



6 � Experimental Validation

Figure 6.8: Equivalent circuit of the single phase test.

The impedance of a generic stator phase under test n is computed as:

Zs,n =
Ssf,n

I2sf,n,RMS

(6.23)

and the power factor is:

cos(φs,n) =
Psf,n

Ssf,n

⇒ (φs,n) = arccos(φs,n) (6.24)

On the basis of the power factor, the stator resistance and reactance are com-
puted as:

Rs,n = Zs,n · cos(φs,n) (6.25)

Xs,n = Zs,n · sin(φs,n)Lss,n (6.26)

About the inductance:

Lss,n =
Xs,n

2 · π · f
(6.27)

It is nevertheless well-known the leakage inductance value by the zero-sequence
test, the isotropic contribution is computed as:

MI,n =Lss,n − Lls,n =

=Lss,n − Lls

(6.28)

According with machine modelling, an unique value of isotropic inductance is
considered, which is computed as the average value between all phases at three
di�erent frequencies.

The synchronous inductance in rotor reference frame is computed as follow:

Ls = Lls +
9

2
·MI , Ls = Ls,d = Ls,q (6.29)
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Table 6.2: Single phase test: isotropic inductance.

Isotropic inductance values [mH]
f [Hz] MI,a1 MI,a2 MI,a3 MI,b1 MI,b2 MI,b3 MI,c1 MI,c2 MI,c3

25 81.9 94.3 75.3 74.5 78.2 91.0 85.0 67.0 72.9
50 78.4 90.4 70.6 74.2 72.9 86.9 81.2 65.0 68.7
100 72.6 84.9 65.5 69.3 68.5 81.3 75.9 60.4 63.7

M I,i 77.6 89.8 70.5 72.7 73.2 86.4 80.7 64.1 68.4
MI 75.9

6.2.3 Short Circuit Test and Design approach

The aim of this test is to obtain the magnetizing inductance related to hth har-
monic (h = 1, ..., 13, h /= 2i, i ∈ N) in stator short-winding con�guration. The rotor
position is measured by encoder, the speed is obtained through PLL use (to avoid
derivative method) and the currents are measured.

According with the model in VSD variables, presented in Chapter 6.26, Section
4.2.2, in subplanes the electrical equation taken into account are:

vαβ = Rs · iαβ + Lls ·
diαβ
dt

+ L
〈1〉
m ·

diαβ
dt

+
dλPM1

dt

underlinevxyi = Rs · ixyi + Lls ·
dixyi
dt

+ +L
〈h〉
eq ·

dixyi
dt

+
dλPMh

dt
, i = 1, 2, 3

(6.30)
When the subplanes is containing more than one harmonics, the distorting power

related to the harmonics must taken into account. For this reason, the single har-
monic approach is preferred than the power approach for each subplane.

On the basis of the rotor speed (PLL output) and permanent magnet �ux (λPMh),
the back-EMF in phase variable domain are reconstructed as:

[ePM,abc9] = −ω ·
(

1 · λPM1 · sin(1 · (θ− [θn]) + θsh1)+

+ 3 · λPM3 · sin(3 · (θ− [θn]) + θsh3)+

+ 5 · λPM5 · sin(5 · (θ− [θn]) + θsh5) + ...

...+ 13 · λPM13 · sin(13 · (θ− [θn]) + θsh13)

) (6.31)

where all symbols are consistent with the ones de�ned in previous chapters.
Using the VSD transformation, the back-EMF are expressed in VSD variables. In
Figs. 6.9 - 6.12, the time trends of the reconstructed back-EMF in VSD variables
and measured current during the test are shown. The short circuit test is performed
at 10 Hz electrical frequency.
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Figure 6.9: Short circuit test: back-EMF and current in (α,β) subplane.
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6.2 � Characterization of the Machine Parameters

Figure 6.10: Short circuit test: back-EMF and current in (x,y)1 subplane.

Figure 6.11: Short circuit test: back-EMF and current in (x,y)2 subplane.
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Figure 6.12: Short circuit test: back-EMF and current in (x,y)3 subplane.

The FFT analysis performed on time trends presented above leads to the re-
sults, shown in Table 6.3. It is noted how the set low frequency did not allow the
computation of the magnetizing harmonic inductances, except for the foundamental
one. On the basis of the short circuit test the obtained value is:

Lls + L〈1〉m = 459mH ⇒ L〈1〉m = 375mH (6.32)

This value is almost equal to the dq stator inductance (Ls,d = Ls,q = Ls).
Following from stated, it is possible to note how the set frequency in this test has
been low. This means that the employed test is correct, but in this part is preferable
a design approach. Concerning the computation of the magnetizing inductance
related to the others subplanes, the design approach is used. The design data are
shown in Table 6.4.
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According with the data in table, the distribution factor kd is computed as ratio
between result e�ective back-EMF and sum of e�ective back-EMF s of individual
coils [45]. If α is the angle between the slots, the distribution factor related to the
h harmonic is computed as:

k
〈h〉
d =

sin

(
h · q · α

2

)
q · sin

(
h · α

2

) (6.33)

The magnetizing inductance hth is computed as:

L〈h〉m =
9

2
·
(

Zf

π · 2 · p
· k
〈h〉
d

h

)2

· 1

<ag

(6.34)

where Reag is the equivalent airgap reluctance, de�ned as:

<ag =
kch · lac

µ0 · π ·
Dag

2
· lac

(6.35)

where kch is the Carter coe�cient related to the h harmonic (assumed equal to
1). The computed values are shown in Table 6.5. These inductances are used in the
machine model, de�ned in Chapter 6.26 and subsequent.

6.2.4 Test rig characterization

The aim of this test is to obtain the inertia value and static, linear and parabolic
friction torque related to the test rig. The test rig parameters allow an accurate
tuning of the speed control regulator. The rotor position is measured by the encoder.
Machine has shaft-mounted Omron E6B2-CWZ1X rotary incremental encoder for

Table 6.3: FFT analysis: back-EMF and current in VSD variables.

FFT analysis
hth Back-EMF amplitude [V] Current amplitude [A] Power factor [-]
1 21.84 0.58 0.697
3 22.42 0.817 0.983
5 11.49 0.375 0.982
7 2.916 0.108 1
11 2.673 0.074 0.982
13 1.409 0.036 0.951
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Table 6.4: Main data of nine-phase PMSM machine.

Design Data
Parameter Value [Units]

Phase number 9 [-]
Rotor type Shortened PM [-]

Winding con�guration Symmetrical [-]
Pole number p 2 [-]

Slot/pole/phase number q 2 [-]
Winding type Distributed
Winding layout Full-pitched [-]

Airgap thickness lag 8.4 [mm]
Diameter airgap Dag 75 [mm]
Active lenght lac 55[mm]

Conductor/slot number 220 [-]
Conductor/phase number Zf 880 [-]

Table 6.5: Magnetizing inductance related to h harmonic.

Harmonic magnetizing inductance
Harmonic Value [mH]

3 35.7
5 11.3
7 4.7
9 2.1
11 0.9
13 0.4

position measurement. Encoder resolution is 1024 pulses per revolution and it is
connected to dSPACE DS3002 encoder board. The measured angle represents a
PLL input to obtain the speed pro�le, avoiding the derivative method.

The mentioned test is organised essentially as follows: the reference electromag-
netic torque is imposed in open-loop (the speed loop regulation is not activated).
The speed limit is set to 1300 rpm, which is achieved without control in accelera-
tion mode. When this limit is reached, the machine is no longer supplied and it
is left in free natural deceleration. The combination of the mechanical parameters
used to construct the speed in acceleration mode and deceleration mode, allows to
characterize the test rig.

Using an iterative methodology the acceleration and deceleration pro�les are
constructed (Eulero-time integration), thus obtaining the inerzia and friction con-
tributions (static, linear and parabolic torque).
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In acceleration mode the mechanical speed is constructed on the basis of the
motor acceleration computed as:

aa,n =
Ta,n
Jeq,n

(6.36)

where Jeq,n is the quivalent inertia set to the step n and the torque Ta,n is computed
as:

Ta,n =T ∗em − (TB0,n + TB1,n + TB2,n) =

=T ∗em − (TB0,n + kB1,n ·ωm + kB2,n ·ω2
m)

(6.37)

where TB0,n, kB1,n and kB2,n are the static torque, linear and parabolic coe�cients,
respectively, set to the step n.

Therefore, the same approach is used to interpolate the speed in deceleration
mode. In deceleration mode, the deceleration at the step n is computed as:

ad,n = − Td,n
Jeq,n

(6.38)

where the torque Td,n, which is opposed to machine braking, is computed as:

Td,n = (TB0,n + kB1,n ·ωm,n + kB2,n ·ω2
m,n) (6.39)

This iterative procedure is concluded when the interpolated speed matches up
pretty well with the PLL output in acceleration and deceleration mode. The inter-
polated speed and PLL output in acceleration and deceleration mode are shown in
top e bottom of Fig. 6.13, respectively. The obtained mechanical parameters are
shown in Table 6.6.

Table 6.6: Test rig characterization: mechanical parameters.

Mechanical parameters
Parameter Value [Units]

Jeq 9.4 ·10−3[kgm2]
TB0 450 ·10−3[Nm]
kB1 4.3 ·10−3[Nm/(rad/s)]
kB2 0.0 Nm/(rad/s2)

It is necessary to highlight how the test rig characterization allows at obtaining
just approximative values of both inertia and friction coe�cients. Indeed, the results
in Fig. 6.13 are extremely sensitive to parameters detuning. Therefore, the results
in Table 6.6 are used in simulation validation. In experimental validation, the inertia
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parameter present in table is used to set the starting values of the speed PI gains.
As it will be shown later, the experimental time trends of torque and current along
q-axis are qualitative the same to the ones in simulation. The only di�erence regards
the absolute values of these variables, corresponding to the detuning of both inertia
and friction coe�cients. Nevertheless, because the scope of this thesis is to propose a
harmonic model and sensorless control scheme for multiphase machine, the accurate
parameters evaluation of the used test rig is not a aim primary. Indeed, the proposed
control solution can be validated in any test rig, thus requiring a speci�c test rig
characterization.
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Figure 6.13: Test rig characterization: iterative methodology. From top to bottom:
acceleration; deceleration.
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6.3 Experimental results

Developed hybrid control has been experimentally validated for nine-phase sur-
face PMSM with non-sinusoidal back-EMF. In Fig. 6.14, the overview of the digital
control implemented in laboratory is shown. In mentioned �gure four main elements
are highlighted:

� dSPACE PWM Board Interrupt - dwell times are calculated and provided
by use of DS5101DWO block from the dSPACE speci�c Real-Time Interface
(RTI) (grey block) library. DS5101 board uses custom written code to create
gating signals based on calculated dwell time. Triangular carrier is assumed.
Since DWO board uses high precision counter, it is used to generate an in-
terrupt. DWO board interrupt is enabled and acknowledged by System Start
and System Outputs (white) blocks from the Simulink Coder library, respec-
tively. Generated interrupt triggers the timer task and whole control code is
executed. Furthermore, interrupt is synchronised with PWM signals so that
control code is executed exactly at the beginning and in the middle of the
switching period.

� INPUT CONTROL PARAMETERS - receives the measured stator currents
(they are measured to employ the machine control) and rotor position (not
used in the control, but it is measured in order to be compared with its esti-
mated signal). Finally, the reference speed and dc power source are set (blue
blocks).

� CONTROL ALGORITHM - contains two di�erent control: I-Hz control (ma-
genta block), where it is necessary to set the reference speed and the current
along d∗-axis in arbitrary reference frame, and the Hybrid control(magenta
block), where the current along d∗-axis in arbitrary reference frame, the target
speed to achive under I-Hz control and, �nally, the reference speed in SFOC
are set. The phase voltage references are the outputs of both controls.

� PWM, LOGIC and PROTECTION - acquires the phase voltage references
in order to obtain the duty-cycle of the voltage supply inverter, using the
sinusoidal PWM modulation (SPWM ). This is performed by the PWM Gen-
erator (pink block). In addition, the inverter hardware protection system is
implemeted in Protection block.

In Fig. 6.15 the main blocks inside Hybrid Control are shown. Whitin each block,
the Matlab function is present, marked by speci�c inputs and outputs according to
the theory. The mentioned inputs, which depend on the employed control, are set
through Control Desk mask, shown in Fig. (6.6). All variables are connected to it
and the variable waveforms are visible through plots.
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Figure 6.14: The digital control implemented in laboratory.
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Figure 6.15: Hybrid control for experimental validation.
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With reference to the theory, presented in Chapter 6.25, in Table 6.7 the PI of
speed, current loop regulations and PRES gains are shown. The table is concluded
with the PLL gains used in experimental setup.

The experimental time trends for hybrid control under no-load and load condi-
tions are provided. The experimental result are related to the motoring operation
and the speed is limited at ± 1500 rpm due to the mechanical limitations of the
driving machine (Fig. 6.2). The machine under test is speed controlled while the dc
PM machine is not controlled. The drive is tested with the settings shown in Eq.
(6.40).

Table 6.7: Values of the control parameters.

Control gains
Parameter Value [Units]

Drive Control - Speed PI controllers
Proportional gain kP,ω 0.06 [Nm/(rad/s)]
Integral gain kI,ω 0.075 [Nm/rad]

Machine Control - Current PI controller
Proportional gain kP,i 535 [V/A]
Integral gain kI,i 170000 [V/(As)]
Machine Control - Proportional Resonant Controllers
Proportional gain kP,PRES 126 [V/A]
Integral gain kI,PRES 46500[V/(As)]

Phase-Locked Loop
Proportional gain kP,PLL 163 [1/s]
Integral gain kI,PLL 17765 [1/s2]

fsw = 5kHz

fs = 10kHz

vdc−link = 450V

ω∗m ∈

{
[0, 300]rpm I −Hz
(300, 1500]rpm SFOC

i∗d ∈

{
1.5A I −Hz (d, q)∗

0A SFOC (d, q)

i∗q ∈

{
0A I −Hz (d, q)∗

(T ∗em · k1)A SFOC (d, q)

TL = 0Nm

(6.40)
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Setting the conditions shown in Eq. (6.40), the test is performed by imposing
the machine's rated torque in sensorless control. The experimental results for the
sensorless control under no-load conditions are shown in Figs. 6.16 - 6.26.

As a result, a smooth and fast transition between open-loop frequency and sen-
sorless FOC based on third back-EMF harmonic is veri�ed and it is characterized
by speed drop (about 100 rpm), as explained before in simulation results. Note that
the speed oscillations are damped quickly and, consequently, the switch is rapidly
happened. The references initializations of the current controllers under sensorless
�eld-oriented control, using the measured values during the �rst control referred in
the estimated rotor reference frame, are cleary visible in zoom areas of the Figs.
6.17 (bottom) and 6.18 (bottom). Subsequently, in sensorless control the direct
axis current converges to zero in order to control the rotor magnetizing �ux while
the quadrature axis current corresponds to the motor torque. The target values of
direct and quadrature currents are obtained following a ramps, which are resulted
compatible with dynamic system. This con�rms the correctness of the speed and
current PI controllers. When the speed is increased up to 1500 rpm, the reference
electromagnetic torque reaches the nominal value. Finally, in steady-state this value
decrease, according to the friction torque. Note that during the transition interval
the current loop along q-axis is characterized by the oscillations related to speed
loop output settling. According with the simulation results, the PLL input is in
agreement with the computed back-EMF vector in third subplane exy3, based on
measured angle and speed. The phase error between the computed back-EMF and
the PLL input vectors is close to zero in sensorless control, as shown in Fig. 6.19
(bottom). In detail, in mentioned �gure the error is close to 5◦. These di�erences in
terms of vector amplitude and phase are related to the error between the measured
and estimated rotor position and speed. However, in experimental is con�rmed that
the error in estimated angle than its measured value is conformed to typical error
in sensorless control three-phase drives. The single electrical period is shown in
bottom of Fig. 6.20, where it is possible to note how the demodulated angle follows
its measured value pretty well. A zoom area in transition interval is performed in
bottom of the Fig. 6.20.

Finally, to demostrate the PRES e�ectiveness, the phase currents and voltages
are shown. In bottom of the Fig. 6.21 the inverter nonlinear erorrs are visible, having
an e�ect on phase voltages (Fig. 6.22), where all back-EMF harmonic contributions
are relevant.

In conclusion, good agreement in simulation and experimental results is recorded.
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Figure 6.16: No-load conditions in experimental validation. From top to bottom:
speed response; torque response.
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Figure 6.17: Measured current along estimated and arbitary d -axes. From top to
bottom: the time trend; corresponding zoom.
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Figure 6.18: Measured current along estimated and arbitary q-axes. From top to
bottom: the time trend; corresponding zoom.
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Figure 6.19: No-load conditions in experimental validation. From top to bottom:
vector exy3 magnitude; phase error.
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Figure 6.20: No-load conditions in experimental validation. From top to bottom:
angle error; zoom area of the angle.
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Figure 6.21: No-load conditions in experimental validation. From top to bottom:
phase current responses; corresponding zoom area.
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Figure 6.22: No-load conditions in experimental validation. From top to bottom:
phase voltage references; corresponding zoom area.
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Figure 6.23: No-load conditions: speed response. 250 rpm/div.

Figure 6.24: No-load conditions: currents response. 2 A/div.
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Figure 6.25: No-load conditions: currents and speed response during the transiton.
CH.1 - CH.3: 2 A/div ; CH.4: 250 rpm/div.

Figure 6.26: No-load conditions: currents and speed responses in steady-state at
1500 rpm. CH.1 - CH.3: 2 A/div ; CH.4: 250 rpm/div.
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To validate the hybrid control the load torque is set. The PM dc machine is used
as mechanical load and it is additionally connected to resistor bank. The value of
load torque is about 1.4 Nm. Setting the conditions shown in Eq. (6.40), except for
the load torque, the test is performed. The experimental results for hybrid control
under load condition are shown in Figs. 6.27 - 6.33.

At the instant when the load torque is added (about 7.5 s) the speed drop is
shown (about 100 rpm). The electromagnetic torque follows the load torque, the
friction torque and the inertia contributions when the machine is not operated in
steady-state. It is noted how both speed and electromagnetic torque are perfectly
controlled after the switch instant.
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Figure 6.27: Load conditions in experimental validation. From top to bottom: speed
resonse; torque response.
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Figure 6.28: Measured currents along estimated and arbitary RFs. From bottom to
top: d -axes; q-axes.
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Figure 6.29: Load conditions in experimental validation. From top to bottom: angle
error; zoom area of the angle.
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Figure 6.30: Load conditions in experimental validation. From top to bottom: phase
currents; phase voltage references.
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Figure 6.31: Load conditions: speed response. 250 rpm/div.

Figure 6.32: Load conditions: currents response. 2 A/div.
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Figure 6.33: Load conditions: currents and speed responses in steady-state at 1500
rpm. CH.1 - CH.3: 2 A/div ; CH.4: 250 rpm/div.
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Chapter 7

Conclusion

7.1 Conclusions

The thesis explored sensorless �eld-oriented control of nine-phase surface per-
manent magnet synchronous machine with a symmetrical winding con�guration.
Reduced magnet span on rotor causes production of highly non-sinusoidal back-
electromotive force in the stator windings. Fourier analysis of the back-EMF reveals
a high magnitude low-order harmonic spectrum, with third-harmonic magnitude al-
most equal to the fundamental. Harmonics with such magnitude has been used to
estimate the rotor position.

In this work I-Hz starting method for smooth and fast transition from open-loop
frequency to sensorless FOC based on back-EMF method has been implemented.
The estimation of the back-EMF was not necessary nor achievable as in observers.
Considering the harmonic machine model in VSD variables, in third subplane the
third harmonic of the stator current is mapped. The harmonic currents, induced
by back-EMF and winding distrbution, have been eliminated using the resonant
controllers to reduce losses. Following from the harmonic model, after reconstruc-
tion of references phase voltages, rotor position was easily estimated. The use of
the command voltages instead of the measured ones is a straightforward approach
that improves the reliability and robustness of the system. Furthermore, the in-
verter errors compensation has not been implemented due to the resonant controller
employed in third subplane (i.e. inverter losses are almost zero). To avoid time
derivative of the angle, the rotor position and speed information have been deter-
mined using a phase-locked loop, for which inputs are the trigonometric functions
computed from the reference phase voltage at the previous sample time instant in
output of the control.

The I-Hz control is a simple starting method, which has been used to accelerate
the machine in the experimental setup. The stator currents under the �rst control
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have been controlled in the arbitrary reference frame and the angular frequency
has been imposed in open-loop. The rotor follows the imposed frequency of the
rotating magnetic �eld from standstill to a desired speed. The target speed which
must be achieved under the �rst control scheme has been de�ned as the limit be-
yond which the error of estimated rotor position/speed is acceptable. This starting
method allows the back-EMF signal to be sensed properly upon appropriate motor
acceleration to obtain the accurate input phase-locked loop. When the speed un-
der I-Hz control reaches the base target speed, after a settling interval to reduce
the speed oscillations caused by the open-loop control, the estimated variables are
acceptable, and can be forwarded to the sensorless FOC control algorithm. There-
fore, when this time interval elapses, the estimated rotor position/speed has been
used in the control algorithm. Switching between open-loop frequency control and
sensorless control has been made smooth and regular in this way, thus avoiding un-
desired transient behaviour in terms of currents. The transition strategy has been
performed as explained next: during I-Hz control, the stator currents, although not
used, have been evaluated in the estimated rotor reference frame. This procedure
allows to initialize the references of the current controllers under sensorless �eld-
oriented control using the measured values during the �rst control, referenced to the
estimated rotor reference frame. Subsequently in the second step the rotor speed has
been controlled in closed-loop on the basis of estimated variables. In sensorless FOC
the direct axis current converges to zero (to control the rotor magnetizing �ux) and
the quadrature axis current corresponds to the motor torque. The target values of
direct and quadrature currents have been obtained following the compatible ramps
with dynamic system.

As it has been shown, the main advantage of the new proposed method has
been related to the reduced computation time and algorithm complexity. Derived
hybrid control schematic and corresponding simulation results have been shown in
the thesis. Note that, the hybrid control has been based on harmonic model, which
is analysed in detail. On the basis of the back-EMF and PM harmoic distribution,
both harmonic model in VSD model and in phase variable domain of the prototype
machine have been computed. To obtain the magnetizing inductance related to hth

harmonic, these model in stator Short Circuit Tes tand design approach con�gura-
tion has been validated, useful for a good knowledge of the machine modelling. The
other machine parameters have been obtained with several experimetal tests i.e.
zero-sequence, single phase, and test rig characterization to tune carefully the speed
and current control regulators and to know the complete mathematical model. With
Zero-Sequence Test the leakage inductance value has been carried out. The aim of
Single Phase Test is to obtain the isotropic inductance. Finally, the aim of Test
Rig Charcaterization is to obtain the inertia value and static, linear and parabolic
torque related to the test rig friction.
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The thesis work has been concluded with the the experimental validation of the
hybrid control using prototype machine in speed control mode. The rotor shaft
has been coupled to dc machine acting as a mechanical load. The power converter
consists of two custom-made inverters fed by a single dc power source. The digital
controller is the dSpace DS1006 development board. The mechanical rotor position
has been measured with an encoder in order to compare the measured value with
its estimate. The experimental results have been obtained under sensorless control.
Good agreement between simulation and experimental results has been achieved.
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7.2 Future Work

The work presented in this thesis has contributed to harmonic machine model
and sensorless control of multiphase surface PMSM. Theoretical concepts about the
harmonic model have been used to develop the hybrid control, with subsequent
simulation and experimental veri�cation on a real nine-phase machine prototype
with non-sinusoidal back-EMF. On the basis of presented theory, work conducted
here can be further continued as follows:

� The rotor position may be obtained on the basis of the �fth harmonic based on
the harmonic phase-loocked loop. While the third harmonic current injection
may be used to obtain torque improvement on the basis of the optimal injection
ratio.

� The sensored control with harmonic currents injections for each harmonic order
to obtain the full torque improvement may be implemented.
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