
POLITECNICO DI TORINO

Master Degree in Mechanical Engineering

Master’s Degree Thesis

Development of an adaptive
real-time control strategy for
plug-in hybrid electric vehicles

Academic Supervisor:
Prof. Daniela Anna Misul

Graduate:
Alessia Musa

Academic Year 2018-2019





Abstract

This study is focused on the development of an adaptive real time control strategy
for (plug-in) hybrid electric vehicles. This controller aims to select in real time the
optimal control strategy in terms of power flow and gear number. More in details,
it compares an unknown driving mission with a set of known driving cycles for
which optimal set of rules is previously identified. At each instant, once the pattern
recognition is performed, the set of rules is applied to the unknown driving cycle.
The set of rules is identified by means of a pre-existing Clustering Optimization and
rule extraction tool (Core). The Core tool associates a specific rule, in terms of
power flow and gear number, to each cluster by selecting the most frequent action
adopted by the dynamic programming.



Acknowledgements

I would like to express my gratitude to my academic supervisor Prof. Daniela Anna
Misul for her encouragement and support. I would like to thank to Dr. Claudio
Maino for his assistance, patience and his helpful advices. My sincere thank goes to
my friends Irene, Giusy and Armando for the immense support they give me during
these years and for their continuous encouragement. Special thanks also to Matteo
and Mattia who shared this journey with me. Finally, I must express my profound
gratitude to my parents and sisters.

ii



Contents

Acknowledgements ii

1 Introduction 1
1.1 Regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Pollutant emissions and greenhouse gas . . . . . . . . . . . . . . . . . 2
1.3 Alternatives to conventional vehicle . . . . . . . . . . . . . . . . . . . 3

2 Global control strategy optimization 8
2.1 Dynamic programming . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Genetic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 History and brief introduction . . . . . . . . . . . . . . . . . . 11
2.2.2 Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Fitness function . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.5 Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.6 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.7 Termination condition . . . . . . . . . . . . . . . . . . . . . . 17
2.2.8 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Model 19
3.1 Time grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Electric machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Torque coupling device . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Pre-processing phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7 Optimization phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Control strategy 31
4.1 CORE TOOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

iii



4.1.2 Validation phase . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.3 Multiple training . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.4 Modification to termination condition . . . . . . . . . . . . . . 38
4.1.5 Rule extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.6 Modifications to rule extraction . . . . . . . . . . . . . . . . . 39
4.1.7 Sensitivity on the number of individuals . . . . . . . . . . . . 42

4.2 ACORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Definition of training driving cycles’ set . . . . . . . . . . . . . 43
4.2.2 Current driving cycle evaluation . . . . . . . . . . . . . . . . 49
4.2.3 Rule assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Results 55
5.1 Core results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Population size . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.2 Rule extraction methods comparison on M class . . . . . . . . 56
5.1.3 Sensitivity analyses . . . . . . . . . . . . . . . . . . . . . . . 58
5.1.4 Different discretization . . . . . . . . . . . . . . . . . . . . . . 61
5.1.5 Sensitivity on crossover factor . . . . . . . . . . . . . . . . . . 63

5.2 Acore results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Conclusions and future works 68
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography 70

iv



List of Tables

4.1 Values of main parameters of GA . . . . . . . . . . . . . . . . . . . . 33
4.2 NEDC-WLTP comparison [19], [20] . . . . . . . . . . . . . . . . . . . 46
4.3 Definition of A Solution’s number of segments . . . . . . . . . . . . . 49
4.4 Definition of B Solution’s number of segments . . . . . . . . . . . . . 49
4.5 Simulation time comparison . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Simulation time comparison . . . . . . . . . . . . . . . . . . . . . . . 51

v



List of Figures

1.1 Series HEV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Single shaft layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Double shaft layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Double drive layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 HEV classification based on e-machine position . . . . . . . . . . . . 7
2.1 Dynamic programming [8] . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Genetic algorithm’s terminology . . . . . . . . . . . . . . . . . . . . 12
2.3 Roulette wheel selection [15] . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Tournament selection [15] . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 One point crossover [15] . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Multi point crossover[15] . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Uniform crossover [15] . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 whole arithmetic recombination [15] . . . . . . . . . . . . . . . . . . . 17
3.1 Torque coupling device [4] . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Battery model [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1 Training flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Parent combination method, 1000 individuals, 10 generations . . . . . 35
4.3 Parent selection method, 1000 individuals, 10 generations . . . . . . . 36
4.4 Hybrid method, 1000 individuals, 10 generations . . . . . . . . . . . . 36
4.5 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.6 Comparison between the mode function and the modified mode function 40
4.7 Comparison between the mode function and the datasample function 41
4.8 Acore flow chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.9 Ardc driving cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.10 Etc driving cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.11 Whvc driving cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.12 Nedc driving cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.13 Wltp driving cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.14 Etc cycle recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.15 Ardc cycle recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.16 Wltp cycle recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vi



4.17 Wltp cycle recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.18 Zoom on the Nedc cycle . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.19 Zoom on the Wltp cycle . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.20 Comparison between different time steps applied on Etc cycle . . . . 54
4.21 Comparison between different time steps applied on Wltp cycle . . . 54
5.1 Class comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Class comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Choices comparison on medium class . . . . . . . . . . . . . . . . . . 57
5.4 Choices comparison on medium class . . . . . . . . . . . . . . . . . . 58
5.5 250 individuals, 160 generations, Frequency default method . . . . . . 59
5.6 250 individuals, 160 generations, Alternated Frequency method . . . . 59
5.7 700 individuals, 50 generations, Frequency default method . . . . . . 60
5.8 700 individuals, 50 generations, Alternated frequency method . . . . 60
5.9 1500 individuals, 30generations, Frequency default method . . . . . . 61
5.10 1500 individuals, 30generations, Alternated Frequency method . . . . 61
5.11 Different discretization - M class . . . . . . . . . . . . . . . . . . . . . 62
5.12 Different discretization [19 21 3]- M class . . . . . . . . . . . . . . . . 62
5.13 Crossover factors comparison . . . . . . . . . . . . . . . . . . . . . . . 63
5.14 Clust 2 cycle recognition . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.15 Clust 2 cycle recognition . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.16 Clust 2 zoom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.17 Etc zoom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.18 Clust 8 cycle recognition . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.19 Clust 8 cycle recognition . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.20 Clust 8 zoom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.21 Zoom on Nedc cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

vii



Chapter 1

Introduction

In the recent years it has been observed a tightening in the regulations of CO2 and
pollutant emissions in the transport sector. Europe’s answer to emission reduction
challenge is low- emission mobility to improve local air quality, lower the green house
gas emissions and find alternatives to the petroleum solution.

1.1 Regulations

The first CO2 emission target for passenger car was signed in 1998/99 through a
voluntary agreements between three manufacturer associations (ACEA,JAMA and
KAMA) and the European Commission. The imposed target was of 140g/km of
CO2 emissions weighted on the manufacturer’s fleet to be reached by 2008. From the
2004 the reduction program became mandatory because the manufacturer stopped
respecting the signed agreements. There are two separate sets of regulations for
passenger cars and light commercial vehicles. For passenger cars, the regulation
adopted in April 2009 fixed a fleet-average CO2 emission target of 130 g/km to be
reached by the 2015 while the long-term target is 95 g/km to be reached from 2020.
For light commercial vehicles, the regulation imposed in May 2012 fixed a fleet-
average CO2 emission target of 175 g/km to be phased-in by 2017 while the long-
term target is 147 g/km.
Until September 2017 emissions are tested over the New European driving Cycle
(NEDC). However, this cycle did not seem to be representative of the real driving
conditions and for this reason it has been replaced by the Wltp cycle.

1



1 – Introduction

1.2 Pollutant emissions and greenhouse gas
A greenhouse gas is able to absorb infrared radiation emitted from the surface of the
Earth and then to re-radiate it back to the Earth’s surface, contributing in this way
to the greenhouse effect. The most important greenhouse gases are Carbon dioxide
and methane.
The Global warming potential GWP is the index used to measure the green house
gas capability to traps gas in the atmosphere.It is evaluated over a specific time
horizon by using the radiative forcing i.e an index that measure the influence a
chemical species has in modifying the balance of incoming/outgoing energy in the
atmosphere. The GWP compares the radiative forcing of a certain gas and the
radiative forcing of reference species (CO2).

GWPi =
s T H

0 RFi(t)dts T H
0 RFref (t)dt

(1.1)

where RFi is the radiative forcing of the gas under investigation while RFred is the
radiative forcing of carbon dioxide. By definition, CO2 has a GWP equal to one.
The Carbon dioxide equivalent CDE is computed as follows:

CDE =
Ø

i

(GWPi ·Mi) (1.2)

where Mi is the mass of the gas under investigation.
Pollutant emissions divide in primary and secondary pollutants. Primary air pollu-
tants coming from the combustion system are:

• CO,HC,NOx, PM due to the incomplete combustion process;

• SOX and metal compounds due to additives and / or chemical species in the
fuel;

• Coming from the lubricant oil or materials due to machine pats’ wear.

The primary pollutants, if exposed to the action of the sun or to other components
with which they react, form secondary pollutants:

• Photochemical smog;

• acid rains;

• ground-level ozone.

2



1 – Introduction

1.3 Alternatives to conventional vehicle
The solutions explored are different. The electric vehicles present some advantages
over the conventional vehicle such as zero CO2 tank to wheel emissions and high
energy efficiency. However they show several drawbacks:

• limited driving range;

• limited deployment of recharging infrastructures;

• added weight due to battery,

• costs.

Hybrid vehicles can take advantage of two energy sources, a thermal engine and one
or several electric machines [2], [3]. Electric machines can act as motor or generator:
in the first case they draw energy coming from the batteries to accelerate the vehicle
while in the second case they recover energy from the vehicle in order to recharge the
batteries. Hybrid electric vehicles combine the advantages of either battery-power
electric vehicles and conventional ones but also compensate their shortcomings.The
main advantages are:

1. Regenerative braking: the generator is able to recover and store the kinetic
energy when the vehicle is braking;

2. Idling reduction by turning-off the engine at stops and lower speed conditions;

3. Ice downsizing/downspeed thanks to the electric machine assistance: the ve-
hicle can be equipped with a smaller engine without compromising its per-
formance. This is a great merit especially considering that, with reference to
the engine operating map, usually the conventional vehicles operate at partial
load: this means that typically engines are oversized if compared with the
actual power requirements.

4. Auxiliaries and accessories can be powered electrically;

5. ICE efficiency improvement: the electric machine assists the engine when it
operates in sub-optimal conditions;

6. more control over the engine’s operating point and transience: this results in
benefits for emissions and drivability.

The main drawbacks are:

1. higher costs compared with conventional vehicles;

3



1 – Introduction

2. added weight due to secondary power source and energy storage system;

3. complex control system is required;

4. components high costs.

There are different levels of hybridizations among hybrids including micro, mild, full
and plug-in. Full, plug-in and most mild have the function of regenerative braking.

1. Micro The vehicle is equipped with a starter and employs the start & stop
technology. At complete stops, the engine is turned off and restarts when the
driver releases the brake pedal.

2. Mild In this configuration the alternator is equipped with stronger electric
components than the Micro HEV. The electric motor, the starter and the bat-
tery pack are larger than those used in the micro HEV.

3. Full The electric components (battery pack, electric motor and starter) are
the same used in the mild HEV but larger in size. However, it uses a more
complicated control system in order to optimize the efficiency.

4. Plug-in The plug-in type allows the external charging of the battery and are
designed for longer distances and the battery pack used is larger than the pre-
vious solution.

Series configuration A hybrid with a series architecture is characterized by the
fact that the propulsion to the wheels is guaranteed only by the electric motor while
the internal combustion engine is used only to produce electricity through the con-
nection with the generator. In Figure 1.1, a typical series architecture is shown.
The power required by the vehicle can be supplied by the battery pack or by gen-
erator, since both can supply electricity directly to the electric motor. The engine
can be turned off or on depending on the battery state of charge. When the ice
is used as the primary power source, this systems shows significant inefficiencies
because the output of the engine must be converted into electricity. This results in
poor efficiencies especially during highway driving. Moreover, in order to satisfy the
minimum acceleration requirements when the battery charge is completely depleted,
the engine must be big enough. However, a large and heavy storage system increases
costs and reduces the vehicle performance.This system shows very good efficiency

4



1 – Introduction

Figure 1.1: Series HEV

during start and stop phases: in fact it is able to minimize inefficient engine opera-
tion conditions and it is also able to maximize regenerative braking efficiency. This
system is characterized by very low pollutant emissions.
Parallel configuration In the parallel configuration both the engine and the elec-
tric machine can supply their power to the driven wheel. This configuration presents
several points in its favor:

1. the traction motor is smaller that the series configuration;

2. the generator is not required;

3. frequent power multiconversions are not necessary

The architecture of a parallel hybrid vehicle usually consists of a single electric
machine, which can be installed on the front or rear axle based on the desired con-
figuration, and an internal combustion engine.The ice constitutes the main energy
source. One of the main features of this configuration is the high flexibility, in fact it
enables different operative modes of the vehicle: pure thermal, pure electric, hybrid
mode. However it requires a complex control strategy for the energy management.
The classification of the parallel vehicle can be made considering the position of the
electric machine or the type of connection.The possible layouts are:

• Single shaft 1.2;

• Double shaft (the electric machine is coupled with a devoted transmission) (
Figure 1.3);

• Double drive or through the road because the connection in between the engine
and the electric machine is the road. In this configuration it is possible to have
traction on both axle of the vehicle (Figure 1.4).

Considering the position of the electric machines (Figure 1.5), the possible alterna-
tives are:

5



1 – Introduction

Figure 1.2: Single shaft layout

Figure 1.3: Double shaft layout

• P1: electric machines connected to the engine. If the electric machine is located
in the front side, the regenerative braking efficiency results to be low because
of the energy losses between the transmission and the e-machine.

• P2: e-machine between the engine and the transmission unit (it can be de-
coupled by means of a clutch enabling the pure electric functioning);

• P3: e-machine in between the transmission and the differential unit;

• P4: e-machine on the secondary axis while the engine is on the primary one.

Figure 1.4: Double drive layout

6



1 – Introduction

Figure 1.5: HEV classification based on e-machine position

7



Chapter 2

Global control strategy
optimization

A global optimization technique has basically the capacity to search the global
optimal control strategy by means of a numerical approach but it requires a priori
knowledge of the problem in terms of driving cycle’s features and characteristics.
The final aim of this kind of optimizer is to recognize the "best path" starting from
a given state and proceeding with the successive ones. The main drawbacks of a
global optimization control strategy can be found in its complexity and in the high
computational time required: for these reasons it can not be implemented real-time
but it is an useful tool for the off-line analysis of the problem.

2.1 Dynamic programming
Dynamic programming was introduced by Richard Bellman in 1950 and it is applied
in several fields, from economics to engineering applications. The term "dynamic" is
used because the time has a great relevance in this process and because the order of
actions may be decisive. In technical term, dynamic programming is a multi-stage
decision process. In order to better understand, we can start from physical system
represented at each time instant by a certain quantity, let us say a vector. As time
passes, this system is submitted to modifications due to deterministic or stochastic
reasons. A "decision process" is a process in which at any time instant it is possible
to decide which type of transformation will be applied to the system. Multi-stage
decision process refers to a sequence of allowable decisions. Dynamic programming
founds its application in problems in which the objective or cost function can be
divided into a series of stages where each stage stage is strictly related to the previous
one. This approach is also "enumerative" : each action can be selected from a number
of variables that affect the system transformation. Each set of selected action ( that

8



2 – Global control strategy optimization

can be referred as "policy") is only a subset of a largest set of variables. For this
reason all the selected actions have to be combined together and the problem is
to determine the maximum or the minimum of a given function (optimal policy).
This function is necessary in order to evaluate some properties of the system. To
maximize or minimize a given function, the partial derivatives are considered and
then the resulting system of equations is computed for the maximum or minimum
point [1]. The cost function of a discrete problem defined over N stages is expressed
as follows:

J = CN(x(N) +
N−1Ø
k=0

Ck(x(k), u(k), w(k)) (2.1)

where x(k) is the state vector, u(k) is the control signal, w(k) is a known quantity
and k is a particular stage (K = o,1, ..., N − 1). At each stage it is also possible to
impose some constraints to the state variable and to the control signal.It is possible
to define the optimal control Uopt that minimizes the objective function J . The
optimal cost-to-go function is obtained by the minimization problem iterated from
the last stage to the first one:

Jopt(x(k)) = min
u(k)

(Jopt(x(k + 1)) + Ck(x(k), u(k), w(k))) (2.2)

At this point some clarifications have to be highlighted. The analytic solution of a
large number of equations is a big issue and the problem of the course of dimension-
ality has to considered. Moreover the actual solution may not represent the global
maximum or minimum but only a boundary region around the solution. An optimal
policy maximize or minimize a certain function formulated following a preassigned
criterion, respecting the principle of optimality : "An optimal policy has the prop-
erty that whatever the initial state and initial decision are, the remaining decisions
must constitute an optimal policy with regard to the state resulting from the first
decision"[1]. The mathematical model used to describe the problem is a key point. If
it is too realistic, the system results in too complicated equations, not easy to solve
but the more it is realistic, the more accurate it will be. Dynamic programming
solves a given problem subdividing it into simpler sub-problems, iteratively solves
these subparts finding the optimal solutions. Mathematically this capability is ex-
pressed by the Bellman equation that evaluates the decision selected for the current
time instant, considering the offset from the starting decisions and the remaining
one. This kind of approach requires a dynamic system, control and state grids and a
certain objective function. A control variable describe the operations performed by
the system while state variable explicates the actual condition of the system. Ones
that these two grids are defined, the dynamic programming algorithm computes all
possible combinations between these quantities. This method has some remarkable
advantages:

9



2 – Global control strategy optimization

• total management of non linear and non differential problem;

• convergence to optimal solutions.

But it shows also several shortcomings:

• There is not a general formulation of the dynamic programming algorithm:
each problem requires a specific formulation;

• Memory requirements necessary to store the solutions of the intermediate
steps;

• Computational time required convergence;

• A priori knowledge of the driving mission (features and characteristics);

• Discretization requirements

• Curse of dimensionality i.e. dynamic programming can not be applied directly
when the state space is large.

In the problem under investigation, dynamic programming consists in two phases:
a backward and a forward phase. In the backward phase it starts from the last
stage proceeding backwardly until the last stage is reached, calculating the opti-
mal cost-to-go function and exploring all possible combinations between state and
control variables.In the forward phase, the optimal trajectory is computed,from the
initial state to the final one taking only the feasible solutions among all possible
combinations resulting from the backward phase, always knowing the optimal cost-
to-go function at each stage. It should be highlighted that this approach requires
a consistent amount of computation time and that increasing the number of states
and inputs has a direct impact on the memory requirements because they increase
exponentially. Moreover the quality of the grid discretization of the inputs and of
the states affect the accuracy and the feasibility of the solution. The optimal cost-
to-go function is determined looking for the specific trajectory that minimize the
cost function. This can be seen using a simple example. Let us consider Figure 2.1.
The letters represent 11 cities and the final goal is find the shortest path from A
to K. Proceeding backwardly, the first cities considered are H, I and J: the shortest
trajectories to K are respectively 5, 3 and 7. Then it is considered the city E: EH is
4, EI is 5 and EJ is 6 but the shortest path EK is obtained passing through I. It can
be noted that the shortest path from A to K is computed considering the shortest
trajectory for every node and that the cost function in this problem is stage-wise
additive (it is computed as a sum of cost functions for each stage).

10



2 – Global control strategy optimization

Figure 2.1: Dynamic programming [8]

2.2 Genetic algorithms

2.2.1 History and brief introduction

Evolutionary computation is a sub-field of algorithms used for global optimization
that take inspiration by biological evolution. It is implemented on computer systems
in order to solve problems, implementing techniques such as evolutionary algorithms
and genetic one. Evolutionary programming was introduced by Lawrence J.Fogel
while genetic algorithms where introduced by john Henry Holland whose main work
is Adaptation in Natural and Artificial systems. Holland’s career focus on the study
of nonlinear systems i.e systems whose behaviour cannot be described using one
of its subsystems (this phenomenon is known as emergence). Holland’s work high-
lights the connection between emergence, individual and organizational adaptation.
In common language, adaptation is connected to biological process where organism
progresses by reorganizing and mutating its genetic material in order to survive to
environment.
The population is made up of all the individuals. In contrast to the natural equiv-
alent where the population size is dynamic, the algorithms have opted for the vast
majority of cases for populations of fixed size. It should be highlighted that it is
the population, and not the individuals, the main subject of evolution: it varies,
evolves,improves the fitness of its own genotypes, moves towards local or global
minima; on the contrary, individuals are static entities that are born and die with
certain characteristics without modifying them in any way during their existence.

11



2 – Global control strategy optimization

Before talking specifically about this topic, it is necessary introduce a basic termi-
nology (Figure 2.2) .

• The population is a set of individuals;

• Chromosome: array with which is solution is coded;

• Gene: element position of the chromosome.

Figure 2.2: Genetic algorithm’s terminology

The procedure implemented within a genetic algorithm consists of different steps:

• Generation of genes and chromosomes;

• "Creation" procedure (population inizialization);

• Fitness function and selection;

• Genetic operators (mutation);

• Reproduction mechanism (crossover);

• New generation.

12



2 – Global control strategy optimization

The individual can be coded in different ways: binary representation, integer and
real values. The binary representation is used when the problem results in solutions
based on boolean logic; real values are used for continuous variables while the integer
representation is used for discrete variables.
The starting point is a population of randomly generated solutions.The population
is made up of all the individuals. In contrast to the natural equivalent where the
population size is dynamic, the algorithms have opted for the vast majority of cases
for populations of fixed size.
Selection refers to the choice of individuals who will become parents and through
reproduction will give life to a new generation. This imposes the survival mecha-
nism of the strongest among individuals: the main idea is that by preferring high
quality solutions compared to worse alternatives, the individuals considered to be
better, with higher fitness values, will have greater chances of reproductive success.
It should be pointed out that even those considered unsuitable will have a reduced
possibility of contributing to the formation of the next generation; this is because it
is also important that the population maintains sufficient heterogeneity, we do not
know if an individual considered unfit in a generation can not, by combining with a
different individual, form a totally new and possibly better than all others.Variation
operators correspond directly to those in the natural environment: mutation and
recombination, in order to generate new and different individuals, starting with their
parents.

2.2.2 Population
Population initialization (creation) can be done basically in two different ways:

• randomly: the population consists of randomly generated candidate solutions;

• heuristically: it has been observed that this alternative could result in a pop-
ulation composed of too similar individuals.

There are also different population models:

• Generational: in this case, ’n’ (n defines the size of the population) off-springs
are generated and they will replace the entire starting population at the end
of each iteration.

• steady state: if n is the size size of the population, m off-springs are generated
with m<n and in each iteration they will replace m individuals of the previous
population.

13



2 – Global control strategy optimization

2.2.3 Fitness function
It is assigned a fitness value to each candidate solution (the score is assigned ac-
cording to the objective function) in order to reproduce the Darwinian theory of
"Selection of the fittest".
The fitness function evaluates each candidate solution assigning a score. The score
represents the goodness of that solution according to the considered problem where
the objective is to maximize or minimize a certain objective function.
If individuals have almost equal fitness values,they share almost equal portions of
the pie. This leads to almost equal probability of getting selected as new parent.
This results in a loss of selection pressure towards the fitter candidate solution and
so poor genetic algorithm improvements. In the Roulette wheel selection method
(Figure 2.3, you can imagine to have a roulette wheel, where each pie has a size
proportional to the candidate’s score. The probability to be selected is given by
the individual’s score divided by the total fitness of the solutions. As the wheel is
turned, a random selection is performed.
In the Tournament selection (Figure 2.4), n candidate solutions are selected in a

Figure 2.3: Roulette wheel selection [15]

random way. These n solutions are compared and the best one is selected as new
parent. The procedure is repeated until the new offspring is generated.

2.2.4 Selection
The fitness function is crucial to perform the fitness proportional parent selection.
Using this method, the chance to become a parent are strictly related to candidate
solution score. Fittest individuals have good probability to be chosen, having the
possibility to hand down their features to the next generation.

14



2 – Global control strategy optimization

Figure 2.4: Tournament selection [15]

The best individual is always selected elite factor): in this way the algorithm results
in a generation whose final individual has at least a score equal to the previous
generation. This shrewdness is necessary because reproduction and mutation could
have as shortcomings the lost of best individuals. It has been observed that the elite
factor can speed up the process of convergence.

2.2.5 Crossover
The principle behind the crossover operator is the same as we find in nature: two
individuals with characteristics desirable for evolutionary purposes, through repro-
duction, form one or more new individuals who have combined characteristics of
their parents.
In genetics the equivalent is the fusion between two gametes (sperm and ovum) in
the formation of the zygote; the gametes in turn are formed thanks to the process
of meiosis during which a eukaryotic cell originates four cells. In the genetic algo-
rithms, the operation is the same.
Different portions of the information that make up the selected individuals as par-
ents are transmitted to the offspring in a combined manner. In this way there is a
high probability that the new individual has an improvement over the parents.
This type of operator is binary, it uses the information coming from parents for the
children generation. It is stochastic considering the randomness in the choice of
which traits of the offspring come from a parent and which on the other.
This operator is used differently depending on the family of evolutionary algorithms:

15



2 – Global control strategy optimization

in evolutionary programming it is never used while in genetic algorithms it repre-
sents the main research operator.
The main crossover operators used are:

1. One point:within the chromosome is selected a crossover point that divides it
in two parts. This is done for both parents. The offsprings’ chromosome is
created by swapping the parents’ chromosome parts (Figure 2.5).

2. Multi-point crossover: it is a generalization of the method 1 but in this case
there are multi-point crossover (Figure 2.6).

3. Uniform crossover: each gene of the offsprings is selected by flipping a coin
(Figure 2.7).

4. whole arithmetic recombination: the offsprings chromosomes are the results of
the parents’ weighted average (Figure 2.8).

y = α · x1 + (1 − α) · x2 (2.3)

where x1 and x2 represent the chromosome arrays of two parents.

2.2.6 Mutation
Mutation is a variation operator; when applied to a genotype, it modifies a value by
forming a new individual, different from the original one. This operator is unary (
it acts on a single individual to produce a different one) and stochastic.
The algorithm works on the assumption that, after an unspecified period of time, it
will converge on a global optimum. The possibility that this happens in a finite time
is guaranteed by the ability of the algorithm to explore, theoretically, every possible
candidate for the solution; the mutation in fact allows to "jump" from one point
to another of this population’s space without a pre-established logic. The muta-
tion factor also presents its equivalent in natural evolution: the commonly accepted
theories propose genetic mutations as the triggering cause of the diversification of
living beings; these may be due to errors in the processes that occur on the genetic
material or external interventions, such as pathologies or radiation.
The mutation mechanism at the beginning assumes a higher value in order to en-
large as much as possible the solution domain; then, as the algorithm proceeds, it
decreases to reach convergence.

16



2 – Global control strategy optimization

Figure 2.5: One point crossover [15]

Figure 2.6: Multi point crossover[15]

Figure 2.7: Uniform crossover [15]

Figure 2.8: whole arithmetic recombination [15]

2.2.7 Termination condition
The main challenge of the genetic algorithms is the proper definition of a termination
condition.

Direct methods

Direct methods ([10]) stop the algorithm if a pre-defined condition is satisfied. The
main methods are:

• Maximal time budget: the condition is satisfied if a given time budget is
consumed;

• Maximal number of generations: the criterion is satisfied if the pre-defined
number of generation is reached;

17



2 – Global control strategy optimization

• Hitting bound: this termination criterion is fulfilled if the final solution is close
enough to the known optimum defined by the benchmark optimizer;

• K-iterations: this condition is fulfilled if there are no improvements in k con-
secutive iterations.

Derived termination conditions

Derived termination conditions ([10]) use auxiliary quantities obtained from the
solutions of the current generation.

• Running mean: the condition is satisfied if the difference between the best
solutions of both the current and the previous generation is equal or less than
a certain value;

• Standard deviation: the criterion is fulfilled if the standard deviations of all
solutions of the current generation is equal or less than a pre-defined value;

• Best-worst: the condition is satisfied if the difference between the best and
the worst solution of the current generation is equal or less than a certain
threshold;

• POP-Var: the criterion is fulfilled if the variance of all solutions of the current
generations is equal or less than a certain value.

2.2.8 Comments
These algorithms have different merits. In fact they always provide a solution and
are easy to implement. They also allow you to choose a trade-off between calculation
time and precision and can be applied to various problems.
However, genetic algorithms do not guarantee that the solution offered after a certain
number of iterations is the optimal one. Moreover, the number of the generations
and the genetic operators (2.2.5, 2.2.6) can be determined only by tests, evaluating
the performance and the quality of the results obtained.

18



Chapter 3

Model

The present study takes advantage of a pre-existing Optimization tool for layout
and control strategy of HEVs [4].

3.1 Time grid
The problem under observation is discretized either in space that time domains. The
time discretization implies the creation of a grid.This grid can be realized following
different approaches.
In the node grid approach a grid is realized with Nin + 1 nodes. At each node, it is
assigned a number to each control variable. The system variables sv are functions
of the control variables nc and of the state variables ns:

sv(i) = f(cv1(i), ..., cvnc(i), sv1i, ..., svns(i)) (3.1)

This approach is not implemented because this grid is characterized by a low num-
ber of points, resulting in poor accuracy.
On the other hand, a too refined grid can not be implemented because of high com-
putational time demand.
A interval-grid approach consists in the division of the grid in Nin intervals whose
length is chosen in such a way to reduce the number of time steps. Over the in-
terval, the control variables are assumed to be constant and the system variables
are evaluated on either extremes of each time interval. The intermediate variables
are computed thanks to linear interpolation. Applying this approach, it is possible
to consider the physical discontinuity that could occur at each node, reducing the
simulation time and the memory requirements.
The vehicle model equations are written by means of two sub-control variables for
each variable sv, considering in this way both sides of each node:

19



3 – Model

• For the leftmost extreme of the interval

svl(i) = f(cv1(i), ..., cvnc(i), sv1,l(i), ..., svns,l
(i)) (3.2)

• For the rightmost extreme of the interval

svr(i) = f(cv1(i), ..., cvnc(i), svi,r(i), ..., svns,r(i)) (3.3)

being cvj,l(i) = cvj,r(i) for each cvj.
The considered input variables are the vehicle velocity Vv and the slope of the

road. The reference vehicle has been tested by means of a dynamic model while
a kinematic model has been developed in order to estimate the HEV performance.
The velocity time history of the dynamic model is the input variable in the kine-
matic model. This procedure guarantees the vehicle ability to satisfy the required
power demand.

In the present study, the main control variables considered are the gear number
and the powerflow. They can assume a finite number of discrete variables Ni, in
fact the space domain of each control variables is represented by the following set:

Scv,i = 1, ..., Ni (3.4)

The gear number can assume values from 1 to 6 because the considered vehicles
in this study are equipped with a 6 transmission ratios gearbox. The powerflow
expresses how the power is split among the power sources (engine and electric ma-
chines) on the front/rear axles. The values that the PF control variable can assume
depend on the specif hybrid architecture considered. In the present study it is con-
sidered a parallel architecture and so the PF control variables can assume only four
values: pure electric, pure thermal, battery charging and power split.
In order to fully describe the control variables, sub-control variables are defined. The
GN sub-control variable is the transmission ratio while the PF sub-control variables
give information about power split between front and real axles and between engine
and electric machines.
In order to univocally determine the powertrain control, it is created a global con-
trol variable, the working mode, that includes all combinations of the two control
variables.

Swm = Scv (3.5)
The variables used as state variable are:

• engine state

• battery state of charge

20



3 – Model

The engine state is set to be equal to 1 when the engine state is on, 0 viceversa. The
battery state of charge or SOC ranges between two values, SOCmin and SOCmax. It
has to be highlighted that the SOC evolution is obtained considering the working-
mode time history while the engine state is obtained by the instantaneous working
mode value.

3.2 Engine
The main power source in parallel hybrid electric vehicle is the internal combustion
engine. In a hybrid vehicle the engine is used more efficiently with respect to a
conventional vehicle, in fact is runs at high power for longer period of times. In
this study it is used a four stroke ignition compression engine; this means that
the operative phases are four (suction, compression, expansion and exhaust). In
this kind of engine the air only is compressed and this causes its temperature to
increase. The fuel is directly injected within the cylinder just before the combustion
and is ignited by the elevated temperature of the air.
Between the start of injection and the start of combustion there is a delay due to
physical and chemical phenomena as:

• jet atomization;

• air-fuel vapor mixing;

• preliminary reaction steps.

It is characterized by high expansion ratio and lean air/fuel mixture. The primary
pollutants emitted by diesel engine are:

• NOx due to high temperatures reached in the diffusive combustion phase;

• HC due to fuel retained within the nozzles sac/spray holes and in the neigh-
borhoods of the reaction zone where the mixture is too lean;

• soot particles due to agglomeration of carbon particles produced in the hydro-
carbon cracking phase.

Look-up tables are used to model the engine performances; the fuel mass flow rate of
fuel ṁfc is evaluated by interpolating 2d map and used for CO2 emissions evaluation.

ṁfc = mapfc(Pe,mech, ωe) (3.6)

CO2 = 2.65ṁfc

ρ
(3.7)

21



3 – Model

3.3 Electric machine
The main components of the electric propulsion system are:

• electric machine;

• power converters;

• electronic controllers.

The electric machine can propel the vehicle or or recharge the battery pack. Usually
the (P)HEVs are equipped with three phase electric machines; the most common
are:

• Asynchronous: this type is characterized by great overload capacity;

• Synchronous permanent magnet: this type presents a higher efficiency than
the previous type.

In the present study the selected electric machines are part of the brushless perma-
nent magnet category (the technical data can be found on the UQM Technologies
website).
The reason behind this choice is due to the advantages of these systems:

• Compactness due to the intrinsic characteristics of the magnets (high-energy
density);

• High efficiency: no wasted power to produce excitation, absence of brushes
and commutator;

• Simplicity in the control and in the maintenance.

However this category shows also different shortcomings:

• limited maximum speed;

• high costs due to magnets,

• limited constant power range.

The Optimal-layout tool selects the maximum power of the machine defining in this
way the size of the component.The maximum power is necessary to scale the effi-
ciency maps that are used to simulate the energy losses due to the power conversion.

22



3 – Model

3.4 Battery
Lithium ion batteries are characterized by high cell voltage, high energy efficiency
and long life. The positive electrode consists of a metal oxide containing lithium
while the negative electrode consists of carbon material. The electrolyte is a liquid
solution of dissociable lithium salt and an organic solvent.
During the discharge phase the lithium ions migrates from the negative electrode
to the positive one through the electrolyte; during the charge phase the process is
reversed.
One of the main drawback of the lithium-ion battery is the reduction in their charge
capacity (and so reduction of their deliverable power) as the charge/discharge cycles
increase [11].

3.5 Torque coupling device
The torque coupling device is used to couple the torque of the engine and of the
electric machine. The vehicles considered in this study are equipped with a two-
shaft gearbox (Figure 3.1).
Referring to the contact point, the velocity correlation between the two shaft is

Figure 3.1: Torque coupling device [4]

computed as follows:

ωout · z1 = ωin,1 · z1 = ωin,2 · z2 (3.8)
where z1 and z2 indicates the number of teeth of the two gears.
Introducing the speed ratio τ = R1

R2
= z1

z2
, the previous equation can be rewritten as:

23



3 – Model

ωout = ωin,1 = ωin,2

τ
(3.9)

Considering for example the shaft 2 and and neglecting loss sources, the transmitted
force at the contact point is computed considering the input torque at the shaft:

Fc = Tin,2

R2
(3.10)

The equilibrium equation at the gear of the shaft 1 can be written as follows:

Tout = Tin,1 + Fc ·R1 = Tin,1 + Tin,2

R2
Ṙ1 = Tin,1 + Tin,2 · τ (3.11)

The previous equations can be written as:

ωout = ωin,1

k1
= ωin,2

k2
(3.12)

where k1 = 1 and k2 = z1
z2

= τ .

3.6 Pre-processing phase
For a given control strategy it is possible to define the vehicle configuration, for either
extremes of each grid’s interval. The user can selects the tool’s inputs, specifying
the vehicle, the powertrain, the cycle and the controller to be used. The optimizer
defines a specific control strategy near optimal according to the criteria defined at
the beginning of the study. In this case the configuration of the vehicle is defined
without consider the SOC and it is independent from the control strategy: it is
evaluated is a pre-processing phase decreasing in this way the computation time. In
the pre-processing phase, it has been developed a zero-dimensional kinematic model
of the vehicle and the interval-grid approach has been used. For each configuration
and for each extreme of each interval, the intermediate and the control variables are
defined.
The pre-processing phase consists of different steps:

• Acquisition of input variables;

• Components maps generation;

• Sizing of the battery;

• Generation of configuration matrix;

• Definition of components requirements;

24



3 – Model

• Feasibility check.

The matrix of configurations stores the values of the vehicle configurations defined
as the combination of the working modes (gear number and power flows) and state
variables (engine state and battery state of charge).
The configuration space is defined as:

SCONF = SGN × SP F × SES (3.13)

And the number of all possible configuration is expressed as

NCONF = NGN ×NP F ×NES (3.14)

The specific configuration selected by the user is analyzed by the tool in order
to generate the maps related to each component.
Each map is generated considering the reference map provided by the manufacturing
partner, using a scaling factor.
For the engine:

ScalingFactor = Vengine

Vengine,ref

(3.15)

For the electric machine:

ScalingFactor = Ppeak,EM

Ppeak,refEM

(3.16)

The total vehicle power demand Pv is computed considering several contributions:

Pv = Pv,roll + Pv,grade + Pv,drag + Pv,inertia (3.17)

The rolling resistance Pv,roll is expressed as:

Pv,roll = Vv · (mv · g · rv · cos ρr) (3.18)

The grade resistance is given by:

Pv,grade = mv · g · sinαr · Vv (3.19)

where mv is the vehicle mass, rv the vehicle rolling resistance coefficient, g the
gravitational acceleration, αr the slope of the road and Vv the velocity of the vehicle.
The aerodynamic drag resistance is expressed as follows:

Pv,drag = (1
2 · ρair · cx · Av · V 2

v ) · Vv (3.20)

25



3 – Model

where Av is the frontal area of the vehicle, cx is the aerodynamic drag coefficient
and it takes into account the shape of the vehicle, ρair is the density of the air. The
inertia contribution is given by:

Pv,inertia = (mv + Iwh

Rwh

) · Vv · V̇v (3.21)

where mv is the vehicle mass, Iwh the wheel inertia and Rwh is the dynamic wheel
radius.
The power sign defines the vehicle working conditions (traction or braking). The
mechanical power is split between front and rear axles.
The mechanical power at the front wheels Pwh,f is:

• in traction:
Pwh,f = (1 − δ) · Pv (3.22)

• in braking
Pwh,f = γfr · Pv (3.23)

The mechanical power at the rear wheels Pwh,r is:

• in traction:
Pwh,r = δ · Pv (3.24)

• in braking
Pwh,r = (1 − γfr) · Pv (3.25)

The power at the final drive level is expressed as follows:

• front axel

Pfd,f =
Pwh,f in traction

(1 − γbr) · Pwh,f in braking
(3.26)

• rear axel

Pfd,r =
Pwh,r in traction

(1 − γbr) · Pwh,r in braking
(3.27)

Considering the inertial power related to each component, it is possible to evaluate
the required power at the front powertrain level Ppt,f and the required power at the
rear powertrain level Ppt,r.

For the transmission:
Ptr,in = Itr · ω̇tr · ωtr (3.28)

26



3 – Model

For the engine:
Pe,in = Ie · ω̇e · ωe (3.29)

For the electric machine
Pem,in = Iem · ω̇em · ωem (3.30)

Ppt,f = (Pfd,f + Ptr,in) · ηk
tr + Pe,in + Pem,in (3.31)

where ηtr is the transmission efficiency and k is equal to 1 if the vehicle is braking,
-1 otherwise.

Ppt,r = Pfd,r + Pem,in (3.32)

The angular velocity at the front powertrain level ωpt,f is computed as follows:

ωpt,f = τ · τfd,f · Vv

Rwh

(3.33)

where τfd,f is the speed ratio of the front final drive and Rwh is the dynamic radius
of the wheel.
Similarly, at the real level:

ωpt,r = τfd,r · Vv

Rwh

(3.34)

where τfd,r is the speed ratio of the final drive. Each components is analyzed in
order to verify if it is capable or not to supply power and velocity requirements
by looking at the previously generated maps. The maximum power of the battery
is evaluated with the optimal layout tool taking into account the electric power
of the electric machines and the architecture of the vehicle.The number of cells is
determined starting from the maximum power of the battery:

Ncell,p = VcNcell,tot

500 + 1 (3.35)

The number of cell in parallel is computed by imposing as maximum admissible
voltage of the battery 550V:

Ncell,p = Ncell,pNcell,s = Pmax

Vc · Ic,max −Rc · I2
c,max

(3.36)

Ncell,s = Ncell,tot

Ncell,p

(3.37)

27



3 – Model

The total mass is calculated considering the mass cell and it is taken into account
an additional 70 % in order to consider the cooling system:

mbat = 1.7 ·mc ·Ncell,tot (3.38)

The voltage Vbat, the resistance Rbat, the capacity Cbat and the energy content Ebat

are evaluated as:
Vbat = Vc ·Ncell,s (3.39)

Rbat = Rc ·Ncell,s (3.40)

Cbat = Cc ·Ncell,p (3.41)

Ebat = Cbat · Vbat = Cc · Vc ·Ncell,tot (3.42)
The limit thresholds of the SOC are imposed to be [0.4-0.8]; the battery life is
assumed to be 150000 Ah and the maximum current transferable through a cell
is 120 A. The battery is modeled as an equivalent resistance circuit (Figure 3.2)
where the resistance and the open-circuit voltage of the battery are computed by
interpolating their 1D maps that are battery SOC functions. The system is assumed
to be temperature-independent i.e constant temperature of the battery.
The battery is designed in order to satisfy the power requirement of each electric

Figure 3.2: Battery model [4]

machine:
Pbatt,el = (

nØ
i=1

Pn,el) · ηk
inv (3.43)

where n indicates the number of electric machines, ηinv represents the efficiency of
the inverter, k = 1 in the charge phase and is set equal to −1 in the discharge phase.

28



3 – Model

The first requirement to the system is dictated by the electric power demand. The
battery current is derived from the power balance applied to the circuit considering
the specific power demand required Pbat,el :

Pbat,chem = Vbat · Ibat = Pbat,el +Rbat · I2 (3.44)

The battery current is obtained

Ibat =
Vbat −

ñ
V 2

bat − 4 ·Rbat · Pbat,el

2 ·Rbat

(3.45)

The maximum battery current is obtained as

Pbat,el,max = V 2
bat

4 ·Rbat

(3.46)

The equivalent battery capacity and the current flowing through the battery are
used to compute the SOC value:

SOC = SOC0 −
Ú Ibat

Cbat

dt (3.47)

In all those cases in which the electric power demand Pbat,el exceeds the limits im-
posed by the maximum battery power Pbet,el,max, the relative combination of control
variables is imposed to be not admissible.

3.7 Optimization phase
The outputs coming from the pre-processing phase (total feasibility matrix, fuel
consumption configuration matrix, feasibility matrix of the battery) are used in the
optimization phase. Once defined the objective function as:

J = CN(x(N) +
N−1Ø
k=0

Ck(x(k), u(k), w(k)) (3.48)

the optimal policy is determined by:

p∗(t) = min
u(t)∈S∗

cv(t)
J(p(t)) (3.49)

SOCend ≥ SOC0 (3.50)
where p(t) is the generic policy, Scv indicates the set of admissible control variables,
SOCend and SOC0 indicate respectively the SOC at the end and at the beginning

29



3 – Model

of the driving mission.
The dynamic programming is the global optimization strategy implemented in order
to find the optimal control strategy. It consists of two phases.

Backward phase

In the backward phase the procedure starts from the last interval:the cost function
is evaluated considering all the combination of the state variables (SOC and engine
state) at the end of the interval and all the combinations of control variables found
in the interval.The fuel consumption in this interval is computed by reading from
the configuration matrix the fuel consumption at the extreme of the interval and
integrating them over the time interval.Also the engine state at the end of the in-
terval is read and thanks to the battery model it is computed the SOC value and
a score is assigned. The tool detects the best combination of control variable for
all possible combinations of state variables. The procedure is iteratively repeated
moving backwardly in the time grid, from the last to the first interval.

Forward phase

In the forward phase the tool moves forwardly from the first interval to the last one,
using the results obtained from the backward phase; it reads from the configuration
matrix the results corresponding to the combination of control variables detected
during the backward phase and calculates the battery soc by means of the battery
model. The evaluated soc and the engine state obtained at the end of the first
interval are used as input of the second interval in order to detect the best control
strategy. The procedure proceeds in this way until the end of the selected driving
mission.

30



Chapter 4

Control strategy

The tools presented in this chapter are real time optimizers. They use the results
obtained with the global optimizer described in the previous chapters. These tools
are characterized by lower computation time and lower memory requirements.

4.1 CORE TOOL
The acronym CORE stands for Clustering optimization rule extraction [4], [5]. It
is a real time and rule based optimizer that uses as internal solver the genetic al-
gorithm and exploits the results obtained by the dynamic programming identifying
an appropriate set of rules for a given driving cycle.

4.1.1 Training
Each real-time optimizer requires a training phase in which the previously defined
objective function is taken into account. In this phase there are not particular
constraints in the soc of the battery in order to have more freedom in the iden-
tification of the optimal training driving cycle (this means that at the end of the
driving mission the soc level could achieve greater value than those of the beginning).

The input states of the tool are represented by the discretization of the input
varibles namely velocity, velocity variation and SOC. The output states are con-
stituted by the discretization of the control variables, gear number and powerflow.
The input states are connected to the output ones by means of a rule defined by
the global control strategy (dynamic programming). Core consists of two main al-
gorithms:

31



4 – Control strategy

Figure 4.1: Training flow chart

• CO:Clustering of optimal driving conditions

• RE: Rule extraction

Clustering of optimal driving conditions

The CO algorithm is used to generate a 3d map. This map is necessary to classify
within particular clusters the data. Each specific cluster collects data with similar
features and characteristics. Each input variable represents one axis of this map
and it is discretized into a number of states: this means that each axis is divided
into non-equispaced segments obtaining in this way a mesh of clusters. The number
of segments per each axis is given to the tool as input. The mesh can be seen as a
series of parallelepipeds whose number is given by the product of the states of the
input variables.

Nc =
NiÙ

j=1
Sj (4.1)

where Nc is the number of clusters, Ni the number of input states and Sj is the
number of states i.e the number of segment in which each axis is divided.
The lower and the upper thresholds of each input variables are defined at priori:
v = [0 150], dv

dt
= [−40 20], the SOC level = [0.4 0.8].

Once the map is generated, the points of the actual driving mission are distributed
within the correct cluster.
For each cluster is identified a rule, i.e the optimal combination of gear number and
powerflow, by means of the rule extraction algorithm.

32



4 – Control strategy

Rule extraction algorithm

In this step the results of dynamic programming are crucial. Because each cluster
occupies a portion of the space, there the actions performed by the dynamic pro-
gramming not necessarily are unique, in fact it is possible to have more powerflows
selected by the dynamic programming in that portion, all of them feasible.
As first guess, it is selected the most frequent action that becomes the unique policy
used for that cluster. In all that cases in which the clusters remain empty because
no points occur within them, it will be selected a backup rule (the pure electric
mode). Applying a backup rule is not optimal and in order to avoid this drawback
it is necessary impose the correct discretization of the map, trying to find the best
solution that allows to not leave too much point of the driving mission with a backup
solution that could not be the optimal one.

Genetic algorithm

The performance of this method are correlated to the mesh of the 3d input domain:
different discretization could have as consequence that some points might fall into
different clusters. The internal solver used within this tool is the genetic algorithm
and the previously defined procedure is performed for the whole population.
The genetic algorithm is adopted in order to define the best size of the grid for
each input variable in order to minimize the objective function (minimization of
fuel consumption and CO2 emissions ttw). The aim of the ga is to find the best
individual and so the best grid size.
The main parameters involved are listed in Table 4.1:
The crossover factor determines the number of individuals affected by crossover.

Population dimension Nind 1500
Generations Ng 20
Crossover factor χ 0.7
Fraction of mutated genome µ1 0.1
Elite children 1

Table 4.1: Values of main parameters of GA

Nind,cross = fcross · (Nin,pop −Nelite) (4.2)

where fcross is the crossover fraction, Nin,pop is the number of individuals of the
starting population, Nelite the number of elite children. The number of individuals
affected by mutation is determined as follows:

Nmut = Nin,pop −Nelite −Nind,cross (4.3)

33



4 – Control strategy

In the Matlab environment, each individual is reproduced by means of an array that
represents the genome of the individual. The genome length is computed as:

Nk =
NiØ

j=1
(Sj − 1) + 1 (4.4)

An individual keeps all the informations in terms of grid size necessary to generate
the mesh. In details, it consists of different elements, each one represents the length
of the segments associated to the input variable i.e velocity, velocity variation and
soc. The analysis is performed over a population of 1500 individuals, two orders of
magnitude greater than the genome’s length.
At the beginning this population is generated randomly: this means that the length
of each element of each input variable that forms each individual is imposed ran-
domly. Using the information kept within each individual, it is generated a map
and for each cluster is applied the most frequent action performed by the dynamic
programming. So, the number of segments of each axis is imposed at priori but
the length of each segment is different passing from one solution (individual) to
another. Once the grid is built and the rules are assigned to each cluster, all the
individuals are evaluated in order to estimate fuel consumption and the feasibility
of all the components. The fuel consumption is evaluated considering the current
rule and extrapolating the consumption associated to that rule in the configuration
matrix; this is done for each time instant of the driving mission and for the whole
population. Also the feasibility of the vehicle is evaluated considering the rule in the
current cluster. This evaluation involves the assignment of a score to each candidate
solution and when all the individuals are evaluated for the total driving mission, the
assigned scores are used in order to perform a fitting selection based on the mini-
mization of CO2 tank to wheel.
The successive generation are not generated randomly. The best individual of the
previous generation , i.e. the individual with the minimum score, is always selected
while the other individuals are affected by crossover and mutation. The mutated
ones are affected by a mutation factor. In the code this is realized multiplying the
selected array by a scale factor that contracts as the number of generations increase
in order to reach convergence, as it is suggested from genetic algorithm literature.

γ = 1
Ngen

(4.5)

Fmut = 1 − γ ·Ngen,act (4.6)

where γ is a constant factor while Fmut is the mutation factor, Ngen,act represents
the actual generation’s number.
The others are affected by a crossover factor i.e each individual is the results of a

34



4 – Control strategy

mixture of elements coming from two different individuals of the previous generation
selected according to their scores.
The selection procedure is realized taking into account the score of each individual
and applying the roulette wheel selection. Let us suppose to have a wheel where
each candidate solution occupies a pie whose size is strictly related to its score: the
lower the score, the greater is the portion of the pie occupied by that individual.
Then we can suppose to tune the wheel, selecting in this way a certain individual:
obviously the greater the portion of the pie, the greater the chance to be selected as
future parent. Once the candidate parents are selected, their genes are mixed using
two approaches. The first approach is labeled as Parent Combination and implies
the linear combination of the parents’ genes. Mathematically this relation can be
expressed as follows:

y = x1 · α + (1 − α) · x2 (4.7)
In Figure 4.2, the results obtained by applying the Parent combination method are
showed. The simulation is performed over the Wltp cycle with an heavy duty ve-
hicle. As can be seen, the convergence condition is reached after few generations
because of too similar candidate solutions. The second approach is labeled as Parent

Figure 4.2: Parent combination method, 1000 individuals, 10 generations

Selection and implies the random combination of the parents’ genes by flipping a
coin. The results obtained through the Parent Selection approach are showed in
the Figure 4.3. In Figure 4.4, the results obtained by alternating the two methods
during even and odd generations are showed. As can be noted, the obtained final
score is very close to the final score obtained by applying the Parent combination

35



4 – Control strategy

Figure 4.3: Parent selection method, 1000 individuals, 10 generations

Figure 4.4: Hybrid method, 1000 individuals, 10 generations

method. The termination condition is reached after a pre-defined number of gener-
ations [10] and the best element of the last generation represents the best grid.
The correct number of the generations can not be predicted at priori: theoretically a
genetic algorithm is thought to improve constantly, however, to select an acceptable
number in a weighted way, the factors considered are different such as the extent of
improvement, the achievement of the convergence tested on different tests and the
distance of the best solution compared to the standard deviation of the population.

36



4 – Control strategy

4.1.2 Validation phase
In the validation phase, the results obtained from training, i.e the disctretized map
and the set of rules, are validated. The points of the actual driving mission are
splitted within the clusters and in each cluster it is used the rule extracted from
the dynamic programming during the training phase. In this way it is possible to
evaluate fuel consumption and CO2 ttw emissions.
The scores of the training phase represent the kg of CO2 tank to wheel. At the
end of the validation phase the carbon dioxide is evaluated in terms of g/km but
this score is greater than the score obtained during the training phase because of a
penalty that takes into account that the soc level is not brought back to the level
that it had at the beginning. It is possible to validate a driving cycle using a training
made on itself, obtaining in this way the best result possible for that driving cycle.
It is also possible validate a driving cycle using a training performed over a different
driving mission: in this case it is expected a deterioration of the performance of the
tool but this deterioration can be mitigated selecting properly the training driving
missions.

4.1.3 Multiple training
The training can be performed also on more driving cycles. For each cycle it is
repeated the same procedure used before:

• distribute points of the actual driving cycle within the clusters;

• extrapolate the rule for each cluster;

• evaluate CO2 according to fuel consumption;

• assign a score;

Even if the cycles are inserted following a certain order, when the current cluster
is identified, the points that coincide will have the same rule. Once that this proce-
dure is done for all driving cycles, the final score is determined as the mean value of
all the scores and the best individual will always be characterized by the minimum
score.
The way in which the final score is determined is a critical issue because the weight
assigned to the score associated to each driving mission can affect the final results.
By weighing the scores of each cycle on the cycle distance, the results are very close
to those obtained performing the simple average of the scores. In some cases, slightly

37



4 – Control strategy

lower final scores have been obtained, however, since this is not repeatable on a large
set of cycles, this approach has been abandoned.

4.1.4 Modification to termination condition
Instead of using a pre-defined number of generations, it is calculated an error with
respect to the dp. If it is lower than a certain percentage, the loop is broken before
the termination condition; if it is greater, the threshold of termination condition is
increased and the loop re-starts again.
Type of error:

• Relative error defined as the difference between the actual score and the dp
score normalized over the dp score.

• standard error:estimate of the standard deviation. It is equal to the variance
of the population divided by the square root of the sample size.

This is done because the improvement obtained with the default number of genera-
tions is often only a few percent units or even lower percentages.

4.1.5 Rule extraction
Initially the algorithm selects always the most frequent action performed by the
dynamic programming: in this case it is observed that the genetic algorithm, passing
from one generation to the successive one, always improves. In fact the most frequent
action leads to at least equal or less score with respect to the previous generation.
The mode is the most frequent value present in a certain data set. The entire dataset
can be represented on a histogram (Figure 4.5) and in this case the highest bar will
represent the mode. Generally speaking it can be considered the most "popular"
option.

Not necessarily the mode is unique since it is possible to have the same maximum
value at several points. Usually this function is used to show the most common cat-
egory. In a normal distribution, the mode, the mean value and the median assume
the same numerical value.
The mode(s) can be obtained through the frequency distribution of the observed
data.
In the matlab environment this is realized thanks to a function called mode.

38



4 – Control strategy

Figure 4.5: Mode

4.1.6 Modifications to rule extraction
In order to select properly the action performed by the dynamic programming, it is
necessary a statistical analysis. Two basic concepts need to be clarified before start:
population and samples. Population is the collection of all individuals or items under
consideration in a statistical study [9]. Sample is that part of the population from
which information is collected . A statistical population is the set of measurements
corresponding to the entire collection of units for which inferences are to be made.
A sample from statistical population is the set of measurements that are actually
collected in the course of an investigation [9]. In our case, the population is made
by all possible combinations of power flow and gear number while the samples are
only those combinations actually performed by dynamic programming in the current
cluster.
The final aim of this analysis is make inferences about population using information
stored in the sample data. The number of observations contained within a certain
class is the frequency of that class. The frequency distribution is a graphical way
(usually table or histogram) to show all the classes and their frequencies. The
percentage of a class is obtained making the ratio between the frequency of the class
and the total number of observations.

Modified mode or alternated frequency method

When there are multiple values occurring equally frequently, the function used in
the Matlab environment (mode) returns the smallest of those values. In order to

39



4 – Control strategy

try to avoid to loose some information, when there are two actions performed with
the same frequency, they are chosen alternatively during even and odd cycles.
The trick of this modification creates chaos within the logic of the genetic algorithm
and in this way it is possible reach convergence with lower error with respect to
dynamic programming i.e. with a lower number of generations than the Frequency
default method (4.1.5). However this result is strictly related to the current dis-
cretization.
The only way to assess which choice is the better one, is evaluating all the choices
at the same time and selecting the rule associated to the choice that brings to a
reduction in fuel consumption and in the pollutant emissions.
The results obtained with the mode function and modified mode function can be
analyzed and compared (Figure 4.6). In this case the simulation is performed over
the Nedc cycle with a compact vehicle; the tool is trained over a population of 1500
individuals and the termination condition is reached with a pre-defined number of
generations that in this case is equal to 20.
Either functions show a decreasing trend:passing from one generation to the next, it
can be seen that the score equals the previous one or improves.The balance between
two scores is due to the fact that the best individual is always selected at the end
of each generation.

Figure 4.6: Comparison between the mode function and the modified mode function

40



4 – Control strategy

Random choice

In the Matlab environment the random choice is performed using a function called
"datasample". This function selects the rule randomly between all possible actions
done in that specific cluster. This is done for all clusters and all individuals.

• Comparable results;

• sometimes a result can be greater than the previous one;

• Unpredictable results: the final score obtained could be better than that ob-
tained with the mode function.

The results obtained with the mode function and the datasample function can be
analyzed and compared (Figure 4.7). In this case the simulation is performed over
the Nedc cycle with a compact vehicle; the tool is trained over a population of 1500
individuals and the termination condition is reached with a pre-defined number of
generations that in this case is 20.
The datasample function shows a not-decreasing trend and its results can not be
predicted at priori: at the end of the twenty generations we get a better score than
the one obtained with the mode function, but this is only a case.

Figure 4.7: Comparison between the mode function and the datasample function

Conditional probability

Instead of selecting the most frequent action, the choice is performed considering the
frequency of occurrence of each action. The reason behind this choice is try to not

41



4 – Control strategy

loose information coming from dynamic programming by considering all those ac-
tions performed by dp within a given portion of space (even if that action is not the
most frequent one). In the Matlab environment this is realized with the datasample
function (by changing some options) that samples with probability proportional to
the likelihood of each action. In fact the probability can be defined using the relative
frequency. Definition: The probability of a particular outcome is the proportion of
times that outcome would occur in a long run of repeated observations [9]. This
kind of choice has been implemented in order to reproduce a theory that recalls the
Bayesan one i.e considering the prior and the posterior probability of each possible
choice in order to perform a choice based on the probability: in this way we obtain
a set of results that could consider in a given cluster also the choices performed with
a lower frequency than the most frequent one.

4.1.7 Sensitivity on the number of individuals
Different classes of individuals are analyzed. These classes are labeled as low,
medium and high classes. In the first version of the code it was possible to change
the size of the class at the beginning of the simulation: to each class different pa-
rameters were connected:

• size of vehicle’s components;

• vehicles miles traveled;

• e-road penetration, e-road charge and e-road efficiency;

• fuel/battery and electric energy price;

• initial battery charge;

• number of individuals;

• number of generations.

The choice of the class results in different final score and so CO2 ttw emissions
mainly because by changing the class, the size of the component changes. Also the
computation time was affected by the class’ choice. This kind of implementation
was adopted only for the compact vehicle and was useful to compare different classes
with only only one command.
The choice of the number of individuals affects the computation time and capability
of the genetic algorithm to improve. This means that a low class could result in

42



4 – Control strategy

a fake convergence due to candidate solutions too much similar: in this case the
capability of the algorithm is not properly tested. The choice of the number of
generations affects the convergence: a genetic algorithm is thought to improve as
the number of generations increases. The population selected consists of 1500 indi-
viduals, its size is selected to be two order of magnitude greater than the genome
length.Several population size are analyzed, from 250 individuals up to 1500. For
each class of individuals, ten iterations are performed.

4.2 ACORE
The acronym ACORE stands fore Adaptive-CORE. It has been developed to try
to overcome the drawbacks of the Core tool in fact it does not require to know at
priori the driving cycle. The procedure implemented aims to recognize the actual
unknown driving mission associating it to known driving cycles, already trained and
validated through the Core tool. The logic behind the algorithm can be summarized
in a sequence of steps as depicted in Figure 4.8.

Figure 4.8: Acore flow chart

4.2.1 Definition of training driving cycles’ set
At the beginning of the procedure, different training cycles are selected:

• Nedc, New european driving cycle.

• Ardc, Artemis Rural Driving Cycle

• Wltp, Worldwide Harmonized Light Vehicle Test Procedure

• Whvc, World harmonized vehicle cycle

43



4 – Control strategy

• Etc, European transient cycle

Figure 4.9: Ardc driving cycle

The Artemis project (Figure 4.9) is a statistical study performed in Europe and it
mainly consists of 3 parts, urban, rural and motorway. These cycles are only used
to understand the real driving conditions and so the vehicle’s performance and not
for pollutant certification.
The European transient cycle (ETC 4.10) is used for heavy-duty emission certifica-

Figure 4.10: Etc driving cycle

tion. It is characterized by real road cycle measurements. It mainly consists of three
parts, urban, rural and motorway. The first part is characterized by a maximum
speed of 50 km/h, frequent starts, stops and idling. The average speed of the rural
and of the motorway part is respectively about 72 km/h and 88 km/h.
The world harmonized vehicle cycle (WHVC, Figure 4.11) is a chassis dynamo-

meter test. It consists of three parts (urban, rural and motorway). The urban part

44



4 – Control strategy

Figure 4.11: Whvc driving cycle

(900s) presents an average speed of 21.3 km/h and a maximum speed of 66.2 km/h.
The rural part (481 s) presents an average speed of 43.6 km/h and a maximum speed
of 75.9 km/h. The motorway part ( 419s) is characterized by an average speed of
76.7 km/h and a maximum speed of 87.8 km/h.
The Nedc cycle (Figure 4.12) was designed in 1980s and it was used as reference
cycle for vehicles homologation in Europe. It consists of four urban parts called Ece
and an extra-urban part called Eudc. It was criticized by experts because it did
not represent real life driving conditions: it is characterized by soft accelerations,
there are a lot of constant speed parts and idle events. The Nedc cycle has been

Figure 4.12: Nedc driving cycle

substituted by the Wltp cycle(Figure 4.13) that applies from September 2017. The
Wltp test is performed on a chassis dynamometer. It is divided into 3 classes, de-
pending on the power to mass ratio of the tested vehicle. The Europe zone belongs
to the Class3, with a PMR ≥ 34. This cycle is characterized by four zones: one

45



4 – Control strategy

representative of urban driving, one of sub-urban driving, one of extra-urbn driving
and a highway zone.
The main differences between the Wltp and the Nedc cycle are summarized in Table
4.2.

Figure 4.13: Wltp driving cycle

NEDC WLTP
Test cycle Single test cycle Dynamic cycle (more rep-

resentative of the actual
driving conditions)

Cycle time 20 minutes 30 minutes

Cycle distance 11 Km 23.25 Km

Driving phases 2 phases, 66% urban and
34% non-urban

4 phases, 52% urban and
48% non-urban

Average speed 34 km/h 46.5 km/h

Gear shift Vehicles have fixed gear
shift points

Different gear shift points

Table 4.2: NEDC-WLTP comparison [19], [20]

These cycles are divided into segments of equal size. The size is selected at the

46



4 – Control strategy

beginning of the algorithm and stored within a variable called timestep. For each
segment, several parameters are evaluated and used to make the comparison be-
tween cycles [12] [13]:

• mean, maximum and minimum speed;

• mean, maximum and minimum acceleration;

• number of positive and negative accelerations;

• idle times;

In the Matlab environment each cycle is stored within matrix. Each row corre-
sponds to a segment. For each segment the parameters defined before are evaluated
and stored within a structure where each field is linked to a different parameter. In
turn, each parameter is linked to each cycle. This matrioska matrix can be summa-
rized in Equation 4.8.

MATRIX =



velocity



Mean



Nedc
Ardc
Wltp
Whvc
Etc

Maximum
î
...

Minimum
î
...

Idle times
î
...

acceleration



Mean
î
...

Maximum
î
...

Minimum
î
...

Number of positive acceleration
î
...

Number of negative acceleration
î
...

(4.8)

For example, considering the mean velocity of the Nedc cycle, it results to be a
matrix with one row and a number of columns equal to the number of segments: in
the first position it is stored the mean value of the first velocity segment.
These values are compared with the unknown driving mission whose cycle data are
acquired with a clock of one second. Starting from the time instant equal to the
step size, the cycle recognition is done considering a number of instants equal to the

47



4 – Control strategy

step size and prior to the actual time instant. The parameters defined before are
evaluated on this window and compared with the segments of all driving cycles.
The actual cycle parameters are compared with the parameters of all the training
driving cycles’ segments.

dparam = vparam,cyc,i − vparam,actcyc where i = 0, ..., NSegm,Cyc (4.9)
For each cycle, these values are stored within matrix whose number of rows is equal
to the number of parameters previously defined while the number of columns are
equal to the number of segments of the specific training driving mission considered.
So the first column represent the first segment while the in the first row it is stored
the difference between the mean speed of the cycle’s first segment and the mean
speed of the segment of the actual cycle; in the second row the difference between
the maximum speed of the cycle’s first segment and the maximum speed of the
actual cycle segment and so on.
All the parameters are assumed to be equal in weight. For each matrix, it is evaluated
the mean value of each column and it is selected the minimum one. At this point it
is obtained a vector containing a number of values equal to the training cycle: these
values are compared and the minimum one identifies the training cycle closer to the
actual one.
Two different approaches for the division of cycles into segments are analyzed and
compared, namely A Solution (Segment approach) and B solution(Sliding window
approach).
In the A solution, each cycle is divided into segment whose length is equal to the
timestep: for example, if the stepsize is equal to 11 seconds, the segment one covers
the portion that goes from the first instant to the 12th ones, the second segment
from the 13th to the 24. Considering the time duration of each cycle,the number of
segments in which each cycle is divided is obtained by dividing the time duration of
the cycle with the timestep:

Nsegm = Dt,cyc

timestep
(4.10)

The number of segment obtained with the Segment approach is reported in Table
4.3.

The total number of segments resulting from solution A with a timestep of 11
seconds is 714. In the B solution, each cycle is divided in segments using a sliding
window that proceeds throughout the cycle: the segment one goes from the 1st time
instant up to the 12th, the second segments from the 2nd time instant up to the 13.
Considering the time duration of each cycle,the number of segments in which each
cycle is divided is obtained by subtracting the time step to the time duration of the
cycle:

Nsegments = Dt,cycle − timestep (4.11)

48



4 – Control strategy

Nsegm

Nedc 127
Ardc 98
Wltp 163
Whvc 163
Whvc 163

Table 4.3: Definition of A Solution’s number of segments

The number of segment obtained with the Sliding window approach is reported in
Table 4.4. The total number of segments resulting from solution A with a timestep

Nsegm

Nedc 1169
Ardc 1071
Wltp 1789
Whvc 1789
Whvc 1789

Table 4.4: Definition of B Solution’s number of segments

of 11 seconds is 7607.

4.2.2 Current driving cycle evaluation
The current driving cycle is evaluated starting from the time instant equal to the
time step, considering a historical window equal to the time step. On this window,
the parameters defined before are evaluated and compared with all the parameters
of all the training driving cycles.
The two approaches are compared by testing them in the recognition of the training
cycles. The selected cycle are the Ardc, Etc, Wltp. The training set consists of five
driving cycles, Nedc, Ardc, Wltp, Whvc, Etc. The simulation times are reported in
Table 4.6.

Solution A Solution B
Etc 82s 503s
Wltp 82s 493s
Ardc 49s 273s

Table 4.5: Simulation time comparison

49



4 – Control strategy

It can be noted that:

• solution B the most effective in all three cases;

• the simulation time is less than the cycle time duration.

Considering the success rates obtained with the sliding window approach, from now
on it is the only solution considered.
Figures 4.14 , 4.15, 4.16 represent the results obtained with the cycle recognition
algorithm in three cases i.e in the recognition of the Etc driving cycle, Wltp and
Ardc.

Figure 4.14: Etc cycle recognition

The Wltp cycle recognition, Figure 4.16, results to be successful at 91,2% while
the remaining 9 % is splitted between Ardc (0.6 %) and Nedc (8.2%)cycles. As
can be observed in Figure 4.17, the algorithm selects the Nedc cycle in a specific
time window. By comparing the Nedc and the Wltp velocity profiles in that specific
time window, it can be noted that both cycles have null velocity profiles ( Figures
4.18 and 4.19 ). For the Wltp and Etc cycles, the success rate is over 90 percent,
while in the Ardc case, 100 percent is obtained. It can be seen that by enlarging
the time window within which the cycle parameters are evaluated, the ability of the
algorithm to recognize one of the training cycles improves ( Figure 4.20 ). In Figure
4.21 the results obtained by enlarging the window size in the Wltp cycle recognition
are showed. By enlarging the window size, the algorithm efficiency improves.

50



4 – Control strategy

Figure 4.15: Ardc cycle recognition

step size 11 s 20 s
Etc 503s 451s
Wltp 493s 420s

Table 4.6: Simulation time comparison

4.2.3 Rule assignment
The five training cycles of the training set are validated on different trainings on the
core tool. The results in terms of CO2 tank to wheel are analyzed and for each cycle
of the training set, it is selected the training of core at which it answers better.
In the Matlab environment this is realized by means of matrix where each row
represents the results in terms of CO2 ttw obtained during the validation phase of
the Core tool and each column represents one of the training cycle used for the
pattern recognition.
The Core tool has been validated over single trainings performed on the same set of
driving cycles used for the driving cycle recognition. Because these training do not
result to be feasible for the entire set, by means of a feasibility check all unfeasible
results are discarded.
The rules and the relative discretization of the selected training of core are applied
to the current time instant of the unknown driving cycle.

51



4 – Control strategy

Figure 4.16: Wltp cycle recognition

Figure 4.17: Wltp cycle recognition

52



4 – Control strategy

Figure 4.18: Zoom on the Nedc cycle

Figure 4.19: Zoom on the Wltp cycle

53



4 – Control strategy

Figure 4.20: Comparison between different time steps applied on Etc cycle

Figure 4.21: Comparison between different time steps applied on Wltp cycle

54



Chapter 5

Results

5.1 Core results
Genetic algorithm performance is affected by several parameters such as the popu-
lation size, the crossover and mutation factors.

5.1.1 Population size
The performance of the CORE tool using different population sizes has been inves-
tigated. Three classes of individuals have been defined. The first class, labeled as
L class, consists of 500 individuals and ten generations. The second class, labeled
as M class, consists of 1500 individuals and 30 generations. The third class, labeled
as H class, consists of 2500 and 30 individuals. The analyses have been performed
using the default parameters.
The clustering optimization algorithms employs velocity, velocity variation and SOC
as input variables. The discretization used is [ 8 9 3]. The crossover factor imposed
is equal to 0.7 while the portion of modified genome is equal to 0.1. The offspring
has been generated using the parent selection method: the genes of the selected
parents are mixed in a random way by flipping a coin.
The rule extraction algorithm uses the Default frequency method: once the mesh is
created, for each cluster the most frequent action performed by the dynamic pro-
gramming is selected and becomes the unique action.
The simulations have been performed over the Whvc driving cycle and the vehicle
selected is an heavy duty. The results are showed in Figure 5.1. The scores in terms
of kg of CO2 tank to wheel have been compared.
The low class results to be the most inefficient one: the convergence is reached

not because the genetic algorithm actually improves but only because there are too
similar solutions (too similar individuals).
As suggested by literature, the population dimension is chosen to be two order of

55



5 – Results

Figure 5.1: Class comparison

magnitude greater than the length of the genome . The M class results to be a good
compromise in terms of simulation time and ga improvements.
The H class shows results very close to the medium class but it has been discarded
because of simulation time requirements. The optimal solution is represented by the
results in terms of kg of CO2 ttw obtained by the benchmark optimizer (dynamic
programming). As can be seen from Figure 5.2 the L class shows a linear descending
trend reaching convergence after few number of generations. The M class shows a
descending trend obtaining better results than the L class; passing from one gener-
ation to the successive one, it is observed an improvement of the GA.

5.1.2 Rule extraction methods comparison on M class
The rule extraction algorithm has been tested by using three different methods as
explained in 4.1.6 . In the Frequency default method for each cluster, the most
frequent action selected by dynamic programming is chosen, becoming the unique
action for that cluster.
In the Alternated frequency method, the frequency of occurrence of dp actions is
evaluated for each cluster. The action selected is always the most frequent one but
in this case, if two actions are performed with the same frequency, they are alterna-
tively chosen during even and odd generations. On the contrary, in the Alternated
frequency method, if two actions are performed with the same frequency, the selected
action is always the one with the lowest index.
In the Probabilistic method the unique action for each cluster is computed considering

56



5 – Results

Figure 5.2: Class comparison

the likelihood of occurrence of the actions performed by the benchmark optimizer.
The main parameters of the GA are maintained constant: the crossover factor is
set equal to 0.7, the portion of the genome mutated is equal to 0.1, the offspring is
generated by applying the Parent selection approach. The results obtained on the
M class are showed in Figures 5.3, 5.4. As can be noted, the Probabilistic method

Figure 5.3: Choices comparison on medium class

shows a not-descending trend; passing from one generation to the next, higher scores
can be obtained. This method has been discarded because of its unpredictable re-
sults and because the selected control strategy might be not optimal in terms of Soc

57



5 – Results

constraints, obtaining in this way unfeasible results.

Figure 5.4: Choices comparison on medium class

The optimal solution is represented by the results in terms of kg of CO2 tank
to wheel obtained by the benchmark optimizer (dynamic programming). As can
be noted from Figure 5.4, the Frequency alternated method is the most efficient. It
shows a descending trend and it reaches better final scores than the Frequency de-
fault method. However, the scores depend on the grid size information: these results
are obtained starting from three different initial populations, randomly generated.
The relative error with respect to the dynamic programming is equal to 3.5 %.

5.1.3 Sensitivity analyses

In order to better investigate the performance of the rule extraction method, several
sensitivity analyses have been performed, changing the number of individuals and
generations. Each simulation has been repeated for 10 iterations, keeping constant
the rule extraction method, the number of generation and the number of individu-
als. The crossover factor is fixed to 0.7 while the portion of the modified genome is
equal to 0.1. The offspring is generated by using the Parent selection method. The
selection has been made by using the roulette wheel selection.

58



5 – Results

250 individuals and 160 generations

The first trial has been performed with a population of 250 individuals that evolves
for 160 generations. The results are showed in Figures 5.5, 5.6 where the score
trend of ten iterations as a function of the number of generations is depicted. As

Figure 5.5: 250 individuals, 160 generations, Frequency default method

Figure 5.6: 250 individuals, 160 generations, Alternated Frequency method

can be seen the dynamic programming result (represented by the red line) is not
reached by neither of the two methods. With the frequency default method, one of
the trials score falls under 8 threshold but the others reach convergence after few

59



5 – Results

generations. The alternated frequency method shows a always decreasing trend in
all the trials and there are lower trend part at horizontal tangent than those present
in the frequency default method.

700 individuals and 50 generations

Figure 5.7: 700 individuals, 50 generations, Frequency default method

Figure 5.8: 700 individuals, 50 generations, Alternated frequency method

The alternated frequency method (Figures 5.7, 5.8) results to be more efficient
than the frequency default method: it reaches lower final score in one of the trials

60



5 – Results

while the score trend is always descending. The horizontal tangent parts are more
extended with the first method.

1500 individuals and 30 generations

Figure 5.9: 1500 individuals, 30generations, Frequency default method

Figure 5.10: 1500 individuals, 30generations, Alternated Frequency method

5.1.4 Different discretization
A different discretization has been investigated over the Whvc driving cycle with the
M class population size. The sensitivity has been made changing the rule extraction

61



5 – Results

method. The alternated frequency method results to be the most efficient, showing

Figure 5.11: Different discretization - M class

Figure 5.12: Different discretization [19 21 3]- M class

a always descending trend. Also the frequency default method shows a decreasing
trend but it reaches a higher final score than the alternated frequency method. The
probabilistic approach shows a not decreasing trend as assessed in 4.1.6. As can be
seen, the obtained final score is very close to the score obtained with the previous
discretization.

62



5 – Results

5.1.5 Sensitivity on crossover factor
The crossover factor determines the number of individuals affected by crossover. In
the graph depicted in Figure 5.13, the results obtained imposing different crossover
factors are showed. As can be seen, the smaller the crossover factor, the faster
convergence is reached because the population is made up of very similar solutions.
The simulations are performed over a population of 1500 individuals that evolves
for 30 generations. The best result is obtained using a crossover factor of 0.7 even
if it is very closer to the result obtained with a factor equal to 0.8. The simulations
are performed over the Nedc driving cycle and the selected vehicle is an heavy duty.

Figure 5.13: Crossover factors comparison

5.2 Acore results
In Figures 5.14, Clust 8 cycle recognition the results obtained with the Acore tool are
depicted. The driving cycle analyzed belongs to the Clust family i.e driving cycles
representing real driving conditions. Each cycle is divided into segments using the
Sliding window approach and it is compared with five cycle, Nedc, Ardc, Wltp,
Whvc and Etc. Figures 5.16 and 5.17 show a zoom of the Clust 2 and Etc driving
cycles. As can be noted in the figure 5.15, in the portion in between 400 s and
425 s, the algorithm selects the Etc driving cycle. Comparing this results with the
velocity profile in Figures 5.16 and 5.17 ranges approximately around 40 km/h for
both cycles. Figures 5.20 and 5.21 show a zoom of the Clust 8 and Nedc driving

63



5 – Results

Figure 5.14: Clust 2 cycle recognition

Figure 5.15: Clust 2 cycle recognition

cycles. As can be noted in Figure 5.19, in the portion in between 1000 s and 1180 s,
the algorithm selects Nedc driving cycle. Comparing this results with the velocity
profile in Figures 5.20 and 5.21 ranges approximately around 70 and 85 km/h for
both cycles.

64



5 – Results

Figure 5.16: Clust 2 zoom

Figure 5.17: Etc zoom

65



5 – Results

Figure 5.18: Clust 8 cycle recognition

Figure 5.19: Clust 8 cycle recognition

66



5 – Results

Figure 5.20: Clust 8 zoom

Figure 5.21: Zoom on Nedc cycle

67



Chapter 6

Conclusions and future works

6.1 Conclusions

This study is focused on the development of an adaptive real-time control strategy
for (plug- in) hybrid electric vehicles. The simulated vehicles are equipped with a
compression ignition engine. In the first part of this study, a real time optimizer,
namely Core [4], has been analyzed and used to develop a new rule based control
strategy implementable on-board, Acore. This controller aims to select in real time
the optimal control strategy in terms of gear number and powerflow. It compares
an unknown driving mission with a set of known driving cycles for which optimal
set of rules is previously identified. At each instant, once the cycle recognition is
made, the set of rule is applied to the unknown driving cycle. It has been tested
over several driving cycles such as Nedc, Ardc, Wltp, Etc.
The core tool is used to compute a 3d map discretized using the input variables
(velocity, velocity variation, Soc), generating in this way a mesh of cluster. The
rule, in terms of combination of powerflow and gear number, has to be selected
among the alternatives proposed by the dynamic programming: considering that
each cluster occupies a portion of space, in that portion the dynamic programming
could perform several actions. It has been investigated the way in which the actions
performed by the global optimizer are selected.
The main findings of this activity can be summarized as follows:
Rule extraction Two approaches have been implemented in order to explore dif-
ferent solutions and try to improve the performance of the Core tool. The results
obtained with the Alternated frequency method show not-negligible improvements
on the Core tool performance.
Termination condition
The internal solver (GA) used within the Clustering optimization tool has been

68



6 – Conclusions and future works

analyzed. Different sensitivity analyses have been performed in order to better un-
derstand which parameters actually affect the Ga performance. In order to decrease
the simulation time, a new termination condition has been proposed.
Acore tool
A new real time optimizer has been developed in order to overcome the Core tool
shortcomings. It can be applied in real-time without a priori knowledge of the
driving mission.

6.2 Future works
Genetic algorithm
Deep sensitivity analyses of the offspring generation have to be performed, applying
new methods as the Stud Ga to try to improve the performance of the genetic
algorithm.
Acore
It would be fundamental to investigate an alternative set of parameters for the
driving cycle recognition.

69



Bibliography

[1] R. Bellman, Dynamic programming,Princeton University Press, 1957.
[2] Wei Liu, Hybrid electric vehicle system modeling and control,Wiley, 2017.
[3] Iqbal Husain, Electric and hybrid vehicles design fundamentals,2011
[4] M.Venditti, Innovative Models and Algorithms for the Optimization of Layout

and Control Strategy of Complex Diesel HEVs , 2015.
[5] R. Finesso, E. Spessa, M.Venditti, An unsupervised Machine Learning Tecnique

for the Definition of a rule based control stategy in a complex HEV SAE Inter-
national, 2016.

[6] S.Gotshall, B. Rylander, Optimal population size and genetic algorithm
[7] Sun Yuan Kung, Kernel methods and machine learning, Cambridge University

Press, 2014
[8] P.R.Kumar, Dynamic programming
[9] J. Isotalo, Basics of statistics
[10] S. N. Ghoreishi, A. Clausen, B.N. Joergensen, Termination criteria in Evolu-

tionary Algorithms: A Survey
[11] A. Maruyama, R. Kono, Y. Sato, T. Ishizu, M. Koseki, Y. Muranaka, Automo-

tive lithium-ion batteries
[12] S. Jeon, S. Jo, Y. Park, J. Lee, Multi- mode driving control of a parallel hybrid

electric vehicle using driving pattern recognition, Journal of Dynamic Systems,
Measurements, and Control, 2002.

[13] H. He, C. Sun, X. Zhang, A method for identification of driving patterns in
Hybrid electric vehicle based on a LVQ neural network , Energies, 2012.

[14] C.M Bishop, Pattern recognition and machine learning,2006
[15] https : //www.tutorialspoint.com/genetic− algorithms
[16] https://statistics.laerd.com/statistical-guides/measures-central-tendency-mean-

mode-median.php
[17] https://www.mv.helsinki.fi/home/jmisotal/BoS.pdf
[18] http://www.eolss.net/sample-chapters/c18/E6-43-18-05.pdf
[19] http://wltpfacts.eu/from-nedc-to-wltp-change
[20] http://www.car-engineer.com/the-different-driving-cycles

70


	Acknowledgements
	Introduction
	Regulations
	Pollutant emissions and greenhouse gas
	Alternatives to conventional vehicle

	Global control strategy optimization
	Dynamic programming
	Genetic algorithms
	History and brief introduction
	Population
	Fitness function
	Selection
	Crossover
	Mutation
	Termination condition
	Comments


	Model
	Time grid
	Engine
	Electric machine
	Battery
	Torque coupling device
	Pre-processing phase
	Optimization phase

	Control strategy
	CORE TOOL
	Training
	Validation phase
	Multiple training
	Modification to termination condition
	Rule extraction
	Modifications to rule extraction
	Sensitivity on the number of individuals

	ACORE
	Definition of training driving cycles' set
	Current driving cycle evaluation 
	Rule assignment


	Results
	Core results
	 Population size
	Rule extraction methods comparison on M class
	Sensitivity analyses 
	Different discretization
	Sensitivity on crossover factor

	Acore results

	Conclusions and future works
	Conclusions
	Future works

	Bibliography

