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[Abstract] In monitoring and maintaining rotary machines, it is extremely important to identify 

the defects of rolling element bearings (REBs), which may influence the production efficiency and 

regular service. The presentation of the prevalent defects of REBs and common detection methods 

are briefly introduced in this thesis. And several methods of enhancing bearing signal namely 

envelope analysis, spectral kurtosis and so on are presented in detail. A recently proposed pre-

processing methodology to extract the novel signal, a signal that contains information that is not 

present in the historical reference data is described emphatically. Also, the procedure of verifying 

the sensibility of novel signal to damage is performed by numerical modelling consisting of signal 

generation, novel signal extraction and envelope analysis. The results indicate that the novel 

vibration signal is not always so sensitive to damage, which provides a promising diagnostic 

potential for detection of bearing defects. The final conclusion is drawn based on comparison 

among Fast kurtogram, Autogram and the proposed method. 
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1. Introduction  

    Rolling element bearings are critical mechanical components in rotating machinery, existing in 

a broad range of applications across almost all industries, which enable rotational or linear 

movement, besides reduce frictions and handle stresses. Therefore, the condition monitoring and 

fault diagnosis of the rolling element bearings is vital to maintenance strategy and operational 

safety. Any defects in the bearing must be identified in time to avoid increase in downtime in case 

of catastrophic failure. 

    The layout of this chapter is organized in a systematic way to cover general information 

concerning REB, namely essential structure, working principle and common defects. In section 

1.3 and 1.4 the characteristics of different types of defects and the features of generated signals are 

introduced theoretically. Section 1.5 relates the reason why local faults are chosen to be analyzed 

in the thesis and the detailed process of diagnostic analysis is demonstrated in Chapter 4 and 5. 

1.1 REB 

    As defined in Wikipedia, a rolling element bearing is a bearing which carries a load by placing 

rolling elements (such as balls or rollers) between two bearing rings called races. The terms rolling 

element bearings, antifriction bearings and rolling bearings are used to describe that class of 

bearings in which the main load is transferred through elements in rolling contact rather than in 

sliding contact. The robustness of bearing is of importance for the operation condition where 

bearings are subjected to heavy and dynamic loadings generated by machines or transmitted 

through the components of REBs. 

In general, a bearing consists of outer ring, inner ring, cage and rolling elements. The three 

principal dimensions are outside diameter, bore size and width which are demonstrated in Fig. 1 

together with main components. A variety of bearings are designed for all kinds of applications 

with diverse advantages and disadvantages. The main criteria for selecting the types are motions 

and loads a bearing can preferably support. As depicted in Fig. 2 the load zone is distributed 

associated with a unidirectional vertical load (outer race is fixed). 

1.2 Defects of REBs 
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Nomenclature 
 
REB             Rolling element bearing 
DOF             Degree of Freedom 
EHL             Elasto-hydrodynamic Lubrication 
FCF              Fault Characteristic Frequency 
IAS              Instantaneous Angular Speed 
BPOO          Ball Pass Order on the Outer Race 
IFCF            Instantaneous Fault Characteristic Frequency 
FCO             Fault Characteristic Order 
AE               Acoustic Emission 
CNN            Convolutional Neutral Networks 
FBG             Fiber Bragg Grating 
SNR             Signal to Noise Ratio 
SES              Squared Envelope Spectrum 
SK                Spectral Kurtosis 
STFT           Short-Time Fourier Transfer 
ELMD         Ensemble Local Mean Decomposition 
SC                Spectral Correlation 
CMS            Cyclic Modulation Spectrum 
Fast-SC        Fast Spectral Correlation 
FFT              Fast Fourier Transform 
ACP             Averaged Cyclic Periodogram 
CPU             Central Processing Unit 
FK                Fast Kurtogram 
MODWPT   Maximal Overlap Discrete Wavelet Packet Transform 
AC               Autocorrelation 
OT               Order Tracking 
cICA            Constrained Independent Component Analysis 
PDF             Probability Density Function  
     

    Through the whole service life of REBs a large number of factors may exert an influence on the 

premature bearing failure. And the defects are going to be expounded in this section. 

1.2.1 Common faults 

Defects of bearings may vary in different ways and during different stages. In the early phase 

bearing faults usually start as small pits or spalls, and give sharp impulses covering a wide range 

of frequency. Besides, the faults can be caused by excessive load, true or false brinelling,  
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Fig. 1. Fundamental components and principle dimensions for a straight roller bearing. 

 

Fig. 2. Load distribution of a bearing under a unidirectional vertical load 

misalignment and incorrect design. Near the end, the bearing failure is accounted for corrosion, 

contamination, abrasive wear, overheating and poor lubrication. It is quite necessary to identify 

these defects and to analyze the vibration signals generated by specific components of bearing.  

1.2.2 Cage damage 

    Cages or retainers are usually made of mild steel, bronze or brass and can be easily damaged, 

which may result in bearing premature problems. On account of the low mass, the defects of cages 

are not visible unless occurring in manufacturing process. According to the manual guide [7], the 

wear of cage is susceptible to starved lubrication and contamination, excessive speed, roller 

skewing and tilting. Moreover, fracture of cage connection, cage fracture and the damage due to 

incorrect mounting are also the usual inducements for cage damage. During cage failure, signals 

obtained are in the form of random vibration bursts. 
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1.2.3 Localized and extended  

    Simply, bearing defects can be categorized as localized and extended faults. For local types pits, 

cracks and spalls are included as a result of fatigue over the rolling surface, of which spalling can 

be obviously discovered. Spalling is the pitting or flaking away of bearing material, which can be 

classified as geometric concentration spalling, point surface origin spalling and inclusion origin 

spalling. Once initiated this type of failure will spread and propagate to a larger area. Bentley [10] 

states that 90% of the total bearing faults involve damage of the inner ring, outer ring and rolling 

elements due to the localized defects. Fig. 3 illustrates typical modulation patterns for 

unidirectional (vertical) load on the bearing, at shaft speed for inner race faults, and cage speed for 

rolling element faults (from Ref. [1]), where 𝐷 is the pitch diameter and 𝑑 is the ball diameter. 

    In contrast, the distributed faults encompass surface roughness, waviness, and misaligned races 

and off size balls. Primary causes involve manufacturing error, abrasive wear, and improper 

installation which take place in production and operation.  In addition, when local defects grow 

along the periphery of raceway under variable loading, it is thought as extended raceway defect by 

Sham Kulkarni [9], on which little attention has been captured. In the paper, the feature is extracted 

by using time domain analysis. 

1.3 Defect frequency 

    The frequencies related to the repetition of impulses generated by concentrated defects are called 

characteristic defect frequencies. Every bearing has its own characteristic frequency which 

depends on rotating speed and the size of components. Defects in rolling element bearings give 

rise to impulses as the elements interact with the fault and the typical vibration is produced. The 

impulses are inclined to be generated almost periodically and their characteristics diversely depend 

on the location of the defect and the position of the load zone. 

    The formula for the various frequencies shown in Fig. 3 are as follows: 

Ballpass frequency, outer race: 

BPFO =
n ⋅ 𝑓𝑟

2
 (1 −

d

D
cos ϕ) 

Ballpass frequency, inner race: 

BPFI =
n ⋅ 𝑓𝑟

2
 (1 +

d

D
cos ϕ) 

Fundamental train frequency (cage speed): 
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Fig. 3. Typical signals and envelope signals from local faults in rolling element bearings from Ref. [1] 

FTF =
𝑓𝑟

2
 (1 −

d

D
cos ϕ) 

Ball (roller) spin frequency:  

                                                                   BSF(RSF) =
D

2d
[1 − (

d

D
cos ϕ)

2
] 

where 𝑓𝑟 is the shaft speed, 𝑛 is the number of rolling elements, and 𝜙 is the angle of the load from 

the radial plane.  

1.4 Bearing fault models and cyclostationarity     

    Numerical modelling based on the real prototype of bearing defects serves as a valid tool in 

bearing diagnostics to reconstruct representative signals for further operation. However, the 

effectiveness of the model depends on how refined the building process is and whether the real 

case is in accordance with the considered. In this section, bearing models are going to be described 

respectively regarding the development history of them. Furthermore, a kind of characteristic 

signal applicable for signal analysis, cyclostationary signal, is introduced together with the 

application in bearing defects. 

1.4.1 Bearing faults modelling 

1.4.1.1 Mathematical (analytical) model 
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    A great number of scholars have come up with various models of REBs in history. Sunnersjo 

proposed the first mathematical bearing vibration model where a 2 DOF system was constructed, 

which provides the load-deflection according to Hertzian contact theory in 1978[11]. The mass 

and inertia of the rolling elements were ignored. McFadden and Smith built the most utilized 

mathematical model for rolling element bearing localized faults in 1984[13], which is recognized 

as the first valid model. Referring to the model local bearing faults comprised a sequence of high 

frequency bursts, which represent the impulse response of the signal transmission path within short 

duration. The impulses repeat at a rate given by the fault interacting with the rolling elements, 

whether it is on the inner race, outer race or rolling elements. Su & Lin (1992) [14] developed the 

previous model by considering variable load due to shaft and roller errors. Those variations 

however resulted in some different effects in the bearing signals from those previously obtained. 

Tandon and Choudhury [15] presented an analytical model to predict the discrete spectrum which 

has peaks at the characteristic defect frequencies and their harmonics. Ho & Randall (2000) [16] 

modelled the bearing fault vibrations as a series of impulse responses of a single-degree-of-

freedom system which varied the spacing between the bursts randomly by a small percentage. 

Randall and Antoni introduced the slip between the rolling elements into the vibration fault signal 

model [1]. This slip will triger a random fluctuation among the impulses due to the defect in the 

bearings. In 2011 Tadina [17] developed an improved bearing model in order to investigate the 

vibrations of a ball bearing during run-up. 

1.4.1.2 Dynamic model 

    In a discrete dynamic system, basic elements are mass, stiffness, damping and external forces. 

Hence to build a representative model these components are required to be considered and 

incorporated. The first publication to complete a dynamic model of rolling element bearings was 

issued by Gupta (1975) [18] through solving the generalized differential equations of motion of 

the balls in an angular contact ball bearing. In the paper critical speed, mode shape and unbalance 

response of a dual-rotor system was studied via experiment of a dual-rotor rig with an inter-shaft 

bearing. Fukata et.al (1985) [12] introduced a comprehensive model with 2 DOF system, which 

provides the load deflection relationships. It addressed the non-linearity and the time variant 

characteristics of rolling element bearings under condition of ignoring the mass and the inertia of 

the rolling elements. Fukata’s model was further developed to a bearing–pedestal model (4 DOF 

model) by Feng et. al (2002) [19] considering the effect of slippage of the cage and rolling elements 
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as well as the effect of localized faults (spalls) in the inner and outer race. And then Sawalhi et.al 

(2006) [20,21] updated Feng’s model by introducing an extra degree of freedom (sprung mass 

system to excite a typical high frequency resonance of the system) and by changing the way of 

modelling the spall. Tiwari et al. [22,23] studied the effect of the ball bearing clearance on the 

dynamic response of a rigid rotor system. In 1999 Wijnant et al. [24] considered the effect of the 

elasto-hydrodynamic lubrication (EHL) and developed computational models for both EHL 

problem and the structural dynamics problem to explore the influence of the EHL on the REB 

dynamics. Sopanen & Mikkola’s model [25,26] contained the effect of different geometrical faults 

(surface roughness, waviness and localized and distributed effects) and the EHL. This is a six DOF 

dynamic model of the deep-groove ball bearing, of which both the non-linear Hertzian contact 

deformation and the elasto-hydrodynamic fluid film are included. 

1.4.2 Cyclostationarity 

    Broadly speaking, vibration signals can be divided by deterministic (i.e., whose behavior can be 

described exactly by an equation) or random (i.e., whose behavior cannot be predicted exactly), or 

a combination of both. Deterministic signals are further categorized as periodic and non-periodic, 

and random signals as stationary (whose average properties do not change with time) and non-

stationary. Cyclostationarity represents a further category including signals which, although not 

necessarily periodic, are produced by a hidden periodic mechanism. This consists of periodic 

signals as a special case, but also stationary signals and non-stationary signals which exhibits 

periodicity after passing through a non-linear transform. As such, cyclostationarity is capable of 

comprising most signals generated by rotating and reciprocating machines.  

    Cyclostationary process was firstly put forward by Gardner [27], who describes a random 

process with a periodic autocorrelation function. An approach based on the properties of 

cyclostationary processes has been suggested by Antoni and Randall (2002) [28], which showed 

how to distinguish the modulation associated with a bearing fault from that related to a gear fault. 

    Degrees of cyclostationarity higher than one and two is usually referred to as ‘‘higher-order’’ 

Strictly speaking, a nth order cyclostationary signal is one whose nth order statistics are periodic 

or, equivalently stated, one which produces a peak in its Fourier transform after passing through 

any non-linear transformation involving nth power. First-order cyclostationary signal is simply a 

signal which contains periodic components, and its mean value in the ensemble average sense 
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reproduces that properly. Similarly, a second-order cyclostationary signal is one whose 

autocorrelation function is a periodic function of time.  

    Bearing signals with local faults are described as 2nd order pseudo-cyclostationary due to the 

fact that they don’t have a defined mean period, and consequently their autocorrelation function is 

not truly periodic, because of the non-stationarity in the inter-arrival times of the successive 

impacts. As for extended faults existing on the inner race, it periodically enters and exits the load 

zone, and the resulting signal is modulated by the shaft speed. This has been described as a purely 

cyclostationary process as opposed to the former. In this way, both fault types give rise to signals 

that can be treated as cyclostationary and the statistics are obtained by ensemble averaging over 

an ensemble of realizations. In practice the optimum way to analyze a faulty bearing signal depends 

on the type of fault present. 

1.5 What we concern: detecting local faults 

    According to the above elaboration, signals generated from local faults can be detected more 

feasibly than distributed ones. Herein, the signal analysis and numerical modelling will be focused 

on local faults in Chapter 4 and 5 so as to derive clear results. 

2. Damage detection of REB 

    Varying symptoms can be manifested while REBs are damaged due to various causes, which 

give us an idea to detect the damages in specific ways. For bearings working in high speed 

conditions, temperature rise occurs frequently as a result, which has been evaluated and modeled 

by a number of researchers. And the lubricant performance is prone to be destroyed by grease 

degradation. On top of that, a standard test is also described in Section 2.3. At last several 

techniques for bearing diagnosis are introduced in section 2.4. 

2.1 Temperature rise 

    In a general way, a bearing should be working in an applicable condition where the temperature 

is lower than 93.3°C (200°F). An excessively high temperature rise has a great influence on bearing 

life and reliability. Therefore, it is necessary to study heating mechanism, heat transfer process, 

curvature coefficient of the inner ring f2 (radius of inner race over ball diameter) and temperature 

distribution of bearings. Referring to the factors that affect the temperature rise, rotational speed, 

preload, operating condition, lubricant viscosity and so on are normally considered.  
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    As stated in [35], under the conditions of high speed and light load, skidding, a tribo-dynamic 

phenomenon often occurs. With a significant effect on the thermal distribution and service 

reliability of the bearings, it is caused by the sliding of rollers in the direction of motion, while 

rollers enter the high-load contact zone with insufficient lubrication. According to results of 

Junning Li’s model revealing relationship between skidding and thermal distribution, the inner 

ring raceway has the highest temperature, whereas the cage has the lowest. 

    In order to exactly evaluate the heat generation and temperature in the bearing, a model for 

computing the temperature of the high-speed ball bearing with axisymmetric load is set up by L Q 

Wang [36]. In this model, heat sources in the raceways are treated as moving and the heat produced 

by the ball and cage is averaged on the circumferential zone where the heat source passes. It turned 

out that the contact surfaces in the raceways and the ring land (shoulder) are the high temperature 

zone. The curvature coefficient of the inner ring also has a great influence on both the heat 

generated owing to spin motion and the maximum temperature rise in the inner ring. 

2.2 Grease degradation 

    Greases are widely used in ball and roller bearings for lubricating moving surface. In terms of 

ingredients, there are three components that form lubricating grease: oil, thickener and additives. 

And feasibility of regular work is assured by several characteristics, for example, pump ability, 

water resistance, dropping point, oxidation stability, temperature effect and so on. As in inadequate 

lubrication condition, there isn’t a sufficient amount of bearing lubricant to separate the rolling 

and sliding contact surfaces during service, which may give birth to negative effects, e.g., 

discoloration, scoring and peeling, excessive roller end heat, total lockup and so forth.  

    Lubricating grease suffers severe physical and chemical degradation during operation in a 

bearing [38]. These changes are not solely due to high temperature but are rather the result of 

combined thermal and mechanical effects, compounded by the presence of metal debris and 

moisture. As a result, the grease performance can deteriorate and under severe conditions this can 

lead to failure. Temperature in excess of 204.4°C (400°F) can anneal the ring and ball materials, 

which is fatal to the regular service. The monitoring under caution temperature 82.2-93.3°C (180-

200°F) has been considered unreliable because in the meanwhile so many variables such as 

ambient temperature, speed, load and runtime have a pronounced influence on bearing temperature. 
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    P. M. CANN [39] has conducted an experiment in the modified DIN 51 806 test rig R2F(M) to 

test the performance of grease which provides detailed information. After running for different 

temperature and speed conditions up to 300 hours, lubricant remaining in the cage pocket region 

was heavily degraded and contained very little thickener. the result shows that the grease on the 

seals contained different amount of thickener located in the seal position. The lubricant remaining 

on the inner raceway surface was predominately base oil although there was some thickener in 

existence. Specially, the technique infrared spectroscopic was used to characterize the degree of 

oxidation and the degradation of the grease both in the bulk sample as well as from thin grease 

layers remaining on the bearing surfaces. 

2.3 Standard bearing test 

    Mobil [5] proposed a better way to define high-temperature performance capability which can 

lead to a standardized bearing test. The test is conducted under accelerated operating conditions to 

promote grease ageing process. Factors limiting grease high-temperature performance include the 

degradation resulting from thickener as well as base oil oxidation and the loss of base oil due to 

grease bleed or evaporation. To evaluate the high-temperature limit, bearings mounted in five 

identical rigs are run in parallel. The hours to grease failure in each rig can be treated using Weibull 

statistics to determine the time at which 50 percent of the bearings are expected to fail. This defines 

the "L50" life of the candidate grease at the corresponding test temperature, which has something 

in common as "L10" life of bearings i.e., the life at which ten percent of the bearings in that 

application can be expected to have failed due to classical fatigue failure. 

2.4 Techniques to detect damages 

    Considerable effort has been devoted to detect damages in bearing by a host of scholars. This 

section explains why acceleration signal is acquired for diagnostic analysis and then it goes with a 

couple of techniques widely used in damage detection. Two methods for speed variation conditions 

are introduced in Section 2.4.2 followed by some other newly presented techniques. 

2.4.1 Acceleration signal 

    The vibration signals collected from bearings contain rich information with respect to machine 

health conditions, which is worth deeply studying. According to the guide [40], apart from 

detecting vibratory acceleration signal, it’s optional to measure velocity and displacement. 

Whereas the choice of parameter is important if the signal covers a large span of frequency. 
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Measurement of displacement gives the most weighted low frequency components and conversely 

acceleration measurement weighs the level towards the high frequency. Generally, with electronic 

integrators we can convert the acceleration signal to velocity or displacement by integrating in 

time domain.  

    Therefore, the best way to collect the original data is using an accelerometer to measure the raw 

acceleration signal. There are a certain key factors that influence the success of acceleration 

measurement. Firstly, the characteristics of accelerometer should be carefully selected in a suitable 

way ahead of measurement. It’s indispensable to take sensitivity, mass and frequency range into 

account. Secondly, it is highly recommended to mount the accelerometer as close to the bearing 

as possible, preferably on a flat, clean surface to guarantee consistent results. Finally, once 

accelerometer has been installed and calibrated, data acquisition should then be conducted with 

regular intervals over a period of time to improve the accuracy of measurement. In addition, it’s 

better to eliminate the interference from temperature, cable noise, base strains and so on. 

2.4.2 Speed variation condition 

    In constant speed condition, the transient impulses of the vibration signal excited by a localized 

fault behave like periodic or quasi-periodic. The repetition frequency of the impulses is called fault 

characteristic frequency (FCF). A great many methods have been proposed to diagnose bearings 

based on stationary assumption, thus they are not applicable to the fault diagnosis of under rotating 

speed variation conditions. This constraint significantly limits the bearing diagnosis in industrial 

production. What follows in the section is the application of two methods to extend the bearing 

diagnosis to a more generalized case. 

    For many years, measurement of Instantaneous Angular Speed (IAS) signal has revealed a great 

sensitivity to different types of defects such as bearing or gear faults over a large bandwidth of 

orders. The main advantage lies on the fact that the signal is sampled angularly rather than with a 

constant time step, which allows very long duration measurement without disturbances from non-

constant operating speed of the machine. Moreover, this signal investigates different transfer path 

from excitation to response of the rotating machine. On the basis of the previous method, Adeline 

Bourdon [42] reconstructed the IAS variations signal to analyze the shape of rotating speed 

fluctuations introduced by bearing faults. In the analysis, modifications due to operating conditions 

and size of the defect were clearly separated. With the assistance of a signal processing tool based 



12 
 

on the use of a filter defined in the angular frequency domain, magnitude of the speed variations 

related to the BPOO (Ball Pass Order on the Outer race) of the bearings under monitoring was 

quantified. Furthermore, the speed variations due to an evolution of the defect and those due to 

variations in operating conditions were distinguished. As shown in the result, the proposed tool 

could be used in stationary or non-stationary operating conditions. 

    On consideration of removing the instantaneous rotating speed information from instantaneous 

fault characteristic frequency (IFCF) to uncover fault characteristic order (FCO), Yi Wang [43] 

proposed the method of rotating speed isolation. The results of simulation and experiments 

displayed that bearing faults can be detected under speed variation condition without the use of 

tachometers and the method outperformed even the conventional envelop analysis. In this way, it 

can serve as a promising approach for bearing faults detection. 

    Besides, inner race defect gives better response to speed variation, and defect from outer race 

exhibits higher sensitivity to high load [44]. 

2.4.3 Acoustic emission 

    Acoustic emission(AE) is the phenomenon of radiation for elastic waves in solids that occurs 

when a material undergoes mechanical or thermal stresses. Born of the characteristic, AE 

technique, a nondestructive inspection technique that permits the evaluation of the states of 

materials by measuring elastic stress waves, can be applied to detect damages in bearing. With 

high sensitivity to deformation and fracture, it behaves a significant tool for condition monitoring, 

whose instruments consist of a transducer, mostly of the piezoelectric type, a pre-amplifier and a 

signal processing unit. By measuring and analyzing AE signals produced by tribological processes, 

the state of sliding surfaces on a machine can be identified and evaluated. Besides, AE signals can 

also capture essential diagnostic information from low-energy signals. 

    Alan Hase et al [45] have done an experiment by measuring high-frequency component of AE 

signals that originate from adhesion higher than 1 MHz to detect the early seizure. In the study, 

friction and wear in a high-speed sliding bearing were examined using a test rig on behalf of a real 

machine. Changes in the amplitude and frequency components of AE signals detected during the 

rupture of the lubricating film, the progress of wear, and phenomena preceding seizure are 

described. This was a fundamental study on the lifetime assessment of a sliding bearings, and it 

proved to be an effective way on early detection of seizure in machineries.  
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    It is also feasible to combine AE signals with other techniques to constitute a bearing diagnostic 

method. For example, Md Junayed Hasan [46] presented a reliable fault diagnosis scheme based 

on acoustic spectral imaging (ASI) of acoustic emission(AE) signals, which involved transfer 

learning technique, convolutional neutral networks (CNN), and spectrum imaging. Thus it turned 

out to be a robust technique with high diagnostic accuracy, which is validated both in simulation 

and experiment. The effectiveness of AE technique has been investigated continuously by 

researchers, which still can be explored in other fields. 

2.4.4 Fiber-optic sensor 

    A pioneering research on bearing diagnosis was provided by Hasib Alian [48] to measure strains 

inside the rings with Fiber Bragg Grating (FBG) fiber-optic sensors. There are at least two 

excellent capabilities for FBG sensors, for example, the damage size of small spalls both in inner 

or outer races can be measured accurately, and the sensors are small enough to mount in places 

close to the bearing. The disturbance effect on transmission path can be minimized so that 

enhanced signal-to-noise ratio is guaranteed. The parameters in the experiment comprised loads, 

rotation speeds, sensor locations, faults of different sizes, both on the inner and outer races and so 

on. Ultimately, the result of experiment demonstrated that the sensor appeared to be a good tool 

for bearing detection with great discrimination power. 

2.4.5 Wear debris detection 

    Wear debris analysis, an outdated technique from the perspective of today, was recognized as 

an important and direct indicator of the wear state of components such as gears and bearings. 

Herein only the fundamental principles are presented in short. Kuhnell BT [49] indicated in the 

paper that besides using sensors to detect metallic particles in the lubricant, spectrographic analysis 

of different metallic elements can facilitate the location of fault. Commonly, the wear process of a 

machine occurs owing to diverse reasons concerning operating environment, load condition and 

dynamic behavior. In that case, certain parts may break or disturb the normal work of the machine, 

which has negative effect on performance. Hence it is of significance to monitor the amount, size, 

appearance of wear debris particles in lubricant.   

3. Signal analysis techniques 

    As discussed in the last chapter, bearing damage can be detected by analyzing acceleration 

signal generated by specific components. The vibration signals produced by faults have been 
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widely studied, and intensely powerful diagnostic techniques are now available. Generally, these 

techniques can be classified according to different rules. In some papers, the main techniques to 

diagnose and examine REB defects are categorized into time domain approach, frequency domain 

approach, time-frequency domain approach and envelope analysis. When analyzing machine 

vibrations in frequency domain normally a number of prominent periodic frequency components 

which are directly related to the fundamental movements of various parts of the machine can be 

discovered. With frequency analysis we are therefore able to trend the source of undesirable 

vibration. There are also tutorials dealing with, for example, separation of bearing signals from 

discrete frequency noise and enhancement of the bearing signals. This chapter will be organized 

by listing a few universal techniques and concentrating on novel information extraction in the end.  

The last three methods are going to be applied for analyzing the bearing simulation signal in the 

coming chapters. 

3.1 Envelope analysis 

The envelope detection technique arose in 1974, and it was originally called high frequency 

resonance technique by Darlow et al. [51]. And then McFadden and Smith [52,53] put forward the 

concept of envelope analysis for REBs, which narrated that an impulse signal is generated each 

time a localized defect contacts with another surface in the bearing. At that time, envelope 

detection was carried out by using an analogue circuit to band-pass filter the analogue vibration 

signal around a structural resonance, afterwards, rectificating full or half wave to reconstruct the 

estimated envelope signal. Benefiting from the development of digital processing techniques, 

envelope analysis experienced considerable improvement. Nowadays, it has become a benchmark 

method to extract bearing diagnostics from a vibration signal. As stated in [1], the technique tells 

that a signal is band-pass filtered in a high frequency band in which the fault impulses are amplified 

by structural resonances. It is then amplitude demodulated to form the envelope signal, whose 

spectrum contains the desired diagnostic information in terms of both repetition frequency (defect 

frequency) as well as modulation by the appropriate frequency at which the fault is passing through 

the load zone. 

    The Fig. 4 depicts the procedure for envelope analysis using the ‘‘Hilbert transform’’ method 

which was presented by Ho and Randall [16], where a one-sided spectrum (positive frequencies 

only) is inversely transformed to the time domain. This gives a complex time signal (a so-called 



15 
 

 
Fig. 4. Procedure for envelope analysis using the fractional Hilbert transform method 

 
 ‘‘analytic signal’’) whose imaginary part is the Hilbert transform of the real part. An immediate 

benefit is that the extraction of the section of spectrum to be demodulated is effectively by an ideal 

filter, which thus can separate it from adjacent components that might be much stronger.  

Unfortunately, the method suffers from certain restrictions. For example, it is often performed 

for a certain frequency region where the signal-to-noise ratio (SNR) is high, and to ensure a one-

sided spectrum, the frequency band is padded with zeros to double the length in order to set the 

negative frequency components to zero. Therefore, Ho and Randall (2000) suggested that it was a 

better choice to analyze the squared envelope rather than the envelope. The main advantage 

manifested that the higher harmonics components in the envelope spectrum would be not included. 

This is because the square root process produces higher harmonics, and in addition some of these 

are aliased if they locate above the Nyquist frequency. Although the effect cannot be removed 

from digital signals by low-pass filtering, it still can be reduced by introducing a higher sampling 

frequency.  
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It is noted in Ref. [54] that since the squaring doubles the frequency content of a signal, the 

sampling frequency should be doubled before the signal is squared or rectified digitally. In addition, 

squared envelope spectrum (SES) also exhibits simplicity, low computational cost and 

implementation easiness. 

    To sum up, the envelope analysis can discover more pronounced diagnostic information than 

the analysis of raw signals, including the repetition rate of the fault and potential modulations. It 

appears to be an advantageous tool in very early detection and fault symptom identification. 

3.2 Kurtosis, spectral kurtosis and kurtogram 

    The concept of kurtosis was firstly proposed by Dyer & Stewart (1977) [55], which acted as a 

tool for measuring the severity of faults in machines. Whereas a detailed account was not given 

and only a suggestion which stated that to obtain clearer results selecting proper frequency bands 

for filtering is highly required. Until 1983, Dwyer [56] detected impulsive events in sonar signals 

by using spectral kurtosis (SK), which grasped the impulsiveness in frequency domain from a 

signal based on short time Fourier transform (STFT). Later Antoni [57] gave a comprehensive 

formalization and definition of SK for nonstationary processes, at the same time, linked theoretical 

concepts with practical applications to detect the existence of faults in REBs. 

    The spectral kurtosis extends the concept of the kurtosis into a function of frequency which 

indicates how the impulsiveness of a signal is distributed in the frequency domain. Given a signal 

x(t), the local Fourier transform at time t is easy to compute by moving a window along the signal, 

denoted as X(t, f). then SK can be defined as follows: 

K(f) =
⟨|X(t, f)|4⟩

⟨|X(t, f)|2⟩
− 2 

Where ⟨⋅⟩ is the time-averaging operator. And the calculation of SK from the STFT for a simulated 

bearing fault signal is displayed in Fig. 5 (cited from Ref. [1]). In the equation, a fourth-order 

statistic is used. In this way, the presence of transients in a signal can still be detected even when 

they are buried in strong additive noise. Hence SK endows a powerful tool by seeking out the 

frequency bands where the faults take place. 

    Kurtogram displays the spectral kurtosis in the form of two-dimension map involving frequency 

and window length. Hence, the optimal central frequency and bandwidth of the band-pass filter 
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Fig. 5. Calculation of SK from the STFT for a simulated bearing fault signal:  

(a) time signal, (b) STFT and, (c) spectral kurtosis 

can be found to maximize the kurtogram, which makes it an effective tool to detect and 

characterize non-stationarities in a signal. However, the disadvantage locates in situations where 

signal to noise ratio is very low or in presence of non-Gaussian noise such that the method will 

fail.  

Apparently, it is costly and lacks of practical convenience to compute kurtogram for all possible 

combinations of center frequencies and bandwidths. One solution may be feasible by subdivision 

of the bandwidths into rational ratios that permit the use of fast multi-rate processing, which is 

called fast kurtogram (FK). A comparison between the fast kurtogram and the full kurtogram of a 

signal is illustrated in Fig. 6. Although the former is suboptimal due to its coarser resolution, it 

happens to return virtually the same result as the latter in terms of transient locations. FK is order 

of magnitude faster than full kurtogram and then it appears suitable for industrial applications 

ideally. 

Thanks to the feature of detecting the frequencies where an impulsive bearing fault signal is 

dominant and nullifying the parts where there is stationary noise only, SK can be qualified as a 

filter to select those components of the signal with the highest level of impulsiveness. Antoni [1] 

stated that it is possible to define both Wiener and matched filters in terms of the SK for an 
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Fig. 6. Comparison of the (a) fast kurtogram with the (b) full kurtogram for an impulsive signal [63] 

impulsive signal, such as signal owing to bearing faults masked by stationary random noise. As 

for Wiener filter, proportional to the square root of the spectral kurtosis, it maximizes the similarity 

between the filtered component and the clear signal without noise. Whereas matched filter, a 

narrow band filter, maximizes the SNR of the filtered signal irrespective of its shape. 

    Concerning the application of fast kurtogram to REB diagnostics, Antoni [58] gave an example 

to illustrate its function in seeking the repetitive-like transient faults. To sum up, it tells the 

presence of abnormal transients, indicates the corresponding frequency bands and addresses the 

maximum SNR region. It is also pointed out that it actually returns the critically sampled complex 

envelope in the selected frequency band.  

    Much effort has been made to the enhancement of SK. Considering SK’s susceptibility to non-

Gaussian noise, Yongxiang Zhang [59] proposed a method to design the parameters for optimal 

resonance demodulation combining FK for initial estimation and a genetic algorithm for final 

optimization, which gives fast convergence to the solution over the whole zone. The algorithm can 

find the best filter in narrow scope benefiting from the best spectral kurtosis given by FK. 

Compared to traditional envelope analysis and FK alone, this method provided more flexibility for 

diagnosis of REBs. Moreover, based on ensemble local mean decomposition (ELMD) and FK, Lei 

Wang et al. [60] presented a time-frequency domain method to diagnose faults in rotating machines, 

of which ELMD can eliminate non-stationary and nonlinear interferences and highlight the 

components concerning faults. The feasibility and effectiveness are demonstrated by two 

experimental examples. 
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    Furthermore, the application of SK in detecting faults in REBs can be improved and optimized 

by various approaches. For example, pre-whitening the power spectral density of signal, 

decomposing the pre-whitened signal using complex Morlet wavelets and so on. Details will not 

be covered in this thesis. 

3.3 Cyclic modulation spectrum and Fast spectral correlation 

    The excellent behavior of cyclostationarity in describing the symptomatic modulations or 

repetition of transients has been related. Based on that, spectral correlation (SC) became a tool for 

cyclic spectral analysis that can express the whole structure of modulations and carriers of a signal 

into a bi-frequency map. The function of spectrum contains two variables namely spectral and 

cyclic. Suffering from the high computational cost, SC seems not a satisfactory tool in reality. 

Then The Cyclic Modulation Spectrum (CMS) was proposed by Antoni [61] 2009 as a faster 

alternative to return similar result as the SC. It tracks periodic flows of energy in frequency bands 

by evaluating the Fourier transform of the squared envelope at the output of a filter bank and it is 

interpreted as waterfall of envelope spectra. Due to the fact that the computational cost mainly 

centers on the calculation of STFT, the development of calculating devices helps CMS to be an 

efficient tool in real case. The application of CMS is mainly described in [62]. However, limited 

to detect relatively slow periodic modulations only, it cannot detect periodic patterns other than in 

the form of modulations whose frequencies are necessarily lower than the frequency resolution. 

Also the biased error will increase with the rise of cyclic frequency. 

    As a development of CMS, the Fast-SC was proposed by Antoni [63]. Benefiting from the 

property of cyclostationary signal, the STFT evidences periodic flows of energy in and across its 

frequency bands. The Fourier transform of the interactions of the STFT coefficients then returns a 

quantity which scans the SC along its cyclic frequency axis. Obviously, the same procedure can 

also be processed in other domains of application, for instance, angular domain. The results of 

simulation indicated that Fast-SC is an asymptotically convergent (unbiased and nil variance) 

estimator of the SC. And due to the algorithm structure, it can be computed in parallel, which tends 

to speed up further on. Certainly the essential advantage of Fast-SC is to save computational cost 

compared to CMS and other techniques, where the earning may be simply the ratio of the signal 

length to the STFT window length. The efforts for computation mainly lie on the fast Fourier 

transform (FFT) of STFT products, which makes it a competitive tool for analyzing long records 



20 
 

over a wide cyclic frequency span. The use of the Fast-SC has been illustrated on several vibration 

signals in order to detect rolling bearing faults. The gain in computational time exerts considerable 

when the signal length increases, for example, compared to averaged cyclic periodogram (ACP) 

the central processing unit (CPU) time of implementing Fast-SC will be reduced significantly, 

especially when the length is larger than 211. 

3.4 Autogram 

    To overcome the drawback of SK in detecting bearing damages with non-Gaussian noise, Ali 

Moshrefzadeh et al. [64] proposed a valuable tool, named Autogram. The auto-covariance function 

of a second order cyclostationary signal is periodic, and in virtue of this property it is considered 

to be sufficiently general for diagnosing faults in rotating machinery, for example, REBs and gears. 

It is also noted that the method is easy to handle and doesn’t require any prior knowledge of signal 

processing. 

    The procedure to compute Autogram is presented as follows. First, the time domain data need 

to be divided in frequency bands and central frequencies. The Maximal Overlap Discrete Wavelet 

Packet Transform (MODWPT) is adopted as a filter to obtain a series of signals in each level of 

decomposition. Second, unbiased autocorrelation (AC) is computed on the squared envelope of 

each center frequency. As stated in Ref. [64], “The AC has the benefit of removing the uncorrelated 

components of the signal, i.e. noise and random impulsive contents, both unrelated to any specific 

bearing fault. Furthermore, the periodic part of the signal (directly related to the defects) is 

enhanced, showing an additional virtue of this process. This is even more advantageous since it is 

done for each node separately rather than on the complete raw signal, so that SNR for each 

demodulated band signal is increased.”. Third, by computing the impulsiveness of each AC, 

Autogram displays the result in a color map, from which the node with maximum kurtosis can be 

addressed. Herein two types of kurtosis are given which are called Lower and Upper Autogram. 

This is a thresholding process to separate the two parts of the signal (noise and defect impulses) 

without losing any useful information for diagnosis of bearings, which directly affects the quality 

of the frequency analysis because it decides which coefficients will be retained and which will be 

rejected. The last step, with the node corresponding to fault characteristics selected in the previous 

step, computation of Fourier transform to the squared envelop is made to extract the diagnostic 

information, further defect frequencies. 



21 
 

    Two cases related to bearing fault detection are also provided to demonstrate the effectiveness 

of Autogram. It is able to automatically select the carrier frequencies containing crucial 

information, even if the signal is processed in different ways. In brief, Autogram has strong 

performance in identifying damages in REBs. Deserved to be mentioned, Autogram is specifically 

designed to enhance the detection of periodic impulses, thereby not suitable to discover other 

damages such as pitting or corrosion. 

3.5 Order tracking 

    To avoid the smearing effect of discrete frequency components owing to speed fluctuations, 

displaying the rotating machine signals in a different frequency axis is often expected, where 

“orders” of shaft speed replace the usual frequency axis.  Concerning varying case, it is necessary 

to sample the signal from a tachometer or shaft encoder synchronous with shaft rotation for the 

sake of order analysis. In early years, a phase-locked loop was used to track the signal and a series 

of sampling pulses per tracked period could be obtained. Nevertheless, “angular resampling” may 

be a better way to sample along uniform increments in shaft angle, where digitally resampling on 

each corresponding period of tachometer signal is processed. It can be achieved by simply 

increasing the sampling rate by a large number and selecting the sample next to each theoretical 

interpolated position, which is available both in time domain and frequency domain. Alternatively, 

for the purpose of angular resampling, using phase demodulation of some shaft speed related 

component to deliver a map of shaft angle vs time is also valid, where the times corresponding to 

uniform phase increments can be addressed to interpolate between the original time samples.  

    Another issue worth of attention is to ensure that the signal is adequately low-pass filtered to 

prevent aliasing. It can be solved by oversampling, and thus the unexpected components can be 

isolated from the measurement range. In addition, order tracking (OT) has a positive effect on the 

spectrum of a signal with distinguishable speed related components. Without the OT, discrete 

frequency components are much more difficult to be detected in the spectrum. 

    The method OT still can be improved in some respects. An online tacholess OT method is given 

by Yi Wang [66] based on extraction of instantaneous tachometer information from the collected 

vibration signal itself. In this method, the problem of mono-component separation under changing 

rotational speed conditions and transient components extraction is solved involving the 

combination of generalized demodulation and resonance demodulation. In the mean while there 
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are also some other techniques employed such as generalized Fourier transform, an adaptive ridge 

detection algorithm, band-pass filtering and FK. The results from both simulated and experimental 

bearing signal indicates the effectiveness of this online technique for detecting bearing faults under 

speed variation condition. Another approach is proposed by Tangfeng Yang [67], who combined 

the envelope order tracking and the constrained independent component analysis (cICA) to address 

the issue of OT’s disability for multi-impulsive sources. In this scheme, OT collected sensor data 

from different positons and cICA extracted the interesting envelope independent components (ICs) 

by a reference signal from the prior-known feature frequency of the bearing. As a consequence, 

the features of bearing faults can be clearly expressed in the spectrum of the obtained interesting 

envelope. 

3.6 Novel information extraction 

    When detecting the bearing faults, most of the analysis techniques are applied directly on signal 

acquired without considering historical information. From this point of view, Stephan Schmidt [68] 

proposed a methodology to enhance the performance of the analysis techniques by incorporating 

historical data in reference condition. Thereafter a novel signal, i.e. a signal that contains 

information that is not present in the historical reference data, can be consequently extracted. 

Generally speaking, it is a bit arduous and expensive to gain historical fault data of a machine, 

especially in conditions where the components are equipped in untouched region or built at a big 

cost. But the data of a healthy machine can be obtained easily as a reference, which is beneficial 

to the implementation of the fault diagnosis technique. Theoretically, after the filtering operation, 

the novel signal contains rich information corresponding to fault of the machine, which can be 

subsequently analyzed through conventional signal analysis techniques. The specific details 

regarding the algorithm of the methodology is elaborated in next few paragraphs. 

Intuitively, novel signal expresses the deviation between the newly acquired vibration signal 

and the vibration signal from healthy machine, which explains the reason why a bulk of diagnostic 

information is included. There are two main phases inside the methodology, namely training phase 

and testing phase. The former extracts model parameters from reference data and the latter phase 

utilizes the parameters to design a filter for extracting novel signal accordingly. Based on the 

assumption that the damage locates in specific frequency range and changes in statistical properties 

are also resulted in relevant bands, the methodology can be developed step by step. And an 
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Fig. 7. Overview of the methodology 

overview of the methodology is illustrated in Fig. 7. 

First of all, the original signals have to be decomposed into time-frequency representation by using 

STFT, where a series of window lengths are involved and the overlapping rate is set as 75%. Then 

a feature extraction function is used to extract a diagnostic feature (as required) associated with 

each center frequency of STFT with a corresponding frequency resolution. In most cases, the 

feature extraction function has a definite function relationship with STFT. The same procedure 

can also be applied to reference data to deliver features in training phase which serve the purpose 

of modelling in next step. The second step mainly focuses on feature modelling. The features are 

parametrized by the Gaussian Probability Density Function (PDF), which can detect changes in 

features effectively. The author pointed out that “The naive assumption is made that the features 

are uncorrelated, i.e., the full covariance matrix reduces to a diagonal matrix with the variances of 

the respective features being on the diagonal of the covariance matrix. This assumption is made to 

reduce the number of parameters that need to be estimated from the reference datasets.” After that 

a novelty detection scoring function compares the associated values in specific frequency bands 

with a threshold to detect novelties. As recommended, the squared Mahalanobis distance acts as 

an excellent novelty detection scoring function. In step three, the filter coefficient can be derived 

from the comparison between novelty detection score and threshold of “9” which covers 99.7% of 

the probability density function of a Gaussian distribution. Hence the coefficient equals unity if a 

novelty is detected and zero if not. Finally, novel signal can be estimated in two stages. Primarily, 

every frequency band of the time-frequency representations concerning different window lengths 

are scaled by the novelty filter. Ultimately, the inverse Fourier transform is applied on each scaled 

time-frequency representation to obtain the desired novel signal.  

    Afterwards, novel signal can be analyzed by conventional diagnostic techniques. In the thesis, 
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Items Values Units 
Rotational speed 200 Hz 
Sampling frequency 35*1024 Hz 
Duration 1 Second 
Random fluctuation 0 Percent 
Noise amplitude 0.15 Percent 
Teeth of wheel 23 Teeth 
Resonance of structure 5600 Hz 
Damping factor 0.05 - 

 

Table 1. Specific quantities of simulated bearing signal 

numerical gearbox simulation and practical experiment are conducted to validate the sensitivity of 

the novel vibration signal to presence of damage, which makes it a convincing and favorable pre-

processing technique. In short, the benefits of the methodology are: historical reference data can 

be incorporated, and the filter is designed to attenuate frequency bands that do not contain any 

novel information. 

    The methodology can be extended to track the damage in varieties of rotating machines, of 

course, bearing included. It is noted in the conclusion that future work may focus on making the 

methodology more robust by optimizing each step in the procedure. The numerical modelling and 

novel information extraction for a rolling bearing will be carried out in next chapter. 

4. Novel information extraction by implementing the methodology 

Detailed introduction with respect to the pre-processing methodology has been presented in the 

previous chapter and herein the implementation of that based on simulated bearing signal will be 

given. In consideration of the convenience for carrying out the methodology, the whole procedure 

is going to be running in Matlab including the generation of simulated bearing signals and novel 

information extraction, where debugging and algorithm testing can be easily achieved. In addition, 

a mass of data analysis tools and functions can be employed readily. Section 4.1 is concerned with 

how the signals, both healthy and damaged, are produced on basis of a phenomenological model. 

As displayed in section 4.2 and 4.3, the final results are to be exported as diagrams thoroughly.  

4.1 Generation of simulated bearing signals 

    Overall, the vibrational signal is induced by a simulated gearbox model convolving three 

components, i.e., periodic, impulse and noise, where the amplitudes and phase shifting can be set  
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Fig. 8(a). Non-deterministic parts of the damaged signal in time domain 

 
Fig. 8(b). FFT spectrum of non-deterministic part 

as required. Then the signal is obtained by crossing a transmission path, whose resonance 

frequency and damping factor can be customized according to the need for monitoring conditions. 

Moreover, the model provides two types of conditions namely variation and constant speed, which 

is advantageous to reconstruct the real case situation. 
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To simplify the signal generation, sweeping in rotational speed is not considered thus the bearing 

is working in constant speed condition, namely 200 Hz (12000 rpm). Inner race damage is selected 

among local faults which exerts distinct envelope profile. The amplitudes of damage, noise and 

random fluctuation of bearing signal are shown in Table 1. In order to simulate an actual case, the 

dimensions of bearing are in accordance with SKF 6006-Z. With the program running twice for 

different damages (healthy and inner race fault), two groups of data are derived on behalf of signals 

from reference phase and application phase. Normally the training phase should be run for a long 

period to improve the precision of the reference condition. For convenience only one cluster of 

signals is generated as data in reference condition. Theoretically, the defect frequency computed 

from the formula equals to 1225 Hz, and its multiples are 2510 Hz, 3765 Hz and so on. 

   The impulse induced by inner race is demonstrated in Fig. 8 where the envelope is indicated in 

(a) and the characteristic frequency together with its multiples are arrayed in an axis of (b). Besides, 

the modulation on both sides are present respectively which simulates the actual condition. Fig. 9 

clarifies the original and acquired signal in time domain and frequency domain where the latter is 

derived through a transmission path from the former. It can be easily spotted that the impulses 

have been buried, meanwhile, only periodic part exists distinctly (4600 Hz). In this way, the data 

have been prepared adequately for the realization of the pre-processing methodology to the 

extraction of novel signal. 

4.2 Extraction procedure 

Now that signals of healthy and damaged bearing have been obtained, novel information extraction 

is operated as follows in accordance with Section 3.6. For the first place, the signals in damaged 

case are decomposed by STFT with a suite of window lengths, viz., 

[8,16,32,64,128,256,512,1024,2048]. And then the feature extraction function, kurtogram, is 

used to collect features based on STFT for every window length. Fig. 10 illustrates the kurtogram 

values along window length axis. Window length 1024 conveys the kurtogram more clearly, so 

that this typical window length is also applied to training phase. In step two, features are 

parametrized by Gaussian PDF, such that a novelty detection scoring function, the squared 

Mahalanobis distance can be obtained by computation. Third, a filter is designed by comparing 

the novelty detecting score and an associated threshold which is 9 in this case, and coefficient of 

the filter only equals to unity or zero.  In the end, each frequency band of the time-frequency 
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Fig. 9. Original together with acquired signal in time and frequency domain 

 
Fig. 10. Kurtogram values in different window lengths 
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representations for different window lengths are scaled by the novelty filter, where the center 

frequencies are tuned with those in training phase through a function relates the window lengths, 

centre frequencies to the index of filter coefficients. After performing inverse STFT for each group 

of scaled time-frequency representation, their average can be computed which represents the 

estimated novel signal of interest.   

4.3 Results and diagrams 

From the diagrams of the novel signal (depicted in Fig. 11), it can be distinguished that the 

frequencies concerning the damage have been retained and also the rotational speed in low 

frequency region. As indicated in Fig. 11(a), the amplitude of novel signal is always less than 

original signal, which is ascribed to the filter effect on the STFT during scaling procedure, where 

the signal in frequency domain only contains limited amount of information. 

Nevertheless, the methodology is not always providing rosy results. Among the abundant trials, 

it is discovered that the novel information is sensitive to the magnitude of noise. Only generating 

signals under a certain amplitude, the rotational speed can be successfully kicked out. This is may 

be due to the influence of impulsivity in noise on the feature extraction. When the other damages 

are taken into consideration, the results are not sufficiently satisfactory as for the inner race case. 

Moreover, the implementation in variational speed is not practiced in this thesis, which requires 

further effort to validate the effectiveness of the methodology. As mentioned at the end of Ref. 68, 

“future work should focus on making the methodology more robust by optimising each step of the 

methodology.” And a few future potential strategies are given to improve the performance of the 

method. Therefore, there are a great many paths to be investigated to anchorate the effectiveness 

of this technique. 

Although the validity of the pre-processing methodology is partially proved in this thesis due to 

the imperfection of the modelling and feature extracting, it still can be believed that it appears an 

effective technique for rotating machine diagnosis where historical data are available. 

5. Experiments by different analyses 

5.1 Analysis by FK 

    Thanks to the availability of open access program provided by J. Antoni, the implementation of 

fast kurtogram for damaged bearing signal can be directly conducted in Matlab. Without pre- 
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Fig. 11 (a). Derived novel signal in time domain. 

 
Fig. 11 (b). Spectrogram of novel signal. 

 
Fig. 11 (c). Data in zoom of spectrogram. 

whitening the signal, the kurtogram can be displayed in two-dimension map containing several 

square segments, which is illustrated in Fig. 12(a). By selecting the area where the maximum 

kurtosis lies and inserting the corresponding carrier frequency and level, transient signals are able 
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to be filtered out and also the envelope spectrum can be easily computed. Fig. 12(b) reveals the 

envelope and amplitude spectrum in frequency domain. 

As shown in Fig. 12(c), the characteristic frequency can be easily captured with a spike whose 

value is in accordance with defect frequency for inner race. Besides, the other crests such as 200 

and its multiples indicated existence of the rotational speed. By the way, if observing the plot in 

detail, it is possible to find the modulations on both sides of the defect frequency, which equal to 

plus or minus the rotational speed from defect frequency. 

    FK is proved to be an effective tool for detecting the impulses hidden in a signal. Its numerical 

efficiency is another advantage, which makes it suitable for a mass of trials in limited period. 

Moreover, through the verification test, a smaller sampling frequency had a bad impact on the final 

result, where a portion of information may be dropped out. 

5.2 Analysis by Autogram 

    The algorithm for computing the Autogram has been shared by A. Moshrefzadeh [64] on 

Mathworks community, which offers great convenience for analyzing the diagnosis of the 

damaged bearing signal. With setting specific parameters, the Autogram can be obtained (Fig. 

13(a)), and consequently the average combined square envelope spectrum (Fig. 13(b)) can be 

derived. Through repeated experiments, it manifested that upper Autogram delivered an excellent 

plot which contained defect frequency and its multiples more clearly. 

As depicted in Fig. 13(b), besides the information concerning rotational speed in low frequency 

region, there are also clusters of spikes distributed in high frequency area which represent the 

defect frequencies and their modulations. As for the periodic part mixed in the original signal, it 

has been filtered out by the program. And noise generated in the simulated signal, though in 

presence along the envelope, plays a minor role in the bearing diagnosis. 

5.3 Comparison 

Now that the damage of the bearing has been detected by three different numerical analyses. On 

the whole, all of them have a certain effect on the diagnosis, which is worth to be discussed. 

Speaking of detection capability, FK exports a clean result including rotation speed and the 

fundamental characteristic frequency; Autogram can detect rotational speed and multiple defect 

frequencies are displayed in vertical lines with gradient colors; novel information contains the 
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Fig. 12(a). Kurtogram by FK 

 
Fig. 12(b). Squared envelope of the selected segment. 

 
Fig. 12(c). Zoom of the squared envelope. 

characteristic frequency and its multiples. Generally, they put up a good performance to discover 

the maximum impulsiveness regarding defects.  

    Referring to computational time, FK apparently outperforms the other two methods by taking 

advantage of multi-rate filtering; Autogram, developed from kurtogram, can automatically 

generate the final spectrum. Experiments manifest that it takes less than 10 seconds below level 7. 

Unfortunately, the novel signal extraction is only a pre-processing method to obtain the essential 

information, and further signal analysis needs to be conducted, which seems not a time-saving 
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Fig. 13(a). Kurtogram by Autogram at level 6. 

 

Fig. 13(b). CSES of the selected area. 

technique. 

    As to operability, FK selects the area corresponding to the maximum kurtosis by hand and 

delivers the square envelope; on condition of specific parameters to be defined, the quality of 

Autogram’s final result can be improved by alternating types of Autogram and enhancing the effect 
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of upper portion; novel signal extraction requires a reference signal as a contrast, and the feature 

extraction function can be selected among many different types. Obviously, more investigations 

should be performed for adapting to sophisticated situations and improving the quality of results. 

6.  Conclusion 

    The thesis principally focuses on the detection of damage in REBs. With several common 

defects presented, an attempt to summarize the techniques for bearing fault diagnosis has been 

made. From the perspective of reliability and practicability, vibration analysis is the most 

commonly accepted technique due to its ease of application. Immediately following the 

introduction of signal analysis methods, three numerical analyses, specifically novel information 

extraction, FK and Autogram, are conducted successively to test the effectiveness for detecting 

damage to inner race. 

    Through comparison, FK and Autogram exhibit excellent performance in capturing the 

characteristic frequency of damaged bearing signal, as proved by many other researchers. And as 

for novel information extraction, a recently proposed pre-processing method, has its own merits 

from the view of algorithm. Although from the tests, it is limited by selection of feature extracting 

function and quantity of noise, a series of further investigations might target on different features, 

more sophisticating modelling procedure, alternative novelty filter, and experimental datasets to 

yield sufficiently accurate results than those previously found. 
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