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Abstract

Steel components are omnipresent of the automotive field. Their wide variety

of characteristics, they go from being very hard and brittle to extremely duc-

tile, can fulfill many automotive designers needs. Their precise and accurate

study can increase safety, fuel efficiency and overall product profitability. In

this context, for the design with any material it has become crucial to be able

to characterize precisely steels and accurately predict their failure in many

complex conditions.

One of the most accredited ways to approach the prediction of failure for a

wide range of materials is the generalized incremental stress-state dependent

damage model GISSMO. The model is highly flexible and provides a frame-

work inside LS-DYNA in which failure parameters can be tuned to reproduce

experimental data. The definition of the optimal parameters is an inverse

problem, therefore it was implemented using LS-OPT.

In this work, the experimental evaluation of a MS1500 and a DP800 was

carried out using the digital image correlation (DIC). With such technology,

the displacement field of the test specimen is recorded.The evalueted field was

processed as a family of stress-strain curves (hyper-curves) and became the

objective of the optimization. This approach is named full field calibration

and the aim of this work is to evaluate the effectiveness of the introduction of
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field data in the characterization of steels. This work was split in two phases.

First, the stress-strain curve of the material was defined, then the tuning of

the GISSMO parameters was performed.

To evaluate the effectiveness of the full field approach a parallel study was

implemented. The same routine of optimization run with a single stress-

strain curve, which was measured with an extensometer. The comparison

between the results obtained with the traditional approach and the results

obtained with the full field approach highlighted the strenghts and the limi-

tations of the two methods.
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Chapter 1

Introduction

Nowadays the possibility to accurately simulate the materials is crucial to

expect accurate results in finite element analysis. Just as much as boundary

conditions, joints and fixtures, more precise material models are continually

sought after throughout the industry. Material calibration for is important

in applications with large deformations and fully plastic cases like forming

and crash simulations where simple linear models fail to achieve the desired

accuracy.

More complex model require a significant effort to calibrate them to the

physical behavior of the materials, but can perform better. This work will

evaluate and compare different techniques to characterize materials for finite

element simulations.

1.1 Objectives

The objective of this thesis work is to analyze the effectiveness of a new mate-

rial calibration technique called "Full field calibration". The typical operation

15



A Full Field Calibration Approach on Material Parameter identification

in a steel testing application would employ a universal testing machine to-

gether with an extensometer to measure the tensile load and displacements

during the test. The displacements measured are then used to compute the

average strain between the measuring points. Due to the advent of new strain

measurement technologies, such as digital image correlation, it is now possi-

ble to acquire and analyze the strain field, from the local displacement on the

surface. The possibility to include in the material model information coming

from the whole analyzed piece, or at least a significant region of it, allows

for the richer description of its behaviour. This technique also permits to

inspect the necking area, which is affected by the highest strains and strain

gradient.

Two materials will be tested, a martensitic high strength steel (MS1500)

and a more ductile dual phase steel often utilized in automotive application

(DP800). The characterization will be split in two parts: the determination

of the yield curve of the materials and the optimization of a failure model.

For the first part three approaches are tested. The new approach, "Full field

Calibration" (FFC), which includes strain field data in the optimization of

the yield curve. Then, the "Standard" way, which only uses the displacement

data of an extensometer, and lastly the "Volume Conservation (VC)" method,

which is explained in detail in section (5.3). For the second part, the failure

model optimization will be carried out in just the FFC and Standard ways.

1.2 Overview of the Thesis

The Master’s Thesis work is organized as follows. Chapter (2) illustrates

the background knowledge necessary to confidently approach the analysis
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1 – Introduction

performed in this work. Chapter (3) describes the experimental study that

was performed to collect experimental data for the subsequent calculations.

Chapter (4) presents the considerations that guided the preparation of the fi-

nite element models that were used in the optimizations. Chapter (5) reports

about the preparation of the yield curve optimization and discusses the ob-

tained results. Chapter (6) follows Chapter (5) structure, but describes the

optimization of the failure model and the results that it produced. The last

Chapter, (7), summarizes the results of this work and presents the possible

future developments.
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Chapter 2

Theoretical Background

This chapter aims to present all the relevant theoretical knowledge needed

to approach this work. Section (2.1) presents the tools necessary to describe

the state of a deformed metal. Section (2.2) aims to outline the study of the

plastic deformation in metals and the mechanics that lead to their failure.

Sections (2.3) and (2.4) include an overview on the experimental techniques

used to study the mechanical properties of the alloy provided by FCA and

on the optimization technique theories required to calibrate the parameters

used to simulate the material behavior.

2.1 Stress and strains in metals

A theory which tries to describe the mechanical behavior of a material focuses

on searching for the relationship between the strains and stresses inside said

material. This means investigating how the material deforms when subjected

to forces, and linking the strains and stresses from the displacements to the

applied forces. These relationships can be quite simple for mono-dimensional
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geometries and small loads. They become more complicated when describing

the 3-D world and phenomena like yielding and plasticity occurs.

At the base of the investigation on the deformation of metal is the uni-

axial tensile test. A simple straight specimen is subjected to a quasi-static

increasing load along one direction until failure occur. Due to the simple

nature of the test it si possible to define nominal stress

σ̂ = F

A0
(2.1)

and nominal strain

ε̂ = l − l0
l0

(2.2)

in which F represents the load, A0 represents the nominal cross-section and

l0 represents the initial length of the test specimen. These entities are defined

on the initial state of the testing sample. It is apparent from experimental

data that the cross-section does not remain constant during the test. On the

other hand, it is possible to introduce true or Cauchy stress

σ = F

A
(2.3)

and true or logarithmic strain

ε = dl

l
or ε =

∫ l

l0

dl

l
= ln

l

l0
(2.4)

which are defined on the instantaneous cross-section and length. By looking

at equation (2.2) and (2.4) it is easy to obtain
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2 – Theoretical Background

ε = ln(1 + ε̂) (2.5)

which describes the relationship between the two strains, and this holds in

any case. On the other hand, a similar relationship with stresses is based on

the assumption of volume conservation and homogeneous stress state, which

are true until the point of uniform elongation [1].

A0 · l0 = A · l (2.6)

therefore

σ = F

A
= F

A0
· l
l0

= σ̂(1 + ε̂) (2.7)

Equations (2.5) and (2.7) can be used to transform one kind of stress or

strain to the other.

2.1.1 Von Mises stress

The previous section dealt with a simple mono-dimensional case. When deal-

ing with complex geometries, loading conditions and constraints, the stress

state is represented by the Cauchy stress tensor with its nine components in

a (x, y, z) coordinate system:

σ =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 =


σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 (2.8)
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It is uniquely determined by six independent values. The matrix must be

symmetric to satisfy the rotational equilibrium. For clarity a graphical rep-

resentation is shown in figure (2.1).

Figure 2.1: Components of a stress tensor inside a body [2]

The need to compare quantitatively different stress states drove the devel-

opment of effective criteria. Huber [3] and Von Mises [4] later proposed the

calculation of an equivalent stress that could condense most the information

carried by the Cauchy stress tensor. They started by dividing the stress ten-

sor into two parts, hydrostatic and deviatoric. Given the ij components of

the stress tensor it is possible to write:

σij = p · δij + Sij (2.9)

where p is the hydrostatic stress, S is the deviatoric stress tensor and δij is

the Kronecker delta. p and S are calculated, respectively:
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2 – Theoretical Background

p = 1
3σij = 1

3(σxx + σyy + σzz) (2.10)

Sij = σij − p · δij (2.11)

It is now possible to write the second invariant J2, the deviatoric stress tensor:

J2 = 1
6
[
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2

]
+ σ2

xy + σ2
yz + σ2

xz (2.12)

Huber and Von Mises’ assumption was that yielding occurs when the second

invariant J2 of the deviatoric stress tensor S reaches a critical value k2. To

determine the value of k[5] it is possible to use a simple uniaxial tensile

test, in which the stress at the yielding point is measured. Using a principal

Figure 2.2: Ideal representation of the uniaxial tensile test [6]

reference system, with the x axis parallel to the direction of application of

the load as shown in figure (2.2), the Cauchy stress tensor is reduced to one

scalar:
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σxx = σy and σyy = σzz = σxy = σxz = σyz = 0 (2.13)

and J2 becomes:

1
3σ

2
y = k2 so that k = σy√

3
(2.14)

Using the results of the experiment, the Von Mises criteria can be expressed

as a simple inequality including the equivalent Von Mises stress σvm:

σvm > σy (2.15)

In which σvm can be calculated as follows:

σvm =
√
σ2
xx + σ2

yy + σ2
zz − σxxσyy − σyyσzz − σzzσxx + 3

(
τ 2
xy + τ 2

yz + τ 2
zx

)
(2.16)

Equation (2.15) makes it possible to assess if the stress state, represented in

all its components, is such that yielding occurs.

σvm > σy yield (2.17)

σvm < σy no yield (2.18)
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2 – Theoretical Background

2.2 Material plasticity

Von Mises yield criteria is one of the possible ways to identify the surface in

the stress state space that separates elastic from plastic deformation. Equa-

tion (2.16) can be rewritten in a generic reference frame, equation (2.19), or

in a principal reference frame, (2.20).

σvm =
√

1
2
[
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2] + 3

(
τ 2
xy + τ 2

yz + τ 2
zx

)
(2.19)

σvm =
√

1
2
[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2] (2.20)

Equation (2.20) identifies a surface on the σ1, σ2 and σ3 stress space, along

which the value of σvm is constant. Elastic deformation occurs inside the

surface and the deformation outside is plastic and non-reversible. A graphical

representation of the Von Mises yield surface in a σ1-σ2-σ3 space is presented

in figure (2.3).

Figure 2.3: Von Mises Yield Surface [7]
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The mechanical properties of a material heavily depend on its micro struc-

ture. Yielding depends on the crystal lattice that constitutes metals. The

fundamental mechanic that allows the plastic deformation is the movement

of atoms inside the lattice along slip planes. Dislocations are defects in the

metallic lattice, and they move inside the lattice allowing it to deform in

a non reversible way. Figure (2.4.a) shows how atoms are arranged inside

a metal. One type of dislocation called edge dislocation describes a void,

or missing atom, inside the crystal. These defects allow the breaking and

reforming in different locations of the atomic bonds that hold the lattice

together.

Figure 2.4: Cristalline structure of a metallic material with an edge disloca-
tion [8]

When a shearing load is applied, as shown in figure (2.4.b), the lattice

moves along the slip plane, highlighted with a dotted line in figure (2.4),

and the bonds around the dislocation are modified, leaving a permanent

deformation inside the material. The presence of a defect lowers the amount

of force needed for the slip to occur because only a fraction of all the bonds

needs to be broken concurrently.
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Slip planes are randomly oriented inside the metal grains and this usually

results in a mostly isotropic behavior of the metal. This behavior is lost

gradually with plastic deformation as the slip planes tend to align along each

other. Also during deformation the density of dislocations rises significantly,

making subsequent deformation harder to achieve. The high number of dislo-

cations generates fields of plastic deformation that hinder further movement.

This phenomena is called work hardening.

Work hardening or strain hardening was estensively investigated by Hock-

ett ans Sherby. To study materials after large deformation, when said phe-

nomena occurs, they subjected a vast number of cylindrical specimen to

uniaxial compression. The experiments led to the proposal of a relation that

describes the true stress-strain curve [9]:

σ = σs − (σs − σy) · e(−NεP ) (2.21)

2.2.1 Damage modelling

A model of damaged ductile material is necessary to accurately describe the

failure and fracture of ductile materials, particularly in steels [10]. Modelling

the plastic behaviour of metals can be done microscopically or macroscop-

ically. Microscopic models take into account the crystal structure and the

movement of dislocations. Macroscopic or phenomenological models repro-

duce the behavior of the material using experimentally tuned models.

The approach chosen in this work follows the macroscopic approach, more

precisely the experience of Lemaitre [11]. It analyzes the phenomenon of

micro-crack growth induced by large deformations in metals. This kind of
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damage happens at a much bigger scale than the characteristic size of a

metallic lattice. Lemaitre introduces a Damage variable D to quantify the

presence of voids and micro-cracks in a given portion of material. Lemaitre

interprets damage as a reduction of the effective area that can withstand

stress. The damage variable corrects the effective area keeping into account

only the portion that can still resist the load. D is defined as:

D = S − S
S

(2.22)

S is the nominal area, S is the portion that is not damaged. D is the corrected

area of cracks and voids per unit surface. Its values range from 0 to 1, where 0

represents the undamaged state and 1 represents rupture of the element. The

surface in which the effective area is calculated is identified by the normal n

and a representation is presented in figure (2.5).

Figure 2.5: Voids generated by plastic strain in an element of metal and the
relative effective area [11]

In most alloys, void nucleation begins at very low deformation values, and

the progression of the damage and how fracture begins and grows is tightly
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2 – Theoretical Background

linked to how these voids grow and coalesce. The main parameter that influ-

ences the initiation of ductile damage, not taking into account stress intensity,

has been shown to be stress triaxiality [10]. When dealing with complex ge-

ometries and loading conditions, such as those present in forming or crash

analysis, the damage parameters that come from simple tensile tests are of-

ten unsatisfactory. This has suggested the need to use multiple geometries in

test experiments, to test a range of values of triaxiality that ideally cover all

the possible values that the piece could experience in its working conditions.

2.3 Material testing with digital image cor-

relation

One of the technologies that made this work possible is digital image correla-

tion (DIC) which is used extract displacements from material tests. Strain is

traditionally measured using extensometers. This technique yielded one mea-

surement series per specimen, along the instrument’s gauge length. DIC is

instead capable of a non intrusive full-field measurement of the displacements

using one or more cameras to record the deformation of the test specimen.

For the DIC to be effective, the object being studied needs to present

unique features that can be identified and followed during the experiment.

Metals in their crude form are usually shiny and smooth, which makes them

inadequate for optical correlation techniques. The state of the art technique

for DIC involves applying a stochastic speckled pattern on the piece, or on

the region of interest, with two passes of a white and black paint. Figure

(2.6) presents one of the samples used in this work and highlights the applied

pattern. This stochastic pattern doesn’t have repeating features that could
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lead to duplicated matching and optimally facilitates correlation software.

Furthermore, the pattern is isotropic and presents high contrast between

the image’s white and black parts; this allows for unencumbered measuring

sensitivity relating to the metal orientation or the direction of material flow.

Figure 2.6: Particular of one of the shear test specimen with the DIC speckled
pattern

The software uses pictures of the test specimen captured sequentially.

First a reference picture is selected. Then a grid of measuring points is

created on top of the speckled pattern. Every point in the mesh represents

the center of a facet, which is a square collection of pixels. This is the fun-

damental object that the software will follow during the test. The strain

field is obtained by combining the displacements and strains of all the facets.

The facet size, which influences how many pixels it includes, and the distance

between two adjacent facets can be chosen freely. To achieve a correct match-

ing of the strains, facets should not be too small, or the correlation software

will not have a sufficient number of unique features to find in the following
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picture. Increasing the facet size benefits the matching, but it decreases the

resolution at which the strains are calculated, possibly losing local peaks.

The facet distance is set up to have a partial overlap between facets to avoid

regions not covered by any facet.

Figure 2.7: Facets of subsequent deformation located on the speckled pattern

Figure (2.7) displays how one facet is followed in three different time in-

stants. Matching between pictures occurs in the software by comparing the

distribution of whites, blacks and greys in a selected facet with candidates

taken in the following pictures. The software utilizes a least square corre-

lation function that provides a rate for the similarity of two facets. This

process is repeated for all the facets and all the pictures and allows for vi-

sual representations and contours, like Figure (2.8). The field data extracted

with DIC has been used to tune a material model to the experimental field

of strain. Utilizing much more data, not only to a single average value but

also to a distribution of values, allows for a better description of the material

behaviour.
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Figure 2.8: Contour plot of the major strain in a test specimen

2.4 Design Optimization

The conventional approach when faced with an engineering task is to study

the problem and to propose a design that could be the solution. Then, the

design has to be verified and changes may be added to satisfy safety criteria

or to improve performance. These changes could be rational, intuitive or a

mixture of both.

Nevertheless, design optimization takes a different approach. First, the

problem is parametrized, and design variables are identified. These variables

are restricted into a practical range, and the combination of all their possi-

ble values is called design space. Then, a group of rules and objectives to

quantify the quality of the design is set. The next task involves exploring

the design space to find the optimal design, in the most computationally

efficient way. The quantification of the "goodness" of the design is done by

evaluating each design’s outputs, or responses, which can be displacements,

stresses, frequencies or anything of significance for the specific task. The

design’s responses are compared against the corresponding desired outputs
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to calculate the value of an objective function. The minimum of this func-

tion represents the optimal correspondence between the desired responses

and actual responses. Constraints can be added to restrict certain responses,

ruling out the designs that violatethem. The optimum design is discovered

by searching for the minimum of the objective function.

Figure (2.9) and table (2.1) summarize a very simple illustrative optimiza-

tion problem. A vehicle collision with a pole is simulated and the design of

the bumper is the objective of the optimization.

Figure 2.9: Crash simulation

Bumper study
Responses ε of the bumper
Objective minimize intrusion
Constraints max acceleration < C
Variables bumper thickness

bumper material

Table 2.1: Significant parameters

It is searched for the optimal combination of material and thickness of the

bumper that minimizes the intrusion of the pole and satisfies the safety con-

straint on the acceleration recorded inside the car body.

2.4.1 Optimization strategies

There are different optimization strategies to approach highly non linear op-

timization problems. The simplest way is gradient based methods, which

require computing the objective function gradient in one of two ways. The

first way involves analytical computation, which is usually too complicated
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or impossible. The second way includes numerical estimation through per-

turbating the design, simulating a response from the system:

df(x, y)
dx

≈ f(x+4x, y)− f(x, y)
4x

= 4f
4x

(2.23)

This process is computationally expensive, for a system with n variables n+1

simulations are needed, and error prone. If the size of the perturbation 4x is

Figure 2.10: Error evolution as a function of 4x

too big there is a loss of accuracy of the calculated gradient. Round-off errors

and a spurious dependency on the size arise if the perturbation is too small.

This is due to noise and numerical errors. Figure (2.10) shows a qualitative

representation of the error as a function of 4x.

Another possible way involves using Genetic algorithms. This name and

the functioning principle is inspired from Darwin’s theory of evolution. The

algorithm starts with a population of individuals within the design space, and

applies changes to each individual for a number of generations, ultimately

selecting the fittest. The fitness is analogous to the previously mentioned

objective function where the fittest has the lowest objective value. First the

population is analyzed and the best individuals are selected. To proceed to
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the next iteration operations of crossover and mutation are carried out and

the new generation’s population is formed. One of the advantages of this

algorithm is that it is a global optimizer and where other methods could get

stuck in local minima, the genetic algorithm finds the global one. Figure

(2.11) is a block diagram of a simple genetic algorithm functioning scheme.

Figure 2.11: Simple Genetic Algorithm[12]: functioning scheme

A third technique used is the response surface methodology. This tech-

nique constructs an approximation of the design metamodel or response sur-

face, and uses this simpler model to find the optimum values of the de-

sign variables. Figure (2.12) presents how this method would analyze a bi-

dimensional problem. The procedure for finding the combination of x1 and

x2 that minimize the objective involves sampling the design space for a num-

ber of points instead of evaluating every possible pair. The number and the

location of the points depends on the metamodel formulation. The objective

is then evaluated at these points and the values are used to create a response
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surface. The candidate optimum is located on the response surface and it

is verified if the system behaves as the approximated metamodel. If this

is true the optimum has been found, otherwise the optimization continues

iteratively, with more sampling of the design space, until an error measure

between the metamodel and the system has reached an acceptable level.

x1

O
bj
ec
tiv

e

x2

Design space

Experimental design points

Value of the response
Response surface

Figure 2.12: Response surfaces of a 2-D design space

The surface response method was chosen for this work for its computa-

tional efficiency and accuracy.
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Chapter 3

Experimental Analysis

Summary

This chapter illustrates the experimental tests carried out during this work,

describing the test specimens and the techniques used to acquire and process

data.

3.1 Experimental samples

The first part of this thesis work was the retrieval of experimental data from

the material samples that needed to be characterized. Seven different ge-

ometries of MS1500 martensitic steel were provided by Centro Ricerche Fiat.

They completed part of the experimental analysis. Two out of the seven

sample geometries were tested at Stuttgart DYNAmore GmbH ’s laboratory.

Figure (3.1) shows the seven different types of specimens tested. Each spec-

imen will be referred respectively, from left to right, shear 0°, shear 45°,

notched, double notched, mini and big.
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Figure 3.1: Schematic of the different MS1500 tested specimens

The other material available was a DP800 dual phase steel, of which only

two geometries were available. The figures (3.2) and (3.3) present the two

types of specimens provided by FCA.

Figure 3.2: Schematic of the DP800 bigdp specimen
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Figure 3.3: Schematic of the DP800 notcheddp specimen

The characterization of the materials was carried out in two parts: yield

curve and failure prediction.The main parameter that characterizes the stress

state in failure modelling is the triaxiality [10]. The objective of the char-

acterization is to achieve a material model with predictive capabilities on a

wide range of applications, geometries and loading conditions. To obtain an

adequate material model the test specimens need to span the same triaxial-

ity range. It is not reliable to predict material behavior for triaxiality values

that were not tested. In the case of the MS1500, the seven different geome-

tries subject the material to distinct stress states and achieve the needed

triaxiality variability. The lack of some geometries for the DP800 steel has

limited the possible analysis on it to just the first part: the determination

of the yield curve. Chapter (5) explains in detail how the yield curve was

determined for both materials.

All the samples were tested using a universal testing machine, UTS, which

recorded the axial load with a load cell. Strain measure was carried out by

digital cameras which recorded the portion of the specimen where the fracture

was expected to occur. Stuttgart’s laboratory test setup is shown in figure

(3.4).
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Figure 3.4: Testing setup in Stuttgart

The camera position is quite important for the correct result extraction.

If one camera is used, it must be placed orthogonal to the plane of the test

piece. If two or more cameras are used they must be parallel to the test

specimen. Once placed, the cameras need to be calibrated. A picture of

an object of known size, like a measuring stick, is used to record the size of

the pixels. The object used for the calibration must be placed in the same

position as the test specimen. This procedure allows for the conversion of

pixels to numerical measures.

After each test, load and displacements data has to be synchronized, since

the UTS’ sampling rate is different than the frame rate of the cameras. The

synchronized data is input into the DIC software GOM, and a region of

interest (ROI) is created by selecting the part of the test specimen with
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the highest deformation concentration. The ROI is meshed with triangular

elements and six of them make a facet. Figure (3.5) shows the ROI with the

triangular mesh. The size of the facets is crucial for comparing the measured

Figure 3.5: ROI and triangular mesh

strains to simulated strains. The DIC software calculates strains based on a

characteristic length l0 which is proportional to the facet size, shown in figure

(3.6). The FEM simulation’s mesh size used to reproduce the experiment

Figure 3.6: Facet with reference length
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must be comparable with the mesh size selected in the DIC software [13] to

directly compare results. A difference of more than an order of magnitude

between l0 and the simulation’s characteristic length could yield questionable

results [13].

Each geometry was tested 3 times for the repeatability of the measure

and the average calculated from the replicated tests was used in the following

analysis. From every test two sets of experimental curves were extracted. The

first kind comprised a force-engineering strain curve, as if the experiment was

carried out using a traditional extensometer. This curve is extracted from

the DIC software using a digital extensometer. The results for one of the

specimens is shown in figure (3.7). The second curve type includes the force-

Strain

A
xi
al

lo
ad

Figure 3.7: Axial load-engineering strain curve of the material, big specimen

true strain curves for each facet inside the ROI. The DIC software exports

the axial force as a function of strain for each facet, generating a hyper-

curve. An extracted hyper-curve example can be seen in figure (3.8). It is
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Figure 3.8: Load strain curves extracted with the DIC

a collection of force-strain curves calculated in different locations using the

same load. Points that are close to the strain peak result in a curve more

stretched. Points that are further away behave almost elastically.

To achieve proper correlation of the displacements the specimens were first

sprayed with white paint, and then after a short time with black paint. The

black paint must be applied from a distance to achieve a uniform distribution

of black marks. The average size of the marks should be 3 to 5 times bigger

Figure 3.9: Sprayed test specimens
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than the image’s pixel size, the pattern is shown in figure (2.6). Speckles that

are too small result in suboptimal contrast, and too large speckles reduce the

measurement resolution [14].The quality of resulting patter, in figure (3.9),

was verified with the DIC software and no issues were found.

The results of the two DP800 tensile tests are presented below in figure

(3.10).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

Big
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

Notched

Figure 3.10: Normalized axial force-engineering strain curve of the DP800
specimens

The results of six of the MS1500 tensile tests are presented below in figure

(3.11). The results for the shear 0° specimen were unusable because the field

of view was too narrow for the extraction of strains. The experiment was

carried out with the camera placed too close to the test specimen due to the

test machine geometric restrictions, so only one side of the specimen could

be seen. Both sides of the specimen must be visible in order to extract usable

data.
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Figure 3.11: Normalized axial force-engineering strain curve of the different
specimens
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Chapter 4

FEM models

Summary

This chapter explores the simulation of the test specimens using the finite

element software LS-DYNA. Chapter 4 begins by exploring the topic of mesh

generation and goes on to explain the thought processes behind selection of

the material model, the element formulation, the boundary conditions and

the model deformation. This chapter ends describing and illustrating the

analysis of the simulation results.

4.1 LS-Dyna

There were 2 available test specimens for the dual phase 800 steel, and 6

for the MS1500 martensitic steel. The DP800 was included only in the yield

curve analysis due to the lack of specimens. Having the MS1500 in dif ferent

geometries also allowed for the study of its failure. To simulate the experi-

mental analysis the geometry of each specimen was reproduced inside a CAD
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software and the resulting geometry was loaded into LS-PrePost to generate

a mesh. The elements were created with sides of 0.5 mm in the critical area

of each specimen, located where the fracture is expected to happen. The

mesh became gradually more coarse as distance from these areas increased.

The minimum size was chosen to avoid spurious mesh dependencies in the

damage model used in the simulations [13]. Elements that are too big strug-

gle to describe a physical phenomena such as cracking or fracture because

they occur on a smaller scale than the mesh’s characteristic length.

The damage model selected for the MS1500 study is the Generalized In-

cremental Stress-State dependent Damage Model (GISSMO)[15]. To make

the results of this work applicable to a crash simulation the GISSMO model

provides a regularization parameter that can be tuned to make the results

independent from the mesh size. The regularization is crucial because in a

crash analysis the average size of the elements is usually 5-6 mm. The tuning

of the GISSMO model will be discussed in Chapter 6.

For the MS1500, only four of the six available experiments were used in the

GISSMO optimization because the shear 60° simulation behaved differently

than the measured physical sample and the and mini was incompatible with

the big. This discrepancy probably arose due to the simple material model

selected for the simulations; more details on this matter are in section (4.1.1).

Additionally, The test material on the ultra high strength martensitic steel

could have some orthotropic properties that are not considered in the material

model. This could also lead to the incorrect shear 60° simulation. The fifth

and the sixth specimens were used as control, but they were not used in

the computation of the material parameters. The figure (4.1) shows the 5

simulated geometries:
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Figure 4.1: The meshed geometries, respectively from top to bottom: shear
45°, notched, double notched, mini and big

For the DP800 the two geometries were simulated but, since the GISSMO

model optimization was not performed, only bigdp was used to tune the yield

curve. Notcheddp was used to verify the result of the yield curve. The meshed

geometries are presented below in the figure (4.2)

Figure 4.2: The meshed geometries, respectively from top to bottom:
notcheddp and bigdp
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4.1.1 Material model

The material model chosen for the simulations was, in the LS-DYNA keyword

notation, *MAT_PIECEWISE_LINEAR_PLASTICITY[16]. This model

was chosen because it is one of the most used material models in the crash

analysis thanks to its balance among computational efficiency, simplicity and

accuracy in the results. The model chosen is also an elasto-plastic material

model with the potential to define an arbitrary stress-strain curve[16] as

a constitutive relation, which allows for the simulation of a wide range of

materials. The stress-strain curve required by the model must be a true

stress and true plastic strain curve. This is referred to as yield curve.

Figure 4.3: Yield curve extrapolation compared to the corresponding test
results[13]

To obtain the yield curve shown in figure (4.3), the test results of the

big specimen were processed as described in section (2.1). The true strain

was calculated using the measured engineering strain and the equation (2.5).

50



4 – FEM models

Then the plastic strain was obtained by subtracting the elastic strain to the

true strain, as in the equation (4.1).

εpl = ε− σ

E
(4.1)

Obtaining the true stress requires two phases. True stress can be calculated

with the equation (2.7) until the point of uniform elongation. Then a plastic-

ity model is introduced to calculate the true stress after the point of uniform

elongation because the stress state is no longer uniform and the cross-section

no longer constant. The Hockett-Sherby model described in the section (2.2)

was used in a modified form. It presents two free parameters that must be

optimized to the material’s behavior. Their determination is described in the

Chapter 5. The model’s equation is:

σ = A−B · e(−C·εNpl) (4.2)

C and N represent the two free parameters, because A and B are bound

due to the requirements of C1 continuity in the transition from uniform

to non uniform elongation [13]. By iteratively choosing C and N until the

experiment behavior is found in the simulations, the material is characterized.

The material model handles plasticity using a Von Mises Yield surface based

on a J2-plasticity[13].
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4.1.2 *MAT_ADD_EROSION

Another material card was added to the simulation to simulate the failure.

In the LS-DYNA keyword notation, the *MAT _ADD_EROSION card per-

mits users to introduce the GISSMO model of damage accumulation into the

simulation, allowing users to modify the damage occurrence and the fracture

speed. This damage model is highly modular and can be used with many

of LS-DYNA’s material models. The GISSMO’s most important modifiable

parameter is the damage accumulation rule[15]:

4D = n

εf (η) ·D
(1− 1

n) · 4εpl (4.3)

in which the free variables are n, the damage exponent, and εf (η), the fracture

strain as a function of the triaxiality. Using the current values of the damage

D, of the plastic strain εpl and of the triaxiality η equation (4.3) is evaluated

in every time step of the simulation and the damage is accumulated. D

starts from 0 for every element in the simulation. When the damage in one

element reaches unity the considered element is deleted, as it is unable to

bear stress. The possibility to change the value of the damage exponent n

allows for a non linear accumulation of the damage. Values of n higher than

1 accumulate damage slowly at the beginning and accelerate the process as

D approaches 1. Values lower than 1 present the opposite behavior.

Another useful aspect of GISSMO is the introduction of coupling between

the damage and the stress in the element. Damaged elements can withstand

less stress than elements without damage. The coupling enables the descrip-

tion of the weakening of the elements. It is implemented in the model with an

instability parameter F and its accumulation rule is similar to the equation
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(4.3):

4F = n

εcrit(η) · F
(1− 1

n) · 4εpl (4.4)

with the difference being that εcrit(η) is the moment at which the plastic

damage starts influencing the stress. When F reaches 1 coupling starts:

σ = σ̃ ·
1−

(
D −Dcrit

1−Dcrit

)m (4.5)

σ̃ is the stress that would be present in the element without damage and it

is reduced using the equation (4.5) to obtain σ, what is actually present in

the damaged element. The stress scaling is done using the current damage

(D), the damage at the time step when F reached 1 (Dcrit), and the so-called

fading exponent m, which is a characteristic of the material and it has to be

calibrated [15].

The curves describing the material’s dependency on triaxiality of εpl and

εcrit together with the two accumulation rule’s exponents, n and m are the

objectives of the optimization carried out in chapter 6. The correct combi-

nation of these parameters simulates the material behavior.

4.1.3 Element formulation

All the FEM models were generated using fully integrated quadrangular

shells, formulation 16 inside LS-DYNA[16]. Strain along the thickness was

taken into account to enhance precision and 5 integration points through the

thickness were selected.

53



A Full Field Calibration Approach on Material Parameter identification

4.1.4 Boundary conditions

Figure 4.4: Shear 45° model with the constrained nodes highlighted

The models’ boundary conditions were designed to reproduce the experi-

mental tests. Figure (4.4) shows one of the models highlighting the applied

constraints. The nodes with white markers surrounded by a black box on

the left side are constrained in all six degrees of freedom to reproduce the

UTS’ fixed clamps. On the opposite side the nodes surrounded by the red

box are free to move only along the x direction. All the non highlighted

nodes are not constrained. The same logic was applied to the other models

in preparing the boundary conditions.

The load was applied on the constrained nodes on the right side through

controlled motion. A displacement curve function of time dictated their

movement. The curve relative to the shear 45° specimen is presented in

the figure (4.5). This definition results in constant speed and acceleration

for the duration of the simulation, except during the transient phase at the

beginning. For this reason kinetic energy levels were monitored in all the

simulations: the ratio of kinetic over internal energy did not exceed 10−15%

in the transient. For the rest of the duration of every simulation, roughly 90%,

it stayed below 3 − 7%. The deformation speeds chosen for the simulations

were higher than those experienced by the test specimens, as the tensile

tests are carried out in quasi-static loading conditions. The simulation’s

higher displacement speed, which evidently increases the deformation rate,

54



4 – FEM models

0.00 0.20 0.40 0.60 0.80 1.00
·10−2

0.0

2.0

4.0

Time

x
Po

sit
io
n

Figure 4.5: Shear 45° model prescribed motion curve

is needed due to the size of the mesh and the type of solver utilized. The mesh

size influences the maximum valid time-step for the explicit solver and, even

taking into account some mass scaling, the computational time associated

with reproducing the same strain rate would have been unreasonably long.

In this work the strain rate influence on the material properties was not

taken into account. Having the simulation run at higher strain rates is an

acceptable compromise to reduce the computation times.

4.1.5 Solver

The solver used in this work is LS-DYNA’s explicit method. This method

was chosen because the results of this work are thought to be used in crash

simulations, which are run explicitly because of the high deformations and

the high deformation’s rate reached in the car models. The computation

time was mainly influenced by the size of the smallest elements in the mesh.
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The introduction of mass scaling allowed for some time step increase. It was

limited to 2% of added mass[16].

4.1.6 Results extraction

The aim of this work is to compare the effectiveness of different calibration

methods: traditional that uses just the data from an extensometer and full

field calibration, which analyzed a portion of the strain field. To do this, two

sets of results were obtained from the simulations. For the traditional opti-

mization, the axial load and the displacements of two nodes were recorded,

where the two nodes represented the extensometer measuring points in the

simulation. The figure (4.6) shows one sample geometry and the position

of the nodes where the displacements are recorded. The location of the

two nodes is different in every specimen and reflects the placement of the

extensometer in the experimental test. A load engineering curve for each

Figure 4.6: Shear 45° specimen with its nodes where the displacement is
measured highlighted
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simulation was evaluated as the difference of displacement along the x direc-

tion of the two selected nodes. This curve is used to rate the parameters’

accuracy in each simulation in the traditional optimization cycles.

The second type of results extracted comprised of the same axial load

and strain field, which is recorder in LS-DYNA inside the d3plot files. A

collection of curves comparable to the experimental hyper-curves is obtained

by combining the load and the strains. It is a collection of the force strain

curves calculated on the elements of the model that fall inside the ROI of

the corresponding experiment. An example is presented in figure (4.7). This

object is used to evaluate the accuracy of each simulation in the full field

optimization.

Figure 4.7: Multi-point force strain curves
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Chapter 5

Yield curve optimization

Summary

This chapter will report on the optimization problem formulation for the

determination of the material yield curve for the two steels (MS1500 and

DP800). At the beginning the input files are prepared for the simulations. In

section (5.2) two optimizations are prepared, one in the traditional way and

the other using the full field calibration method for both materials. In Section

(5.3) a third yield curve is generated following the Volume conservation (VC)

approach. The simulation results for each yield curve are then compared to

the experimental data in Section (5.4), both looking at and engineering stress

strain curve and at the strain field, to evaluate the effectiveness of the three

methods. In Section (5.5) the same process was also followed for the DP800

steel to verify the procedure with a more ductile material. At the end of the

chapter the results are discussed.
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5.1 Input file preparation

The objective in this phase is to obtain the MS1500 and the DP800 yield

curves for the *MAT_PIECE- WISE_LINEARITY card. The two opti-

mizations for the first two yield curves was carried out twice using LS-OPT

in combination with LS-DYNA. For the Volume conservation method no op-

timization was run, as the yield curve can be calculated directly. A more

complete description is in Section (5.3). The optimal curve would result in a

overlap between the force-engineering strain curve extracted from the exper-

iment and the one resulting from the FEM simulation. For the optimizations

LS-DYNA and LS-OPT work together tightly through the use of the *PA-

RAMETER card. All the numbers in the input files can be parametrized

using said card and LS-OPT is able to recognize the presence of a parameter

and change it during the simulation steps.

To obtain the yield curve in the optimizations only one of the tensile tests

per material was analyzed. For the MS1500 the big specimen was analyzed,

for the DP800 the bigdp. Their input file were modified to let the optimization

perform the simulations changing the yield curves, until the optimal one is

found. The chosen structure was having part of the yield curve fixed, up to

the point of uniform elongation, and the rest variable. The variable part was

modeled with the H&S equation and was calculated at the beginning of every

simulation by LS-DYNA with the values of c and n that LS-OPT provided.

The two parameters were in the *PARAMETER card so that LS-OPT could

modify the yield curve. Then, the two LS-OPT projects were created.
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5.2 LS-OPT optimizations

Both of the standard and FFC optimization projects shared the same struc-

ture and approach, with some difference in which parts of the simulations

results (responses) were analyzed and compared to the desired mechanical

behavior. The final structure of the optimization was determined through

trial and error.

The problem of finding the values that characterize a material is known as

parameter identification. The LS-OPT manual suggests for these problems

the formulation of the optimization using a metamodel and a sequential with

domain reduction (SRSM) strategy. Initially a linear metamodel was used.

This approach is suggested because the objective is finding just one pair of

values in the design space, not obtaining an accurate description of the global

behavior of the model. To find the optimal combination of parameters the

optimization gradually reduces the size of the design space until the linear

model can accurately reproduce the experiment’s behavior. Unfortunately

the results with this approach were not satisfactory enough. The reduction

of the domain was excluding the optimal parameter values and remained

stuck in local minima. Changing the size of the design space was attempted

and resulted in better match between experiment and simulation, but the

correspondence was still insufficient so another approach was tried.

The use of feed forward neural networks (FFNN) to generate the meta-

model yielded a better match. The different type of metamodel resulted in

a change of optimization strategy, which was changed to a sequential opti-

mization. In this case the design space remained unchanged and more points

were added each iteration to enhance the accuracy of the metamodel. The
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sequential optimization is a global optimization strategy, as it approximates

the model behavior in the whole design space with the FFNN, while the

SRSM strategy reduces the design space until the linear model is accurate

enough. Figure (5.1) shows the comparison between a linear metamodel with

(a) Linear Metamodel with SRSM (b) FFNN and sequential opt.

Figure 5.1: Global and local metamodel generation strategies

SRSM strategy and a more complex metamodel, generated with FFNN with
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a sequential strategy. The images on the left highlight how in the SRSM

strategy the design space is reduced after each iterations so that a simple

linear model can reproduce, in the reduced design space, the modeled phe-

nomena with accuracy. The ones on the right show how using FFNN the

metamodel starts simple, but becomes more complex with the addiction of

more simulation points and in the end is able to accurately describe the whole

design space. Both strategies have strength and weaknesses depending the

application. A global optimization was chosen to enhance the results, at

the expense of the computation times because global approximations need

more iterations. Also, the use of FFNN metamodels generally require more

iterations than linear metamodels to get the same accuracy[12].

Using FFNN and the sequential optimization strategy resulted in the LS-

OPT project shown in figure (5.2):

Figure 5.2: LS-OPT project structure
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Figure (5.2) shows the steps the LS-OPT follows every iteration of the

optimization. First, the free parameters are selected, top letf corner of the

figure, and the design space is generated using the upper and lower bounds of

the free parameters. Then, LS-OPT samples the design space, which means

chooses what points to evaluate in the simulation stage that follows. Different

sampling strategies can be selected. For the FFNN metamodel the suggested

strategy is called space filling. It, given a number of points to evaluate inside

the design, tries to keep them all as far apart from each other as possible.

This strategy "fills" the design space trying to extract the maximum amount

of information about the global behavior of the model with the least amount

of points.

The points selected by the sampling algorithm are then utilized to run a

number of simulations. The number of points per iteration is proportional to

the number[12] of free parameters and it is determined with equation (5.1):

n = (1.5 · (i+ 1) + 1) (5.1)

where n is the number of design points per iteration and i is the number of

free variables. If more geometries are presents n is the number of simulations

per iteration per geometry.

Using the responses of every simulation the current iteration’s metamodel

is built. The responses are the axial force and the strain along a fixed length,

which are compared with the corresponding experimental result to compute

a match score. The metamodel then is searched for the minimum of the

matching score and using the expected minimum a verification simulation

is run. The responses coming from the expected minimum are compared

with the experimental values to evaluate the metamodel’s accuracy. If the
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5 – Yield curve optimization

accuracy is inside the selected interval the optimization is concluded and the

optimal combination of parameter is found. Otherwise another iteration is

performed following the steps discussed previously, until the desired accuracy

is reached in the metamodel and the material parameters are available.

5.2.1 Traditional yield curve

The first optimization had as objective the axial force-engineering strain

curve measured on the big sample with a gauge length of 80 mm. The corre-

sponding strains were read from the simulation, recording the displacements

of two nodes 80 mm apart and the axial force during the simulation. To

confront the two curves LS-OPT presents a collection of matching criteria,

in this work the dynamic time warping was used. It was chosen because it

performs well with the type of curves that usually result from tensile tests

of steels. For further explanation on the matching algorithm refer to the

LS-OPT user manual. The criteria requires the two compared curves to

be the same length, so before the evaluation the curves extracted from the

simulations were cut at the last recorded experimental load.

5.2.2 Yield curve through full field calibration

The other optimization problem had as objective the hyper-curve extracted

from the tensile test footage of an area surrounding the fracture. It is not

necessary to include the whole piece in the ROI, point too distant from the

strain localization area do not contribute to the analysis. The hyper-curve

consisted in axial force-true strain curves, and for the MS1500 specimen

670 of them were present. The corresponding curves were extracted from
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the simulations reading the d3plot files that LS-DYNA generates and the

matching was done using the same criteria, cutting the curves at the force

value that was measured last in the experiment.

The full field calibration requires one intermediate step before the match-

ing is possible. The FEM model and the mesh generated by the DIC software

are most likely created in different reference frames. They must be aligned

properly before any comparison can be done. LS-OPT provides the neces-

sary tools to do it, but as of this writing some manual work is still necessary.

A transformation must be formulated to align the two meshes. To gener-

ate it a minimum of three nodes from each model that should be coincident

when aligned must be found. The coordinates of the selected nodes must

be recorded and LS-OPT generates a transformation that moves the nodes

from the experimental mesh on top the corresponding simulation nodes. The

alignment used for the MS1500 optimization is shown in the figure (5.3) and

the figure (5.4) as an example:

Figure 5.3: LS-OPT alignment screen
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5 – Yield curve optimization

Figure 5.4: LS-PrePost alignment screen. The mesh is presented in red while
the black dots represent the facet centers.

5.3 Volume conservation method’s yield curve

method

The third yield curve was generated following the approach of Section (4.1.1)

with some differences. The strains were measured in the area of highest strain

concentration, taking into account the peak value and with a much shorter

gauge length. This highly local measurement was possible thanks to the DIC.

Due to the quite small measurement area, the hypothesis of conservation of

volume and uniformity of the strain field can be assumed valid. This allows

to use equation (2.7) to calculate true stress up to the failure of the specimen,

without needing any optimization. The curve was extended using a a linear

fitting function to include strains up to ε = 2. Only one simulation with this

yield curve was performed.

5.4 MS1500 Steel yield curves

The yield curves results of the two optimizations and of the "VC" method are

presented in figure (5.5). The ones resulting from the optimization appear
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Figure 5.5: MS1500 yield curves comparison

quite similar in shape, with the one found by the FFC method being much

steeper. The curve calculated with the VC method at the beginning stays

with the other two, but around the yielding point proceeds to diverge to a

much stiffer behavior. The normalized experimental axial force-engineering

strain curve is compared with the corresponding curves resulted from the

simulation of the three yield curves in figure (5.6). All three models nicely

reproduce the material yield, though they all present a delay in the initiation

of the localization of the strain. The "VC" one presents a much more ductile

behavior, while the other two reach failure coherently with the experiment.

The VC simulation continued deforming much further the values registered

in the experiment and presented a different strain localization locus. Failure

prediction was not the objective of this comparison and in fact besides this
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Figure 5.6: MS1500 engineering curve comparison

difference all the models were matching the experiment’s force-engineering

strain curve very accurately. More differences were found inspecting the

strain fields generated in the three models and comparing them to the one

measured during the tensile test. Figure (5.7) shows the strain fields of the

experiment compared with the fields of the three models at three different

force levels: when necking begins and two afterwards. The load level of the

three comparison points is shown in figure (5.6) with three black lines.

The first comparison point, first line of pictures, highlights the delay in

localization of the strain that was observed in the force-strain curves above.

The following two show how each yield curve influences the localization of

the strains. Both the "FFC" and "Standard" model were able reproduce the

slip plane on which the experimental sample experienced the fracture.
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(a) DIC (b) FFC (c) Traditional (d) VC

Figure 5.7: Strain field comparison
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The "VC" model yields an acceptable force-engineering strain curve, but the

material behavior is very different when compared to the others. It presents

a more ductile behavior and the load registered in the simulation does not

drop, making impossible a comparison of the strain field after the peak load.

When the localization occurs it is comparable to the necking of a ductile steel.

Figure (5.8) shows the "VC" strain field when this phenomenon is observable.

Figure 5.8: Strain field comparison at two subsequent time instants

Table (5.1) shows the maximum measured strains at the load levels of the

Figure (5.7):

Comparison load DIC FFC Standard VC
Max. Load 0.052 0.0327 0.0338 0.0405

(Max. Load)•0.95 0.192 0.220 0.299 N.A.
(Max. Load)•0.9 0.313 0.358 0.373 N.A.

Table 5.1: Maximum measured true strain along the specimens length
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The maximum measured strain highlights that the "FFC" model is able to

more accurately predict the material behavior. The difference in the strains

that arises after the necking is not negligible, but it was expected because in

those conditions the material behavior is no longer isotropic and triaxiality

dependent. Only a true stress-true strain curve cannot accurately portray

the experimental strain field. This issue is addressed in the Chapter (6) with

the introduction of the failure model GISSMO.

5.5 DP800 Steel yield curves

The same procedure was followed with a sample of a dual phase 800 steel.

One specimen was tested inside FCA’s laboratories and the footage of the

tensile test was analyzed. Three yield curves were generated using the afore-

mentioned approaches and the results compared to the experimental tests.

Figure (5.9) shows the yield curves that resulted from the analysis.
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Figure 5.9: DP800 yield curve comparison
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The simulation results are plotted below in figure (5.10), which shows the

normalized axial force-engineering strain curves of the experiment and of the

simulations. The load values of the three comparison points is shown in figure

(5.10) with three orizontal black lines.
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Figure 5.10: DP800 engineering curve comparison

The same strain field comparison was carried and the four different fields

are presented below in figure (5.11). The images, like in Section (5.4), show

that the simulations over-estimate the strain. The implementation of a failure

model can improve the results.

73



A Full Field Calibration Approach on Material Parameter identification

(a) DIC (b) FFC (c) Traditional (d) VC

Figure 5.11: Strain field comparison
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Table (5.2) shows the maximum measured strains at the load levels of the

Figure (5.11):

Comparison load DIC FFC Standard VC
Max. Load 0.14 0.14 0.14 0.15

(Max. Load)•0.98 0.32 0.40 0.44 0.47
(Max. Load)•0.93 0.37 0.52 0.57 0.64

Table 5.2: Maximum measured true strain along the specimens length

5.6 Result discussion

It is possible to recognize some similarities in the results from both materials:

the two optimized yield curves are better at portraying the localization of

strains, particularly in the more brittle MS1500 where the "VC" method

fails. In that case, the "VC" curve presents accurate results until the point

of uniform elongation but after that it struggles to generate in the model the

proper strain distribution and provides a material that is incredibly ductile.

The higher computational cost of running an optimization is offset by a more

accurate prediction of the material behavior. The results from the DP800 are

more uniform, with also the "VC" model presenting accurate results in the

strain field evolution, but the two optimized curves are both more accurate

in terms of results. These findings lead to believe that the "VC" method

is more suited for ductile materials, while the other two can adapt to both

ductile and brittle materials, with better accuracy in both cases. Further

studies are needed to consolidate this result.

Comparing the two optimization techniques for both the materials the op-

timizations reached the solution in less iterations for the Full field calibration
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method. The table (5.3) shows the actual numbers.

Optimization Iterations total simulations
MS1500 FFC 8 41
MS1500 Standard 12 61
DP800 FFC 11 56
DP800 Standard 13 66

Table 5.3: Simulations per optimization

The two optimization techniques produced comparable results, but the

strain field resulting from the "FFC" curve resembles more closely the one

measured on the experimental sample. Concerning the MS1500 specimen

the experimental sample experienced the failure on one of its sides not in the

middle, but to maintain symmetry in the simulations the strains measured

in the failure region were mapped on the center of the big specimen as shown

in the figure (5.4). The strain fields present a small delay in the initiation of

the localization of strains that is present across the models, and especially

marked in the "VC" model.

One interesting observation regarding all the results is that the yield locus

in the simulations of both materials is characterized by the same approximate

"X" shape. The shape of the localization depends on the yield curve and on

the element size[17] indicating that, because all the simulations were run

on the same mesh, the chosen plasticity model "Hockett & Sherby" could

have a big influence in the correct strain field simulation. For the MS1500

which presented a slip plane the shape of the yield locus was favorable to the

optimization, while for the DP800 which showed a more typical necking the

strain fields resulting from the "Hockett & Sherby" model were not as good
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as in the other material and more uniform across all the models.

Below in the Figure (5.12) are presented the metamodels that describe the

influence of C and n on the optimization score calculated by LS-OPT for the

MS1500.

(a) Standard (b) FFC

Figure 5.12: Metamodel comparison

The scales on the images represent the score that the optimization algorithm

assigns to the simulation points. It is different in the two images because for

the "Standard" optimization the matching algorithm has to compare only one

curve with the experimental one, while for the "FFC" analysis the algorithm

compares several curves and sums up the scores for each of them. The range

of scores can be used to compare two different combination of values only

inside the same optimization, not across different ones. The two metamodels

appear quite similar in overall shape, with the "FFC" one having the area

around the optimum more localized, the score rises more significantly in its

neighbourhood.

The Figure (5.13) shows the metamodels of the DP800 optimization: The
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(a) Standard (b) FFC

Figure 5.13: Metamodel comparison

same conclusions apply to the DP800 metamodels, but the difference between

the two is more evident here. This difference can be explained in the nature

of the two materials subject of the study: the DP800 being a much more

ductile material presents a more pronounced plasticity region. It reached 18%

elongation, while the MS1500 around 4-5% leaving less to the optimization

to result in a difference between the metamodel. The parameters searched

for in the optimization are determined based on the plastic behavior of the

material. The engineering curve represents an attempt at characterizing

the physics happening inside the material and it could be non significant

for the actual behavior of the material. This is apparent when comparing

the strain fields of both materials, even with very similar engineering stress-

strain curves. The Tables (5.1) and (5.2) together with the corresponding

images (Figures (5.7) and (5.9)) show how "FFC" performed better in the

characterization of the material, thanks to its different objective.
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Chapter 6

Failure optimization

Summary

This chapter follows the structure of Chapter (5) and describes the optimiza-

tion problem formulation for the determination of the GISSMO parameters.

For this part only the MS1500 steel is considered since for the DP800 the

necessary specimen geometries to be tested were not available. To charac-

terize GISSMO, 28 parameters are defined and they are the free parameters

for the two optimizations. One is prepared the standard way and the other

using the full field calibration method. The optimization results are then

compared to the experimental data.
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6.1 Input file preparation

The preparation of the GISSMO damage model is focused on finding the

right values for the damage exponent n, the fading exponent m and the two

curves function of the triaxiality that modulate the accumulation of the dam-

age and of the instability: εf (η) and εcrit(η). As described in Chapter (4) n

and εf (η) regulate the damage accumulation, while m and εcrit(η) regulate

the accumulation of the instability parameter. It was first attempted to pre-

pare the optimizations discretizing the two plastic strain curves with 5 points

in correspondence of the triaxiality values expected by the test specimen ge-

ometry. The theoretical triaxiality values for the 5 geometries is shown in

the table (6.1):

This approach intended to use each experimental test to tune the failure

Specimen Triaxiality
Big 0.33
mini 0.33
notched 0.45
doublenotched 0.55
shear 45 0.25

Table 6.1: Theoretical triaxiality values

at the corresponding theoretical triaxiality value. In reality the triaxiality

that is present in the simulation each geometry does not coincide with the

theoretical value. It changes with time and depending on the location of the

node it can be higher or lower than expected. The results that yielded from

this approach were not satisfactory. The variability of the triaxiality in the

simulations was too high to be properly portrayed with a curve parametrized

with 5 values. To improve the match new optimizations were implemented
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6 – Failure optimization

using 13 parameters for each curve together with the 2 for the exponents,

adding up to 28 parameters per optimization. The points selected to dis-

cretize the curve are highlighted in the figure (6.1) with vertical lines. The

figure (6.1) also shows the typical curves of a steel material and in particular

the failure strain presents:

• high resistance for negative triaxiality

• lower resistance for shear cases (triaxiality between 0 and 0.25/0.3)

• higher for cases of uni-axial tension

• is lower again, to then rise for cases of bi-axial tension
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Figure 6.1: GISSMO model objective curves

The instability curve was initially modelled to the shape of a parabola,
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shown in red in figure (6.1), following the indications of DYNAmore GmbH

laboratory’s technicians. The curves shown in figure (6.1) represent the start-

ing guess for the optimizations, and will differ from the final result.

6.2 LS-OPT optimizations

After the selection of the free parameters for the optimizations the LS-OPT

projects were prepared, they are presented below in figure (6.2).

Figure 6.2: LS-OPT GISSMO optimization

The two new optimizations share almost the same structure with the yield

curve optimizations, with the difference that now five stages are present

and the optimization objective takes into account five contribution, coming

from each one of the stages. 44 simulations per stage must be performed

every iteration. The selected optimization strategy was the same: FFNN

and sequential optimization. The next two sections discuss the differences

between the two new optimizations: GISSMO standard and FFC.

6.2.1 Standard optimization

The optimization objective is the sum of the five different specimens ob-

jectives, each of them is the score that evaluates the match between the
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simulation’s force-engineering strain and the experimental one. The same

procedure described in section (5.2.1) is applied to the five stages.

6.2.2 Full Field calibration optimization

Like explained in the previous section, the GISSMO optimization was pre-

pared likewise. The procedure is described in section (5.2.2) and was per-

formed for the five different geometries.

6.3 Result discussion

It was not possible to conclude the "FFC" optimization prepared for the

GISSMO model. The following discussion describes the results from the

standard optimization, showing in where it was effective and what was con-

cluded. Figure (6.3) shows the starting εf (η) and εcrit(η) curves together

with the one resulted from the optimization:
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Figure 6.3: GISSMO model original and final objective curves

83



A Full Field Calibration Approach on Material Parameter identification

Below in figure (6.4), (6.5), (6.6) and (6.7) are presented the normalized

force-engineering strain curves of the four geometries analyzed in the opti-

mization that resulted from the optimal simulation, which used the curves

in figure (6.3), n = 1.14 and m = 0.195:

FFC
FFC with GISSMO

Experimental

Figure 6.4: GISSMO damage model effect on the big sample

FFC
FFC with GISSMO

Experimental

Figure 6.5: GISSMO damage model effect on the Doublenotched sample
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FFC
FFC with GISSMO

Experimental

Figure 6.6: GISSMO damage model effect on the Notched sample

FFC
FFC with GISSMO

Experimental

Figure 6.7: GISSMO damage model effect on the Shear45° sample

The graphs illustrate how the GISSMO model is able to more closely

reproduce the material failure. Not all geometries are simulated with the

same level of accuracy. It is possible to assume that most of the discrepancies

are dependent on the material model chosen for the simulation: it is isotropic

and it can not properly portray the MS1500, which showed an orthotropic
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behavior in some samples.

The GISSMO damage model is also able to reduce the maximum strain

measured inside the material, making the overestimation of the strain field

that was presented in the previous chapter less present across all the mod-

els. After the characterization of the parameters that provide the needed

GISSMO model is necessary to perform the regularization of the damage

model, to make it applicable in more complex simulations. GISSMO presents

a curve that is able to scale the damage effects as a function of the mesh size,

in particular for shell elements the critical length is the shortest side. The

regularization is a trivial process that requires to iteratively modify the regu-

larization curve until the results are no longer mesh dependent. It is outside

the scope of this work and it is not included in this dissertation.
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Chapter 7

Conclusions

In this work a framework of experiments and simulations was built to eval-

uate the effectiveness of the "Full field calibration" method applied to mate-

rial parameters identification. Inside the typical work flow to characterize a

material the "FFC" method has been compared to other two for the deter-

mination of the yield curve and with just one in the GISSMO damage model

characterization. The results of the first part of the analysis concerning the

yield curve point out to the poor quality of results that are obtained from

the "VC" method, while highlight how both the "FFC" and "Standard" can

perform quite accurately for both brittle and ductile materials. The "FFC"

method presents a slight advantage when comparing the actual strain path of

the specimens and the maximum measured strain values. A possible future

study could furthermore assess how much they differ in terms of accuracy for

more materials.

The value of the "FFC" method for the determination of GISSMO param-

eters is still an open question and this work can be of help in the formulation

of new means to improve the characterization of materials.
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