
POLITECNICO DI TORINO
Master degree course in Automotive Engineering

Master Degree Thesis

Autonomous driving: Model
Predictive Control for overtaking

manoeuvres

Supervisors
Prof. Carlo Novara
Eng. Francesco Polia

Candidate
Federica Bonanno
enrollment: 234734

April 2019

This work is subject to the Creative Commons Licence

Abstract

In these last years, the autonomous driving is becoming a very popular trend in the
automotive field. Started as a research topic, it has quickly turned into a concern
of several companies around the world. Among the considerable technical prob-
lems this technology has to face, there’s the path planning, key function for an
autonomous vehicle. Thus the main objective of this thesis work is to investigate
the path planning techniques for autonomous driving vehicles in an overtaking sce-
nario. As first step, a preliminary research on motion planning methods is carried,
in order to have an overview of the problem, in particular focusing on the most
suitable techniques for automotive purposes. Then, a focus on the Model Predictive
Control was done, highlighting its advantages and showing some applications in the
automotive field. In order to compare the MPC performance as path planner, a
RRT* path planner was set in a preliminary phase of the work. In a second phase,
the MPC was tested both as path planner and as controller, working with a kine-
matic model and a barrier as obstacle. Lastly, the path planning function of the
MPC was isolated, resulting in a better performance in comparison with the RRT*
planner. An overtaking of a moving vehicle was achieved at high speeds, denoting
the already underlined advantages of the MPC. Further improvements can be done
using more accurate vehicle models,i.e. dynamic one and a sensor system can be
simulated to gather all environmental data.

i

ii

Acknowledgements

I would like to offer my special thanks to my supervisor prof. Carlo Novara for his
support and willingness throughout all the steps of this project.
Besides, I am particularly grateful for the assistance and patience given by my ad-
visor Francesco Polia. Without his kind guidance a part of this project would not
have been possible.

I would like also to extent my thanks to my friends and colleagues of Politecnico,
with whom I shared this journey and a special acknowledgement to Raquel, Leticia,
Shao and Yu for being my international study pals.

Thanks to my oldest friends Alessia, Astra, Beatrice, Irina and Viviana for standing
together despite the distance. Thanks to my dear friend Alice for being always there
and for sharing Sundays with me at the basketball arena. Thanks also to my ex-
colleagues Andrea, Emanuele and Riccardo for showing me sympathy and support
in the studying time back in Trieste.

A special thanks to my flatmate Giuseppe for being an excellent cook, a good lis-
tener and a wonderful friend.

Last but not least, I would like to express my deep gratitude to my family for
all the love and support I had throughout the years. None of this would be possible
without them, in particular thanks to my father Carlo for inspiring my curiosity
everyday and to my mother Cristiana for being my role model.

iii

Contents

Abstract i

Acknowledgements iii

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Background: Autonomous car technology 2

1.1.1 Automation levels . 3
1.1.2 Benefits and current situation 5

1.2 Objective and outline of the thesis . 6

2 Motion planning: State of Art 9
2.1 Basic concepts . 9
2.2 Planning algorithms . 11

2.2.1 Deterministic algorithms . 12
2.2.2 Probabilistic algorithms . 16

3 Model predictive control 21
3.1 Introduction . 21
3.2 Strategy and elements . 23

3.2.1 Application in automotive . 27
3.3 Optimization problem . 29
3.4 Typology of Model Predictive Control 33

4 Case study: overtaking 35
4.1 Trajectory planning . 36
4.2 Trajectory tracking . 37

iv

5 Implementation 39
5.1 Development environment and assumptions 39
5.2 Car model . 40

5.2.1 3 DOF Single track model . 41
5.2.2 Vehicle data . 43

5.3 RRT* planner and LQR controller as first attempt 44
5.3.1 RRT* path planner . 44
5.3.2 LQR controller: theory . 47
5.3.3 LQR vehicle model . 48
5.3.4 Feedforward term . 49
5.3.5 Setup and simulation . 50

5.4 Kinematic MPC as path planner and controller 52
5.4.1 Prediction model: kinematic bicycle model 52
5.4.2 Objective function and constraints 54
5.4.3 Optimization problem and NMPC algorithm 56
5.4.4 Setup and simulation . 58

5.5 MPC as path planner . 61
5.5.1 Assumptions . 61
5.5.2 Obstacle . 62
5.5.3 MPC and LQR interaction . 62

6 Results and conclusions 65
6.1 RRT* path planner as first attempt 65
6.2 Kinematic MPC as path planner and controller 70

6.2.1 Variable speed . 70
6.2.2 Constant speed . 73

6.3 MPC as path planner . 80
6.4 Conclusions and future works . 84

Appendix 88

References 89

v

List of Figures

1.1 Autonomous vehicle’s functions . 2
1.2 Hierarchy of decision-making process 3
1.3 Automation levels for SAE . 4

2.1 Example of Dijkstra algorithm graph 13
2.2 Example of PRM in Matlab . 17
2.3 Example of RRT in Matlab . 18
2.4 Example of RRTX at different simulation steps 20

3.1 Example of a general controller scheme 23
3.2 MPC controller scheme . 23
3.3 MPC strategy . 24
3.4 Examples of road and obstacles APF application 28
3.5 Example of non-convex function . 30
3.6 Example of convex function . 31

4.1 Overtaking maneuver: three phases 36
4.2 Control architecture for trajectory planning and tracking 36

5.1 Scheme of the bicycle model . 41
5.2 Vehicle body 3DOF block on Simulink 43
5.3 Example of costmap . 44
5.4 Setting of costmap: road with barrier 46
5.5 Costmap with optimal path . 46
5.6 Reference system of lateral dynamic error model 49
5.7 Control scheme with feedforward block 50
5.8 Control scheme of RRT* and LQR 51
5.9 Scheme of the kinematic bicycle model 52
5.10 Control scheme of the kinematic MPC 58
5.11 NMPC law block . 60
5.12 Control scheme of MPC as planner and LQR controller 61
5.13 Vehicle and obstacle at start positions 62
5.14 Obstacle detector block in Simulink 62

vi

5.15 Car model block for MPC planner . 63

6.1 Optimal paths by RRT* planner with turning radius equal to (a) 25
(b) 30 (c) 40 . 65

6.2 Optimal paths by RRT* planner with connection distance equal to
(a) 2 (b) 3.5 (c) 5 . 66

6.3 Reference trajectory at 5 m/s . 67
6.4 Reference trajectory at 10 m/s . 68
6.5 Reference trajectory at 15 m/s . 69
6.6 Vehicle’s parameters and commands at variable speed 71
6.7 Followed trajectory, predicted trajectory and the two superimposed

at variable speed;the circle stands for the obstacle at the center of the
lane . 72

6.8 Limit trajectory at 21 m/s . 73
6.9 Vehicle’s parameters and commands at 5 m/s 74
6.10 Followed trajectory, predicted trajectory and the two superimposed

at 5m/s; the circle stands for the obstacle at the center of the lane . 75
6.11 Vehicle’s parameters and commands at 10 m/s 76
6.12 Followed trajectory, predicted trajectory and the two superimposed

at 10 m/s; the circle stands for the obstacle at the center of the lane . 77
6.13 Vehicle’s parameters and commands at 15 m/s 78
6.14 Followed trajectory, predicted trajectory and the two superimposed

at 15 m/s; the circle stands for the obstacle at the center of the lane . 79
6.15 MPC as path planner: followed path and predicted trajectories at 20

m/s . 81
6.16 MPC as path planner: followed path and predicted trajectories at 25

m/s . 82
6.17 Trajectory parameters on Simulink at 20 m/s and 25 m/s 83

vii

List of Tables

5.1 Vehicle data . 43
5.2 Cost map and RRT* planner parameters 45
5.3 Kinematic MPC Constraints . 55
5.4 Kinematic MPC parameters . 59
5.5 MPC as path planner parameters . 64

6.1 LQR controller: values of Q and R matrices’ weights for RRT* planner 66
6.2 LQR controller: values of Q and R matrices’ weights for MPC as path

planner . 80

viii

Chapter 1

Introduction

In the past few years the concept of autonomous vehicles has become more common
and discussed both by academic and industrial environment. Public opinion could
see the results and problems about this technology and at the moment seems to
be divided for this possible revolution in the mobility field. This wide discussion
is also due to the fact that this technology is involving not only the automotive
engineering but also computer science, robotics, transportation, urban planning,
legal and social science. The passage to a complete self-driving car in fact is a
difficult task to accomplish and accept not only from the point of view of engineers
but also for the users. In any case many automated systems for mobility are already
present, such as urban metro subways and trains and recent developments in sensors,
actuators and control strategies has brought to big steps ahead. Even if a complete
self-driving car still doesn’t exist on the market, it seems not so far to happen.

1

1 – Introduction

1.1 Background: Autonomous car technology
An autonomous car (also known as a driverless car and a self-driving car) is a vehicle
that is capable of sensing its environment and navigating without human input [19].
Autonomous cars combine a variety of techniques to perceive their surroundings,
including radar, laser light, GPS, odometry, and computer vision. Advanced control
systems interpret sensory information to identify appropriate navigation paths, as
well as obstacles and relevant signage. We can sum up all these functions in five
main ones:

• Perception

• Localization

• Planning

• Vehicle control

• System management

Already from only these five functions the situation seems pretty complex. A
decision-making hierarchy is needed. At the highest level a route is planned through
the road network. By representing the road network as a directed graph with edge
weights corresponding to the cost of traversing a road segment, such a route can
be formulated as the problem of finding a minimum-cost path on a road network
graph. This is followed by a behavioral layer, which decides on a local driving task
that progresses the car towards the destination and abides by rules of the road. A
motion planning module then selects a continuous path through the environment
to accomplish a local navigational task. A control system then reactively corrects
errors in the execution of the planned motion [33].

Figure 1.1: Autonomous vehicle’s functions

2

1.1 – Background: Autonomous car technology

Figure 1.2: Hierarchy of decision-making process

1.1.1 Automation levels

A classification system based on six different levels (ranging from fully manual to
fully automated systems) was published in 2014 by SAE International, an automo-
tive standardization body, as J3016, Taxonomy and Definitions for Terms Related
to On-Road Motor Vehicle Automated Driving Systems. This includes everything
from no automation (where a fully engaged driver is required at all times), to full
autonomy (where an automated vehicle operates independently, without a human
driver). Also in 2018, SAE updated its classification, called J3016_201806 [18].
The levels are reported as in NHTSA website [1], National Highway Traffic Safety
Administration.

3

1 – Introduction

Level 0: The human driver does all the driving.
Level 1: The driver and the automated system share control of the vehicle. Exam-
ples are Adaptive Cruise Control (ACC), where the driver controls steering and the
automated system controls speed; and Parking Assistance, where steering is auto-
mated while speed is under manual control. The driver must be ready to retake full
control at any time. Lane Keeping Assistance (LKA) Type II is a further example
of level 1 self driving.
Level 2: An advanced driver assistance system (ADAS) on the vehicle can itself
actually control both steering and braking/accelerating simultaneously under some
circumstances. The human driver must continue to pay full attention (“ monitor
the driving environment ”) at all times and perform the rest of the driving task. In
fact, contact between hand and wheel is often mandatory during SAE 2 driving, to
confirm that the driver is ready to intervene.
Level 3: The driver can safely turn their attention away from the driving tasks, e.g.
the driver can text or watch a movie. The vehicle will handle situations that call for
an immediate response, like emergency braking. The driver must still be prepared
to intervene within some limited time, specified by the manufacturer, when called
upon by the vehicle to do so.
Level 4: An Automated Driving System (ADS) on the vehicle can itself perform all
driving tasks and monitor the driving environment (essentially, do all the driving)
in certain circumstances. Self driving in fact is supported only in limited spatial
areas (geofenced) or under special circumstances, like traffic jams. Outside of these
areas or circumstances, the vehicle must be able to safely abort the trip, i.e. park
the car, if the driver does not retake control.
Level 5: No human intervention is required at all. An example would be a robotic
taxi.

Figure 1.3: Automation levels for SAE

4

1.1 – Background: Autonomous car technology

In the formal SAE definition, note in particular what happens in the shift from
SAE 2 to SAE 3: the human driver no longer has to monitor the environment.
This is the final aspect of the "dynamic driving task" that is now passed over from
the human to the automated system. At SAE 3, the human driver still has the
responsibility to intervene when asked to do so by the automated system. At SAE
4 the human driver is relieved of that responsibility and at SAE 5 the automated
system will never need to ask for an intervention.

1.1.2 Benefits and current situation

The potential benefits are quite a few and pretty clear. First of all safety is in-
creased, that brings to a reduction in traffic collisions, injuries and costs. Then an
autonomous car can have no matter who as passenger, so it provides a safe mobility
also for children, elderly and disabled people. The news about Steve Mahan, a blind
man, in the Google self-driving car spread all over the world in 2012. Moreover
the driving style will be smoother and more constant, so also fuel consumption can
decrease. Since the cost of a vehicle would be quite high, sharing economy will be
the perfect solution, facilitating business models for transportation as a service.
The challenge for driverless car designers is to produce control systems capable of
analyzing sensory data in order to provide accurate detection of other vehicles and
the road ahead. Modern self-driving cars generally use Bayesian simultaneous lo-
calization and mapping (SLAM) algorithms,which fuse data from multiple sensors
and an off-line map into current location estimates and map updates. Google is
developing a variant called SLAM, with detection and tracking of other moving ob-
jects (DATMO), which also handles obstacles such as cars and pedestrians. Simpler
systems may use roadside real-time locating system (RTLS) technologies to aid lo-
calization. Typical sensors include Lidar, stereo vision, GPS and IMU. Udacity is
developing an open-source software stack. Control systems on autonomous cars may
use Sensor Fusion, which is an approach that integrates information from a variety
of sensors on the car to produce a more consistent, accurate, and useful view of the
environment.
As reported in [28] the human decision-making system can be considered the most
efficient of all known such systems and can serve as a standard for auto-adaptation.
For this reason artificial intelligence,which is any technique that enables computers
to mimic human behavior, is the main solution for the decision making system in
self driving cars. Autonomous cars are being developed with deep neural networks,
a type of deep learning architecture with many computational stages, or levels, in
which neurons are simulated from the environment that activate the network. The
neural network depends on an extensive amount of data extracted from real-life
driving scenarios,enabling the neural network to "learn" how to execute the best
course of action.

5

1 – Introduction

In May 2018, researchers from MIT together with Toyota Research Institute an-
nounced that they had built an autonomous car that can navigate unmapped roads
[31]. Researchers at their Computer Science and Artificial Intelligence Laboratory
(CSAIL) have developed a new system, called MapLite, which allows self-driving
cars to drive on roads that they have never been on before, without using 3D maps.
The system combines the GPS position of the vehicle and LIDAR. The LIDAR is
used to create a 3D point cloud and the edges of the road are estimated.
As soon as this technology started to be interesting for the market and not only
for research groups and DARPA competitions, a lot of car manufactures, BMW,
Mercedes Benz, Audi, Tesla, FCA just to name a few, decided to open the research
in this field together with new emerging companies dedicating themselves only to
this purpose such as Waymo and AID. Also Apple is currently testing self-driven
cars, and has increased the number of test vehicles from 3 to 27 in January 2018.
This number further increased to 45 in March 2018. Testing vehicles with varying
degrees of autonomy can be done physically, in closed environments, on public roads
(where permitted, typically with a license or permit or adhering to a specific set of
operating principles) or virtually, i.e. in computer simulations, which is preferred
especially in the first steps of the project since the great amount of problem in out-
side testing.
One way to assess the progress of autonomous vehicles is to compute the average
number of miles driven between "disengagements", when the autonomous system is
turned off, typically by a human driver. In particular, Lex Fridman, MIT researcher,
did a review of what has been done in 2018, reporting two main results [16]. Waymo
reached 10 million miles, while Tesla, with its Autopilot, reached 1 billion miles.

1.2 Objective and outline of the thesis
As explained in the previous section, the autonomous car has five basic functions to
achieve. The planning phase is analyzed in this thesis work, in particular the local
navigation task is treated in detail. To this purpose, the objective of this thesis is
to design a local path planner for autonomous driving vehicles in the scenario of an
overtaking, which in more general terms can be described as obstacle avoidance.
This thesis work was conducted in DAUIN, Department of Control and Computer
Engineering of Politecnico of Torino, in particular related to the Prystine project,
in which Politecnico of Torino takes part.

6

1.2 – Objective and outline of the thesis

The report is structured in the following way:

• Chapter 2 : a state of art regarding the motion planning techniques is re-
ported, starting from basic concepts of robotics, passing to an overview of the
possible algorithms dealing with the path planning problem.

• Chapter 3 : the model predictive control method is introduced in its general
terms to explain its working principle. A brief review of its application in
automotive is done, followed by a focus on the computational problem of the
MPC itself.

• Chapter 4 : the case study scenario is introduced, explaining all the possible
methods proposed in literature in order to manage it properly.

• Chapter 5 : all the phases of the implementation process are illustrated. The
design of the local path planner and related controller is divided in three
phases, where RRT* planner, MPC and LQR controller were tested.

• Chapter 6 : the results and conclusions are presented, retracing the afore-
mentioned phases of the implementation

7

8

Chapter 2

Motion planning: State of Art

In this chapter a state of art regarding the motion planning problem is reported.
A brief introduction about the problem is done, explaining all the basic concepts
of this wide subject. Then a focus on the principal path planning algorithms is
proposed, highlighting the most suitable for automotive applications.

2.1 Basic concepts
Generally speaking, motion planning (also known as the navigation problem or the
piano mover’s problem) is "a term used in robotics for the process of breaking down
a desired movement task into discrete motions that satisfy movement constraints
and possibly optimize some aspect of the movement." [40]

Before explaining what a motion planning problem is, let’s introduce some useful
definitions for dimensioning the problem. The following concepts are taken from the
book "Planning Algorithms" of S. M. LaValle [22].

State space S: Planning problems involve a state space that captures all possi-
ble situations that could arise. The state could, for example, represent the position
and orientation of a robot, the locations of tiles in a puzzle, or the position and
velocity of a car; the state space in this last case would be the set of all possible con-
figurations for the car. Then we can introduce the free space and the target space.
Free space is the set of configurations that avoids collision with obstacles. Often, it
is prohibitively difficult to explicitly compute the shape of the free space. However,
testing whether a given configuration is in this space is efficient. Strictly in robotic
field, at first, forward kinematics determine the position of the robot’s geometry,
and collision detection tests if the robot’s geometry collides with the environment’s
geometry.

S = Sfree + Sobs (2.1)

where Sobs is the set of configurations of the robot where it is in collision with an
obstacle.

9

2 – Motion planning: State of Art

Target space is a linear subspace of free space which denotes where we want the robot
to move to. At this point the state variable of the robot can be the configuration
vector itself or the configuration vector with the velocities; it depends on the ap-
plication. Both discrete (finite, or countably infinite) and continuous (uncountably
infinite) state spaces will be allowed. One recurring theme is that the state space
is usually represented implicitly by a planning algorithm. In most applications, the
size of the state space (in terms of number of states complexity) is much too large
to be explicitly represented. Nevertheless, the definition of the state space is an
important component in the formulation of a planning problem and in the design
and analysis of algorithms that solve it.

Actions: A plan generates actions that manipulate the state. The terms actions
and operators are common in artificial intelligence; in control theory and robotics,
the related terms are inputs and controls. Somewhere in the planning formulation,
it must be specified how the state changes when actions are applied. This may be
expressed as a state-valued function for the case of discrete time or as an ordinary
differential equation for continuous time, as written in the equation (2.2):

ẋ = f(x, u) (2.2)

where u is the input.

Initial and goal states: A planning problem usually involves starting in some
initial state s(0) = sstart being s in function of the time t and trying to arrive at a
specified goal state sgoal or any state in a set of goal states.

A criterion: This encodes the desired outcome of a plan in terms of the state
and actions that are executed. There are generally two different kinds of planning
concerns based on the type of criterion:

• Feasibility: Find a plan that causes arrival at a goal state, regardless of its
efficiency.

• Optimality: Find a feasible plan that optimizes performance in some carefully
specified manner, in addition to arriving in a goal state.

So a basic motion planning problem is to produce a sequence of control inputs
so to drive the robot from its initial configuration in the state space to the target
ones, while following the rules of the environment and optimizing the performance.
Moreover we can have some variations. We can plan a full trajectory with timing
information or just a collision free geometric path. The robot can have a full actu-
ation, meaning we can control all the degrees of freedom or just a few, such as in
the car case. The planner can do changes online as it moves in the environment or
it can do it in advance before moving (offline).

10

2.2 – Planning algorithms

Properties: A part from all considerations done till now we can mention also
these properties:

• Multiple query vs single query : the planner may be designed for multiple
queries or single query. A multiple query planner is one that invests time
in developing a good representation of state space so that future motion plan-
ning problems in that space can be solved quickly. If the state space changes
often however a single query planner attempts to find the solution to a single
motion planning problem as quickly as possible.

• Completeness : we say that the planner is complete if it always finds a solution
when one exists. A weaker version of this notion is resolution completeness;
a planner is resolution complete if it always finds a solution when one exists
at the level of discretization employed in the representation of the problem.
There is also probabilistic completeness; a planner is probabilistically complete
if the chances of it finding a solution,if one exists,go to 100% as the execution
time goes to infinity.

• Computational complexity : it refers to how much memory a planner will use
or how long the planner will take to execute.

The core of the motion planning problem is the algorithm that governs the entire
motion, having as input the description of the task and as output the commands to
move properly the robot.

2.2 Planning algorithms
In order to generate the movement, during the years, many control strategies and
algorithms, based on different theoretical notions, have been created. Thus, we will
classify these types of algorithm in two categories, in particular we will focus on the
most known and useful in creating a feasible path for our aim.

• Deterministic

• Probabilistic

The first category gives the same output given a certain input. In fact, it com-
putes a mathematical function and during this process, the machine will always
pass through the same sequence of states. Instead, we call an algorithm random-
ized or probabilistic if "its behavior is determined not only by its input but also by
values produced by a random-number generator" [11]. This is done with the aim of
obtaining a good perfomance in the average case over all possible choices of random
bits, when there’s no knowledge about the inputs distribution. Probabilistic path

11

2 – Motion planning: State of Art

planners provide solutions to problems involving wide, high-dimensional configu-
ration spaces that would be unmanageable and uncontrollable using deterministic
approaches. The downside of these methods is that they are only probabilistically
complete, i.e., the probability of finding a solution to the planning problem when
one exists tends to 1 as the execution time tends to infinity. This means that, if no
solution exists, the algorithm will run indefinitely [35].

2.2.1 Deterministic algorithms

Dijkstra’s algorithm Dijkstra’s algorithm solves the single-source shortest-paths
problem on a weighted directed graph. In other words, it finds a path between two
nodes in a graph such that the sum of the weights of its constituent edges is min-
imized. It was conceived by computer scientist Edsger W. Dijkstra in 1956 and
published three years later. It is considered a graph search algorithm since, sys-
tematically, follows the edges of the graph to visit or discover its nodes in order to
find the goal node through a cost minimum path. We report below the steps in the
algorithm.

Let the node at which we are starting be called the initial node. Let the distance of
node Y be the distance from the initial node to Y. Dijkstra’s algorithm will assign
initial distance values and will try to improve them step by step.

1. Mark all nodes unvisited. Create a set of all the unvisited nodes called the
unvisited set.
2. Assign to every node a tentative distance value: set it to zero for our initial node
and to infinity for all other nodes. Set the initial node as current.
3. For the current node, consider all of its unvisited neighbors and calculate their
tentative distances through the current node. Compare the newly calculated tenta-
tive distance to the current assigned value and assign the smaller one. For example,
if the current node A is marked with a distance of 6, and the edge connecting it
with a neighbor B has length 2, then the distance to B through A will be 6 + 2 =
8. If B was previously marked with a distance greater than 8 then change it to 8.
Otherwise, keep the current value.
4. When we are done considering all of the unvisited neighbors of the current node,
mark the current node as visited and remove it from the unvisited set. A visited
node will never be checked again.
5. If the destination node has been marked visited (when planning a route between
two specific nodes) or if the smallest tentative distance among the nodes in the un-
visited set is infinity (when planning a complete traversal; occurs when there is no
connection between the initial node and remaining unvisited nodes), then stop. The
algorithm has finished.

12

2.2 – Planning algorithms

6. Otherwise, select the unvisited node that is marked with the smallest tentative
distance, set it as the new "current node", and go back to step 3.
When planning a route, it is actually not necessary to wait until the destination
node is "visited" as above: the algorithm can stop once the destination node has
the smallest tentative distance among all "unvisited" nodes (and thus could be se-
lected as the next "current").

Figure 2.1: Example of Dijkstra algorithm graph

13

2 – Motion planning: State of Art

A* Peter Hart, Nils Nilsson and Bertram Raphael of Stanford Research Institute
first published the algorithm in 1968 [17]. It can be seen an extension of Edsger
Dijkstra’s 1959 algorithm. A* achieves better performance by using heuristics to
guide its search. This algorithm exploits weighted graphs and it aims to find the
optimal path from the starting node to the goal one having the the smallest cost, i.e.
least distance traveled. In this way it doesn’t cover all the nodes of the graph but at
each iteration it decides which branch to extend. In order to do this it evaluates the
cost of the path and the cost to extend the path all the way to the goal. The new
expanding node is, then, chosen as the node with the minimum cost, reducing hence
the number of processed cells and finding an optimal path as long as the heuristic is
admissible. Translating in mathematical terms, A* chooses the path that minimizes
the following function:

f(s) = g(s) + h(s) (2.3)

where s is the last node on the path, g(s) is the cost of the path from the start node
to s,i.e. the movement cost and h(s) is a heuristic function that estimates the cost
of the cheapest path from s to the goal,i.e. the distance from the current checking
node to the goal one. The algorithm ends when the path chosen to be extended is
from start to goal configuration. However Dijkstra and A* can be slow and memory
expensive and moreover usually we don’t need to find the optimal path, but just
one that is good enough. For these reasons other modifications of A* were proposed
such as weighted A*, WA*.

WA* WA* is a variant of A* [27] where an inflation factor η is multiplied by the
heuristic function, as reported in the equation 2.4:

f(s) = g(s) + ηh(s) (2.4)

where η > 1 and for η = 1 we have A*. This inflation factor provides a greedy flavor
to the search, which finds a solution in less time at the cost of optimality.
Other variants have been proposed such as: DA*, Hybrid A* and Anytime Repair
A*.

D* It’s an incremental search algorithm and can be expressed in one of the three
following ways:

1 Original D*

2 Focussed D*

3 D* Lite

The first one was ideated by A. Stentz in 1994 and the name D* stands for
Dynamic A* Search. Functionally speaking in fact, it’s equivalent to A* but the arc

14

2.2 – Planning algorithms

cost parameters can change during the problem solving process, thus dynamic. All
three search algorithms have the same assumptions where the robot has to navigate
in unknown environment, with the concept of free space and goal position [10]. It
starts assuming that in the environment there are no obstacles and finds a shortest
path from its current coordinates to the goal coordinates. The robot then follows
the path. If during the navigation a new obstacle is detected, this information is
added to its map and, if necessary, replans a new shortest path from its current
coordinates to the given goal coordinates. It repeats the process until it reaches
the goal coordinates or determines that the goal coordinates cannot be reached.
When traversing unknown terrain, new obstacles may be discovered frequently, so
this replanning needs to be fast. Incremental (heuristic) search algorithms (such as
Focussed D*) speed up searches for sequences of similar search problems by using
experience with the previous problems to speed up the search for the current one.
D* Lite is simply algorithmically different and as the name suggests it has less
operations to perform, in order to reduce the time performance. Assuming the
goal coordinates do not change, all three search algorithms are more efficient and
complete than repeated A* searches.

Artificial potential field The basic idea is that the robot is moving in an abstract
artificial force field [38]. The force field is created so that the robot once inside is
brought towards its goal position. This is done creating a potential field with two
components: an attractive and a repulsive one. The first one will be attached to
the goal position, while the second one to the obstacles. The field can be set with
different methods, we report for example the quadratic one in the equation (2.5):

Uatt(q) =
1

2
ξρ2(q, qgoal) (2.5)

where ξ is a positive scaling factor and ρ(q, , qgoal) is the distance between robot and
goal. The repulsive field instead can be expressed as:

Urep(q) =

{
1
2
η(1

ρ(q,qobs)
− 1

ρ0
) if ρ(q, qobs) ≤ ρ0

0 if ρ(q, qobs) > ρ0
(2.6)

where η is a positive scaling factor, ρ(q, qobs) is the shortest distance between robot
and obstacle and ρ0 is the largest distance of the obstacle. These fields act on the
robot through forces, so the total motion of the robot is due to the sum of attractive
and repulsive forces. As main disadvantages we can mention the fact that if the goal
point is really far from the robot, the attractive force will be great and this could
lead to move robot too close to the obstacles. Another weak point is that the robot
can easily be stuck when attractive and repulsive forces are quite equal.

15

2 – Motion planning: State of Art

2.2.2 Probabilistic algorithms

Instead of using an explicit representation of the environment, probabilistic algo-
rithms rely on a collision checking module, providing information about feasibility
of candidate trajectories, and connect a set of points sampled from the obstacle-free
space in order to build a graph of feasible trajectories. Even though these algorithms
are often not complete, they provide probabilistic completeness, i.e., it guarantees
that the probability that the planner fails to return a solution, if one exists, decays
to zero as the number of samples approaches infinity.

Probabilistic roadmap PRM Presented in 1996 by Kavraki et al. it’s one of
the main algorithms of the category [37]. It’s born mainly for performing a path
planning for robots with many dof (more than five) but nowadays it’s widely use
for many applications, being highly customizable. The method proceeds in two
phases: a learning phase and a query phase. In the learning phase a probabilistic
roadmap is constructed by repeatedly generating random free configurations of the
robot and connecting these configurations using some simple, but very fast motion
planner. We call this planner the local planner. The generated roadmap, formed in
the free space, is then stored as an undirected graph R. The configurations are the
nodes of R and the paths computed by the local planner are the edges of R. The
learning phase is concluded by some post-processing of R to improve its connectivity.
Following the learning phase, multiple queries can be answered. To process a query
the method first attempts to find a path from the start and goal configurations
to two nodes of the roadmap. Next, a graph search is done to find a sequence
of edges connecting these nodes in the roadmap. Concatenation of the successive
path segments transforms the sequence found into a feasible path for the robot.
These two phases have not to be sequential. Instead, they can be interwoven to
adapt the size of the roadmap to difficulties encountered during the query phase,
thus increasing the learning flavor of our method. For instance, a small roadmap
could be first constructed; this roadmap could then be augmented (or reduced) using
intermediate data generated while queries are being processed. This possibility helps
to estimate how much computational time is needed. PRM*, a variant of PRM, has
been introduced to improve the PRM performance. It is a batch variable-radius
PRM, applicable to multiple-query problems, in which the radius is scaled with the
number of samples in a way that provably ensures both asymptotic optimality and
computational efficiency.

16

2.2 – Planning algorithms

Figure 2.2: Example of PRM in Matlab

Rapid-exploring random trees RRT Developed following the PRM, the rapid-
exploring random trees algorithm was presented in 1998 by LaValle [21]. It includes
some of the same desirable properties of PRM but it has an unique advantage :
it can be directly applied to nonholomic and kinodynamic planning. This is due
to the fact that RRT doesn’t require any connections to be made between pairs
of configurations (or states), while PRM typically requires tens of thousands of
connections. In fact the RRT will be constructed so that all its vertices are states in
Sfree, furthermore each edge of the RRT will correspond to a path that lies entirely
in Sfree. For a given initial state sstart, an RRT, τ with K vertices is constructed as
shown below. This algorithm has several advantages, which make it suitable for a
good amount of practical path planning problems; below we list some of the main
ones:

• expasion of RRT is heavily biased towards unexplored portions of state space

• an RRT is probabilistically complete under very general conditions

• RRT algorithm is relatively simple, which facilitates performance analysis

• RRT always remains connected even in the case of few number of edges

17

2 – Motion planning: State of Art

• it can be considered as a path planning module

Though, there is a drawback: this procedure causes different and unfortunate com-
putationally expensive solution. It means that the algorithm presents long tail in
computation time distribution, since it has to save the entire tree, which increases
with the time of execution, and an unknown rate of convergence. During last two
decades many extensions of the RRT algorithm have been presented in order to
reduce its drawbacks. As in the case of the PRM algorithm, at first, a great deal of
work has been done on the optimality of the solution and a so called RRT* algorithm
has been developed by Karaman et al. in 2011.

Figure 2.3: Example of RRT in Matlab

RRT* RRT* inherits all the properties of RRT and works similar to RRT. How-
ever, it introduces two promising features called near neighbor search and rewiring
tree operations, as explained in [30]. Near neighbor operations finds the best parent
node for the new node before its insertion in tree. This process is performed within
the area of a ball of radius defined by

k = γ

(
log(n)

n

) 1
d

(2.7)

18

2.2 – Planning algorithms

where d is the search space dimension and γ is the planning constant based on
environment. Rewiring operation rebuilds the tree within this radius of area k to
maintain the tree with minimal cost between tree connections. Space exploration
and improvement of path quality is shown. As the number of iterations increase,
RRT* improves its path cost gradually due to its asymptotic quality, whereas RRT
does not improve its jaggy and suboptimal path. Due to increased efficiency to
get less jagged and shorter path, features of rewiring and neighbor search are being
adapted in recent revisions of RRT*. However, these operations have an efficiency
trade-off. Though, it improved path cost but on the other hand it also slowed down
convergence rate of RRT*. The details of the two new features introduced in RRT*
are as follows:
Rewire: This function checks if the cost to the nodes in snear is less through snew as
compared to their older costs, then its parent is changed to snew.
ChooseParent : This function selects the best parent snew from the nearby nodes.

RRTX Presented in 2015,it enables real-time kinodynamic navigation in dynamic
environments, i.e., in environments with obstacles that unpredictably appear, move,
and vanish [32]. In general, replanning algorithms find a motion plan and then
repair that plan on-the-fly if/when changes to the obstacle set are detected during
navigation. In particular, RRTX refines, updates, and remodels a single graph and
its shortest-path sub-tree over the entire duration of navigation. Both graph and
sub-tree exist in the robot’s state space, and the tree is rooted at the goal state
(allowing it to remain valid as the robot’s state changes during navigation). When-
ever obstacle changes are detected, e.g., via the robot’s sensors, rewiring operations
cascade down the affected branches of the tree in order to repair the graph and
remodel the shortest-path tree. The expected runtime is achieved, despite rewiring
cascades, by using two new graph rewiring strategies:
1) rewiring cascades are aborted once the graph becomes epsilon-consistent, for a
predefined ε > 0 2) graph connectivity information is maintained in local neighbor
sets stored at each node, and the usual edge symmetry is allowed to be broken.
These features significantly decrease reaction time without hindering asymptotic
convergence to the optimal solution. Indeed, reaction time is the most important
metric for a re-planner in dynamic environments.

19

2 – Motion planning: State of Art

Figure 2.4: Example of RRTX at different simulation steps

20

Chapter 3

Model predictive control

In this chapter the Model Predictive Control is presented. A general introduction
is done to explain the major principle behind this technique, together with all the
mathematical elements. Some applications in automotive are presented and a brief
focus on the optimization problem is done, since it’s a crucial passage for the MPC.
The entire chapter is based on [7].

3.1 Introduction

Model Predictive Control (MPC) has developed considerably over the last two
decades, both within the research control community and in industry. This suc-
cess can be attributed to the fact that Model Predictive Control is, perhaps, the
most general way of posing the process control problem in the time domain. Model
Predictive Control formulation integrates optimal control, stochastic control, con-
trol of processes with dead time, multivariable control and future references when
available. Another advantage of Model Predictive Control is that general nonlinear
processes, which are very frequent in industry can be handled.
The term Model Predictive Control does not designate a specific control strategy
but rather an ample range of control methods which make explicit use of a model of
the process to obtain the control signal by minimizing an objective function. These
design methods lead to controllers which have practically the same structure, in
the sense that the algorithm underneath is the same, while the model changes in
every application and present adequate degrees of freedom. The ideas, appearing in
greater or lesser degree in the predictive control family, are basically:

• explicit use of a model to predict the process output at future time instants
(horizon)

• calculation of a control sequence minimizing an objective function

21

3 – Model predictive control

• receding strategy, so that at each instant the horizon is displaced towards the
future, which involves the application of the first control signal of the sequence
calculated at each step

The various MPC algorithms only differ among themselves in the model used
to represent the process and the noises and cost function to be minimized. Then
also the optimization strategy, definition and how it’s solved, depends on the type
of application. The computational complexity and theoretical properties depend on
chosen model,objectives or constraints.
Consequently it finds a very wide application since:

• it can deal easily with MIMO system which can have interactions among inputs
and outputs

• it has a preview capability

• the resulting controller is an easy-to-implement control law

• it intrisically compensates for dead times

• it can be used as controller for a great variety of processes, also for very
complex dynamically speaking, including systems with long delay times or
nonminimum phase or unstable ones

• it permits to explicitly incorporate the constraints on the states and outputs of
the system so to formulate the problem as a constrained optimization problem

Nevertheless it has also a series of drawbacks. One of these is that although
the resulting control law is easy to implement, its derivation is more complex than
that of the classical PID controllers. If the process dynamic does not change, the
derivation of the controller can be done in advance, but in the adaptive control case
all the computation has to be carried out at every sampling time. If we consider also
the constraints, the amount of computation required is even higher. So a powerful
and fast processor with a large memory is needed. In any case nowadays it’s not
anymore a big issue since the computing power is increased. The greatest drawback
is in fact the need for an appropriate model of the process to be available. The
design algorithm is based on prior knowledge of the model and is independent of
it, but it is obvious that the benefits obtained will be affected by the discrepancies
existing between the real process and the model used.

22

3.2 – Strategy and elements

3.2 Strategy and elements
Usually in a control problem the goal of the controller is calculating the input of the
plant so that the output of the plant is as close as possible to the reference.

Figure 3.1: Example of a general controller scheme

For the MPC controller is slightly different because we’re predicting the future
in order to evaluate the plant input. Inside the MPC controller in fact we’ve a plant
model, that is needed to make proper predictions, based on past and current values
and an optimizer, which makes sure that the plant output follows the reference as
close as possible, taking into account the cost function and constraints.

Figure 3.2: MPC controller scheme

23

3 – Model predictive control

The methodology of all the controllers belonging to the MPC family is charac-
terized by the following strategy:

Figure 3.3: MPC strategy

1 The future outputs for a determined horizon N, called the prediction horizon,
are predicted at each instant t using the process model. These predicted
outputs y(t + k|t)1 for k = 1...N depend on the known values up to instant
t (past inputs and outputs) and on the future control signals u(t + k|t), k =
0...N1, which are those to be sent to the system and calculated.

2 The set of future control signals is calculated by optimizing a determined
criterion, or better a cost function, to keep the process as close as possible to
the reference trajectory w(t + k) (which can be the setpoint itself or a close
approximation of it). The cost function usually takes the form of a quadratic
function of the errors between the predicted output signal and the predicted
reference trajectory. The control effort is included in the objective function
in most cases. An explicit solution can be obtained if the cost function is
quadratic, the model is linear, and there are no constraints; otherwise an
iterative optimization method has to be used. Some assumptions about the
structure of the future control law are also made in some cases, such as that
it will be constant from a given instant.

3 The control signal u(t|t) is sent to the process whilst the next control signals
calculated are rejected, because at the next sampling instant y(t+1) is already
known and step 1 is repeated with this new value and all the sequences are
brought up to date. Thus the u(t + 1|t + 1) is calculated (which in principle
will be different from the u(t+ 1|t) because of the new information available)
using the receding horizon concept.

24

3.2 – Strategy and elements

All MPC algorithms have in common three basic elements:

• the prediction model

• objective function

• obtaining the control law

Prediction model The prediction model is the core of the MPC controller. De-
pending on the application it can be more or less detailed but in any case it should
describe the dynamics of the process in order to do right predictions in the behavior
and also intuitive and simple, so as to simplify the theoretical analysis. It can be
divided in process model and disturbances model, that takes into account the effect
of unmeasurable inputs, noises and model errors. As process model we can use a
transfer function or a state space representation, both discrete and continuous.

Objective function We can have different cost functions for obtaining the control
law. In general we want that the future output y follows as close as possible the
reference in the considered horizon and that the control effort should be penalized.
The generalized expression of this objective function is:

J(N1, N2, Nu) =

N2∑
j=N1

δ(j)[ŷ(t+ j|t)− w(t+ j)]2 +
Nu∑
j=1

λ(j)[4u(t+ j − 1)]2 (3.1)

where N1 and N2 are the minimum and maximum prediction horizon and Nu

is the control horizon. The limit values set the time interval in which the output
should follow the reference. δ(j) and λ(j) are sequences which consider the future
behavior, expressed usually in constant or exponential way.
As said previously we introduce constraints in order to obtain the desired results
and to set eventual physical limits of the model on input and output signals. These
constraints can be inserted already in the objective function, making the minimiza-
tion of the function J more complex. The optimization problem deals with this kind
of functions and it will be treated with more details in the next section.

Obtaining control law In order to obtain values u(t + k|t) it is necessary to
minimize the function J . To do this the values of the predicted outputs ŷ(t +
k|t) are calculated as a function of past values of inputs and outputs and future
control signals, making use of the model chosen and substituted in the cost function,
obtaining an expression whose minimization leads to the looked for values. An
analytical solution can be obtained for a quadratic function if the model is linear
and there are no constraints, otherwise an iterative method of optimization should

25

3 – Model predictive control

be used. Whatever the method, obtaining the solution is not easy because there
will be N2 −N1 + 1 independent variables, a value which can be high (on the order
of 10 to 30). In order to reduce this degree of freedom a certain structure may be
imposed on the control law, improving also the robustness of the system and its
general behavior.

Design parameters This paragraph is based on the documentation about MPC
of Mathworks [23]. Each MPC controller has the following parameters on which
we can act in the design phase:the controller sample time, prediction and control
horizons, constraints and weights. Choosing proper values for these parameters is
important as they affect not only the controller performance but also the computa-
tional complexity of the MPC algorithm that solves an online optimization problem
at each time step.
By choosing the sample time Ts, we determine the rate at which the controller ex-
ecutes the control algorithm. If it is too big, when a disturbance comes in, the
controller won’t be able to react to the disturbance fast enough. On the contrary,
if the sample time is too small, the controller can react much faster to disturbances
and setpoint changes, but this causes an excessive computational load. To find the
right balance between performance and computational effort, the recommendation
is to fit 10 to 20 samples within the rise time Tr of the open-loop system response.

Tr
20
≤ Ts ≤

Tr
10

(3.2)

As we’ve discussed previously, at each time step, the MPC controller makes predic-
tions about the future plant output and the optimizer finds the optimal sequence
of control inputs that drives the predicted plant output as close to the setpoint
as possible. As said before the prediction horizon N shows how far the controller
predicts into the future. Of course we should choose a prediction horizon that will
cover the significant dynamics of the system, in order to face the unexpected. At
the same time we don’t want to waste computational power in planning, having
a too long prediction horizon. The ideal situation would be an infinite prediction
horizon, but the solution of such optimization problem wouldn’t be sufficiently fast.
As mentioned before, the recommendation for choosing the prediction horizon is to
have 20 to 30 samples covering the open-loop transient system response.
Another design parameter is the control horizon Nu, that is the number of control
moves to time step which brings the future control action to the predictive future
output. The rest of the inputs are held constant. Each control move in the control
horizon can be thought of as a free variable that needs to be computed by the op-
timizer. So, the smaller the control horizon, the fewer the computations.The most
logical choice then would be that of put the control horizon equal to 1 but it might
not give us the best possible maneuver. And by increasing the control horizon, we

26

3.2 – Strategy and elements

can get better predictions but at the cost of increasing the complexity. We can even
choose to make the control horizon the same as the prediction horizon. However,
note that usually only the first couple of control moves have a significant effect on
the predicted output behavior, while the remaining moves have only a minor effect.
Therefore, choosing a really large control horizon only increases computational com-
plexity. A good rule of thumb for choosing the control horizon is setting it to 10 to
20% of the prediction horizon N and having minimum 2-3 steps.

0.1N ≤ Nu ≤ 0.2N (3.3)

MPC can incorporate constraints on the inputs, the rate of change of inputs, and the
outputs. These can be either soft or hard constraints. Hard constraints cannot be
violated, whereas soft constraints can be violated. A good balance among constraints
on inputs and outputs is needed. In fact we cannot have hard constraints both
on inputs and outputs because they may conflict with each other leading to an
unfeasible solution for the optimization problem. So we have to use quite a number
of soft constraints and manage the violation, keeping it a small as possible. Note
that to keep the violation of the soft constraint small, it is being minimized by the
optimization problem. The recommendation is to set output constraints as soft and
avoid having hard constraints both on the inputs and the rate of change of the inputs.
Lastly, MPC can have multiple goals with different priority. Consequently we need
weights. We want the outputs to track as close as possible to their setpoints, but
at the same time we want to have smooth control moves to avoid aggressive control
maneuvers. The way to achieve a balanced performance between these competing
goals is to weigh the input rates and outputs relative to each other. What matters in
fact is the ratio between outputs weights and input weights. The larger this ratio is,
the controller will be more performing but also more aggressive, decreasing instead
its robustness.

3.2.1 Application in automotive

Being highly flexible, MPC started to be implemented also in automotive field for
active safety purposes. It can manage in fact not only the path planning problem
but also threat assessment and hazard avoidance. As shown in [4] Sterling J. An-
derson, Steven C. Peters and colleagues started with the assumption that road lane
data is available and that road hazards have been detected, located, and mapped
into a 2-dimensional corridor of travel. This is possible thanks to a proper system
of sensors, such as LIDAR, radar and camera and an optimal sensor fusion. These
should provide lane, position and environmental information needed for the appli-
cation. Thanks to these data we can obtain constrained vectors in the prediction
horizon, in order to evaluate the minimum threat pose. Another interesting appli-
cation was done by Cesari, Schildbach and colleagues in [9], where they account for

27

3 – Model predictive control

the uncertainty in the traffic environment by a small number of future scenarios,
which is intuitive and computationally efficient. These scenarios can be generated
by any model-based or data-based approach, resulting in a good performance for
highways’ scenarios. As explained in section 2.2.1 the artificial potential field can
be an optimal method to deal with different types of constraints. An impressive
application using the MPC and the APF is done in [41] and [36]. The main idea
behind is to associate at every constraint a proper potential field, so that the min-
imum values are in the center of the vehicle’s lane. An explanatory image of this
method is reported in figure 3.4, where the peaks of the APF correspond to the
obstacles, i.e. other vehicles. Furthermore the MPC can manage also low friction
road conditions such as demonstrated by Frash, Gray et al. in [15]. In order to deal
with these limit conditions, they take into account highly nonlinear models, which
consider both wheel dynamic and load transfer, resulting in a high computational
request. For this reason an auto-generated tailored NMPC is implemented thanks
to the ACADO Code Generation tool. Lastly, according to a review did by Fitri
Yakub and Yasuchika Mori [42], MPC has been implemented not only for active
safety systems but also for vehicle dynamics,driver modeling and integrated chassis
control systems. Nonetheless the major focus is in active safety with many possible
applications such as active steering [5], active braking [13], active traction and ac-
tive differentials or suspension to coordinate and improve the vehicle handling, the
stability and the ride comfort while avoiding collisions.

Figure 3.4: Examples of road and obstacles APF application

28

3.3 – Optimization problem

3.3 Optimization problem

As mentioned in the previous section, the MPC controller in order to evaluate the
proper output and manipulated variables solves an optimization problem, which can
be defined as finding the minimum of the objective function, considering eventual
constraints. In other words it corresponds to find the best solution among all the
feasible ones. The subject of the optimization problem is far wider than the simple
application inside the model predictive control and it has a huge importance in many
technological and scientific fields. In this section the main issues and characteristics
of the problem are briefly described with a focus on our application in controls. The
definitions in this section are based on [6]. The function in the optimization problem
is called cost or objective function and it describes the targets we want to get. In
mathematical terms we can define the optimization problem in the standard form
like this:

minimize f0(x)

subject to fi(x) ≤ bi i = 1, ...,m (3.4)

where the function f0 : Rn → R is the objective function, the function fi : Rn →
R, i = 1, ...,m are the (inequality) constraint functions and the constraints b1, ..., bm
are the limits or bounds for the constraints. A vector x∗ is called optimal or a solution
of the problem previously described if it has the smallest objective value among all
vectors that satisfy the constraints: for any z with f1(z) ≤ b1, ..., fm(z) ≤ bm we
have f0(z) ≥ f0(x

∗). Here we are considering the variable continuous, but we can
define the same problem also for a discrete variable. In this case we are talking
about combinatorial optimization problem. Depending on the form of the objective
function and of the constraint functions, we have different characterizations of the
problem, among which we cite:

• Linear program: the objective function and constraint function f0, ..., fm are
linear that is to say:

fi(αx+ βy) = αfi(x) + βfi(y) (3.5)

for all x, y ∈ Rn and all α, β ∈ R.
If the optimization problem is not linear, it’s called nonlinear program.

• Convex optimization: the objective function and constraint functions are
convex, which means they satisfy the inequality

fi(αx+ βy) ≤ αfi(x) + βfi(y) (3.6)

for all x, y ∈ Rn and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0.

29

3 – Model predictive control

From these definitions it’s clear that it’s convenient to talk about convex opti-
mization since it’s a generalization of the linear programming. Nevertheless it was
important to outline this difference because methods of solution can be classified in
the same way. Moreover, it’s relevant to underline the category of convex optimiza-
tion because it deals with convex functions, which,by definition, are convex if their
level curve define convex sets. They’re important because for all of them every local
minimum is a global minimum. In this way a numerical algorithm can find a global
minimum. In figures 3.5 and 3.6 two examples of convex and non-convex functions
are shown.

Figure 3.5: Example of non-convex function

30

3.3 – Optimization problem

Figure 3.6: Example of convex function

Regarding the solution methods, during the years, different algorithms have been
created in order to solve the problem considering the specific characteristics, such
as type of involved functions and number of constraints. For example for the linear
program we can apply the graphical method, consisting in representing the problem
in the Cartesian plane and detecting the area of the feasible solutions, or the simplex
method, where adjacent vertices of the feasible set (which is a polytope) are tested
in sequence so that at each new vertex the objective function improves or is un-
changed. Generally in the MPC controller we have a quadratic programming, that
is a particular case of the nonlinear program. It’s in any case a convex optimization.
The objective function in fact is quadratic and it’s subjected to linear constraints
and in mathematical terms it’s defined as:

minimize
1

2
xTPx+ qTx+ r

subject to Gx ≤ h, Ax = b (3.7)

where P is an Hessian matrix.

31

3 – Model predictive control

The methods we can apply to solve the quadratic programming are several, some
are reported in the list below as done in [39]

• Interior point

• Active set

• Augmented Lagrangian

• Conjugate gradient

• Gradient projection

• Extensions of the simplex algorithm

As the name can suggest, the first method reaches the best solution by traversing
the interior of the feasible region, which is the set of all possible points that satisfy
the problem’s constraints. It comprehends a set of algorithms such as Karmarkar’s
algorithm, which appeared to be very efficient in practice.
For active set instead are meant a set of constraints which satisfy certain requests,
in fact , given a point x in the feasible region a constraint gi(x) >= 0 is called
active at x if gi(x) = 0 and inactive at x if gi(x) > 0. The active set is relevant in
the optimization theory since it determines which constraints will influence the final
result of optimization, resulting in a reduction of the complexity of the solution’s
search.
In the augmented Lagrangian method, the optimization problem is replaced by a
series of unconstrained problems and a penalty term is added to the objective, to-
gether with a term designed to mimic a Lagrange multiplier.
The conjugate gradient method, applied as solver for unconstrained optimization
problem such as energy minimization, was developed by M. Hestenes and E. Stiefel.
It’s an algorithm for the numerical solution of linear systems whose matrix is simmet-
ric and positive-definite. The gradient projection was developed to face criticisms
of active set methods. It permits in fact to have large changes in the working set
at each iteration, while for the active set these changes happen slowly [29]. Lastly
extensions of the simplex algorithm are employed as QP solver. The simplex method
is designed to solve linear programming and to explain it in geometrical terms, it
considers the feasible region as a convex polytope.

32

3.4 – Typology of Model Predictive Control

3.4 Typology of Model Predictive Control
Adaptive MPC MPC control predicts future behavior using a linear-time-invariant
(LTI) dynamic model. In practice, such predictions are never exact, and a key tuning
objective is to make MPC insensitive to prediction errors. In many applications, this
approach is sufficient for robust controller performance. If the plant is strongly non-
linear or its characteristics vary dramatically with time, LTI prediction accuracy
might degrade so much that MPC performance becomes unacceptable. Adaptive
MPC can address this degradation by adapting the prediction model for changing
operating conditions. Adaptive MPC uses a fixed model structure, but allows the
models parameters to evolve with time. Ideally, whenever the controller requires a
prediction (at the beginning of each control interval) it uses a model appropriate
for the current conditions. At each control interval, the adaptive MPC controller
updates the plant model and nominal conditions. Once updated, the model and
conditions remain constant over the prediction horizon.

Nonlinear MPC As the name suggests, the main advantage of this type of MPC
is that it can deal with nonlinear dynamics. In this way we can simulate closed-
loop control of nonlinear plants under nonlinear costs and constraints (m < p control
horizon shorter than prediction horizon) and plan the optimal trajectories by solving
an open-loop constrained nonlinear optmization problem (m = p). A good theoriti-
cal analysis of this instrument is done in [2]. Dealing with nonlinear dynamics can
be also a drawback if the problem is not well tuned. First of all the possibility to
directly use a nonlinear model is advantageous if a detailed first principles model
is available. In this case often the performance of the closed loop can be increased
significantly without much tuning. This is a major issue when the model derived
directly from a set of data of a system, whose behavior is unknown for us. In the
automotive case, this problem is widely solved by several possible models of the
vehicle’s motion. On the other side, if no first principle model is available, it is often
impossible to obtain a good nonlinear model based on identification techniques. In
this case it is better to fall back to other control strategies like linear MPC. More-
over using a nonlinear model changes the control problem from a convex quadratic
program to a nonconvex nonlinear problem, which is much more difficult to solve.

33

3 – Model predictive control

Linear MPC In most of the cases real processes are describe by nonlinear sys-
tems, but limiting the operating range, they can often be approximated to linear
systems. Linear systems, in fact, simplify a lot the control problem, which results
in a more fast and robust control scheme. Especially in the preliminary phases of a
project, a linear approximation is fundamental to have an idea about the behavior
of the system. In particular, linear MPC approaches are used in the majority of
applications with the feedback mechanism of the MPC compensating for prediction
errors due to structural mismatch between the model and the process. In model
predictive controllers that consist only of linear models, the superposition principle
of linear algebra enables the effect of changes in multiple independent variables to
be added together to predict the response of the dependent variables.

34

Chapter 4

Case study: overtaking

For this thesis work we choose to see in details the overtaking manoeuvre for an
autonomus driving application. In this chapter a brief introduction of this specific
situation is done and several solutions in order to manage it are reviewed, based on
[12]. Overtaking is one of the most common driving maneuver and any vehicle which
can be considered autonomous has to determine if, when, and how to perform this
driving task. The task isn’t so simple as it can seem, since it’s not a standardized
maneuver. A lot of external factors are involved such as traffic situation, speed,
surrounding obstacles and road legislation. Both longitudinal and lateral dynamics
of the vehicle have to be comprehended, together with sensor data for a correct
interpretation of the surrounding environment. Two important functions have to be
considered in this maneuver: the trajectory planning and tracking. Also the speed
factor is important in this scenario,since,for high speed trajectory, the knowledge of
both vehicle dynamics and environment has to be as accurate as possible.
The overtaking maneuver can be divided in three phases and a schematic represen-
tation can be see in the figure 4.1:

• lane change

• pass front vehicle

• lane change back to original lane

Of course the last phase depends on the traffic situation and on the speed of both
the subject vehicle and others. This is why the maneuver cannot be standardized,
since this last part can be covered by many scenarios.

35

4 – Case study: overtaking

Figure 4.1: Overtaking maneuver: three phases

In this chapter we will focus on trajectory planning and tracking techniques,
considering that all the information we need are coming from a proper sensor system,
integrated in the vehicle. In these last few years also advanced communication
systems such as V2V and V2X can be considered as an integration of a sensor
system. A schematic explanation of the system can be seen in figure 4.2, where the
V2X is inserted as optional.

Figure 4.2: Control architecture for trajectory planning and tracking

4.1 Trajectory planning

Among the possible trajectory planning techniques mentioned in the chapter 2,for
the purpose of an overtaking manoeuvre we can implement the following :

• potential fields

• cell decomposition (RRT)

• interdisciplinary methods

• optimal control

36

4.2 – Trajectory tracking

To have more details about the first two techniques, see chapter 2. As interdisci-
plinary methods we mean techniques derived from the robotics and missile guidance
systems, where motion primitives, intended as combination of steady-state equilib-
rium trajectories and pre-specified maneuvers, are employed. An other example
for this category can be a system of virtual points positioned at priori at known
distance from the front vehicle, being tracked by the subject vehicle. As optimal
control instead we indicate all the methods were a performance index such as lateral
acceleration or change of kinetic energy are minimized. In this last category we
can insert also the Model Predictive Control, used recently in many applications
as local planner. In this case the performance index to be minimized is the cost
function where all kind of constraints can be easily managed. The MPC technique
is treated in more detail in chapter 3. The major problems concerning all these
methods are computational complexity and following robustness in creating feasible
trajectories, critical issues which increase at high speed due to necessity of a more
accurate system.

4.2 Trajectory tracking
As control techniques for trajectory tracking, a lot of choices are possible. First
of all, we’ll mention the required characteristics for this kind of application and
correlated scenario:

• Real-time capability

• Robustness

• Operating range

• Controller parameter tuning

The controller needs to work in real-time,the control laws have to be implemented
in the ECU of the vehicle and thus be very efficient in terms of calculation time.
The speed range should be ideally 0-120 km/h and robustness is needed in order to
manage system nonlinearities, model parameter variations or external disturbances.
Lastly also an organized tuning procedure of the controller simplifies the design.
A brief summary of all control strategies is reported below, as outlined in [12]:
-Geometric and kinematic. These types of controllers do not consider the dynamics
of the vehicle, for this reason the performances in high speed trajectory tracking are
pretty poor, due to the inaccuracy of the model in regions of tire saturation. The
Stanley method and pure-pursuit are two main examples of geometric controllers,
which are easy to implement and are efficient at low speeds. The first one, as the
name itself suggests, is a method where the vehicle is in constant pursuit of a virtual
moving point in front of it, while the Stanley controller considers the heading and the

37

4 – Case study: overtaking

lateral error in order to computer a proper steering angle, based only on geometric
evaluations. Kinematic controllers instead are simple feedback controllers designed
considering only the vehicle kinematic.
-Classical. Examples : PID, which turns out to have a difficult tuning procedure in
such applications and Sliding Mode Control (SMC)
-Dynamic state feedback. This kind of controllers can comprehend in the control law
also the dynamic of the vehicle, resulting in a better performance. An example can
be the LQR, Linear Quadratic Regulator, which obtains good results together with
an easy design. It may present some issues when trajectories of varying curvature
are considered, but the problem can be fixed adding a feedforward control.
-Neural network and fuzzy logic. A human-like behavior is tried to be achieved from
these kinds of system, still in the early stages of studies. A large amount of real
data are necessary and this brings several issues regarding management of the data
themselves, failure explanations and system tuning.
-MPC. See chapter 3

38

Chapter 5

Implementation

In the previous chapters the basic concepts of path planning and control were intro-
duced; in this one details about implementation will be explained. The chosen case
study is an overtaking maneuver, already analyzed in chapter 4. The main idea of
this thesis work is set a path planner and a controller for this scenario in an au-
tonomous driving application, so as first attempt, we implemented a RRT* planner,
working on a costmap and creating a reference path for an LQR controller. We will
consider this first application as a standard method for path planning, in order to
distinguish it with the MPC technique. Then we passed to the core of the project,
that is to say the setting of an MPC controller working with a kinematic model
as prediction model, managing both path planning and control phases. Lastly we
decided to see how an MPC can work only as path planner due to industrial reason,
so once evaluated the optimal path by the MPC, we set it as reference for a standard
LQR controller.

5.1 Development environment and assumptions
As development environment we chose Matlab, due to its simplicity to write math-
ematical models and its easiness in managing different types of data. Moreover, it
permits to carry simulations in Simulink, which allows an easy design of the control
scheme in the block diagram form. Lastly, since we’re interested in automotive ap-
plications, Matlab offers different toolboxs proper for this kind of work; in particular
Automated driving system toolbox, Vehicle Dynamics Blockset and the Optimiza-
tion toolbox were used. In all the following applications we assumed that all data
coming from the environment such as road and obstacle information were known,
thanks to a proper sensor system and data elaboration.

39

5 – Implementation

5.2 Car model
Regarding the motion planning problem, a model of the car is required, in order to
know how it will move and two different aspects can be taken into account. First we
are dealing with a non-holomonic system, whose state depends on the path taken
in order to achieve it. Such a system is described by a set of parameters subject
to differential constraints, such that when the system evolves along a path in its
parameter space (the parameters varying continuously in values). Then also the
computational complexity is an important factor. Since it’s a real time application
the complexity should be low or the computational power high in order to get results
very fast. In general for all type of study, from vehicle’s stability to driver assistance
systems, a set of models with increasing complexity are employed. In a preliminary
phase simple vehicle point-mass models are adopted, which consider the vehicle as a
particle with a mass. Then kinematic models are used, where the speed is considered
constant and we can get mathematical relationships between angles and geometrical
parameters of the model. Finally, dynamic models are employed, where we have
a direct connection between the vehicle’s behavior and applied forces, coming from
inside and outside the vehicle. In this last case the model is highly flexible depending
on the data we have and the analysis we want to carry. In this thesis project we
will use two types of car model: a kinematic one for the path planning phase and a
dynamic one to simulate the real car and get the results from it. In the next section
the second one is reported.

40

5.2 – Car model

5.2.1 3 DOF Single track model

Regarding the car model for the simulation of the car itself, we took as reference the
Vehicle Body 3DOF block, which implements a rigid two-axle vehicle body model to
calculate longitudinal, lateral, and yaw motion. The block accounts for body mass,
aerodynamic drag and weight distribution between the axles due to acceleration and
steering. As coordinate systems we used the standard ones, presented by SAE in
1992. The bicycle model is a planar model, while to calculate the Fz we use the
simplest model in (y, z) plane.

Figure 5.1: Scheme of the bicycle model

The block we will use, uses the following equations, as reported in [25], using the
reference system shown in figure 5.1

ẍ = ẏr +
Fxf + Fxr + Fx,ext

m

ÿ = −ẋr + Fyf + Fyr + Fy,ext
m

ṙ =
aFyf − bFyr +Mz,ext

Izz

r = ψ̇

(5.1)

where r is the yaw rate, being ψ is the yaw angle. As external forces we can evaluate
the drag and the external force inputs, which, we consider, acting on the CG of the
model.

Fxyz,ext = Fd,xyz + Finput,xyz

Mxyz,ext =Md,xyz +Minput,xyz (5.2)

41

5 – Implementation

Depending on the choice in the setting of the block, which is shown in figure 5.2,
we can have the following values for the forces if we choose external longitudinal
forces:

Fxft = Fxfinput

Fyft = −Cyfαfµf
Fzf
Fznom

Fxrt = Fxrinput

Fyrt = −Cyrαrµr
Fzr
Fznom

(5.3)

where Cyf/r are the rear or front wheel cornering stiffness, αf/r is the front or rear
slip angle, while µf/r is the friction coefficient. If instead we set a value of external
longitudinal velocity, meaning that the acceleration is zero, the Fxt force will be
zero:

Fxft = 0

Fxrt = 0 (5.4)

In order to evaluate Fzf and Fzr we use the roll and pitch equilibrium:

Fzf =
bmg − (ẍ− ẏr)mh+ hFx,ext + bFz,ext −My,ext

a+ b

Fzr =
amg + (ẍ− ẏr)mh+ hFx,ext + aFz,ext +My,ext

a+ b
(5.5)

where a, b and h are geometric values of the model, representing the distances from
front and real wheels to the CG, and the height of CG from ground respectively. To
determine the slip angles we use the following expressions:

αf = arctan

(
ẏ + ar

ẋ

)
− δf

αr = arctan

(
ẏ − br
ẋ

)
− δr (5.6)

Once we have these values we can calculate the tire forces:

Fxf = Fxft cos(δf)− Fyft sin(δf)
Fyf = −Fxft sin(δf) + Fyft cos(δf)

Fxr = Fxrt cos(δr)− Fyrt sin(δr)
Fyr = −Fxrt sin(δr) + Fyrt cos(δr)

(5.7)

If we are setting external forces these last values are considered as inputs forces.

42

5.2 – Car model

Figure 5.2: Vehicle body 3DOF block on Simulink

5.2.2 Vehicle data

As set of data of the car, the ones proposed in the 3DOF Single Track Block in
Simulink were taken into account. They are representative of a segment C car.

Vehicle data
Mass m 2000 kg
Moment of Inertia Iz 4000 kg ·m2

Wheelbase wb 3 m
Front track lf 1.4 m
Center of mass height hg 0.35 m
Drag coefficient Cd 0.30
Longitudinal front area S 2 m2

Friction coefficient µf/r 1
Front cornering stiffness Cαf 12 · 103 N/rad
Rear cornering stiffness Cαr 11 · 103 N/rad

Table 5.1: Vehicle data

43

5 – Implementation

5.3 RRT* planner and LQR controller as first at-
tempt

As shown in chapter 4 there are quite a few possibilities for the path planning and
tracking techniques. In a preliminary phase of the work we separated the two tasks
and designed an RRT* path planner together with a LQR controller for tracking.
In this section both these methods are explained, first showing the general terms of
these instruments and then the major details for our implementation.

5.3.1 RRT* path planner

An RRT* path planner explores the environment around the vehicle by constructing
a tree of random collision-free poses. To have more details about the algorithm, see
chapter 2. We exploit the pathPlannerRRT function in Matlab [24], that calculates
the optimal path through another object called vehicleCostmap,which represents
the planning search space around the vehicle [26]. It contains information about
the environment like obstacles or areas forbidden to the main vehicle and it’s stored
as a 2-D grid of cells. Each grid cell in the costmap has a value between 0 and 1,
which is the cost of passing through that grid cell. An example of a possible cost
map with costs and grid cell states is shown in figure 5.3:

Figure 5.3: Example of costmap

The map has a size, which can be expressed in length and width (ex. 50x50 me-
ters),each cell is square and its size can be specified by the length of the side. More-
over, to simplify checking for whether a vehicle pose is in collision, vehicleCostmap
considers a safe area around the obstacles, thanks to the setting of an inflation ra-
dius. Since this radius creates a circle area, this one is converted in a number of

44

5.3 – RRT* planner and LQR controller as first attempt

corresponding grid cells, once the map is created. Having set the costmap, we can
pass to the planner itself, where quite a few parameters can be tuned. In particular
we decide to set the connection distance intended as the maximum distance between
two consecutive poses. Bigger this value is, longer is the segment connecting two
poses, resulting in a smaller number of poses composing the path.
Considering it’s a map object build on purpose for vehicle application, we can spec-
ify the minimum turning radius of the vehicle, which corresponds to the radius of
the turning circle at the maximum steering angle. Smaller values result in sharper
turns, so, since in our case scenario a smooth trajectory is needed, we increased
its value. Once the path planner is set, with a start and goal pose, it’s possible
to compute the optimal trajectory, which is composed by a series of point coordi-
nates through which the vehicle should pass. In particular the point coordinates
are [x, y, ψ], where x and y are the positions of the vehicle on the map and ψ is the
heading angle, which is evaluated with the following formula thanks to the current
and start positions:

ψ = arctan
yc − y0
xc − x0

(5.8)

At this point we have the reference path, evaluated with all the information gathered
in the map. In table 5.2 the values of the aforementioned parameters are reported,
while in figures 5.4 and 5.5 the costmap with and without optimal trajectory are
shown.

Cost map and RRT* planner parameters
Map lenght 100 m
Map width 100 m
Cell size 1
Inflation radius 1.5 m
Road cost 0.15
Offroad cost 0.7
Obstacle cost 0.9

Table 5.2: Cost map and RRT* planner parameters

45

5 – Implementation

Figure 5.4: Setting of costmap: road with barrier

Figure 5.5: Costmap with optimal path

46

5.3 – RRT* planner and LQR controller as first attempt

5.3.2 LQR controller: theory

Optimal control is one particular branch of modern control, which aims to obtain
the best possible performance from a system, hence the word optimal. The problem
consists in finding a control law such that a certain optimality criterion should be
achieved. Linear optimal control is a subcategory of optimal control [3]. The plant
that is controlled is assumed linear, and the controller, the device that generates
the optimal control, is constrained to be linear. The advantages of linear optimal
control are:

• Quite all linear optimal control problems have readily computable solutions

• If the plant states of a linear optimal control design are measurable, often the
system presents good phase margin, gain margin and tolerance of nonlinearties,
which are the basic properties of the classic control methods

• Linear optimal control can be applied to nonlinear systems operating on a
small signal basis,i.e. the system will start in a certain initial state

Linear controllers are achieved by working with quadratic performance indices.
These are quadratic in the control and regulation/tracking error variables. Such
methods that achieve linear optimal control are termed Linear-Quadratic (LQ)
methods. In particular the LQR (Linear Quadratic Regulator) is an important
part of the solution to the LQG (Linear Quadratic Gaussian) problem, where lin-
ear systems with additive white Gaussian noise are taken into account. Output
measurements are assumed to be corrupted by Gaussian noise and the initial state,
likewise, is assumed to be a Gaussian random vector.
For a continuous time system, whose dynamics is described by:

ẋ = Ax+Bu (5.9)

where x ∈ Rn, u ∈ Rn and x0 is given and with a quadratic cost function described
as:

J =

∫ ∞
0

(xTQx+ uTRu+ 2xTNu) dt (5.10)

the feedback control law that minimizes the value of the cost is given by:

u = −Kx (5.11)

where K is obtained through the following equation K = R−1(BTS +NT) and S is
found solving the associated Riccati differential equation (5.12)

AT + SA− (SB +N)R−1(BTS +NT) +Q = 0 (5.12)

47

5 – Implementation

5.3.3 LQR vehicle model

In our application case we have to deal with lateral dynamics, in particular we have
to find an optimal steering action, since we will consider the speed constant. In order
to achieve this, we’ve to re-define the variables of the model in terms of position
and orientation error with respect to the road. The definition of this model is based
on Rajamani [34] and the error variables are e1 and e2, defined respectively as the
lateral distance of the center of gravity of the vehicle from the center line of the
lane and the orientation error of the vehicle with respect to the road. To complete
the model’s variables also their derivatives are considered. The reference system is
reported in figure 5.6.

e1 = y − ylane
e2 = ψ − ψdes
ė1 = ẏ + Vxe2

ė2 = ψ̇ − ψ̇des

(5.13)

where ψ̇des, the desired yaw rate, is evaluated as

ψ̇des =
Vx
R

(5.14)

being R the curvature radius of the road, that will be consider large (R >> 500m)
since it’s a similar value of the real curvature radius in motorways. The equations
of the model in state-space are :

d

dt

e1

ė1

e2

ė2

=

0 1 0 0

0 −2Cαf + 2Cαr
mVx

2Cαf+2Cαr

m

−2Cαf lf + 2Cαrlr
mVx

0 0 0 1

0 −2Cαf lf − 2Cαrlr
IzVx

2Cαf lf − 2Cαrlr
Iz

−
2Cαf l

2
f + 2Cαrl

2
r

IzVx

e1

ė1

e2

ė2

+

0

2Cαf
m

0

2Cαf lf
Iz

δ +

0

−2Cαf lf − 2Cαrlr
mVx

− Vx

0

−
2Cαf l

2
f + 2Cαrl

2
r

IzVx

ψ̇des (5.15)

48

5.3 – RRT* planner and LQR controller as first attempt

Figure 5.6: Reference system of lateral dynamic error model

5.3.4 Feedforward term

Till now we have described a model for lateral closed-loop dynamics. As well as in
any closed-loop system, the controller will react to the inputs minimizing the error,
but in our case the presence of the term B2ψ̇des will not permit the convergence to
zero of the tracking errors, as shown in the equation (5.16):

ẋ = (A−B1K)x+B2ψ̇des (5.16)

where even in the case where the matrix (A − B1K) is asymptotically stable, ẋ
cannot be zero and lower is the curvature radius R, bigger will be the error. In
other words, this problem is highlighted when the car is traveling on a curve. Since
it’s a kind of information we can know a priori, in fact it’s sufficient to know the
curvature radius R through a sensor system, we can exploit it adding a feedforward
term, whose value is independent from the error states. Indeed it’s evaluated from
the model we’ve described in the previous section, as reported in [34].

49

5 – Implementation

Figure 5.7: Control scheme with feedforward block

At the end what we obtain is a steering action result of the sum of the state
feedback and a feedforward term:

δ = −Kx+ δff (5.17)

where the feedforward steering angle is chosen as:

δff =
mV 2

x

RL

[
lr

2Cαf
− lf

2Cαr
+

lf
2Cαr

k3

]
+
L

R
− lr
R
k3 (5.18)

where k3 is calculated from the state feedback as δ = −Kx = −k1e1− k2e2− k3e3−
k4e4. In general this modification of the control scheme has to be done in order
to have a better control of the vehicle in case of low curvature roads. In our case
scenario we have simply to overtake an obstacle, so the effect of the feedforward
term can be seen through a more stable steering action.

5.3.5 Setup and simulation

In the previous subsections the main elements of the first application were described.
The control scheme we designed in Simulink can be seen in figure 5.8.
The block called followPath, which interprets a Matlab function, whose details can
be seen in the Appendix, acts as reference for the entire scheme. In fact it provides
the next point to reach in the reference path, calculating the longitudinal distance
d from the actual point of the vehicle (x, y, ψ) to the goal position (xref , yref , ψref)2
as reported in the equation (5.19). When this distance is equal to zero, the next
goal position can be pursued.

d = sin(ψref)(yref − y) + cos(ψref)(xref − x) (5.19)

The next block generates the model used by the LQR described in section 5.3.3.
Its output is the vector x = [e1, ė1, e2, ė2] at which a gain K is applied in order to

50

5.3 – RRT* planner and LQR controller as first attempt

calculate the steering angle. The vector K is calculated through the lqr command
in Matlab. From the figure 5.8 is also clear the presence of the feedforward term,
explained in section 5.3.4. The steering action acts on the 3DOF Single Track block,
described in section 5.2.1, while, since the speed was considered constant for this
first application, a constant block stands for the speed input.

Figure 5.8: Control scheme of RRT* and LQR

51

5 – Implementation

5.4 Kinematic MPC as path planner and controller
In chapter 3 the Model Predictive Control technique was introduced. As already
underlined the advantages of the MPC are many. First of all the two functions of
path planning and vehicle control are managed together, keeping simpler the design
phase as well as the overall system’s complexity. Moreover all types of constraints
can be inserted easily in the objective function. In our application we decided to use
a NMPC, built in Matlab, whose main elements are the same cited in chapter 3, i.e.
a prediction model, an objective function with constraints linked to an optimization
problem and several parameters to be set. All these elements will be explained in
the following sections.

5.4.1 Prediction model: kinematic bicycle model

As prediction model we decided to use a simple kinematic model. According to [20],
even if less precise and complex, the kinematic model shows a good performance
in model-based design, especially for its low computational efficiency, which, since
we’re dealing with a real-time application, is quite an important and relevant aspect.

Figure 5.9: Scheme of the kinematic bicycle model

52

5.4 – Kinematic MPC as path planner and controller

In this model we will take into account the following assumptions:

• Wheel’s slip angles equal to zero

• The motion is planar

• Only the front wheel is steering

In this model three coordinates are used to describe the motion: x,y and ψ.
(x, y) are the inertial coordinates of the location of the c.g. of the vehicle in the
(X, Y) frame, while ψ describes the orientation of the vehicle. The velocity at the
c.g. of the vehicle is denoted by V and makes an angle β with the longitudinal axis
of the vehicle, being the side slip angle of the vehicle. These four variables are the
state of the system:

x = [x,y, ψ,V]T (5.20)

The distance between the c.g. of the vehicle and respectively, the rear wheel and
the front one, are called lr and lf . As inputs we have the steering angle in the front
δf and the acceleration a, which will be the commands of our controller:

u = [δf , a]
T (5.21)

Exploiting trigonometric properties we can obtain the following equations:

ẋ = V cos(ψ + β)

ẏ = V sin(ψ + β)

ψ̇ =
V cos(β)

lr + lf
tan(δf)

v̇ = a

(5.22)

Moreover we can also evaluate the side slip angle of the vehicle β:

β = arctan

(
lrtan(δf)

lr + lf

)
(5.23)

Considering the output instead, we choose the longitudinal and lateral positions x
and y:

y = [x,y]T (5.24)

The model we described is clearly a MIMO nonlinear system.

53

5 – Implementation

5.4.2 Objective function and constraints

Now that we have a model of the system in the form:

ẋ = f(x, u)

y = h(x, u) (5.25)

we have to evaluate a proper input u ∈ Rnu so that the output y ∈ Rny is as close
as possible to our reference. It is assumed that the state is measured in real-time,
with a sampling time Ts, so that the measurements are

x(tk), tk = Tsk, k = 0,1, ... (5.26)

At time t a prediction of the state and output over an interval [t, t+ Tp] is obtained
by integration of the model, where Tp is the prediction horizon. In order to simplify
calculations the input signal is assumed constant over a certain time interval Tc,
called control horizon:

u(τ) = u(t+ Tc) τ ∈ [t+ Tc, t+ Tp] (5.27)

where 0 < Ts < Tc < Tp. At each time t = tk we look for an input signal u∗(t : τ)
such that the prediction ŷ(τ, x(t), u∗(t : τ)) ≡ ŷ(u∗(t : τ)) has the desired behavior
for τ ∈ [t, t + Tp]. The objective function defines the desired behavior we want for
the system and it’s defines as:

J(u(t : t+ Tp))
.
=

∫ t+Tp

t

(
||ỹP (τ)||2Q + ||u(τ)||2R

)
dτ + ||ỹP (t+ Tp)||2P (5.28)

where ỹP
.
= r(τ) − ŷ(τ) is the predicted tracking error, r(τ) ∈ Rny is the reference

to track, while || · ||X are weighted vector norms and their integrals are square signal
norms. The input signal u∗(t : t + p) is chosen as the one minimizing the objective
function J(u(t : t + Tp)). In particular we want to minimize the tracking error
square norm ||ỹP (τ)||2Q over a finite time interval, while the term ||ỹ(t+TP)||2P gives
further importance to the final tracking error. Lastly, the term ||u(τ)||2R permits
us to manage the trade-off between performance and command activity [8]. We
remember to the reader that the square weighted norm of a vector v ∈ Rn is

v||2Q
.
= vTQv =

n∑
i=1

qiv
2
i , Q = diag(q1, ..., qn) ∈ Rn×n (5.29)

where qi ≥ 0 are the weights for the matrix Q. We have the same definition also
for the matrices P and R. The values of the weights for all three matrices are
fundamental for the setting of the NMPC, since they regulate the optimization
process.

54

5.4 – Kinematic MPC as path planner and controller

The minimization of J(u(·))) is subjected to constraints

˙̂x(τ) = f(x̂(τ), u(τ)), x̂(t) = x(t), τ ∈ [t, t+ Tp]

ỹ(τ) = h(x̃(τ), u(τ)) (5.30)

It’s possible to define constraints also on predicted state/output and on the input.
In our case we put constraints simply on some states of the system corresponding
to:
-Road: in order to transform the road limits in constraint for the objective function
we gave two limits on the state corresponding to the lateral position y, imaging that
the vehicle starts its manoeuvre on the right lane and has to overtake the obstacle
on the left lane.

y > yright,road

y < yleft,road (5.31)

-Obstacle: the presence of an obstacle is transformed in a circle in the objective
function’s constraints. The center CC = (xC , yC) is positioned on the road, in
the right lane, and it comprehends a safety radius CR, in order to obtain a safe
overtaking manoeuvre, without the possibility of the two cars touching.

CR−
√

(x− xC)2 + (y − yC)2 (5.32)

-Velocity: being the velocity a state of the system, we can set a constraint to limit
its value.

V < Vlimit (5.33)

This last constraint can be an option depending on the situation, i.e. constant
speed or not. The chosen values for the constraints are reported in the table 5.3
down below.

MPC Constraints

Right road limit 8 m

Left road limit 16 m

Obstacle position CC (400 m,10 m)

Safety radius CR 3.5 m

Speed limit 20 m/s

Table 5.3: Kinematic MPC Constraints

55

5 – Implementation

5.4.3 Optimization problem and NMPC algorithm

As explained in section 3.3, once an objective function is defined, an optimization
problem has to be solved. In our case we have:

u∗(t : t+ Tp) = arg min
u(·)

J(u(t : t+ Tp))

subject to :

˙̃x(τ) = f(x̃(τ), u(τ)), x̃(t) = x(t)

ỹ(τ) = h(x̃(τ), u(τ))

x̃ ∈ Xc, ỹ(τ) ∈ Yc, u(τ) ∈ Uc
u(τ) = u(t+ Tc), τ ∈ [t+ Tc, t+ Tp]

(5.34)

This is the general formulation of the optimization problem, which involves the
minimization of a functional J(·). The problem must be solved on-line, thus the
decision of the solver is fundamental. Matlab in his Optimization Toolbox offers
several possible solvers; in our application fmincon was employed. It’s a nonlinear
programming solver aimed to find the minimum of constrained nonlinear multivari-
able function. But before setting the solver, it has to be noticed that the input
signal u(t : t+Tp) can be seen as a vector with an infinite number of elements. This
means that the optimization involves an infinite number of decision variables and
so in order to overcome this problem, the input signal can be parametrized in the
following way:

u(τ) =
m∑
i=1

ciφi(τ) = cφ(τ) (5.35)

where c are parameters such as c = [c1, ..., cm] ∈ Rnu×m, while φ(τ) are basic func-
tions φ(τ) = [φ1(τ), ..., φm(τ)]

T ∈ Rm×1, which can be:

• Rectangular functions:

φi(τ) =

{
1, τ ∈ [t+ (i− 1)Ts, t+ iTs]

0, otherwise
(5.36)

• Polynomial functions:

φi(τ) = (τ − t)(i−1) (5.37)

In both cases the input is kept constant over the prediction horizon:

u(τ) = c1 = const, τ ∈ [t, t+ Tp] (5.38)

At this point the optimization problem becomes:

c∗ = arg min
c∈Rnu×m

J(c) (5.39)

56

5.4 – Kinematic MPC as path planner and controller

The optimal input is u∗(τ) = c∗φ(τ), which in an open-loop input since it depends
on x(t) but not on x(τ), τ > t. So if we apply it for the entire time interval
[t, t + Tp], we don’t have the desired feedback action. For this reason the receding
horizon strategy is used, where:

1. At time t = tk an optimal input u∗(t : t + Tp) is calculated. Only the first
input value is applied and kept constant:

u(τ) = u∗(t = tk) ∀τ ∈ [tk, tk+1] (5.40)

2. The step 1. is repeated for t = tk+1, tk+2, ...

The complete algorithm is reported.

1 At time t = tk, for τ ∈ [t, t+ Tp] solve the optimization problem

c∗ = arg min
c∈Rnu×m

J(c)

subject to :

˙̃x(τ) = f(x̃(τ), u(τ)), x̃(t) = x(t)

ỹ(τ) = h(x̃(τ), u(τ))

u(τ) = cφ(τ)

x̃(τ) ∈ Xc, ỹ(τ) ∈ Yc, u(τ) ∈ Uc
u(τ) = u(t+ Tc), τ ∈ [t+ Tc, t+ Tp]

(5.41)

2 Solution: u∗(τ) = c∗φ(τ)

3 Receding horizon strategy for closed-loop control law: u(τ) = u∗(tk),∀τ ∈
[tk, tk+1]

4 Repeat from step 1. for t = tk+1, tk+2, ...

57

5 – Implementation

5.4.4 Setup and simulation

In the design phase, the following parameters were set:

• Prediction horizon Tp

• Sampling time Ts

• Upper and lower bounds on the inputs

• Tolerance on the tracking error

• Weights of the matrices R,P and Q

The complete control scheme can be seen in figure 5.10, while the values of the
aforementioned parameters can be seen in table 5.4.

Figure 5.10: Control scheme of the kinematic MPC

58

5.4 – Kinematic MPC as path planner and controller

MPC Parameters

Prediction horizon Tp 10 s

Sampling time Ts 0.1 s

Upper bound for steering angle δf 30°

Lower bound for steering angle δf −30°

Upper bound for acceleration 0.2 m/s2

Lower bound for acceleration −1.8 m/s2

Tolerance on tracking error 0.2 m

R matrix weights r11, r22
1

1

P matrix weights p11, p22
2

6

Q matrix weights q11, q22
10

50

Table 5.4: Kinematic MPC parameters

59

5 – Implementation

In particular the nmpc law block includes the nmpc law itself and a reference
generator (figure 5.11), which creates the predicted output ỹ(t). In fact, due to how
the nmpc law was set, it simply solves the optimization problem, giving only the
optimal input, so it’s necessary to obtain the predicted output in order to compare
the performance of the MPC as controller. The predicted output indeed can be seen
as the optimal path to be followed and in the next application, they will be used
as reference path for another type of controller. The model used for the predicted
output is:

β = arctan

(
1

2
tan(δ)

)
xnext = x+ V cos(ψ + β)Ts

ynext = y + V sin(ψ + β)Ts

ψnext = arctan

(
ynext − y
xnext − x

) (5.42)

The predicted positions are calculated in the reference generator block (figure 5.11),
starting from the actual states x, y and ψ, the sampling time Ts and the optimal
input δ, while the heading angle is calculate with the same formula as 5.8.

Figure 5.11: NMPC law block

60

5.5 – MPC as path planner

5.5 MPC as path planner
Regarding the last application we decide to test the MPC only as path planner and
to see its performance with an LQR controller. The employment of the MPC in
fact, both as path planner and controller is still under research in the automotive
field, even if some applications are already present as depicted in section 3.2.1. To
have a more realistic and precise MPC in fact, a dynamic model as prediction model
has to be employed, such as done in [36], [43] and [14]. Some attempts were done,
but, with the instruments at our disposal, the simulations resulted too slow and
thus non-applicable. For this reason, in order to have a more realistic approach, we
use the kinematic MPC only as path planner together with the already designed
LQR, which can properly manage a lateral dynamic model. Moreover, thanks to
this action, the MPC can work at a lower frequencies, while the control action done
by LQR can be done at higher frequencies. Since the two main instruments were
already explained in section 5.3 and 5.4, more details about the complete control
scheme are reported in this section.

5.5.1 Assumptions

For this last application we tried to set a more realistic scenario. The two main
problems of the kinematic MPC were that the obstacle was fixed,i.e. a barrier, and
that the vehicle spent too much time for re-entering in the initial lane. Thus some
modifications were applied. In particular we set a trajectory for the obstacle, while
regarding the timing of the maneuver, we apply an update of the goal position,
which in this application is limited to the center of the lane.

Figure 5.12: Control scheme of MPC as planner and LQR controller

61

5 – Implementation

5.5.2 Obstacle

The Obstacle detector block has the function of determining the obstacle’s trajectory.
The created scenario is very simple. The vehicle starts its maneuver with another
vehicle at 200 meters ahead, which is moving at lower speed at the center of the
initial lane always straight ahead as shown in figure 5.13. The setting of the block
can be seen in figure 5.14, where the positions of the obstacle are sent to the Update
reference block, so that the MPC can have the updated data about the obstacle.

Figure 5.13: Vehicle and obstacle at start positions

Figure 5.14: Obstacle detector block in Simulink

5.5.3 MPC and LQR interaction

As already explained the MPC has to provide a reference path directly to the LQR
controller. The path can be evaluated once, like as with RRT* planner, or updated
in real-time, in order to manage sudden changes of the environment. For this reason
we decide to update the path evaluated by the MPC with a certain time interval.
This is done in the Update Reference block, where a kinematic MPC is set. With
a prefixed time interval, called delta time 4t, the MPC works for a predetermined
simulation time Tsim and provides a reference path covering a certain distance. The
elements of this MPC are the same already explained in section 5.4, but being only
a path planner, some modifications were done in order to make it even more fast and
performing. The prediction horizon Tp was decreased since it’s necessary to define
a trajectory on a lower distance, as well as the simulation time in order to keep a

62

5.5 – MPC as path planner

good timing performance. The numerical values of the described parameters can be
seen in table 5.5. The detailed Matlab function we wrote, that works in the Update
Reference block, is reported in the Appendix. The previous design of the kinematic
MPC worked on the 3DOF Single Track block, while in this application we simplify
it in a kinematic model reported below:

β = arctan

(
1

2
tan(δ)

)
ẋ = V cos(ψ + β)

ẏ = V sin(ψ + β)

ψ̇ =
V

l/2
sin(β)

V̇ = 0

(5.43)

Some simplifications were done also in the model. The fourth state in fact, i.e. the
speed, is equal to zero due to the fact that we are considering the speed constant.
The related block can be seen in figure 5.15.

Figure 5.15: Car model block for MPC planner

Moreover an update of reference is present. It’s a function working within the
Update Reference block which, when a certain distance from the obstacle is reached,
changes the reference from the actual lane to the fast one, and with the same princi-
ple does the opposite when the obstacle has been overtaken. More details about this
function can be seen in the Appendix, in the GoalUpdate section. The aim of this
function is re-creating a possible sensor system, that detects external obstacles and
sends data to the path planner. The block Follow Path, like in the first application,
gives the exact point coordinates in the reference path to the LQR controller. Also
in this case, details of the function can be found in the Appendix.

63

5 – Implementation

MPC Parameters

Prediction horizon Tp 4 s

Sampling time Ts 0.1 s

Delta time 4t 2 s

Simulation time Tsim 5 s

Upper bound for steering angle δf 30°

Lower bound for steering angle δf −30°

Tolerance on tracking error 0.1 m

R matrix weight 0.1

P matrix weights p11, p22
0.1

0.05

Q matrix weights q11, q22
6

1.5

Table 5.5: MPC as path planner parameters

64

Chapter 6

Results and conclusions

6.1 RRT* path planner as first attempt

Among the possible local path planners enumerated in section 4.1, the cell decom-
position is one of them, in particular the RRT* planner can be employed for our
purposes.
As described in section 5.3, in the first place we set the planner based on a costmap,
that describes our chosen scenario. The chosen planner in Matlab is quite easy to
set and since it works on a small map (i.e 100x100 m), also the computational time
is pretty low. The path is evaluated once, as result of the probabilistic algorithm
working on the entire map. In order to calculate the best trajectory we worked on
two parameters: the minimum turning radius and the connection distance between
two consecutive points. In particular, in 6.1 the tests with different turning radius
are shown, while in figure 6.2 the connection distance parameter is analyzed. The
optimal combination is given by the highest turning radius,i.e. 40 with the lowest
connection distance,i.e. 2, shown in 6.1c and 6.2a, since they provide a smoother
trajectory with more points to be followed.

(a) Test 1 (b) Test 2 (c) Test 3

Figure 6.1: Optimal paths by RRT* planner with turning radius equal to (a) 25 (b)
30 (c) 40

65

6 – Results and conclusions

(a) Test 5 (b) Test 6 (c) Test 7

Figure 6.2: Optimal paths by RRT* planner with connection distance equal to (a)
2 (b) 3.5 (c) 5

Once set the parameters of the planner, we carried three tests at different ve-
locities. The values of the LQR parameters are reported in the table 6.1. The map
with reference paths are shown in figures 6.3a, 6.4a and 6.5a. From figures 6.3c,6.4c
and 6.5c instead, the tracking performance can be evaluated and it’s clear that this
task is harder to be achieved at higher speeds. Moreover, even if the RRT* planner
considers the vehicle’s kinematic in creating the trajectory, this one isn’t so smooth.
From the graphs reported in figures 6.3b,6.4b and 6.5b, where all the reference points
coordinates are shown and then connected to form the complete trajectory, small
changes of direction can be noticed in all three trajectories and this influences the
control performance, creating a small tracking error at high velocities. Lastly, it can
be noticed that even if these three trajectories are created with the same setting of
the RRT* planner, they are slightly different in shape underling the fact that it’s a
randomized algorithm.

LQR matrices’ weights

V=5 m/s
Q 0.12 25 80 0.001

R 5

V=10 m/s
Q 0.12 30 80 0.001

R 8

V=15 m/s
Q 0.12 50 80 0.001

R 20

Table 6.1: LQR controller: values of Q and R matrices’ weights for RRT* planner

66

6.1 – RRT* path planner as first attempt

(a) Map with reference path

(b) Reference points

(c) Desidered and followed paths

Figure 6.3: Reference trajectory at 5 m/s

67

6 – Results and conclusions

(a) Map with reference path

(b) Reference points

(c) Desidered and followed paths

Figure 6.4: Reference trajectory at 10 m/s

68

6.1 – RRT* path planner as first attempt

(a) Map with reference path

(b) Reference points

(c) Desidered and followed paths

Figure 6.5: Reference trajectory at 15 m/s

69

6 – Results and conclusions

6.2 Kinematic MPC as path planner and controller
In this section results related to the kinematic MPC are reported. As described in
section 5.4, the MPC is both the path planner and the controller, thus these two
properties will be investigated. The setup of this control scheme is described in
the same aforementioned section, together with the values of the constraints and
parameters in table 5.3 and table 5.4. In the first test the acceleration is kept
variable, and so the speed, while in the following tests the speed is kept constant
respectively at 5 m/s, 10 m/s and 15 m/s, meaning a zero acceleration value
obtained by a change in the bounds’ values.

6.2.1 Variable speed

For this test we set as initial speed a value of 10 m/s and as limit 20 m/s. The
obstacle is 400 meters ahead of the vehicle at standstill. The vehicle’s behavior
results are shown below in figure 6.6, together with the two inputs, i.e. steering
angle and acceleration. In particular from the speed graph it’s clear how the vehicle
accelerates in order to get to the goal point, decelerates encountering the obstacle
and then accelerates again when the obstacle is overtaken. In figure 6.7 both the
predicted trajectory and the followed one are shown. It’s clear that the error between
the two is so small to be considered irrelevant, in fact in the last graph of the figure
where the two lines are superimposed, a difference cannot be noticed.

70

6.2 – Kinematic MPC as path planner and controller

Figure 6.6: Vehicle’s parameters and commands at variable speed

71

6 – Results and conclusions

Figure 6.7: Followed trajectory, predicted trajectory and the two superimposed at
variable speed;the circle stands for the obstacle at the center of the lane

72

6.2 – Kinematic MPC as path planner and controller

6.2.2 Constant speed

In these tests the speed was kept constant at different values. To this purpose the
acceleration input was locked to zero, as shown in the following figures.
From figures 6.10,6.12 and 6.14 it can be seen how the obstacle avoidance starts at
different distances from the obstacle itself depending on the speed. Of course lower
is the speed, later the maneuver starts. Moreover it can be observed that in all three
tests, the vehicle returns very slowly in the initial lane, resulting in an unrealistic
maneuver. In addition, this configuration underlines a speed limit. In fact, as shown
in figure 6.8, at 21 m/s big oscillations are present after the overtaking.

Figure 6.8: Limit trajectory at 21 m/s

73

6 – Results and conclusions

Figure 6.9: Vehicle’s parameters and commands at 5 m/s

74

6.2 – Kinematic MPC as path planner and controller

Figure 6.10: Followed trajectory, predicted trajectory and the two superimposed at
5m/s; the circle stands for the obstacle at the center of the lane

75

6 – Results and conclusions

Figure 6.11: Vehicle’s parameters and commands at 10 m/s

76

6.2 – Kinematic MPC as path planner and controller

Figure 6.12: Followed trajectory, predicted trajectory and the two superimposed at
10 m/s; the circle stands for the obstacle at the center of the lane

77

6 – Results and conclusions

Figure 6.13: Vehicle’s parameters and commands at 15 m/s

78

6.2 – Kinematic MPC as path planner and controller

Figure 6.14: Followed trajectory, predicted trajectory and the two superimposed at
15 m/s; the circle stands for the obstacle at the center of the lane

79

6 – Results and conclusions

6.3 MPC as path planner
The main disadvantages of the previous design were already underlined. So, in this
last phase we focus on improving the following features:

• Speed’s limit

• Trajectory shape

For this reason we limited the MPC only to the path planner function, while a stan-
dard LQR was used as controller. Furthermore, in order to solve the aforementioned
features, we added an update of the reference of the MPC, as explained in section
5.5.3 and we designed the entire control scheme at high speeds. In table 6.2 the
values of the LQR matrices are shown. Two tests are reported at 20 m/s and 25
m/s. The conditions are to the limits. The models we used in fact, do not take
into account the non-linearities of the tires, which are present at these velocities.
Really small oscillations can be seen in the heading angle graph reported in figures
6.17a and 6.17b. Nonetheless the created trajectory is satisfactory. In figures 6.15a
and 6.16a the followed paths are shown. The shape of the trajectory is smooth and
realistic, with the right distance before and after the obstacle. In figures 6.15b and
6.16b we can understand how the MPC works. In fact, all the predicted trajectories
of the MPC during the simulation are displayed. As already explained, every 4 t,
which we set at 2 seconds, a prediction is made, so in a complete simulation we have
40 predictions.

LQR matrices’ weights

Q 0.00005 18 25 0

R 15

Table 6.2: LQR controller: values of Q and R matrices’ weights for MPC as path
planner

80

6.3 – MPC as path planner

(a) Followed path: the vehicle to be overtaken is 200 meters ahead at the start position
and it moves at 15 m/s

(b) MPC predicted trajectories

Figure 6.15: MPC as path planner: followed path and predicted trajectories at 20
m/s

81

6 – Results and conclusions

(a) Followed path: the vehicle to be overtaken is 200 meters ahead at the start position
and it moves at 15 m/s

(b) MPC predicted trajectories

Figure 6.16: MPC as path planner: followed path and predicted trajectories at 25
m/s

82

6.3 – MPC as path planner

(a) Trajectory parameters on Simulink at 20 m/s

(b) Trajectory parameters on Simulink at 25 m/s

Figure 6.17: Trajectory parameters on Simulink at 20 m/s and 25 m/s

83

6 – Results and conclusions

6.4 Conclusions and future works
In this chapter the results of the three different phases of the project were reported.
In a preliminary phase, we designed a RRT* planner which has to calculate an
optimal trajectory based on a map. The scenario was very simple,i.e. a road and a
barrier to be overtaken. Several tests were done in order to obtain a satisfactory lane
change trajectory, but as shown in section 6.1 small turns were still present, resulting
in difficult path to track at high speeds. Also the setting of the controller was not
so trivial, since the RRT* planner gives a slightly different trajectory every time the
algorithm is run due to the randomly building of the space-filling tree. Secondly
we tested a kinematic MPC, with a similar scenario of the previous case,i.e. road
with a barrier, and the advantages of this technique have been confirmed. The
possibility of writing the constraints of the optimization problem in a so efficient
way has been a plus for this design. The resulting trajectory is for sure smoother
and the control action, done by the same MPC, is definitely better. Thus, this
step brought to a better result with a less complex system. Lastly we isolated the
MPC path planning function and brought some improvements in the trajectory’s
creation. Indeed, higher velocities have been achieved together with a proper timing
in the maneuver, resulting a more realistic scenario, where the obstacle was not at
standstill but moving along a straight line.
The obtained results can be a good base for further improvements in this field.
For sure, the car simulation can be improved, avoiding the simulation of the car
in Simulink and using more precise software such as CarSim. Moreover also the
environmental data can be collected by a proper sensor data system, which is a
key feature for the autonomous driving. Nonetheless this project highlighted the
benefits of the Model Predictive Control technique, which for sure will be further
tested in the Automatic Driving Assistance Systems field and more in general in the
autonomous driving branch.

84

Appendix

FollowPath

1 function reference = fcn(x)
2 persistent i;
3 global newpath;
4 if isempty(i)
5 i = 1;
6 end
7

8 actualPose = [x(1) ; x(2) ; x(3)];
9 actualGoal = [newpath(i,:)];

10 %longitudinal distance to evaluate next point
11 longitudinal_distance = sin(actualGoal(3))*((actualGoal(2)-x(2))+
12 (cos(actualGoal(3))*((actualGoal(1)-x(1))));
13 if longitudinal_distance ≤ 0
14 if i < length(newpath)
15 i = i+1;
16 end
17 actualGoal = [newpath(i,:)];
18 end
19 reference = [actualGoal(1:2), actualGoal(3)];

85

6 – Results and conclusions

UpdateReference

1 function [out] = UpdateReferencePath(states,t,obs)
2 %% Init
3 persistent refPath;
4 persistent pp_iterations;
5 persistent ctrl;
6 persistent last_time;
7 persistent mpcPlans
8 global cc cr l changed Ts Tfin Tp V
9

10 cc = obs(1:2); %obstacle position
11

12 changed =false;
13 if isempty(ctrl)
14 ctrl = 1;
15 end
16 if isempty(last_time)
17 last_time = 0;
18 end
19 if isempty(pp_iterations)
20 pp_iterations = 0;
21 end
22

23 %% Parameters for MPC
24 ∆_time = 2;
25 Tfin=5; %MPC simulation time
26

27 yr = updateGoal(states,cc); %goal
28

29 %% Execution
30

31 if ctrl == 1 || (t-last_time ≥ ∆_time)
32 ctrl = 2;
33 end
34

35

36 if ctrl==2 || pp_iterations == 0
37 if pp_iterations == 0
38 x0 = [0;10;0,;V];
39 else
40 x0 = [states;V];
41 end
42 l=4;
43 cr=2; %safety radius
44

45 par.model=@kinematic_model;
46 par.nlc=@rover_con_1;

86

6.4 – Conclusions and future works

47 par.n=4;
48 par.Tp=Tp;
49 par.Ts=Ts;
50 par.ub=[30/180*pi];
51 par.lb=[-30/180*pi];
52 par.tol=[.1;.1];
53

54 par.R=0.1; %weight on MV
55 par.P=0.1*diag([1;0.5]); % final tracking error
56 par.Q=3*diag([2;0.5]); %error on tracking output
57

58 K=nmpc_design(par);
59

60 size_out=[Tfin/Ts+2 3];
61

62 simOut = sim('cinC2_cinobs','SrcWorkspace', 'current');
63

64 refPath = simOut.x.Data(:,1:3);
65 mpcPlans(:,:,pp_iterations+1) = refPath;
66 pp_iterations = pp_iterations+1;
67 if ctrl == 2
68 ctrl = 3;
69 end
70 changed = true;
71 last_time = t;
72

73 assignin('base','pp_iterations',pp_iterations);
74 assignin('base','mpcPlans',mpcPlans);
75 end
76

77 l_refPath = length(refPath);
78 out = zeros(Tfin/Ts+2,3);
79 out(1,:) = states';
80 out(2:end,:) = refPath(:,1:3);
81 end

87

6 – Results and conclusions

UpdateGoal

1 function [goal] = updateGoal(x,cc)
2 %Change of reference based on distance from the obstacle
3 ∆Beyond = 40; %meters
4

5 ∆Before = 80; %meters
6

7 if (x(1) ≥ cc(1) - ∆Before) && (x(1) ≤ cc(1) + ∆Beyond)
8 goal = [14 0]; %fast lane coordinates
9 else

10 goal = [10 0];
11 end
12

13 end

88

References

[1] NHTSA-National Highway Traffic Safety Administration. Automated vehicles
for safety, 2018.

[2] Nagy Zoltan K Allgower Frank, Findeisen Rolf et al. Nonlinear model predictive
control: From theory to application. Journal-Chinese Institute Of Chemical
Engineers, 35(3):299–316, 2004.

[3] Brian DO Anderson and John B Moore. Optimal control: linear quadratic
methods. Courier Corporation, 2007.

[4] Sterling J Anderson, Steven C Peters, Tom E Pilutti, and Karl Iagnemma. An
optimal-control-based framework for trajectory planning, threat assessment,
and semi-autonomous control of passenger vehicles in hazard avoidance sce-
narios. International Journal of Vehicle Autonomous Systems, 8(2-4):190–216,
2010.

[5] Francesco Borrelli, Paolo Falcone, Tamas Keviczky, Jahan Asgari, and Davor
Hrovat. Mpc-based approach to active steering for autonomous vehicle systems.
International Journal of Vehicle Autonomous Systems, 3(2):265–291, 2005.

[6] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[7] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control.
Springer Science & Business Media, 2013.

[8] Novara Carlo. Non linear model predictive control. Lecture notes.
[9] Carvalho Ashwin Cesari Gianluca, Schildbach Georg and Borrelli Francesco.

Scenario model predictive control for lane change assistance and autonomous
driving on highways. IEEE Intelligent Transportation Systems Magazine,
9(3):23–35, 2017.

[10] Howie Choset. Robotic motion planning: A* and D* search, 2010.
[11] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.

Introduction to algorithms. MIT press, 2009.
[12] Shilp Dixit, Saber Fallah, Umberto Montanaro, Mehrdad Dianati, Alan Stevens,

Francis Mccullough, and Alexandros Mouzakitis. Trajectory planning and
tracking for autonomous overtaking State-of-the-art and future prospects. An-
nual Reviews in Control, 45:76–86, 2018.

[13] Paolo Falcone, H Eric Tseng, Francesco Borrelli, Jahan Asgari, and Davor

89

References

Hrovat. Mpc-based yaw and lateral stabilisation via active front steering and
braking. Vehicle System Dynamics, 46(S1):611–628, 2008.

[14] Huckleberry Febbo, Jiechao Liu, Paramsothy Jayakumar, Jeffrey L Stein, and
Tulga Ersal. Moving obstacle avoidance for large, high-speed autonomous
ground vehicles. In American Control Conference (ACC), 2017, pages 5568–
5573. IEEE, 2017.

[15] Janick V Frasch, Andrew Gray, Mario Zanon, Hans Joachim Ferreau, Sebastian
Sager, Francesco Borrelli, and Moritz Diehl. An auto-generated nonlinear mpc
algorithm for real-time obstacle avoidance of ground vehicles. In 2013 European
Control Conference (ECC), pages 4136–4141. IEEE, 2013.

[16] Lex Fridman. MIT Deep Learning, 2018.
[17] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the

heuristic determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[18] SAE international. Taxonomy and definitions for terms related to driving au-
tomation systems for on-road motor vehicles, 2018.

[19] Dongchul Kim Chulhoon Jang Kichun Jo, Junsoo Kim and Myoungho Sun-
woo. Development of autonomous car - part i: Distributed system architecture
and development process. IEEE TRANSACTIONS ON INDUSTRIAL ELEC-
TRONICS, 61(12):7131–7140, 2014.

[20] Jason Kong, Mark Pfeiffer, Georg Schildbach, and Francesco Borrelli. Kine-
matic and dynamic vehicle models for autonomous driving control design. In
Intelligent Vehicles Symposium, pages 1094–1099, 2015.

[21] Steven M LaValle. Rapidly-exploring random trees: A new tool for path plan-
ning. CiteSeerX, 1998.

[22] Steven M. LaValle. Planning Algorithms. Cambridge Univeristy Press, 2006.
[23] MathWorks. Model predictive control toobox-getting started guide, 2018.
[24] MathWorks. pathplannerrrt function, 2018.
[25] Mathworks. Vehicle body 3dof, 2018.
[26] MathWorks. vehiclecostmap function, 2018.
[27] Piero Micelli. Path planning for road vehicles by dynamic programming. PhD

thesis, Università di Parma, Dipartimento di Ingegneria ed Architettura, 2018.
[28] Zdzislaw Kowalczuk Michal Czubenko and Andrew Ordys. Autonomous driver

based on an intelligent system of decision–making. Springerlink.com, 2015.
[29] neos Guide. Optimization guide, 2018.
[30] Iram Noreen, Amna Khan, and Zulfiqar Habib. A comparison of rrt, rrt*

and rrt*-smart path planning algorithms. International Journal of Computer
Science and Network Security (IJCSNS), 16(10):20, 2016.

[31] Teddy Ort, Liam Paull, and Daniela Rus. Autonomous vehicle navigation in
rural environments without detailed prior maps. In International Conference
on Robotics and Automation, 2018.

90

References

[32] Michael Otte and Emilio Frazzoli. Rrtx: Real-time motion planning/replanning
for environments with unpredictable obstacles. In Algorithmic Foundations of
Robotics XI, pages 461–478. Springer, 2015.

[33] Brian Paden, Michal Čáp, Sze Zheng Yong, Dmitry Yershov, and Emilio Fraz-
zoli. A survey of motion planning and control techniques for self-driving urban
vehicles. IEEE Transactions on intelligent vehicles, 1(1):33–55, 2016.

[34] Rajesh Rajamani. Vehicle dynamics and control. Springer Science & Business
Media, 2011.

[35] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo.
Robotics: modelling, planning and control. Springer Science & Business Me-
dia, 2010.

[36] Eloy Snapper. Model-based path planning and control for autonomous vehicles
using artificial potential fields. Master’s thesis, Delft University of Technology,
2018.

[37] P Svestka, JC Latombe, and LE Overmars Kavraki. Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. IEEE Transactions on
Robotics and Automation, 12(4):566–580, 1996.

[38] Charles W Warren. Global path planning using artificial potential fields. In
Robotics and Automation, 1989. Proceedings., 1989 IEEE International Con-
ference on, pages 316–321. IEEE, 1989.

[39] Wikipedia. Quadratic prgramming — wikipedia, the free encyclopedia, 2018.
[40] Wikipedia. Motion planning — wikipedia, the free encyclopedia, 2019.
[41] Michael T Wolf and Joel W Burdick. Artificial potential functions for highway

driving with collision avoidance. In 2008 IEEE International Conference on
Robotics and Automation, pages 3731–3736. IEEE, 2008.

[42] Fitri Yakub and Yasuchika Mori. Comparative study of autonomous path-
following vehicle control via model predictive control and linear quadratic con-
trol. Proceedings of the Institution of Mechanical Engineers, Part D: Journal
of automobile engineering, 229(12):1695–1714, 2015.

[43] Boliang Yi, Stefan Gottschling, Jens Ferdinand, Norbert Simm, Frank
Bonarens, and Christoph Stiller. Real time integrated vehicle dynamics control
and trajectory planning with mpc for critical maneuvers. In Intelligent Vehicles
Symposium (IV), 2016 IEEE, pages 584–589. IEEE, 2016.

91

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Background: Autonomous car technology
	Automation levels
	Benefits and current situation

	Objective and outline of the thesis

	Motion planning: State of Art
	Basic concepts
	Planning algorithms
	Deterministic algorithms
	Probabilistic algorithms

	Model predictive control
	Introduction
	Strategy and elements
	Application in automotive

	Optimization problem
	Typology of Model Predictive Control

	Case study: overtaking
	Trajectory planning
	Trajectory tracking

	Implementation
	Development environment and assumptions
	Car model
	3 DOF Single track model
	Vehicle data

	RRT* planner and LQR controller as first attempt
	RRT* path planner
	LQR controller: theory
	LQR vehicle model
	Feedforward term
	Setup and simulation

	Kinematic MPC as path planner and controller
	Prediction model: kinematic bicycle model
	Objective function and constraints
	Optimization problem and NMPC algorithm
	Setup and simulation

	MPC as path planner
	Assumptions
	Obstacle
	MPC and LQR interaction

	Results and conclusions
	RRT* path planner as first attempt
	Kinematic MPC as path planner and controller
	Variable speed
	Constant speed

	MPC as path planner
	Conclusions and future works

	Appendix
	References

