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Abstract

Autonomous ground vehicles, as an important part of intelligent transportation sys-
tem, are attracting more attention than ever before. Their control system usually
consists of three modules: environment perception, planning and decision-making,
and vehicle control. Vehicle control is one of the most critical part of the whole
architecture, as it is responsible for the vehicle guidance considering both safety
and comfort. In general, control can be divided into lateral control and longitudinal
velocity control. Their inter coordination leads to autonomous vehicle motion.
This thesis is focused on the development of a combined lateral and longitudinal
controller for autonomous driving based on Model Predictive Control (MPC). The
proposed strategy utilizes an adaptive MPC to perform lateral guidance and speed
regulation by acting on the front wheel steering angle and acceleration/deceleration
to minimize the vehicle’s lateral deviation and relative yaw angle with respect to
the reference trajectory, while driving the vehicle at the maximum acceptable lon-
gitudinal speed.
The technique exploits a stereo camera that utilizes the synthetic data coming from
the simulated scenario for lane detection and reference trajectory generation i.e. cen-
ter line of the lane, to perform the lateral guidance. Longitudinal control strategy
is realized with a reference speed generator, which calculates the maximum speed
by previewing the path ahead of the vehicle and stability of the vehicle at the same
time. The proposed controller is tested with three different scenarios: highway, in-
terurban and urban driving to check the performance at different speeds and varying
environment. Dynamics of the vehicle is modeled using a 3 degree of freedom rigid
vehicle model, while the internal plant model for MPC is modeled using a linear
bicycle model.
The overall system has been developed using MATLAB®, Simulink®, Model Predic-
tive Control Toolbox™ and Automated Driving System Toolbox™. In particular,
scenarios were generated using the Scenario Designer application with the Auto-
mated Driving System Toolbox that allows to develop and test Advanced Driver
Assistance Systems (ADAS) and autonomous driving systems providing computer
vision algorithms and generating synthetic data.



Acknowledgements

I would like to express my great gratitude to Prof. Nicola Amati, supervisor of
this thesis, for allowing me to carry out this project and supporting me with his
suggestions and availability. I would also like to thank Prof. Andrea Tonoli and Dr.
Angelo Bonfitto for the help and valuable suggestions during the thesis work.
A big thank to Dr. Stefano Feraco for his friendship, professionalism, and enormous
patience demonstrated daily during this "journey".
A special thank to my mother and father, who made so many sacrifices and allowed
me to reach this goal. During the long course of the studies, they have always
supported me and above all endured, making me grow and become the person I am
today.
Thanks to my best friend Fanny who has always been by my side. With her constant
support, but most of all with her gentleness and confidence in me, she continually
urged me to always give my best.
Thanks to all the colleagues of the Politecnico, who accompanied me during these
years, Johnny, Luis, Carlo, Andrea, and in particular Kiran with whom I lived the
joys and sorrows of this university period.
I thank the friends who were always there for me, Usama, Chirag, Vishal, Abhishek
and Zubair, making this journey easier.
Finally, but not least, I want to thank my "second family" Andrea, Alessia, Marta,
Pietro and Elena who made me feel at home all the time.



Contents

List of Figures iii

1 Introduction 1
1.1 Thesis motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Classification of autonomous vehicles . . . . . . . . . . . . . . . . . . 3
1.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Modelling 11
2.1 Vehicle model for validation and simulation . . . . . . . . . . . . . . . 11

2.1.1 Kinematic model . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Dynamic model . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Tire models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Pacejka tire model . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Linear tire model . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Vehicle model for MPC . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Driveline dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Control design 25
3.1 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Lane detection . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Reference trajectory generation . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Trajectory curvature computation . . . . . . . . . . . . . . . . 32
3.2.2 Computation of vehicle model dynamic parameters . . . . . . 35

3.3 Reference speed profile generation . . . . . . . . . . . . . . . . . . . . 37
3.4 Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . . 40

i



3.4.1 Overview of MPC . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 MPC problem formulation . . . . . . . . . . . . . . . . . . . . 44

4 Results and discussions 50
4.1 Driving scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 Highway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.2 Inter-urban . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.3 Urban . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Comparision with another controller based on MPC and PID . . . . . 66

5 Conclusions and future works 69

Bibliography 71

ii



List of Figures

1.1 SAE’s classification of autonomous vehicles . . . . . . . . . . . . . . . 3
1.2 Control strategy presented in [6] . . . . . . . . . . . . . . . . . . . . . 6
1.3 Control strategy presented in [12] . . . . . . . . . . . . . . . . . . . . 8
1.4 Global architecture of control strategy for autonomous driving pre-

sented in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Vehicle kinematic model . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 3 DoF rigid vehicle model . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Linearized lateral tire forces in small slip angle region compared to

Pacejka model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Tire slip angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Bicycle model in terms of lateral deviation and relative yaw angle

with respect to the center line of the lane . . . . . . . . . . . . . . . . 21
2.6 Driveline dynamics architecture . . . . . . . . . . . . . . . . . . . . . 24

3.1 Detailed architecture of the control strategy . . . . . . . . . . . . . . 26
3.2 Vehicle with camera location . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Focal length description . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Lane line feature extraction . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Lane line model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Curve α and tangential angle ϕ . . . . . . . . . . . . . . . . . . . . . 33
3.7 Demonstration that the definition 3.1 can be derived from the defini-

tion 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 Osculating circle and radius of curvature . . . . . . . . . . . . . . . . 35
3.9 Definition of lateral deviation and relative yaw angle with respect the

center line of the lane . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iii



3.10 Center line, curvature, lateral deviation and relative yaw angle com-
putation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.11 Block diagram for Model Predictive Control . . . . . . . . . . . . . . 41
3.12 Basic concept for Model Predictive Control . . . . . . . . . . . . . . . 43

4.1 (a)Highway driving scenario: S is the vehicle’s starting point. F is
the end of the road track. (b) Detected road curvature k . . . . . . . 52

4.2 (a)Inter urban driving scenario: S is the vehicle’s starting point. F is
the end of the road. (b) Detected road curvature k . . . . . . . . . . 52

4.3 (a)Urban driving scenario: S is the vehicle’s starting point. F is the
end of the road. (b) Detected road curvature k . . . . . . . . . . . . . 53

4.4 Measured vehicle’s longitudinal speed Vx (solid) vs. vehicle’s longitu-
dinal speed reference Vref (dashed) . . . . . . . . . . . . . . . . . . . 54

4.5 Lateral deviation e1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6 Relative yaw angle e2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.7 Longitudinal acceleration command ax . . . . . . . . . . . . . . . . . 56
4.8 Front wheels steering angle command δ . . . . . . . . . . . . . . . . . 56
4.9 GG plot with the ellipse representing the adherence limits . . . . . . 57
4.10 Measured vehicle’s longitudinal speed Vx (solid) vs. vehicle’s longitu-

dinal speed reference Vref (dashed) . . . . . . . . . . . . . . . . . . . 58
4.11 Lateral deviation e1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.12 Relative yaw angle e2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.13 Longitudinal acceleration command ax . . . . . . . . . . . . . . . . . 60
4.14 Front wheels steering angle command δ . . . . . . . . . . . . . . . . . 60
4.15 GG plot with the ellipse representing the adherence limits . . . . . . 61
4.16 Measured vehicle’s longitudinal speed Vx (solid) vs. vehicle’s longitu-

dinal speed reference Vref (dashed) . . . . . . . . . . . . . . . . . . . 62
4.17 Lateral deviation e1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.18 Relative yaw angle e2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.19 Longitudinal acceleration command ax . . . . . . . . . . . . . . . . . 64
4.20 Front wheels steering angle command δ . . . . . . . . . . . . . . . . . 64
4.21 GG plot with the ellipse representing the adherence limits . . . . . . 65
4.22 (a)Highway exit driving scenario: S is the vehicle’s starting point. F

is the end of the road track. (b) Detected road curvature k . . . . . . 66

iv



4.23 Results comparision:(a), (c) and (e) depicts the result of the com-
bined MPC controller, while (b), (d) and (f) depicts the results for
decoupled controller based on MPC and PID in terms of Vx (solid) vs.
vehicle’s longitudinal speed reference Vref (dashed), Lateral deviation
e1 and Relative yaw angle e2 . . . . . . . . . . . . . . . . . . . . . . . 67

4.24 Results comparision:(a), (c) and (e) depicts the result of the com-
bined MPC controller, while (b), (d) and (f) depicts the results for
decoupled controller based on MPC and PID in terms of vehicle side
slip angle β with βlimit, Front wheels steering angle command δ and
GG plot with the ellipse representing the adherence limits . . . . . . 68

v



Chapter 1

Introduction

1.1 Thesis motivation

Every year 1.25 million people die and as many as 50 million are injured in road
traffic accidents worldwide, according to United Nations statistics. Human error is
involved in about 95% of all road traffic accidents in the EU, and in 2017 alone,
25,300 people died on the Union’s roads [1]. Every year children, the elderly or the
physically challenged have little or no access to individual mobility. And every year
half a million metric tons of CO2 emissions in Germany alone could be saved by
eliminating the endless search for a parking space, which studies show account for
up to 30% of inner city traffic. Driverless cars can drastically reduce these figures
and improve road safety, while new digital technologies can also reduce traffic con-
gestion and emissions of greenhouse gases and air pollutants. Mobility can also be
improved, for example by opening up road transport to the elderly and those with
reduced mobility or disabilities. For this reason, in the last few years many uni-
versity researches and car companies are focusing on the development of Advanced
Driver Assistance Systems (ADAS) and self-driving vehicles.

According to European Road Safety Observatory (ERSO) [2], ADAS can be de-
fined as: “vehicle-based intelligent safety systems which could improve road safety
in terms of crash avoidance, crash severity mitigation and protection and post-crash
phases. ADAS can, indeed, be defined as integrated in-vehicle or infrastructure based
systems which contribute to more than one of these crash-phases”.
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1 – Introduction

Nowadays, a number of ADAS are produced by carmakers and available in auto-
motives. More than driver assistance, ongoing research and development in the
automotive field are oriented to driverless cars with the design of systems for par-
tially/fully automated driving, with several commercial entities pushing the bounds
alongside academia. Google has perhaps the most experience in the area, having
tested its fleet of autonomous vehicles for more than 2 million miles, with expec-
tation to soon launch a pilot MoD service project using 100 self-driving vehicles.
Tesla is early to market their work, having already provided an autopilot feature
in their 2016 Model S cars. Uber’s mobility service has grown to upset the taxi
markets in numerous cities worldwide, and has furthermore recently indicated plans
to eventually replace all their human driven fleet with self-driving cars, with their
first self-driving vehicle pilot program already underway [1].
Autonomous driving cars can be considered vehicles that perform the transporta-
tion task without the human intervention, using algorithms executed by an on-board
computer to simulate the behaviour of the driver and make decision. The core com-
petencies of an autonomous vehicle software system can be broadly categorized into
three categories, namely environment perception, planning and decision-making,
and vehicle control. The environment perception module obtains information on
surroundings by external sensors, such as lasers, cameras and radar, and then fuses
the information by building environment maps to determine drivable surfaces. The
planning and decision-making module gathers and handles task information and
combines it with vehicle states and drivable surfaces information to determine the
desired path and the speed profile. The vehicle control module coordinates the en-
gine, brakes and steering to track the desired path and speed by providing the signal
necessary for actuators to guide the autonomous vehicle.
Recently, autonomous vehicle technology attracts automotive industry due to its po-
tential applications such as automated highways, urban transportation, etc. How-
ever, fully automated driving remains a complex task which involves challenging
aspects and requires skills in domains such as vision and image processing, trajec-
tory generation and path planning, modeling and automatic control. The latter
problem is of a paramount importance for vehicle guidance, i.e. steering and ve-
locity control. As will be shown state of the art, the steering and velocity tracking
problems are considered separately or in a coupled way in the literature.
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1 – Introduction

1.2 Classification of autonomous vehicles

The SAE International (Society of Automotive Engineers) established in 2014 a clas-
sification system to describe the progression of the automation of vehicles, as shown
in Figure 1.1. The United Nations and the US Department of Transformation have
adopted SAE J3016 guidelines [3], that is today considered the industry standard.

Figure 1.1: SAE’s classification of autonomous vehicles

The classification is based on the amount of responsibility and attentiveness required
by the driver. Six levels are defined accordingly, from a situation in which everything
is controlled by the human (Level 0) to the full automation of the vehicle under all
driving conditions (Level 5). The definition of each level takes into account the spe-
cific role played by the driver, the driving automation system and by other vehicle
systems and components that might be present.
SAE’s levels are descriptive and informative rather than normative, and technical
rather than legal, they clarify the role of the ADS which are progressively included
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1 – Introduction

in the vehicles. ADS is the acronym of Automated Driving Systems. It refers to
both hardware and software tools collectively capable of performing dynamic driving
tasks (e.g. driving environment monitoring, longitudinal and lateral motion control,
maneuver planning).
The six levels can be defined as:

• Level 0 - No automation: steering or speed control may be momentarily as-
sisted by the vehicle, but the human driver is in charge of all the aspects of
driving;

• Level 1 - Driver assistance: longitudinal or lateral support under well-defined
driving scenarios (e.g. highway) are guaranteed, because the vehicle takes over
either the speed or the steering control on a sustained basis;

• Level 2 - Partial automation: both speed and steering control are taken over
by the vehicle, therefore continuous longitudinal and lateral support under
well-defined driving scenarios are guaranteed. A Level 2 vehicle is equipped
with a wider set of ADAS;

• Level 3 - Conditional automation: the vehicle becomes capable of taking full
control under well-defined driving scenarios, but the driver must be always in
the condition of suddenly taking back control when required by the system;

• Level 4 - High automation: human interaction is not needed anymore, the
vehicle takes full control and complete a journey in full autonomy under limited
driving scenarios. Pedals and steering wheel are likely to be still present to
guarantee the possibility to drive in scenarios that go beyond the defined uses
cases (e.g off-road);

• Level 5 - Full automation: the vehicle takes full control under all driving
scenarios, no more provisions for human control are present. The concept of
journey will be disruptively innovated, the entire vehicle design revolutionized.

1.3 State of the art

In recent years a lot of researches have been focused on autonomous driving and,
for this reason, an overview of the existing projects has been done at the beginning

4



1 – Introduction

of this work. In particular, the state of the art regarding the development of the
vehicle control for autonomous driving has been analysed.
Vehicle control is one of the most critical part of the autonomous driving vehicle
architecture, as it is responsible for the vehicle guidance considering both safety
and comfort. To improve handling performance and safety of vehicle, a considerable
number of advanced driver assistance systems (ADAS) for vehicle lateral dynamics
and longitudinal collision have been developed and utilized commercially. Lane keep
assist (LKA) is one of the lateral control system that is commonly implemented on-
board in the autonomous vehicles, which automatically takes the lead on the car to
ensure it stays in its lane. Therefore, the LKA can be defined as a path tracking
problem.
Many researchers have reported the work on lateral control strategies. In [4], it is
presented the state of the art and challenges for vehicle modeling and the review of
the control strategies in path tracking control.
An adaptive Model Predictive Control is presented in [5]. In this work the longi-
tudinal velocity is assumed constant. For this reason, the work is focused only on
the development of the lateral control. The goal of MPC controller consists in the
minimization of the lateral deviation from the center line and the steady state yaw
angle error, while satisfying respective safety constraints. These constraints refer to
the steering angle offset present in the steering system. In order to estimate and
adapt in real-time the maximum possible bound of the steering angle offset from
data, they use a robust Set Membership Method based approach. The results of this
control show that is well-suited for scenarios with sharp curvatures on high speed.
The work in [6] is focused on the realization of a controller to implement a lane
keeping system using Model Predictive Control (MPC) theory. Figure 1.2 shows
how the controller is developed in this research. The output is the optimal steer-
ing angle of the front wheel computed minimizing the cost function of the MPC
controller. The cost function is composed of the steering angles and the error be-
tween the reference and the predictive trajectory. The generation of the reference
trajectory is performed fitting five preview points coming from sensors. In order
to demonstrate the effectiveness and robustness of the approach, a co-simulation of
MATLAB/Simulink and CarSim has been executed.
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1 – Introduction

Figure 1.2: Control strategy presented in [6]

A linear MPC controller that realizes a lane keeping and an obstacle avoidance sys-
tems for low curvature roads has been presented in [7]. The control developed in this
work has been divided in two successive stages: the first stage computes a braking
or throttle profiles based on the prediction horizon; the second stage realizes the
MPC using the linear time-varying models of the vehicle lateral dynamics derived
by the profiles of the first stage. The MPC estimates the steering angle command
based on the optimal breaking or throttle command.
The speed tracking task is also relevant in fully automated driving. Now a days, the
cruise controller (CC) is widely used to ensure vehicle speed regulation. An exten-
sion of the CC is the Adaptive CC (ACC) which employs external information for
regulation of both vehicle speed and inter vehicular distance. So, the longitudinal
planning is mainly responsible for calculating the desired velocity or acceleration
command of an autonomous vehicle according to its surrounding environment infor-
mation.
An interesting review of the development of adaptive cruise control systems is pre-
sented in [8]. An ACC design for traffic jam based on MPC technique is proposed
and experimentally validated in [9]. It is mainly focused on decreasing the compu-
tational load for the practical use of MPC by using low-order prediction model. The
work in [10] presents the design of a parameterized ACC based on explicit model
predictive control. It uses only a few design parameters, i.e. tuning knobs, that are
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1 – Introduction

directly related to the key characteristics of the behavior of the ACC to adapt to
different desirable driving behavior. So, the main goal of this work is to make the
ACC driver dependent.
In the above studies, lateral and longitudinal control problems have been investi-
gated in a decoupled way. In fact, numerous studies dealing with the lateral guidance
of automotive vehicles are based on the assumption of a constant speed. They fo-
cus only on how to eliminate the path error according to desired path and how to
improve the robustness against the uncertainties but does not take into account the
longitudinal dynamics. On the other hand, those dealing with longitudinal control
do not take account of the coupling with the lateral motion. However, there are
strong couplings between the two dynamics at several levels: dynamic, kinematic
and tyre forces. Consequently, the simultaneous inclusion of longitudinal and lateral
control becomes unavoidable in order to improve performance guidance in a large
operating range. Nevertheless, the control design based on a complex mathematical
model of the vehicle becomes a difficult task due to these couplings. Therefore,
different control approaches have been proposed in the literature to cope with this
interesting problem.
For example, in [11], a coupled lateral and longitudinal control strategy based on
Linear time-varying Model predictive control (LTV-MPC) is presented. However,
it is designed mainly for collision avoidance exploiting the handling limits but does
not consider real world scenarios application. Also, only negative accelerations are
considered because the control is designed for collision avoidance by following an
evasion trajectory computed explicitly.
A further coupled method is presented in [12], where the lateral dynamics control is
designed with a non-linear Model Predictive Control (NLMPC) and the longitudi-
nal control task is addressed with Lyapunov-based synthesis algorithm, as shown in
Figure 1.3. This study focuses more on the fuel consumption reduction by a finely
tuned longitudinal control. However, as stated by the authors, the application of
this technique in real time is limited due to calculation time and may result into a
computationally demanding method.
Similarly, another coupled method is presented in [13], where the simultaneous lat-
eral and longitudinal control for a full drive by wire autonomous vehicle is designed
with a non-linear Model Predictive Control (NLMPC). Non linear prediction model

7



1 – Introduction

Figure 1.3: Control strategy presented in [12]

utilizes a spatial transformation to derive the dynamics of the vehicle about the
reference trajectory. The motion of the vehicle is is controlled using three control
efforts target longitudinal and lateral forces and target yaw moment. The control
is only tested for a emergency double lane change maneuver. So, its effectiveness in
wide range of operating conditions is still a doubt. However, computational com-
plexity of NLMPC remains a major problem in Automotive industry application.
Parallel advances in theory and computing systems have enlarged the range of ap-
plications where real-time MPC can be applied. Yet, for a wide class of “fast”
applications the computational burden of MPC is still a serious barrier for its im-
plementation. Nevertheless, the capability of handling constraints in a systematic
way makes MPC a very attractive control technique, especially for applications
where the process is required to work in wide operating regions and close to the
boundary of the set of admissible states and inputs. This has motivated the study
of alternative MPC approaches, requiring the solution of simpler optimization prob-
lems in real-time. Most of these approaches are based on linear or piecewise-linear
approximations of the nonlinear model of the plant.

This thesis presents a combined lateral and longitudinal controller for autonomous
driving based on an adaptive MPC is proposed. The proposed control strategy
maximizes the longitudinal speed while remaining in constrained speed range and

8



1 – Introduction

without exceeding the adherence condition. At the same time, it eliminates the path
error between the actual location and the desired path in terms of lateral deviation
and desired yaw angle, assuring the handling stability during the motion. The com-
mand signals generated by MPC and provided to the vehicle are the front wheel
steering angle and actuation of throttle/brake pedals.
The overall autonomous driving system has been implemented with MATLAB and
Simulink1. The technique exploits a simulated stereo camera that utilizes the syn-
thetic data coming from the simulated driving scenario for lane detection, as shown
in Figure 1.4. In the real implementation, this information is obtained from a lane
detection algorithm based on the real-time streaming of a stereo-camera data. Since,
in our case the simulations are conducted in MATLAB/Simulink, the lane bound-
aries information is extracted from three simulated driving scenarios, reproducing
a highway, inter-urban road and urban road. Dynamics of the vehicle is modeled
using a 3 degree of freedom rigid vehicle model.

Figure 1.4: Global architecture of control strategy for autonomous driving
presented in this thesis

1https://it.mathworks.com/
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1 – Introduction

1.4 Thesis outline

The thesis is organized as follows:

• Chapter 2 : It presents the vehicle modeling used for the validation and control
synthesis. In particular, a 3 degree of freedom rigid vehicle model, tire model
and a linearized vehicle model for MPC control design are discussed in detail.

• Chapter 3 : First an overview of the overall control strategy is presented.
Later based on the framework of MPC, a predictive optimization problem
is formulated and solved and the MPC implemented for this work is explained
in detail.

• Chapter 4 : Three different scenarios are presented to evaluate the perfor-
mance of the controller by means of simulations. The results are presented
and discussed.

• Chapter 5 : In the final chapter conclusions and future works are reported.

10



Chapter 2

Modelling

This chapter presents the mathematical modelling of the the vehicle dynamics for
the validation and the control synthesis, referring to the overall model (Figure 1.4).
Model-based control is highly affected by the quality of the models provided. On
the one hand, accurate models are typically computationally expensive and provide
accurate predictions. On the other hand, simple models are less computationally
demanding, but provide less accurate predictions. Since the MPC will be evaluated
through simulations, a validation model is needed. The validation model needs to
well describe the behaviour of a real vehicle. So, for this thesis, dynamics of the
vehicle is modeled using the 3 degree of freedom rigid vehicle model (Single Track),
which is imported from Vehicle dynamics Blockset in Simulink®. The derivation of
the kinematic and the dynamic vehicle model is described in Section 2.1.1 and 2.1.2.
For this thesis we used a linearized dynamic model of the vehicle, derived in Section
2.2, as the prediction model.

2.1 Vehicle model for validation and simulation

In this section, both kinematic and dynamic models of the vehicle are presented
with their assumptions and constraints.

11



2 – Modelling

2.1.1 Kinematic model

Kinematics is a branch of classical mechanic that explains the motion of points,
bodies and groups of objects without considering the forces that affect the motion.
The equations of motion described by a kinematic model refer purely to geometric
relationships that control the system, for this reason kinematics is often called the
“geometry of motion” in field of study [14].
The beginning of a kinematics problem consists of the geometry description of the
system and the declaration of the initial conditions of the values that refer to posi-
tion, velocity and acceleration of system points.
As shown in Figure 2.1, the following kinematic model of the vehicle has been con-
sidered [15].

Figure 2.1: Vehicle kinematic model

The image presents a bicycle model in which the two front wheels and the two rear
wheels are represented by one single central tires at points A and B, respectively.
The steering angle for the front wheel is indicated with δf , while δr refers to the
steering angles for the rear wheel. In this work, the vehicle model is assumed as a
front-wheel-only steering, therefore the rear steering angle δr is set to zero.
The point C in the figure represents the center of gravity (c.g.) of the vehicle.
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The distances from this point to the points A and B are indicated with lf and lr

respectively. The sum of these two terms corresponds to the wheelbase L of the
vehicle:

L = lf + lr (2.1)

Since the vehicle is assumed to have planar motion, three coordinates are necessary
to describe the vehicle motion: X, Y and Ψ . (X, Y) represent the inertial coordi-
nates of the location of the center of gravity of the vehicle, while Ψ indicates the
orientation of the vehicle an it is called yaw angle. The vector V in the model refers
to the velocity at the c.g. of the vehicle. This vector makes an angle β, called slip
angle, with the longitudinal axis of the vehicle.
The point O refers to the instantaneous center of rotation of the vehicle and it is
defined by the intersection of lines AO and BO. These two lines are drawn perpen-
dicular to the orientation of the two wheels. The length of the line OC corresponds
to the radius of the vehicle trajectory R, and it is perpendicular to the velocity
vector V.
Applying the sine rule to triangles OCA and OCB, remembering that δr is equal to
zero, it is possible to define the following equations:

sin(δf − β)
lf

=
sin(π

2 − δf )
R

(2.2)

sin(β)
lr

= 1
R

(2.3)

After some manipulation and multiplying by lf
cos(δf ) , equation 2.2 becomes:

tan(δf ) cos(β) − sin(β) = lf
R

(2.4)
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Likewise, multiplying by lr, equation 2.3 can be re-written as:

sin(β) = lr
R

(2.5)

Adding equations 2.4 and 2.5, the following relation has been obtained:

tan(δf ) cos(β) = lf + lr
R

(2.6)

This formula allows to write the radius R of the vehicle trajectory as a function of
the front steering angle δf , the slip angle β, and lf .
If the value of radius R changes slowly due to low velocity, the yaw rate Ψ̇ of the
vehicle can be assumed equal to the angular velocity ω that is defined as:

ω = V

R
(2.7)

Therefore, the yaw rate Ψ̇ can be described as follows:

Ψ̇ = V

R
(2.8)

Using formula 2.6, the equation 2.8 can be re-written as:

Ψ̇ = V cos(β)
lf + lr

tan(δf ) (2.9)

After all these assumptions, the overall equations of the kinematic model can be
defined as:

Ẋ = V cos(Ψ + β) (2.10)

Ẏ = V sin(Ψ + β) (2.11)

14
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Ψ̇ = V cos(β)
lf + lr

tan(δf ) (2.12)

2.1.2 Dynamic model

A kinematic model offers satisfactory results when the vehicle speed and steering
angle are low enough, but when the speeds increase and the curvatures of the trajec-
tory change in time, it is not possible any more to assume that the velocity vector
of each wheel is parallel to the wheel symmetry plane. For this reason, instead of
adopting a kinematic model, a vehicle dynamic model is developed.
In this thesis, dynamics of the vehicle is modeled using the 3 degree of freedom rigid
vehicle model (Single Track), which is imported from Vehicle dynamics Blockset in
Simulink [16]. This model accounts for the two displacements on the plane (longitu-
dinal, depicted by subscript x and lateral depicted by subscript y) and the rotation
around an axis normal to the plane (yaw motion). It implements a rigid two axle
vehicle body model. So, the two front wheels and the two rear wheels of the vehicle
are represented as a single center wheel. As our test vehicle is only steerable from
the front wheels, the test vehicle is modeled to be only steerable from the front
wheel.
The nomenclature refers to the model depicted in Figure 2.2. We denote by Fl, Fc

the longitudinal (or “tractive”) and lateral (or “cornering”) tire forces, respectively,
Fx, Fy the longitudinal and lateral forces acting on the vehicle center of gravity,
Fz the normal tire load, X, Y the absolute car position in inertial coordinates, lf ,
lr (distance of front and rear wheels from center of gravity), g the gravitational
constant, m the car mass, Izz the car inertia, α the slip angle, δ the wheel steering
angle and Ψ the heading angle. The lower scripts f and r particularize a variable
at the front wheels and the rear wheels, respectively, e.g. Flf is the front wheel
longitudinal force. Newton Euler equations (2.13), (2.14) denote the longitudinal
and lateral momentum with respect to CG in the vehicle reference frame while yaw
dynamics are considered by (2.15).

mV̇x = mVyΨ̇ + Fxf + Fxr − Faero (2.13)

mV̇y = −mVxΨ̇ + Fyf + Fyr (2.14)
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Figure 2.2: 3 DoF rigid vehicle model

IzzΨ̈ = lfFyf − lrFyr (2.15)

The forces acting on the vehicle center of gravity are related to tires forces and front
steering angle δ by the given equations.

Fxf = Flf cos δ − Fcf sin δ (2.16)

Fyf = Flf sin δ + Fcf cos δ (2.17)

Fxr = Flr (2.18)

Fyr = Fcr (2.19)
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2.2 Tire models

The tire forces have highly nonlinear behavior when slip ratio or slip angle is large.
Thus it is of extreme importance to have a realistic nonlinear tire force model for
the vehicle dynamics when operating the vehicle in the tire nonlinear region e.g.
during racing. In such situations, large slip ratio and slip angle can happen simul-
taneously and the longitudinal and lateral dynamics of the vehicle is highly coupled
and nonlinear due to the nature of the tire forces. Similar situation can occur even
with small inputs when the surface friction coefficient µ is small.
When the slip ratio and slip angle are both small, both longitudinal and lateral tire
forces show linear behavior and are less coupled e.g. during normal driving. This
situation holds true when the vehicle operates with moderate inputs on high µ sur-
faces. In such situations, linearized tire models might serve well in control design,
with proper constraints on the slip ratio and slip angle.
In this section, we will present two tire models. First one is a complex nonlin-
ear semi-empirical model capturing the nonlinear and coupling behavior of the tire
forces, while second one is a simple linear model. For this thesis we have used linear
tire models since, the angles α, β and δ are limited to small values.

2.2.1 Pacejka tire model

This subsection gives more details on the Pacejka tire model [17]. It is a complex
nonlinear semi-empirical model being able to describe the nonlinear and coupled
behavior of tire forces under wide operation range. Pacejka model describes the tire
forces as functions of the tire normal force, slip ratio, slip angle and surface friction
coefficient.
It uses a function of following form to fit the experiment data:

Y (X) = D sin (Carctan(B(1 − E)(X + Sh)) + Earctan(B(X + Sh))) + Sv (2.20)

where Y is either the longitudinal or lateral tire force. X is the slip ratio when Y

is the longitudinal force and the slip angle when Y is the lateral force. B, C, D, E,
Sh and Sv are the parameters fit from the experimental data.
It is critical to have a realistic tire model to take the slip phenomenon into account,
specially if the car has to be driven at its limits of handling and used in racing
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context. However, fitting a physical tire behaviour to its corresponding parameters
value in a Pacejka model can be hard because of the model complexity. But for this
thesis, the car is used for normal driving so, a linearized tire model is used, which
is explained in the next section.

2.2.2 Linear tire model

This subsection presents a linear tire model, which can be used for modeling lateral
tire force inside the linear region [18]. This model is only valid when both slip angle
and slip ratio are restricted to have small values. With small α and s assumption,
the lateral tire force is modeled:

Fc = Cα(µ, Fz)α (2.21)

where Cα is called the tire’s cornering stiffness coefficient and is a function of the
friction coefficient µ and normal force Fz.
Figure 2.3 compares the lateral tire forces computed from the linear tire model and
the Pacejka model. The linear tire model is the simplest tire model we can possibly
get and should be implemented only with small slip angles, i.e. inside the tire linear
region. With theses assumptions, the lateral tire forces Fyf and Fyr that act on the
vehicle are modelled with the value of the wheel slip angle when it is small. As
shown in Figure 2.4, the front wheel slip angle αf can be defined as the difference
between the steering angle δ of the front wheel and the orientation angle of the tire
velocity vector θV f with respect to the longitudinal axis of the vehicle.

αf = δ − θV f (2.22)

In a similar way, the rear wheel slip angle is defined as:

αr = −θV r (2.23)

Therefore, the lateral tire forces for the front and rear wheels of the vehicle is
obtained as:

Fyf = 2Cαf (δ − θV f ) (2.24)
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Figure 2.3: Linearized lateral tire forces in small slip angle region compared to
Pacejka model

Figure 2.4: Tire slip angle

Fyr = 2Cαr(−θV r) (2.25)
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where Cαf and Cαr are proportional constants. These constants are called cornering
stiffness of front and rear wheel respectively. The factor 2 in the equations refers to
the fact that there are two wheels for each axle.

In order to calculate the velocity angle of the front wheel θV f and the rear wheel
θV r, the following formulas have been used:

tan(θV f ) = Vy + lf Ψ̇

Vx

(2.26)

tan(θV r) = Vy − lrΨ̇

Vx

(2.27)

Assuming small angle approximations, the equations 2.26 and 2.27 can be re-written
as:

θV f = Vy + lf Ψ̇

Vx

(2.28)

θV r = Vy − lrΨ̇

Vx

(2.29)

2.3 Vehicle model for MPC

In this thesis work, the goal is to implement a combined lateral and longitudinal
control system based on MPC for autonomous driving. For this purpose, a 2 de-
gree of freedom vehicle model is used to define the lateral dynamics of the vehicle
for controller internal plant model in terms of error with respect to the reference
trajectory. The two errors are lateral displacement error e1 , which is defined as
the lateral distance between center of gravity of vehicle and the center line of the
reference trajectory. Yaw angle error e2 is defined as the difference between the yaw
angle of the vehicle and desired yaw angle as dictated by the reference trajectory,
as represented in Figure 2.5. The rate of change of lateral displacement error and
yaw angle error are given by the equations.
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Figure 2.5: Bicycle model in terms of lateral deviation and relative yaw angle with
respect to the center line of the lane

ė1 = Vxe2 + Vy (2.30)

e2 = Ψ − Ψdes (2.31)

The desired yaw angle rate is given by:

Ψ̇des = Vxκ (2.32)

Where, κ denotes the the road curvature.
The state-space model for lateral dynamics can be obtained by linearizing the

bicycle model described in section 2.1.2. ẋ = Ax + Bu is represented as:
⎡⎢⎢⎢⎢⎢⎢⎣

ẏ

ÿ

Ψ̇

Ψ̈

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0
0 −2Cαf +2Cαr

mVx
0 −Vx − 2Cαf Lf −2CαrLr

mVx

0 0 0 1
0 −2Lf Cαf −2LrCαr

IzVx
0 −2Lf

2Cαf +2Lr
2Cαr

IzVx

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
y

ẏ

Ψ

Ψ̇

⎤⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎣
0

2Cαf

m

0
2Lf Cαf

Iz

⎤⎥⎥⎥⎥⎥⎥⎦ δ (2.33)

For the longitudinal dynamics, the plant model used for control design is the transfer
function between desired acceleration and actual vehicle speed and is given by:

P (s) = 1
s(τs + 1) (2.34)
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Where, τ is the time constant.
A traditional MPC controller includes a nominal operating point at which the plant
model applies, such as the condition at which you linearize a nonlinear model to ob-
tain the LTI approximation. If the plant is strongly nonlinear or its characteristics
vary dramatically with time, LTI prediction accuracy might degrade so much that
MPC performance becomes unacceptable. Adaptive MPC can address this degra-
dation by adapting the prediction model for changing operating conditions. As
described in the Model Predictive Control Toolbox™, adaptive MPC uses a fixed
model structure, but allows the models parameters to evolve with time. Ideally,
whenever the controller requires a prediction (at the beginning of each control in-
terval) it uses a model appropriate for the current conditions. So, in an adaptive
MPC, the plant model is updated at each time step as the operating point keeps
changing. i.e. Vehicle longitudinal speed. The plant model used as the basis for
adaptive MPC is an LTI discrete-time, state-space model with a sampling time Ts

= 100 ms. The combined state space model for lateral and longitudinal dynamics
which is used as the internal plant model for MPC is represented below:

x(k + 1) = Ax(k) + Buu(k) + Bdv(k)

z(k) = Cx(k)
(2.35)

Where:

• k is time index (current control interval).

• x are plant model states.

• u are manipulated inputs. These are the one or more inputs that are adjusted
by the MPC controller.

• v are measured disturbance inputs.

• A is the state matrix.

• Bu and Bd are the input matrices corresponding to inputs u and v respectively

• C is the output matrix.
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V̈x

V̇x

V̇y

Ψ̈

ė1

ė2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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−Vx
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(2.36)

The inputs for the plant are separated to indicate that u correspond the fornt wheel
steering angle and acceleration/deceleration command of the vehicle (controlled out-
put of MPC), while v indicates the longitudinal velocity multiplied by the curvature
κ (it is the disturbance). The inputs to the MPC y corresponds to the lateral devi-
ation e1 , relative yaw angle e2 and velocity of the vehicle Vx. In the state vector,
Vy denotes the lateral velocity, Vx denotes the longitudinal velocity and ϕ denotes
the yaw angle. The vehicle model refers to a high-performance autonomous car
characterized by the parameters listed below.

• m = 1575 kg, the total vehicle mass;

• Iz = 2875 Nms2, the yaw moment of inertia of the vehicle;

• lf = 1.2 m, the longitudinal distance from the center of gravity to the front
wheels;

• lr = 1.6 m, the longitudinal distance from the center of gravity to the rear
wheels;

• Cαf = 19000 N/rad, the cornering stiffness of the front tires;

• Cαr = 33000 N/rad, the cornering stiffness of the rear tires.

2.4 Driveline dynamics

Generally, a lower level controller is implemented to calculate the throttle input,
to track the desired acceleration determined by the MPC, which uses a simplified
model of longitudinal vehicle dynamics. This simplified model is typically based on
the assumptions that the torque converter in the vehicle is locked and that there is
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zero-slip between the tires and the road.
For this thesis, based on the same assumptions of a simplified longitudinal dynamics
model, a first order dynamics with a time constant of τ = 0.5s, for the driveline is
used. Which provides the required engine torque to track the desired acceleration.
So, the engine torque required to track the desired acceleration is first calculated.
This calculation is described in this section. Once the required engine torque has
been obtained, engine maps and nonlinear control techniques are used to calculate
to the throttle input command that will provide the required torque. The part for
throttle input calculation has not been discussed in this thesis, and the reader can
refer to [18] for more information on this topic.

Figure 2.6: Driveline dynamics architecture

The required engine torque is given by:

Tengine = rw(max + 0.5ρACxVx
2) (2.37)

So, the wheel torque for a given gear ratio i is given by:

Twheel = Tengine.i (2.38)

Finally the force developed in the tires due to the torque is given by:

Fwheel = Twheel/rw (2.39)

This force is given as an input to the vehicle dynamics model to accelerate and reach
the reference longitudinal speed Vref , as depicted in Figure 2.6.
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Control design

The aim of the controller is to safely achieve autonomous driving. The control
strategy proposed here is considered in the global guidance architecture depicted in
Figure 1.4. The architecture can be decomposed into three levels called Perception,
Reference generation and Control:

• The Perception of the vehicle environment is of the utmost importance in
the guidance architecture as it defines the environment in which the vehicle
evolves. Its role is to provide the Reference generation with the necessary
information.

• The Reference Generation provides reference signals. It allows the calculation
of the geometric trajectory which defines the path to be followed as well as
the reference speed profile. These two different reference signals calculated at
this level are used by Control.

• The Control ensures the automated vehicle guidance along the generated tra-
jectories providing the appropriate control signals, here the acceleration, the
deceleration and the steering angle of the front wheel. Simultaneous longitu-
dinal and lateral control is necessary to guarantee efficient vehicle guidance.

The architecture shown in Figure 3.1 highlights the interaction between the different
blocks and present a combined controller for autonomous driving. Indeed, the lat-
eral control is designed following a path tracking approach which helps to decouple
the speed tracking and the vehicle positioning problems. However, the coupling of
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the longitudinal and lateral dynamics is handled by the MPC using the constraints
defined later in this section. The prediction model used here has two control in-
puts, i.e. the steering angle of the front wheel and the acceleration/deceleration.
The steering angle is the variable of interest for lateral control and constitutes the
optimization vector in the MPC problem. While, the applied acceleration/deceler-
ation is used to track the reference velocity provide by the speed profile generator.
Which is then used to calculate the required torque for the desired acceleration. In
this way, MPC based lateral and longitudinal controller ensure the coupled path
and speed tracking. Note that no active lateral stabilisation aspect is considered
in the control design. In extreme lateral manoeuvres, vehicle stability may then be
lost, e.g. when large steering manoeuvres are performed at high speed. In order to
preserve vehicle lateral stability during guidance, the longitudinal reference speed
should be adapted. To do so, a reference speed profile generator has been adopted,
described in section 3.3.

Figure 3.1: Detailed architecture of the control strategy

As mention in section 1.1, the overall system has been implemented in MATLAB
and Simulink.

26



3 – Control design

3.1 Perception

According to the the block scheme in Figure 3.1, in this section the stereo camera
and lane detection block has been presented. In this work, the stereo camera is im-
plemented in Simulink using the Vision Detection Generator block from Automated
Driving Toolbox. Which generate vision detections from simulated scenarios at the
intervals of 100ms. Therefore, simulated driving scenarios are used to simulate the
environment and generate the synthetic data required for the control algorithm of
the vision detection. In particular the detection of road lanes has been performed
following a visual perception example included in the MATLAB documentation [19],
explained in the next section, that uses Automated Driving System, Computer Vi-
sion System and Image Processing toolbox.
The first step is the definition of the configuration of a monocular camera sensor.
Configuration information includes the intrinsic (Focal length and optical center of
the camera) depicted in Figure 3.3 and extrinsic parameters (Orientation (pitch,
yaw, and roll) and the camera location within the vehicle to define the camera ori-
entation with respect to the vehicle’s chassis) in the Vision Detection Generator
block. The camera is mounted on top of the vehicle at a height of 1.5 meters above
the ground and a pitch of 1 degree toward the ground in this thesis work as shown in
Figure 3.2. This information is later used to establish camera extrinsics that define
the position of the camera coordinate system with respect to the vehicle coordinate
system.

Focal length = [800, 800];
Optical center of the camera = [320, 240];

3.1.1 Lane detection

Lane detection is a well-research area of computer vision that allows to realize func-
tions for ADAS and autonomous vehicles. One of these functions is the lane keeping,
and the lane detection presented in this thesis has been developed to give reliable in-
formation to implement it. This block receives, as an input, images acquired by the
simulated stereo camera, with a frame rate equal to 10 Hz and provides the equation
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Figure 3.2: Vehicle with camera location

Figure 3.3: Focal length description

of the left and right lane boundaries of the current lane in the current field-of-view
of the stereo camera to the reference trajectory generator block. Which provides
the current curvature, lateral deviation and relative yaw angle of the vehicle with
respect to the center line using the method explained in the next sections.
Lane detection has been divided in two parts:

• Lane line feature extraction;

• Lane line model.

Firstly, the Region of Interest (ROI) has to be defined. It defines the area to
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transform in bird’s-eye-view images so that it is possible to have a sufficient pre-
diction of the road in front of the vehicle and a suitable side view in order to see a
lane. After the extraction of the ROI, the birdsEyeView object has been developed
to perform the transformation of the original image into the bird’s-eye-view image
using Inverse Perspective Mapping. A result of this transformation can be seen in
Figure 3.4.
The bird’s-eye-view image allows the function to perform the feature extraction and
the lane line model, as explained in hereafter. 3.1.1. Lane line feature extraction
[20] consists in identifying pixels that belong to the white line of the road and elim-
inating the marking pixels of non-lane line, in bird’s-eye-view images that coming
from the previous phase.
The extraction is developed using an approach that is based on the observations of
pixels contrast compared between the lane markings and the road pavement. The
recognition of lines is implemented by searching for pixels that are “lane-like”. This
type of pixels are groups of points with a very different colour contrast with respect
to the adjacent points on both sides.
The approach developed to this purpose is called ridge detection that tries to iden-
tify ridges, or edges, in an image. Ridge detection technique has been chosen for its
simplicity and relative effectiveness. It is based on tensor field construction of first
order derivatives and it is able to get the response of gradient directions that makes
it easier to remove anomalous values if their directions deviate too much from the
expected lane line direction [21].

In order to improve the lane line feature segmentation, the method requires to
transform the bird’s-eye-view images from RGB to grey-scale, as shown in Fig-
ure 3.4. Automated Driving System toolbox provides a function that uses a ridge
detector to extract the lane line feature, segmentLaneMarkerRidge.
This function receives in input the bird’s-eye-view image in grey-scale intensity, the
birdsEyeView object created in the Inverse Perspective Mapping phase and a scalar
value that indicates the approximate width of the features of the lane line to detect.
The last value allows the function to determine the filter used to threshold the inten-
sity contrast. segmentLaneMarkerRidge can receive an additional input arguments,
the lane sensitivity, a non-negative scalar factor that allows to define if a value needs
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to be retained or not. This value improves the detection and extraction of features
[22] [23].
As output, the function returns a binary image with true pixels representing the
information about lane features, as shown in Figure 3.4. After the feature extrac-

Figure 3.4: Lane line feature extraction

tion, the lane line model fitting has been developed. This step allows to create a
parametric model of the lane detected to the visualization of the features extracted
in the image. The main purpose of this phase is to get a compact high level repre-
sentation of the path, which can be used for decision making [24].

In this thesis work the built-in findParabolicLaneBoundaries function has been
used to fit the lane line model. This function uses RANSAC algorithm [26] to find
the lane line boundaries. As the function name suggests, the model created is a
parabolic model that fits a set of boundary points and an approximate width. The
selected boundary points correspond to inliers only if they fall into the boundary
width. The final parabolic model has been obtained using a least-squares fit on the
inlier points.
The function receives in input the candidate points in vehicle coordinate from the
features extraction phase and it provides array of parabolicLaneBoundary objects
for each model. The returned array includes the three coefficients [a b c] of the
parabola, like a second-degree polynomial equation ax2+bx+c, and in addition the
strength, the type, and the minimum and maximum x positions of the computed
boundary. The last three parameters are used to reject some curves that could be
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Figure 3.5: Lane line model

invalid using heuristics [27]. For example, in order to reject short boundaries, the
difference between the minimum and maximum x positions has been compared with
a specific threshold, if the minimum threshold is not reached, the found boundaries
are rejected; or, to reject weak lines, the value of the strength has to be higher than
another threshold set ad hoc.
The founded lane line models in vehicle coordinate have been inserted to the bird’s-
eye-view image and to the original image taking from the camera, as shown in
Figure 3.5.

The better results of the lane detection have been found in roads with straight
line and light curves, while some limitations have been found when there are cross-
roads, roundabouts and very high curvature roads.
The reader can refer to the thesis [28] for more information related to lane detection.

3.2 Reference trajectory generation

The trajectory generation phase consists to find the trajectory and compute its
curvature based on the information of the lane line model coming from the previous
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step. This phase refers to the problem of trajectory planning, also called motion
planning, in automotive context, that has the purpose to find a trajectory feasible
for the vehicle, and safe and comfortable for the passenger.
The motion planning for an autonomous vehicle is based on the same theory handled
in robotics area. In fact, as in the field of robotics, it is necessary to provide
and distinguish some definitions such as path and trajectory, and global and local
planning.
Firstly, it is significant to give the definitions of path and trajectory and underline
that they have two different meanings:

• Path is the pure geometric description of motion;

• Trajectory is the merge of the path and the time laws (velocities and acceler-
ations) required to follow the path.

The other significant definitions are global and local planning:

• Global planning means the generation of the path or trajectory knowing the
entire environment and its information such as the position of the obstacle and
the lane boundaries;

• Local planning means, instead, the computation of the path according to sensor
data that represent local environment information.

In this thesis, for the sake of simplicity, no strict distinction has been adopted to
distinguish path and trajectory when needed.
Moreover, the indication of the trajectory (or similarly path) is defined as a local
path as mention in the previous definitions.
The trajectory computed for this work consists of the center line of the lane. It is
computed like the average between the left line of the lane and the right ones.

3.2.1 Trajectory curvature computation

The controller of the lane keeping needs to receive the curvature of the trajectory
like input to perform the control action on the steering angle.
“The curvature of a curve parametrized by its arc length is the rate of change of
direction of the tangent vector [29]”.
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Considering a curve α(s), where s is the arc length and the tangential angle ϕ,
computed counterclockwise from the x-axis to the tangent T = α′(s), as shown in
Figure 3.6, the curvature κ of α is defined, following the definition, as:

κ = dϕ

ds
(3.1)

Figure 3.6: Curve α and tangential angle ϕ

The curvature can be also defined as the value of the turning of the tangent T(s)
along the direction of the normal N(s), that is:

κ = T ′ · N (3.2)

It is easily to derive the first definition 3.1 from the second 3.2 (Figure 3.7), as
follows:

κ = T ′ · N = dT

ds
· N = lim

∆s→0

T (s + ∆s) − T (s)
∆s

· N = lim
∆s→0

∆ϕ · ∥T∥
∆s

= dϕ

ds
(3.3)
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Figure 3.7: Demonstration that the definition 3.1 can be derived from the
definition 3.2

To perform the measure of how sharply the curve bends, the absolute curvature of
the curve at a point has been computed and it consists of the absolute value of the
curvature |κ|.
A small absolute curvature corresponds to curves with a slight bend or almost
straight lines. Curves with left bend have positive curvature, while a negative cur-
vature refers to curves with right bend.

With the second definition 3.2 it is possible defined that the curvature of a cir-
cle is the inverse of its radius everywhere. For this reason, the radius of curvature
R has been identified as the inverse of the absolute value of the curvature κ of the
curve at a point.

R = 1
|κ|

(3.4)

The circle with radius equal to the curvature radius R, when κ /= 0, and positioning
at the center of curvature is called osculating circle, as shown in Figure 3.8. It allows
to approximate the curve locally up to the second order.
The curvature can be expressed in terms of the first and second derivatives of the
curve α for simplicity in the computation, by the following formula:

κ = |α′′|
[1 + (α′)2]

3
2

(3.5)

In order to compute the curvature in this thesis work, the Geom2d toolbox in MAT-
LAB has been used. This toolbox provides the polynomialCurveCurvature function
that allows to compute the local curvature at specific point of a polynomial curve.
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Figure 3.8: Osculating circle and radius of curvature

It receives in input the curve in parametric form x = x(t) and y = y(t) and the
point in which the curvature has to be evaluate.
The function polynomialCurveCurvature computes the curvature following the for-
mula 3.5 that becomes:

κ = |x′y′′ − x′′y′|
[(x′)2 + (y′)2]

3
2

(3.6)

3.2.2 Computation of vehicle model dynamic parameters

The last phase of the lane detection algorithm refers to the computation of vehicle
model dynamic parameters. These values are necessary in order to achieve the goal
of the control stage for the lane keeping. The controller has to minimize the values
of lateral deviation and relative yaw angle in order to compute the optimal steering
angle.
Lateral deviation and relative yaw angle are defined as follow:

• Lateral deviation is the distance of the center of mass of the vehicle from the
center line of the lane;

• Relative yaw angle is the orientation error of the vehicle with respect to the
road.

These parameters are computed geometrically after a 2D reconstruction of the road
(Figure 3.9): the lateral deviation is considered the distance between the camera
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mounted at the center of the vehicle that is become the origin of the new reference
frame created by monoCamera object, and the center line computed in the previous
phase; while, the relative yaw angle is identified as the angle between the vector of
the longitudinal velocity and the tangent to the center line. With the information

Figure 3.9: Definition of lateral deviation and relative yaw angle with respect the
center line of the lane

Figure 3.10: Center line, curvature, lateral deviation and relative yaw angle
computation

36



3 – Control design

about the lane line model, the function performs a reconstruction of the road in
order to computes the center line of the lane and the relative curvature, as specified
in the previous section. Based on the computed trajectory, the lateral deviation and
the relative yaw angle of the vehicle has been calculated as described in this section.
Figure 3.10 shows an example of the plot in MATLAB about these computations.

3.3 Reference speed profile generation

The following subsections are devoted to determine the reference speed profile, two
different criteria are considered here, which are available in literature. First one is
based on the geometry of the road and the second one is based on the lateral comfort
of the vehicle. So, maximum admissible longitudinal speed is estimated based on
the road information and the speed for lateral comfort is calculated based on the
information about the desired lateral acceleration. Both of them are exploited to
calculate the reference speed profile by the speed profile generator.
Road information criteria: the performance of the path-following depends on the
speed with which this following is done. The cruise speed is also important for
the stability of the vehicle on the road. In fact, no controller can ensure the path-
following if the cruise speed is excessive. Thus, the speed of the vehicle should be
reduced when approaching a bend. This adaptation of the cruise speed depends on
the difficulty to cross the bend. There are several systems designed by automakers for
assisting driver when approaching a bend, like those developed by Daimler-Chrysler
defining the maximum admissible speed based on the curvature of the road:

Vmax =
√

gµ

κ
(3.7)

where g, µ and κ are respectively the gravity, the friction coefficient and the road
curvature. The description given by the model (3.7) is incomplete and may be
inappropriate to determine the maximum admissible speed in some situations. In-
deed, the only parameter considered in this model is the road curvature. However,
other characteristics of the road can be considered. For this reason, more sophis-
ticated models are proposed. The National Highway Traffic Safety Administration
(NHTSA) recommends for the calculation of the maximum entry speed in bends the
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following model:

Vmax =
√

g

κ
( ϕr + µ

1 − ϕrµ
) (3.8)

where ϕr is the road camber angle.
Then, the acceleration a that should be applied to bring the speed of the vehicle to
the maximum admissible speed given by (3.8) should be less then:

amax =

√ V 2 − V 2
max

2(d − trV ) (3.9)

where V is the current vehicle speed, d distance to the summit of the bend and tr

the time-delay due to driver reaction. The purely geometric models (3.7) and (3.8)
can be evaluated in real-time and can be used in a predictive way as the road data
are already employed in the MPC strategy. Notice that these criteria do not handle
the vehicle lateral dynamics. Thus, in our work these criteria are combined with
other indicators on the lateral stability presented in the following section.

The determination of comfort speed is essential so that the lateral acceleration of
the host vehicle does not exceed a critical value: in fact, for high lateral accelerations,
vehicle model goes non-linear and controlling the vehicle becomes more difficult.
Therefore, based on human comfort experiments published in [30], the absolute
value of lateral acceleration is limited via velocity-dependent constraints as

ay,comfort = ay,o(1 − Vx

Vmax

) (3.10)

Vcomfort =
√

ay,comfort

κ
(3.11)

where, ay,o = 4m/s2 is the acceptable lateral acceleration, ay,comfort is the desired
lateral acceleration of the host vehicle, Vcomfort is the desired velocity of the host ve-
hicle in the terms of comfort in curve, g is the gravitational acceleration, Vmax is the
maximum speed of the vehicle. Note that (3.10) decreases linearly and monotoni-
cally for higher velocities. The rationale behind (3.10) is the following: experimental
studies on human driving show that drivers tend to have lower lateral acceleration
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values at higher speeds: so, a velocity-dependent lateral comfort constraint is de-
signed in view of human comfort. Therefore, the speed profile is set as

Vref = min (Vmax, Vcomfort) (3.12)

For lateral stability of the vehicle an additional condition is applied to improve the
lateral motion. So, a desired longitudinal acceleration is calculated from physical
limitation in braking with cornering.

ax =

√
(µgm)2 − ∑(Fy)2

m
(3.13)

√
F 2

x + F 2
y < µFz (3.14)

In this way, a constrain on the longitudinal acceleration is imposed using the Kamm
inequality, which keeps the forces developed in the tires within the physical limi-
tations of the tire-road friction. Where, Fy can be either estimated or it can be
measured using recently developed technology like smart tires or load sensing bear-
ings to compute the ax in real time.

The information on lateral dynamics is of capital importance as it helps to deter-
mine loss of control and help to preserve the lateral stability. In this work, following
criteria is used, which gives the βlimit:

βlimit < 10◦ − 7◦ (Vx)2

(40m/s)2 (3.15)

where, β is the sideslip angle of the vehicle and Vx is the vehicle speed.
The Reference Generation provides the lateral deviation and relative yaw angle to
be minimized by the vehicle and a speed profile taking legal speed limits and vehicle
comfort into account.
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3.4 Model Predictive Control

In this section, theory behind Model Predictive Control will be explored together
with the derivation of the Adaptive MPC, used to control the vehicle.
The aim of this thesis is to design a controller that allows autonomous driving. We
decided to use Model Predictive Control, due to its abilities to work with constraints
both on the states and the control signals. This is crucial for the control of a vehicle
since it is constrained not only by mechanics of the vehicle but also by the environ-
ment. For example, a vehicle should not exceed the speed limits or drive too close
to other vehicles.

3.4.1 Overview of MPC

Model Predictive Control (MPC) is an advanced control method that works in dis-
crete time. From a set of state values, and with respect to a model, it optimizes
a problem around an objective and gives a sequence of control signals as outputs.
The first set of control values are then used as inputs to the system plant, and after
a short period, set as the system time step, the new state values are measured and
the process is repeated. In this section we will shortly describe the history of MPC
and give some basic examples of its structure and the theory behind it.
The beginning of MPC was at Shell Oil Company in 1979 where an idea named
as "Dynamic Matrix Control" was presented by Cutler and Ramaker [31]. DMC
was the first type of predictive control that could be applied in industry. The idea
was to handle multi variable control systems without any constraints and predict
future values for linear systems. The idea that the algorithm would predict future
plant behavior was discovered to lead to a less aggressive output and a smoother
convergence to the target set point. Throughout the 80s MPC was popular mainly
in industries such as chemical plants and oil refineries [32], i.e. in slow processes
where the computational time of the solvers would not be a problem. In the 90s
the theory of MPC matured and with faster solvers and computers the algorithm
was now feasible for faster, more demanding systems. Today MPC has many ap-
plications, and as we will demonstrate in this thesis, one of them is in autonomous
driving.
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According to Qin and Badgwell [33], the overall objectives of a MPC controller
are:

1. Prevent that input and output constraints are violated;

2. Optimize some output variables, while others outputs are kept in a specified
ranges;

3. Prevent that the input variables have excessive movement;

4. Control the major number of process variables when a sensor or actuator is
down or is not available.

Three critical steps affect the process of a MPC controller: prediction model, opti-
mization solution and feedback correction.

A general architecture of a Model Predictive Control used for autonomous driv-
ing vehicle is given by Figure 3.11.

Figure 3.11: Block diagram for Model Predictive Control
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MPC controller has two main functional blocks: the optimizer and the vehicle model.
The dynamic optimizer allows to find the optimal input that gives the minimum
value of the cost function taking into account all the constraints. The vehicle and
the plant model refers to the 3DoF rigid vehicle model and a linearized state space
model, described in the section 2.3. Generally, a non linear model is used for the
validation of the controller, while the plant model used for the MPC is a linearized
version of the actual plant.
The MPC controller provides the optimal output to send to a plant based on a
finite horizon using an iterative approach. Its main goal is to calculate a sequence
of control moves, that consist of manipulated input changes, so that the predicted
output moves to the set point in an optimal manner.
Referring to Figure 3.12, y is the actual output, ŷ is the predicted output and u
consists of the manipulated input. At the current sampling time k, the initial value
of the plant state is known and the MPC computes a set of M values of the input
u(k+i-1), i = 1, 2, ..., M , where M is called control horizon. This set refers to the
current input u(k) and to (M - 1) prediction inputs, and it is held constant after the
M control moves. The inputs are computed so that a set of N predicted outputs ŷ(k
+ i), i = 1, 2, ..., N reaches the set point in optimal manner. N is called prediction
horizon and consists of the number of future steps to look ahead [35].

When we are driving we never look straight down at the road, but farther ahead.
The reason is of course so that we can plan our driving. When a sharp turn ap-
proaches we need to brake ahead of time. A driver always looks far enough to ensure
safe driving, so called minimum braking distance, in case of an unexpected obstacle
on the road. This should also apply in control. In Model predictive control there is
a finite prediction horizon set for each optimization, i.e., how far the controller looks
into the future. To decide the length of the horizon we can again draw an analogy to
human driving. While driving at high speeds you need a longer prediction horizon
since the minimum breaking distance is also longer. The prediction horizon must be
long enough such that distance between the two cars are larger than the minimum
braking distance. A longer horizon is usually ideal but is often limited by sensor lim-
itations. The computational complexity also increases for longer horizons, mainly
for complex non-linear systems. So, the values of control horizon M is usually kept
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Figure 3.12: Basic concept for Model Predictive Control

lower than the prediction horizon N as the controller apply only first control step
and solves the optimization problem again. In practical situations, only the first
value of the whole set of M values is implemented as the input of the system be-
cause the model of the process is simplified and inaccurate. Moreover, this set can
add disturbances or noises in the process that could produce an error between the
actual output and the predicted one.
For this reason, the plant state has to be measured again to be adopted as the initial
state for the next step. The re-measurement of the information state is reported
with a feedback to the dynamic optimizer of the MPC controller and adds robust-
ness to the control [34]. When the plant state is re-sampled, the whole process
computes again the calculations starting from the new current state. The window
of the prediction horizon shifts forward at every time step. This is the reason why
the Model Predictive Control is also called Receding Horizon Control.
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3.4.2 MPC problem formulation

The MPC controller implemented in this thesis is based on the method of multiple-
step optimization and feedback correction. Thanks to this method, the controller
has good performances of control.
Lateral control deals with the actuation of the steering of the vehicle to keep it in
the center of the lane and follow the curved road. It is modeled as a reference path
tracking problem for the MPC with the objective of minimizing the lateral deviation
e1 and relative yaw angle e2. While, the longitudinal control deals with the actuation
of the throttle/brake to control the longitudinal speed of the vehicle. It is modelled
as a reference speed tracking problem, which is generated using the reference speed
profile calculated using (3.12). Based on the reference velocity MPC computes the
desired acceleration command to attain it. In other words, the objective of the MPC
is to converge the speed of the vehicle to the desired reference speed. The inputs for
the MPC are actual longitudinal velocity Vx, lateral deviation e1 and relative yaw
angle e2, which are the outputs of the actual plant model. i.e. 3DoF rigid vehicle
model. Based on these three inputs the MPC solves the optimization problem as
reference tracking. The reference variables are given by reference velocity Vref , while
e1 and e2 are set equal to zero. So, The goal of the MPC controller is to compute
the optimal steering angle and throttle/brake command to perform the autonomous
driving. In order to achieve this goal, the controller calculates the steering angle
and throttle/brake by minimizing its cost function.
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The description of the Adaptive MPC has been divided two parts:

• Problem formulation in which is explained how the MPC problem has been
formulated;

• Output prediction in which is defined how the predicted output has been com-
puted.

Problem formulation

The formulation of the MPC problem developed in this thesis starts defining a linear
state-space model derived in section 2.3, which is represented as:

x(k + 1) = Ax(k) + Buu(k) + Bdv(k)

y(k) = Cx(k)
(3.16)

Where:

• A is the state matrix;

• Bu and Bd are the input matrices corresponding to inputs u and v respectively;

• C is the output matrix.

Given the linear model defined in equation 3.16, the Model Predictive Control al-
gorithm is implemented as solving the following optimization problem at each time
step:

min
u

J =
N∑

j=1
||yp(k + j|k) − yref (k + j|k)||Qy +

M−1∑
j=0

||u(k + j|k)||Ru

s.t. x(k + j + 1|k) = Ax(k + j|k) + Buu(k + j|k) + Bdv(k + j|k)

x(k|k) = x(k)

y(k + j|k) = Cx(k + j|k)

|u(k + j|k)| ≤ ulimit

(3.17)
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Where u is the manipulated variable. Qy and Ru are weights for outputs and manip-
ulated variables respectively. This optimization problem refers to find the value of
input u that minimizes the sum of the weighted norms of the error between the pre-
dicted output vector yp and the reference vector for those states yref and the input
vector u for a defined prediction horizon N and control horizon M. The predicted
output y has to satisfy the linear model, while the value of u should not exceed a
specified limit ulimit.
The state vector y is given by:

[
Vx e1 e2

]T

While, the state vector yref is given by:

[
Vref 0 0

]T

Vx is directly taken from the vehicle dynamics block as an output while e1 and
e2 are taken from the reference trajectory block. These three states are sent as feed-
back to the MPC controller in order to correct the control variables in the future
step time with respect to the reference states.
The weighted norm of the vector y =

[
y1 y2 y3

]T
corresponds to:

||y(k + j|k)||Qy =
[
y1 y2 y3

] ⎡⎢⎢⎢⎣
q11 0 0
0 q22 0
0 0 q33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
y1

y2

y3

⎤⎥⎥⎥⎦ (3.18)

where the weights q11, q22 and q33 are tuned to provide the needed damping on the
corresponding output. The same definition is applied to the weighted norm of u

given by:

||u(k + j|k)||Ru =
[
u1 u2

] ⎡⎣r11 0
0 r22

⎤⎦ ⎡⎣u1

u2

⎤⎦ (3.19)
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Output prediction

The values of the predicted output y(k + j|k), j = 1, 2, ..., N , where N is the predic-
tion horizon, have been computed using the linear state-space model described by
the formula 3.16.
In particular, in order to make the computation, the following values have to be
known:

• Present output measurement y(k|k) = y(k);

• Applied input u(k|k) = u(k);

• Entire set of predicted input values v(k + j|k), j = 0, 1, 2, ..., N .

If the prediction state is defined as follows:

x(k + 1|k) = Ax(k) + Buu(k|k) + Bdv(k|k)

x(k + 2|k) = Ax(k + 1|k) + Buu(k + 1|k) + Bdv(k + 1|k) =

= A2x(k) + ABuu(k|k) + ABdv(k|k) + Buu(k + 1|k) + Bdv(k + 1|k)
...

x(k + N |k) = Ax(k + N − 1|k) + Buu(k + N − 1|k) + Bdv(k + N − 1|k) =

= ANx(k) + AN−1Buu(k|k) + AN−1Bdv(k|k) + AN−2Buu(k + 1|k)+

AN−2Bdv(k + 1|k) + ... + Buu(k + N − 1|k) + Bdv(k + N − 1|k)
(3.20)

The prediction output can be identified by the following equations:

47



3 – Control design

y(k|k) = Cx(k)

y(k + 1|k) = Cx(k + 1|k)

y(k + 2|k) = Cx(k + 2|k)
...

y(k + N |k) = Cx(k + N |k)

(3.21)

Using the equations 3.20 and 3.21, it is possible to express the predicted outputs
y(k+1|k), ..., y(k+N |k) as a function of the predicted inputs u(k|k), ..., u(k+N−1|k),
noted that the other signals are assumed to be known as stated above.

In order to make the relation between the equations 3.20 and 3.21 clearer, the
prediction output of the future can be defined as follows:

Z(k) = Gx(k) + HU(k) + EV (k) (3.22)

Where:

• Z(k) is the augmented vector of the predicted outputs;

• U(k) is the augmented vector of the computed future inputs;

• V(k) is the augmented vector of the predicted disturbances.

These vectors are obtained by the chaining of the input and the output vectors in
the present time until the future N vectors (N - 1 vectors for the input u and v),
and they are defined as follows:

Z(k) ≡

⎡⎢⎢⎢⎢⎢⎢⎣
z(k|k)

z(k + 1|k)
...

z(k + N |k)

⎤⎥⎥⎥⎥⎥⎥⎦; U(k) ≡

⎡⎢⎢⎢⎢⎢⎢⎣
u(k|k)

u(k + 1|k)
...

u(k + N − 1|k)

⎤⎥⎥⎥⎥⎥⎥⎦ and V (k) ≡

⎡⎢⎢⎢⎢⎢⎢⎣
v(k|k)

v(k + 1|k)
...

v(k + N |k)

⎤⎥⎥⎥⎥⎥⎥⎦
The matrices G, H and E are determined in the following way:
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G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

CA2

...
CAN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0
CB1 0 0 . . . 0

CAB1 CB1 0 . . . 0
... ... ... ...

CAN−1B1 CAN−2B1 CAN−3B1 . . . CB1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0
CB2 0 0 . . . 0

CAB2 CB2 0 . . . 0
... ... ... ...

CAN−1B2 CAN−2B2 CAN−3B2 . . . CB2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
As mentioned before, the proposed control strategy maximizes the longitudinal speed
while remaining in constrained speed range and without exceeding the adherence
condition. At the same time, it eliminates the path error between the actual location
and the desired path in terms of lateral deviation and desired yaw angle, assuring
the handling stability during the motion.
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Results and discussions

In this chapter three different driving scenarios for simulation are presented and
latter the simulation results are presented and discussed.

4.1 Driving scenarios

We have considered three different simulation scenarios represented in Figure 4.1,
Figure 4.2, Figure 4.3 to validate the proposed control strategy:

• Scenario 1. Highway driving: this part has mainly straights and high curvature
turns. Also, a highway exit is added at the end to depict the transition from
highway to inter urban. The vehicle can drive at the maximum vehicle speed
considering the speed limits of the highway (130km/h for Italian Highways).
The road is modeled with three lanes. The lines between the lanes are dashed
and each lane has a width of 3.2m. For the simulation, the car is placed in the
middle lane with an initial longitudinal speed equal to 0km/h.

• Scenario 2. Inter Urban driving: this part considers rural and suburban roads,
which lies between city and highway driving. The shape of the road includes
both straights with high curvature and some sharp turns. It connects city
with rural areas or city with highways. The speed limit in suburban area
is considered as 90km/h. The road is modeled with three lanes. The lines
between the lanes are dashed and each lane has a width of 3.2m. For the
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simulation, the car is placed in the middle lane with an initial longitudinal
speed equal to 0km/h.

• Scenario 3. Urban driving: this part has complex city road elements, like
signalized intersections, streets, parking places and buildings, and moving ob-
stacles. For simplicity, we have realized a roundabout and some sharp turns
in the scenario to check the performance of the controller in challenging con-
dition. The speed limit in urban area is considered as 47 km/h. The road is
modeled with two lanes. The lines between the lanes are dashed and each lane
has a width of 3m. For the simulation, the car is placed in the right lane with
an initial longitudinal speed equal to 0km/h.

Together, they form a comprehensive set of key environments for research and devel-
opment of automated driving. As mentioned in section 1.1, the overall system has
been implemented in MATLAB and Simulink and the driving scenarios are created
using the Driving scenario designer application in the Automated driving toolbox.

In the figures below, all the three driving scenarios with their road curvature are
represented. The urban driving scenario Figure 4.3 is characterized by higher values
of curvature relative to sharp turns, while the highway driving scenario Figure 4.1
has lower curvature values. Inter-urban Figure 4.2 lies between these two with in-
termediate curvature.
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Figure 4.1: (a)Highway driving scenario: S is the vehicle’s starting point. F is the
end of the road track. (b) Detected road curvature k

Figure 4.2: (a)Inter urban driving scenario: S is the vehicle’s starting point. F is
the end of the road. (b) Detected road curvature k
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Figure 4.3: (a)Urban driving scenario: S is the vehicle’s starting point. F is the
end of the road. (b) Detected road curvature k
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4.2 Results and discussion

In this section the results from the simulations are presented and discussed.
For validation purposes two parameters e1 and e2 are used. The former gives infor-
mation about how much the vehicle deviates in the lateral direction from the center
line of the lane and the latter how much the vehicle’s yaw angle deviates from the de-
sired yaw angle. i.e relative yaw angle. A lateral deviation limit value equal to ±0.1
m is considered as acceptable. Similarly, the relative yaw angle should be limited
to ±0.15 rad. Lateral acceleration is limited using the formula in equation(3.11),
which keeps it in the comfort range of (±4 m/s2) as seen in GG plot.

4.2.1 Highway

The results related to the highway scenario are reported in the Figures depicted
below. The longitudinal speed reference Vref is accurately tracked by the car during
the simulation time Figure 4.4. Around 60s the speed decreases as it approaches
the highway exit to preserve the lateral stability and keep the lateral acceleration
within the comfort range. Lateral deviation e1 in Figure 4.5 is quite small and stays
within ±0.05m, while the error in terms of e2 is also kept small as seen in Figure 4.6.
The GG diagram in Figure 4.9 confirms that the car is driving within the limits of
adherence conditions and also the acceleration is within the comfort level.

Figure 4.4: Measured vehicle’s longitudinal speed Vx (solid) vs. vehicle’s
longitudinal speed reference Vref (dashed)
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Figure 4.5: Lateral deviation e1

Figure 4.6: Relative yaw angle e2
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Figure 4.7: Longitudinal acceleration command ax

Figure 4.8: Front wheels steering angle command δ
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Figure 4.9: GG plot with the ellipse representing the adherence limits
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4.2.2 Inter-urban

The results related to the inter-urban scenario are reported in the Figures depicted
below. Also, in this case, the longitudinal speed reference Vref is accurately tracked
by the car Figure 4.10. A maximum lateral deviation e1 in Figure 4.11 equal to 0.04m
is detected in regions with high curvature turns, while it assumes small values in the
remaining part of the simulation ranging from ±0.03 m. The error of the relative
yaw angle e2 in Figure 4.12 remains in the admissible range ranging from ±0.05 rad.
The value of the δ in Figure 4.14 varies between ±3 degree to follow the center line
of the lane. The GG diagram in Figure 4.15 confirms that the car is driving within
the limits of adherence conditions and also the acceleration is within the comfort
level.

Figure 4.10: Measured vehicle’s longitudinal speed Vx (solid) vs. vehicle’s
longitudinal speed reference Vref (dashed)
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Figure 4.11: Lateral deviation e1

Figure 4.12: Relative yaw angle e2
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Figure 4.13: Longitudinal acceleration command ax

Figure 4.14: Front wheels steering angle command δ
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Figure 4.15: GG plot with the ellipse representing the adherence limits
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4.2.3 Urban

The results relative to the urban scenario are reported in the Figures depicted below.
The longitudinal speed reference Vref is accurately followed by the vehicle, while
remaining within the speed limits of 47km/h. A maximum lateral deviation e1 equal
to 0.1 m in Figure 4.17 occurs for a very short period during a sharp turn, where
the detected road curvature reaches 0.04 1/m. It corresponds to a road turn with a
curvature radius equal to 25 m. The error in terms of relative yaw angle e2 is high
reaching -0.11 rad at the roundabout and sharp turn of 90 degree. While in the rest
of the region it varies between +0.05 rad. The value of the δ in Figure 4.20 reaches
high values of 8 degree to perform the maneuvers of roundabout and 90 degree turns.
The GG diagram in Figure 4.21 confirms that the car is driving within the limits of
adherence conditions and also the acceleration is within the comfort level.

Figure 4.16: Measured vehicle’s longitudinal speed Vx (solid) vs. vehicle’s
longitudinal speed reference Vref (dashed)
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Figure 4.17: Lateral deviation e1

Figure 4.18: Relative yaw angle e2
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Figure 4.19: Longitudinal acceleration command ax

Figure 4.20: Front wheels steering angle command δ
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Figure 4.21: GG plot with the ellipse representing the adherence limits
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4.3 Comparision with another controller based on
MPC and PID

In this section, the adaptive MPC developed in this thesis is compared to a con-
troller based on MPC and PID, developed by a student in the LIM for a same
scenario representing highway exit Figure 4.22. Later, the results are compared and
the advantages of the combined lateral and longitudinal controller respect to the
decoupled one are discussed.
The other controller developed for autonomous driving uses an adaptive MPC for
the lateral control, while for the longitudinal control a PID controller is used. Which
tracks the reference velocity generated using only the road geometry and try to max-
imize it without any consideration on comfort and lateral stability. So, this control
strategy does not take into account the coupling between the lateral and longitudi-
nal dynamics and the problem is solved in a decoupled way.
The results are compared in the Figure 4.23 and Figure 4.24.

Figure 4.22: (a)Highway exit driving scenario: S is the vehicle’s starting point. F
is the end of the road track. (b) Detected road curvature k

Results on the left are from the combined MPC controller, while the ones on the
right are from the decoupled MPC and PID controller.
It can be seen that the combined MPC controller can control the car much better
and keep the lateral deviation and the relative yaw quite small compared to the
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Figure 4.23: Results comparision:(a), (c) and (e) depicts the result of the combined
MPC controller, while (b), (d) and (f) depicts the results for decoupled controller

based on MPC and PID in terms of Vx (solid) vs. vehicle’s longitudinal speed
reference Vref (dashed), Lateral deviation e1 and Relative yaw angle e2

other one based on MPC and PID while maintaining the lateral stability of the ve-
hicle. Maximum lateral deviation Figure 4.23 (c) is 0.05m with the combined MPC
but the value of lateral deviation Figure 4.23 (d) reaches 0.25m with the other one.
The main difference can be seen in Figure 4.24 (a) and (b), where, the side slip angle
β of the vehicle exceeds the limit value of βlimit given by equation(3.15) with the
other controller. Since, the generation of the reference speed profile is generated us-
ing only the road geometry and the vehicle enters the exit of the highway with high
velocity which can be seen in Figure 4.23 (b) around 12s. The loss of stability can
also be seen in the front wheel steering angle Figure 4.24 (d) at the same moment.
From Figure 4.24 (e), the accelerations developed are quite low and are within the
comfort driving range for the combined MPC controller. While, in Figure 4.24 (f),
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Figure 4.24: Results comparision:(a), (c) and (e) depicts the result of the combined
MPC controller, while (b), (d) and (f) depicts the results for decoupled controller

based on MPC and PID in terms of vehicle side slip angle β with βlimit, Front
wheels steering angle command δ and GG plot with the ellipse representing the

adherence limits

the acceleration developed in the other case are quite higher and well beyond the
comfort range. We, can say this controller is designed more towards racing context
rather than normal driving.
Overall, the controller designed in this thesis perform quite well by tracking the
reference velocity accurately and keeping the errors, in terms of lateral deviation
and relative yaw angle in the admissible limits. It also preserves the lateral stability
of the vehicle and keeps the acceleration with in the comfort range.

68



Chapter 5

Conclusions and future works

In this thesis work, a combined lateral and longitudinal control strategy for au-
tonomous driving was presented. To this end an adaptive MPC control was ex-
ploited, allowing to minimize the errors on the controlled variables, which are the
lateral deviation, the relative yaw angle and the longitudinal speed of the vehicle
w.r.t the reference longitudinal speed by acting on the steering angle of the front
wheels and throttle/brake pedals. The strategy has been tested through simulation
on MATLAB and Simulink with three driving scenarios namely: Highway, Inter-
urban and Urban driving and provides good performance for lateral guidance and
accurately follows the reference speed profile. The lateral deviation was kept within
the acceptable range of ±0.1 m for all the scenarios and also relative yaw angle
was within the limit of ±0.15 rad. Regarding comfort, lateral and longitudinal ac-
celeration of the vehicle were well within the range. Finally, it was compared to
another controller based on MPC and PID, which tackle the problem in decoupled
way. From the results,it was seen that combined MPC controller was able to control
the car in a much better way and kept the lateral deviation and the relative yaw
quite small compared to the other one based on MPC and PID while maintaining
the lateral stability of the vehicle.

Some future works can be done to improve and extend this thesis work. One exten-
sion of this thesis would be to implement the controller to a real vehicle. However,
testing on real vehicles is expensive and often time consuming. So, it would be of
interest to develop the Four Wheel Simulink model first and do further tests with it
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before implementing to a real vehicle. One aspect to improve with the Four Wheel
model is the driveline dynamics and tire modelling. For this thesis we have chosen to
use a simpler model to predict the behaviour of a more advanced system. This was
done to keep the complexity of the prediction model low and hence avoid too high
computational expenses. However,the longitudinal dynamics can be modelled by
adding driviline and tire dynamics to the prediction model, so that the behaviour
of the cruise controller could be improved. It would be interesting to do so and
compare the result regarding the computational burden and the accuracy with the
prediction model used in this thesis.
In this thesis the trajectories were generated without considering other vehicles, by
considering other vehicles when the trajectories are generated the cooperation be-
tween vehicles could be improved. One way of doing this would be to generate the
references inside the control loop. However, this would increase the computational
expenses for the control algorithm.
Some other future works can also be done to improve and extend this thesis work in
the field of perception. First of all, in order to overcome the limitation of the lane
detection function using the camera (crossroads or roads without lane marking),
data coming from others sensors will be added, such as the data coming from a
LiDAR and GPS. Making sensor fusion between camera and LiDAR, the detection
will be improved in challenging scenarios. For the development of an autonomous
driving vehicle, the lane detection will be combined with others detection systems
such as vehicles, pedestrians, semaphores, traffic signs and road texts detection.

To conclude, this thesis has contributed for autonomous vehicle research at Mecha-
tronics Laboratory LIM (Laboratorio Interdisciplinare di Meccatronica) and the
developed project can be used by future students to improve and continue the work
in this interesting field.
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