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ABSTRACT  

Microtubules are protein assemblies made of tubulin dimers shaped as hollow cylinders. They 

are key players of many cellular functions, such as cell mechanical behaviour, signal 

transportation and mitosis. Because of this central role in cell mitosis, they are an interesting 

target of pharmacological treatment, as it is possible to block the mitotic process by altering the 

dynamic equilibrium between microtubule’s polymerization and depolymerization. From this 

perspective, it is interesting to design and develop antitumoral drugs able to selectively bind the 

tubulin in the tumoral cells driving them to apoptosis. There are several tubulin isotypes. 

Tumoral cells are characterized by an overexpression of αβIII tubulin, so a drug able to 

specifically target the above-mentioned tubulin is assumed to be effective in targeting tumoral 

cells.  

For example, colchicine is an interesting compound because it has a strong antimitotic-activity, 

but it is quite toxic for the organism, so the purpose is to develop derivatives that on one hand 

are capable to enhance the antitumoral activity and on the other hand to reduce its poisonous 

side effects.  However, bringing a drug to market is not easy and implies enormous costs.  

In this context, computational modelling can be a valuable tool to develop and test several 

compounds. The present study focuses on 61 colchicine derivative compounds targeting the 

tubulin dimer. More in depth, Drug Discovery and Virtual Screening methods supported by 

Molecular Dynamics simulations have been employed to characterize the above-mentioned 

ligands’ ability to bind different tubulin isotypes and their local effects on the target.  
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ESTRATTO 

I microtubuli sono degli aggregati proteici dalla forma di cilindri cavi. Sono dei componenti 

chiave per mole funzioni cellulari, come il comportamento meccanico della cellula, il trasporto 

del segnale e la mitosi. A causa del loro ruolo centrale nella mitosi cellulare, sono degli 

interessanti target per il trattamento farmacologico, essendo possibile bloccare il processo 

mitotico alterando l’equilibrio dinamico tra la polimerizzazione e la depolimerizzazione del 

microtubulo. Da questa prospettiva, è interessante progettare e sviluppare farmaci antitumorali 

in grado di legare selettivamente la tubulina nelle cellule tumorali, portandole all’apoptosi. Ci 

sono diversi isotipi di tubulina. Le cellule tumorali sono caratterizzate da una over espressione 

della tubulina αβIII, perciò un farmaco in grado di legarsi in maniera specifica a questo isotipo 

di tubulina si può considerare efficace per mirare selettivamente alle cellule tumorali. 

Ad esempio, la colchicina è un composto interessante, poiché ha una forte attività antimitotica, 

ma è tossica per l’organismo; pertanto l’obiettivo è quello di sintetizzare dei suoi derivati che 

da un lato siano in grado di aumentarne l’attività antitumorale e dall’altro siano in grado di 

ridurne gli effetti collaterali. Però, portare un farmaco sul mercato non è semplice ed ha costi 

elevati. 

Pertanto, il modelling computazionale può aiutare a sviluppare e testare diversi farmaci. Questo 

studio si focalizza su 61 derivati della colchicina per colpire i dimeri di tubulina. Il Drug 

Discovery e il Virtual Screening, supportati dalla Dinamica Molecolare, sono stati utilizzati per 

caratterizzare l’abilità dei ligandi sopra menzionati di legare differenti isotipi di tubulina e i loro 

effetti locali sul bersaglio. 
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1. Introduction 

The present chapter deals with a general introduction of this master thesis work, summarizing 

the biological background, the aims of the research and the organization of the dissertation.  

Microtubules are cytoskeletal filaments involved in several cell functions, including cell shape 

maintenance and cell division. They are composed by α and β heterodimers of tubulin, aligned 

in head-to-tail fashion, forming linear protofilaments, which bound laterally to form a hollow 

cylindrical polymer. Microtubule functionality is linked to a complex process of polymerization 

and depolymerization, called dynamic instability, that is characterized by switching between 

phases of growing and disassembling. This polymerization process is fundamental in many 

cellular functions. By altering this dynamics equilibrium, it is possible to arrest the mitotic 

process, leading the cell to the apoptosis. In this context, many antimitotic drugs have been 

developed in the past years for anti-cancerous therapies. Colchicine is one of the most used, but 

it has the side effect of being toxic and not very effective and specific on the tumoral cells.  

There are many tubulin isotypes, which are found to have a role in the development of drug 

resistance cell lines, as different isotypes show dissimilar binding energies to various drugs. In 

particular, tumoral cells show an overexpression of the β-tubulin isotype βIII, which can lead 

the tumoral cells to become drug-resistant. Because of this overexpression, this isotype can be 

used to target selectively the tumoral cells, by designing drugs able to selectively bind it over 

the other isotypes. 

Developing and bringing a drug to the market implies enormous cost and it is not a very simple 

process, as it needs adequate assays or animal models. Therefore, computational methods can 

be used to design and test a huge number of drugs with significant lower costs and resource.  

The aim of the present work is to characterize and evaluate several colchicine derivatives on 

different human tubulin isotypes, focusing on their local effects, and to individuate among them 

some drugs able to overcome colchicine’s limitations. 

The thesis is divided in five Chapters as described in the following. 

Chapter 1 is the present introduction. 

Chapter 2 is an overview of the methods used in this work. Molecular mechanics and molecular 

dynamics are firstly described in general, focusing on physical and theoretical aspects, followed 
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by the description of Molecular Docking and Virtual Screening, with focus on the search 

algorithms, the binding free energy calculation and the scoring functions. The software used 

are also presented and described.  

Chapter 3 is dedicated to a biological background of microtubule, describing the molecular 

structure, the polymerization dynamics, the role in anti-cancerous therapies and the isotype 

expression in humans. The microtubule targeting agents are also presented and described. 

Chapter 4 is devoted to the characterization and the evaluation of several colchicine derivative 

drugs bonded to the human tubulin isotypes αβIIA, αβIII and αβIVA. Molecular dynamics 

simulations and molecular docking are performed on the tubulin dimers. The results are 

analyzed with classical analysis and with binding free energy analysis, focusing on the 

differences between the drugs inter the isotypes and intra the same isotype. 

Chapter 5 is dedicated to the comparison of the effects of the colchicine and a novel compound 

in the isotype αβIII. Molecular dynamics simulations on free tubulin dimer are analyzed with 

classical analysis and with the binding free energy analysis, in order to understand if the novel 

compound can be better than the colchicine against the tumoral cells.  
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2. Materials and Methods 

The present chapter provides the theoretical background for the present master thesis work, 

with the aim of explaining the physical basis behind the computational approach. In detail, 

after a quick introduction to the molecular modelling (section 2.1), sections 2.2 and 2.3 are 

devoted to the Molecular Mechanics and Molecular Dynamics, describing the theoretical 

method together with algorithm implementation details. Finally, the Drug Discovery 

approaches Molecular Docking and Virtual Screening are described in detail in section 2.4. 

2.1 Computational Modelling of Biomolecular Systems 

Molecular Modelling includes a set of theoretical and computational techniques used to 

describe complex chemical systems (e.g., proteins, polymers, molecules, nucleic acids), in 

terms of a realistic atomistic description. The aim is to understand and predict macroscopic 

properties of these systems by solving the equations of quantum and classical physics. 

Molecular systems generally consist of a large number of molecules and for this reason is 

difficult to estimate thermodynamic or kinetic properties of these systems. Molecular Dynamics 

(MD) is a powerful tool for understanding molecular processes like protein folding/unfolding, 

transport of drugs, docking of molecules and much more, because it represents a connection 

point between laboratory experiments and theory. The most accurate description of a 

hierarchical system is at the Quantum Mechanical (QM) level, by solving the Schrodinger 

equation1. However, Schrodinger equation can be solved only for very simple systems. So, 

despite their high accuracy, QM simulations are computational demanding and only hundreds 

of atoms can be simulated in a reasonable time-frame, leading to limited knowledge of the 

biological phenomena. At the molecular level, Molecular Mechanics (MM) methods enable to 

consider systems containing thousands of atoms. The result of MD is a trajectory that specifies 

the position and the velocity of each particle at any time1. MM and MD will be discussed in 

detail in the next sections. 

2.2 Molecular Mechanics 

Molecular Mechanics methods use Newtonian mechanics to model molecular systems. Due to 

the Born-Oppenheimer approximation2, the atoms are treated as spherical particles with a radius 

and an overall charge obtained from both theory and experimental measurements and the bonds 

are treated as springs, whose stiffness depends on the elements bonded together. This allows to 

describe the bond stretching, bending and twisting. The aim of molecular mechanics is to 
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predict the energy associated with a given molecular conformation. A molecular force field 

(FF) is a set of equations that allows to estimate the potential energy of the system as a function 

of the atoms’ positions. 

2.2.1 Potential Energy Function 

The energy of a molecule in the ground electronic state can be considered as a function of the 

nuclear coordinates only. Any changes in the system causes the variation of a multidimensional 

“surface” called energy surface. The potential energy surface for a molecular system of N atoms 

in a given conformation is the sum of two contributions: 

𝑉 =  𝑉𝐵𝑜𝑛𝑑𝑒𝑑 +  𝑉𝑛𝑜𝑛−𝐵𝑜𝑛𝑑𝑒𝑑  

where the components of the bonded and non-bonded terms are given by the following 

equations: 

𝑉𝐵𝑜𝑛𝑑𝑒𝑑 = 𝑉𝐵𝑜𝑛𝑑𝑠 + 𝑉𝐴𝑛𝑔𝑙𝑒𝑠 + 𝑉𝐷𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠 

𝑉𝑛𝑜𝑛−𝐵𝑜𝑛𝑑𝑒𝑑 = 𝑉𝑉𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠 + 𝑉𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐𝑠 

 

Each of the terms mentioned above can be modelled in a different way, depending on the 

particular simulation settings being used. 

2.2.2 Treatment of Bond and Non-Bond interactions 

The central core of the MM method is the definition of a potential energy function. A simple 

molecular mechanics energy equation contains four components3: 

𝑉( 𝑟𝑁) =  ∑
1

2
𝑘𝑙[𝑙 − 𝑙0]2 +

𝐵𝑜𝑛𝑑𝑠

∑
1

2
𝐴𝑛𝑔𝑙𝑒𝑠

𝑘𝜃[𝜃 − 𝜃0]2

+ ∑ 𝑘𝜑[1 + cos(𝑛𝜑 + 𝛿)]
𝐷𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑ ∑ 4𝜀𝑖,𝑗 [(
𝜎𝑖,𝑗

12

𝑟𝑖,𝑗
) − (

𝜎𝑖,𝑗
6

𝑟𝑖,𝑗
)] +

𝑄𝑖𝑄𝑗

4𝜋𝜀0𝜀𝑟𝑟𝑖,𝑗

𝑁

𝑗=𝑖+1

𝑁

𝑖=1
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In the previous equation, the first term describes the interaction between bonded atoms, 

modelled as a harmonic potential inducing potential energy to increase when the bond length l 

departs from the reference value 𝑙0. The 𝑘𝑙  represents the bond stiffness. Both 𝑙0 and 𝑘𝑙  are 

assigned for each couple of atoms and their values are different depending on the atoms’ types. 

The second term of the equation describes the angle among three atoms covalently bonded: 𝑘𝜃 

is the stiffness of the bond angle, 𝜃0 is the equilibrium angle and 𝜃 is the bond angle. The third 

term represents the dihedral bond interactions. That usually includes a torsional potential 

describing bond rotates: 𝑘𝜑 is the energetic barrier related to the angle deformation, 𝛿 is the 

phase that determines the minimum position for the torsional angle and n is the multiplicity. 

The last term represents the non-bond interactions. They are usually modelled as a function of 

an inverse power of the distance and are built up from two components: Van der Waals forces 

and electrostatic interactions. 

The Van der Waals potential represents the sum of the attractive and the repulsive forces 

between two neutral entities within a molecule. These forces are caused by London dispersion 

and Pauli exclusion principle phenomena of nearby particles. Compared to the covalent bonds, 

the Van der Waals interactions are relatively weak, but play a fundamental role in defining 

many properties of organic compounds, such as their solubility in polar and non-polar media, 

contribute to the steric effect and to the three-dimensional molecular conformation. This 

potential is often represented with the Lennard-Jones equation4, which consists in an 

approximate model for the isotropic part of a total (repulsion plus attraction) Van der Waals 

force as a function of distance r: 

𝑉𝐿𝑒𝑛𝑛𝑎𝑟𝑑−𝐽𝑜𝑛𝑒𝑠 = 4𝜀𝑖,𝑗 [(
𝜎𝑖,𝑗

12

𝑟𝑖,𝑗
) − (

𝜎𝑖,𝑗
6

𝑟𝑖,𝑗
)] 

The first term represents the repulsive component, while the second one represents the attractive 

component. The equation contains two parameters: the collision diameter 𝜎𝑖,𝑗 , which is the 

distance after that the Van der Waals interactions produce a zero contribution, and the depth of 

the potential minimum 𝜀𝑖,𝑗. 

The electrostatic interactions can be described by using the Coulomb’s law: 

𝑉𝐸 =
𝑄𝑖𝑄𝑗

4𝜋𝜀0𝜀𝑟𝑟𝑖,𝑗
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The denominator factor is called electric conversion factor, where 𝜀0  is the free space 

permittivity and 𝜀𝑟  is the relative permittivity. This interaction is defined as a long-range 

interaction, because their contribution goes down with 
1

𝑟
, slower than the other non-bond 

interactions. 

The number of the non-bond interactions increases as the square of the number of atoms in the 

system, so the calculation of non-bond forces is extremely expensive in terms of computational 

effort. To properly reduce their computational effort, non-bond interactions can be computed 

by applying various methods, like the distance cutoff, in which every interaction between two 

atoms is computed only if their distance is smaller than the cutoff, or the Ewald summation, in 

which the interaction energies summation in real space is replaced by an equivalent summation 

in the Fourier space which is employed in the long-range interactions’ calculation. 

2.2.3 Periodic Boundary Conditions 

The treatment of the boundaries effects is crucial in simulations, since they strongly influence 

the properties of the whole system. The Periodic Boundary Conditions (PBC) allow to 

minimize the edge effects in a finite system. All the atoms are put in a box, usually filled with 

implicit or explicit models of water, surrounded by translated copies of itself, in order to remove 

the boundaries of the system. The presence of the PBC causes imprecisions, but they are still 

less severe than the errors resulting from an artificial boundary with vacuum. The particles in 

the box interact with any other particles in adjacent box, which are repeated infinitely if the 

PBC are settled on. To avoid this problem, many approaches are possible. Applying a Lennard-

Jones cutoff distance, which decreases very rapidly, is not a problem for short-range 

interactions, but the long-range interactions require a more accurate method, with the aim of 

avoiding discontinuities in the potential energy calculation. Some methods proposed to 

overcome these kinds of problems are Particle Mesh Ewalds5, Multipole Cells6 and Reaction 

Fields7. 
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Figure 1: Periodic boundary conditions. The central box, filled with water, is replicated in copies of itself. 

2.2.4 Potential energy minimization 

The potential energy function is a very complex multidimensional function of molecular system 

coordinates, a N-atoms system being defined by 3N cartesian and 3N-6 internal coordinates 

(bonds, angles and torsional angles). A minimum point of the Potential Energy Surface (PES) 

corresponds to a stable state of the system: any movement away from this configuration is 

characterized by higher energy. There are a lot of local minima in the PES and the minimum 

with the lowest energy is known as global minimum. The energy minimization is able to reduce 

the potential energy of the system, starting from the MM description of the molecular system 

in term of force field. To identify the minimum point of the PES there are two different kinds 

of approaches: derivative methods and non-derivative methods. In the first order derivative 

methods (e.g., Steepest Descent8, Conjugate Gradient9) the direction of the gradient (the first 

derivative of the energy) indicates where the minimum lies. In the second order derivative 

methods (e.g., Newton-Raphson10, L-BFGS11) the second derivatives provide information about 

the curvature of the function, showing where the energy function change direction; the inverse 

Hessian matrix of second derivatives is calculated. These methods can be computationally 

demanding and may also require a significant amount of storage. 

Especially for simulations of complex systems (e.g., macromolecules), energy minimization is 

widely present before a molecular dynamics simulation. 
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Figure 2: Potential Energy Surface (PES). It is a multi-dimensional surface characterized by local and global minima. 

2.3 Molecular Dynamics 

Molecular Dynamics (MD) is a computational approach able to investigate the dynamics of 

large molecular systems, such as proteins in solution, by providing trajectories, in terms of 

positions, velocities and forces. The method allows to calculate average properties of a system 

by solving the Newton’s equations of motion, that can be expressed as follows for a N particles 

system: 

𝑚𝑖

𝜕2𝑟𝑖

𝜕𝑡2
= 𝐹𝑖  

Where 𝑚𝑖 represents the mass and 𝑟𝑖 the position of the 𝑖𝑡ℎ particle of the system respectively. 

𝐹𝑖 are the forces, which can be written in terms of the Potential Energy: 

𝐹𝑖 = −
𝜕𝑈(𝑟𝑖 , … . , 𝑟𝑁)

𝜕𝑟𝑖
 

2.3.1 Statistical Ensemble 

There are two categories of macroscopic properties in a chemical system: static equilibrium 

properties (e.g., radial distribution function, averaged potential energy) and non-equilibrium 

properties (e.g., diffusion processes, dynamics of phase changes). According to statistical 

mechanics, it is necessary to average the microscopic states of a system in a time independent 

fashion, distributed according with certain statistical ensemble, in order to compute 

macroscopic properties of a system. The space in which all possible physical states of a system 

are represented is known as phase space, which often consists of all possible values of position 

r and momentum p variables. It means that in a system containing N atoms, 6N coordinates 

(three coordinates of position and three coordinate of momentum) are necessary to identify a 

point in the phase space. A single point in the space represents a particular state of the system, 
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and all the plotted points represent all the states the system can be. A collection of points of the 

phase state with different microscopic states but satisfying some particular thermodynamic state 

it is called statistical ensemble. There are different kinds of ensembles:  

• The Micro-Canonical Ensemble (NVE): it is characterized by a fixed number of atoms 

(N), a fixed volume (V) and a fixed energy (E). It corresponds to an isolated system. 

• The Canonical Ensemble (NVT): it is characterized by a fixed number of atoms (N), a 

fixed volume (V) and a fixed temperature (T). It corresponds to a closed system. 

• The Grand Canonical Ensemble (μVT): it is characterized by a fixed chemical potential 

(μ), a fixed volume (V) and a fixed temperature (T). It corresponds to an open system. 

• The Isobaric-Isothermal Ensemble (NPT): it is characterized by a fixed number of atoms 

(N), a fixed pressure (P) and a fixed temperature (T). 

The MD method samples the phase space in a way that is representative of the equilibrium state 

and is able to calculate the ensemble average of the macroscopic property. The ensemble 

average of property A, which is function of the position and the momenta, is calculated as 

follow: 

〈𝐴〉𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = ∬ 𝑑𝑝𝑁𝑑𝑟𝑁𝐴(𝑝𝑁 , 𝑟𝑁)𝜌(𝑝𝑁 , 𝑟𝑁) 

where r is the atomic position, p is the momenta and 𝜌(𝑝𝑁 , 𝑟𝑁) is the probability density 

function. Under canonical statistical ensemble (NVT) the probability density is the Boltzmann 

distribution: 

𝜌(𝑝𝑁 , 𝑟𝑁) =
1

𝑄
𝑒𝑥𝑝[−𝐻(𝑝𝑁 , 𝑟𝑁)/𝑘𝑏𝑇] 

where 𝑘𝑏  is the Boltzmann factor, H is the Hamiltonian and T is the temperature. Q is the 

partition function, which is usually written in more generally terms as function of the 

Hamiltonian H: 

𝑄 = ∬ 𝑑𝑝𝑁𝑑𝑟𝑁𝑒𝑥𝑝[−𝐻(𝑝𝑁 , 𝑟𝑁)/𝑘𝑏𝑇] 

The partition function is a sum of Boltzmann factor over all microstates of the system and it 

relates microscopic thermodynamics variables to microscopic properties. It is extremely 

important, and it should be calculated over all possible states corresponding to the particular 

thermodynamics constrains. However, the analytical solution is impossible to calculate because 
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it is extended to all possible states of the system. To overcome this problem, the ergodic 

hypothesis can be used: over long periods of time, the time average of a certain property is equal 

to the ensemble average of the same property. The time average can be computed by: 

〈𝐴〉𝑇𝑖𝑚𝑒 = lim
𝜏→∞

1

𝜏
∫ 𝐴(𝑝𝑁(𝑡), 𝑟𝑁(𝑡))𝑑𝑡 ≅  

1

𝑀
∑ 𝐴(𝑝𝑁 , 𝑟𝑁)

𝑀

𝑡=1

𝜏

𝑡=0

 

where t is the simulation time, M is the number of the time steps in the simulation and 𝐴(𝑝𝑁 , 𝑟𝑁) 

is the instantaneous value of the property A. 

2.3.2 Molecular Dynamics implementation scheme 

The basic idea of the MD method is to solve Newton’s equations of motion for a system of N 

interacting particles. It is a deterministic method, so the state of the system at any time can be 

predicted from its previous state. According to the Newton’s second law, the acceleration for 

each atom is: 

𝑎 = −
1

𝑚

𝑑𝑉

𝑑𝑟
 

The potential energy is a function of the atomic position and because to the complex nature of 

this function there is no analytical solution of the previous equation. The solution can be 

obtained using some numerical integration scheme. There are various integration methods for 

MD: the Verlet algorithm12, the Leap-Frog algorithm13, the Velocity Verlet14 and many more. 

A very important choice is the integration time-step (usually fs), in order to sample correctly 

the phase space and to avoid instability. The flowchart in Figure 3 describes the MD: 

• The initial structure is provided as input data. The initial atomic positions are known 

(e.g., from Protein Data Bank), while the initial atoms velocities are chosen randomly 

from a Maxwell-Boltzmann distribution at a given temperature. Starting from this input, 

the potential energy is calculated. 

• The algorithm continues with the calculation of the forces 𝐹𝑖 by deriving the potential 

energy function. 

• A new set of atoms coordinates 𝑟𝑖 and velocities 𝑣𝑖 is generated step by step and the 

cycles goes on until the equilibrium is reached.  

• Lastly, the output trajectory is defined. 
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Using the output trajectory of the MD, the macroscopic thermodynamics properties (e.g., 

energy, temperature, pressure) can be calculated as time averages. 

 

Figure 3: MD flow-chart: the initial positions and velocities are provided as input. Stating from the input, the potential 
interaction is calculated. The algorithm goes on with the calculation of forces and, through integration methods, new positions 
and velocities are generated; the cycle continues for a certain number of steps, until the equilibrium is reached. 
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2.3.3 Software package 

There is a wide variety of MD codes for biomolecular simulation: AMBER15, CHARMM16, 

GROMACS17, etc. In this work, both GROMACS and AMBER software have been used. 

GROMACS (GROningen MAchine for Chemical Simulations) is a molecular dynamics 

simulation package originally developed in the University of Groningen, now maintained and 

extended at different places and university. GROMACS is written for Unix-like operating 

systems and the entire package is available under the GNU General Public License. GROMACS 

is a versatile tool to perform molecular dynamics simulations and energy minimization. It is 

primarily designed for biochemical molecules like proteins, lipids and nucleic acids that have 

a lot of bonded interactions, but it is very fast in the calculation of non-bonded interactions, and 

for this reason many research groups are also using it for non-biological systems, e.g. polymers. 

AMBER (Assisted Model Building and Energy Refinement) is another software package 

developed to perform MD simulations on macromolecules and consists of several programmes 

such as: 

• Leap: is a software that allows to build the coordinates, parameters and topology of the 

system to correctly start the simulation. It provides an editor for molecular 

manipulation. 

• Antechamber: automates the process of parametrization compatible with the Amber 

Force Field. 

• Sander: It is the central simulation program used for MD simulations. 

• Pbsa and mmpbsa: software used to estimate the free energy between two states. 

  

2.4 Molecular Docking and Virtual Screening 

In order to discover and design new therapeutic agents, many techniques can be used, such as 

X-ray crystallography and NMR. This led to a large number of available molecules18. However, 

these methods could be expensive and not always applicable. Discovering or designing a drug 

takes up to 15 years to get the point of starting for a clinical trial, even for a pharmaceutical 

company, that usually have all the needed resources. These difficulties are consequences of 

several reasons: not adequate assay or animal models, challenges of organic synthesis and 

expensive costs. Due to the rise in computer power and storage capacity, the use of 

Computational Molecular Docking and Virtual screening (VS) tools have become crucial to 

make the development process more efficient and economic. 
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Molecular Docking can be used to model ligand-receptor interaction by means of prediction of 

the ligand conformation in the active site (pose prediction) and predict the binding affinity. 

Docking outputs are the ligand-receptor complex structure at an atomistic level and the binding 

energy between protein and ligand. Virtual Screening has the aim to rank active molecules 

above inactive ones. These tools automatically sample many different 3D conformations of the 

ligand in the active site of the receptor and compute a score for each of them. The aim of this 

score is to have comparable results with the experimental biochemical assay, in which an 

inhibition constant 𝐾𝑖 is evaluated19. 

2.4.1 Ligand and receptor 

In order to perform a structural based molecular docking, both ligand and receptor structures 

are needed. Receptors are 3D-structures (usually proteins), with atomic detail. Structural 

methods such as NMR studies or X-ray crystallography are used to determine the starting target 

structure. These structures can be downloaded by free from the Protein Data Bank website18. 

Even small deviations in structures can largely alter the results of a docking experiment, so the 

choice of the protein is a crucial step for the docking process. In general, a good rule is to opt 

for high resolution structures (below 2.5 Å20). However, not all the structures available on 

databases are from the human organism and not all the protein structures that the human genome 

can encode are disclosed. Nevertheless, a powerful bioinformatic tool, the homology 

modelling21, permits to build a new atomic scale model by proteins that are phylogenetically 

similar to the target, called templates. Before performing docking, the protein 3D structure has 

to be prepared: a good practice is to perform a MD simulation to relax the system and explore 

the conformational space to have more precise information about the structure. The most critical 

step is the identification of the active site, which is usually a pocket or a protuberance that has 

hydrogen bonds acceptors or donors, hydrophobic properties, etc. The active site is often known 

by experimental works. However, if it is unknown, several approaches can be used to find it, 

based either on geometrical or energetic criteria. In order to represent the receptor, different 

methods are applied: atomic, surface, or grid representation22, which is more efficient and 

computationally less demanding, as it creates only a potential grid field per each 

atom/interaction types, and it is then read during ligand scoring. 

Several millions of 2D and 3D virtual models of ligands are available on different databases, 

so the compounds of interest can be found in one of these libraries, such as PubChem23. The 

extracted ligands have to be processed before docking: if the information about the ligand is 
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stored in 2D format, the 3D structure has to be created; atom and bonds have to be checked, 

protonation state and charges have to be assigned. If the structure is not present in databases, it 

is possible to directly design the molecules as they are usually simple and with a small number 

of atoms, using a design software such as Avogadro24. The 3D structure is then optimized by 

using the tools cited above. 

2.4.2 Search Algorithms 

Searching the correct pose of ligands requires to explore many different conformations. There 

are many degrees of freedom, so an automatic algorithm is needed. The aim of the search is to 

identify the pose with the lowest energy. Different algorithms can perform a local search, where 

the method finds the closest minimum on the energy landscape, or a global search, where the 

landscape is explored more widely. Different docking programs implements different searching 

methods, which could be Matching algorithms, Systematic Search or Stochastic methods. 

Matching algorithms match ligand shape and chemical complementarity with the binding site. 

An example is the pharmacophore-based docking. It requires known binders (active 

compounds) and the representation of molecular feature is necessary for ligand binding. It 

matches the pharmacophore map of the binding site to the ligand’s one. The native binding pose 

can be determined using an energy-based scoring or calculating the lowest Root Mean Square 

Deviation (RMSD) between centres of features. 

Systematic search methods sample the conformational space at a predefined interval. They are 

deterministic methods. The aim of the search is to explore all the possible degrees of freedom 

in a molecule. They can be divided in two classes: exhaustive search and fragmentation 

algorithms. Exhaustive search ideally explores all the possible conformations by rotating all the 

possible bonds at a given interval. However, due to the combinatory explosion: 

𝑁𝑐𝑜𝑛𝑓𝑜𝑟𝑚 = ∏ ∏ (
360

𝜃𝑖𝑗
)

𝑛=𝑖𝑛𝑐

𝑗=1

𝑁

𝑖=1

 

that for large ligands diverges, a series of geometrical constrains and a post filtering step are 

used in order to reduce the huge amount of different conformations. This is especially useful 

during virtual screening experiments, where millions of small molecules are tested. In the 

equation above, N is the number of rotatable bonds and  θij is the size of the incremental 

rotational angle j for bond i. In the fragmentation method, the ligand is divided into fragments 



23 
 

and the conformational space is sampled by incrementally adding one fragment per time in the 

active site by linking them covalently, in order to minimize the energy of conformation. 

Stochastic methods reach quickly a near-optimal solution by randomly changing the degrees of 

freedom of the ligand. They are more suitable for large molecules, where the degrees of freedom 

are too high for an efficient systematic search. Examples are genetic algorithms (GA)25, 

simulated annealing (SA)26 and Monte Carlo27 (MC). Genetic Algorithms try to optimize a 

problem by mimic the process of evolution. The generated configurations for the ligand 

represent the individuals and a function, called fitness function, decides which configuration 

(individual) survives and shall produce the next generation of configurations. The survived 

generation is used for further iteration-optimization steps by means of combining it with other 

selected conformations. To match this theory to the docking searching method, some 

assumptions have to be done: 

• Each individual (configuration) has a unique chromosome with its associated genes that 

equals the state variables that describe a representation of a configuration, usually in a 

linearized for such a bit string. For example, a bit in the string can encode the torsion 

angles conformations and another bit the mapping of the hydrogen bond parameters in 

the protein and the ligand. 

• A fitness function should evaluate the best configurations. 

• Genetic operators such as a mutations or crossover are allowed in order to randomize 

the new generated offspring. 

• The search can terminate either when convergence, a maximum number of iterations or 

a particular value of the fitness function is reached.  

In the Monte Carlo search, several random changes in the ligand’s configuration are done. The 

method keeps track of the already samples states, in order to avoid a random movement that 

samples them again. It can also be coupled with simulated annealing methods: random changes 

are made as well, but a consecutive step is accepted or rejected according to the Metropolis 

Criterion. Starting from a configuration with energy E1, the Metropolis criterion accepts the 

change if the new energy is lower or with a probability 𝑃 = exp {−[(𝐸2 − 𝐸1)/𝑘𝑏𝑇]} where T 

is the temperature and 𝑘𝑏  is the Boltzmann constant. Moreover, the temperature is reduced 

during the simulation in order to lower the provability to accept high energy conformations. 

This approach permits to overcome the problem of the stuck in a local minimum, as a 

conformation with higher (worse) binding energy could be accepted, but with a lower 

probability. 
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2.4.3 Binding Energy 

A crucial step in docking and VS is the evaluation of binding energy and the ranking of 

generated conformations. The standard binding energy in a non-covalent ligand-protein 

complex is associated to the association constant 𝐾𝑖 by this equation: 

∆𝐺0 = ∆𝐻0 − 𝑇∆𝑆0 = −𝑅𝑇 ln 𝐾𝑖  

Where H is the enthalpy, S is the entropy, T is the temperature, R is the gas constant and the 

superscript  "0"  means that the binding free energy is evaluated ad standard conditions. 

Therefore, to correctly evaluate the binding energy, both enthalpic and entropic effects have to 

be accounted. The enthalpy accounts for the electrostatic, Van der Waals, hydrogen, polar, 

aromatic and more others28, while the entropy effect accounts somehow for the flexibility of 

the ligand. Despite the theoretical method being well known, how to implement it in 

biomolecular systems is not easy and is computationally demanding. For this reason, 

approximated methods such as Molecular Mechanics Generalized Born/(Poisson Boltzmann) 

Surface Area model (MMGB/(PB)SA)29 can be used to define the binding energy reaching a 

good compromise between computational time and accuracy. This method calculates the 

difference between two different states that are the bound and the unbound state of two solvated 

molecules (the drug and the target) and not the absolute free energy. It can be used only as a 

post-processing method of simulation searching algorithms such as MD. In fact, representative 

frames from an ensemble of conformations are used to calculate the free energy between the 

two states. The solvent-solvent interactions, due to the higher order of magnitude fluctuations, 

can hide the binding energy. Therefore, the calculation is divided in a thermodynamic cycle and 

the free energy of binding can be written as follows: 

∆𝐺𝑏𝑖𝑛𝑑 ,𝑠𝑜𝑙𝑣
0 = ∆𝐺𝑏𝑖𝑛𝑑 ,𝑣𝑎𝑐𝑢𝑢𝑚

0 + ∆𝐺𝑠𝑜𝑙𝑣 ,𝑐𝑜𝑚𝑝𝑙𝑒𝑥
0 − ∆𝐺𝑠𝑜𝑙𝑣 ,𝑙𝑖𝑔𝑎𝑛𝑑

0

− ∆𝐺𝑠𝑜𝑙𝑣 ,𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟
0  

 



25 
 

 

Figure 4: Thermodynamic cycle used in MMGB/PBSA method. 

In this way the final binding free energy is divided in solvation contributes and a gas phase 

contribute. The free energy in vacuum can be approximated to: 

∆𝐺𝑣𝑎𝑐𝑢𝑢𝑚 = 〈𝐸𝑀𝑀〉 − 𝑇∆𝑆 

where the first term is the average molecular mechanics, which consists of the sum of Van der 

Waals, electrostatics and bond, angle, torsion energy terms, while the second term is the internal 

entropy, which can be evaluated by either performing normal mode analysis30 or a quasi-

harmonic analysis31. However, it is computationally demanding, thus the entropy contribution 

is usually calculated by using low quality empirical evaluations, or in particular cases, such as 

a docking approach with a common target (where the only interest is the rank order) it can be 

neglected32. 

On the other hand, the solvation free energy contribute is subdivided into a sum of two 

components, one due to the electrostatic/polar interactions and the second due to the non-polar 

interactions. The polar contribute represents the energy stored in the continuum dielectric in 

response to the presence of the solute’s charge distribution and is typically obtained by solution 

of the Poisson-Boltzmann (PB) equation or (GB) equation. For example, in the generalized 

Born equation the electrostatic contribution33 is given by: 

∆𝐺𝑝𝑜𝑙𝑎𝑟 = −
1

2
∑

𝑞𝑖𝑞𝑗

𝑓(𝑟𝑖𝑗𝑎𝑖𝑗)
(1 −

1

𝜀
)

𝑖,𝑗
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where  𝑓(𝑟𝑖𝑗𝑎𝑖𝑗) depends upon the inter-particle distances and the Born radii and 𝜀 is the 

solvent dielectric constant34. The non-polar contribution is proportional to the solvent 

accessible surface area (SASA) of the solute: 

∆𝐺𝑛𝑜𝑛−𝑝𝑜𝑙𝑎𝑟 = 𝛾𝑆𝐴𝑆𝐴(𝑥) 

where SASA(x)  is the area accessible to the solvent for the conformation x and γ  is the 

microscopic surface free energy for formation of a cavity in water (surface tension). 

2.4.4 Scoring Function 

Free energy calculations such as MMPBSA or MMGBSA are enough reliable in prediction of 

binding affinity, but are impractical for high-throughput virtual screening, where a high number 

of protein-ligand poses have to be evaluated. In this case, the binding free energy is calculated 

by means of simplified models, called scoring functions, in order to reach a balance between 

speed and accuracy. There are three classes of scoring functions: the force-field (FF) based, the 

empirical and the knowledge-based. 

The force-field based functions are based on the potential energy; thus, the entropy and the 

solvation energy are usually ignored.  In basic FF scoring functions the goodness of coupling 

between ligand and target are described by the electrostatic and the Van der Waals terms. An 

example of this kind of energy functions is: 

𝐸𝑛𝑜𝑛𝑏𝑜𝑛𝑑 = ∑ ∑ [
𝐴𝑖𝑗

𝑟𝑖𝑗
12 −

𝐵𝑖𝑗

𝑟𝑖𝑗
6 + 332

𝑞𝑖𝑞𝑗

𝐷𝑟𝑖𝑗
]

𝑝𝑟𝑜𝑡

𝑗

𝑙𝑖𝑔

𝑖

 

where 𝐴𝑖𝑗  and 𝐵𝑖𝑗 are respectively the Van Der Waals repulsion and attraction terms of the 

Lennard-Jones potential; 𝑟𝑖𝑗 is the distance between atoms i and j, q is the point charge and D 

the dielectric constant. These functions are well understood, and the scoring is very fast when 

a grid is precomputed, but larger molecules are used to have a better score because of the larger 

number of interactions (the entropy term should account for that). 

Empirical scoring functions aim to reproduce the experimental binding energy. The scoring 

function is given as a weighted sum of different energy terms such as ionic interaction, 

hydrogen bond, binding entropy and hydrophobic effect. The weights are obtained from linear 

regression analysis based on a test set of complexes with experimental known binding affinity. 

A general empirical scoring function is given by: 
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∆𝐺𝑒𝑚𝑝𝑖𝑟𝑖𝑐 = ∆𝐺0 + ∆𝐺𝐻𝐵 ∑ 𝑓(∆𝑅, ∆𝛼)𝐻𝐵 +

∆𝐺𝑖𝑜𝑛𝑖𝑐 ∑ 𝑓(∆𝑅, ∆𝛼) +𝑖𝑜𝑛𝑖𝑐 ∆𝐺𝑚𝑒𝑡𝑎𝑙 ∑ 𝑓(∆𝑅, ∆𝛼)𝑚𝑒𝑡𝑎𝑙 +

∆𝐺𝑙𝑖𝑝𝑜 ∑ 𝑓(∆𝑅, ∆𝛼)𝑙𝑖𝑝𝑜 + ∆𝐺𝑎𝑟𝑜𝑚𝑎𝑡𝑖𝑐 ∑ 𝑓(∆𝑅, ∆𝛼)𝑎𝑟𝑜𝑚𝑎𝑡𝑖𝑐 + ∆𝐺𝑟𝑜𝑡𝑁𝑟𝑜𝑡  

Where the HB, ionic, metal, lipophilic, and aromatic are the interaction terms, f is a penalty 

function reflecting deviations from the ideal geometry in terms of distance ΔR and angles Δα, 

∆𝐺𝑟𝑜𝑡 is the energy loss per degrees of freedom and 𝑁𝑟𝑜𝑡 are the ligand rotatable bonds. The 

limitation of this approach is that the result strongly relies on the training set used, but these 

scoring functions are usually fast and useful in large virtual screening. 

Knowledge-based scoring functions are based on the deviation of statistical preferences of 

ligand-protein contacts gained from experimentally solved structures: if a ligand-protein atom 

is found more frequently at a given distance in experimental structures, than this kind of 

interactions is a “plus” for the scoring. Therefore, the aim of these scoring functions is to 

reproduce experimental structures rather than binding free energy. The basic idea leading to 

these functions is based on the inverse Boltzmann law. This leads to the master equation of 

knowledge-based scoring functions: 

𝑤(𝑟) = −𝑘𝑇 ln [
𝜌(𝑟)

𝜌𝑟𝑒𝑓(𝑟)
] 

Where k is the Boltzmann constant and T is the absolute temperature measured in Kelvin 

degrees, ρ is the probability function of the protein-ligand atom pair at distance (r) in the 

training set, and ρref is the reference state density function where the inter-atomic interactions 

are considered zero. In other cases, the reference state is the one of mean interaction. 

2.4.5 Software package 

Nowadays, a huge number of docking software is available. The most widely used are 

AutoDock35, AutoDock Vina36, DOCK37, LigandScout38. In this work AutoDock Vina has been 

used. AutoDock Vina achieves an approximately two orders of magnitude speed-up compared 

to AutoDock. It also significantly improves the accuracy of the binding mode predictions. 

Moreover, AutoDock Vina automatically calculates the grid maps and clusters the results in a 

way transparent to the user. 
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3. Biological Background 

The present chapter provides the biological background for the present master thesis work. In 

detail, section 3.1 describes the microtubules, whit focus on the dynamic instability, on the 

tubulin structures available and on the different human tubulin isotypes, while section 3.2 

describes the Microtubule targeting agents, with particular focus on the colchicine and its 

derivatives, as they are the ones used in this work. 

3.1 Microtubule 

Microtubules are cylindrical protein filaments. Along with actin filaments and intermediate 

filaments, they form the cytoskeleton, which is a complex network with the function to maintain 

the cell shape and give mechanical resistance. Microtubules are formed by polymerization of a 

dimer composed by two globular proteins, the α and the β tubulins. They are hollow tubes with 

internal diameter of about 12 nm and external one about 25 nm and can achieve 50 μm of length. 

A microtubule is usually composed by 13 linear protofilaments assembled around a hollow 

core. Each protofilament is composed by tubulin dimers linked head-to-tail39. The process of 

growth and destruction of microtubules is dynamic: at the same time both polymerization and 

depolymerization occur in the process called dynamic instability40. This process is fundamental 

for many basic cellular functions, such as mitosis: in fact, the microtubules form the mitotic 

spindle, which is able to separate eukaryotic chromosomes. Because of this central role in cell 

life, microtubules are an interesting target of pharmacological treatments: it is possible to block 

the mitotic process or to lead the cell to apoptosis by enhancing microtubules’ depolymerization 

or polymerization.  

3.1.1 Microtubule polymerization 

As mentioned above, tubulin dimers are composed by two globular protein, α and β tubulins, 

which are very similar (indistinguishable at a resolution of 6 Å). Each tubulin monomer has a 

weight of about 50 kDa and can be divided into three distinct domains: the amino terminal 

domain, or Rossmann fold, (composed of residues 1–205), an intermediate domain (residues 

206– 381) and a carboxy terminal domain, which contains the flexible C-terminal tail (residues 

382–444)41. The microtubules are polar filaments, because they have two different ends: the 

minus end, where the α-tubulin subunit is exposed, and the plus end, where the β-tubulin subunit 

is exposed.  
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α and β monomers start the polymerization binding together on the plus end of the microtubule, 

which is characterized by a fast-growing process, while on the minus end the growing process 

is quite slow: usually, while the plus ends are free to explore the cytoplasmic space by 

stochastically switching between periods of growing and shortening (dynamic instability), the 

minus ends are typically anchored to the centrosome. It is important to study the seam region, 

where the MT wall is closed in the cylindrical structure, because it is the only region were α-α 

and β-β bonds are found and it seems to be a high instable region42. 

 

Figure 5: Microtubule dynamic instability: the closure of the terminal sheet structure generates a metastable intermediate 
microtubule, which can go under polymerization or depolymerization phase. 

Before the integration in the microtubule wall, the tubulin dimers bind a GTP molecule, that is 

hydrolysed into GDP after the polymerization. Only the tubulin dimers at the end of the 

microtubules are bonded to the GTP, which forms the so called GTP-cap. The GTP or GDP 

state influences the stability of the microtubules, as the dimers bounded to GTP tend to assemble 

into microtubules, while the GDP-bounded tubulin tends to fall apart. For this reason, the loss 

of the GTP-cap leads to the opening of one end of the microtubule and to its depolymerization43.    
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Microtubule polymerization is associated with a structural modification of the dimers from a 

curved conformation to a straight conformation. It is still not very clear what determines this 

switch. Nowadays, two models are proposed: 

• Lattice model44: both in GDP and GTP state the free tubulin dimers adopt curved 

conformations. After the integration in the microtubule wall, they are somehow forced 

into assuming the straight conformation. The binding to GTP makes stronger the dimer-

dimer bonds in the lattice but does not cause a conformational transition. 

• Allosteric model: the GTP binding to free tubulin before assembly causes a curved-to-

straight conformational switch, making the tubulin dimer sterically compatible for 

microtubule integration.  

There are evidences for both the two models, thus the debate between them is still open. 

3.1.2 Tubulin Structures 

In the last twenty years several crystallographic structures of tubulin have been released and 

are now available from the RSCB Protein Data Bank (PDB). The first tubulin structure, 1TUB, 

was crystallized as a flat Zn2+ induced sheet of antiparallel protofilament-like end-to-end α/β 

dimer repeats, using docetaxel as a stabilizing agent41. A new structure, 1FFX45, was derived 

from the 1TUB using a stathmin-like domain in 2000. This structure contains misalignments 

due to the difficulties in fitting electron density. Therefore, it was superseded by the 1JFF46, in 

which paclitaxel was used as a stabilizing agent. Then, the 1TVK47 was produced using the 

epothilone A, that is bounded to the taxane binding site, stabilizing the microtubule. In 2004, 

the structure 1SA048 was developed, using a stahmin-like domain. Then, a structure where both 

the colchicine and the vinblastine binding site are observed was developed, the 1Z2B49. In the 

end, two high resolution structures were built, the 3J6E50 and the 4O2B39. The first one contains 

nine α/β dimers arranged to form a portion of the microtubule wall, while the second one 

contains two dimers, a Stathmin-4 and a tubulin-tyrosine ligase. The following table 

summarizes and confronts the information about these models. 

 

 

 

 



31 
 

 

Table 1: Tubulin models available at Protein Data Bank (PDB) website. 

PDB code Author Resolution Characteristic Missing Residues 

1TUB Nogales et al. 
1998 

3.7 Å Docetaxel as 
stabilizing agent / 

1FFX Gigant et al. 
2000 

3.95 Å stathmin-like 
domain 

Α 48-64, 441-451                                  
B 34-50, 438-455 
 

1JFF Lowe et al. 
2001 

3.5 A Paclitaxel as 
stabilizing agent 

A 1, 35-60, 440-451 
B 1, 438-455 

1TVK Nettles et al. 
2004 

2.89 Å Epothilone A as 
stabilizing agent 

A 1, 35-60, 440 
B 1 

1SA0 Ravelli et al. 
2004 

3.58 Å Colchicine as 
destabilizing 
agent 

A 1, 38-46, 438-451 
B 1, 278-285, 439-455 

1Z2B Gigant et al. 
2005 

4.1 Å Colchicine and 
vinblastine both 
binding 

A 1, 38-46, 438-448 
B 1, 278-285, 440-455 

3J6E Alushin et al. 
2014 

4.7 Å Microtubule wall A 1, 39-48 
B 1 

4O2B Prota et al. 
2014 

2.3 Å Two dimers, 
colchicine bonded 

A 440-451 
B 276-281, 439-455 

 

3.1.3 Human Tubulin isotypes 

In every organism there are several genomic copies of α or β tubulin, that differ for restricted 

or punctual variations in terms of aminoacidic sequence. In particular, if they are common 

through different species, tubulin characterized by the same mutations form an isoform, while, 

if they are common only in the same organism, tubulin characterized by the same mutations 

form an isotype. 

These variations highly affect microtubule dynamics; thus, the organism produces specific 

isotype of tubulin to correctly maintain the microtubule assembly/disassembly equilibrium, 

according to external stimuli. 

In the last years, several isotypes of α and β tubulin in humans were identified in the last years. 

However, there is more available data in literature about β tubulin isotypes, because this subunit 

is a target for the drugs more than the α subunit. Ten different beta tubulin isotypes have been 
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characterized: βI, βIIA, βIIB, βIII, βIVA, βIVB, βV, βVI, βVII and βVIII51. Different cells 

express different tubulin isotypes, as it can be seen in the following figures52. 

 

Figure 6: Different tubulin isotypes expression in normal human cells. The most ubiquitous ones are the I and the IV. 

 

Figure 7: Different tubulin distribution in cancerous human cells. Isotype III is slightly more expressed than in normal cells. 

As it can be seen in the pictures above, in normal cells, βI, βIVB, and βV are ubiquitously 

expressed, βVI is hematopoietic cell-specific, and βIIA, βIIb, βIII, and βIVA have high 

expression in brain. In tumoral cells, isotype βIII is usually over expressed, in comparison to 

nontumoral cells. 

3.2 Microtubule Targeting Agents 

Several classes of drugs can be used in order to alter the dynamic instability of the microtubule. 

The drugs can either move the equilibrium towards an enhanced polymerization or an enhanced 

depolymerization. The drugs interacting with the tubulin can be divided in three major classes53, 
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based on their binding sites: taxol binding site drugs, vinca domain binding site drugs and 

colchicine binding site drugs. The drugs in the first class act as microtubule stabilizers, while 

the drugs in the other two classes act as microtubule destabilizers. 

3.2.1 Taxol  

Taxol was one of the first small molecules discovered to show the potential to be an important 

antitumor agent. It was isolated by Wall and Wani from the bark of the tree Taxus Brevifolia. 

They also determined the correct structure of the Taxol54. 

 

Figure 8: Structure of Taxol. 

Taxol promotes microtubule assembly, reducing the critical concentration of tubulin required 

to form the microtubule and blocking the mitotic process in the cells55. 

Taxol binding site is primarily located in the β-tubulin. It contains its amino acid residues 217-

23156, the M-loop57 (residues 273-285) and the N-terminal 31 amino acids58. 
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Figure 9: Taxol binding site59 

Taxol has a complex structure and its extreme hydrophobicity makes it difficult to use for 

humans. To enhance the solubility, Taxol is usually mixed with ethanol in clinical use. This can 

lead to toxic effects like neutropenia and peripheral neuropathies, so a strategy to overcome this 

problem is to design Taxol derivatives drugs whit enhanced solubility. 

3.2.2 Vinca alkaloids 

Vinca alkaloids have shown to be potential antitumoral agents against numerous cell types. 

Three major vinca alkaloids, vincristine, vinblastine and vinorelbine have been approved for 

clinical use60. They are microtubule destabilizing agents. However, they all show some side 

toxic effects: vincristine is highly neurotoxic, vinblastine causes various disturbs primarily in 

the digestive system, while vinorelbine causes diseases in the circulatory system61.  

 

 



35 
 

 

 

Figure 10: Major Vinca alkaloids structures: vinblastine, vincristine and vinorelbine 

Vinca alkaloids bind to the microtubule and their binding site seems to be across two tubulin 

dimers. In particular they seem to contact helix H10, strand S9 and loop T7 in the α2-subunit 

and loops T5 and H6–H7 in the β1-subunit62, where α2 and β1 are referred to tubulin subunits 

belonging to two different dimers. 

 

Figure 11: Vinca Alkaloids domain62: the α2 subunit is represented in pink, while the β1 subunit is in green. 
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3.2.3 Colchicine and colchicine derivatives 

Colchicine is a compound with a relatively high antiproliferative activity. It is a major alkaloid 

isolated from Colchicum autumnale’s and Gloriosa superba’s seeds and corms. In recent years 

it has been studied for its antimitotic activity63.  This activity is related to the formation of a 

colchicine–tubulin complex, which prevents microtubule polymerization due to a 

conformational inflexibility making tubulin dimers incompetent for microtubule assembly. 

Therefore, the cells exposed to it tend to undergo mitotic arrest during the cell cycle, followed 

by apoptosis. 

 

Figure 12: Colchicine 2D and 3D structures. 

Cancer cells are more susceptible to colchicine poisoning than normal cells, as they undergo 

mitosis at higher rate. However, the colchicine is very toxic for the organism (especially for the 

gastrointestinal tract)51. In high doses, it can also cause hepatocellular failure, marrow failure, 

disseminated intravascular coagulation and late central-nervous-system dysfunction, among 

other effects. To overcome this problem, many colchicine derivatives having higher power and 

lower toxicity have been designed and synthetized over the years. 

The most relevant structures belonging to the colchicine binding site  are S9 (349-354) and S8 

(310-318) sheets, H7 (223-241) and H8 (250–258) helices, and T7 loop (242-249) of the β-

tubulin, and αT5 loop (173-181) of the α-tubulin.64  
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Figure 13: Colchicine binding site64. The important secondary structures near CBS are named with respective residue numbers. 

In this study, colchicine site has been chosen among the others for several reasons. First, 

colchicine is a drug with a long clinical history65 and its chemistry is simpler that of other 

tubulin-binding-drugs, so it is easier to design novel derivatives66. Furthermore, colchicine has 

strong antimitotic-activity which slightly differs among different tubulin isotypes51. In 

particular, it would be interesting to synthetize a colchicine derivative that interacts specifically 

on tubulin isotype βIII, as it is overexpressed in tumoral cells and seems to be linked to tumour 

resistance to various drugs67. 
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4.  Comparative study over novel colchicine derivatives on human 
tubulin isotypes  

In this chapter a comparative study based on molecular dynamics and molecular docking over 

novel colchicine derivatives on human tubulin dimers αβIIA, αβIII and αβIVA is presented. The 

results provide an investigation of drugs binding energies, their positions in the cleft and their 

specificity. 

Abstract 

Microtubules are key players in cell mitosis. For this reason, they are an interesting target of 

pharmacological treatment, as it is possible to block the mitotic process by altering the dynamic 

equilibrium between microtubule’s polymerization and depolymerization. From this 

perspective, it is interesting to design and develop antitumoral drugs able to selectively bind the 

tubulin in the tumoral cells, in order to lead them to apoptosis. There are several tubulin 

isotypes: in particular, tumoral cells are characterized by an overexpression of αβIII tubulin. 

The affinity between tubulin and drugs can vary sensibly in relation to the particular isotypes 

expressed. This becomes more evident if the mutations are located in the drug’s binding site. 

Therefore, a drug showing a higher affinity with αβIII isotype, compared to the others, can be 

considered able to specifically target this dimer and can be assumed to be an efficient drug to 

target tumoral cells. In this study, Molecular Dynamics (MD) simulations and Ensemble 

Docking were carried out for characterizing and comparing the effect of 61 colchicine 

derivative compounds on different human tubulin isotypes. The outcome of this work shows 

the differences among the compounds on the different human tubulins and shows that one of 

these drugs has the potential to be an effective anticancer drug, as it shows specificity for the 

isotype αβIII. 

4.1 Introduction 

Nowadays, finding a cure for cancer is an open ambitious challenge. Tumoral cells are 

characterized by a higher rate of mitotic process compared to nontumoral cells, so the use of 

drugs able to arrest the mitosis during the cell cycle is an established strategy to fight the cancer. 

In order to do that, the drugs have to be able to alter microtubule dynamic instability by 

enhancing the depolymerization or the polymerization process. Tubulin isotypes are found to 

contribute in the development of drug resistance cell lines, as they show differential binding 

energy to various anticancer drugs68. Therefore, an overexpression of a particular isotype can 
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lead the tumoral cells to become drug-resistant. In particular, the overexpression of isotype βIII 

seems to be linked to the tumour resistance67. Thus, the aim is to find a drug that is effective on 

isotype αβIII, as targeting it selectively can be a good strategy to fight the tumor. In this study, 

61 colchicine derivatives have been tested over different human tubulin isotypes. Colchicine is 

microtubule depolymerizing agent, with the side effect of being toxic for the organism; thus, 

the purpose is to design a derivative which is a good microtubule destabilizer, and which is less 

poisonous for the organism. Basing on the mutations in the colchicine binding site, tubulin 

isotypes can be grouped in three clusters69; thus, in this work only isotypes αβIIA, αβIVA, αβIII 

have been used. These three isotypes show important differences in their sequences and, in 

particular, in the colchicine binding site: isotype αβIII has three mutations, Cys239 to Ser, 

Ala315 to Thr and Thr351 to Val, while isotype αβIIA contains only one modification, such as 

Val316 to Ile. Isotype αβIVA has no modifications in the residue composition of the colchicine 

binding site. Computational approaches can be a powerful tool able to yield an insight into 

molecular level and provide detailed studies of molecular mechanisms, like discovering the 

position of the drug in the binding site, its affinity to the protein or its destabilizing power. In 

this study, the effect of the colchicine and its derivatives mentioned above have been confronted 

over the different human tubulin isotypes, using computational tools as Molecular Dynamics 

(MD) simulation, Ensemble Docking and binding free energy calculation. 

4.2 Materials and Methods 

4.2.1 Atomic models of investigated compounds 

61 colchicine derivative compounds were considered in this work. All compounds have proved 

in vitro antiproliferative effect on normal and cancer cells: in particular, they were tested on 

human lung adenocarcinoma (A549), which is a cell line displaying various levels of drug 

resistance, human breast adenocarcinoma (MCF-7), human colon adenocarcinoma cell line 

(LoVo) and doxorubicin-resistant subline (LoVo/DX). For better evaluation of the cytotoxicity, 

their effect was also studied on normal murine embryonic fibroblast cell line (BALB/3T3). 

These compounds can be divided in five classes: 4-Br-Amides (10 compounds), 4-Cl-Amides 

(10 compounds), DT-and-4I-Amides (19 compounds), 4-Cl-Carbamates (11 compounds) and 

4-I-Carbamates (11 compounds). In addition to these compounds, the colchicine was used in 

every phase of this work as a control. Starting from now, the colchicine will be called C01, 

while the other compounds will be called as follows: 
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Table 2: List of the compounds used in this study  

4-Br-Amides C02-C11 

4-Cl-Amides C12-C21 

DT-and-4I-Amides C22-C40 

4-Cl-Carbamates C41-C51 

4-I-Carbamates C52-C62 
 

The 2D structures of the above-mentioned colchicine-derivative compounds employed in this 

work are reported in Supporting Information. In order to perform molecular docking, their 3D 

structure was designed using the software AVOGADRO24. Ligand topologies were defined 

using Antechamber program70, with general amber force field and bcc charge method, and 

ACPYPE71. 

4.2.2 Homology modelling of tubulin isotypes 

The atomic structures of human tubulin isotypes are not present in RCSB Protein Data Bank-

PDB, so they have been created by using homology modelling. To create the template structure, 

the Protein Data Bank entry 4O2B39 was downloaded. This structure was chosen among the 

others because it has the colchicine already bounded in the cleft and because it is more recent 

with a higher resolution (2.3 Å) compared to other structures with the bounded colchicine, such 

as 1SA048. The structure downloaded from Protein Data Bank presents more than one dimer, 

so only the dimer composed by protein chains A (α tubulin) and B (β tubulin), along with 

Mg2+and GTP linked to chain A and GDP and colchicine linked to chain B has been considered, 

as they present fewer missing atoms and residues compared to the other chains in the PDB file. 

Missing atoms were filled using the Swiss PDB Viewer software, while missing residues were 

filled using the software MODELLER72 9.20. The best model was selected on the basis of 

DOPE (Discrete optimized protein energy) score73 and was used as the template structure to 

build the human isotypes. The template structure was validated using various software as 

PROCHECK, ERRAT and VERIFY3D. 

Human isotypes FASTA sequences have been downloaded from the UNIPROT database74 and 

have been used to build the human tubulin on the template by using MODELLER 9.20. In 

particular, for the chain α it was chosen the sequence Q71U36, for the βIIa the Q13885, for the 

βIII the Q13509 and for the βIVa the P04350. Only β tubulin isotypes have been considered 
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because the study is focused on the interaction between tubulin and the colchicine derivatives. 

α-tubulin residues from 440 and β-tubulin residues from 428 were cut, as they represent the C-

terminus, which is a region characterized by high fluctuations. For each isotype, the best model 

was chosen on the basis of the DOPE score. Human tubulin dimers were then evaluated by 

using the same methods used for template validation. GDP, GTP and Mg2+ and the colchicine 

were added from the starting template (4O2B). 

 

Figure 14: Representation of a simulated structure: tubulin dimer bound to GTP (orange), GDP (pink) and 
colchicine (green). Tubulin domain are highlighted in different colors: in yellow the Rossman fold (1-205), in red 
the intermediate domain (206-381) and in blue the C-terminal domain (382-440/427) 

4.2.3 Molecular Dynamics of tubulin isotypes bound to colchicine 

Conformational dynamics of the three isotype models with a bound colchicine molecule has 

been investigated by MD simulations following the procedure described below.  
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The AMBER-ff99SB-ILDN force-field was used to define protein topology, while Mg2+, GDP, 

GTP and colchicine topologies were defined using Antechamber program of the AMBER16 

package, with general amber force field and bcc charge method, and ACPYPE. A triclinic box 

with 0.6 nm of minimum distance was used and all systems were solvated using TIP3P explicit 

water model, with the addition of chlorine and sodium ions to neutralize the charge, maintaining 

an ionic strength at 150 mM. Periodic boundary conditions were applied along the xyz 

coordinates.  A 1000-step energy minimization by steepest descent was then performed, with a 

maximum force of 100 kJmol−1nm−1. After that, restraining potentials were applied on water 

molecules and sodium and chlorine ions and system equilibration in NVT and NPT ensembles 

were performed: NVT equilibrium phase was performed for 100 ps using velocity-rescale 

thermostat with the tau constant at 0.1 and the reference temperature at 300 K, while the NPT 

one for 300 ps using Berendsen barostat to maintain the pressure at 1 atm. Electrostatic 

interactions were treated by means of Particle Mesh Ewald (PME) approach, with 1.0 nm cutoff, 

Fourier spacing of 0.2 nm and interpolation order of 4. Lennard-Jones interactions were cut-off 

at a distance of 1 nm. Finally, each system was simulated for at least 200 ns without any restrain 

with a time step of 2 fs and coordinates saved at every 2 ps.  

All the simulations were performed by using the GROMACS 5.1.4 package. The Visual 

Molecular Dynamics (VMD) package was employed for the visual inspection of the simulated 

systems. Dedicated GROMACS tools were used for a quantitative analysis in terms of Root-

Mean-Square Deviation (RMSD), Radius of Gyration (RG) and clustering, while analysis of 

secondary structure was performed by applying the STRuctural IDEntification (STRIDE)75. 

4.2.4 Ensemble Docking of investigated compounds on tubulin models 

Ensemble docking was performed using AUTODOCK VINA 1.1 on the three human tubulin 

isotypes. The centre of the search space has been fixed by calculating the centre of mass of the 

colchicine bonded to the original dimer downloaded from the Protein Data Bank database; then 

the colchicine has been removed and the docking has been performed using a grid space 

20*20*20 nm around the centre. An exhaustiveness = 64 has been imposed. Each compound 

was docked to ten different configurations of each isotype: these configurations have been 

extracted from the last 50 ns of the MD simulation, one every 5 ns. For each docking, the best 

ligand pose was extracted. Mean and standard deviation were calculated over the best poses of 

each ligand on all the ten tubulin configurations, for each isotype. Furthermore, it has been 

analysed how much the drugs positions in the cleft differ to the colchicine’s one. Before doing 
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that, a MD simulation of 1 ns was performed on each structure, after solvation, neutralization 

and equilibration steps in the same way described in the previous section. The complexes used 

in this phase were the best poses of each ligand in every isotype. 

4.2.5 Binding free energy calculation 

The binding free energies between proteins and ligands were calculated by using the molecular 

mechanics Generalized Born surface area (MMGBSA) theory. The free energy was thus 

calculated with the software AMBER16. This calculation was performed using the trajectory 

frames from the 1 ns MD simulations mentioned above and igb=8. The parameters were set 

according to the literature76–78. The free energy was decomposed on every residue, in order to 

analyse the energy on each residue in the colchicine binding site. This analysis has been 

performed after clustering the drugs with the dedicate GROMACS tool.  

4.3 Results 

4.3.1 Validation of Homology Models 

The DOPE scores for the template and the three isotypes are very similar and around -11000.  

The PROCHECK analysis shows that more than the 95.4% of the residues are in most favored 

regions in the Ramachandran plot for all isotypes and no residues are in the disallowed regions, 

except for the template structure that exhibit 0.1% of the residues in those regions. A good 

quality model is expected to have at least the 90% of the residues in the most favoured regions79. 

Therefore, this analysis proves that all the built models are good ones. 

The Overall Quality Factor obtained whit the ERRAT tool for the template model is 86.68 for 

chain α and 91.17 for chain β. For the isotype αβIIA these values are respectively 79.12 and 

88.31, for the isotype αβIII 80.29 and 84.73 and for the isotype αβIVA 77.26 and 84.96. The 

generally accepted range is >50 for a high quality model80, so all the models passed the test. 

In the end, the VERIFY3D test has been performed. This test is considered passed if a high 

percentage of the residues has an averaged 3D-1D score higher than 0.280. All models pass the 

VERIFY3D.  

More details can be found in the Supporting Information. 
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4.3.2 Conformational dynamics of tubulin isotypes 

The analysis on molecular dynamics simulations was performed to check the stability of the 

structures. First, the RMSD of the backbone atoms was calculated for the template structure 

and for each isotype during the 200 ns of simulation. As it can be seen in the following picture, 

all the simulated structures reach the convergence, whit values under 0.4 nm. 

 

Figure 15: RMSD values for each simulated structure: all the structures show to have reached the convergence. The lowest 
value is for isotype αβIIA (around 0.25 nm), while the others are higher, but always under 0.4 nm. 

Then, the secondary structure modifications in the colchicine binding site have been 

investigated. The most relevant structures belonging to the colchicine binding site, are S9 (349-

354) and S8 (310-318) sheets, H7 (223-241) and H8 (250–258) helices, and T7 loop (242-249) 

of the β-tubulin, and αT5 loop (173-181) of the α-tubulin; these structures where analyzed with 

STRIDE using the last 50 ns from simulation trajectories for the three isotypes. 
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Figure 16:  Secondary structure probability in the colchicine binding site during the last 50 ns of simulation for isotypes a) 
αβIIA, b) αβIII and c) αβIVA with colchicine. The structures seem stable during the simulations. 

The structures seem to be all stable, as they don’t change very much during simulations. 

After that, the Radius of Gyration has been analyzed. It is a measure of protein structure 

compactness, so a low and stable value of radius of gyration indicates a stable protein, which 

does not unfold during the simulation.  

 

Figure 17: Radius of Gyration distribution for the template (a), the isotype αβIIA (b), the isotype αβIII (c) and the isotype 
αβIVA (d). They all have a gaussian distribution around 3 nm, indicating their stability. 
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The values are around 3 nm with a gaussian distribution in every simulated structure, indicating 

that they are all stable. 

Last, the cluster GROMACS tool has been used on the last 50 ns of simulations, with a 0.15 

nm cutoff. All the frames resulted grouped in only one cluster, indicating the stability of the 

structures.  

4.3.3 Ensemble Docking  

The affinities calculated by the ensemble docking show that all the analyzed compounds are 

binders. There are no significant differences in these affinity values, either confronting the 

compounds intra the same isotype and confronting them inter the different isotypes. The values 

are between -7.5 and -9.5 kcal*mol−1. Details can be found in Supporting Information. 

To perform a more accurate analysis, the positions of the ligands in the cleft have been analyzed, 

using the structures with the best pose of each ligand. The positions of the ligands were 

confronted to the colchicine’s one, in order to investigate the presence of some differences. The 

compounds are all colchicine derivatives, so they have a zone in the structure, which is in 

common with the colchicine. This zone is the one composed by the three structural-rings, which 

will be referred as the “head” of the drug, while the variable regions will be called the drug’s 

“tails”. 

Each of the protein structures containing the drugs was aligned to the one bonded to the 

colchicine for every isotype (reference structure), using the GROMACS tool confrms; only the 

protein structures were aligned, in order to analyze if the ligands are in the same positions or 

not. The trajectories were aligned to the reference structure using the GROMACS tool trjconv. 

To analyze the difference between the drugs positions, the GROMACS tool rms has been used: 

only the “heads” of the drugs have been considered, since they are the common regions. A low 

RMSD value means that the drug is approximatively in the same region and the same position 

of the colchicine, while a high value indicates that it is in a different position confronted to the 

colchicine and a very high value indicates that it is in a different region of the cleft. The results 

of this analysis can be seen in the following figures.  
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Figures 18-19-20: Ranking of the RMSD distance from colchicine pose for isotypes 2A, 3 and 4A. Overall, the highest values 
are for isotype 4A, followed by isotype 2A and isotype 3, which has the lowest values. 

Looking at the figures, it is evident that isotype 3 shows the lowest values of RMSD (under 0.2 

nm) of RMSD, indicating that every drug (except for the C19) is inside the cleft in a very similar 

position to the colchicine’s one. In isotype 2A, many drugs show intermediate values of RMSD 

(between 0.2 nm and 0.7 nm), while in isotype 4A the majority of drugs has a RMSD near 1 

nm. To see how different the poses are, on the basis of these RMSD values, VMD package was 

used to visualize the drugs in the clefts. The differences can be seen in the following figures. 
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Figure 21: Different ligands poses (red) compared to the colchicine pose (green). 

In all the pictures, the colchicine is represented in green, while the other drug is colored in red. 

Figure 21-A) is referred to a drug that have a RMSD value under 0.2 nm confronted to the 

colchicine position. It is clear that it means that the drug is almost in the same position of the 

colchicine. This is what happens for some drugs in isotype 2A and for all the drugs, except the 

C19, in the isotype 3. Figure 21-B) is referred to a drug that have a RMSD value over 0.4 nm, 

but under than 0.8 nm. Compared to the colchicine, these drugs are in the same spatial region 

in the cleft, but are not in the same position, as they are rotated. This behavior is observed in 

many drugs in isotype 2A, in C19 in isotype 3 and in a few drugs in isotype 4A. Figure 21-C) 

is referred to a drug that have a RMSD value near 1 nm. These drugs are in a different region 

of the cleft. This is how the majority of the drugs behaves in isotype 4A.  

4.3.4 Binding free energy calculation 

The binding free energy calculation results show values between -225 kcal/mol and -40 

kcal/mol. Isotype αβIII shows, on average, the highest values, while isotype αβIVA shows the 

lowest ones, on average. Details about the binding energy of each compound for all the isotypes 

can be found in the Supporting Information. 

In order to investigate the specificity of the drugs, the binding free energies of each compound 

were averaged over the three isotypes. Standard deviations were calculated as well. Drugs with 

a high mean binding energy and a low standard deviation can be considered good to target all 

the isotypes and so they are non-specific, while drugs with a high mean binding energy and a 

high standard deviation are probably specific for one or two isotypes.  

In the following graph, these results are summarized. The colour patterns are chosen in relation 

to the colchicine’s energy value, which is set equal to 100%.  
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Figure 22: Average binding free energy. The colour patterns show how much the average energy values of the drugs differ 
from the colchicine’s one. Only few drugs have a higher energy and show low values of standard deviation, indicating that 

they are non-specific. 

Colchicine is represented in red and shows a higher average binding energy compared to the 

majority of the other compounds. It has a very low standard deviation, showing that it is a non-

specific drug. The drugs C56, C44, C20, C39, C29 and C10 show higher binding energies than 

the colchicine and quite low standard deviation values, so they can be considered non-specific 

drugs, as they seem able to bind the three isotypes with the same affinities. 

To better understand and investigate the specificity of the other drugs, it is more useful to plot 

only their standard deviations, as they are the most significant indicator of the specificity. The 

values are normalized on the colchicine’s value, which is set equal to 1. 

The other values are calculated as follows: 

𝑆𝑡𝑑𝑑𝑟𝑢𝑔
𝑛𝑜𝑟𝑚𝑎𝑙 =

𝑆𝑡𝑑𝑐𝑜𝑙𝑐ℎ𝑖𝑐𝑖𝑛𝑒

𝑆𝑡𝑑𝑑𝑟𝑢𝑔
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The results can be seen in the following figure.  

 

Figure 23: Standard deviations of the drugs binding energies over the three isotypes. The values are normalized on the 
colchicine’s one, which is set equal to 1. The colour pattern shows how much the standard deviations differ from the 
colchicine’s one. Only few drugs have a lower value, while the majority of them shows values from 2 to 5 time higher. 

Looking at the figure, it is clear that C15, C13 and C18 are non-specific, as they show a lower 

standard deviation than the colchicine, which is a non-specific drug. Drugs showing values 

between 1 and 2 can also be considered non-specific, as the colchicine’s standard deviation 

value is very low, so the double can be considered low, too. Thus, the compounds coloured in 

orange, C14, C43, C27, C11, C32, C09, C12, C21, C06, C58, C49 and C35 can be considered 

non-specific. The other compounds are probably specific for one or two isotypes. To better 

understand the specificity, it useful to plot the binding energies of the remaining compounds 

over the isotypes. The values are normalized on the binding energy of the isotype αβIIA, which 

is set equal to 1. The results can be seen in the following figure. 
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Figure 24: Binding free energies over the isotypes for the identified specific drugs. The values are normalized on the energy 
value of the isotype αβIIA for each drug. The colours indicate the different isotypes.  

Looking at the figure, it is possible to identify the specific compounds for each isotype. In 
particular: 

• Compounds C02, C03, C04, C05, C19, C22, C23, C25, C31, C33, C40, C41, C45, C46, 

C48, C51, C53, C54, C57, C59 and C62 seem to be specific for isotype αβIII. 

• Compound C55 seems to be specific for isotype αβIVA. 

• Compound C37 seems to be specific for isotypes αβIII and αβIVA. 

• Compounds C07, C08, C16, C17, C24, C26, C28, C30, C34, C36, C38, C47, C50, C52, 

C60 and C61 seem to be specific for isotypes αβIII and αβIIA. 

• There are no compounds specific only for isotype αβIIA. 

It is interesting to see if the drugs with the highest binding energies for each isotype are specific 

or not. The best five drugs, in terms of binding energy, for each isotype can be found in the 

following table: 
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Table 3: Drugs with the highest binding energies for each tubulin isotype. 

Best Drugs (Binding energy) 

Isotype 2A Isotype 3 Isotype 4A 

Drug Binding 

energy 

Drug Binding 

energy 

Drug Binding 

energy 

C44 -225 kJ/mol C51 -214 kJ/mol C20 -197 kJ/mol 

C56 -218 kJ/mol  C53 -202 kJ/mol C56 -191 kJ/mol 

C61 -186 kJ/mol C20 -200 kJ/mol C39 -183 kJ/mol 

C29 -178 kJ/mol C29 -197 kJ/mol C44 -170 kJ/mol 

C10 -175 kJ/mol C19 -195 kJ/mol C55 -169 kJ/mol 

For what concerns isotype αβIIA, there are no specific drugs. Among the best five, C44, C56, 

C29 and C10 are non-specific at all, while C61 is specific for both αβIIA and αβIII. Among the 

best drugs of isotype αβIII, C51, C53 and C19 are specific, while C20 and C29 are non-specific. 

In the end, for what concerns isotype αβIVA, C20, C56, C39 and C44 are non-specific, while 

C55 is specific for it. 

After this analysis, all the drugs were clustered on the basis of the RMSD using the dedicated 

GROMACS tool. The RMSD cutoff has been set to 0.035 nm. In all the isotypes, the drugs are 

clustered in five clusters which are quite similar among the different structures. The colchicine 

is always included in cluster 1. The following tables summarize the principal information about 

each cluster: the number of drugs contained and the centroid structure. Details about the drugs 

included in each cluster can be found in the Supporting Information. 

Table 4: Number of drugs and centroid of each cluster. 

Clusters 

              Isotype 2A            Isotype 3               Isotype 4A 

Cluster Drugs 

number 

Centroid Cluster Drugs 

number 

Centroid Cluster Drugs 

number 

Centroid 

1 41 C22 1 42 C16 1 38 C5 

2 13 C27 2 8 C19 2 15 C18 

3 1 C41 3 3 C51 3 3 C42 

4 3 C42 4 4 C45 4 3 C51 

5 4 C45 5 5 C60 5 3 C55 
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At this point, the results of the binding free energy calculation and the investigation about the 

poses of the drugs in the cleft have been merged in radar graphs, in order to understand if there 

is some correlation between them. Each drug is represented by a point, coloured on the basis of 

the cluster of membership. The distance from the centre represents the RMSD from the 

colchicine’s pose, while the angular coordinate represents the binding energy value. 

 

Figure 25: Radar graph for isotype 2A. The drugs are represented by the points and coloured based on the cluster of 
membership. The drugs with the highest binding energies are the ones with the lowest RMSDs from colchicine’s pose. 

From the graph, it is clear that the drugs with the highest binding energies have also a low 

RMSD from the colchicine’s pose. They are all included in the cluster 1, which includes the 

colchicine too, so the most effective drugs are the ones most similar to the colchicine. Drugs in 

clusters 3, 4 and 5 have low binding energies and high RMSD. The compounds included in 

cluster 2 have slightly higher binding energies compared to the the other three just mentioned, 

but high RMSD. 
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Figure 26: Radar graph for isotype 3. The drugs have all very low RMSDs from colchicine’s pose. The only exception is the 

compound C19, showing also a high binding energy in addition to the high RMSD: 

For what concerns the isotype 3 graph, the only exception in terms of RMSD is represented by 

C19 (the centroid of cluster 2) which is also one of the drugs with the highest binding energy. 

The other drugs have all very low RMSDs, and can be noticed that drugs in cluster 3,4 and 5 

have lower binding energies compared to the ones in clusters 1 and 2. 
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Figure 27: Radar graph for isotype 4A. The highest binding energies belong to the drugs in cluster 4 (that have low RMSDs 
from colchicine’s pose) and in cluster 5 (that show high RMSD values). 

In the end, isotype 4A graph shows that the drugs in cluster 4 and 5 are the ones with the highest 

binding energies, but while the drugs in cluster 4 are the only ones having low RMSDs, the 

ones in cluster 5 have very high RMSDs compared to the colchicine. The drugs included in 

clusters 1 and 2 (which represent the majority of the drugs) have lower binding energies 

compared to them, while the drugs included in cluster 3 seem to have the lowest energy values. 

The values of the binding energies overall are lower compared to the other two isotypes. 

To go deep in the investigation, the binding free energy on each of the residues composing the 

colchicine binding site has been evaluated. In order to make the graph more intelligible, the 

energy has been mediated on the drugs of each cluster, so only the mean and the standard 

deviation for each cluster are shown. Furthermore, only the residues that have high energy and 

significant differences among the clusters are shown. In particular, among all the three isotypes, 

residues 178, 179, 239, 247, 256 and 351 are polar, residue 249 is acid (charge -) and residue 

252 is basic (charge +), while the others are not polar. For isotype III, the mutations cause 

differences in residue 351, which is not polar in this isotype. 
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Figure 28: Binding free energy decomposed on the residue for each cluster in Isotype 2A. The energy is mediated on the drugs 
in each cluster. For all the clusters except cluster 3 the highest binding energies are on the H8 residues, while cluster 3 does 
not show a particular region with higher energy. 

In isotype 2A, except for the cluster 3, the major energy values are on residues β-252 and β-

253 (basic residue) for the other clusters. These reisudes are located in the H8 region. The drugs 

in cluster 1 have the highest binding energies overall, followed by cluster 2.  Residue β-249 

presents positive values for all the clusters. This is probably due to the fact that it is an acid 

residue, with negative charge, which repulse the ligands. 
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Figure 29: Binding free energy decomposed in the residues for each cluster in isotype 3. The highest binding energies are on 
H8 for each cluster, followed by H7 and T7 regions. On T5 region, cluster 2 shows higher binding energies compared to the 
others. 

For what concerns isotype 3, the energy values vary very little among the clusters for almost 

every residue. Every cluster show higher binding energies on H8, followed by H7 and T7 

regions. The S8-S9 regions have the lowest binding energies, near zero. The only evident 

difference is on the residues of the α-T5-Loop, where cluster 2 shows higher values of binding 

energies. This time too residue β-249 has positive values of energy, while residue β-253 has the 

highest ones. 
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Figure 30: Binding free energy decomposed on the residues for each cluster in isotype 4A. Cluster 4 and cluster 5 show the 
highest binding energies. Both have high energies on H8, while on T5 cluster 4 shows the lowest values and cluster 5 shows 
high energy values. 

In the end, in isotype 4A, cluster 4 shows the highest values of binding energies in the H8 

region, alongside cluster 5. Cluster 4 has the lowest values on the residues of the T5 region. 

The acid residue β-249 has repulsive energy values. T7 and T5 regions show energy values on 

average for every cluster, while H7 and S8-S9 regions show energy values near zero for all the 

clusters. 

4.4 Discussion 

Microtubules are an interesting target for many drugs, as by altering their dynamic instability it 

is possible to arrest the mitotic process, leading the cell to apoptosis. In the cell, microtubules 

present several kinds of tubulin isotypes, that differ from cell to cell and from normal and 

tumoral cells. The most interesting isotypes are the ones in the β-chain, as they are more 

involved in the binding of the drugs. Targeting isotype αβI is not a very good choice, as it is 

widely expressed over all the cells, so tubulin isotype αβIII is the most interesting for inhibit 
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the cancer cells multiplication81. This isotype is also reported as one of the reasons that lead the 

tumoral cell to drug-resistance82. For what concerns the drugs, colchicine is one of the simplest 

and widely used, but has the side effect of being very cytotoxic51. In this study, the effect of 

several colchicine derivatives has been confronted over the isotypes αβIIA, αβIII and αβIVA, 

in order to find a drug that can bind the αβIII isotype in a more efficient way than the colchicine 

and that it is less cytotoxic for the normal cells. 

Figures 18, 19 and 20 show the differences between the colchicine’s pose and the other drugs 

poses in terms of RMSD. A low value indicates that they are in a similar position as the 

colchicine, while a high value indicates that they are in a different one. For what concerns 

isotype αβIII, only one of the drugs, the compound C19, shows a quite high value of RMSD, 

indicating that it is in a different position compared to the colchicine. This is an interesting 

result, as this isotype is the most resistant to the drugs (and in particular to the colchicine), thus 

a different pose can make this drug more efficient than the colchicine. Probably, the drugs are 

all in a similar position because the cleft in this isotype is quite narrow. In isotype αβIVA, many 

of the drugs have a RMSD near 1 nm, indicating that they can assume very different poses. This 

is probably due to the particular conformation of the cleft, that makes the drugs able to bind it 

in very different positions. In isotype αβIIA the values are mostly intermediate, indicating that 

the drugs are in the same overlapped  and overturned. These differences can be observed in 

figure 21. 

Then, the binding free energies of the drugs over the three isotypes have been investigated in 

order to classify them on the basis of their specificity. Figures 22, 23 and 24 summarize these 

results. From figure 22, it can be acknowledged that six drugs are non-specific and show a very 

high binding energy for all the isotypes, so they can be useful to target many cells without 

interest in the specificity. There are other non-specific drugs, as it is shown in figure 23, but 

they show lower average binding energies values compared to the others. Finally, figure 24 

helps in figuring out which drugs are specific for a particular isotype. 21 drugs are specific for 

isotype αβIII, so they can be used to specifically target cancerous cells, that overexpress this 

isotype. Many others are specific for both the isotypes αβIII and αβIIA, so the cleft 

conformation in isotype αβIVA is probably the cause of the lower binding energies values for 

this isotype. Only one drug, C55, is specific for this isotype. There are no specific drugs for 

isotype αβIIA, as they are all shared with isotype αβIII. Moreover, most of the drugs with the 

highest binding energies of this isotype are not specific at all. For what concerns the isotype 
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αβIII, the compounds C51, C53 and C19 are specific and their binding energies are among the 

highest for the isotype. Therefore, they can be efficient drugs to selectively target the tumoral 

cells. 

Figures 25, 26 and 27 merge the results from the previous graphs in radar graphs. The drugs are 

coloured on the basis of the cluster of belonging. The details of the energy on each significant 

residue for each cluster can be seen in figures 28, 29 and 30. In isotype αβIIA radar graph, it 

can be noticed that the drugs with the highest binding energies have all a very low RMSD and 

are all in the cluster 1, which is the colchicine’s one. This indicates that the most effective drugs 

are the ones more similar to the colchicine. The drugs in clusters 3, 4 and 5 have higher RMSD 

and lower binding energies, compared to the ones in cluster 1. These results are supported by 

figure 28, where it can be seen that clusters 1 and 2 have higher binding energies compared to 

the others. Overall, the binding energies for cluster 1 are just slightly higher than the ones in 

cluster 2. The most involved region seems to be the H8. 

The radar graph for isotype αβIII (figure 26) is very interesting, as it clear that the behaviour of 

one drug differs significantly from the others. This drug is the already mentioned C19, that is 

the only drug with a high RMSD and has one of the top binding energies. Overall, al the drugs 

in its cluster have high binding energies, so it can be due to their positions in the cleft. Looking 

at the decomposition over the residues (figure 29), the most evident difference is that the drugs 

in cluster 2 have higher binding energies on the residues of the α-T5-loop, supporting the thesis 

that they are is their different position in the cleft, that lead to the higher values of binding 

energy overall and in this particular region. For what concerns the other residues, there are not 

evident differences: the highest binding energies are on H8, followed by H7 and T7 regions, 

while the S8-S9 regions have binding energies near zero. This result could have been expected, 

as the drugs are all in a similar position. Cluster 2 higher energy on α-T5-loop can be probably 

due to the lateral groups of these drugs and to the different pose of the compound C19. 

Last, the radar graph for isotype αβIVA (figure 27) shows that the drugs in both cluster 4 and 5 

have the higher binding energies. Cluster 4 drugs have low RMSD, so they are in a position 

near the colchicine’s one, while the drugs in cluster 5 are in a different position, as they have 

very high RMSD. The majority of the drugs (cluster 1 and 2), have lower binding energies. It 

could be expected, as in this isotype the binding energies overall have lower values compared 

to the others. Looking at the decomposition graph (figure 30), this difference becomes more 

evident. The region with the highest binding energy is H8, followed by T7 and H7. The beta-
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sheets and the H7 have energy values near zero. For what concerns the α-T5-loop, the values 

are on average; the only exception in cluster 4, where these values are near zero. 

Overall, the helix H8 is the highest binding energy region in every isotype, while the beta-sheets 

have the lowest values in both isotypes 3 and 4A. The other regions have different values 

depending both to the drugs and to the particular isotype. 

As the aim was to find a drug able to bind specifically the isotype αβIII and able to overcome 

the colchicine in the performance, the drug C19 seems to be an interesting compound: it has 

one of the highest binding energies on isotype αβIII and has a different pose compared to the 

colchicine’s one. Moreover, it is a specific drug for the isotype αβIII, thus it is interesting to 

perform more analysis of this compound. 

4.5 Conclusions 

In this chapter, several colchicine derivatives compounds have been analysed and compared 

over three models of different human tubulin isotypes: αβIIA, αβIII and αβIVA. The aim was 

to find a drug potentially able to act selectively on isotype αβIII, the most overexpressed in 

cancer cells. The results show that one compound, C19, could be a good drug to test. In the next 

chapter, a more detailed study of this compound on isotype αβIII will be performed. 
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4.6 Supporting information 

4.6.1 Drugs chemical structures 

 

Supporting Figure 1: Chemical structures of 4-Br-Amides 

 

Supporting Figure 2: Chemical structures of 4-Cl-Amides 
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Supporting Figure 3: Chemical structures of DT-and-4-I-Amides 

 

Supporting Figure 4: Chemical structures of 4-Cl-Carbamates  
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Supporting Figure 5: Chemical structures of 4-I-Carbamates 

4.6.2 Homology Modelling 

The best model built with the homology modelling was chosen based on the lowest values of 

the DOPE score for each structure. The comparison between the dope profiles of the template 

and the built model are represented in following figures. 
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Supporting Figures 6-7-8: DOPE per-residue score for the bovine template structure and the three isotypes αβIIA, αβIII and 

αβIVA respectively:  the template structure is represented in green, while the models are represented in red. More the curves 
are superimposed, more the model is good.  

The quality of the general models was then evaluated using the PROCHECK, VERIFY3D and 

ERRAT tools.  

PROCHECK analysis shows the Ramachandran plot for each generated model: Phi and Psi 

angles for each residue are plotted, defining the most favoured, the allowed and the not allowed 

regions. 

The template model has 95.9% of the residues in the most favoured regions, 3.8% in the 

additional allowed region, 0.1% in the generously allowed regions and 0.1% in the disallowed 

regions. For what concerns the three isotypes, the percentages of the residues in each region are 

respectively: 

• αβIIA: 95.8% in the most favoured regions, 4.1% in the additional allowed regions, 

0,1% in the generously allowed regions and no residues in the disallowed regions. 

• αβIII: 95.6% in the most favoured regions, 4.2% in the additional allowed regions, 0.1% 

in the generously allowed regions and no residues in the disallowed regions. 

• αβIVA: 95.4% in the most favoured regions, 4.5% in the additional allowed regions, 

0.1% in the generously allowed regions and no residues in the disallowed regions. 
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Supporting Figure 9: Ramachandran Plots for the template structure (a), the isotype αβIIA (b), αβIII (c) and αβIVA (d). Over 

the 90% of the residues is in the most favoured regions in every model. 

As more than 90% of the residues are in the most favoured regions, the models can be assumed 

as good ones. 

The Overall Quality Factor obtained whit the ERRAT tool for the template model is 86.68 for 

chain α and 91.17 for chain β. For the isotype αβIIA these values are respectively 79.12 and 

88,31, for the isotype αβIII 80.29 and 84.73 and for the isotype αβIVA 77.26 and 84.96. 

The generally accepted range is >50 for a high quality model, so all the models passed the test. 

The VERIFY3D is considered passed if a high percentage of the residues has an averaged 3D-

1D score higher than 0.2. All models pass the VERIFY3D showing percentages of 96.77% for 
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the template model, 98.85% for isotype αβIIA, 98.15% for isotype αβIII and 97.69% for isotype 

αβIVA. 

All the results show that the models are acceptable.  

4.6.3 Ensemble Docking results 
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Supporting Figures 10-11-12: Ensemble Docking results for all the drugs over the three isotypes. 



71 
 

4.6.4 Binding Free Energies  
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Supporting Figures 13-14-15: Ranking of the binding free energy calculation for isotype 2A, 3 and 4A. The binding energies 
are lower for isotype 4A, compared to the others. 

4.6.5 Drugs included in each cluster 

Supporting Tables 1-2-3: Drugs included in each cluster for the three tubulin isotypes. 

Isotype 2A 

Cluster 1 C01, C02, C03, C04, C05, C06, C07, C10, C11, C12, C13, C14, C15, C16, C17, C20, C21, C22, C23, 

C24, C25, C26, C29, C30, C31, C32, C33, C34, C35, C36, C39, C40, C44, C50, C52, C53, C56, C57, 

C59, C61, C62 

Cluster 2 C08, C09, C18, C19, C27, C28, C37, C38, C43, C48, C49, C58, C60 

Cluster 3 C41 

Cluster 4 C42, C47, C51 

Cluster 5 C45, C46, C54. C55 
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Isotype 3 

Cluster 1 C01, C02, C03, C04, C05, C06, C07, C10, C11, C12, C13, C14, C15, C16, C17, C20, C21, C22, C23, 

C24, C25, C26, C29, C30, C31, C32, C33, C34, C35, C36, C39, C40, C44, C50, C52, C53, C56, C57, 

C59, C61, C62 

Cluster 2 C08, C09, C18, C19, C27, C28, C37, C38, C43, C48, C49, C58, C60 

Cluster 3 C41 

Cluster 4 C42, C47, C51 

Cluster 5 C45, C46, C54, C55 

 

Isotype 4A 

Cluster 1 C01, C02, C03, C04, C05, C06, C07, C10, C11, C12, C13, C14, C15, C16, C17, C21, C22, C23, C24, 

C25, C26, C29, C30, C31, C32, C33, C34, C35, C36, C40, C43, C45, C47, C52, C53, C54, C57, C61, 

C62 

Cluster 2 C08, C09, C18, C19, C27, C28, C37, C38, C41, C48, C49, C50, C58, C59, C60 

Cluster 3 C41, C42, C46 

Cluster 4 C44, C51, C56 

Cluster 5 C20, C39, C55 
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5. Molecular Dynamics and Local Effects on αβIII Tubulin 

Binders by colchicine derivatives.    

In this chapter a study of the compound C19 based on molecular dynamics is presented. This 

drug has shown peculiar characteristics in isotype αβIII in the comparative study performed in 

the previous chapter: it is specific for this isotype, it has a different pose in the cleft compared 

to the colchicine and it has one of the highest binding energies to isotype αβIII. Long MD 

simulations are performed for the αβIII dimer bound either to the colchicine and to the novel 

compound, in order to confront their effects on the dimer. The results show that the compound 

C19 could be a good anticancer drug. 

Abstract 

The overexpression of the tubulin dimer isotype αβIII is believed to be one of the reasons of 

the drug-resistance in the tumoral cells67. Colchicine is among the most used drugs to treat the 

cancer, but it has the side effects of being quite toxic and not very effective on isotype αβIII83. 

The colchicine derivative C19, investigated in the previous section, may be effective to 

overcome colchicine’s limitations. In particular C19’s different position in the binding cleft and 

the high affinity might result in a higher efficiency. In this study, Molecular Dynamics (MD) 

simulations were carried out for comparing the effects of the colchicine and the compound C19 

on the human tubulin isotype αβIII. The outcome of this work shows the differences between 

the two compounds and confirms that C19 could be an effective drug. 

5.1 Introduction 

Colchicine is one of the most employed microtubule destabilizing agents for cancer treatment. 

The lateral contacts are fundamental in the microtubule integrity84, so a drug capable to reduce 

these contacts is a good destabilizer, able to enhance catastrophes in the microtubule structure. 

Despite this power, it is quite toxic for the organism, so there is the need to design and develop 

its derivatives in order to make them more specific for the tumoral cells and less poisonous for 

the normal cells. As the tubulin isotype αβIII is overexpressed in tumoral cells52, it is interesting 

to produce compounds able to specifically target this tubulin. In the previous chapter, the 

performed analysis showed that, among all the compounds, the colchicine-derivative C19 could 

have the characteristic to be a better drug than the colchicine. In this study, the effects of the 
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colchicine and the compound C19 have been confronted on the human tubulin isotype αβIII by 

using Molecular Dynamics (MD) simulations and binding free energy calculation. 

5.2 Materials and Methods 

5.2.1 Molecular Dynamics simulations 

The employed structures of both the dimer and the drugs were the ones built in the previous 

chapter. Molecular dynamics simulations were performed for the isotype αβIII bounded to both 

the colchicine and the compound C19.  

 

Figure 31: Colchicine and C19 2D structures. 

The simulations were performed by using GROMACS 5.1.4 package. The same parameters 

have been used for both the systems. Periodic boundary conditions were applied along the xyz 

coordinates. The AMBER-ff99SB-ILDN force-field was used to define protein topology, while 

Mg2+, GDP, GTP and colchicine topologies were defined using Antechamber program of the 

AMBER16 package, with general amber force field and bcc charge method, and ACPYPE. A 

triclinic box with 0.6 nm of minimum distance was used and all systems were solvated using 

TIP3P explicit water model, with the addition of chlorine and sodium ions to neutralize the 

charge, maintaining an ionic strength at 150 mM. A 1000-step energy minimization by steepest 

descent was then performed, with a maximum force of 100 kJ mol−1nm−1 . After that, 

restraining potentials were applied on water molecules and sodium and chlorine ions and system 

equilibration in NVT and NPT ensembles was performed: NVT equilibrium phase was 

performed for 100 ps using velocity-rescale thermostat with the tau constant at 0.1 and the 

reference temperature at 300 K, while the NPT one for 300 ps using Berendsen barostat to 

maintain the pressure at 1 atm. Electrostatic interactions were treated by means of Particle Mesh 

Ewald (PME) approach, with 1.0 nm cutoff, Fourier spacing of 0.2 nm and interpolation order 

of 4. Lennard-Jones interactions were cut-off at a distance of 1 nm. Finally, each system was 

simulated for at least 100 ns without any restrain with a time step of 2 fs and coordinates saved 
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at every 2 ps. The Visual Molecular Dynamics (VMD) package was employed for the visual 

inspection of the simulated systems. Dedicated GROMACS tools were used for a quantitative 

analysis in terms of Root-Mean-Square Deviation (RMSD) and Root-Mean-Square Fluctuation 

(RMSF), while analysis of secondary structure was performed by applying the STRuctural 

IDEntification (STRIDE). 

5.3.2 Binding free energy calculation 

The binding free energies between protein and ligands were calculated by using the molecular 

mechanics Generalized Born surface area (MMGBSA) theory. The free energy was thus 

calculated with the software AMBER16. This calculation was performed using the trajectory 

frames from the last 50 ns MD simulations mentioned above and igb=8. In order to not reduce 

the predictive power78, MMGBSA calculation has been performed separately on each ns of 

simulation and then mediated overall. The free energy was also decomposed on each residue. 

5.3 Results 

5.3.1 Molecular Dynamics simulation 

The RMSD from the starting position for each compound was calculated for each drug during 

the 100 ns of simulation. The RMSD has been calculated without fitting on the drug’s atoms, 

so it is a measure of the internal deformations in the drug (which are negligible) and the rigid 

roto-translation of the drug inside the cleft. Therefore, it can be used to evaluate the propensity 

of the drugs to go outside the cleft.  Compound 19 shows a lower value of RMSD, indicating 

that it is more stable inside the cleft, while the colchicine has a major tendency to get out from 

the binding cleft. 
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Figure 32. a) RMSD values from the starting position for the colchicine and C19. C19 has a lower value of RMSD, indicating 
that it is more stable inside the cleft. b) Variation of the colchicine’s pose from the starting of the simulation (black) to end 
(blue). The colchicine tends to go outside the cleft more than C19. 

Then, the secondary structure modifications in the colchicine binding site have been 

investigated in the last 50 ns of simulation, using the software STRIDE. 

 

 

Figure 33: Secondary structure modifications in the colchicine binding site of isotype αβIII with the colchicine (a) and the 
compound C19 (b) in the last 50 ns of simulation. The secondary structures are quite stable during the simulation; the only 
difference is that the αT5 loop has a quite major tendency to form a sheet with the C19. 

The secondary structures are stable in both the simulations. The only difference is in the α-T5 

loop, which has a little tendency to form a Beta-sheet with the C19 (20%). This behaviour is 

absent with the colchicine.  Following these results, the RMSF of the α-T5 loop were analysed 

in the last 50 ns of simulations. The results show a minor fluctuation with the compound C19, 

as it can be seen in the following figure: 



78 
 

 

Figure 34: Root-Mean-Square-Fluctuations (RMSF) of the α-T5 loop for the isotype αβIII bound to the colchicine (black) and 
the compound C19 (red). It is evident that C19 reduces the fluctuations of this loop, compared to the colchicine. 

5.3.2 Binding free energy calculation 

Binding free energy calculation is quantified in the following figure: 

 

Figure 35: Binding Free Energy: the energy is mediated over the last 50 ns of simulation. Compound 19 shows a higher 
binding energy with isotype αβIII compared to the colchicine. 
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C19 shows a quite higher binding energy to isotype αβIII compared to the colchicine. To go 

deeper with the analysis, the energy decomposition over the residues in the cleft has been 

performed. The following figure shows the results for the residues in the cleft with the most 

significant energy contribution. 

 

Figure 36: Binding Free Energy decomposition over the residues in the colchicine binding site. The residues reported are the 
ones with the higher energies. It is clear that compound C19 has a higher affinity for the α-T5-Loop, compared to the colchicine. 

Residues from β-252 to β-257 (H8 helix) show a high binding energy for both the drugs, while 

the main difference can be observed in residues from α-178 to α-180 (T5 loop), where the 

compound C19 shows a higher binding energy compared to the colchicine. Looking at their 

positions in the cleft, it is clear that C19 pose favourites its interactions whit the T5 loop, while 

the colchicine is quite distant from it.  
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Figure 37: Colchicine and C19 positions inside the cleft. The colchicine is represented in green, while the compound C19 is 
coloured in red. It is evident that the different position of C19 makes it able to interact more with the α-T5-loop. 

 

5.4 Discussion 

One of the employed strategies to kill the cancerous cells is by using drugs able to selectively 

bind the microtubules of these cells, as they are fundamental in the cell’s replication. The drugs 

have to be able to alter the dynamic instability40 of the microtubule, moving the equilibrium 

either to enhanced polymerization or depolymerization. Among the depolymerizing 

compounds, colchicine has been one of the most studied during the years, but it has the side 

effects of being toxic and non-specific. In this study, a preliminary evaluation of one of its 

derivatives has been performed using Molecular Dynamics simulations, in order to understand 

if it could be a better drug than the colchicine. The compound, called C19, has been chosen 

among many derivatives after the analysis presented in the previous chapter. Tumoral cells 

show different tubulin isotypes in order to become more resistant to the drugs85. As they 

overexpress isotype αβIII compared to the non-tumoral cells52, it is believed that this isotype 

could have a role in the drug-resistance81, so in this study only isotype αβIII has been used. The 

simulations have been performed on the tubulin dimer bonded to both the colchicine and the 

new compound. 
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Figure 32 shows the Root-Mean-Square-Deviations (RMSDs) from their starting positions for 

both the drugs. A drug with a higher value of RMSD alters its position more than one with a 

lower value. Therefore, the colchicine has a major tendency to change its position and it 

indicates its tendency to go out the cleft, while the novel compounds may be more stable inside 

the pocket, has it shows a lower RMSD value. The different pose assumed by C19 (which can 

be seen in Figure 37) may help the drug to stay stable inside the cleft. This drug seems to interact 

more with the α-T5-loop than the colchicine (Figure 36) as its binding energy in this region is 

quite higher than the colchicine’s one. 

For what concerns the secondary structures analysis (Figure 33), the only difference is that the 

α-T5 loop has a little tendency to form a Beta-sheet, which is a more stable and ordered structure 

compared to a coil. This could be one of the reasons leading to the reduced Root-Mean-Square-

Fluctuation (RMSF) of this region in the tubulin bonded to C19 (Figure 34). As longitudinal 

contacts are fundamental for the microtubule polymerization process84 and α-T5 is fundamental 

in these contacts85, these reduced fluctuations can enhance the microtubule depolymerization 

process, making this drug more effective than the colchicine (the fluctuation of the α-T5-loop 

are quite higher in the tubulin bonded to the colchicine). Plus, the Taxol seems to enhance the 

fluctuations of this loop86. As the Taxol is a microtubule stabilizer55, the opposite effect of C19 

on the α-T5-loop supports the thesis that it could be a powerful microtubule destabilizer. 

5.5 Conclusions and Future Perspectives 

In this chapter, the effects of the colchicine and the novel compound C19 have been analysed 

and compared on the human tubulin dimer αβIII. The aim was to test if C19 could have the 

potentiality to be a better anticancer drug than the colchicine. The results show that it has a 

higher destabilizing power on the microtubule, due to its interactions with the α-T5-loop.  

Future studies may be needed to analyse the effect of this drug on other aspects of the 

microtubule dynamics, such as the bending angle and the fluctuations of other regions. It should 

also be tested on the other human tubulin isotypes in order to better prove its specificity. 
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